NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The stability of the EO-1 Advanced Land Imager dark current levels over the period of one-half orbit is investigated. A series of two-second dark current collections, over the course of 40 minutes, was performed during the first sixty days the instrument was in orbit. Analysis of this data indicates only two dark current reference periods, obtained entering and exiting eclipse, are required to remove ALI dark current offsets for 99.9% of the focal plane to within 1.5 digital numbers for any observation on the solar illuminated portion of the orbit.
Hot spots and dark current in advanced plasma wakefield accelerators
Manahan, G. G.; Deng, A.; Karger, O.; ...
2016-01-29
Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. Likewise, these electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. The strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.
Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses
NASA Technical Reports Server (NTRS)
Boardman, Joseph W.
1995-01-01
Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.
Low-dark current 1024×1280 InGaAs PIN arrays
NASA Astrophysics Data System (ADS)
Yuan, Ping; Chang, James; Boisvert, Joseph C.; Karam, Nasser
2014-06-01
Photon counting imaging applications requires low noise from both detector and readout integrated circuit (ROIC) arrays. In order to retain the photon-counting-level sensitivity, a long integration time has to be employed and the dark current has to be minimized. It is well known that the PIN dark current is sensitive to temperature and a dark current density of 0.5 nA/cm2 was demonstrated at 7 °C previously. In order to restrain the size, weight, and power consumption (SWaP) of cameras for persistent large-area surveillance on small platforms, it is critical to develop large format PIN arrays with small pitch and low dark current density at higher operation temperatures. Recently Spectrolab has grown, fabricated and tested 1024x1280 InGaAs PIN arrays with 12.5 μm pitch and achieved 0.7 nA/cm2 dark current density at 15 °C. Based on our previous low-dark-current PIN designs, the improvements were focused on 1) the epitaxial material design and growth control; and 2) PIN device structure to minimize the perimeter leakage current and junction diffusion current. We will present characterization data and analyses that illustrate the contribution of various dark current mechanisms.
Origin of large dark current increase in InGaAs/InP avalanche photodiode
NASA Astrophysics Data System (ADS)
Wen, J.; Wang, W. J.; Chen, X. R.; Li, N.; Chen, X. S.; Lu, W.
2018-04-01
The large dark current increase near the breakdown voltage of an InGaAs/InP avalanche photodiode is observed and analyzed from the aspect of bulk defects in the device materials. The trap level information is extracted from the temperature-dependent electrical characteristics of the device and the low temperature photoluminescence spectrum of the materials. Simulation results with the extracted trap level taken into consideration show that the trap is in the InP multiplication layer and the trap assisted tunneling current induced by the trap is the main cause of the large dark current increase with the bias from the punch-through voltage to 95% breakdown voltage.
An Exploration of WFC3/IR Dark Current Variation
NASA Astrophysics Data System (ADS)
Sunnquist, B.; Baggett, S.; Long, K. S.
2017-02-01
We use a collection of darks spanning September 2009 to June 2016 to study variations in the dark current in the IR detector on WFC3. Although the darks possess a similar signal pattern across the detector, we find that their median dark rates vary by as much as 0.014 DN/s (0.032 e-/s). The distribution of these median values has a triangular shape with a mean and standard deviation of 0.021 ± 0.0029 DN/s (0.049 ± 0.0069 e-/s). We observe a long term time-dependence in the inboard vertical reference pixel and zeroth read signals; however, these differences do not noticeably affect the calibrated dark signals, and we conclude that the WFC3/IR dark current levels continue to remain stable since launch. The inboard reference pixel signals exhibit a unique, but consistent, pattern around the detector, but this pattern does not evolve noticeably with the median of the science pixels, and a quadrant or row-based reference pixel subtraction strategy does not reduce the spread between the median dark rates. We notice a slight drift in the inboard reference pixel signals up the dark ramps, and the intensity of this drift is related to the median dark current in the science pixels. This holds true using either the horizontal or vertical reference pixels and for darks with a variety of sample sequences.
Probing leptophilic dark sectors with hadronic processes
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo
2017-08-01
We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.
Probing leptophilic dark sectors with hadronic processes
D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo
2017-05-29
We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton–antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. Wemore » use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.« less
Mechanisms of the passage of dark currents through Cd(Zn)Te semi-insulating crystals
NASA Astrophysics Data System (ADS)
Sklyarchuk, V.; Fochuk, P.; Rarenko, I.; Zakharuk, Z.; Sklyarchuk, O.; Nykoniuk, Ye.; Rybka, A.; Kutny, V.; Bolotnikov, A. E.; James, R. B.
2014-09-01
We investigated the passage of dark currents through semi-insulating crystals of Cd(Zn)Te with weak n-type conductivity that are used widely as detectors of ionizing radiation. The crystals were grown from a tellurium solution melt at 800 оС by the zone-melting method, in which a polycrystalline rod in a quartz ampoule was moved through a zone heater at a rate of 2 mm per day. The synthesis of the rod was carried out at ~1150 оС. We determined the important electro-physical parameters of this semiconductor, using techniques based on a parallel study of the temperature dependence of current-voltage characteristics in both the ohmic and the space-charge-limited current regions. We established in these crystals the relationship between the energy levels and the concentrations of deep-level impurity states, responsible for dark conductivity and their usefulness as detectors.
Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers
NASA Astrophysics Data System (ADS)
Ito, Kazuki; Hiraki, Tatsurou; Tsuchizawa, Tai; Ishikawa, Yasuhiko
2017-04-01
Vertical pin structures of Ge photodiodes (PDs) integrated with Si optical waveguides are fabricated by depositing Ge epitaxial layers on Si-on-insulator (SOI) layers, and the performances of n+-Ge/i-Ge/p+-SOI PDs are compared with those of p+-Ge/i-Ge/n+-SOI PDs. Both types of PDs show responsivities as high as 1.0 A/W at 1.55 µm, while the dark leakage current is different, which is consistent with previous reports on free-space PDs formed on bulk Si wafers. The dark current of the p+-Ge/i-Ge/n+-SOI PDs is higher by more than one order of magnitude. Taking into account the activation energies for dark current as well as the dependence on PD area, the dark current of the n+-Ge/i-Ge/p+-SOI PDs is dominated by the thermal generation of carriers via mid-gap defect levels in Ge, while for the p+-Ge/i-Ge/n+-SOI PDs, the dark current is ascribed to not only thermal generation but also other mechanisms such as locally formed conduction paths.
SuperCDMS Underground Detector Fabrication Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Platt, M.; Mahapatra, R.; Bunker, Raymond A.
The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discoverymore » of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.« less
Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM
NASA Astrophysics Data System (ADS)
Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard
2015-10-01
For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the prerequisite for future scientific space and earth observation missions. Aiming, for example at exoplanet or earth atmospheric spectral analysis, significant improvement in LWIR / VLWIR detector material performance is mandatory. LDC material optimization can target different directions of impact: (i) reduction of dark current for a given operational temperature to increase SNR and reduce thermally induced signal offset variations. (ii) operation at elevated temperatures at a given dark current level to reduce mass and power budget of the required cryocooler and to reduce cryostat complexity. (iii) increase the accessible cut-off wavelength at constant detector temperature and dark current level. This paper presents AIM's latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below Tennant's `Rule07'1 have been demonstrated for n-on-p and p-on-n devices. This work has been carried out under ESA contract ESTEC 4000107414/13/NL/SFe².
NASA Astrophysics Data System (ADS)
Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin
2018-03-01
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.
The DarkSide direct dark matter search with liquid argon
NASA Astrophysics Data System (ADS)
Edkins, E.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2017-11-01
The DarkSide-50 direct dark matter detector is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator neutron veto (LSV) and a water Cerenkov muon veto (WCV). Located under 3800 m.w.e. at the Laboratori Nazionali del Gran Sasso, Italy, it is the only direct dark matter experiment currently operating background free. The atmospheric argon target was replaced with argon from underground sources in April, 2015. The level of 39Ar, a β emitter present in atmospheric argon (AAr), has been shown to have been reduced by a factor of (1.4 ± 0.2) x 103. The combined spin-independent WIMP exclusion limit of 2.0 x 10-44 cm2 (mχ = 100 GeV/c2) is currently the best limit on a liquid argon target.
Radiometric and Radiation Response of Visible FPAs
NASA Technical Reports Server (NTRS)
Hubbs, John
2007-01-01
The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased
NASA Technical Reports Server (NTRS)
Lord, Kenneth; Woodyard, James R.
2002-01-01
The effect of 40 keV electron irradiation on a-Si:H p-i-n single-junction solar cells was investigated using measured and simulated dark J-V characteristics. EPRI-AMPS and PC-1D simulators were explored for use in the studies. The EPRI-AMPS simulator was employed and simulator parameters selected to produce agreement with measured J-V characteristics. Three current mechanisms were evident in the measured dark J-V characteristics after electron irradiation, namely, injection, shunting and a term of the form CV(sup m). Using a single discrete defect state level at the center of the band gap, good agreement was achieved between measured and simulated J-V characteristics in the forward-bias voltage region where the dark current density was dominated by injection. The current mechanism of the form CV(sup m) was removed by annealing for two hours at 140 C. Subsequent irradiation restored the CV(sup m) current mechanism and it was removed by a second anneal. Some evidence of the CV(sup m) term is present in device simulations with a higher level of discrete density of states located at the center of the bandgap.
Performance Simulation of Unipolar InAs/InAs1-x Sb x Type-II Superlattice Photodetector
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2018-05-01
This paper reports performance simulation of a unipolar tunable band gap InAs-InAsSb type-II superlattice (T2SL) infrared photodetector. The generation-recombination and surface leakage currents limit the performance of T2SL photodiodes. Unipolar nBn device design incorporating a suitable barrier layer in the diode structure is taken to suppress the Auger recombination and tunneling currents. At low reverse bias, the generation-recombination current is negligible in the absence of a depletion region, but the dark current is dominated by the diffusion current at higher operation temperatures. The composition, band alignment, barrier width, doping level and thickness of the absorber region are optimized here to achieve low dark current and high quantum efficiency at elevated operating temperatures. Thin unipolar T2SL absorbers are placed in a resonant cavity to enhance photon-material interaction, thus allowing complete absorption in a thinner detector element. It leads to the reduction in the detector volume for lower dark current without affecting the quantum efficiency. It shows an improvement in the quantum efficiency and reduction in the dark current. Dark current density ˜ 10-5 A/cm2 is achievable with low absorber thickness of 2 μm and effective lifetime of 250 ns in the InAs/InAs0.6Sb0.4/B-AlAs1-x Sb x long wave length T2SL detector at 110 K.
InGaAs focal plane arrays for low-light-level SWIR imaging
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan
2011-06-01
Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.
Theoretical analysis of nBn infrared photodetectors
NASA Astrophysics Data System (ADS)
Ting, David Z.; Soibel, Alexander; Khoshakhlagh, Arezou; Gunapala, Sarath D.
2017-09-01
The depletion and surface leakage dark current suppression properties of unipolar barrier device architectures such as the nBn have been highly beneficial for III-V semiconductor-based infrared detectors. Using a one-dimensional drift-diffusion model, we theoretically examine the effects of contact doping, minority carrier lifetime, and absorber doping on the dark current characteristics of nBn detectors to explore some basic aspects of their operation. We found that in a properly designed nBn detector with highly doped excluding contacts the minority carriers are extracted to nonequilibrium levels under reverse bias in the same manner as the high operating temperature (HOT) detector structure. Longer absorber Shockley-Read-Hall (SRH) lifetimes result in lower diffusion and depletion dark currents. Higher absorber doping can also lead to lower diffusion and depletion dark currents, but the benefit should be weighted against the possibility of reduced diffusion length due to shortened SRH lifetime. We also briefly examined nBn structures with unintended minority carrier blocking barriers due to excessive n-doping in the unipolar electron barrier, or due to a positive valence band offset between the barrier and the absorber. Both types of hole blocking structures lead to higher turn-on bias, although barrier n-doping could help suppress depletion dark current.
NASA Astrophysics Data System (ADS)
Chang, Cheng-Yi; Pan, Fu-Ming; Lin, Jian-Siang; Yu, Tung-Yuan; Li, Yi-Ming; Chen, Chieh-Yang
2016-12-01
We fabricated amorphous selenium (a-Se) photodetectors with a lateral metal-insulator-semiconductor-insulator-metal (MISIM) device structure. Thermal aluminum oxide, plasma-enhanced chemical vapor deposited silicon nitride, and thermal atomic layer deposited (ALD) aluminum oxide and hafnium oxide (ALD-HfO2) were used as the electron and hole blocking layers of the MISIM photodetectors for dark current suppression. A reduction in the dark current by three orders of magnitude can be achieved at electric fields between 10 and 30 V/μm. The effective dark current suppression is primarily ascribed to electric field lowering in the dielectric layers as a result of charge trapping in deep levels. Photogenerated carriers in the a-Se layer can be transported across the blocking layers to the Al electrodes via Fowler-Nordheim tunneling because a high electric field develops in the ultrathin dielectric layers under illumination. Since the a-Se MISIM photodetectors have a very low dark current without significant degradation in the photoresponse, the signal contrast is greatly improved. The MISIM photodetector with the ALD-HfO2 blocking layer has an optimal signal contrast more than 500 times the contrast of the photodetector without a blocking layer at 15 V/μm.
NASA Astrophysics Data System (ADS)
Shindey, Radhika; Varma, Vishwanath; Nikhil, K. L.; Sharma, Vijay Kumar
2016-10-01
Robustness is considered to be an important feature of biological systems which may evolve when the functionality of a trait is associated with higher fitness across multiple environmental conditions. Thus, the ability to maintain stable biological phenotypes across environments is thought to be of adaptive value. Previously, we have reported higher intrinsic activity levels (activity levels of free-running rhythm in constant darkness) and power of rhythm (as assessed by amplitude of the periodogram) in Drosophila melanogaster populations (stocks) reared in constant darkness (DD stocks) as compared to those reared in constant light (LL stocks) and 12:12-h light-dark cycles (LD stocks) for over 19 years (˜330 generations). In the current study, we intended to examine whether the enhanced levels of activity observed in DD stocks persist under various environments such as photoperiods, ambient temperatures, non-24-h light-dark (LD) cycles, and semi-natural conditions (SN). We found that DD stocks largely retain their phenotype of enhanced activity levels across most of the above-mentioned environments suggesting the evolution of robust circadian clocks in DD stocks. Furthermore, we compared the peak activity levels of the three stocks across different environmental conditions relative to their peaks in constant darkness and found that the change in peak activity levels upon entrainment was not significantly different across the three stocks for any of the examined environmental conditions. This suggests that the enhancement of activity levels in DD stocks is not due to differential sensitivity to environment. Thus, these results suggest that rearing in constant darkness (DD) leads to evolution of robust circadian clocks suggesting a possible adaptive value of possessing such rhythms under constant dark environments.
Shindey, Radhika; Varma, Vishwanath; Nikhil, K L; Sharma, Vijay Kumar
2016-10-01
Robustness is considered to be an important feature of biological systems which may evolve when the functionality of a trait is associated with higher fitness across multiple environmental conditions. Thus, the ability to maintain stable biological phenotypes across environments is thought to be of adaptive value. Previously, we have reported higher intrinsic activity levels (activity levels of free-running rhythm in constant darkness) and power of rhythm (as assessed by amplitude of the periodogram) in Drosophila melanogaster populations (stocks) reared in constant darkness (DD stocks) as compared to those reared in constant light (LL stocks) and 12:12-h light-dark cycles (LD stocks) for over 19 years (∼330 generations). In the current study, we intended to examine whether the enhanced levels of activity observed in DD stocks persist under various environments such as photoperiods, ambient temperatures, non-24-h light-dark (LD) cycles, and semi-natural conditions (SN). We found that DD stocks largely retain their phenotype of enhanced activity levels across most of the above-mentioned environments suggesting the evolution of robust circadian clocks in DD stocks. Furthermore, we compared the peak activity levels of the three stocks across different environmental conditions relative to their peaks in constant darkness and found that the change in peak activity levels upon entrainment was not significantly different across the three stocks for any of the examined environmental conditions. This suggests that the enhancement of activity levels in DD stocks is not due to differential sensitivity to environment. Thus, these results suggest that rearing in constant darkness (DD) leads to evolution of robust circadian clocks suggesting a possible adaptive value of possessing such rhythms under constant dark environments.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems.
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-12-23
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance R SS = 10 kΩ and environmental temperatures from 25 °C to 85 °C.
High Performance CMOS Light Detector with Dark Current Suppression in Variable-Temperature Systems
Lin, Wen-Sheng; Sung, Guo-Ming; Lin, Jyun-Long
2016-01-01
This paper presents a dark current suppression technique for a light detector in a variable-temperature system. The light detector architecture comprises a photodiode for sensing the ambient light, a dark current diode for conducting dark current suppression, and a current subtractor that is embedded in the current amplifier with enhanced dark current cancellation. The measured dark current of the proposed light detector is lower than that of the epichlorohydrin photoresistor or cadmium sulphide photoresistor. This is advantageous in variable-temperature systems, especially for those with many infrared light-emitting diodes. Experimental results indicate that the maximum dark current of the proposed current amplifier is approximately 135 nA at 125 °C, a near zero dark current is achieved at temperatures lower than 50 °C, and dark current and temperature exhibit an exponential relation at temperatures higher than 50 °C. The dark current of the proposed light detector is lower than 9.23 nA and the linearity is approximately 1.15 μA/lux at an external resistance RSS = 10 kΩ and environmental temperatures from 25 °C to 85 °C. PMID:28025530
Figures of merit for present and future dark energy probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortonson, Michael J.; Huterer, Dragan; Hu, Wayne
2010-09-15
We compare current and forecasted constraints on dynamical dark energy models from Type Ia supernovae and the cosmic microwave background using figures of merit based on the volume of the allowed dark energy parameter space. For a two-parameter dark energy equation of state that varies linearly with the scale factor, and assuming a flat universe, the area of the error ellipse can be reduced by a factor of {approx}10 relative to current constraints by future space-based supernova data and CMB measurements from the Planck satellite. If the dark energy equation of state is described by a more general basis ofmore » principal components, the expected improvement in volume-based figures of merit is much greater. While the forecasted precision for any single parameter is only a factor of 2-5 smaller than current uncertainties, the constraints on dark energy models bounded by -1{<=}w{<=}1 improve for approximately 6 independent dark energy parameters resulting in a reduction of the total allowed volume of principal component parameter space by a factor of {approx}100. Typical quintessence models can be adequately described by just 2-3 of these parameters even given the precision of future data, leading to a more modest but still significant improvement. In addition to advances in supernova and CMB data, percent-level measurement of absolute distance and/or the expansion rate is required to ensure that dark energy constraints remain robust to variations in spatial curvature.« less
Computation of dark frames in digital imagers
NASA Astrophysics Data System (ADS)
Widenhorn, Ralf; Rest, Armin; Blouke, Morley M.; Berry, Richard L.; Bodegom, Erik
2007-02-01
Dark current is caused by electrons that are thermally exited into the conduction band. These electrons are collected by the well of the CCD and add a false signal to the chip. We will present an algorithm that automatically corrects for dark current. It uses a calibration protocol to characterize the image sensor for different temperatures. For a given exposure time, the dark current of every pixel is characteristic of a specific temperature. The dark current of every pixel can therefore be used as an indicator of the temperature. Hot pixels have the highest signal-to-noise ratio and are the best temperature sensors. We use the dark current of a several hundred hot pixels to sense the chip temperature and predict the dark current of all pixels on the chip. Dark current computation is not a new concept, but our approach is unique. Some advantages of our method include applicability for poorly temperature-controlled camera systems and the possibility of ex post facto dark current correction.
NASA Astrophysics Data System (ADS)
Xu, Lixin
2012-06-01
In this paper, the holographic dark energy model, where the future event horizon is taken as an IR cutoff, is confronted by using currently available cosmic observational data sets which include type Ia supernovae, baryon acoustic oscillation, and cosmic microwave background radiation from full information of WMAP 7-yr data. Via the Markov chain Monte Carlo method, we obtain the values of model parameter c=0.696-0.0737-0.132-0.190+0.0736+0.159+0.264 with 1, 2, 3σ regions. Therefore, one can conclude that at at least 3σ level the future Universe will be dominated by phantom-like dark energy. It is not consistent with positive energy condition, however this condition must be satisfied to derive the holographic bound. It implies that the current cosmic observational data points disfavor the holographic dark energy model.
NASA Astrophysics Data System (ADS)
Xiang, Qian-Fei; Bi, Xiao-Jun; Yin, Peng-Fei; Yu, Zhao-Huan
2018-03-01
We study the impact of fermionic dark matter (DM) on projected Higgs precision measurements at the Circular Electron Positron Collider (CEPC), including the one-loop effects on the e+e-→Z h cross section and the Higgs boson diphoton decay, as well as the tree-level effects on the Higgs boson invisible decay. As illuminating examples, we discuss two UV-complete DM models, whose dark sector contains electroweak multiplets that interact with the Higgs boson via Yukawa couplings. The CEPC sensitivity to these models and current constraints from DM detection and collider experiments are investigated. We find that there exist some parameter regions where the Higgs measurements at the CEPC will be complementary to current DM searches.
Interaction in the dark sector
NASA Astrophysics Data System (ADS)
del Campo, Sergio; Herrera, Ramón; Pavón, Diego
2015-06-01
It may well happen that the two main components of the dark sector of the Universe, dark matter and dark energy, do not evolve separately but interact nongravitationally with one another. However, given our current lack of knowledge of the microscopic nature of these two components, there is no clear theoretical path to determine their interaction. Yet, over the years, phenomenological interaction terms have been proposed on mathematical simplicity and heuristic arguments. In this paper, based on the likely evolution of the ratio between the energy densities of these dark components, we lay down reasonable criteria to obtain phenomenological, useful, expressions of the said term independent of any gravity theory. We illustrate this with different proposals which seem compatible with the known evolution of the Universe at the background level. Likewise, we show that two possible degeneracies with noninteracting models are only apparent as they can be readily broken at the background level. Further, we analyze some interaction terms that appear in the literature.
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2011-06-01
We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.
Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells
NASA Technical Reports Server (NTRS)
Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.
1988-01-01
Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.
Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment.
Nakatani, K; Yau, K W
1988-01-01
1. Membrane current was recorded from an isolated, dark-adapted toad rod by sucking either its inner segment or outer segment into a tight-fitting glass pipette containing Ringer solution. The remainder of the cell was exposed to bath solution which could be changed rapidly. 2. In normal Ringer solution the current response of a cell to a saturating flash or step of light showed a small secondary rise at its initial peak. The profile of this secondary rise (i.e. amplitude and time course) was independent of both the intensity and the duration of illumination once the light response had reached a plateau level. 3. This secondary rise disappeared when external Na+ around the outer segment was replaced by Li+ or guanidinium, suggesting that it represented an electrogenic Na+-dependent Ca2+ efflux which was declining after the onset of light. 4. This Na+-Ca2+ exchange activity showed a roughly exponential decline, with a time constant of about 0.5 s. Exponential extrapolation of the exchange current to the time at half-height of the light response gave an initial amplitude of about 2 pA. Using La3+ as a blocker, we did not detect any steady exchange current after the initial exponential decline. 5. An intense flash superposed on a just-saturating steady background light failed to produce any incremental exchange current transient. 6. Our interpretation of the above results is that in darkness there are counterbalancing levels of Ca2+ influx (through the light-sensitive conductance) and efflux (through the Na+-Ca2+ exchange) across the plasma membrane of the rod outer segment. The exchange current transient at the onset of light merely represents the unidirectional Ca2+ efflux which becomes revealed as a result of the stoppage of the Ca2+ influx, rather than a de novo Ca2+ efflux triggered by light. 7. Consistent with this interpretation, a test light delivered soon after a saturating, conditioning light elicited little exchange current, which then gradually recovered to control value with a time course parallel to the restoration of the dark current. Conversely, when the dark current was increased above its physiological level by IBMX (isobutylmethylxanthine) the exchange current transient became larger than control.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 8 PMID:2457685
Lower-Dark-Current, Higher-Blue-Response CMOS Imagers
NASA Technical Reports Server (NTRS)
Pain, Bedabrata; Cunningham, Thomas; Hancock, Bruce
2008-01-01
Several improved designs for complementary metal oxide/semiconductor (CMOS) integrated-circuit image detectors have been developed, primarily to reduce dark currents (leakage currents) and secondarily to increase responses to blue light and increase signal-handling capacities, relative to those of prior CMOS imagers. The main conclusion that can be drawn from a study of the causes of dark currents in prior CMOS imagers is that dark currents could be reduced by relocating p/n junctions away from Si/SiO2 interfaces. In addition to reflecting this conclusion, the improved designs include several other features to counteract dark-current mechanisms and enhance performance.
NASA Astrophysics Data System (ADS)
Frey, Joel Brandon
Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.
Near-Infrared Photon-Counting Camera for High-Sensitivity Observations
NASA Technical Reports Server (NTRS)
Jurkovic, Michael
2012-01-01
The dark current of a transferred-electron photocathode with an InGaAs absorber, responsive over the 0.9-to-1.7- micron range, must be reduced to an ultralow level suitable for low signal spectral astrophysical measurements by lowering the temperature of the sensor incorporating the cathode. However, photocathode quantum efficiency (QE) is known to reduce to zero at such low temperatures. Moreover, it has not been demonstrated that the target dark current can be reached at any temperature using existing photocathodes. Changes in the transferred-electron photocathode epistructure (with an In- GaAs absorber lattice-matched to InP and exhibiting responsivity over the 0.9- to-1.7- m range) and fabrication processes were developed and implemented that resulted in a demonstrated >13x reduction in dark current at -40 C while retaining >95% of the approximately equal to 25% saturated room-temperature QE. Further testing at lower temperature is needed to confirm a >25 C predicted reduction in cooling required to achieve an ultralow dark-current target suitable for faint spectral astronomical observations that are not otherwise possible. This reduction in dark current makes it possible to increase the integration time of the imaging sensor, thus enabling a much higher near-infrared (NIR) sensitivity than is possible with current technology. As a result, extremely faint phenomena and NIR signals emitted from distant celestial objects can be now observed and imaged (such as the dynamics of redshifting galaxies, and spectral measurements on extra-solar planets in search of water and bio-markers) that were not previously possible. In addition, the enhanced NIR sensitivity also directly benefits other NIR imaging applications, including drug and bomb detection, stand-off detection of improvised explosive devices (IED's), Raman spectroscopy and microscopy for life/physical science applications, and semiconductor product defect detection.
HYDICE postflight data processing
NASA Astrophysics Data System (ADS)
Aldrich, William S.; Kappus, Mary E.; Resmini, Ronald G.; Mitchell, Peter A.
1996-06-01
The hyperspectral digital imagery collection experiment (HYDICE) sensor records instrument counts for scene data, in-flight spectral and radiometric calibration sequences, and dark current levels onto an AMPEX DCRsi data tape. Following flight, the HYDICE ground data processing subsystem (GDPS) transforms selected scene data from digital numbers (DN) to calibrated radiance levels at the sensor aperture. This processing includes: dark current correction, spectral and radiometric calibration, conversion to radiance, and replacement of bad detector elements. A description of the algorithms for post-flight data processing is presented. A brief analysis of the original radiometric calibration procedure is given, along with a description of the development of the modified procedure currently used. Example data collected during the 1995 flight season, but uncorrected and processed, are shown to demonstrate the removal of apparent sensor artifacts (e.g., non-uniformities in detector response over the array) as a result of this transformation.
NASA Astrophysics Data System (ADS)
Roodenko, K.; Choi, K. K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.
2016-09-01
Performance of quantum well infrared photodetector (QWIP) device parameters such as detector cutoff wavelength and the dark current density depend strongly on the quality and the control of the epitaxy material growth. In this work, we report on a methodology to precisely control these critical material parameters for long wavelength infrared (LWIR) GaAs/AlGaAs QWIP epi wafers grown by multi-wafer production Molecular beam epitaxy (MBE). Critical growth parameters such as quantum well (QW) thickness, AlGaAs composition and QW doping level are discussed.
Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.
Koushiappas, Savvas M; Loeb, Abraham
2017-07-28
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.
Probing dark energy dynamics from current and future cosmological observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Gongbo; Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6; Zhang Xinmin
2010-02-15
We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range ofmore » z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.« less
Gonzalo-Gomez, Alicia; Turiegano, Enrique; León, Yolanda; Molina, Isabel; Torroja, Laura; Canal, Inmaculada
2012-01-01
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.
Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...
2012-05-23
We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction belowmore » a dark matter candidate mass of 5 GeV/c², and on spin-dependent interactions up to masses of 200 GeV/c².« less
Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Bai, Y; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Fox, P J; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harnik, R; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S
2012-05-25
We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp[over ¯] collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb(-1) recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c(2), and on spin-dependent interactions up to masses of 200 GeV/c(2).
Echo of interactions in the dark sector
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Nunes, Rafael C.
2017-11-01
We investigate the observational constraints on an interacting vacuum energy scenario with two different neutrino schemes (with and without a sterile neutrino) using the most recent data from cosmic microwave background (CMB) temperature and polarization anisotropy, baryon acoustic oscillations (BAO), type Ia supernovae from JLA sample and structure growth inferred from cluster counts. We find that inclusion of the galaxy clusters data with the minimal data combination CMB +BAO +JLA suggests an interaction in the dark sector, implying the decay of dark matter particles into dark energy, since the constraints obtained by including the galaxy clusters data yield a non-null and negative coupling parameter between the dark components at 99% confidence level. We deduce that the current tensions on the parameters H0 and σ8 can be alleviated within the framework of the interacting as well as noninteracting vacuum energy models with sterile neutrinos.
Search for domain wall dark matter with atomic clocks on board global positioning system satellites.
Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei
2017-10-30
Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel †
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-01
We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e−/s at 60 °C. PMID:29370146
Development of Low Parasitic Light Sensitivity and Low Dark Current 2.8 μm Global Shutter Pixel.
Yokoyama, Toshifumi; Tsutsui, Masafumi; Suzuki, Masakatsu; Nishi, Yoshiaki; Mizuno, Ikuo; Lahav, Assaf
2018-01-25
Abstract : We developed a low parasitic light sensitivity (PLS) and low dark current 2.8 μm global shutter pixel. We propose a new inner lens design concept to realize both low PLS and high quantum efficiency (QE). 1/PLS is 7700 and QE is 62% at a wavelength of 530 nm. We also propose a new storage-gate based memory node for low dark current. P-type implants and negative gate biasing are introduced to suppress dark current at the surface of the memory node. This memory node structure shows the world smallest dark current of 9.5 e - /s at 60 °C.
Solution-Processed Flexible Organic Ferroelectric Phototransistor.
Zhao, Qiang; Wang, Hanlin; Jiang, Lang; Zhen, Yonggang; Dong, Huanli; Hu, Wenping
2017-12-20
In this article, we demonstrate ferroelectric insulator, P(VDF-TrFE), can be integrated with red light sensitive polymeric semiconductor, P(DPP-TzBT), toward ferroelectric organic phototransistors (OPTs). This ferroelectricity-modulated phototransistor possesses different nonvolatile and tunable dark current states due to P(VDF-TrFE)'s remnant polarization. As a result, the OPT is endowed with a tunable dark current level ranging from 1 nA to 100 nA. Once the OPT is programmed or electrically polarized, its photo-to-dark (signal-to-noise) ratio can be "flexible" during photodetection process, without gate bias application. This kind of organic ferroelectric phototransistor has great potential in detecting wide ranges of light signals with good linearity. Moreover, its tuning mechanism discussed in this work can be helpful to understand the operation mechanism of organic phototransistor (OPT). It can be promising for novel photodetection application in plastic electronic devices.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P
2015-06-10
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Constraining viscous dark energy models with the latest cosmological data
NASA Astrophysics Data System (ADS)
Wang, Deng; Yan, Yang-Jie; Meng, Xin-He
2017-10-01
Based on the assumption that the dark energy possessing bulk viscosity is homogeneously and isotropically permeated in the universe, we propose three new viscous dark energy (VDE) models to characterize the accelerating universe. By constraining these three models with the latest cosmological observations, we find that they just deviate very slightly from the standard cosmological model and can alleviate effectively the current H_0 tension between the local observation by the Hubble Space Telescope and the global measurement by the Planck Satellite. Interestingly, we conclude that a spatially flat universe in our VDE model with cosmic curvature is still supported by current data, and the scale invariant primordial power spectrum is strongly excluded at least at the 5.5σ confidence level in the three VDE models as the Planck result. We also give the 95% upper limits of the typical bulk viscosity parameter η in the three VDE scenarios.
Nomura, Takaaki; Okada, Hiroshi; Okada, Nobuchika
2016-09-22
Here, we propose a radiative seesaw model at the three-loop level, in which quarks, leptons, leptoquark bosons, and a Majorana fermion of dark matter candidate are involved in the neutrino loop. When analyzing neutrino oscillation data includes all possible constraints such as flavor changing neutral currents, lepton flavor violations, upper/lower bound on the mass of leptoquark from the collider physics, and the measured relic density of the dark matter, we show the allowed region to satisfy all the data/constraints.
Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector
NASA Astrophysics Data System (ADS)
Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue
2017-10-01
All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.
Gonzalo-Gomez, Alicia; Turiegano, Enrique; León, Yolanda; Molina, Isabel; Torroja, Laura; Canal, Inmaculada
2012-01-01
HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep∶activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest∶activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels. PMID:22574167
NASA Astrophysics Data System (ADS)
Zhao, Ming-Ming; He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-08-01
We search for sterile neutrinos in the holographic dark energy cosmology by using the latest observational data. To perform the analysis, we employ the current cosmological observations, including the cosmic microwave background temperature power spectrum data from the Planck mission, the baryon acoustic oscillation measurements, the type Ia supernova data, the redshift space distortion measurements, the shear data of weak lensing observation, the Planck lensing measurement, and the latest direct measurement of H0 as well. We show that, compared to the Λ CDM cosmology, the holographic dark energy cosmology with sterile neutrinos can relieve the tension between the Planck observation and the direct measurement of H0 much better. Once we include the H0 measurement in the global fit, we find that the hint of the existence of sterile neutrinos in the holographic dark energy cosmology can be given. Under the constraint of the all-data combination, we obtain Neff=3.76 ±0.26 and mν,sterile eff<0.215 eV , indicating that the detection of Δ Neff>0 in the holographic dark energy cosmology is at the 2.75 σ level and the massless or very light sterile neutrino is favored by the current observations.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
NASA Astrophysics Data System (ADS)
Boulade, Olivier; Moreau, Vincent; Mulet, Patrick; Gravrand, Olivier; Cervera, Cyril; Zanatta, Jean-Paul; Castelein, Pierre; Guellec, Fabrice; Fièque, Bruno; Chorier, Philippe; Roumegoux, Julien
2016-07-01
CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çalışkan, Deniz, E-mail: dcaliskan@fen.bilkent.edu.tr; Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Beytepe, Ankara; Bütün, Bayram
2014-10-20
ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1 pA at 100 V bias, corresponding to 100 pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35 A/W responsivity at a 100 V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8 ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio andmore » dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.« less
Dark Currents and Their Effect on the Primary Beam in an X-band Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bane, K.L.F.; Dolgashev, V.A.; Raubenheimer, T.
2005-05-27
We numerically study properties of primary dark currents in an X-band accelerating structure. For the H60VG3 structure considered for the Next Linear Collider (NLC) we first perform a fairly complete (with some approximations) calculation of dark current trajectories. These results are used to study properties of the dark current leaving the structure. For example, at accelerating gradient of 65 MV/m, considering two very different assumptions about dark current emission around the irises, we find that the fraction of emitted current leaving the structure to be a consistent {approx} 1%. Considering that {approx} 1 mA outgoing dark current is seen inmore » measurement, this implies that {approx} 100 mA (or 10 pC per period) is emitted within the structure itself. Using the formalism of the Lienard-Wiechert potentials, we then perform a systematic calculation of the transverse kick of dark currents on a primary linac bunch. The result is {approx} 1 V kick per mA (or per 0.1 pC per period) dark current emitted from an iris. For an entire structure we estimate the total kick on a primary bunch to be {approx} 15 V. For the NLC linac this translates to a ratio of (final) vertical beam offset to beam size of about 0.2. However, with the assumptions that needed to be made--particularly the number of emitters and their distribution within a structure--the accuracy of this result may be limited to the order of magnitude.« less
Noise limitations of multiplier phototubes in the radiation environment of space
NASA Technical Reports Server (NTRS)
Viehmann, W.; Eubanks, A. G.
1976-01-01
The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.
Perturbations for transient acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargas, Cristofher Zuñiga; Zimdahl, Winfried; Hipólito-Ricaldi, Wiliam S., E-mail: win_unac@hotmail.com, E-mail: hipolito@ceunes.ufes.br, E-mail: winfried.zimdahl@pq.cnpq.br
2012-04-01
According to the standard ΛCDM model, the accelerated expansion of the Universe will go on forever. Motivated by recent observational results, we explore the possibility of a finite phase of acceleration which asymptotically approaches another period of decelerated expansion. Extending an earlier study on a corresponding homogeneous and isotropic dynamics, in which interactions between dark matter and dark energy are crucial, the present paper also investigates the dynamics of the matter perturbations both on the Newtonian and General Relativistic (GR) levels and quantifies the potential relevance of perturbations of the dark-energy component. In the background, the model is tested againstmore » the Supernova type Ia (SNIa) data of the Constitution set and on the perturbative level against growth rate data, among them those of the WiggleZ survey, and the data of the 2dFGRS project. Our results indicate that a transient phase of accelerated expansion is not excluded by current observations.« less
NASA Technical Reports Server (NTRS)
Mendenhall, J. A.
2001-01-01
The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.
Detecting Axion Dark Matter with Superconducting Qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Akash; Chou, Aaron; Schuster, David
Axion dark matter haloscopes aim to detect dark matter axions converting to single photons in resonant cavities bathed in a uniform magnetic field. A qubit (two level system) operating as a single microwave photon detector is a viable readout system for such detectors and may offer advantages over the quantum limited amplifiers currently used. When weakly coupled to the detection cavity, the qubit transition frequency is shifted by an amount proportional to the cavity photon number. Through spectroscopy of the qubit, the frequency shift is measured and the cavity occupation number is extracted. At low enough temperatures, this would allowmore » sensitivities exceeding that of the standard quantum limit.« less
Neutrino mass, dark matter, and Baryon asymmetry via TeV-scale physics without fine-tuning.
Aoki, Mayumi; Kanemura, Shinya; Seto, Osamu
2009-02-06
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and the baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming a large hierarchy among the mass scales. Tiny neutrino masses are generated at the three-loop level due to the exact Z2 symmetry, by which the stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.
Accounting for Dark Current Accumulated during Readout of Hubble's ACS/WFC Detectors
NASA Astrophysics Data System (ADS)
Ryon, Jenna E.; Grogin, Norman A.; Coe, Dan A.; ACS Team
2018-06-01
We investigate the properties of excess dark current accumulated during the 100-second full-frame readout of the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) detectors. This excess dark current, called "readout dark", gives rise to ambient background gradients and hot columns in each ACS/WFC image. While readout dark signal is removed from science images during the bias correction step in CALACS, the additional noise from the readout dark is currently not taken into account. We develop a method to estimate the readout dark noise properties in ACS/WFC observations. We update the error (ERR) extensions of superbias images to include the appropriate noise from the ambient readout dark gradient and stable hot columns. In recent data, this amounts to about 5 e-/pixel added variance in the rows farthest from the WFC serial registers, and about 7 to 30 e-/pixel added variance along the stable hot columns. We also flag unstable hot columns in the superbias data quality (DQ) extensions. The new reference file pipeline for ACS/WFC implements these updates to our superbias creation process.
Can tonne-scale direct detection experiments discover nuclear dark matter?
NASA Astrophysics Data System (ADS)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.
2017-10-01
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.
Can tonne-scale direct detection experiments discover nuclear dark matter?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn
Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with amore » decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .« less
Low-Light-Level InGaAs focal plane arrays with and without illumination
NASA Astrophysics Data System (ADS)
Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David
2010-04-01
Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.
NASA Astrophysics Data System (ADS)
Gehman, Victor M.
2012-10-01
One of the most important open questions in physics is the fundamental nature of the dark matter. The direct detection of a dark matter particle in a terrestrial experiment would dramatically impact cosmology and particle physics, and would open a window on a new type of observational astrophysics. The LZ collaboration has proposed to construct a 7-ton liquid xenon dark matter detector at the 4850 level of the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector will be based upon the well-established liquid xenon TPC technology, and will capitalize upon the existing infrastructure of the LUX experiment to allow for a rapid turn-around after the conclusion of LUX data taking. With a ducial mass of more than 5 tons, the experiment will probe WIMP-nucleon cross sections down to 2x10-48 cm^2 in 3 years of operation. This represents an improvement of approximately 5000 times over current results, covering a substantial range of theoretically-motivated particle dark matter candidates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.« less
Distance measurements from supernovae and dark energy constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yun
2009-12-15
Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, themore » data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.« less
Dark current reduction of Ge photodetector by GeO₂ surface passivation and gas-phase doping.
Takenaka, Mitsuru; Morii, Kiyohito; Sugiyama, Masakazu; Nakano, Yoshiaki; Takagi, Shinichi
2012-04-09
We have investigated the dark current of a germanium (Ge) photodetector (PD) with a GeO₂ surface passivation layer and a gas-phase-doped n+/p junction. The gas-phase-doped PN diodes exhibited a dark current of approximately two orders of magnitude lower than that of the diodes formed by a conventional ion implantation process, indicating that gas-phase doping is suitable for low-damage PN junction formation. The bulk leakage (Jbulk) and surface leakage (Jsurf) components of the dark current were also investigated. We have found that GeO₂ surface passivation can effectively suppress the dark current of a Ge PD in conjunction with gas-phase doping, and we have obtained extremely low values of Jbulk of 0.032 mA/cm² and Jsurf of 0.27 μA/cm.
Dark matter direct detection of a fermionic singlet at one loop
NASA Astrophysics Data System (ADS)
Herrero-García, Juan; Molinaro, Emiliano; Schmidt, Michael A.
2018-06-01
The strong direct detection limits could be pointing to dark matter - nucleus scattering at loop level. We study in detail the prototype example of an electroweak singlet (Dirac or Majorana) dark matter fermion coupled to an extended dark sector, which is composed of a new fermion and a new scalar. Given the strong limits on colored particles from direct and indirect searches we assume that the fields of the new dark sector are color singlets. We outline the possible simplified models, including the well-motivated cases in which the extra scalar or fermion is a Standard Model particle, as well as the possible connection to neutrino masses. We compute the contributions to direct detection from the photon, the Z and the Higgs penguins for arbitrary quantum numbers of the dark sector. Furthermore, we derive compact expressions in certain limits, i.e., when all new particles are heavier than the dark matter mass and when the fermion running in the loop is light, like a Standard Model lepton. We study in detail the predicted direct detection rate and how current and future direct detection limits constrain the model parameters. In case dark matter couples directly to Standard Model leptons we find an interesting interplay between lepton flavor violation, direct detection and the observed relic abundance.
Dark Current Reduction of IR Detectors
2017-10-19
demonstrating a novel dark current reduction approach for dense infrared detector arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test detector arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE
Dark current in multilayer stabilized amorphous selenium based photoconductive x-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, Joel B.; Belev, George; Kasap, Safa O.
2012-07-01
We report on experimental results which show that the dark current in n-i-p structured, amorphous selenium films is independent of i-layer thickness in samples with consistently thick blocking layers. We have observed, however, a strong dependence on the n-layer thickness and positive contact metal chosen. These results indicate that the dominant source of the dark current is carrier injection from the contacts and any contribution from carriers thermally generated in the bulk of the photoconductive layer is negligible. This conclusion is supported by a description of the dark current transients at different applied fields by a model which assumes onlymore » carrier emission over a Schottky barrier. This model also predicts that while hole injection is initially dominant, some time after the application of the bias, electron injection may become the dominant source of dark current.« less
R(K(*)) from dark matter exchange
NASA Astrophysics Data System (ADS)
Cline, James M.; Cornell, Jonathan M.
2018-07-01
Hints of lepton flavor violation have been observed by LHCb in the rate of the decay B → Kμ+μ- relative to that of B → Ke+e-. This can be explained by new scalars and fermions which couple to standard model particles and contribute to these processes at loop level. We explore a simple model of this kind, in which one of the new fermions is a dark matter candidate, while the other is a heavy vector-like quark and the scalar is an inert Higgs doublet. We explore the constraints on this model from flavor observables, dark matter direct detection, and LHC run II searches, and find that, while currently viable, this scenario will be directly tested by future experiments.
The effects of deep-level defects on the electrical properties of Cd0.9Zn0.1Te crystals
NASA Astrophysics Data System (ADS)
Wang, Pengfei; Nan, Ruihua; Jian, Zengyun
2017-06-01
The deep-level defects of CdZnTe (CZT) crystals grown by the modified vertical Bridgman (MVB) method act as trapping centers or recombination centers in the band gap, which have significant effects on its electrical properties. The resistivity and electron mobility-lifetime product of high resistivity Cd0.9Zn0.1Te wafer marked CZT1 and low resistivity Cd0.9Zn0.1Te wafer marked CZT2 were tested respectively. Their deep-level defects were identified by thermally stimulated current (TSC) spectroscopy and thermoelectric effect spectroscopy (TEES) respectively. Then the trap-related parameters were characterized by the simultaneous multiple peak analysis (SIMPA) method. The deep donor level ({E}{{DD}}) dominating dark current was calculated by the relationship between dark current and temperature. The Fermi-level was characterized by current-voltage measurements of temperature dependence. The width of the band gap was characterized by ultraviolet-visible-infrared transmittance spectroscopy. The results show the traps concentration and capture cross section of CZT1 are lower than CZT2, so its electron mobility-lifetime product is greater than CZT2. The Fermi-level of CZT1 is closer to the middle gap than CZT2. The degree of Fermi-level pinned by {E}{{DD}} of CZT1 is larger than CZT2. It can be concluded that the resistivity of CZT crystals increases as the degree of Fermi-level pinned near the middle gap by the deep donor level enlarges. Project supported by the National Natural Science Foundation of China (No. 51502234) and the Scientific Research Plan Projects of Shaanxi Provincial Department of Education of China (No. 15JS040).
Nonlinear time dependence of dark current in charge-coupled devices
NASA Astrophysics Data System (ADS)
Dunlap, Justin C.; Bodegom, Erik; Widenhorn, Ralf
2011-03-01
It is generally assumed that charge-coupled device (CCD) imagers produce a linear response of dark current versus exposure time except near saturation. We found a large number of pixels with nonlinear dark current response to exposure time to be present in two scientific CCD imagers. These pixels are found to exhibit distinguishable behavior with other analogous pixels and therefore can be characterized in groupings. Data from two Kodak CCD sensors are presented for exposure times from a few seconds up to two hours. Linear behavior is traditionally taken for granted when carrying out dark current correction and as a result, pixels with nonlinear behavior will be corrected inaccurately.
Low dark current InGaAs detector arrays for night vision and astronomy
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan
2009-05-01
Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.
Ultra-Fast Image Sensor Using Ge on Insulator MIS/Schottky Detectors
2008-05-28
electronic system. The noise equivalent power is defined as in /R, where in is the current noise and R is the responsivity. At 1 V, the current noise ...is limited by the dark current and can be approximated as the shot noise 2eIdf1/2, where Id is the measured dark current. At 0 V, the dark current...approaches zero, and the current noise should be approximated as Johnson noise 4kTGf1/2, where G is the measured conductance. Therefore, D* can be
In Situ observation of dark current emission in a high gradient rf photocathode gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
In Situ observation of dark current emission in a high gradient rf photocathode gun
Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...
2016-08-15
Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less
Single Photon Counting Detectors for Low Light Level Imaging Applications
NASA Astrophysics Data System (ADS)
Kolb, Kimberly
2015-10-01
This dissertation presents the current state-of-the-art of semiconductor-based photon counting detector technologies. HgCdTe linear-mode avalanche photodiodes (LM-APDs), silicon Geiger-mode avalanche photodiodes (GM-APDs), and electron-multiplying CCDs (EMCCDs) are compared via their present and future performance in various astronomy applications. LM-APDs are studied in theory, based on work done at the University of Hawaii. EMCCDs are studied in theory and experimentally, with a device at NASA's Jet Propulsion Lab. The emphasis of the research is on GM-APD imaging arrays, developed at MIT Lincoln Laboratory and tested at the RIT Center for Detectors. The GM-APD research includes a theoretical analysis of SNR and various performance metrics, including dark count rate, afterpulsing, photon detection efficiency, and intrapixel sensitivity. The effects of radiation damage on the GM-APD were also characterized by introducing a cumulative dose of 50 krad(Si) via 60 MeV protons. Extensive development of Monte Carlo simulations and practical observation simulations was completed, including simulated astronomical imaging and adaptive optics wavefront sensing. Based on theoretical models and experimental testing, both the current state-of-the-art performance and projected future performance of each detector are compared for various applications. LM-APD performance is currently not competitive with other photon counting technologies, and are left out of the application-based comparisons. In the current state-of-the-art, EMCCDs in photon counting mode out-perform GM-APDs for long exposure scenarios, though GM-APDs are better for short exposure scenarios (fast readout) due to clock-induced-charge (CIC) in EMCCDs. In the long term, small improvements in GM-APD dark current will make them superior in both long and short exposure scenarios for extremely low flux. The efficiency of GM-APDs will likely always be less than EMCCDs, however, which is particularly disadvantageous for moderate to high flux rates where dark noise and CIC are insignificant noise sources. Research into decreasing the dark count rate of GM-APDs will lead to development of imaging arrays that are competitive for low light level imaging and spectroscopy applications in the near future.
Wide-area SWIR arrays and active illuminators
NASA Astrophysics Data System (ADS)
MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula
2012-01-01
We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
NASA Astrophysics Data System (ADS)
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Mihalache, Iuliana; Radoi, Antonio; Pascu, Razvan; Romanitan, Cosmin; Vasile, Eugenia; Kusko, Mihaela
2017-08-30
In this work, a significant improvement of the classical silicon nanowire (SiNW)-based photodetector was achieved through the realization of core-shell structures using newly designed GQD PEI s via simple solution processing. The poly(ethyleneimine) (PEI)-assisted synthesis successfully tuned both optical and electrical properties of graphene quantum dots (GQDs) to fulfill the requirements for strong yellow photoluminescence emission along with large band gap formation and the introduction of electronic states inside the band gap. The fabrication of a GQD PEI -based device was followed by systematic structural and photoelectronic investigation. Thus, the GQD PEI /SiNW photodetector exhibited a large photocurrent to dark current ratio (I ph /I dark up to ∼0.9 × 10 2 under 4 V bias) and a remarkable improvement of the external quantum efficiency values that far exceed 100%. In this frame, GQD PEI s demonstrate the ability to arbitrate both charge-carrier photogeneration and transport inside a heterojunction, leading to simultaneous attendance of various mechanisms: (i) efficient suppression of the dark current governed by the type I alignment in energy levels, (ii) charge photomultiplication determined by the presence of the PEI-induced electron trap levels, and (iii) broadband ultraviolet-to-visible downconversion effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr
We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less
WFC3/UVIS Dark Calibration: Monitoring Results and Improvements to Dark Reference Files
NASA Astrophysics Data System (ADS)
Bourque, M.; Baggett, S.
2016-04-01
The Wide Field Camera 3 (WFC3) UVIS detector possesses an intrinsic signal during exposures, even in the absence of light, known as dark current. A daily monitor program is employed every HST cycle to characterize and measure this current as well as to create calibration files which serve to subtract the dark current from science data. We summarize the results of the daily monitor program for all on-orbit data. We also introduce a new algorithm for generating the dark reference files that provides several improvements to their overall quality. Key features to the new algorithm include correcting the dark frames for Charge Transfer Efficiency (CTE) losses, using an anneal-cycle average value to measure the dark current, and generating reference files on a daily basis. This new algorithm is part of the release of the CALWF3 v3.3 calibration pipeline on February 23, 2016 (also known as "UVIS 2.0"). Improved dark reference files have been regenerated and re-delivered to the Calibration Reference Data System (CRDS) for all on-orbit data. Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.
Searching for dark matter with single phase liquid argon
NASA Astrophysics Data System (ADS)
Caldwell, Thomas S., Jr.
The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Di Croce, D.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lontkovskyi, D.; Lowette, S.; Marchesini, I.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dorney, B.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Seva, T.; Starling, E.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caputo, C.; Caudron, A.; David, P.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Saggio, A.; Vidal Marono, M.; Wertz, S.; Zobec, J.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Coelho, E.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Sanchez Rosas, L. J.; Santoro, A.; Sznajder, A.; Thiel, M.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Shopova, M.; Sultanov, G.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Yuan, L.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liao, H.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhang, S.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Segura Delgado, M. A.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Starodumov, A.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Mohamed, A.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Kirschenmann, H.; Pekkanen, J.; Voutilainen, M.; Havukainen, J.; Heikkilä, J. K.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Laurila, S.; Lehti, S.; Lindén, T.; Luukka, P.; Siikonen, H.; Tuominen, E.; Tuominiemi, J.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Leloup, C.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ö.; Titov, M.; Abdulsalam, A.; Amendola, C.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Tonon, N.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Zhukov, V.; Albert, A.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bermúdez Martínez, A.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Guthoff, M.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Raspereza, A.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Aggleton, R.; Bein, S.; Blobel, V.; Centis Vignali, M.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hinzmann, A.; Hoffmann, M.; Karavdina, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baselga, M.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Faltermann, N.; Freund, B.; Friese, R.; Giffels, M.; Harrendorf, M. A.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Karathanasis, G.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Kousouris, K.; Evangelou, I.; Foudas, C.; Kokkas, P.; Mallios, S.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Surányi, O.; Veres, G. I.; Bencze, G.; Hajdu, C.; Horvath, D.; Hunyadi, Á.; Sikler, F.; Veszpremi, V.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kaur, S.; Kumar, R.; Kumari, P.; Mehta, A.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Bhawandeep, U.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Lezki, S.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Borgonovi, L.; Braibant-Giacomelli, S.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Benaglia, A.; Beschi, A.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lujan, P.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Manoni, E.; Mantovani, G.; Mariani, V.; Menichelli, M.; Rossi, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giannini, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Manca, E.; Mandorli, G.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Di Marco, E.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Moon, C. S.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Reyes-Almanza, R.; Ramirez-Sanchez, G.; Duran-Osuna, M. C.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Rabadan-Trejo, R. I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Galinhas, B.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Strong, G.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golunov, A.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Smirnov, V.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Parygin, P.; Philippov, D.; Polikarpov, S.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Korneeva, N.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Perfilov, M.; Savrin, V.; Volkov, P.; Blinov, V.; Shtol, D.; Skovpen, Y.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Mandrik, P.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Moran, D.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Duarte Campderros, J.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Akgun, B.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Deelen, N.; Dobson, M.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fallavollita, F.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gilbert, A.; Gill, K.; Glege, F.; Gulhan, D.; Harris, P.; Hegeman, J.; Innocente, V.; Jafari, A.; Janot, P.; Karacheban, O.; Kieseler, J.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Ngadiuba, J.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Rabady, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Stakia, A.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Verweij, M.; Zeuner, W. D.; Bertl, W.; Caminada, L.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Backhaus, M.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dorfer, C.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Reichmann, M.; Sanz Becerra, D. A.; Schönenberger, M.; Shchutska, L.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; De Cosa, A.; Del Burgo, R.; Donato, S.; Galloni, C.; Hreus, T.; Kilminster, B.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Schweiger, K.; Seitz, C.; Takahashi, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Paganis, E.; Psallidas, A.; Steen, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Bat, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Tok, U. G.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Davignon, O.; Flacher, H.; Goldstein, J.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Newbold, D. M.; Paramesvaran, S.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Auzinger, G.; Bainbridge, R.; Borg, J.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Elwood, A.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Palladino, V.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wardle, N.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Zahid, S.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Smith, C.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hadley, M.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Lee, J.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Regnard, S.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Si, W.; Wang, L.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Gilbert, D.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Quach, D.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Alyari, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cerati, G. B.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Joshi, B. M.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shi, K.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Martinez, G.; Perry, T.; Prosper, H.; Saha, A.; Santra, A.; Sharma, V.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Feng, Y.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Hu, M.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Hiltbrand, J.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Wadud, M. A.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Higginbotham, S.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Das, S.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Peng, C. C.; Qiu, H.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Chen, Z.; Ecklund, K. M.; Freed, S.; Geurts, F. J. M.; Guilbaud, M.; Kilpatrick, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Shi, W.; Tu, Z.; Zabel, J.; Zhang, A.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Mengke, T.; Muthumuni, S.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Padeken, K.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Joyce, M.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Wang, Y.; Wolfe, E.; Xia, F.; Harr, R.; Karchin, P. E.; Poudyal, N.; Sturdy, J.; Thapa, P.; Zaleski, S.; Brodski, M.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2018-06-01
A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fb-1. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
A search for dark matter is conducted in events with large missing transverse momentum and a hadronically decaying, Lorentz-boosted top quark. This study is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of 36 fbmore » $$^{-1}$$. New substructure techniques, including the novel use of energy correlation functions, are utilized to identify the decay products of the top quark. With no significant deviations observed from predictions of the standard model, limits are placed on the production of new heavy bosons coupling to dark matter particles. For a scenario with purely vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.« less
Dalai, Swayamprava; Pakrashi, Sunandan; Chandrasekaran, Natarajan; Mukherjee, Amitava
2013-01-01
The ever increasing industrial and consumer applications of titanium dioxide nanoparticles (TiO2 NPs) raise concern over the possible risk associated with their environmental exposure. Still, the knowledge regarding nanoparticle behavior in a freshwater ecosystem is lacking. The current study focuses on the toxicity of TiO2 NPs towards Ceriodaphnia dubia (a dominant daphnid isolated from the freshwater) under two different conditions; (1) light and dark photoperiod (16:8 h) and (2) continuous dark conditions, for a period of 48 h. An increase in toxicity was observed with an increase in the concentration, until a certain threshold level (under both photoperiod and dark conditions), and beyond which, reduction was noted. The decrease in toxicity would have resulted from the aggregation and settling of NPs, making them less bioavailable. The oxidative stress was one of the major contributors towards cytotoxicity under both photoperiod and dark conditions. The slow depuration of TiO2 NPs under the photoperiod conditions confirmed a higher NP bioaccumulation and thus a higher bioconcentration factor (BCF) compared to dark conditions. The transmission electron micrographs confirmed the bioaccumulation of NPs and damage of tissues in the gut lining. PMID:23658658
Differentiating Dark Triad Traits Within and Across Interpersonal Circumplex Surfaces.
Dowgwillo, Emily A; Pincus, Aaron L
2017-01-01
Recent discussions surrounding the Dark Triad (narcissism, psychopathy, and Machiavellianism) have centered on areas of distinctiveness and overlap. Given that interpersonal dysfunction is a core feature of Dark Triad traits, the current study uses self-report data from 562 undergraduate students to examine the interpersonal characteristics associated with narcissism, psychopathy, and Machiavellianism on four interpersonal circumplex (IPC) surfaces. The distinctiveness of these characteristics was examined using a novel bootstrapping methodology for computing confidence intervals around circumplex structural summary method parameters. Results suggest that Dark Triad traits exhibit distinct structural summary method parameters with narcissism characterized by high dominance, psychopathy characterized by a blend of high dominance and low affiliation, and Machiavellianism characterized by low affiliation on the problems, values, and efficacies IPC surfaces. Additionally, there was some heterogeneity in findings for different measures of psychopathy. Gender differences in structural summary parameters were examined, finding similar parameter values despite mean-level differences in Dark Triad traits. Finally, interpersonal information was integrated across different IPC surfaces to create profiles associated with each Dark Triad trait and to provide a more in-depth portrait of associated interpersonal dynamics. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Kioussis, Nicholas
The InAs/GaSb and InAs/InAsSb type-II strain-layer superlattices (T2SLS) are of great importance and show great promise for mid-wave and long-wave infrared (IR) detectors for a variety of civil and military applications. The T2SLS offer several advantages over present day detection technologies including suppressed Auger recombination relative to the bulk MCT material, high quantum efficiencies, and commercial availability of low defect density substrates. While the T2SLS detectors are approaching the empirical Rule-07 benchmark of MCT's performance level, the dark-current density is still significantly higher than that of bulk MCT detectors. One of the major origins of dark current is associated with the Shockley-Read- Hall (SRH) process in the depletion region of the detector. I will present results of ab initio electronic structure calculations of the stability of a wide range of point defects [As and In vacancies, In, As and Sb antisites, In interstitials, As interstitials, and Sb interstitials] in various charged states in bulk InAs, InSb, and InAsSb systems and T2SLS. I will also present results of the transition energy levels. The calculations reveal that compared to defects in bulk materials, the formation and defect properties in InAs/InAsSb T2SLS can be affected by various structural features, such as strain, interface, and local chemical environment. I will present examples where the effect of strain or local chemical environment shifts the transition energy levels of certain point defects either above or below the conduction band minimum, thus suppressing their contribution to the SRH recombination.
The LUX-Zeplin Dark Matter Detector
NASA Astrophysics Data System (ADS)
Mock, Jeremy; Lux-Zeplin (Lz) Collaboration
2016-03-01
The LUX-ZEPLIN (LZ) detector is a second generation dark matter experiment that will operate at the 4850 foot level of the Sanford Underground Research Experiment as a follow-up to the LUX detector, currently the world's most sensitive WIMP direct detection experiment. The LZ detector will contain 7 tonnes of active liquid xenon with a 5.6 tonne fiducial mass in the TPC. The TPC is surrounded by an active, instrumented, liquid-xenon ``skin'' region to veto gammas, then a layer of liquid scintillator to veto neutrons, all contained within a water shield. Modeling the detector is key to understanding the expected background, which in turn leads to a better understanding of the projected sensitivity, currently expected to be 2e-48 cm2 for a 50 GeV WIMP. I will discuss the current status of the LZ experiment as well as its projected sensitivity.
NASA Astrophysics Data System (ADS)
Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung
2016-03-01
In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.
NASA Astrophysics Data System (ADS)
Song, P. Y.; Ye, Z. H.; Huang, A. B.; Chen, H. L.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
The dark currents of two short wave (SW) HgCdTe infrared focal plane arrays (IRFPA) detectors hybridized with direct injection (DI) readout and capacitance transimpedance amplifier (CTIA) with long time integration were investigated. The cutoff wavelength of the two SW IRFPAs is about 2.6 μm at 84 K. The dark current densities of DI and CTIA samples are approximately 8.0 × 10-12 A/cm2 and 7.2 × 10-10 A/cm2 at 110 K, respectively. The large divergence of the dark current density might arise from the injection efficiency difference of the two readouts. The low injection efficiency of the DI readout, compared with the high injection efficiency of the CTIA readout at low temperature, makes the dark current density of the DI sample much lower than that of the CTIA sample. The experimental value of injection efficiency of the DI sample was evaluated as 1.1% which is consistent with its theoretical value.
Temperature characteristics of silicon space solar cells and underlying parameters
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Kachare, Ram; Garlick, G. F. J.
1987-01-01
Silicon space cells, 2 cm x 2 cm, with 10 ohm-cm p-base resistivity, 8-mil base thickness, and no back-surface fields have been investigated over the temperature range from 301 to 223 K by measurements of dark forward and reverse current-voltage characteristics and current-voltage relations under illumination. From dark forward bias data, the first and second diode saturation currents, I01 and I02, are determined and hence the base diffusion length and lifetime of minority carriers as functions of temperature. Lifetime increases exponentially with temperature and is explained by a Shockley-Read-Hall model with deep recombination levels 0.245 eV above the valence band. The I02 variation with temperature follows the Sah-Noyce-Shockley-Choo model except at low temperature where extra transitions raise the value above the predicted level. Reverse bias current at low voltage is a thermally assisted tunneling process via deep levels which are observed in base recombination at higher temperatures. The tunneling effects tend to become independent of temperature in the low-temperature region. These results demonstrate the ability to deduce basic parameters such as lifetime from simple measurements and show that back-surface fields offer no advantage at temperatures below 230 K. The analysis also explains the fall in lifetimes observed as the base conductivity increases, attributing it to native defects (perhaps carbon-oxygen-vacancy complexes) rather than the concentration of base dopant.
NASA Astrophysics Data System (ADS)
Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.
2017-12-01
We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.
Jahromi, Hamed Dehdashti; Mahmoodi, Ali; Sheikhi, Mohammad Hossein; Zarifkar, Abbas
2016-10-20
Reduction of dark current at high-temperature operation is a great challenge in conventional quantum dot infrared photodetectors, as the rate of thermal excitations resulting in the dark current increases exponentially with temperature. A resonant tunneling barrier is the best candidate for suppression of dark current, enhancement in signal-to-noise ratio, and selective extraction of different wavelength response. In this paper, we use a physical model developed by the authors recently to design a proper resonant tunneling barrier for quantum infrared photodetectors and to study and analyze the spectral response of these devices. The calculated transmission coefficient of electrons by this model and its dependency on bias voltage are in agreement with experimental results. Furthermore, based on the calculated transmission coefficient, the dark current of a quantum dot infrared photodetector with a resonant tunneling barrier is calculated and compared with the experimental data. The validity of our model is proven through this comparison. Theoretical dark current by our model shows better agreement with the experimental data and is more accurate than the previously developed model. Moreover, noise in the device is calculated. Finally, the effect of different parameters, such as temperature, size of quantum dots, and bias voltage, on the performance of the device is simulated and studied.
NASA Astrophysics Data System (ADS)
Liu, Ming Xiong
2017-03-01
In this review, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Two of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton-nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2-10 GeV/c2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ˜1 MeV/c2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.
García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko
2016-01-01
The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833
The Mysterious Universe - Exploring Our World with Particle Accelerators
Brau, James E [University of Oregon
2018-04-24
The universe is dark and mysterious, more so than even Einstein imagined. While modern science has established deep understanding of ordinary matter, unidentified elements ("Dark Matter" and "Dark Energy") dominate the structure of the universe, its behavior and its destiny. What are these curious elements? We are now working on answers to these and other challenging questions posed by the universe with experiments at particle accelerators on Earth. Results of this research may revolutionize our view of nature as dramatically as the advances of Einstein and other quantum pioneers one hundred years ago. Professor Brau will explain for the general audience the mysteries, introduce facilities which explore them experimentally and discuss our current understanding of the underlying science. The presentation is at an introductory level, appropriate for anyone interested in physics and astronomy.
Field theories and fluids for an interacting dark sector
NASA Astrophysics Data System (ADS)
Carrillo González, Mariana; Trodden, Mark
2018-02-01
We consider the relationship between fluid models of an interacting dark sector and the field theoretical models that underlie such descriptions. This question is particularly important in light of suggestions that such interactions may help alleviate a number of current tensions between different cosmological datasets. We construct consistent field theory models for an interacting dark sector that behave exactly like the coupled fluid ones, even at the level of linear perturbations, and can be trusted deep in the nonlinear regime. As a specific example, we focus on the case of a Dirac, Born-Infeld (DBI) field conformally coupled to a quintessence field. We show that the fluid linear regime breaks before the field gradients become large; this means that the field theory is valid inside a large region of the fluid nonlinear regime.
Defect Related Dark Currents in III-V MWIR nBn Detectors
2014-01-01
theory indicates a thermal activation energy of half the bandgap, and a direct proportionality between dark current density and defect density. 2.2...density due to defects maintains a full bandgap thermal activation energy , and is proportional to the square root of the defect density. Although neutral...photodiodes, and cooling is more efficient in reducing nBn’s dark current due to the full bandgap activation energy . Downloaded From: http
WIMP dark matter candidates and searches-current status and future prospects.
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
WIMP dark matter candidates and searches—current status and future prospects
NASA Astrophysics Data System (ADS)
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
NASA Astrophysics Data System (ADS)
Kumar, Suresh; Xu, Lixin
2014-10-01
In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann-Robertson-Walker space-time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier-Polarski-Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.
A radiative seesaw model with higher order terms under an alternative U(1)B-L
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2018-06-01
We propose a model based on an alternative U(1) B - L gauge symmetry with 5 dimensional operators in the Lagrangian, and we construct the neutrino masses at one-loop level, and discuss lepton flavor violations, dark matter, and the effective number of neutrino species due to two massless particles in our model. Then we search allowed region to satisfy the current experimental data of neutrino oscillation and lepton flavor violations without conflict of several constraints such as stability of dark matter and the effective number of neutrino species, depending on normal hierarchy and inverted one.
Olson, B. V.; Kim, J. K.; Kadlec, E. A.; ...
2015-11-03
Carrier lifetime and dark current measurements are reported for a mid-wavelength infrared InAs 0.91Sb 0.09 alloy nBn photodetector. Minority carrier lifetimes are measured using a non-contact time-resolved microwave technique on unprocessed portions of the nBn wafer and the Auger recombination Bloch function parameter is determined to be |F 1F 2|=0.292. Moreover, the measured lifetimes are also used to calculate the expected diffusion dark current of the nBn devices and are compared with the experimental dark current measured in processed photodetector pixels from the same wafer. As a result, excellent agreement is found between the two, highlighting the important relationship betweenmore » lifetimes and diffusion currents in nBn photodetectors.« less
NASA Astrophysics Data System (ADS)
Bernard, Ethan; LZ Collaboration
2013-10-01
Astrophysical and cosmological observations show that dark matter is concentrated in halos around galaxies and is approximately five times more abundant than baryonic matter. Dark matter has evaded direct detection despite a series of increasingly sensitive experiments. The LZ (LUX-ZEPLIN) experiment will use a two-phase liquid-xenon time projection chamber to search for elastic scattering of xenon nuclei by WIMP (weakly interactive massive particle) dark matter. The detector will contain seven tons of liquid xenon shielded by an active organic scintillator veto and a water tank within the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector scales up the demonstrated light-sensing, cryogenic, radiopurity and shielding technologies of the LUX experiment. Active shielding, position fiducialization, radiopurity control and signal discrimination will reduce backgrounds to levels subdominant to solar neutrino scattering. This experiment will reach a sensitivity to the WIMP-nucleon spin-independent cross section approaching ~ 2 .10-48 cm2 for a 50 GeV WIMP mass, which is about three orders of magnitude smaller than current limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Rui-Yun; Li, Yun-He; Zhang, Jing-Fei
We constrain the neutrino mass in the scenario of vacuum energy interacting with cold dark matter by using current cosmological observations. To avoid the large-scale instability problem in interacting dark energy models, we employ the parameterized post-Friedmann (PPF) approach to do the calculation of perturbation evolution, for the Q = β H ρ{sub c} and Q = β H ρ{sub Λ} models. The current observational data sets used in this work include Planck (cosmic microwave background), BSH (baryon acoustic oscillations, type Ia supernovae, and Hubble constant), and LSS (redshift space distortions and weak lensing). According to the constraint results, wemore » find that β > 0 at more than 1σ level for the Q = β H ρ{sub c} model, which indicates that cold dark matter decays into vacuum energy; while β = 0 is consistent with the current data at 1σ level for the Q = β H ρ{sub Λ} model. Taking the ΛCDM model as a baseline model, we find that a smaller upper limit, ∑ m {sub ν} < 0.11 eV (2σ), is induced by the latest BAO BOSS DR12 data and the Hubble constant measurement H {sub 0} = 73.00 ± 1.75 km s{sup −1} Mpc{sup −1}. For the Q = β H ρ{sub c} model, we obtain ∑ m {sub ν}<0.20 eV (2σ) from Planck+BSH. For the Q = β H ρ{sub Λ} model, ∑ m {sub ν}<0.10 eV (2σ) and ∑ m {sub ν}<0.14 eV (2σ) are derived from Planck+BSH and Planck+BSH+LSS, respectively. We show that these smaller upper limits on ∑ m {sub ν} are affected more or less by the tension between H {sub 0} and other observational data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ming Xiong
In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less
Liu, Ming Xiong
2017-03-14
In this study, we present the current status and prospects of the dark sector physics search program of the SeaQuest/E1067 fixed target dimuon experiment at Fermilab Main Injector. There has been tremendous excitement and progress in searching for new physics in the dark sector in recent years. Dark sector refers to a collection of currently unknown particles that do not directly couple with the Standard Model (SM) strong and electroweak (EW) interactions but assumed to carry gravitational force, thus could be candidates of the missing Dark Matter (DM). Such particles may interact with the SM particles through “portal” interactions. Twomore » of the simple possibilities are being investigated in our initial search: (1) dark photon and (2) dark Higgs. They could be within immediate reach of current or near future experimental search. We show there is a unique opportunity today at Fermilab to directly search for these particles in a highly motivated but uncharted parameter space in high-energy proton–nucleus collisions in the beam-dump mode using the 120 GeV proton beam from the Main Injector. Our current search window covers the mass range 0.2–10 GeV/c 2, and in the near future, by adding an electromagnetic calorimeter (EMCal) to the spectrometer, we can further explore the lower mass region down to about ~1 MeV/c 2 through the di-electron channel. If dark photons (and/or dark Higgs) were observed, they would revolutionize our understanding of the fundamental structures and interactions of our universe.« less
Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier
2016-02-22
The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.
NASA Technical Reports Server (NTRS)
Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick
2014-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e(-)/DN, a noise level less than 25e(-), a dark current level which is less than 10e(-)/pixel/s, and a residual nonlinearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.
Fine-structure constant constraints on dark energy. II. Extending the parameter space
NASA Astrophysics Data System (ADS)
Martins, C. J. A. P.; Pinho, A. M. M.; Carreira, P.; Gusart, A.; López, J.; Rocha, C. I. S. A.
2016-01-01
Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α , are a powerful probe of new physics. Recently these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, were used to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ , to the electromagnetic sector) the α variation. One caveat of these analyses was that it was based on fiducial models where the dark energy equation of state was described by a single parameter (effectively its present day value, w0). Here we relax this assumption and study broader dark energy model classes, including the Chevallier-Polarski-Linder and early dark energy parametrizations. Even in these extended cases we find that the current data constrains the coupling ζ at the 1 0-6 level and w0 to a few percent (marginalizing over other parameters), thus confirming the robustness of earlier analyses. On the other hand, the additional parameters are typically not well constrained. We also highlight the implications of our results for constraints on violations of the weak equivalence principle and improvements to be expected from forthcoming measurements with high-resolution ultrastable spectrographs.
IceCube events and decaying dark matter: hints and constraints
NASA Astrophysics Data System (ADS)
Esmaili, Arman; Kang, Sin Kyu; Dario Serpico, Pasquale
2014-12-01
In the light of the new IceCube data on the (yet unidentified) astrophysical neutrino flux in the PeV and sub-PeV range, we present an update on the status of decaying dark matter interpretation of the events. In particular, we develop further the angular distribution analysis and discuss the perspectives for diagnostics. By performing various statistical tests (maximum likelihood, Kolmogorov-Smirnov and Anderson-Darling tests) we conclude that currently the data show a mild preference (below the two sigma level) for the angular distribution expected from dark matter decay vs. the isotropic distribution foreseen for a conventional astrophysical flux of extragalactic origin. Also, we briefly develop some general considerations on heavy dark matter model building and on the compatibility of the expected energy spectrum of decay products with the IceCube data, as well as with existing bounds from gamma-rays. Alternatively, assuming that the IceCube data originate from conventional astrophysical sources, we derive bounds on both decaying and annihilating dark matter for various final states. The lower limits on heavy dark matter lifetime improve by up to an order of magnitude with respect to existing constraints, definitively making these events—even if astrophysical in origin—an important tool for astroparticle physics studies.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Sensitivity projections for dark matter searches with the Fermi large area telescope
NASA Astrophysics Data System (ADS)
Charles, E.; Sánchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G. A.; Meyer, M.; Tibaldo, L.; Wood, M.; Zaharijas, G.; Zimmer, S.; Ajello, M.; Albert, A.; Baldini, L.; Bechtol, K.; Bloom, E. D.; Ceraudo, F.; Cohen-Tanugi, J.; Digel, S. W.; Gaskins, J.; Gustafsson, M.; Mirabal, N.; Razzano, M.
2016-06-01
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the γ-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 meV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the b b ¯ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the b b ¯ (τ+τ-) annihilation channels.
Sensitivity projections for dark matter dearches with the Fermi large area telescope
Charles, E.; M. Sanchez-Conde; Anderson, B.; ...
2016-05-20
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less
Sensitivity projections for dark matter dearches with the Fermi large area telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, E.; M. Sanchez-Conde; Anderson, B.
The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less
Dark matter directionality revisited with a high pressure xenon gas detector
Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; ...
2015-07-20
An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less
Kohn, Elkana; Katz, Ben; Yasin, Bushra; Peters, Maximilian; Rhodes, Elisheva; Zaguri, Rachel; Weiss, Shirley
2015-01-01
Drosophila phototransduction is a model system for the ubiquitous phosphoinositide signaling. In complete darkness, spontaneous unitary current events (dark bumps) are produced by spontaneous single Gqα activation, while single-photon responses (quantum bumps) arise from synchronous activation of several Gqα molecules. We have recently shown that most of the spontaneous single Gqα activations do not produce dark bumps, because of a critical phospholipase Cβ (PLCβ) activity level required for bump generation. Surpassing the threshold of channel activation depends on both PLCβ activity and cellular [Ca2+], which participates in light excitation via a still unclear mechanism. We show here that in IP3 receptor (IP3R)-deficient photoreceptors, both light-activated Ca2+ release from internal stores and light sensitivity were strongly attenuated. This was further verified by Ca2+ store depletion, linking Ca2+ release to light excitation. In IP3R-deficient photoreceptors, dark bumps were virtually absent and the quantum-bump rate was reduced, indicating that Ca2+ release from internal stores is necessary to reach the critical level of PLCβ catalytic activity and the cellular [Ca2+] required for excitation. Combination of IP3R knockdown with reduced PLCβ catalytic activity resulted in highly suppressed light responses that were partially rescued by cellular Ca2+ elevation, showing a functional cooperation between IP3R and PLCβ via released Ca2+. These findings suggest that in contrast to the current dogma that Ca2+ release via IP3R does not participate in light excitation, we show that released Ca2+ plays a critical role in light excitation. The positive feedback between PLCβ and IP3R found here may represent a common feature of the inositol-lipid signaling. PMID:25673847
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
Large Synoptic Survey Telescope: From Science Drivers to Reference Design
2008-01-01
faint time domain. The LSST design is driven by four main science themes: constraining dark energy and dark matter , taking an inventory of the Solar...Energy and Dark Matter (2) Taking an Inventory of the Solar System (3) Exploring the Transient Optical Sky (4) Mapping the Milky Way Each of these four...Constraining Dark Energy and Dark Matter Current models of cosmology require the exis- tence of both dark matter and dark energy to match observational
Excimer laser processing of backside-illuminated CCDS
NASA Technical Reports Server (NTRS)
Russell, S. D.
1993-01-01
An excimer laser is used to activate previously implanted dopants on the backside of a backside-illuminated CCD. The controlled ion implantation of the backside and subsequent thin layer heating and recrystallization by the short wavelength pulsed excimer laser simultaneously activates the dopant and anneals out implant damage. This improves the dark current response, repairs defective pixels and improves spectral response. This process heats a very thin layer of the material to high temperatures on a nanosecond time scale while the bulk of the delicate CCD substrate remains at low temperature. Excimer laser processing backside-illuminated CCD's enables salvage and utilization of otherwise nonfunctional components by bringing their dark current response to within an acceptable range. This process is particularly useful for solid state imaging detectors used in commercial, scientific and government applications requiring a wide spectral response and low light level detection.
GeV-scale dark matter: Production at the main injector
Dobrescu, Bogdan A.; Frugiuele, Claudia
2015-02-03
In this study, assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NOνA near detectormore » is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.« less
Light-Induced Alterations in Striatal Neurochemical Profiles
NASA Technical Reports Server (NTRS)
Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.
1997-01-01
Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain that receives a number of dopaminergic and glutamatergic input and is known to be involved in the modulation of locomotor and behavioral responses.
Comparison of dark energy models after Planck 2015
NASA Astrophysics Data System (ADS)
Xu, Yue-Yao; Zhang, Xin
2016-11-01
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
Wang, Ping; Zheng, Qinghong; Tang, Qing; Yang, Yintang; Guo, Lixin; Huang, Feng; Song, Zhenjie; Zhang, Zhiyong
2014-01-15
The application of asymmetric Schottky barrier and electrode area in an MgZnO metal-semiconductor-metal (MSM) solar-blind ultraviolet photodetector has been investigated by a physical-based numerical model in which the electron mobility is obtained by an ensemble Monte Carlo simulation combined with first principle calculations using the density functional theory. Compared with the experimental data of symmetric and asymmetric MSM structures based on ZnO substrate, the validity of this model is verified. The asymmetric Schottky barrier and electrode area devices exhibit reductions of 20 times and 1.3 times on dark current, respectively, without apparent photocurrent scarification. The plots of photo-to-dark current ratio (PDR) indicate that the asymmetric MgZnO MSM structure has better dark current characteristic than that of the symmetric one.
NASA Astrophysics Data System (ADS)
Alves, C. S.; Leite, A. C. O.; Martins, C. J. A. P.; Silva, T. A.; Berge, S. A.; Silva, B. S. A.
2018-01-01
There is a growing interest in astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant α , as an optimal probe of new physics. The imminent arrival of the ESPRESSO spectrograph will soon enable significant gains in the precision and accuracy of these tests and widen the range of theoretical models that can be tightly constrained. Here we illustrate this by studying proposed extensions of the Bekenstein-type models for the evolution of α that allow different couplings of the scalar field to both dark matter and dark energy. We use a combination of current astrophysical and local laboratory data (from tests with atomic clocks) to show that these couplings are constrained to parts per million level, with the constraints being dominated by the atomic clocks. We also quantify the expected improvements from ESPRESSO and other future spectrographs, and briefly discuss possible observational strategies, showing that these facilities can improve current constraints by more than an order of magnitude.
Clark, Leonard B.
1938-01-01
The level of dark adaptation of the whirligig beetle can be measured in terms of the threshold intensity calling forth a response. The course of dark adaptation was determined at levels of light adaptation of 6.5, 91.6, and 6100 foot-candles. All data can be fitted by the same curve. This indicates that dark adaptation follows parts of the same course irrespective of the level of light adaptation. The intensity of the adapting light determines the level at which dark adaptation will begin. The relation between log aI 0 (instantaneous threshold) and log of adapting light intensity is linear over the range studied. PMID:19873056
Yang, Bingxian; Wang, Xin; Gao, Cuixia; Chen, Meng; Guan, Qijie; Tian, Jingkui; Komatsu, Setsuko
2016-08-05
Clematis terniflora DC. has potential pharmaceutical value; on the contrary, high-level UV-B irradiation with dark treatment led to the accumulation of secondary metabolites. Metabolomic and proteomic analyses of leaf of C. terniflora were performed to investigate the systematic response mechanisms to high-level UV-B irradiation with dark treatment. Metabolites related to carbohydrates, fatty acids, and amino acids and/or proteins related to stress, cell wall, and amino acid metabolism were gradually increased in response to high-level UV-B irradiation with dark treatment. On the basis of cluster analysis and mapping of proteins related to amino acid metabolism, the abundances of S-adenosylmethionine synthetase and cysteine synthase as well as 1,1-diphenyl-2-picrylhydrazyl scavenging activity were gradually increased in response to high-level UV-B irradiation with dark treatment. Furthermore, the abundance of dihydrolipoyl dehydrogenase/glutamate dehydrogenase and the content of γ-aminobutyric acid were also increased following high-level UV-B irradiation with dark treatment. Taken together, these results suggest that high-level UV-B irradiation with dark treatment induces the activation of reactive oxygen species scavenging system and γ-aminobutyric acid shunt pathway in leaf of C. terniflora.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, R.; Sáez, D., E-mail: rdale@umh.es, E-mail: diego.saez@uv.es
The vector-tensor (VT) theory of gravitation revisited in this article was studied in previous papers, where it was proved that VT works and deserves attention. New observational data and numerical codes have motivated further development which is presented here. New research has been planed with the essential aim of proving that current cosmological observations, including Planck data, baryon acoustic oscillations (BAO), and so on, may be explained with VT, a theory which accounts for a kind of dark energy which has the same equation of state as vacuum. New versions of the codes CAMB and COSMOMC have been designed formore » applications to VT, and the resulting versions have been used to get the cosmological parameters of the VT model at suitable confidence levels. The parameters to be estimated are the same as in general relativity (GR), plus a new parameter D . For D = 0, VT linear cosmological perturbations reduces to those of GR, but the VT background may explain dark energy. The fits between observations and VT predictions lead to non vanishing | D | upper limits at the 1σ confidence level. The value D = 0 is admissible at this level, but this value is not that of the best fit in any case. Results strongly suggest that VT may explain current observations, at least, as well as GR; with the advantage that, as it is proved in this paper, VT has an additional parameter which facilitates adjustments to current observational data.« less
Pixelated Geiger-Mode Avalanche Photo-Diode Characterization Through Dark Current Measurement
NASA Astrophysics Data System (ADS)
Amaudruz, Pierre-Andre; Bishop, Daryl; Gilhully, Colleen; Goertzen, Andrew; James, Lloyd; Kozlowski, Piotr; Retiere, Fabrice; Shams, Ehsan; Sossi, Vesna; Stortz, Greg; Thiessen, Jonathan D.; Thompson, Christopher J.
2014-06-01
PIXELATED geiger-mode avalanche photodiodes (PPDs), often called silicon photomultipliers (SiPMs) are emerging as an excellent replacement for traditional photomultiplier tubes (PMTs) in a variety of detectors, especially those for subatomic physics experiments, which requires extensive test and operation procedures in order to achieve uniform responses from all the devices. In this paper, we show for two PPD brands, Hamamatsu MPPC and SensL SPM, that at room temperature, the dark noise rate, breakdown voltage and rate of correlated avalanches can be inferred from the sole measure of dark current as a function of operating voltage, hence greatly simplifying the characterization procedure. We introduce a custom electronics system that allows measurement for many devices concurrently, hence allowing rapid testing and monitoring of many devices at low cost. Finally, we show that the dark current of Hamamastu Multi-Pixel Photon Counter (MPPC) is rather independent of temperature at constant operating voltage, hence the current measure cannot be used to probe temperature variations. On the other hand, the MPPC current can be used to monitor light source conditions in DC mode without requiring strong temperature stability, as long as the integrated source brightness is comparable to the dark noise rate.
Dark Signal Characterization of 1.7 micron cutoff devices for SNAP
NASA Astrophysics Data System (ADS)
Smith, R. M.; SNAP Collaboration
2004-12-01
We report initial progress characterizing non-photometric sources of error -- dark current, noise, and zero point drift -- for 1.7 micron cutoff HgCdTe and InGaAs detectors under development by Raytheon, Rockwell, and Sensors Unlimited for SNAP. Dark current specifications can already be met with several detector types. Changes to the manufacturing process are being explored to improve the noise reduction available through multiple sampling. In some cases, a significant number of pixels suffer from popcorn noise, with a few percent of all pixels exhibiting a ten fold noise increase. A careful study of zero point drifts is also under way, since these errors can dominate dark current, and may contribute to the noise degradation seen in long exposures.
Electronic transport in a long wavelength infrared quantum cascade detector under dark condition
NASA Astrophysics Data System (ADS)
Li, L.; Zhou, X. H.; Lin, T.; Li, N.; Zhu, Z. Q.; Liu, F. Q.
2016-09-01
We present a joint experimental and theoretical investigation on a long wavelength infrared quantum cascade detector to reveal its dark current paths. The temperature dependence of the dark current is measured. It is shown that there are two different transport mechanisms, namely resonant tunneling at low temperatures and thermal excitation at higher temperature, dominate the carrier flow, respectively. Moreover, the experimental intersubband transition energies obtained by the magneto-transport measurements matches the theoretical predictions well. With the aid of the calculated band structures, we can explain the observed oscillation phenomena of the dark current under the magnetic field very well. The obtained results provide insight into the transport properties of quantum cascade detectors thus providing a useful tool for device optimization.
Concentration of Cadmium in Cacao Beans and its Relationship with Soil Cadmium in Southern Ecuador
USDA-ARS?s Scientific Manuscript database
The concentration of cadmium (Cd) in cacao (Theobroma cacao, L.) beans above a critical level (0.6 mg kg-1 established by the European Union) has raised concerns of safety in the consumption of cacao-based chocolate (dark chocolate). Currently, little is available regarding Cd concentration in soil,...
NICMOS Temperature-specific Darks
NASA Astrophysics Data System (ADS)
Monroe, B.; Bergeron, E.
1999-11-01
The various components of NICMOS dark images have been modeled and combined to make synthetic dark calibration files which are intended for use with observations in a temperature range from 61 to ~75 K, currently available only for camera 2, with cameras 1 and 3 to follow in a few months. The amplifier glow and the true linear dark current have been constructed as temperature-independent quantities, while the “shading” component of the darks has been modeled as temperature-dependent. The data used to construct these models was taken with NIC 2, in a temperature range of 61 to 80 K during the recent warm-up of NICMOS due to cryogen exhaustion. The resulting synthetic darks are available through a web-based tool on the STScI NICMOS website http://www.stsci.edu/instruments/nicmos/NICMOS_tools/syndark.html.
Discussion about photodiode architectures for space applications
NASA Astrophysics Data System (ADS)
Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.
2017-11-01
Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of configuration is a low flux application but the need for speed distinguishes it from other low flux applications as it usually requires a different ROIC architecture and a photodiode optimized for high response speed.
The Sanford Underground Research Facility at Homestake (SURF)
Lesko, K. T.
2015-03-24
The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less
Dark-count-less photon-counting x-ray computed tomography system using a YAP-MPPC detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2012-10-01
A high-sensitive X-ray computed tomography (CT) system is useful for decreasing absorbed dose for patients, and a dark-count-less photon-counting CT system was developed. X-ray photons are detected using a YAP(Ce) [cerium-doped yttrium aluminum perovskite] single crystal scintillator and an MPPC (multipixel photon counter). Photocurrents are amplified by a high-speed current-voltage amplifier, and smooth event pulses from an integrator are sent to a high-speed comparator. Then, logical pulses are produced from the comparator and are counted by a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The image contrast of gadolinium medium slightly fell with increase in lower-level voltage (Vl) of the comparator. The dark count rate was 0 cps, and the count rate for the CT was approximately 250 kcps.
Gravitational redshift of galaxies in clusters as predicted by general relativity.
Wojtak, Radosław; Hansen, Steen H; Hjorth, Jens
2011-09-28
The theoretical framework of cosmology is mainly defined by gravity, of which general relativity is the current model. Recent tests of general relativity within the Lambda Cold Dark Matter (ΛCDM) model have found a concordance between predictions and the observations of the growth rate and clustering of the cosmic web. General relativity has not hitherto been tested on cosmological scales independently of the assumptions of the ΛCDM model. Here we report an observation of the gravitational redshift of light coming from galaxies in clusters at the 99 per cent confidence level, based on archival data. Our measurement agrees with the predictions of general relativity and its modification created to explain cosmic acceleration without the need for dark energy (the f(R) theory), but is inconsistent with alternative models designed to avoid the presence of dark matter. © 2011 Macmillan Publishers Limited. All rights reserved
Effects of 1- and 2-MeV electrons on photomultiplier tubes
NASA Technical Reports Server (NTRS)
Beatty, M. E., III; Debnam, W. J., Jr.; Meredith, B. D.
1976-01-01
Various types of photomultiplier tubes useful for space applications were irradiated with 1- and 2-MeV electrons at Van Allen radiation belt fluxes of 100,000 to 10 millions electrons/sq cm-sec. The increase in the dark current due to electron irradiation was observed at various bias voltages under worst-case conditions (no shielding). Results were presented in the form of dark current plotted against electron flux. All the tubes tested showed extremely large increases in dark current. Tube types 541A, 6217, 6199, and 6903 exhibited the largest increases under irradiation, whereas type 1P22 was affected the least. All the damage observed was transient. The luminescence produced in the optical window probably accounts for a large part of the dark-current increases, but there were some effects possibly due to direct irradiation of the photocathode and dynode chain.
Bai, Yang; Carena, Marcela; Lykken, Joseph
2009-12-31
A dilaton could be the dominant messenger between standard model fields and dark matter. The measured dark matter relic abundance relates the dark matter mass and spin to the conformal breaking scale. The dark matter-nucleon spin-independent cross section is predicted in terms of the dilaton mass. We compute the current constraints on the dilaton from LEP and Tevatron experiments, and the gamma-ray signal from dark matter annihilation to dilatons that could be observed by Fermi Large Area Telescope.
Rogers, Katherine H; Le, Marina T; Buckels, Erin E; Kim, Mikayla; Biesanz, Jeremy C
2018-02-19
The Dark Tetrad traits (subclinical psychopathy, narcissism, Machiavellianism, and everyday sadism) have interpersonal consequences. At present, however, how these traits are associated with the accuracy and positivity of first impressions is not well understood. The present article addresses three primary questions. First, to what extent are perceiver levels of Dark Tetrad traits associated with differing levels of perceptive accuracy? Second, to what extent are target levels of Dark Tetrad traits associated with differing levels of expressive accuracy? Finally, to what extent can Dark Tetrad traits be differentiated when examining perceptions of and by others? In a round-robin design, undergraduate participants (N = 412) in small groups engaged in brief, naturalistic, unstructured dyadic interactions before providing impressions of their partner. Dark Tetrad traits were associated with being viewed and viewing others less distinctively accurately and more negatively. Interpersonal perceptions that included an individual scoring highly on one of the Dark Tetrad traits differed in important ways from interactions among individuals with more benevolent personalities. Notably, despite the similarities between the Dark Tetrad, traits had unique associations with interpersonal perceptions. © 2018 Wiley Periodicals, Inc.
Weak mixing below the weak scale in dark-matter direct detection
NASA Astrophysics Data System (ADS)
Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure
2018-02-01
If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.
Recent progress on the Axion Dark Matter eXperiment (ADMX)
NASA Astrophysics Data System (ADS)
Khatiwada, Rakshya; ADMX Collaboration
2017-01-01
The Axion Dark Matter eXperiment (ADMX) is one of the three ``Generation-2'' direct dark matter searches and the only one dedicated to finding the axion. It looks for axions that convert into photons through the Primakoff process in the presence of a strong magnetic field. The mass of the axion is unknown but expected to be few to tens of μeV, which corresponds to photons in the GHz range. The expected signal power is of the order 10-24 W, which puts stringent requirements on the system's noise level. ADMX has recently started its Generation-2 data run with the recent upgrades of a dilution refrigerator, which cools the system to sub-K temperature suppressing the thermal background noise and tunable, near quantum noise-limited SQUID amplifiers. This talk will summarize the current status and operation of ADMX experiment as it searches for dark matter axions. Supported by DOE Grants DE-SC0010280, DE-FG02-96ER40956, DE-AC52-07NA27344, DE-AC03-76SF00098, the Heising-Simons Foundation and the LLNL, FNAL and PNNL LDRD program.
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo
2015-08-13
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu
2015-08-01
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Dirac dark matter and b →s ℓ+ℓ- with U(1) gauge symmetry
NASA Astrophysics Data System (ADS)
Celis, Alejandro; Feng, Wan-Zhe; Vollmann, Martin
2017-02-01
We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b →s ℓ+ℓ- anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1 ) ' local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1 ) '. The associated Z' gauge boson can accommodate current hints of new physics in b →s ℓ+ℓ- decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavor factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b →s ℓ+ℓ-anomalies still persist for dark matter and Z ' masses in the TeV range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan
Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less
Probing dark energy with braneworld cosmology in the light of recent cosmological data
NASA Astrophysics Data System (ADS)
García-Aspeitia, Miguel A.; Magaña, Juan; Hernández-Almada, A.; Motta, V.
We investigate a brane model based on Randall-Sundrum scenarios with a generic dark energy component. The latter drives the accelerated expansion at late-times of the universe. In this scheme, extra terms are added into Einstein Field equations that are propagated to the Friedmann equations. To constrain the dark energy equation-of-state (EoS) and the brane tension we use observational data with different energy levels (Supernovae Type Ia, H(z), baryon acoustic oscillations, and cosmic microwave background radiation distance, and a joint analysis) in a background cosmology. Beside EoS being consistent with a cosmological constant at the 3σ confidence level for each dataset, the baryon acoustic oscillations probe favors an EoS consistent with a quintessence dark energy. Although we found different lower limit bounds on the brane tension for each dataset, being the most restricted for CMB, there is not enough evidence of modifications in the cosmological evolution of the universe by the existence of an extra dimension within observational uncertainties. Nevertheless, these new bounds are complementary to those obtained by other probes like table-top experiments, Big Bang Nucleosynthesis, and stellar dynamics. Our results show that a further test of the braneworld model with appropriate correction terms or a profound analysis with perturbations, may be needed to improve the constraints provided by the current data.
: "\\f106"; /* open - switch to fa-angle-up */ } @media(min-width:768px) { /* top level open */ } } /* top level open hover */ .navbar-dark .navbar-nav > li.open > a:hover, .navbar-dark .navbar-nav :768px) { /* top level open hover desktop*/ .navbar-dark .navbar-nav > li.open > a:hover, .navbar
Mid- and Long-IR Broadband Quantum Well Photodetector
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Ting, David Z.; Khoshakhlagh, Arezou; Gunapala, Sarath D.
2012-01-01
A single-stack broadband quantum well infrared photodetector (QWIP) has been developed that consists of stacked layers of GaAs/AlGaAs quantum wells with absorption peaks centered at various wavelengths spanning across the 9- to-11- m spectral regions. The correct design of broadband QWIPs was a critical step in this task because the earlier implementation of broadband QWIPs suffered from a tuning of spectral response curve with an applied bias. Here, a new QWIP design has been developed to overcome the spectral tuning with voltage that results from non-uniformity and bias variation of the electrical field across the detector stacks with different absorption wavelengths. In this design, a special effort has been made to avoid non-uniformity and bias tuning by changing the doping levels in detector stacks to compensate for variation of dark current generation rate across the stacks with different absorption wavelengths. Single-pixel photodetectors were grown, fabricated, and tested using this new design. The measured dark current is comparable with the dark measured current for single-color QWIP detectors with similar cutoff wavelength, thus indicating high material quality as well as absence of performance degradation resulting from broadband design. The measured spectra clearly demonstrate that the developed detectors cover the desired special range of 8 to 12 m. Moreover, the shape of the spectral curves does not change with applied biases, thus overcoming the problem plaguing previous designs of broadband QWIPs.
Dynamics of domain coverage of the protein sequence universe.
Rekapalli, Bhanu; Wuichet, Kristin; Peterson, Gregory D; Zhulin, Igor B
2012-11-16
The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its "dark matter". Here we suggest that true size of "dark matter" is much larger than stated by current definitions. We propose an approach to reducing the size of "dark matter" by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of "dark matter"; however, its absolute size increases substantially with the growth of sequence data.
Exploring the effects of overburden on the sublimation and transport of H2O on Iapetus
NASA Astrophysics Data System (ADS)
Rivera-Valentin, Edgard G.; Blackburn, David G.; Ulrich, Richard K.
2012-08-01
It has been shown through both measurements and simulations that there exists a measurable ice-free, porous, overburden overlaying water ice on Cassini Regio. Mass transfer through this porous media in a vacuum would occur in the Knudsen regime, which provides sublimation rates orders of magnitude smaller than Hertz-Langmuir sublimation. The availability of water ice for transport from this region is thus currently controlled by mass transfer through the dark material overburden. Thermal segregation suggests that Iapetus' polar regions have been brightened via ballistic transport of water and its subsequent cold trapping since exogenic deposition models predict dark high latitudes on the leading hemisphere. The limiting effect of the dark material on transport of water ice may thus greatly impact the current mass balance at the poles. The effects of the overburden on the global stability and transport of H2O is addressed in order to gain insight into its influence on the polar albedo distribution and current state of thermal segregation within the dark terrain. Results indicate that thermal segregation is currently an inactive or weak process within Cassini Regio, though it is an ongoing process at the inter-terrain regions. Modeling of polar accumulation suggests that even accounting for the current dark material cover within Cassini Regio there exists sufficient ballistically inbound water to overcome exogenic darkening mechanisms. Topographic effects on local albedo differences are also simulated to provide a more complete water stability study of Iapetus. Results suggest that topographically induced changes in heat flux may be sufficient to create the observed local albedo contrasts and also support ongoing dark exogenic deposition within Cassini Regio to explain the lack of bright slopes deep within the dark terrain.
NASA Astrophysics Data System (ADS)
Joiner, R. K.; Kobayashi, K.; Winebarger, A. R.; Champey, P. R.
2014-12-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument which is currently being developed by NASA's Marshall Space Flight Center (MSFC) and the National Astronomical Observatory of Japan (NAOJ). The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's Chromosphere to make measurements of the magnetic field in this region. In order to make accurate measurements of this effect, the performance characteristics of the three on-board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of no greater than 2 e-/DN, a noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non-linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.
Evolution of separate screening soliton pairs in a biased series photorefractive crystal circuit.
Liu, Jinsong; Hao, Zhonghua
2002-06-01
This paper presents calculations for an idea in photorefractive spatial soliton, namely, screening solitons form in a biased series photorefractive crystal circuit consisting of two photorefractive crystals connected electronically by electrode leads in a chain with a voltage source. A system of two coupled equations is derived under appropriate conditions for two-beam propagation in the crystal circuit. The possibility of obtaining steady-state bright and dark screening soliton solutions is investigated in one dimension and, the existence of dark-dark, bright-dark, and bright-bright separate screening soliton pairs in such a circuit is proved. The numerical results show that the two solitons in a soliton pair can affect each other by the light-induced current and their coupling can affect their spatial profiles, dynamical evolutions, stabilities, and self-deflection. Under the limit in which the optical wave has a spatial extent much less than the width of the crystal, only the dark soliton can affect the other soliton by the light-induced current, but the bright soliton cannot. For a bright-dark or dark-dark soliton pair, the dark soliton in a weak input intensity can be obtained for a larger nonlinearity than for a stronger input intensity. For a bright-dark soliton pair, increasing the input intensity of the dark soliton can increase the bending angle of the bright soliton. Some potential applications are discussed.
1984-05-10
overgrowth from a spoke 90 pattern of radial stripe openings at 1 intervals on an Si0 2 coated (110) surface. Bright regions are GaAs and dark regions are Si0...the dark current for such an ideal device is given by Idark - Io[exp(eVbi/AokT) - 1] , (11-l) where Io is a proportionality constant describing the...recombination and leakage currents which contribute to an increased dark current. The value of Voc is determined by the built-in junction barrier height and the
Stressed Ge:Ga photoconductors for space-based astronomy. (Is there life beyond 120 micron)
NASA Technical Reports Server (NTRS)
Beeman, J. W.; Haller, E. E.; Hansen, W. L.; Luke, P. N.; Richards, P. L.
1989-01-01
Information is given in viewgraph form. Information is given on the characteristics of stressed Ge:Ga, a spring type stress cavity, mounting hardware, materials parameters affecting dark current, and the behavior of low dark current stressed Ge:Ga. It is concluded that detectors exist today for background-limited detection at 200 microns, that researchers are narrowing in on the significant parameters that effect dark current in stressed photoconductors, that these findings may be applied to other photoconductor materials, and that some creative problem solving for an ionizing effect reset mechanism is needed.
UV detector based on InAlN/GaN-on-Si HEMT stack with photo-to-dark current ratio > 107
NASA Astrophysics Data System (ADS)
kumar, Sandeep; Pratiyush, Anamika Singh; Dolmanan, Surani B.; Tripathy, Sudhiranjan; Muralidharan, Rangarajan; Nath, Digbijoy N.
2017-12-01
We demonstrate an InAlN/GaN-on-Si high electron mobility transistor based UV detector with a photo-to-dark current ratio of >107. The Ti/Al/Ni/Au metal stack was evaporated and thermal annealed rapidly for Ohmic contacts to the 2D electron gas (2DEG) at the InAlN/GaN interface, while the channel + barrier was recess etched to a depth of 20 nm to pinch-off the 2DEG between Source-Drain pads. A spectral responsivity (SR) of 32.9 A/W at 367 nm was measured at 5 V. A very high photo-to-dark current ratio of >107 was measured at a bias of 20 V. The photo-to-dark current ratio at a fixed bias was found to be decreasing with an increase in the recess length of photodetectors. The fabricated devices were found to exhibit a UV-to-visible rejection ratio of >103 with a low dark current of < 32 pA at 5 V. Transient measurements showed rise and fall times in the range of 3-4 ms. The gain mechanism was investigated, and carrier lifetimes were estimated which matched well with those reported elsewhere.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.
2007-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou
In this work, we investigated the effect of proton irradiation on the performance of long wavelength infrared InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier infrared detector design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation.more » This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.« less
Radon in the DRIFT-II directional dark matter TPC: emanation, detection and mitigation
NASA Astrophysics Data System (ADS)
Battat, J. B. R.; Brack, J.; Daw, E.; Dorofeev, A.; Ezeribe, A. C.; Fox, J. R.; Gauvreau, J.-L.; Gold, M.; Harmon, L. J.; Harton, J. L.; Landers, J. M.; Lee, E. R.; Loomba, D.; Matthews, J. A. J.; Miller, E. H.; Monte, A.; Murphy, A. StJ.; Paling, S. M.; Phan, N.; Pipe, M.; Robinson, M.; Sadler, S. W.; Scarff, A.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Telfer, S.; Walker, D.; Warner, D.; Yuriev, L.
2014-11-01
Radon gas emanating from materials is of interest in environmental science and also a major concern in rare event non-accelerator particle physics experiments such as dark matter and double beta decay searches, where it is a major source of background. Notable for dark matter experiments is the production of radon progeny recoils (RPRs), the low energy (~ 100 keV) recoils of radon daughter isotopes, which can mimic the signal expected from WIMP interactions. Presented here are results of measurements of radon emanation from detector materials in the 1 m3 DRIFT-II directional dark matter gas time projection chamber experiment. Construction and operation of a radon emanation facility for this work is described, along with an analysis to continuously monitor DRIFT data for the presence of internal 222Rn and 218Po. Applying this analysis to historical DRIFT data, we show how systematic substitution of detector materials for alternatives, selected by this device for low radon emanation, has resulted in a factor of ~ 10 reduction in internal radon rates. Levels are found to be consistent with the sum from separate radon emanation measurements of the internal materials and also with direct measurement using an attached alpha spectrometer. The current DRIFT detector, DRIFT-IId, is found to have sensitivity to 222Rn of 2.5 μBql-1 with current analysis efficiency, potentially opening up DRIFT technology as a new tool for sensitive radon assay of materials.
A 4MP high-dynamic-range, low-noise CMOS image sensor
NASA Astrophysics Data System (ADS)
Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang
2015-03-01
In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.
Generalized reciprocity theorem for semiconductor devices
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1985-01-01
A reciprocity theorem is presented that relates the short-circuit current of a device, induced by a carrier generation source, to the minority-carrier Fermi level in the dark. The basic relation is general under low injection. It holds for three-dimensional devices with position dependent parameters (energy gap, electron affinity, mobility, etc.), and for transient or steady-state conditions. This theorem allows calculation of the internal quantum efficiency of a solar cell by using the analysis of the device in the dark. Other applications could involve measurements of various device parameters, interfacial surface recombination velocity at a polcrystalline silicon emitter contact, for rexample, by using steady-state or transient photon or mass-particle radiation.
Oxygen suppresses light-driven anodic current generation by a mixed phototrophic culture.
Darus, Libertus; Ledezma, Pablo; Keller, Jürg; Freguia, Stefano
2014-12-02
This paper describes the detrimental effect of photosynthetically evolved oxygen on anodic current generation in the presence of riboflavin upon illumination of a mixed phototrophic culture enriched from a freshwater pond at +0.6 V vs standard hydrogen electrode. In the presence of riboflavin, the phototrophic biomass in the anodic compartment produced an electrical current in response to light/dark cycles (12 h/12 h) over 12 months of operation, generating a maximum current density of 17.5 mA x m(-2) during the dark phase, whereas a much lower current of approximately 2 mA x m(-2) was generated during illumination. We found that the low current generation under light exposure was caused by high rates of reoxidation of reduced riboflavin by oxygen produced during photosynthesis. Quantification of biomass by fluorescence in situ hybridization images suggested that green algae were predominant in both the anode-based biofilm (55.1%) and the anolyte suspension (87.9%) with the remaining biovolume accounted for by bacteria. Genus-level sequencing analysis revealed that bacteria were dominated by cyanobacterium Leptolyngbia (∼35%), while the prevailing algae were Dictyosphaerium, Coelastrum, and Auxenochlorella. This study offers a key comprehension of mediator sensitivity to reoxidation by dissolved oxygen for improvement of microbial solar cell performance.
Dynamics of domain coverage of the protein sequence universe
2012-01-01
Background The currently known protein sequence space consists of millions of sequences in public databases and is rapidly expanding. Assigning sequences to families leads to a better understanding of protein function and the nature of the protein universe. However, a large portion of the current protein space remains unassigned and is referred to as its “dark matter”. Results Here we suggest that true size of “dark matter” is much larger than stated by current definitions. We propose an approach to reducing the size of “dark matter” by identifying and subtracting regions in protein sequences that are not likely to contain any domain. Conclusions Recent improvements in computational domain modeling result in a decrease, albeit slowly, in the relative size of “dark matter”; however, its absolute size increases substantially with the growth of sequence data. PMID:23157439
Katz, Michael J; Vermeer, Michael J D; Farha, Omar K; Pellin, Michael J; Hupp, Joseph T
2013-01-15
Both the adsorption of t-butylpyridine and the atomic-layer deposition of ultrathin conformal coatings of insulators (such as alumina) are known to boost open-circuit photovoltages substantially for dye-sensitized solar cells. One attractive interpretation is that these modifiers significantly shift the conduction-edge energy of the electrode, thereby shifting the onset potential for dark current arising from the interception of injected electrons by solution-phase redox shuttle components such as Co(phenanthroline)(3)(3+) and triiodide. For standard, high-area, nanoporous photoelectrodes, band-edge energies are difficult to measure directly. In contrast, for flat electrodes they are readily accessible from Mott-Schottky analyses of impedance data. Using such electrodes (specifically TiO(2)), we find that neither organic nor inorganic electrode-surface modifiers shift the conduction-band-edge energy sufficiently to account fully for the beneficial effects on electrode behavior (i.e., the suppression of dark current). Additional experiments reveal that the efficacy of ultrathin coatings of Al(2)O(3) arises chiefly from the passivation of redox-catalytic surface states. In contrast, adsorbed t-butylpyridine appears to suppress dark currents mainly by physically blocking access of shuttle molecules to the electrode surface. Studies with other derivatives of pyridine, including sterically and/or electronically diverse derivatives, show that heterocycle adsorption and the concomitant suppression of dark current does not require the coordination of surface Ti(IV) or Al(III) atoms. Notably, the favorable (i.e., negative) shifts in onset potential for the flow of dark current engendered by organic and inorganic surface modifiers are additive. Furthermore, they appear to be largely insensitive to the identity of shuttle molecules.
The limit of photoreceptor sensitivity: molecular mechanisms of dark noise in retinal cones.
Holcman, David; Korenbrot, Juan I
2005-06-01
Detection threshold in cone photoreceptors requires the simultaneous absorption of several photons because single photon photocurrent is small in amplitude and does not exceed intrinsic fluctuations in the outer segment dark current (dark noise). To understand the mechanisms that limit light sensitivity, we characterized the molecular origin of dark noise in intact, isolated bass single cones. Dark noise is caused by continuous fluctuations in the cytoplasmic concentrations of both cGMP and Ca(2+) that arise from the activity in darkness of both guanylate cyclase (GC), the enzyme that synthesizes cGMP, and phosphodiesterase (PDE), the enzyme that hydrolyzes it. In cones loaded with high concentration Ca(2+) buffering agents, we demonstrate that variation in cGMP levels arise from fluctuations in the mean PDE enzymatic activity. The rates of PDE activation and inactivation determine the quantitative characteristics of the dark noise power density spectrum. We developed a mathematical model based on the dynamics of PDE activity that accurately predicts this power spectrum. Analysis of the experimental data with the theoretical model allows us to determine the rates of PDE activation and deactivation in the intact photoreceptor. In fish cones, the mean lifetime of active PDE at room temperature is approximately 55 ms. In nonmammalian rods, in contrast, active PDE lifetime is approximately 555 ms. This remarkable difference helps explain why cones are noisier than rods and why cone photocurrents are smaller in peak amplitude and faster in time course than those in rods. Both these features make cones less light sensitive than rods.
Duality between a dark state and a quasi-dark state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirokawa, Masao, E-mail: hirokawa@amath.hiroshima-u.ac.jp
We study a physical system coupled with two one-mode Bose fields. The physical system is a two-level system or a harmonic oscillator. We prove that each dark and quasi-dark state appears under a proper condition, and then, we derive a duality between the dark state and the quasi-dark state. This duality induces the switch between the dark state and the quasi-dark state.
Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.
2016-09-01
Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.
Results from the DarkSide-50 Dark Matter Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Alden
2016-01-01
While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP darkmore » matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion curve in the WIMP mass vs. spin-independent WIMP-nucleon scattering cross section plane. This work was supervised by Hanguo Wang and was completed in collaboration with members of the DarkSide collaboration.« less
Searching for dark matter-dark energy interactions: Going beyond the conformal case
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen
2018-01-01
We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.
Proposal for Axion Dark Matter Detection Using an L C Circuit
Sikivie, P.; Sullivan, N.; Tanner, D. B.
2014-03-01
Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B → 0 produces a small magnetic field B → a. We propose to amplify and detect B → a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10 –7 to 10 –9 eV mass range.
Comparison of dark energy models: A perspective from the latest observational data
NASA Astrophysics Data System (ADS)
Li, Miao; Li, Xiaodong; Zhang, Xin
2010-09-01
We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H 0 from the Hubble Space Telescope. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the α dark energy, constant w, generalized Chaplygin gas, Chevalliear-Polarski-Linder parametrization, and holographic dark energy models, can provide good fits to the current data, and three of them, namely, the Ricci dark energy, agegraphic dark energy, and Dvali-Gabadadze-Porrati models, are clearly disfavored by the data.
Staack, Roland F; Paul, Liane D; Springer, Dietmar; Kraemer, Thomas; Maurer, Hans H
2004-01-15
1-(3-Trifluoromethylphenyl)piperazine (TFMPP) is a designer drug with serotonergic properties. Previous studies with male Wistar rats (WI) had shown, that TFMPP was metabolized mainly by aromatic hydroxylation. In the current study, it was examined whether this reaction may be catalyzed by cytochrome P450 (CYP)2D6 by comparing TFMPP vs. hydroxy TFMPP ratios in urine from female Dark Agouti rats, a model of the human CYP2D6 poor metabolizer phenotype (PM), male Dark Agouti rats, an intermediate model, and WI, a model of the human CYP2D6 extensive metabolizer phenotype. Furthermore, the human hepatic CYPs involved in TFMPP hydroxylation were identified using cDNA-expressed CYPs and human liver microsomes. Finally, TFMPP plasma levels in the above mentioned rats were compared. The urine studies suggested that TFMPP hydroxylation might be catalyzed by CYP2D6 in humans. Studies using human CYPs showed that CYP1A2, CYP2D6 and CYP3A4 catalyzed TFMPP hydroxylation, with CYP2D6 being the most important enzyme accounting for about 81% of the net intrinsic clearance, calculated using the relative activity factor approach. The hydroxylation was significantly inhibited by quinidine (77%) and metabolite formation in poor metabolizer genotype human liver microsomes was significantly lower (63%) compared to pooled human liver microsomes. Analysis of the plasma samples showed that female Dark Agouti rats exhibited significantly higher TFMPP plasma levels compared to those of male Dark Agouti rats and WI. Furthermore, pretreatment of WI with the CYP2D inhibitor quinine resulted in significantly higher TFMPP plasma levels. In conclusion, the presented data give hints for possible differences in pharmacokinetics in human PM and human CYP2D6 extensive metabolizer phenotype subjects relevant for risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zhenyu, E-mail: jiangzhenyu1201@hotmail.com, E-mail: jianxu@engr.psu.edu; Liu, Yan; Mo, Chen
In an attempt to suppress the dark current, the barrier layer engineer for solution-processed PbSe colloidal quantum-dot (CQD) photodetectors has been investigated in the present study. It was found that the dark current can be significantly suppressed by implementing two types of carrier blocking layers, namely, hole blocking layer and electron blocking layer, sandwiched in between two active PbSe CQD layers. Meanwhile no adverse impact has been observed for the photo current. Our study suggests that this improvement resides on the transport pathway created via carrier recombination at intermediate layer, which provides wide implications for the suppression of dark currentmore » for infrared photodetectors.« less
Novel Drift Structures for Silicon and Compound Semiconductor X-Ray and Gamma-Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley E. Patt; Jan S. Iwanczyk
Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that we discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current (both bulk silicon dark current and surface dark current) and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector.
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Direct Search for Dark Matter with DarkSide
NASA Astrophysics Data System (ADS)
Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2015-11-01
The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.
The 1.06 optical receiver. [avalanche photodiodes for laser range finders
NASA Technical Reports Server (NTRS)
Tomasetta, L. R.; Law, H. D.; Nakano, K.; Scholl, F. W.; Harris, J. S., Jr.
1978-01-01
High performance 1.06 micron m avalanche photodetectors (APDs), fabricated in the GaAlSb system, have high quantum efficiency (90 percent), high speed (risetime less than 60 ps) and low leakage currents (less than 50 na). The dark current represents more than an order of magnitude reduction compared to previously reported results. The high speed avalanche gain of these devices is between 20 and 50. The area uniformity is better than + or - 10 percent. GaAlAs APDs at 0.53 micron m have even faster speed, lower dark currents, and high speed gains of 100 to 200. Optical rangefinders based on measured APD performance parameters have far superior performance when compared to even ideal photomultiplier tubes in either a one color or two color rangefinder system. For a one color system, f factor of two lower time jitter can be achieved with identical transmitted power. The superiority of the APD based two color receiver is significant and exists in the entire range of desired time jitters (less than 100 ps) and received power levels.
Two interacting current model of holographic Dirac fluid in graphene
NASA Astrophysics Data System (ADS)
Rogatko, Marek; Wysokinski, Karol I.
2018-02-01
The electrons in graphene for energies close to the Dirac point have been found to form strongly interacting fluid. Taking this fact into account we have extended previous work on the transport properties of graphene by taking into account possible interactions between the currents and adding the external magnetic field directed perpendicularly to the graphene sheet. The perpendicular magnetic field B severely modifies the transport parameters. In the present approach the quantization of the spectrum and formation of Landau levels is ignored. Gauge/gravity duality has been used in the probe limit. The dependence on the charge density of the Seebeck coefficient and thermoelectric parameters αi j nicely agree with recent experimental data for graphene. The holographic model allows for the interpretation of one of the fields representing the currents as resulting from the dark matter sector. For the studied geometry with electric field perpendicular to the thermal gradient the effect of the dark sector has been found to modify the transport parameters but mostly in a quantitative way only. This makes difficult the detection of this elusive component of the Universe by studying transport properties of graphene.
Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer.
Adinolfi, Valerio; Kramer, Illan J; Labelle, André J; Sutherland, Brandon R; Hoogland, S; Sargent, Edward H
2015-01-27
The performance of photodetectors is judged via high responsivity, fast speed of response, and low background current. Many previously reported photodetectors based on size-tuned colloidal quantum dots (CQDs) have relied either on photodiodes, which, since they are primary photocarrier devices, lack gain; or photoconductors, which provide gain but at the expense of slow response (due to delayed charge carrier escape from sensitizing centers) and an inherent dark current vs responsivity trade-off. Here we report a photojunction field-effect transistor (photoJFET), which provides gain while breaking prior photoconductors' response/speed/dark current trade-off. This is achieved by ensuring that, in the dark, the channel is fully depleted due to a rectifying junction between a deep-work-function transparent conductive top contact (MoO3) and a moderately n-type CQD film (iodine treated PbS CQDs). We characterize the rectifying behavior of the junction and the linearity of the channel characteristics under illumination, and we observe a 10 μs rise time, a record for a gain-providing, low-dark-current CQD photodetector. We prove, using an analytical model validated using experimental measurements, that for a given response time the device provides a two-orders-of-magnitude improvement in photocurrent-to-dark-current ratio compared to photoconductors. The photoJFET, which relies on a junction gate-effect, enriches the growing family of CQD photosensitive transistors.
Quantum Dot Detector Enhancement for Narrow Band Multispectral Applications
2012-10-01
19 2.4.3 Dark Current and Noise Current Measurement of QDIPs.................................21 3 References...20 Figure 19: Dark Current of QDIPs Measured by Source Meter…………………………………………21 Figure 20: Schematic View of Noise Current Setup...temperature, higher photoconductive gain, carrier lifetimes 10-100 times longer than Quantum Well Infrared Photodetectors ( QWIPs ), and giving rise to a
Broadband and Resonant Approaches to Axion Dark Matter Detection.
Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse
2016-09-30
When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6} eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.
One dark matter mystery: halos in the cosmic web
NASA Astrophysics Data System (ADS)
Gaite, Jose
2015-01-01
The current cold dark matter cosmological model explains the large scale cosmic web structure but is challenged by the observation of a relatively smooth distribution of matter in galactic clusters. We consider various aspects of modeling the dark matter around galaxies as distributed in smooth halos and, especially, the smoothness of the dark matter halos seen in N-body cosmological simulations. We conclude that the problems of the cold dark matter cosmology on small scales are more serious than normally admitted.
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-11-28
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Measuring the power spectrum of dark matter substructure using strong gravitational lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert
2016-11-01
In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, andmore » test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (∼10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.« less
NASA Technical Reports Server (NTRS)
Wolf, M.; Noel, G. T.; Stirn, R. J.
1977-01-01
Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.
NASA Astrophysics Data System (ADS)
Welakuh, Davis D. M.; Dikandé, Alain M.
2017-11-01
The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.
Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes
NASA Astrophysics Data System (ADS)
Shandera, Sarah; Jeong, Donghui; Gebhardt, Henry S. Grasshorn
2018-06-01
We explore the possible spectrum of binary mergers of subsolar mass black holes formed out of dark matter particles interacting via a dark electromagnetism. We estimate the properties of these dark black holes by assuming that their formation process is parallel to Population-III star formation, except that dark molecular cooling can yield a smaller opacity limit. We estimate the binary coalescence rates for the Advanced LIGO and Einstein telescope, and find that scenarios compatible with all current constraints could produce dark black holes at rates high enough for detection by Advanced LIGO.
Dark sequential Z ' portal: Collider and direct detection experiments
NASA Astrophysics Data System (ADS)
Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.
2018-02-01
We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.
Dark energy and fate of the Universe
NASA Astrophysics Data System (ADS)
Li, XiaoDong; Wang, Shuang; Huang, QingGuo; Zhang, Xin; Li, Miao
2012-07-01
We explore the ultimate fate of the Universe by using a divergence-free parametrization for dark energy w( z)= w 0+ w a [ln(2 + z) / (1 + z) - ln 2]. Unlike the Chevallier-Polarski-Linder parametrization, this parametrization has well behaved, bounded behavior for both high redshifts and negative redshifts, and thus can genuinely cover many theoretical dark energy models. After constraining the parameter space of this parametrization by using the current cosmological observations, we find that, at the 95.4% confidence level, our Universe can still exist at least 16.7 Gyr before it ends in a big rip. Moreover, for the phantom energy dominated Universe, we find that a gravitationally bound system will be destroyed at a time {{t ˜eq Psqrt {2| {1 + 3w( - 1)} |} } {/ {{t ˜eq Psqrt {2| {1 + 3w( - 1)} |} } {[ {6π | {1 + w( - 1)} |} ]}}} . } {[ {6π | {1 + w( - 1)} |} ]}}, where P is the period of a circular orbit around this system, before the big rip.
Light dark matter through assisted annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Ujjal Kumar; Maity, Tarak Nath; Ray, Tirtha Sankar, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: tarak.maity.physics@gmail.com, E-mail: tirthasankar.ray@gmail.com
2017-03-01
In this paper we investigate light dark matter scenarios where annihilation to Standard Model particles at tree-level is kinematically forbidden. In such cases annihilation can be aided by massive Standard Model-like species, called assisters , in the initial state that enhances the available phase space opening up novel tree-level processes. We investigate the feasibility of such non-standard assisted annihilation processes to reproduce the observed relic density of dark matter. We present a simple scalar dark matter-scalar assister model where this is realised. We find that if the dark matter and assister are relatively degenerate the required relic density can bemore » achieved for a keV-MeV scale dark matter. We briefly discuss the cosmological constraints on such dark matter scenarios.« less
Search for a dark photon in e(+)e(-) collisions at BABAR.
Lees, J P; Poireau, V; Tisserand, V; Grauges, E; Palano, A; Eigen, G; Stugu, B; Brown, D N; Feng, M; Kerth, L T; Kolomensky, Yu G; Lee, M J; Lynch, G; Koch, H; Schroeder, T; Hearty, C; Mattison, T S; McKenna, J A; So, R Y; Khan, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Lankford, A J; Mandelkern, M; Dey, B; Gary, J W; Long, O; Campagnari, C; Franco Sevilla, M; Hong, T M; Kovalskyi, D; Richman, J D; West, C A; Eisner, A M; Lockman, W S; Panduro Vazquez, W; Schumm, B A; Seiden, A; Chao, D S; Cheng, C H; Echenard, B; Flood, K T; Hitlin, D G; Miyashita, T S; Ongmongkolkul, P; Porter, F C; Andreassen, R; Huard, Z; Meadows, B T; Pushpawela, B G; Sokoloff, M D; Sun, L; Bloom, P C; Ford, W T; Gaz, A; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Spaan, B; Bernard, D; Verderi, M; Playfer, S; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Piemontese, L; Santoro, V; Calcaterra, A; de Sangro, R; Finocchiaro, G; Martellotti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Bhuyan, B; Prasad, V; Adametz, A; Uwer, U; Lacker, H M; Dauncey, P D; Mallik, U; Chen, C; Cochran, J; Prell, S; Ahmed, H; Gritsan, A V; Arnaud, N; Davier, M; Derkach, D; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Roudeau, P; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Coleman, J P; Fry, J R; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Cowan, G; Bougher, J; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Griessinger, K; Hafner, A; Schubert, K R; Barlow, R J; Lafferty, G D; Cenci, R; Hamilton, B; Jawahery, A; Roberts, D A; Cowan, R; Sciolla, G; Cheaib, R; Patel, P M; Robertson, S H; Neri, N; Palombo, F; Cremaldi, L; Godang, R; Sonnek, P; Summers, D J; Simard, M; Taras, P; De Nardo, G; Onorato, G; Sciacca, C; Martinelli, M; Raven, G; Jessop, C P; LoSecco, J M; Honscheid, K; Kass, R; Feltresi, E; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simi, G; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Leruste, Ph; Marchiori, G; Ocariz, J; Biasini, M; Manoni, E; Pacetti, S; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Chrzaszcz, M; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Perez, A; Rizzo, G; Walsh, J J; Lopes Pegna, D; Olsen, J; Smith, A J S; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Pilloni, A; Piredda, G; Bünger, C; Dittrich, S; Grünberg, O; Hartmann, T; Hess, M; Leddig, T; Voß, C; Waldi, R; Adye, T; Olaiya, E O; Wilson, F F; Emery, S; Vasseur, G; Anulli, F; Aston, D; Bard, D J; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Ebert, M; Field, R C; Fulsom, B G; Graham, M T; Hast, C; Innes, W R; Kim, P; Leith, D W G S; Lewis, P; Lindemann, D; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Muller, D R; Neal, H; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Snyder, A; Su, D; Sullivan, M K; Va'vra, J; Wisniewski, W J; Wulsin, H W; Purohit, M V; White, R M; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Burchat, P R; Puccio, E M T; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Spanier, S M; Ritchie, J L; Ruland, A M; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; De Mori, F; Filippi, A; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Villanueva-Perez, P; Albert, J; Banerjee, Sw; Beaulieu, A; Bernlochner, F U; Choi, H H F; King, G J; Kowalewski, R; Lewczuk, M J; Lueck, T; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Band, H R; Dasu, S; Pan, Y; Prepost, R; Wu, S L
2014-11-14
Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A^{'}), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e^{+}e^{-}→γA^{'}, A^{'}→e^{+}e^{-}, μ^{+}μ^{-} using 514 fb^{-1} of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photon at the level of 10^{-4}-10^{-3} for dark photon masses in the range 0.02-10.2 GeV. We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.
Status and perspective of the DarkSide experiment at LNGS
Agnes, P.
2018-09-01
The DarkSide experiment aims to perform a background-free direct search for dark matter with a dual-phase argon TPC. The current phase of the experiment, DarkSide-50, is acquiring data at Laboratori Nazionali del Gran Sasso and produced the most sensitive limit on the WIMP-nucleon cross section ever obtained with a liquid argon target (2.0 × 10 -44 cm2 for a WIMP mass of 100 GeV/c 2). The future phase of the experiment will be a 20 t fiducial mass detector, designed to reach a sensitivity of ~1 × 10 -47 cm2 (at 1 TeV/c 2 WIMP mass) with a background-free exposuremore » of 100 ty. Here, this work contains a discussion of the current status of the DarkSide-50 WIMP search and of the results which are more relevant for the construction of the future detector.« less
Direct search for dark matter with DarkSide
Agnes, P.
2015-11-16
Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10 -44 cm 2 (for a WIMP mass of 100 GeV/c 2) and it's currently the most sensitive limit obtained with an Argon target.« less
Status and perspective of the DarkSide experiment at LNGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.
The DarkSide experiment aims to perform a background-free direct search for dark matter with a dual-phase argon TPC. The current phase of the experiment, DarkSide-50, is acquiring data at Laboratori Nazionali del Gran Sasso and produced the most sensitive limit on the WIMP-nucleon cross section ever obtained with a liquid argon target (2.0 × 10 -44 cm2 for a WIMP mass of 100 GeV/c 2). The future phase of the experiment will be a 20 t fiducial mass detector, designed to reach a sensitivity of ~1 × 10 -47 cm2 (at 1 TeV/c 2 WIMP mass) with a background-free exposuremore » of 100 ty. Here, this work contains a discussion of the current status of the DarkSide-50 WIMP search and of the results which are more relevant for the construction of the future detector.« less
NASA Technical Reports Server (NTRS)
Joiner, Reyann; Kobayashi, Ken; Winebarger, Amy; Champey, Patrick
2014-01-01
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding rocket instrument currently being developed by NASA's Marshall Space Flight Center (MSFC), the National Astronomical Observatory of Japan (NAOJ), and other partners. The goal of this instrument is to observe and detect the Hanle effect in the scattered Lyman-Alpha UV (121.6nm) light emitted by the Sun's chromosphere. The polarized spectrum imaged by the CCD cameras will capture information about the local magnetic field, allowing for measurements of magnetic strength and structure. In order to make accurate measurements of this effect, the performance characteristics of the three on- board charge-coupled devices (CCDs) must meet certain requirements. These characteristics include: quantum efficiency, gain, dark current, read noise, and linearity. Each of these must meet predetermined requirements in order to achieve satisfactory performance for the mission. The cameras must be able to operate with a gain of 2.0+/- 0.5 e--/DN, a read noise level less than 25e-, a dark current level which is less than 10e-/pixel/s, and a residual non- linearity of less than 1%. Determining these characteristics involves performing a series of tests with each of the cameras in a high vacuum environment. Here we present the methods and results of each of these performance tests for the CLASP flight cameras.
Looking for dark matter trails in colliding galaxy clusters
NASA Astrophysics Data System (ADS)
Harvey, David; Robertson, Andrew; Massey, Richard; Kneib, Jean-Paul
2017-02-01
If dark matter interacts, even weakly, via non-gravitational forces, simulations predict that it will be preferentially scattered towards the trailing edge of the halo during collisions between galaxy clusters. This will temporarily create a non-symmetric mass profile, with a trailing overdensity along the direction of motion. To test this hypothesis, we fit (and subtract) symmetric haloes to the weak gravitational data of 72 merging galaxy clusters observed with the Hubble Space Telescope. We convert the shear directly into excess κ and project in to a one-dimensional profile. We generate numerical simulations and find that the one-dimensional profile is well described with simple Gaussian approximations. We detect the weak lensing signal of trailing gas at a 4σ confidence, finding a mean gas fraction of Mgas/Mdm = 0.13 ± 0.035. We find no evidence for scattered dark matter particles with an estimated scattering fraction of f = 0.03 ± 0.05. Finally, we find that if we can reduce the statistical error on the positional estimate of a single dark matter halo to <2.5 arcsec, then we will be able to detect a scattering fraction of 10 per cent at the 3σ level with current surveys. This potentially interesting new method can provide an important independent test for other complimentary studies of the self-interaction cross-section of dark matter.
NASA Astrophysics Data System (ADS)
Maddox, S. J.; Sun, W.; Lu, Z.; Nair, H. P.; Campbell, J. C.; Bank, S. R.
2012-10-01
We reduced the room temperature dark current in an InAs avalanche photodiode by increasing the p-type contact doping, resulting in an increased energetic barrier to minority electron injection into the p-region, which is a significant source of dark current at room temperature. In addition, by improving the molecular beam epitaxy growth conditions, we reduced the background doping concentration and realized depletion widths as wide as 5 μm at reverse biases as low as 1.5 V. These improvements culminated in low-noise InAs avalanche photodiodes exhibiting a room temperature multiplication gain of ˜80, at a record low reverse bias of 12 V.
Radon-related Backgrounds in the LUX Dark Matter Search
NASA Astrophysics Data System (ADS)
Bradley, A.; Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Bernard, E.; Bernstein, A.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Coffey, T.; Currie, A.; de Viveiros, L.; Dobi, A.; Dobson, J.; Druszkiewicz, E.; Edwards, B.; Faham, C. H.; Fiorucci, S.; Flores, C.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C.; Hertel, S. A.; Horn, M.; Huang, D. Q.; Ihm, M.; Jacobsen, R. G.; Kazkaz, K.; Knoche, R.; Larsen, N. A.; Lee, C.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Mannino, R.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H.; Neves, F.; Ott, R. A.; Pangilinan, M.; Parker, P. D.; Pease, E. K.; Pech, K.; Phelps, P.; Reichhart, L.; Shutt, T.; Silva, C.; Solovov, V. N.; Sorensen, P.; O'Sullivan, K.; Sumner, T. J.; Szydagis, M.; Taylor, D.; Tennyson, B.; Tiedt, D. R.; Tripathi, M.; Uvarov, S.; Verbus, J. R.; Walsh, N.; Webb, R.; White, J. T.; Witherell, M. S.; Wolfs, F. L. H.; Woods, M.; Zhang, C.
The LUX detector is currently in operation at the Davis Campus at the 4850' level of the Sanford Underground Research Facility (SURF) in Lead, SD to directly search for WIMP dark matter. Knowing the type and rate of backgrounds is critical in a rare, low energy event search, and LUX was designed, constructed, and deployed to mitigate backgrounds, both internal and external. An important internal background are decays of radon and its daughters. These consist of alpha decays, which are easily tagged and are a tracer of certain backgrounds, and beta decays, some of which are not as readily tagged and present a background for the WIMP search. We report on studies of alpha decay and discuss implications for the WIMP search.
DarkBit: a GAMBIT module for computing dark matter observables and likelihoods
NASA Astrophysics Data System (ADS)
Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian
2017-12-01
We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.
2006-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
Dark sector shining through 750 GeV dark Higgs boson at the LHC
NASA Astrophysics Data System (ADS)
Ko, P.; Nomura, Takaaki
2016-07-01
We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.
Electronic defects in the halide antiperovskite semiconductor Hg3Se2I2
NASA Astrophysics Data System (ADS)
Kim, Joon-Il; Peters, John A.; He, Yihui; Liu, Zhifu; Das, Sanjib; Kontsevoi, Oleg Y.; Kanatzidis, Mercouri G.; Wessels, Bruce W.
2017-10-01
Halide perovskites have emerged as a potential photoconducting material for photovoltaics and hard radiation detection. We investigate the nature of charge transport in the semi-insulating chalcohalide Hg3Se2I2 compound using the temperature dependence of dark current, thermally stimulated current (TSC) spectroscopy, and photoconductivity measurements as well as first-principles density functional theory (DFT) calculations. Dark conductivity measurements and TSC spectroscopy indicate the presence of multiple shallow and deep level traps that have relatively low concentrations of the order of 1013-1015c m-3 and capture cross sections of ˜10-16c m2 . A distinct persistent photoconductivity is observed at both low temperatures (<170 K ) and high temperatures (>230 K), with major implications for room-temperature compound semiconductor radiation detection. From preliminary DFT calculations, the origin of the traps is attributed to intrinsic vacancy defects (VHg, VSe, and VI) and interstitials (Seint) or other extrinsic impurities. The results point the way for future improvements in crystal quality and detector performance.
NASA Astrophysics Data System (ADS)
Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting
2010-11-01
An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-07-15
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
NASA Astrophysics Data System (ADS)
Molotkov, S. N.
2008-07-01
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).
WFC3: IR Detector On-Orbit Performance
NASA Astrophysics Data System (ADS)
Hilbert, Bryan; Dulude, M.; McCullough, P.; MacKenty, J. W.; Kimble, R. A.; Hill, R. J.; Viana, A.; Bushouse, H.; Baggett, S.; WFC3 Team
2010-01-01
Using data taken during Servicing Mission Observatory Verification (SMOV4), we have characterized dark current and readnoise behavior of the IR Channel, along with its level of measured background signal. Using data taken in June and July of 2009, we find the dark current in the IR channel to be 0.043 - 0.050 e-/s/pixel. The correlated double sampling (CDS) read noise in RAPID sequences is 20-22 electrons, similar to that measured in ground testing. The effective noise measured in an image created from 16 reads of a SPARS200 ramp is 11.6 - 12.7 electrons. Using internal flat field images, we measured the inverse gain to be 2.28 - 2.47 ± 0.04 e-/ADU, depending on quadrant. The ratio of the mean instrumental irradiance (ADU/s/pixel) measured on orbit to that obtained in ground testing is 1.06 - 1.07, indicating a brightening of the Tungsten lamp on orbit. We also note the continued appearance of cosmic ray-like sources, dubbed "snowballs", in on orbit data.
Proton effects on low noise and high responsivity silicon-based photodiodes for space environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedroza, Guillaume; Gilard, Olivier; Bourqui, Marie-Lise
A series of proton irradiations has been carried out on p-n silicon photodiodes for the purpose of assessing the suitability of these devices for the European Galileo space mission. The irradiations were performed at energies of 60, 100, and 150 MeV with proton fluences ranging from 1.7x10{sup 10} to 1x10{sup 11} protons/cm{sup 2}. Dark current, spectral responsivity, and dark current noise were measured before and after each irradiation step. We observed an increase in both dark current, dark current noise, and noise equivalent power and a drop of the spectral responsivity with increasing displacement damage dose. An analytical model hasmore » been developed to investigate proton damage effects through the modeling of the electro-optical characteristics of the photodiode. Experimental degradations were successfully explained taking into account the degradation of the minority carrier diffusion length in the N-region of the photodiode. The degradation model was then applied to assess the end-of-life performance of these devices in the framework of the Galileo mission.« less
Analysis of Dark Current in BRITE Nanostellite CCD Sensors †
Popowicz, Adam
2018-01-01
The BRightest Target Explorer (BRITE) is the pioneering nanosatellite mission dedicated for photometric observations of the brightest stars in the sky. The BRITE charge coupled device (CCD) sensors are poorly shielded against extensive flux of energetic particles which constantly induce defects in the silicon lattice. In this paper we investigate the temporal evolution of the generation of the dark current in the BRITE CCDs over almost four years after launch. Utilizing several steps of image processing and employing normalization of the results, it was possible to obtain useful information about the progress of thermal activity in the sensors. The outcomes show a clear and consistent linear increase of induced damage despite the fact that only about 0.14% of CCD pixels were probed. By performing the analysis of temperature dependencies of the dark current, we identified the observed defects as phosphorus-vacancy (PV) pairs, which are common in proton irradiated CCD matrices. Moreover, the Meyer-Neldel empirical rule was confirmed in our dark current data, yielding EMN=24.8 meV for proton-induced PV defects. PMID:29415471
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domengie, F., E-mail: florian.domengie@st.com; Morin, P.; Bauza, D.
We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metalmore » atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.« less
SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chang, A
Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less
Dark gauge bosons: LHC signatures of non-abelian kinetic mixing
Argüelles, Carlos A.; He, Xiao-Gang; Ovanesyan, Grigory; ...
2017-04-20
We consider non-abelian kinetic mixing between the Standard Model and a dark sector gauge group associated with the presence of a scalar triplet. The magnitude of the resulting dark photon coupling ϵ is determined by the ratio of the triplet vacuum expectation value, constrained to by by electroweak precision tests, to the scale Λ of the effective theory. The corresponding effective operator Wilson coefficient can be while accommodating null results for dark photon searches, allowing for a distinctive LHC dark photon phenomenology. After outlining the possible LHC signatures, we illustrate by recasting current ATLAS dark photon results into the non-abelianmore » mixing context.« less
Dark matter and the equivalence principle
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gradwohl, Ben-Ami
1993-01-01
A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.
Rosenwasser, Shilo; Rot, Ilona; Sollner, Evelyn; Meyer, Andreas J.; Smith, Yoav; Leviatan, Noam; Fluhr, Robert; Friedman, Haya
2011-01-01
Treatment of Arabidopsis (Arabidopsis thaliana) leaves by extended darkness generates a genetically activated senescence program that culminates in cell death. The transcriptome of leaves subjected to extended darkness was found to contain a variety of reactive oxygen species (ROS)-specific signatures. The levels of transcripts constituting the transcriptome footprints of chloroplasts and cytoplasm ROS stresses decreased in leaves, as early as the second day of darkness. In contrast, an increase was detected in transcripts associated with mitochondrial and peroxisomal ROS stresses. The sequential changes in the redox state of the organelles during darkness were examined by redox-sensitive green fluorescent protein probes (roGFP) that were targeted to specific organelles. In plastids, roGFP showed a decreased level of oxidation as early as the first day of darkness, followed by a gradual increase to starting levels. However, in mitochondria, the level of oxidation of roGFP rapidly increased as early as the first day of darkness, followed by an increase in the peroxisomal level of oxidation of roGFP on the second day. No changes in the probe oxidation were observed in the cytoplasm until the third day. The increase in mitochondrial roGFP degree of oxidation was abolished by sucrose treatment, implying that oxidation is caused by energy deprivation. The dynamic redox state visualized by roGFP probes and the analysis of microarray results are consistent with a scenario in which ROS stresses emanating from the mitochondria and peroxisomes occur early during darkness at a presymptomatic stage and jointly contribute to the senescence program. PMID:21372201
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-10
... concern about dark pools and their potential impact on the fairness and transparency of the national market system.\\12\\ One of these commenters suggested that dark pools be prohibited entirely.\\13\\ FINRA... transparency that currently exists.\\14\\ FINRA stated that all trades executed on an ATS, including a dark pool...
Aaltonen, T; Álvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirby, M; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Rao, K; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rubbo, F; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stancari, M; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S
2011-05-13
We present a search for a new particle T' decaying to top quark via T' → t + X, where X is an invisible particle. In a data sample with 4.8 fb(-1) of integrated luminosity collected by the CDF II detector at Fermilab in pp collisions with √s = 1.96 TeV, we search for pair production of T' in the lepton + jets channel, pp → tt + X + X → ℓνbqq'b + X + X. We interpret our results primarily in terms of a model where T' are exotic fourth generation quarks and X are dark matter particles. Current direct and indirect bounds on such exotic quarks restrict their masses to be between 300 and 600 GeV/c2, the dark matter particle mass being anywhere below m(T'). The data are consistent with standard model expectations, and we set 95% confidence level limits on the generic production of T'T' → tt + X + X. For the dark matter model we exclude T' at 95% confidence level up to m(T') = 360 GeV/c2 for m(X) ≤ 100 GeV/c2.
Directly detecting isospin-violating dark matter
NASA Astrophysics Data System (ADS)
Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl
2018-03-01
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
n-B-pi-p Superlattice Infrared Detector
NASA Technical Reports Server (NTRS)
Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.
2011-01-01
A specially designed barrier (B) is inserted at the n-pi junction [where most GR (generation-recombination) processes take place] in the standard n-pi-p structure to substantially reduce generation-recombination dark currents. The resulting n-Bpi- p structure also has reduced tunneling dark currents, thereby solving some of the limitations to which current type II strained layer superlattice infrared detectors are prone. This innovation is compatible with common read-out integrated circuits (ROICs).
Antimatter cosmic rays from dark matter annihilation: First results from an N-body experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavalle, J.; Nezri, E.; Athanassoula, E.
2008-11-15
While the particle hypothesis for dark matter may be very soon investigated at the LHC, and as the PAMELA and GLAST satellites are currently taking new data on charged and gamma cosmic rays, the need of controlling the theoretical uncertainties affecting the possible indirect signatures of dark matter annihilation is of paramount importance. The uncertainties which originate from the dark matter distribution are difficult to estimate because current astrophysical observations provide rather weak dynamical constraints and because, according to cosmological N-body simulations, dark matter is neither smoothly nor spherically distributed in galactic halos. Some previous studies made use of N-bodymore » simulations to compute the {gamma}-ray flux from dark matter annihilation, but such a work has never been performed for the antimatter (positron and antiproton) primary fluxes, for which transport processes complicate the calculations. We take advantage of the galaxylike 3D dark matter map extracted from the Horizon Project results to calculate the positron and antiproton fluxes from dark matter annihilation, in a model-independent approach as well as for dark matter particle benchmarks relevant at the LHC scale (from supersymmetric and extradimensional theories). We find that the flux uncertainties arise mainly from fluctuations of the local dark matter density, and are of {approx}1 order of magnitude. We compare our results to analytic descriptions of the dark matter halo, showing how the latter can well reproduce the former. The overall antimatter predictions associated with our benchmark models are shown to lie far below the existing measurements and, in particular, that of the positron fraction recently reported by PAMELA, and far below the background predictions as well. Finally, we stress the limits of the use of an N-body framework in this context.« less
Application of the superposition principle to solar-cell analysis
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.
1979-01-01
The superposition principle of differential-equation theory - which applies if and only if the relevant boundary-value problems are linear - is used to derive the widely used shifting approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. Analytical methods are presented to treat cases where shifting is not strictly valid. Well-defined conditions necessary for superposition to apply are established. For high injection in the base region, the method of analysis accurately yields the dependence of the open-circuit voltage on the short-circuit current (or the illumination level).
Solar terrestrial relationships related to thunderstorms and BUV dark current and ozone data
NASA Technical Reports Server (NTRS)
Herman, J. R.
1980-01-01
Solar terrestrial interactions as they affect Nimbus 4 BUV dark current and possibly affect thunderstorm occurrence are investigated. A solar wind index is calculated for 1970 to 1971. Dark current enhancements appear to be associated in some way with solar proton events and the solar wind index, but additional investigations by GSFC are required before conclusions can be drawn. Superposed epoch analysis of an index of North American thunderstorm occurrence reveals a discernible increase in the index magnitude on days 1 and 2 following solar proton events. There appears to be little or no 27 day recurrence tendency in thunderstorm occurrence frequency and no association with vorticity area index on a day to day basis.
Search for a Dark Photon in e + e - Collisions at BaBar
Lees, J. P.; Poireau, V.; Tisserand, V.; ...
2014-11-10
Dark sectors charged under a new Abelian interaction have recently received much attention in the context of dark matter models. These models introduce a light new mediator, the so-called dark photon (A'), connecting the dark sector to the standard model. We present a search for a dark photon in the reaction e +e -→γA', A'→e +e -, μ +μ - using 514 fb -1 of data collected with the BABAR detector. We observe no statistically significant deviations from the standard model predictions, and we set 90% confidence level upper limits on the mixing strength between the photon and dark photonmore » at the level of10 -4-10 -3 for dark photon masses in the range 0.02–10.2 GeV We further constrain the range of the parameter space favored by interpretations of the discrepancy between the calculated and measured anomalous magnetic moment of the muon.« less
Dark state with counter-rotating dissipative channels.
Zhou, Zheng-Yang; Chen, Mi; Wu, Lian-Ao; Yu, Ting; You, J Q
2017-07-24
Dark state as a consequence of interference between different quantum states has great importance in the fields of chip-scale atomic clock and quantum information. For the Λ-type three-level system, this dark state is generally regarded as being dissipation-free because it is a superposition of two lowest states without dipole transition between them. However, previous studies are based on the rotating-wave approximation (RWA) by neglecting the counter-rotating terms in the system-environment interaction. In this work, we study non-Markovian quantum dynamics of the dark state in a Λ-type three-level system coupled to two bosonic baths and reveal the effect of counter-rotating terms on the dark state. In contrast to the dark state within the RWA, leakage of the dark state occurs even at zero temperature, as a result of these counter-rotating terms. Also, we present a method to restore the quantum coherence of the dark state by applying a leakage elimination operator to the system.
Prospects for detecting a net photon circular polarization produced by decaying dark matter
NASA Astrophysics Data System (ADS)
Elagin, Andrey; Kumar, Jason; Sandick, Pearl; Teng, Fei
2017-11-01
If dark matter interactions with Standard Model particles are C P violating, then dark matter annihilation/decay can produce photons with a net circular polarization. We consider the prospects for experimentally detecting evidence for such a circular polarization. We identify optimal models for dark matter interactions with the Standard Model, from the point of view of detectability of the net polarization, for the case of either symmetric or asymmetric dark matter. We find that, for symmetric dark matter, evidence for net polarization could be found by a search of the Galactic center by an instrument sensitive to circular polarization with an efficiency-weighted exposure of at least 50 ,000 cm2 yr , provided the systematic detector uncertainties are constrained at the 1% level. Better sensitivity can be obtained in the case of asymmetric dark matter. We discuss the prospects for achieving the needed level of performance using possible detector technologies.
Searching for dark absorption with direct detection experiments
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...
2017-06-16
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Searching for dark absorption with direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku
We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less
Revealing the nonadiabatic nature of dark energy perturbations from galaxy clustering data
NASA Astrophysics Data System (ADS)
Velten, Hermano; Fazolo, Raquel
2017-10-01
We study structure formation using relativistic cosmological linear perturbation theory in the presence of intrinsic and relative (with respect to matter) nonadiabatic dark energy perturbations. For different dark energy models we assess the impact of nonadiabaticity on the matter growth promoting a comparison with growth rate data. The dark energy models studied lead to peculiar signatures of the (non)adiabatic nature of dark energy perturbations in the evolution of the f σ8(z ) observable. We show that nonadiabatic dark energy models become close to be degenerated with respect to the Λ CDM model at first order in linear perturbations. This would avoid the identification of the nonadiabatic nature of dark energy using current available data. Therefore, such evidence indicates that new probes are necessary to reveal the nonadiabatic features in the dark energy sector.
Lester, Gene E; Makus, Donald J; Hodges, D Mark
2010-03-10
Current retail marketing conditions allow produce to receive artificial light 24 h per day during its displayed shelf life. Essential human-health vitamins [ascorbic acid (vit C), folate (vit B(9)), phylloquinone (vit K(1)), alpha-tocopherol (vit E), and the carotenoids lutein, violaxanthin, zeaxanthin, and beta-carotene (provit A)] also are essential for photosynthesis and are biosynthesized in plants by light conditions even under chilling temperatures. Spinach leaves, notably abundant in the aforementioned human-health compounds, were harvested from flat-leaf 'Lazio' and crinkle-leafed 'Samish' cultivars at peak whole-plant maturity as baby (top- and midcanopy) and larger (lower-canopy) leaves. Leaves were placed as a single layer in commercial, clear-polymer retail boxes and stored at 4 degrees C for up to 9 days under continuous light (26.9 micromol.m(2 ).s) or dark. Top-canopy, baby-leaf spinach generally had higher concentrations of all bioactive compounds, on a dry weight basis, with the exception of carotenoids, than bottom-canopy leaves. All leaves stored under continuous light generally had higher levels of all bioactive compounds, except beta-carotene and violaxanthin, and were more prone to wilting, especially the flat-leafed cultivar. All leaves stored under continuous darkness had declining or unchanged levels of the aforementioned bioactive compounds. Findings from this study revealed that spinach leaves exposed to simulated retail continuous light at 4 degrees C, in clear plastic containers, were overall more nutritionally dense (enriched) than leaves exposed to continuous darkness.
Exponential Potential versus Dark Matter
1993-10-15
scale of the solar system. Galaxy, Dark matter , Galaxy cluster, Gravitation, Quantum gravity...A two parameter exponential potential explains the anomalous kinematics of galaxies and galaxy clusters without need for the myriad ad hoc dark ... matter models currently in vogue. It also explains much about the scales and structures of galaxies and galaxy clusters while being quite negligible on the
Search for Muonic Dark Forces at BABAR
NASA Astrophysics Data System (ADS)
Godang, Romulus
2017-04-01
Many models of physics beyond Standard Model predict the existence of light Higgs states, dark photons, and new gauge bosons mediating interactions between dark sectors and the Standard Model. Using a full data sample collected with the BABAR detector at the PEP-II e+e- collider, we report searches for a light non-Standard Model Higgs boson, dark photon, and a new muonic dark force mediated by a gauge boson (Z') coupling only to the second and third lepton families. Our results significantly improve upon the current bounds and further constrain the remaining region of the allowed parameter space.
Warm dark matter effects in a spherical collapse model with shear and angular momentum
NASA Astrophysics Data System (ADS)
Marciu, Mihai
2016-03-01
This paper investigates the nonlinear structure formation in a spherical top-hat collapse model based on the pseudo-Newtonian approximation. The system is composed of warm dark matter and dark energy and the dynamical properties of the collapsing region are analyzed for various parametrizations of the dark matter equation of state which are in agreement with current observations. Concerning dark energy, observational constraints of the Chevallier-Polarski-Linder model and the Jassal-Bagla-Padmanabhan equation of state have been considered. During the collapse, the positive dark matter pressure leads to an increase of growth for dark matter and dark energy perturbations and an accelerated expansion for the spherical region. Hence, in the warm dark matter hypothesis, the structure formation is accelerated and the inconsistencies of the Λ CDM model at the galactic scales could be solved. The results obtained are applicable only to adiabatic warm dark matter physical models which are compatible with the pseudo-Newtonian approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan, E-mail: emb@kth.se, E-mail: scl@kth.se
Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less
New LUX result constrains exotic quark mediators with the vector dark matter
NASA Astrophysics Data System (ADS)
Chen, Chuan-Ren; Li, Ming-Jie
2016-12-01
The scenario of the compressed mass spectrum between heavy quark and dark matter is a challenge for LHC searches. However, the elastic scattering cross-section between dark matter and nuclei in dark matter direct detection experiments can be enhanced with nearly degenerate masses between heavy quarks and dark matter. In this paper, we illustrate such scenario with a vector dark matter, using the latest result from LUX 2016. The mass constraints on heavy quarks can be more stringent than current limits from LHC, unless the coupling strength is very small. However, the compress mass spectrum with allowed tiny coupling strength makes the decay lifetime of heavy quarks longer than the timescale of QCD hadronization.
High Detectivity Graphene-Silicon Heterojunction Photodetector.
Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying
2016-02-03
A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simultaneous wood and metal particle detection on dark-field radiography.
Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela
2018-01-01
Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.
The BDX experiment at Jefferson Laboratory
NASA Astrophysics Data System (ADS)
Celentano, Andrea
2015-06-01
The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected trough scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is an high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment, has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heise, J.
The former Homestake gold mine in Lead, South Dakota, has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansionmore » of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.« less
Dark current and radiation shielding studies for the ILC main linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mokhov, Nikolai V.; Rakhno, I. L.; Solyak, N. A.
2016-12-05
Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel.more » A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.« less
Radon-related backgrounds in the LUX dark matter search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, A.; Akerib, D. S.; Araújo, H. M.
The LUX detector is currently in operation at the Davis Campus at the 4850’ level of the Sanford Underground Research Facility (SURF) in Lead, SD to directly search for WIMP dark matter. Knowing the type and rate of backgrounds is critical in a rare, low energy event search, and LUX was designed, constructed, and deployed to mitigate backgrounds, both internal and external. An important internal background are decays of radon and its daughters. These consist of alpha decays, which are easily tagged and are a tracer of certain backgrounds, and beta decays, some of which are not as readily taggedmore » and present a background for the WIMP search. We report on studies of alpha decay and discuss implications for the WIMP search.« less
Radon-related backgrounds in the LUX dark matter search
Bradley, A.; Akerib, D. S.; Araújo, H. M.; ...
2015-01-01
The LUX detector is currently in operation at the Davis Campus at the 4850’ level of the Sanford Underground Research Facility (SURF) in Lead, SD to directly search for WIMP dark matter. Knowing the type and rate of backgrounds is critical in a rare, low energy event search, and LUX was designed, constructed, and deployed to mitigate backgrounds, both internal and external. An important internal background are decays of radon and its daughters. These consist of alpha decays, which are easily tagged and are a tracer of certain backgrounds, and beta decays, some of which are not as readily taggedmore » and present a background for the WIMP search. We report on studies of alpha decay and discuss implications for the WIMP search.« less
Judgments of eye level in light and in darkness
NASA Technical Reports Server (NTRS)
Stoper, Arnold E.; Cohen, Malcolm M.
1986-01-01
Subjects judged eye level in the light and in the dark by raising and lowering themselves in a dental chair until a stationary target appeared to be at the level of their eyes. This method reduced the possibility of subjects' using visible landmarks as reference points for setting eye level during lighted trials, which may have contributed to artificially low estimates of the variability of this judgment in previous studies. Chair settings were 2.5 deg higher in the dark than in the light, and variability was approximately 66 percent greater in the dark than in the light. These results are discussed in terms of possible interactions of two separate systems, one sensitive to the orientations of visible surfaces and the other sensitive to bodily and gravitational information.
Klopotek, Yvonne; Haensch, Klaus-Thomas; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2010-05-01
The effect of temporary dark exposure on adventitious root formation (ARF) in Petuniaxhybrida 'Mitchell' cuttings was investigated. Histological and metabolic changes in the cuttings during the dark treatment and subsequent rooting in the light were recorded. Excised cuttings were exposed to the dark for seven days at 10 degrees C followed by a nine-day rooting period in perlite or were rooted immediately for 16 days in a climate chamber at 22/20 degrees C (day/night) and a photosynthetic photon flux density (PPFD) of 100micromolm(-2)s(-1). Dark exposure prior to rooting increased, accelerated and synchronized ARF. The rooting period was reduced from 16 days (non-treated cuttings) to 9 days (treated cuttings). Under optimum conditions, despite the reduced rooting period, dark-exposed cuttings produced a higher number and length of roots than non-treated cuttings. An increase in temperature to 20 degrees C during the dark treatment or extending the cold dark exposure to 14 days caused a similar enhancement of root development compared to non-treated cuttings. Root meristem formation had already started during the dark treatment and was enhanced during the subsequent rooting period. Levels of soluble sugars (glucose, fructose and sucrose) and starch in leaf and basal stem tissues significantly decreased during the seven days of dark exposure. This depletion was, however, compensated during rooting after 6 and 24h for soluble sugars in leaves and the basal stem, respectively, whereas the sucrose level in the basal stem was already increased at 6h. The association of higher carbohydrate levels with improved rooting in previously dark-exposed versus non-treated cuttings indicates that increased post-darkness carbohydrate availability and allocation towards the stem base contribute to ARF under the influence of dark treatment and provide energy for cell growth subject to a rising sink intensity in the base of the cutting. Copyright 2009 Elsevier GmbH. All rights reserved.
Tokarev, Alexander; Phillips, Abigail R; Hughes, David J; Irwing, Paul
2017-10-01
A growing body of empirical evidence now supports a negative association between dark traits in leaders and the psychological health of employees. To date, such investigations have mostly focused on psychopathy, nonspecific measures of psychological wellbeing, and have not considered the mechanisms through which these relationships might operate. In the current study (N = 508), we utilized other-ratings of personality (employees rated leaders' personality), psychometrically robust measures, and sophisticated modeling techniques, to examine whether the effects of leaders' levels of narcissism and psychopathy on employee depression are mediated by workplace bullying. Structural equation models provided clear evidence to suggest that employee perceptions of both leader narcissism and psychopathy are associated with increased workplace bullying (25.8% and 41.0% variance explained, respectively) and that workplace bullying fully mediates the effect of leader narcissism and psychopathy on employee depression (21.5% and 20.8% variance explained, respectively). However, when psychopathy and narcissism were modeled concurrently, narcissism did not explain any variance in bullying, suggesting that it is the overlap between psychopathy and narcissism, namely, the "dark core," which primarily accounts for the observed effects. We examined this assertion empirically and explored the unique effects of the subfactors of psychopathy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Large-format InGaAs focal plane arrays for SWIR imaging
NASA Astrophysics Data System (ADS)
Hood, Andrew D.; MacDougal, Michael H.; Manzo, Juan; Follman, David; Geske, Jonathan C.
2012-06-01
FLIR Electro Optical Components will present our latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. FLIR will present imaging from their latest small pitch (15 μm) focal plane arrays in VGA and High Definition (HD) formats. FLIR will present characterization of the FPA including dark current measurements as well as the use of correlated double sampling to reduce read noise. FLIR will show imagery as well as FPA-level characterization data.
DarkSide search for dark matter
NASA Astrophysics Data System (ADS)
Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; De Vincenzi, M.; De Haas, E.; Derbin, A.; Di Pietro, G.; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.
2013-11-01
The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.
NASA Astrophysics Data System (ADS)
Curciarello, Francesca
2016-04-01
e+e- collider experiments at the intensity frontier are naturally suited to probe the existence of a force beyond the Standard Model between WIMPs, the most viable dark matter candidates. The mediator of this new force, known as dark photon, should be a new vector gauge boson very weakly coupled to the Standard Model photon. No significant signal has been observed so far. I will report on current limits set on the coupling factor ɛ2 between the photon and the dark photon by e+e- collider experiments.
Dark matter in the coming decade: Complementary paths to discovery and beyond
Bauer, Daniel; Buckley, James; Cahill-Rowley, Matthew; ...
2015-05-27
Here, we summarize the many dark matter searches currently being pursued through four complementary approaches: direct detection, indirect detection, collider experiments, and astrophysical probes. The essential features of broad classes of experiments are described, each with their own strengths and weaknesses. Furthermore, we discuss the complementarity of the different dark matter searches qualitatively and illustrated quantitatively in two simple theoretical frameworks. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program drawing from all four approaches.
Asymmetric capture of Dirac dark matter by the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan
2015-08-18
Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles andmore » anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.« less
Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K
2017-01-01
Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.
Direct detection of sub-GeV dark matter with semiconductor targets
Essig, Rouven; Fernández-Serra, Marivi; Mardon, Jeremy; ...
2016-05-09
Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their O(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcomingmore » several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. In conclusion, the searches we propose will probe vast new regions of unexplored dark matter model and parameter space.« less
Toward (finally!) ruling out Z and Higgs mediated dark matter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Miguel; Berlin, Asher; Hooper, Dan
2016-12-01
In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance ( m {sub DM} ≅ m {sub Z} /2) or greater than 200 GeV, or with a vector coupling and with m {sub DM} > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ( m {sub DM} ≅ m {sub H} /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less
Toward (finally!) ruling out Z and Higgs mediated dark matter models
Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher; ...
2016-12-15
In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less
Toward (finally!) ruling out Z and Higgs mediated dark matter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher
In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.
2016-12-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callewaert, F.; Hoang, A. M.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu
2014-02-03
A long wavelength infrared minority electron unipolar photodetector based on InAs/GaSb type-II superlattices is demonstrated. At 77 K, a dark current of 3 × 10{sup −5} A/cm{sup 2} and a differential resistance-area of 3700 Ω.cm{sup 2} are achieved at the turn-on bias, with a 50%-cutoff of 10.0 μm and a specific detectivity of 6.2 × 10{sup 11} Jones. The dark current is fitted as a function of bias and temperature using a model combining generation-recombination and trap-assisted tunneling. Good agreement was observed between the theory and the experimental dark current.
Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors
Kasap, Safa; Frey, Joel B.; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S.; Rowlands, John A.
2011-01-01
In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been recently demonstrated with excellent avalanche gains; the latter is expected to lead to a number of novel imaging device applications that would be quantum noise limited. While passive pixel sensors use one TFT (thin film transistor) as a switch at the pixel, active pixel sensors (APSs) have two or more transistors and provide gain at the pixel level. The advantages of APS based x-ray imagers are also discussed with examples. PMID:22163893
Bahcall, Neta A
2015-10-06
Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.
Bahcall, Neta A.
2015-01-01
Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091
75 FR 10740 - New Car Assessment Program (NCAP); Safety Labeling
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-09
... separated from each other by a dark line that is a minimum of 3 points in width. Also as is currently required, the entire safety rating label would be required to be surrounded by a solid dark line that is a... dark background. \\4\\ The full study report is available at http://www.regulations.gov in Docket No...
NASA Astrophysics Data System (ADS)
Rhodes, Jason
2014-03-01
Dark energy, the name given to the cause of the accelerating expansion of the Universe, is one of the most profound mysteries in modern science. Current cosmological models hold that dark energy is currently the dominant component of the Universe, but the exact nature of dark energy remains poorly understood. There are ambitious ground-based surveys underway that seek to understand dark energy and NASA is participating in the development of significantly more ambitious space-based surveys planned for the next decade. NASA has provided mission enabling technology to the European Space Agency's (ESA) Euclid mission in exchange for US scientists to participate in the Euclid mission. NASA is also developing the Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST-AFTA) mission for possible launch in ~2023. WFIRST was the highest ranked space mission in the Astro2010 Decadal Survey and the AFTA incarnation of the WFIRST design uses a 2.4 m space telescope to go beyond what the Decadal Survey envisioned for WFIRST. Understanding dark energy is one of the primary science goals of WFIRST-AFTA. I'll discuss the status of Euclid and WFIRST and comment on the complementarity of the two missions.
Redshift drift constraints on holographic dark energy
NASA Astrophysics Data System (ADS)
He, Dong-Ze; Zhang, Jing-Fei; Zhang, Xin
2017-03-01
The Sandage-Loeb (SL) test is a promising method for probing dark energy because it measures the redshift drift in the spectra of Lyman- α forest of distant quasars, covering the "redshift desert" of 2 ≲ z ≲ 5, which is not covered by existing cosmological observations. Therefore, it could provide an important supplement to current cosmological observations. In this paper, we explore the impact of SL test on the precision of cosmological constraints for two typical holographic dark energy models, i.e., the original holographic dark energy (HDE) model and the Ricci holographic dark energy (RDE) model. To avoid data inconsistency, we use the best-fit models based on current combined observational data as the fiducial models to simulate 30 mock SL test data. The results show that SL test can effectively break the existing strong degeneracy between the present-day matter density Ωm0 and the Hubble constant H 0 in other cosmological observations. For the considered two typical dark energy models, not only can a 30-year observation of SL test improve the constraint precision of Ωm0 and h dramatically, but can also enhance the constraint precision of the model parameters c and α significantly.
Liu, John D; Goodspeed, Danielle; Sheng, Zhengji; Li, Baohua; Yang, Yiran; Kliebenstein, Daniel J; Braam, Janet
2015-03-27
The modular body structure of plants enables detached plant organs, such as postharvest fruits and vegetables, to maintain active responsiveness to environmental stimuli, including daily cycles of light and darkness. Twenty-four hour light/darkness cycles entrain plant circadian clock rhythms, which provide advantage to plants. Here, we tested whether green leafy vegetables gain longevity advantage by being stored under light/dark cycles designed to maintain biological rhythms. Light/dark cycles during postharvest storage improved several aspects of plant tissue performance comparable to that provided by refrigeration. Tissue integrity, green coloration, and chlorophyll content were generally enhanced by cycling of light and darkness compared to constant light or darkness during storage. In addition, the levels of the phytonutrient glucosinolates in kale and cabbage remained at higher levels over time when the leaf tissue was stored under light/dark cycles. Maintenance of the daily cycling of light and dark periods during postharvest storage may slow the decline of plant tissues, such as green leafy vegetables, improving not only appearance but also the health value of the crops through the maintenance of chlorophyll and phytochemical content after harvest.
Measuring Dark Energy with CHIME
NASA Astrophysics Data System (ADS)
Newburgh, Laura; Chime Collaboration
2015-04-01
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a new radio transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use the 21 cm emission line of neutral hydrogen to map baryon acoustic oscillations between 400-800 MHz across 3/4 of the sky. These measurements will yield sensitive constraints on the dark energy equation of state between redshifts 0.8 - 2.5, a fascinating but poorly probed era corresponding to when dark energy began to impact the expansion history of the Universe. I will describe theCHIME instrument, the analysis challenges, the calibration requirements, and current status.
Make dark matter charged again
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
Dark matter haloes: a multistream view
NASA Astrophysics Data System (ADS)
Ramachandra, Nesar S.; Shandarin, Sergei F.
2017-09-01
Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1985-01-01
The use of a (silicon)/(heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction (or back-surface-field, BSF) structure of silicon solar cells was examined. The results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contact are presented. A reciprocity theorem is presented that relates the short circuit current of a device, induced by a carrier generation source, to the minority carrier Fermi level in the dark. A method for accurate measurement of minority-carrier diffusion coefficients in silicon is described.
Constraining the interaction between dark sectors with future HI intensity mapping observations
NASA Astrophysics Data System (ADS)
Xu, Xiaodong; Ma, Yin-Zhe; Weltman, Amanda
2018-04-01
We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at z ˜1 , which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.
Characterization and Analysis of Integrated Silicon Photonic Detectors for High-Speed Communications
2015-03-26
17 2.2.1.1 Depletion Region and Dark Current . . . . . . . . . . . . . . . . . 18 2.2.1.2 Photocurrent, Quantum ...facilitate a greater consciousness for the RF spectrum from MHz to ∼1 THz demonstrating an advantage over any purely electronic approach. Electronic... Quantum Efficiency and Responsivity. Extrapolating the established model from the dark current section provides the photodiode’s response when light
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-06
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.
Novel dark matter phenomenology at colliders
NASA Astrophysics Data System (ADS)
Wardlow, Kyle Patrick
While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.
Olson, Benjamin Varberg; Kadlec, Emil Andrew; Kim, Jin K.; ...
2015-04-17
Our time-resolved measurements for carrier recombination are reported as a midwave infrared InAs/InAs 0.66Sb 0.34 type-II superlattice (T2SL) function of pump intensity and sample temperature. By including the T2SL doping level in the analysis, the Shockley-Read-Hall (SRH), radiative, and Auger recombination components of the carrier lifetime are uniquely distinguished at each temperature. SRH is the limiting recombination mechanism for excess carrier densities less than the doping level (the low-injection regime) and temperatures less than 175 K. A SRH defect energy of 95 meV, either below the T2SL conduction-band edge or above the T2SL valence-band edge, is identified. Auger recombination limitsmore » the carrier lifetimes for excess carrier densities greater than the doping level (the high-injection regime) for all temperatures tested. Additionally, at temperatures greater than 225 K, Auger recombination also limits the low-injection carrier lifetime due to the onset of the intrinsic temperature range and large intrinsic carrier densities. Radiative recombination is found to not have a significant contribution to the total lifetime for all temperatures and injection regimes, with the data implying a photon recycling factor of 15. Using the measured lifetime data, diffusion currents are calculated and compared to calculated Hg 1-xCd xTe dark current, indicating that the T2SL can have a lower dark current with mitigation of the SRH defect states. Our results illustrate the potential for InAs/InAs 1-xSb x T2SLs as absorbers in infrared photodetectors.« less
Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime
NASA Astrophysics Data System (ADS)
Miranda, Vinicius; González, Mariana Carrillo; Krause, Elisabeth; Trodden, Mark
2018-03-01
We reexamine interactions between the dark sectors of cosmology, with a focus on robust constraints that can be obtained using only mildly nonlinear scales. While it is well known that couplings between dark matter and dark energy can be constrained to the percent level when including the full range of scales probed by future optical surveys, calibrating matter power spectrum emulators to all possible choices of potentials and couplings requires many computationally expensive n-body simulations. Here we show that lensing and clustering of galaxies in combination with the cosmic microwave background (CMB) are capable of probing the dark sector coupling to the few percent level for a given class of models, using only linear and quasilinear Fourier modes. These scales can, in principle, be described by semianalytical techniques such as the effective field theory of large-scale structure.
Cheng, Chee-Wai; Das, Indra J; Ndlovu, Alois M
2002-09-01
The effect of the initial pulse forming network (IPFN) on the suppression of dark current is investigated for a Siemens Primus accelerator. The dark current produces a spurious radiation, which is referred to as dark current radiation (DCR) in this study. In the step-and-shoot delivery of an intensity modulated radiation therapy (IMRT), the DCR could be of some concern for whole body dose along with leakage radiation through collimator jaws or multileaf collimator. By adjusting the IPFN-to-PFN ratio to >0.8, the DCR can be measured with an ion chamber during the "PAUSE" state of the accelerator in the IMRT mode. For 15 MV x rays, the magnitude of the DCR is approximately equal to 0.7% of the dose at dmax for a 10 x 10 cm2 field. The DCR has a similar central axis depth dose as a 15 MV beam as determined from a water phantom scan. When the IPFN-to-PFN ratio is lowered to <0.8, no DCR is detected. For low energy x rays (6 MV), no DCR is detected regardless of the IPFN-to-PFN ratio. Although the DCR is studied only for the Siemens Primus model accelerator, the same precaution applies to other models of modern accelerators from other vendors. Due to the large number of field segments used in a step-and-shoot IMRT, it is imperative therefore, that dark current evaluation be part of machine commissioning and annual calibration for high-energy photon beams. Should DCR be detected, the medical physicist should work with a service engineer to rectify the problem. In view of DCR and whole body dose, low-energy photon beams are advisable for IMRT.
Cosmic history of chameleonic dark matter in F (R ) gravity
NASA Astrophysics Data System (ADS)
Katsuragawa, Taishi; Matsuzaki, Shinya
2018-03-01
We study the cosmic history of the scalaron in F (R ) gravity with constructing the time evolution of the cosmic environment and discuss the chameleonic dark matter based on the chameleon mechanism in the early and current Universe. We then find that the scalaron can be a dark matter. We also propose an interesting possibility that the F (R ) gravity can address the coincidence problem.
Dark Chocolate Intake Acutely Enhances Neutrophil Count in Peripheral Venous Blood.
Montagnana, Martina; Danese, Elisa; Lima-Oliveira, Gabriel; Salvagno, Gian Luca; Lippi, Giuseppe
2017-01-01
Beside the well-established impact on decreasing the risk of cardiovascular diseases (1), recent attention has been paid to the relationship between cocoa-containing foods and the immune system (2), showing that dark chocolate consumption enhances the systemic defense against bacterial (3) and viral (4) infections. Hence, the current study aimed at investigating the acute effect of dark chocolate intake on peripheral blood leukocytes.
Hood, Rachel D; Higgins, Sean A; Flamholz, Avi; Nichols, Robert J; Savage, David F
2016-08-16
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3'-diphosphate 5'-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle.
Hood, Rachel D.; Higgins, Sean A.; Flamholz, Avi; Nichols, Robert J.
2016-01-01
The cyanobacterium Synechococcus elongatus relies upon photosynthesis to drive metabolism and growth. During darkness, Synechococcus stops growing, derives energy from its glycogen stores, and greatly decreases rates of macromolecular synthesis via unknown mechanisms. Here, we show that the stringent response, a stress response pathway whose genes are conserved across bacteria and plant plastids, contributes to this dark adaptation. Levels of the stringent response alarmone guanosine 3′-diphosphate 5′-diphosphate (ppGpp) rise after a shift from light to dark, indicating that darkness triggers the same response in cyanobacteria as starvation in heterotrophic bacteria. High levels of ppGpp are sufficient to stop growth and dramatically alter many aspects of cellular physiology, including levels of photosynthetic pigments and polyphosphate, DNA content, and the rate of translation. Cells unable to synthesize ppGpp display pronounced growth defects after exposure to darkness. The stringent response regulates expression of a number of genes in Synechococcus, including ribosomal hibernation promoting factor (hpf), which causes ribosomes to dimerize in the dark and may contribute to decreased translation. Although the metabolism of Synechococcus differentiates it from other model bacterial systems, the logic of the stringent response remains remarkably conserved, while at the same time having adapted to the unique stresses of the photosynthetic lifestyle. PMID:27486247
Battelle, Barbara-Anne; Kempler, Karen E; Parker, Alexander K; Gaddie, Cristina D
2013-05-15
Dark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control. We found that rhabdomeral levels of opsins (Ops1-2), the G protein activated by rhodopsin (G(q)α) and arrestin change significantly from day to night and that nighttime levels of each protein at rhabdoms are significantly influenced by signals from the animal's central circadian clock. Clock input at night increases Ops1-2 and G(q)α and decreases arrestin levels at rhabdoms. Clock input is also required for a rapid decrease in rhabdomeral Ops1-2 beginning at sunrise. We found further that dark adaptation during the day and the night are not equivalent. During daytime dark adaptation, when clock input is silent, the increase of Ops1-2 at rhabdoms is small and G(q)α levels do not increase. However, increases in Ops1-2 and G(q)α at rhabdoms are enhanced during daytime dark adaptation by treatments that elevate cAMP in photoreceptors, suggesting that the clock influences dark-adaptive increases in Ops1-2 and G(q)α at Limulus rhabdoms by activating cAMP-dependent processes. The circadian regulation of Ops1-2 and G(q)α levels at rhabdoms probably has a dual role: to increase retinal sensitivity at night and to protect photoreceptors from light damage during the day.
Study on the performance of 2.6 μm In0.83Ga0.17As detector with different etch gases
NASA Astrophysics Data System (ADS)
Li, Ping; Tang, Hengjing; Li, Tao; Li, Xue; Shao, Xiumei; Ma, Yingjie; Gong, Haimei
2017-09-01
In order to obtain a low-damage recipe in the ICP processing, ICP-induced damage using Cl2/CH4 etch gases in extended wavelength In0.83Ga0.17As detector materials was studied in this paper. The effect of ICP etching on In0.83Ga0.17As samples was characterized qualitatively by the photoluminescence (PL) technology. The etch damage of In0.83Ga0.17As samples was characterized quantitatively by the Transmission Line Model (TLM), current voltage (IV) measurement, signal and noise testing and the Fourier Transform Infrared Spectroscopy (FTIR) technologies. The results showed that the Cl2/CH4 etching processing could lead better detector performance than that Cl2/N2, such as a larger square resistance, a lower dark current, a lower noise voltage and a higher peak detectivity. The lower PL signal intensity and lower dark current could be attributed to the hydrogen decomposed by the CH4 etch gases in the plasma etching process. These hydrogen particles generated non-radiative recombination centers in inner materials to weaken the PL intensity and passivated dangling bond at the surface to reduce the dark current. The larger square resistance resulted from the lower etch damage. The lower dark current meant that the detectors have less dangling bonds and leakage channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catalanotti, C.; Dubini, A.; Subramanian, V.
2012-02-01
Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a doublemore » mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.« less
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Probing light nonthermal dark matter at the LHC
NASA Astrophysics Data System (ADS)
Dutta, Bhaskar; Gao, Yu; Kamon, Teruki
2014-05-01
This paper investigates the collider phenomenology of a minimal nonthermal dark matter model with a 1-GeV dark matter candidate, which naturally explains baryogenesis. Since the light dark matter is not parity protected, it can be singly produced at the LHC. This leads to large missing energy associated with an energetic jet whose transverse momentum distribution is featured by a Jacobian-like shape. The monojet, dijet, paired dijet, and two jets + missing energy channels are studied. Currently existing data at the Tevatron and LHC offer significant bounds on our model.
Katz, Ben; Minke, Baruch
2012-01-01
Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single photon sensitivity. This is manifested in the single photon responses (quantum bumps). In photoreceptor cells, dark activation of Gqα molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous Gqα activation and dark bump production potentially hampers single photon detection. We found that in wild type flies the in vivo rate of spontaneous Gqα activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production, arising from spontaneous Gqα activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca2+ modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity, selectively suppressed random production of single Gqα-activated dark bumps despite a high rate of spontaneous Gqα activation. This minimal PLC activity level is reliably obtained by photon induced synchronized activation of several neighboring Gqα molecules activating several PLC molecules, but not by random activation of single Gqα molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling. PMID:22357856
Projected sensitivity of the SuperCDMS SNOLAB experiment
Agnese, R.; Anderson, A. J.; Aramaki, T.; ...
2017-04-07
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤10 GeV/c 2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10 –43 cm 2 for a dark matter particle mass of 1 GeV/c 2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. Amore » detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced 3H and naturally occurring 32Si will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c 2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c 2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. In conclusion, upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnese, R.; Anderson, A. J.; Aramaki, T.
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/cmore » $^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$$^{-43}$$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $$^{3}$$H and naturally occurring $$^{32}$$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnese, R.; Anderson, A. J.; Aramaki, T.
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤ 10 GeV/c^2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10^-43 cm^2 for a dark matter particle mass of 1 GeV/c^2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration ofmore » the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced H-3 and naturally occurring Si-32 will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c^2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c^2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnese, R.; Anderson, A. J.; Aramaki, T.
SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤10 GeV/c 2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10 –43 cm 2 for a dark matter particle mass of 1 GeV/c 2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. Amore » detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced 3H and naturally occurring 32Si will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c 2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c 2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. In conclusion, upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.« less
Identification of Upward-going Muons for Dark Matter Searches at the NOvA Experiment
NASA Astrophysics Data System (ADS)
Xiao, Liting
2014-03-01
We search for energetic neutrinos that could originate from dark matter particles annihilating in the core of the Sun using the newly built NOvA Far Detector at Fermilab. Only upward-going muons produced via charged-current interactions are selected as signal in order to eliminate backgrounds from cosmic ray muons, which dominate the downward-going flux. We investigate several algorithms so as to develop an effective way of reconstructing the directionality of cosmic tracks at the trigger level. These studies are a crucial part of understanding how NOvA may compete with other experiments that are performing similar searches. In order to be competitive NOvA must be capable of rejecting backgrounds from downward-going cosmic rays with very high efficiency while accepting most upward-going muons. Acknowledgements: The Jefferson Trust, Fermilab, UVA Department of Physics.
Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.
Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei
2017-09-05
We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.
Origins and challenges of viral dark matter.
Krishnamurthy, Siddharth R; Wang, David
2017-07-15
The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter. Copyright © 2017 Elsevier B.V. All rights reserved.
Davini, S.; Agnes, P.; Agostino, L.; ...
2016-06-09
Here, the DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 10 3 relative to atmospheric argon.more » The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.« less
Genome research elucidating environmental adaptation: Dark-fly project as a case study.
Fuse, Naoyuki
2017-08-01
Organisms have the capacity to adapt to diverse environments, and environmental adaptation is a substantial driving force of evolution. Recent progress of genome science has addressed the genetic mechanisms underlying environmental adaptation. Whole genome sequencing has identified adaptive genes selected under particular environments. Genome editing technology enables us to directly test the role(s) of a gene in environmental adaptation. Genome science has also shed light on a unique organism, Dark-fly, which has been reared long-term in the dark. We determined the whole genome sequence of Dark-fly and reenacted environmental selections of the Dark-fly genome to identify the genes related to dark-adaptation. Here I will give an overview of current progress in genome science and summarize our study using Dark-fly, as a case study for environmental adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davini, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Ianni, Aldo; Ianni, Andrea; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.
2016-05-01
The DarkSide program at LNGS aims to perform background-free WIMP searches using two phase liquid argon time projection chambers, with the ultimate goal of covering all parameters down to the so-called neutrino floor. One of the distinct features of the program is the use of underground argon with has a reduced content of the radioactive 39Ar compared to atmospheric argon. The DarkSide Collaboration is currently operating the DarkSide-50 experiment, the first such WIMP detector using underground argon. Operations with underground argon indicate a suppression of 39Ar by a factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The new results obtained with DarkSide-50 and the plans for the next steps of the DarkSide program, the 20t fiducial mass DarkSide-20k detector and the 200 t fiducial Argo, are reviewed in this proceedings.
Craig, Nathaniel; Katz, Andrey
2015-10-27
We identify and analyze thermal dark matter candidates in the fraternal twin Higgs model and its generalizations. The relic abundance of fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. As such, the dark matter candidates benefit from a "fraternal WIMP miracle'', reproducing the observed dark matter abundance for dark matter masses between 50 and 150 GeV . However, the couplings dominantly responsible for dark matter annihilation do not lead to interactions with the visible sector. The direct detection rate is instead setmore » via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation. Finally, the predicted direct detection cross section is close to current LUX bounds and presents an opportunity for the next generation of direct detection experiments.« less
Sbragaglia, Valerio; Lamanna, Francesco; M. Mat, Audrey; Rotllant, Guiomar; Joly, Silvia; Ketmaier, Valerio; de la Iglesia, Horacio O.; Aguzzi, Jacopo
2015-01-01
The Norway lobster, Nephrops norvegicus, is a burrowing decapod with a rhythmic burrow emergence (24 h) governed by the circadian system. It is an important resource for European fisheries and its behavior deeply affects its availability. The current knowledge of Nephrops circadian biology is phenomenological as it is currently the case for almost all crustaceans. In attempt to elucidate the putative molecular mechanisms underlying circadian gene regulation in Nephrops, we used a transcriptomics approach on cDNA extracted from the eyestalk, a structure playing a crucial role in controlling behavior of decapods. We studied 14 male lobsters under 12–12 light-darkness blue light cycle. We used the Hiseq 2000 Illumina platform to sequence two eyestalk libraries (under light and darkness conditions) obtaining about 90 millions 100-bp paired-end reads. Trinity was used for the de novo reconstruction of transcriptomes; the size at which half of all assembled bases reside in contigs (N50) was equal to 1796 (light) and 2055 (darkness). We found a list of candidate clock genes and focused our attention on canonical ones: timeless, period, clock and bmal1. The cloning of assembled fragments validated Trinity outputs. The putative Nephrops clock genes showed high levels of identity (blastx on NCBI) with known crustacean clock gene homologs such as Eurydice pulchra (period: 47%, timeless: 59%, bmal1: 79%) and Macrobrachium rosenbergii (clock: 100%). We also found a vertebrate-like cryptochrome 2. RT-qPCR showed that only timeless had a robust diel pattern of expression. Our data are in accordance with the current knowledge of the crustacean circadian clock, reinforcing the idea that the molecular clockwork of this group shows some differences with the established model in Drosophila melanogaster. PMID:26524198
Thermal annealing response following irradiation of a CMOS imager for the JUICE JANUS instrument
NASA Astrophysics Data System (ADS)
Lofthouse-Smith, D.-D.; Soman, M. R.; Allanwood, E. A. H.; Stefanov, K. D.; Holland, A. D.; Leese, M.; Turne, P.
2018-03-01
ESA's JUICE (JUpiter ICy moon Explorer) spacecraft is an L-class mission destined for the Jovian system in 2030. Its primary goals are to investigate the conditions for planetary formation and the emergence of life, and how does the solar system work. The JANUS camera, an instrument on JUICE, uses a 4T back illuminated CMOS image sensor, the CIS115 designed by Teledyne e2v. JANUS imager test campaigns are studying the CIS115 following exposure to gammas, protons, electrons and heavy ions, simulating the harsh radiation environment present in the Jovian system. The degradation of 4T CMOS device performance following proton fluences is being studied, as well as the effectiveness of thermal annealing to reverse radiation damage. One key parameter for the JANUS mission is the Dark current of the CIS115, which has been shown to degrade in previous radiation campaigns. A thermal anneal of the CIS115 has been used to accelerate any annealing following the irradiation as well as to study the evolution of any performance characteristics. CIS115s have been irradiated to double the expected End of Life (EOL) levels for displacement damage radiation (2×1010 protons, 10 MeV equivalent). Following this, devices have undergone a thermal anneal cycle at 100oC for 168 hours to reveal the extent to which CIS115 recovers pre-irradiation performance. Dark current activation energy analysis following proton fluence gives information on trap species present in the device and how effective anneal is at removing these trap species. Thermal anneal shows no quantifiable change in the activation energy of the dark current following irradiation.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Tollefson, Joshua; Hsu, Andrew I.; de Pater, Imke; Simon, Amy A.; Hueso, Ricardo; Sánchez-Lavega, Agustín; Sromovsky, Lawrence; Fry, Patrick; Luszcz-Cook, Statia; Hammel, Heidi; Delcroix, Marc; de Kleer, Katherine; Orton, Glenn S.; Baranec, Christoph
2018-03-01
An outburst of cloud activity on Neptune in 2015 led to speculation about whether the clouds were convective in nature, a wave phenomenon, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). The Hubble Space Telescope (HST) finally answered this question by discovering a new dark vortex at 45 degrees south planetographic latitude, named SDS-2015 for “southern dark spot discovered in 2015.” SDS-2015 is only the fifth dark vortex ever seen on Neptune. In this paper, we report on imaging of SDS-2015 using HST’s Wide Field Camera 3 across four epochs: 2015 September, 2016 May, 2016 October, and 2017 October. We find that the size of SDS-2015 did not exceed 20 degrees of longitude, more than a factor of two smaller than the Voyager dark spots, but only slightly smaller than previous northern-hemisphere dark spots. A slow (1.7–2.5 deg/year) poleward drift was observed for the vortex. Properties of SDS-2015 and its surroundings suggest that the meridional wind shear may be twice as strong at the deep level of the vortex as it is at the level of cloud-tracked winds. Over the 2015–2017 period, the dark spot’s contrast weakened from about -7 % to about -3 % , while companion clouds shifted from offset to centered, a similar evolution to some historical dark spots. The properties and evolution of SDS-2015 highlight the diversity of Neptune’s dark spots and the need for faster cadence dark spot observations in the future.
Review of indirect detection of dark matter with neutrinos
NASA Astrophysics Data System (ADS)
Danninger, Matthias
2017-09-01
Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.
Searching for a dark photon with DarkLight
Corliss, R.
2016-07-30
Here, we describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c 2 could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. We will detect the complete final state including scattered electron, recoil proton, and e +e - pair. A phase-I experiment has been funded and is expectedmore » to take data in the next eighteen months. The complete phase-II experiment is under final design and could run within two years after phase-I is completed. The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers.« less
Absorption of light dark matter in semiconductors
Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.
2017-01-01
Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less
Dark Chocolate Intake Acutely Enhances Neutrophil Count in Peripheral Venous Blood
Montagnana, Martina; Danese, Elisa; Lima-Oliveira, Gabriel; Salvagno, Gian Luca; Lippi, Giuseppe
2017-01-01
Beside the well-established impact on decreasing the risk of cardiovascular diseases (1), recent attention has been paid to the relationship between cocoa-containing foods and the immune system (2), showing that dark chocolate consumption enhances the systemic defense against bacterial (3) and viral (4) infections. Hence, the current study aimed at investigating the acute effect of dark chocolate intake on peripheral blood leukocytes. PMID:29531561
Current status of direct dark matter detection experiments
NASA Astrophysics Data System (ADS)
Liu, Jianglai; Chen, Xun; Ji, Xiangdong
2017-03-01
Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.
Performance of the STIS CCD Dark Rate Temperature Correction
NASA Astrophysics Data System (ADS)
Branton, Doug; STScI STIS Team
2018-06-01
Since July 2001, the Space Telescope Imaging Spectrograph (STIS) onboard Hubble has operated on its Side-2 electronics due to a failure in the primary Side-1 electronics. While nearly identical, Side-2 lacks a functioning temperature sensor for the CCD, introducing a variability in the CCD operating temperature. Previous analysis utilized the CCD housing temperature telemetry to characterize the relationship between the housing temperature and the dark rate. It was found that a first-order 7%/°C uniform dark correction demonstrated a considerable improvement in the quality of dark subtraction on Side-2 era CCD data, and that value has been used on all Side-2 CCD darks since. In this report, we show how this temperature correction has performed historically. We compare the current 7%/°C value against the ideal first-order correction at a given time (which can vary between ~6%/°C and ~10%/°C) as well as against a more complex second-order correction that applies a unique slope to each pixel as a function of dark rate and time. At worst, the current correction has performed ~1% worse than the second-order correction. Additionally, we present initial evidence suggesting that the variability in pixel temperature-sensitivity is significant enough to warrant a temperature correction that considers pixels individually rather than correcting them uniformly.
Basic corrections to predictions of solar cell performance required by nonlinearities
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Fossum, J. G.; Burgess, E. L.
1976-01-01
The superposition principle is used to derive the approximation that the current-voltage characteristic of an illuminated solar cell is the dark current-voltage characteristic shifted by the short-circuit photocurrent. The derivation requires the linearity of the boundary value problems that underlie the electrical characteristics. The shifting approximation is invalid if considerable photocurrent and considerable dark current both occur within the junction space-charge region; it is invalid also if sizable series resistance is present or if high-injection concentrations of holes and electrons exist within the quasi-neutral regions.
Signatures of dark radiation in neutrino and dark matter detectors
NASA Astrophysics Data System (ADS)
Cui, Yanou; Pospelov, Maxim; Pradler, Josef
2018-05-01
We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.
Probing Primordial Black Hole Dark Matter with Gravitational Waves
NASA Astrophysics Data System (ADS)
Kovetz, Ely D.
2017-09-01
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M⊙≲MPBH≲100 M⊙ mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ˜30 M⊙ by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O 1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ˜5 yr of aLIGO data can be used to detect a contribution of >20 M⊙ PBHs to dark matter down to fPBH<0.5 at >99.9 % confidence level. Combined with other probes that already suggest tension with fPBH=1 , the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
Dark Matter Decays from Nonminimal Coupling to Gravity.
Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian
2016-07-08
We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.
Make dark matter charged again
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less
USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yun; Zhu Zonghong; Alcaniz, J. S.
2010-03-01
By assuming a phenomenological form for the ratio of the dark energy and matter densities rho{sub X} {proportional_to} rho{sub m} a {sup x}i, we discuss the cosmic coincidence problem in light of current observational data. Here, xi is a key parameter to denote the severity of the coincidence problem. In this scenario, xi = 3 and xi = 0 correspond to LAMBDACDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 < xi < 3 makes the coincidence problem less severe. In addition, the standard cosmology without interaction between dark energy andmore » dark matter is characterized by xi + 3omega{sub X} = 0, where omega{sub X} is the equation of state of the dark energy component, whereas the inequality xi + 3omega{sub X} {ne} 0 represents non-standard cosmology. We place observational constraints on the parameters (OMEGA{sub X,0}, omega{sub X}, xi) of this model, where OMEGA{sub X,0} is the present value of density parameter of dark energy OMEGA{sub X}, by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get OMEGA{sub X,0} = 0.72 +- 0.02, omega{sub X} = -0.98 +- 0.07, and xi = 3.06 +- 0.35 at 68.3% confidence level. The result shows that the LAMBDACDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.« less
NASA Astrophysics Data System (ADS)
D'Arcangelo, Francesca D.
2010-02-01
The discovery of cosmic acceleration twelve years ago implies that our universe is dominated by dark energy, which is either a tiny cosmological constant or a mysterious fluid with large negative pressure, or that Einstein's successful theory of gravity needs to be modified at large scales/low energies. Since then, independent evidence of a number of cosmological probes has firmly established the picture of a universe where dark energy (or the effective contribution from a modification of gravity) makes up about 72% of the total energy density. Whichever of the options mentioned above will turn out to be the right one, a satisfying explanation for cosmic acceleration will likely lead to important new insights in fundamental physics. The question of the physics behind cosmic acceleration is thus one of the most intriguing open questions in modern physics. In this thesis, we calculate current constraints on dark energy and study how to optimally use the cosmological tools at our disposal to learn about its nature. We will first present constraints from a host of recent data on the dark energy sound speed and equation of state for different dark energy models including early dark energy. We then study the observational properties of purely kinetic k-essence models and show how they can in principle be straightforwardly distinguished from quintessence models by their equation of state behavior. We next consider a large, representative set of dark energy and modified gravity models and show that they can be divided into a small set of observationally distinct classes. We also find that all non-early dark energy models we consider can be modeled extremely well by a simple linear equation of state form. We will then go on to discuss a number of alternative, model independent parametrizations of dark energy properties. Among other things, we find that principal component analysis is not as model-independent as one would like it to be and that assuming a fixed value for the high redshift equation of state can lead to a dangerous bias in the determination of the equation of state at low redshift. Finally, we discuss using weak gravitational lensing of cosmic microwave background (CMB) anisotropies as a cosmological probe. We compare different methods for extracting cosmological information from the lensed CMB and show that CMB lensing will in the future be a useful tool for constraining dark energy and neutrino mass. Whereas marginalizing over neutrino mass can degrade dark energy constraints, CMB lensing helps to break the degeneracy between the two and restores the dark energy constraints to the level of the fixed neutrino mass case.
The dark cube: dark and light character profiles.
Garcia, Danilo; Rosenberg, Patricia
2016-01-01
Background. Research addressing distinctions and similarities between people's malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger's character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger's "light" character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people's dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon's Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals' dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad.
The dark cube: dark and light character profiles
2016-01-01
Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger’s character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad. PMID:26966650
Feenstra, M G; Botterblom, M H; Mastenbroek, S
2000-01-01
We used on-line microdialysis measurements of dopamine and noradrenaline extracellular concentrations in the medial prefrontal cortex of awake, freely moving rats during the dark and the light period of the day to study whether (i) basal efflux would be higher in the active, dark period than in the inactive, light period; (ii) the activation induced by environmental stimuli would be dependent on these conditions. When determined one day after cannula placement, noradrenaline and dopamine levels were higher during the dark. Maximal relative increases induced by novelty and handling were 150% and 175-200%, respectively, and were very similar in the light and the dark, but the net increases were higher in the dark. Separate groups were tested one week after cannula placement to ensure recovery of possibly disturbed circadian rhythms. While basal levels in the dark were now approximately twice those in the light, the maximal relative and net increases after both novelty and handling were very similar. Basal levels of dopamine in the nucleus accumbens (one day after cannula placement) were not different in the light or dark, but were increased by novelty and handling to about 130% only in the light period, not in the dark. Thus, in the prefrontal cortex, dopamine strongly resembles noradrenaline, in that basal efflux was state dependent, whereas activation by stimuli was not. In the nucleus accumbens, basal dopamine efflux was not state dependent, but activation by stimuli was. These results suggest that there are differential effects of circadian phase on basal activity and responsiveness of the mesolimbic vs the mesocortical dopamine system.
Laser damage tests on InSb photodiodes at 1.064 micron and 0.532 micron
NASA Technical Reports Server (NTRS)
Bearman, G. H.; Staller, C.; Mahoney, C.
1992-01-01
InSb photodiodes were examined for performance degradation after pulsed laser illumination at 0.532 micron and 1.064 micron. Incident laser powers ranged from 6 x 10 exp-18 micron-watts to 16 micron-watts in a 50 pm diameter spot. Dark current and spectral response were both measured before and after illumination. Dark current measurements were taken with the diode blanked off and viewing only 77 K surfaces. Long term stability tests demonstrated that the blackbody did not exhibit long term drifts. Other tests showed that room temperature variations did not affect the diode signal chain or the digitization electronics used in data acquisition. Results of the experiment show that the diodes did not exhibit changes in dark current or spectral response performance as a result of the laser illumination. A typical change in diode spectral response (before/after laser exposure) was about 0.2 percent +/- 0.2 percent.
New Models and Methods for the Electroweak Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Linda
2017-09-26
This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less
Radial oscillations of strange quark stars admixed with condensed dark matter
NASA Astrophysics Data System (ADS)
Panotopoulos, G.; Lopes, Ilídio
2017-10-01
We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.
Impact of Atmospheric Chromatic Effects on Weak Lensing Measurements
NASA Astrophysics Data System (ADS)
Meyers, Joshua E.; Burchat, Patricia R.
2015-07-01
Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.
On the Generation of the Hubble Sequence Through an Internal Secular Dynamical Process
2004-01-01
is apparently brought about by the fact that spiral galaxies still have varying reserves of baryonic dark matter to form stars, therefore as the...central baryonic dark matter supply, thus the ellipticals in more advanced stage of evolution (which also generally have larger L) will experi- ence...This view is particularly favored by the currently popular hierarchical clustering/cold dark matter (CDM) paradigm of structure formation and evolution
The maximal-density mass function for primordial black hole dark matter
NASA Astrophysics Data System (ADS)
Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson
2018-04-01
The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.
NASA Astrophysics Data System (ADS)
Fathipour, Vala; Bonakdar, Alireza; Mohseni, Hooman
2016-08-01
Short-wave infrared (SWIR) photon detection has become an essential technology in the modern world. Sensitive SWIR detector arrays with high pixel density, low noise levels and high signal-to-noise-ratios are highly desirable for a variety of applications including biophotonics, light detection and ranging, optical tomography, and astronomical imaging. As such many efforts in infrared detector research are directed towards improving the performance of the photon detectors operating in this wavelength range. We review the history, principle of operation, present status and possible future developments of a sensitive SWIR detector technology, which has demonstrated to be one of the most promising paths to high pixel density focal plane arrays for low flux applications. The so-called electron-injection (EI) detector was demonstrated for the first time (in 2007). It offers an overall system-level sensitivity enhancement compared to the p-i-n diode due to a stable internal avalanche-free gain. The amplification method is inherently low noise, and devices exhibit an excess noise of unity. The detector operates in linear-mode and requires only bias voltage of a few volts. The stable detector characteristics, makes formation of high yield large-format, and high pixel density focal plane arrays less challenging compared to other detector technologies such as avalanche photodetectors. Detector is based on the mature InP material system (InP/InAlAs/GaAsSb/InGaAs), and has a cutoff wavelength of 1700 nm. It takes advantage of a unique three-dimensional geometry and combines the efficiency of a large absorbing volume with the sensitivity of a low-dimensional switch (injector) to sense and amplify signals. Current devices provide high-speed response ~ 5 ns rise time, and low jitter ~ 12 ps at room temperature. The internal dark current density is ~ 1 μA/cm2 at room temperature decreasing to 0.1 nA/cm2 at 160 K. EI detectors have been designed, fabricated, and tested during two generations of development and optimization cycles. We review our imager results using the first-generation detectors. In the second-generation devices, the dark current is reduced by two orders of magnitude, and bandwidth is improved by 4 orders of magnitude. The dark current density of the EI detector is shown to outperform the state-of-the-art technology, the
Dark matter admixed strange quark stars in the Starobinsky model
NASA Astrophysics Data System (ADS)
Lopes, Ilídio; Panotopoulos, Grigoris
2018-01-01
We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.
Characterization of the rod photoresponse isolated from the dark-adapted primate ERG.
Jamison, J A; Bush, R A; Lei, B; Sieving, P A
2001-01-01
The a-wave of the human dark-adapted ERG is thought to derive from activity of rod photoreceptors. However, other sources within the retina could potentially perturb this simple equation. We investigated the extent to which the short-latency dark-adapted rod a-wave of the primate ERG is dominated by the rod photoresponse and the applicability of the phototransduction model to fit the rod a-wave. Dark-adapted Ganzfeld ERGs were elicited over a 5-log-unit intensity range using short bright xenon flashes, and the light-adapted cone responses were subtracted to isolate the rod ERG a-wave. Intravitreal 4-phosphono-butyric acid (APB) and cis-2,3-piperidine-dicarboxylic acid (PDA) were applied to isolate the photoreceptor response. The Hood and Birch version of the phototransduction model, Rmax[1 - e(-I x S x (t-t(eff)))2], was fitted to the a-wave data while allowing Rmax and S to vary. Three principle observations were made: (1) At flash intensities > or =0.77 log sc-td-s the leading edge of the normalized rod ERG a-wave tracks the isolated photoreceptor response across the first 20 ms or up to the point of b-wave intrusion. The rod ERG a-wave was essentially identical to the isolated receptor response for all intensities that produce peak responses within 14 ms after the flash. (2) The best fit of sensitivity (S) was not affected by APB and/or PDA, suggesting that the inner retina contributes very little to the dark-adapted a-wave. (3) APB always reduced the maximum dark-adapted a-wave amplitude (by 15-30%), and PDA always increased it (by 7-15%). Using the phototransduction model, both events can be interpreted as a scaling of the photoreceptor dark current. This suggests that activity of postreceptor cells somehow influences the rod dark current, possibly by feedback through horizontal cells (although currently not demonstrated for the rod system), or by altering the ionic concentrations near the photoreceptors, or by neuromodulator effects mediated by dopamine or melatonin.
Transforming Early Childhood Educators' Conceptions of "Dark Play" and Popular Culture
ERIC Educational Resources Information Center
Bjartveit, Carolyn; Panayotidis, E. Lisa
2017-01-01
In an online graduate-level early childhood education course, the authors sought to playfully disrupt and transform educators' conceptions of children's "dark play," as provoked by contemporary popular culture. Embracing the imaginative potential of darkness and liminality, the course participants problematized and expanded their…
Mitochondrial abundance and efficiency contribute to lean color of dark cutting beef
USDA-ARS?s Scientific Manuscript database
Beef carcasses exhibiting four levels of dark cutting severity (DCS): Severe, Moderate, Mild, and Shady were compared to Control carcasses to investigate biochemical traits contributing to the dark cutting condition. Color attributes of Longissimus lumborum (LL) were measured after grading and duri...
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Nasr, Mahmoud; Mansour, A. M.
2018-01-01
Au/p-CoS/n-Si/Al heterojunction device was fabricated by spray pyrolysis technique. The structural and morphological features were examined by x-ray diffraction, scanning electron microscope and energy dispersive x-ray analysis. The capacitance-voltage characteristics of the prepared heterojunction were analyzed at room temperature in the dark. The current-voltage characteristics were examined under dark and different incident light intensities 20-100 mW cm-2. The rectification ratio, series resistance, shunt resistance, diode ideality factor and the effective barrier height were determined at dark and illumination conditions. The photovoltaic parameters such as short circuit current density, open circuit voltage, fill factor and power conversion efficiency were calculated at different incident light intensities.
Collider detection of dark matter electromagnetic anapole moments
NASA Astrophysics Data System (ADS)
Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver
2018-03-01
Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.
Charting the Unknown: A Hunt in the Dark
NASA Astrophysics Data System (ADS)
Mohlabeng, Gopolang Mokoka
Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects at current and future large volume experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we analyze a different non-minimal dark sector in which its interactions with the standard model sector are mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter preserved under the same stabilization symmetry. We find that the presence of both species in the early Universe results in rare processes contributing to the dark matter relic abundance. We conclude that connecting these three frameworks under one main dark matter program, instead of concentrating on them individually, could help us understand what we are missing, and may assist us to produce ground breaking ideas which lead to the discovery of a signal in the near future.
Development and characterisation of MCT detectors for space astrophysics at CEA
NASA Astrophysics Data System (ADS)
Boulade, O.; Baier, N.; Castelein, P.; Cervera, C.; Chorier, P.; Destefanis, G.; Fièque, B.; Gravrand, O.; Guellec, F.; Moreau, V.; Mulet, P.; Pinsard, F.; Zanatta, J.-P.
2017-11-01
The Laboratoire Electronique et Traitement de l'Information (LETI) of the Commissariat à l'Energie Atomique (CEA, Grenoble, France) has been involved in the development of infrared detectors based on HgCdTe (MCT) material for over 30 years, mainly for defence and security programs [1]. Once the building blocks are developed at LETI (MCT material process, diode technology, hybridization, …), the industrialization is performed at SOFRADIR (also in Grenoble, France) which also has its own R&D program [2]. In past years, LETI also developed infrared detectors for space astrophysics in the mid infrared range - the long wave detector of the ISOCAM camera onboard ISO - as well as in the far infrared range - the bolometer arrays of the Herschel/PACS photometer unit -, both instruments which were under the responsibility of the Astrophysics department of CEA (IRFU/SAp, Saclay, France). Nowadays, the infrared detectors used in space and ground based astronomical instruments all come from vendors in the US. For programmatic reasons - increase the number of available vendors, decrease the cost, mitigate possible export regulations, …- as well as political ones - spend european money in Europe -, the European Space Agency (ESA) defined two roadmaps (one in the NIR-SWIR range, one in the MWIR-LWIR range) that will eventually allow for the procurement of infrared detectors for space astrophysics within Europe. The French Space Agency (CNES) also started the same sort of roadmaps, as part of its contribution to the different space missions which involve delivery of instruments by French laboratories. It is important to note that some of the developments foreseen in these roadmaps also apply to Earth Observations. One of the main goal of the ESA and CNES roadmaps is to reduce the level of dark current in MCT devices at all wavelengths. The objective is to use the detectors at the highest temperature where the noise induced by the dark current stays compatible with the photon noise, as the detector operating temperature has a very strong impact at system level. A consequence of reaching low levels of dark current is the need for very low noise readout circuits. CEA and SOFRADIR are involved in a number of activities that have already started in this framework. CEA/LETI does the development of the photo-voltaic (PV) layers - MCT material growth, diode technologies-, as well as some electro-optical characterisation at wafer, diode and hybrid component levels, and CEA/IRFU/SAp does all the electro-optical characterisation involving very low flux measurements (mostly dark current measurements). Depending of the program, SOFRADIR can also participate in the development of the hybrid components, for instance the very low noise readout circuits (ROIC) can be developed either at SOFRADIR or at CEA/LETI. Depending of the component specifications, the MCT epitaxy can be either liquid phase (LPE, which is the standard at SOFRADIR for production purposes) or molecular beam (MBE), the diode technology can be n/p (standard at LETI and SOFRADIR) or p/n (under development for several years now) [3], and the input stage of the ROIC can be Source Follower per Detector (SFD for very low flux low noise programs) or Capacitive Trans Impedance Amplifier (CTIA for intermediate flux programs) [4]. This paper will present the different developments and results obtained so far in the two NIR-SWIR and MWIR-LWIR spectral ranges, as well as the perspectives for the near future. CEA/LETI is also involved in the development of MCT Avalanche Photo Diodes (APD) that will be discussed in other papers [5,6].
Terai, Naim; Gedenk, Alexandra; Spoerl, Eberhard; Pillunat, Lutz E; Stodtmeister, Richard
2014-08-01
To investigate the effect of flavonoid-rich dark chocolate and non-flavonoid-rich white chocolate on retinal vessel diameter in glaucoma patients and age-matched controls. Thirty glaucoma patients and 30 age-matched subjects were assigned to dark or white chocolate by randomization with forced equal distribution. The number in each of the four groups was 15. Measured parameters included systemic blood pressure (BP), blood glucose levels, static retinal vessel analysis, as measured by central retinal artery equivalent (CRAE) (which relates to the diameter of the central retinal artery), central retinal vein equivalent (CRVE) (which relates to the diameter of central retinal vein) and the arterio-venous ratio (AVR), which represents the CRAE/CRVE ratio, dynamic retinal vessel analysis as measured by the change in vessel diameter in response to flicker light stimulation. Three recording cycles from each were averaged. Blood pressure parameters (systolic BP, diastolic BP and pulse), IOP and blood glucose levels did not differ significantly between both groups before and after consumption of white or dark chocolate. Static vessel analysis did not show any significant changes in CRAE, CRVE or AVR before and after dark or white chocolate in both groups (p > 0.05). Mean dilatation of the venules in the control group was 3.2 ± 0.9 % before dark chocolate and 4.2 ± 1.4 % after dark chocolate intake, which was statistically significantly different (p = 0.01). Mean dilatation of the arterioles in the control group was 2.8 ± 1.8 % before dark chocolate and 3.5 ± 1.8 % after dark chocolate intake with a trend to statistical significance (p = 0.14), but not reaching the significance level. Mean diameter changes in the glaucoma group did not show any significant differences after dark chocolate consumption. The present study showed a significant improvement of venous vasodilatation 2 hr after dark chocolate intake in the control group, but not in the glaucoma group. This effect might be indicative of an increased bioavailability of nitric oxide (NO) after dark chocolate consumption. The lack of finding a significant venous response after dark chocolate in the glaucoma group might be related to the already impaired endothelial function in these patients. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection
NASA Technical Reports Server (NTRS)
Yan, Feng
2006-01-01
A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.
Top-philic dark matter within and beyond the WIMP paradigm
NASA Astrophysics Data System (ADS)
Garny, Mathias; Heisig, Jan; Hufnagel, Marco; Lülf, Benedikt
2018-04-01
We present a comprehensive analysis of top-philic Majorana dark matter that interacts via a colored t -channel mediator. Despite the simplicity of the model—introducing three parameters only—it provides an extremely rich phenomenology allowing us to accommodate the relic density for a large range of coupling strengths spanning over 6 orders of magnitude. This model features all "exceptional" mechanisms for dark matter freeze-out, including the recently discovered conversion-driven freeze-out mode, with interesting signatures of long-lived colored particles at colliders. We constrain the cosmologically allowed parameter space with current experimental limits from direct, indirect and collider searches, with special emphasis on light dark matter below the top mass. In particular, we explore the interplay between limits from Xenon1T, Fermi-LAT and AMS-02 as well as limits from stop, monojet and Higgs invisible decay searches at the LHC. We find that several blind spots for light dark matter evade current constraints. The region in parameter space where the relic density is set by the mechanism of conversion-driven freeze-out can be conclusively tested by R -hadron searches at the LHC with 300 fb-1 .
Dark-matter QCD-axion searches.
Rosenberg, Leslie J
2015-10-06
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.
Dark-matter QCD-axion searches
Rosenberg, Leslie J
2015-01-01
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions. PMID:25583487
Deformed shell model study of event rates for WIMP-73Ge scattering
NASA Astrophysics Data System (ADS)
Sahu, R.; Kota, V. K. B.
2017-12-01
The event detection rates for the Weakly Interacting Massive Particles (WIMP) (a dark matter candidate) are calculated with 73Ge as the detector. The calculations are performed within the deformed shell model (DSM) based on Hartree-Fock states. First, the energy levels and magnetic moment for the ground state and two low-lying positive parity states for this nucleus are calculated and compared with experiment. The agreement is quite satisfactory. Then the nuclear wave functions are used to investigate the elastic and inelastic scattering of WIMP from 73Ge; inelastic scattering, especially for the 9/2+ → 5/2+ transition, is studied for the first time. The nuclear structure factors which are independent of supersymmetric model are also calculated as a function of WIMP mass. The event rates are calculated for a given set of nucleonic current parameters. The calculation shows that 73Ge is a good detector for detecting dark matter.
NASA Astrophysics Data System (ADS)
Kuźniak, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Dering, K.; DiGioseffo, J.; Duncan, F.; Flower, T.; Ford, R.; Giampa, P.; Gorel, P.; Graham, K.; Grant, D. R.; Guliyev, E.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Jillings, C. J.; Lawson, I.; Li, O.; Liimatainen, P.; Majewski, P.; McDonald, A. B.; McElroy, T.; McFarlane, K.; Monroe, J.; Muir, A.; Nantais, C.; Ng, C.; Noble, A. J.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Seeburn, N.; Singhrao, K.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.; DEAP Collaboration
2016-04-01
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing β / γ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related α backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10-46cm2 will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.
HgCdTe APD-based linear-mode photon counting components and ladar receivers
NASA Astrophysics Data System (ADS)
Jack, Michael; Wehner, Justin; Edwards, John; Chapman, George; Hall, Donald N. B.; Jacobson, Shane M.
2011-05-01
Linear mode photon counting (LMPC) provides significant advantages in comparison with Geiger Mode (GM) Photon Counting including absence of after-pulsing, nanosecond pulse to pulse temporal resolution and robust operation in the present of high density obscurants or variable reflectivity objects. For this reason Raytheon has developed and previously reported on unique linear mode photon counting components and modules based on combining advanced APDs and advanced high gain circuits. By using HgCdTe APDs we enable Poisson number preserving photon counting. A metric of photon counting technology is dark count rate and detection probability. In this paper we report on a performance breakthrough resulting from improvement in design, process and readout operation enabling >10x reduction in dark counts rate to ~10,000 cps and >104x reduction in surface dark current enabling long 10 ms integration times. Our analysis of key dark current contributors suggest that substantial further reduction in DCR to ~ 1/sec or less can be achieved by optimizing wavelength, operating voltage and temperature.
[Relationship between early maladaptive schemas, attachment quality and fear of darkness].
Kopcsó, Krisztina; Láng, András
2014-12-07
Although fear of darkness is most common in childhood, it is also a remarkable phenomenon in young adulthood. To examine the relationship between fear of darkness, early maladaptive schemas and attachment quality in young adults and assess fear related sex differences. A self-developed scale was used to measure fear of darkness' intensity and frequency. Young Schema Questionnaire - Short Form and two scales that measure attachment dimensions were also applied. 120 university students (68 women, 52 men) filled in the tests. Fear of darkness' frequency correlated with avoidant attachment, and intensity with independent and anxious attachment. Fear of darkness variables correlated with several early maladaptive schemas. Women reported more frequent and intensive fear of darkness than men. These results indicated that the elevated level of fear of darkness is related to specific cognitive style and attachment quality. This highlights the potential clinical relevance of fear of darkness.
X-ray bright points and He I lambda 10830 dark points
NASA Technical Reports Server (NTRS)
Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.
1989-01-01
Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with X-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.
X-ray bright points and He I lambda 10830 dark points
NASA Technical Reports Server (NTRS)
Golub, L.; Harvey, K. L.; Herant, M.; Webb, D. F.
1989-01-01
Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with x-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points.
Dark energy two decades after: observables, probes, consistency tests.
Huterer, Dragan; Shafer, Daniel L
2018-01-01
The discovery of the accelerating universe in the late 1990s was a watershed moment in modern cosmology, as it indicated the presence of a fundamentally new, dominant contribution to the energy budget of the universe. Evidence for dark energy, the new component that causes the acceleration, has since become extremely strong, owing to an impressive variety of increasingly precise measurements of the expansion history and the growth of structure in the universe. Still, one of the central challenges of modern cosmology is to shed light on the physical mechanism behind the accelerating universe. In this review, we briefly summarize the developments that led to the discovery of dark energy. Next, we discuss the parametric descriptions of dark energy and the cosmological tests that allow us to better understand its nature. We then review the cosmological probes of dark energy. For each probe, we briefly discuss the physics behind it and its prospects for measuring dark energy properties. We end with a summary of the current status of dark energy research.
Explaining dark matter and B decay anomalies with an L μ - L τ model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano
We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less
Explaining dark matter and B decay anomalies with an L μ - L τ model
Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano; ...
2016-12-20
We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less
NASA Astrophysics Data System (ADS)
Eckhardt, Donald H.; Garrido Pestaña, José Luis
2014-06-01
The nineteenth century's quest for the missing matter (Vulcan) ended with the publication of Einstein's General Theory of Relativity. We contend that the current quest for the missing matter is parallel in its perseverance and in its ultimate futility. After setting the search for dark matter in its historic perspective, we critique extant dark matter models and offer alternative explanations -- derived from a Lorentz-invariant Lagrangian -- that will, at the very least, sow seeds of doubt about the existence of dark matter.
NASA Astrophysics Data System (ADS)
Espinosa, J. R.; Racco, D.; Riotto, A.
2018-03-01
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 1 011 GeV . We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
NASA Astrophysics Data System (ADS)
Finger, G.; Baker, I.; Downing, M.; Alvarez, D.; Ives, D.; Mehrgan, L.; Meyer, M.; Stegmeier, J.; Weller, H. J.
2017-11-01
Large format near infrared HgCdTe 2Kx2K and 4Kx4K MBE arrays have reached a level of maturity which meets most of the specifications required for near infrared (NIR) astronomy. The only remaining problem is the persistence effect which is device specific and not yet fully under control. For ground based multi-object spectroscopy on 40 meter class telescopes larger pixels would be advantageous. For high speed near infrared fringe tracking and wavefront sensing the only way to overcome the CMOS noise barrier is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. A readout chip for a 320x256 pixel HgCdTe eAPD array will be presented which has 32 parallel video outputs being arranged in such a way that the full multiplex advantage is also available for small sub-windows. In combination with the high APD gain this allows reducing the readout noise to the subelectron level by applying nondestructive readout schemes with subpixel sampling. Arrays grown by MOVPE achieve subelectron readout noise and operate with superb cosmetic quality at high APD gain. Efforts are made to reduce the dark current of those arrays to make this technology also available for large format focal planes of NIR instruments offering noise free detectors for deep exposures. The dark current of the latest MOVPE eAPD arrays is already at a level adequate for noiseless broad and narrow band imaging in scientific instruments.
Maatta, Sara; Scheu, Brad; Roth, Mary R; Tamura, Pamela; Li, Maoyin; Williams, Todd D; Wang, Xuemin; Welti, Ruth
2012-01-01
Previous work has demonstrated that plant leaf polar lipid fatty acid composition varies during the diurnal (dark-light) cycle. Fatty acid synthesis occurs primarily during the light, but fatty acid desaturation continues in the absence of light, resulting in polyunsaturated fatty acids reaching their highest levels toward the end of the dark period. In this work, Arabidopsis thaliana were grown at constant (21°C) temperature with 12-h light and 12-h dark periods. Collision induced dissociation time-of-flight mass spectrometry (MS) demonstrated that 16:3 and 18:3 fatty acid content in membrane lipids of leaves are higher at the end of the dark than at the end of the light period, while 16:1, 16:2, 18:0, and 18:1 content are higher at the end of the light period. Lipid profiling of membrane galactolipids, phospholipids, and lysophospholipids by electrospray ionization triple quadrupole MS indicated that the monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine classes include molecular species whose levels are highest at end of the light period and others that are highest at the end of the dark period. The levels of phosphatidic acid (PA) and phosphatidylserine classes were higher at the end of the dark period, and molecular species within these classes either followed the class pattern or were not significantly changed in the diurnal cycle. Phospholipase D (PLD) is a family of enzymes that hydrolyzes phospholipids to produce PA. Analysis of several PLD mutant lines suggests that PLDζ2 and possibly PLDα1 may contribute to diurnal cycling of PA. The polar lipid compositional changes are considered in relation to recent data that demonstrate phosphatidylcholine acyl editing.
Shadwell, Naomi; Villalobos, Fatima; Kern, Mark; Hong, Mee Young
2013-05-01
Dark chocolate contains high levels of antioxidants which are linked to a reduced risk of cardiovascular disease. Chocolate blooming occurs after exposure to high temperatures. Although bloomed chocolate is safe for human consumption, it is not known whether or not the biological function of bloomed chocolate is affected. We hypothesized that bloomed chocolate would reduce the antioxidant potential and lipid-lowering properties of chocolate through altered expression of related genes. Thirty Sprague-Dawley rats were divided into 3 groups and fed either the control (CON), regular dark chocolate (RDC), or bloomed dark chocolate (BDC) diet. After 3 weeks, serum lipid levels and antioxidant capacity were measured. Hepatic expression of key genes was determined by real time polymerase chain reaction (PCR). Sensory characteristics of bloomed versus regular chocolate were assessed in 28 semi-trained panelists. Rats fed RDC exhibited greater serum antioxidant capacities compared to the CON (P < .05). Antioxidant levels of BDC were not different from RDC or CON. Both RDC and BDC lowered TG compared to CON (P < .05). The rats fed RDC had higher high-density lipoprotein levels compared to the CON (P < .05). In rats given RDC, fatty acid synthase gene expression was down-regulated and low-density lipoprotein receptor transcription was up-regulated (P < .05). Sensory panelists preferred the appearance and surface smoothness of the regular chocolate compared to bloomed chocolate (P < .001). Although blooming blunted the robust antioxidant response produced by regular dark chocolate, these results suggest that bloomed dark chocolate yields similarly beneficial effects on most blood lipid parameters or biomarkers. However, regular dark chocolate may be more beneficial for the improvement of antioxidant status and modulation of gene expression involved in lipid metabolism and promoted greater sensory ratings. Copyright © 2013 Elsevier Inc. All rights reserved.
Gravitational vacuum energy in our recently accelerating universe
NASA Astrophysics Data System (ADS)
Bludman, Sidney
2009-04-01
We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ACDM model, consisting of cold dark matter and a cosmological constant, interprets 4? geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ACDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.
Gravity-mediated dark matter annihilation in the Randall-Sundrum model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less
Gravity-mediated dark matter annihilation in the Randall-Sundrum model
Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.
2017-10-13
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less
Boyer, Nicholas P.; Higbee, Daniel; Currin, Mark B.; Blakeley, Lorie R.; Chen, Chunhe; Ablonczy, Zsolt; Crouch, Rosalie K.; Koutalos, Yiannis
2012-01-01
The age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) has been associated with the development of retinal diseases, particularly age-related macular degeneration and Stargardt disease. A major component of lipofuscin is the bis-retinoid N-retinylidene-N-retinylethanolamine (A2E). The current model for the formation of A2E requires photoactivation of rhodopsin and subsequent release of all-trans-retinal. To understand the role of light exposure in the accumulation of lipofuscin and A2E, we analyzed RPEs and isolated rod photoreceptors from mice of different ages and strains, reared either in darkness or cyclic light. Lipofuscin levels were determined by fluorescence imaging, whereas A2E levels were quantified by HPLC and UV-visible absorption spectroscopy. The identity of A2E was confirmed by tandem mass spectrometry. Lipofuscin and A2E levels in the RPE increased with age and more so in the Stargardt model Abca4−/− than in the wild type strains 129/sv and C57Bl/6. For each strain, the levels of lipofuscin precursor fluorophores in dark-adapted rods and the levels and rates of increase of RPE lipofuscin and A2E were not different between dark-reared and cyclic light-reared animals. Both 11-cis- and all-trans-retinal generated lipofuscin-like fluorophores when added to metabolically compromised rod outer segments; however, it was only 11-cis-retinal that generated such fluorophores when added to metabolically intact rods. The results suggest that lipofuscin originates from the free 11-cis-retinal that is continuously supplied to the rod for rhodopsin regeneration and outer segment renewal. The physiological role of Abca4 may include the translocation of 11-cis-retinal complexes across the disk membrane. PMID:22570475
Advances in the characterization of InAs/GaSb superlattice infrared photodetectors
NASA Astrophysics Data System (ADS)
Wörl, A.; Daumer, V.; Hugger, T.; Kohn, N.; Luppold, W.; Müller, R.; Niemasz, J.; Rehm, R.; Rutz, F.; Schmidt, J.; Schmitz, J.; Stadelmann, T.; Wauro, M.
2016-10-01
This paper reports on advances in the electro-optical characterization of InAs/GaSb short-period superlattice infrared photodetectors with cut-off wavelengths in the mid-wavelength and long-wavelength infrared ranges. To facilitate in-line monitoring of the electro-optical device performance at different processing stages we have integrated a semi-automated cryogenic wafer prober in our process line. The prober is configured for measuring current-voltage characteristics of individual photodiodes at 77 K. We employ it to compile a spatial map of the dark current density of a superlattice sample with a cut-off wavelength around 5 μm patterned into a regular array of 1760 quadratic mesa diodes with a pitch of 370 μm and side lengths varying from 60 to 350 μm. The different perimeter-to-area ratios make it possible to separate bulk current from sidewall current contributions. We find a sidewall contribution to the dark current of 1.2×10-11 A/cm and a corrected bulk dark current density of 1.1×10-7 A/cm2, both at 200 mV reverse bias voltage. An automated data analysis framework can extract bulk and sidewall current contributions for various subsets of the test device grid. With a suitable periodic arrangement of test diode sizes, the spatial distribution of the individual contributions can thus be investigated. We found a relatively homogeneous distribution of both bulk dark current density and sidewall current contribution across the sample. With the help of an improved capacitance-voltage measurement setup developed to complement this technique a residual carrier concentration of 1.3×1015 cm-3 is obtained. The work is motivated by research into high performance superlattice array sensors with demanding processing requirements. A novel long-wavelength infrared imager based on a heterojunction concept is presented as an example for this work. It achieves a noise equivalent temperature difference below 30 mK for realistic operating conditions.
Improved cosmological constraints on the curvature and equation of state of dark energy
NASA Astrophysics Data System (ADS)
Pan, Nana; Gong, Yungui; Chen, Yun; Zhu, Zong-Hong
2010-08-01
We apply the Constitution compilation of 397 supernova Ia, the baryon acoustic oscillation measurements including the A parameter, the distance ratio and the radial data, the five-year Wilkinson microwave anisotropy probe and the Hubble parameter data to study the geometry of the Universe and the property of dark energy by using the popular Chevallier-Polarski-Linder and Jassal-Bagla-Padmanabhan parameterizations. We compare the simple χ2 method of joined contour estimation and the Monte Carlo Markov chain method, and find that it is necessary to make the marginalized analysis on the error estimation. The probabilities of Ωk and wa in the Chevallier-Polarski-Linder model are skew distributions, and the marginalized 1σ errors are Ωm = 0.279+0.015- 0.008, Ωk = 0.005+0.006- 0.011, w0 = -1.05+0.23- 0.06 and wa = 0.5+0.3- 1.5. For the Jassal-Bagla-Padmanabhan model, the marginalized 1σ errors are Ωm = 0.281+0.015- 0.01, Ωk = 0.000+0.007- 0.006, w0 = -0.96+0.25- 0.18 and wa = -0.6+1.9- 1.6. The equation of state parameter w(z) of dark energy is negative in the redshift range 0 <= z <= 2 at more than 3σ level. The flat ΛCDM model is consistent with the current observational data at the 1σ level.
Algorithm for Detecting a Bright Spot in an Image
NASA Technical Reports Server (NTRS)
2009-01-01
An algorithm processes the pixel intensities of a digitized image to detect and locate a circular bright spot, the approximate size of which is known in advance. The algorithm is used to find images of the Sun in cameras aboard the Mars Exploration Rovers. (The images are used in estimating orientations of the Rovers relative to the direction to the Sun.) The algorithm can also be adapted to tracking of circular shaped bright targets in other diverse applications. The first step in the algorithm is to calculate a dark-current ramp a correction necessitated by the scheme that governs the readout of pixel charges in the charge-coupled-device camera in the original Mars Exploration Rover application. In this scheme, the fraction of each frame period during which dark current is accumulated in a given pixel (and, hence, the dark-current contribution to the pixel image-intensity reading) is proportional to the pixel row number. For the purpose of the algorithm, the dark-current contribution to the intensity reading from each pixel is assumed to equal the average of intensity readings from all pixels in the same row, and the factor of proportionality is estimated on the basis of this assumption. Then the product of the row number and the factor of proportionality is subtracted from the reading from each pixel to obtain a dark-current-corrected intensity reading. The next step in the algorithm is to determine the best location, within the overall image, for a window of N N pixels (where N is an odd number) large enough to contain the bright spot of interest plus a small margin. (In the original application, the overall image contains 1,024 by 1,024 pixels, the image of the Sun is about 22 pixels in diameter, and N is chosen to be 29.)
An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging
1999-08-01
Abstract unclassified Limitation of Abstract unlimited Number of Pages 13 1.0 INTRODUCTION Military uses for the long-wave infrared ( LWIR ) and mid...applications.1,2 There are many military imaging applications becoming apparent in the SWIR band that are not possible in the MWIR or LWIR . Some of the...image is of the raw, uncorrected video output. The dark current has not been subtracted not has any gain nonuniformity been corrected. In the image of
2007-03-01
the system is treated in a gray-box manner, with limited known parameters. The analytical approach which follows was used to identify the deviations be...effect spherical aberration, coma and astigmatism is to blur the image by introducing light from outside each pixel’s IFOV. Petzval field curvature and...difference between the two records is not the linear difference of the incident light levels. Even dark current subtraction must be treated with caution
Developmental pathways of childhood dark traits.
De Clercq, Barbara; Hofmans, Joeri; Vergauwe, Jasmine; De Fruyt, Filip; Sharp, Carla
2017-10-01
The dark triad of personality has traditionally been defined by 3 interrelated constructs, defined as Narcissism, Machiavellianism, and Psychopathy. Although the content of each of these constructs is clearly represented in childhood maladaptive trait measures, no studies have jointly addressed the prospective developmental course of this core set of maladaptive characteristics throughout childhood and adolescence. The current study uses latent growth modeling to explore how early dark traits develop over time, relying on a selected set of 6 childhood maladaptive traits that conceptually cover the adult dark triad. Across a 5-wave multi-informant design spanning 10 years of childhood, adolescence, and emerging adulthood (Nwave 1 = 717, 54.4% girls, age range T1 = 8-14.7 years, mean age = 10.73), results indicate that childhood dark traits show to some extent shared growth across time, although notable unique growth variance was also observed. Early dark traits further demonstrate significant association patterns with an adult dark triad measure across informants and are increasingly able to discriminate among more and less prototypical profiles of adult dark triad scores. Findings are discussed from a developmental psychopathology framework, underscoring that the proposed set of childhood dark traits represents a meaningful developmental precursor of the adult dark triad. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Illuminated to dark ratio improvement in lateral SOI PIN photodiodes at high temperatures
NASA Astrophysics Data System (ADS)
Novo, C.; Giacomini, R.; Doria, R.; Afzalian, A.; Flandre, D.
2014-07-01
This work presents a study of the illuminated to dark ratio (IDR) of lateral SOI PIN photodiodes. Measurements performed on fabricated devices show a fivefold improvement of the IDR when the devices are biased in accumulation mode and under high temperatures of operation, independently of the anode voltage. The obtained results show that the doping concentration of the intrinsic region has influence on the sensitivity of the diodes: the larger the doping concentration, the smaller the IDR. Furthermore, the photocurrent and dark current present lower values as the silicon film thickness is decreased, resulting in a further increase in the illuminated to dark ratio.
NASA Astrophysics Data System (ADS)
Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.
2016-09-01
A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.
NASA Astrophysics Data System (ADS)
Kipp, Dylan; Ganesan, Venkat
2013-06-01
We develop a kinetic Monte Carlo model for photocurrent generation in organic solar cells that demonstrates improved agreement with experimental illuminated and dark current-voltage curves. In our model, we introduce a charge injection rate prefactor to correct for the electrode grid-size and electrode charge density biases apparent in the coarse-grained approximation of the electrode as a grid of single occupancy, charge-injecting reservoirs. We use the charge injection rate prefactor to control the portion of dark current attributed to each of four kinds of charge injection. By shifting the dark current between electrode-polymer pairs, we align the injection timescales and expand the applicability of the method to accommodate ohmic energy barriers. We consider the device characteristics of the ITO/PEDOT/PSS:PPDI:PBTT:Al system and demonstrate the manner in which our model captures the device charge densities unique to systems with small injection energy barriers. To elucidate the defining characteristics of our model, we first demonstrate the manner in which charge accumulation and band bending affect the shape and placement of the various current-voltage regimes. We then discuss the influence of various model parameters upon the current-voltage characteristics.
X-ray detection with zinc-blende (cubic) GaN Schottky diodes
NASA Astrophysics Data System (ADS)
Gohil, T.; Whale, J.; Lioliou, G.; Novikov, S. V.; Foxon, C. T.; Kent, A. J.; Barnett, A. M.
2016-07-01
The room temperature X-ray responses as functions of time of two n type cubic GaN Schottky diodes (200 μm and 400 μm diameters) are reported. The current densities as functions of time for both diodes showed fast turn-on transients and increases in current density when illuminated with X-ray photons of energy up to 35 keV. The diodes were also electrically characterized: capacitance, implied depletion width and dark current measurements as functions of applied bias at room temperature are presented. At -5 V reverse bias, the capacitances of the diodes were measured to be (84.05 ± 0.01) pF and (121.67 ± 0.02) pF, respectively. At -5 V reverse bias, the dark current densities of the diodes were measured to be (347.2 ± 0.4) mA cm-2 and (189.0 ± 0.2) mA cm-2, respectively. The Schottky barrier heights of the devices (0.52 ± 0.07) eV and (0.63 ± 0.09) eV, respectively, were extracted from the forward dark current characteristics.
Brand, Serge; Gerber, Markus; Pühse, Uwe; Holsboer-Trachsler, Edith
2011-06-01
No research has yet focused on hypomanic states in non-clinical early adult populations. The aim of the present study was therefore to assess hypomania in a large non-clinical sample of young adults. A total of 862 participants (639 females and 223 males; mean age: M=24.67; SD=5.91) took part in the study. They completed a series of validated self-report questionnaires assessing hypomania (HCL-32) and other aspects of psychological functioning, sleep, stress, quality of life, cognitive-emotional elaboration of pain, self-efficacy, and physical activity. Based on the HCL-32, 19% of the participants (n=169) were categorized as currently being in a hypomanic state. Of those, 57.6% were classified as "active/elated" ('bright side'), whereas 42.4% were classified as "irritable/risk-taking" ('dark side'). Compared to non-hypomanic participants and the 'bright side' group, 'dark side' hypomanic participants reported more depressive symptoms, sleep disturbances, somatic complaints, perceived stress, negative coping strategies, and lower self-efficacy. By contrast, 'bright side' hypomanic participants had lower stress scores, more positive self-instructions, and higher levels of exploration, self-efficacy, and physical activity. A cross-sectional design was adopted, assessing university students, who may not be representative of the stage of early adulthood. The present results underscore the notion of a continuity between a mood state and both favorable ('bright side') and unfavorable ('dark side') hypomanic states. In early adulthood, 'bright' and 'dark side' hypomania differs with respect to physical activity, psychological functioning and sleep. Copyright © 2010 Elsevier B.V. All rights reserved.
Probing dark energy via galaxy cluster outskirts
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming
2016-04-01
We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 < z < 1.24, kT ≳ 3 keV) observed with Chandra. We exploited the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w = -1.010 ± 0.030 and Ωm = 0.311 ± 0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm = 0.308 ± 0.017, w0 = -0.993 ± 0.046 and wa = -0.123 ± 0.400. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with w ≡ -1, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.
Probing Primordial Black Hole Dark Matter with Gravitational Waves.
Kovetz, Ely D
2017-09-29
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_{⊙}≲M_{PBH}≲100 M_{⊙} mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ∼30 M_{⊙} by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ∼5 yr of aLIGO data can be used to detect a contribution of >20 M_{⊙} PBHs to dark matter down to f_{PBH}<0.5 at >99.9% confidence level. Combined with other probes that already suggest tension with f_{PBH}=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.
DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S
2011-12-05
We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications.
Could Mars be dark and altered?
Calvin, Wendy M.
1998-01-01
There is a long known dichotomy in the martian albedo, with an associated, but mostly assumed, mineralogical split as well. The bright red regions are inferred to be weathered, oxidized dust and the dark grey regions unaltered volcanic material. A number of recent analyses suggest this division is unnaturally simplistic and the association of many dark regions with the former presence of water requires a re‐examination of the spectra in light of potential alteration minerals. I present an alternate interpretation of the reflectance spectral characteristics of some dark regions on Mars that includes dark layer silicates. If their presence is confirmed on Mars this will have implications for sequestration of current and past volatile inventories, clues to the extent and type of geochemical weathering, and potential zones where bacterial life forms may have emerged.
Significant gamma lines from inert Higgs dark matter.
Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim
2007-07-27
One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.
Lv, Hai-Peng; Zhang, Yue; Shi, Jiang; Lin, Zhi
2017-10-01
Dark teas are rich in secondary metabolites, such as phenolics and flavonoids, which have been suggested to be associated with their health benefits. In this study, the concentrations of tea polyphenols, tea pigments, catechins, flavonoids, alkaloid, and volatile components in 44 dark tea samples, including Pu-erh, Fuzhuan and Liubao teas, were systematically examined. Among the samples tested, Pu-erh tea contained the highest total flavonoid content (5.24±0.05%), followed by Liubao (4.45±0.61%) and Fuzhuan teas (3.33±0.23%). The tea polyphenols levels in the dark teas were approximately 10%, and no statistically significant differences (p>0.05) were found among the different types. Hexadecanoic acid was the most abundant aroma component in the dark teas, accounting for 15-20% of the total volatile oils. Moreover, the antioxidant activities of these dark teas were analyzed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay, ferric reducing antioxidant power (FRAP) assay, and cellular antioxidant activity (CAA) assay (HepG2 cells). The fat metabolism modulation activities (FMMA) of the dark teas were tested using a high-throughput screening method (SMMC-7221 cells). The results indicated that the different dark teas had diverse antioxidant activities, and the variation in the activities was significant. Correlation analysis showed that there was a significant positive correlation between the levels of EGCG and antioxidant activities measured using the ABTS (r=0.916) and FRAP (r=0.853) assays, and the levels of total flavonoids and theabrownins correlated well with the values determined using the CAA (r=0.845 and 0.865, respectively) assay. Copyright © 2016 Elsevier Ltd. All rights reserved.
Physiological markers of anxiety are increased in children of abused mothers.
Jovanovic, Tanja; Smith, Ami; Kamkwalala, Asante; Poole, James; Samples, Tara; Norrholm, Seth D; Ressler, Kerry J; Bradley, Bekh
2011-08-01
A growing number of studies indicate that low income, African American men and women living in urban environments are at high risk for trauma exposure, which may have intergenerational effects. The current study employed psychophysiological methods to describe biomarkers of anxiety in children of traumatized mothers. Study participants were recruited from a highly traumatized urban population, comprising mother-child pairs (n=36) that included school-age children. Mothers were assessed for childhood abuse with the Childhood Trauma Questionnaire, as well as symptoms of depression and posttraumatic stress disorder (PTSD). The children were measured for dark-enhanced startle responses and heart-rate variability. Dark-enhanced startle was found to be higher in children whose mothers had high levels of childhood physical abuse, as compared to children whose mothers had low levels of physical abuse. During the habituation phase of the startle experiment, children whose mothers had high levels of childhood emotional abuse had higher sympathetic system activation compared to children of mothers with low emotional abuse. These effects remained significant after accounting for maternal symptoms of PTSD and depression, as well as for the child's trauma exposure. These results demonstrate that children of mothers who have history of childhood physical and emotional abuse have higher dark-enhanced startle as well as greater sympathetic nervous system activation than children of mothers who do not report a history of childhood physical and emotional abuse, and emphasize the utility of physiological measures as pervasive biomarkers of psychopathology that can easily be measured in children. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.
Fast current blinking in individual PbS and CdSe quantum dots.
Maturova, Klara; Nanayakkara, Sanjini U; Luther, Joseph M; van de Lagemaat, Jao
2013-06-12
Fast current intermittency of the tunneling current through single semiconductor quantum dots was observed through time-resolved intermittent contact conductive atomic force microscopy in the dark and under illumination at room temperature. The current through a single dot switches on and off at time scales ranging from microseconds to seconds with power-law distributions for both the on and off times. On states are attributed to the resonant tunneling of charges from the electrically conductive AFM tip to the quantum dot, followed by transfer to the substrate, whereas off states are attributed to a Coulomb blockade effect in the quantum dots that shifts the energy levels out of resonance conditions due to the presence of the trapped charge, while at the same bias. The observation of current intermittency due to Coulomb blockade effects has important implications for the understanding of carrier transport through arrays of quantum dots.
NASA Astrophysics Data System (ADS)
Henry, Nathan C.; Knorr, Daniel B.; Williams, Kristen S.; Baril, Neil; Nallon, Eric; Lenhart, Joseph L.; Andzelm, Jan W.; Pellegrino, Joseph; Tidrow, Meimei; Cleveland, Erin; Bandara, Sumith
2015-05-01
The efficacy of solution deposition of thiolated self-assembled monolayers (SAMs) has been explored for the purpose of passivating III-V type II superlattice (T2SL) photodetectors, more specifically a p-type heterojunction device. Sulfur passivation has previously been achieved on T2SL devices. However, degradation over time, temperature sensitivity and inconsistent reproducibility necessitate a physical encapsulate that can chemically bond to the chemical passivant. Thus, this research investigates two passivation methods, surface passivation with a thiol monolayer and passivation with a polymer encapsulant with a view toward future combination of these techniques. Analysis of the physical and chemical condition of the surface prior to deposition assisted in the development of ideal processes for optimized film quality. Successful deposition was facilitated by in situ oxide removal. Various commercially available functional (cysteamine) and non-functional (alkane) thiolated monolayers were investigated. Dark current was reduced by 3 orders of magnitude and achieved negligible surface leakage at low bias levels. The lowest dark current result, 7.69 × 10-6 A/cm2 at 50 mV, was achieved through passivation with cysteamine.
Progress in low light-level InAs detectors- towards Geiger-mode detection
NASA Astrophysics Data System (ADS)
Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey
2017-05-01
InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.
Electrophilic dark matter with dark photon: From DAMPE to direct detection
NASA Astrophysics Data System (ADS)
Gu, Pei-Hong; He, Xiao-Gang
2018-03-01
The electron-positron excess reported by the DAMPE collaboration recently may be explained by an electrophilic dark matter (DM). A standard model singlet fermion may play the role of such a DM when it is stabilized by some symmetries, such as a dark U(1)X gauge symmetry, and dominantly annihilates into the electron-positron pairs through the exchange of a scalar mediator. The model, with appropriate Yukawa couplings, can well interpret the DAMPE excess. Naively one expects that in this type of models the DM-nucleon cross section should be small since there is no tree-level DM-quark interactions. We however find that at one-loop level, a testable DM-nucleon cross section can be induced for providing ways to test the electrophilic model. We also find that a U (1) kinetic mixing can generate a sizable DM-nucleon cross section although the U(1)X dark photon only has a negligible contribution to the DM annihilation. Depending on the signs of the mixing parameter, the dark photon can enhance/reduce the one-loop induced DM-nucleon cross section.
Distributed Control of a Swarm of Autonomous Unmanned Aerial Vehicles
2003-03-01
wisdom, and love have provided a firm anchor in rough times, and a light in the darkness . “Come to me, all you who are weary and burdened, and I will...time. The light-gray trails represent the area that has been covered in the past 50 timesteps. The dark -gray areas are overlapping areas calculated...during the current timestep. The dark line encloses the total contigu- ous sensor area for this example. Note that while agent 1’s footprint does not
Espinosa, J R; Racco, D; Riotto, A
2018-03-23
For the current central values of the Higgs boson and top quark masses, the standard model Higgs potential develops an instability at a scale of the order of 10^{11} GeV. We show that a cosmological signature of such instability could be dark matter in the form of primordial black holes seeded by Higgs fluctuations during inflation. The existence of dark matter might not require physics beyond the standard model.
Cold dark matter plus not-so-clumpy dark relics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamanti, Roberta; Ando, Shin'ichiro; Weniger, Christoph
Various particle physics models suggest that, besides the (nearly) cold dark matter that accounts for current observations, additional but sub-dominant dark relics might exist. These could be warm, hot, or even contribute as dark radiation. We present here a comprehensive study of two-component dark matter scenarios, where the first component is assumed to be cold, and the second is a non-cold thermal relic. Considering the cases where the non-cold dark matter species could be either a fermion or a boson, we derive consistent upper limits on the non-cold dark relic energy density for a very large range of velocity dispersions,more » covering the entire range from dark radiation to cold dark matter. To this end, we employ the latest Planck Cosmic Microwave Background data, the recent BOSS DR11 and other Baryon Acoustic Oscillation measurements, and also constraints on the number of Milky Way satellites, the latter of which provides a measure of the suppression of the matter power spectrum at the smallest scales due to the free-streaming of the non-cold dark matter component. We present the results on the fraction f {sub ncdm} of non-cold dark matter with respect to the total dark matter for different ranges of the non-cold dark matter masses. We find that the 2σ limits for non-cold dark matter particles with masses in the range 1–10 keV are f {sub ncdm}≤0.29 (0.23) for fermions (bosons), and for masses in the 10–100 keV range they are f {sub ncdm}≤0.43 (0.45), respectively.« less
Development of an Electromagnetic Microscope for Eddy Current Evaluation of Materials
1991-08-01
headed a laboratory investigating cryogenic detectors for astro-particle physics applications including the search for dark matter candidates and weakly...and L. Stodolsky, Studies of single superconducting grains for a neutrino and dark matter detector, Nucl. Inst. and Meth. A287, 583, 1990. Frank, M
Mohr, Wiebke; Vagner, Tomas; Kuypers, Marcel M M; Ackermann, Martin; Laroche, Julie
2013-01-01
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell.
Mohr, Wiebke; Vagner, Tomas; Kuypers, Marcel M. M.; Ackermann, Martin; LaRoche, Julie
2013-01-01
Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N2 fixation and photosynthesis commonly observed. However, N2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell. PMID:23805199
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
NASA Astrophysics Data System (ADS)
Habib, Salman; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas; Heitmann, Katrin; Daniel, David; Fasel, Patricia; Morozov, Vitali; Zagaris, George; Peterka, Tom; Vishwanath, Venkatram; Lukić, Zarija; Sehrish, Saba; Liao, Wei-keng
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC's design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Pope, Adrian; Finkel, Hal
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers thatmore » enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.« less
NASA Astrophysics Data System (ADS)
Watanabe, Shigeo; Takahashi, Teruo; Bennett, Keith
2017-02-01
The"scientific" CMOS (sCMOS) camera architecture fundamentally differs from CCD and EMCCD cameras. In digital CCD and EMCCD cameras, conversion from charge to the digital output is generally through a single electronic chain, and the read noise and the conversion factor from photoelectrons to digital outputs are highly uniform for all pixels, although quantum efficiency may spatially vary. In CMOS cameras, the charge to voltage conversion is separate for each pixel and each column has independent amplifiers and analog-to-digital converters, in addition to possible pixel-to-pixel variation in quantum efficiency. The "raw" output from the CMOS image sensor includes pixel-to-pixel variability in the read noise, electronic gain, offset and dark current. Scientific camera manufacturers digitally compensate the raw signal from the CMOS image sensors to provide usable images. Statistical noise in images, unless properly modeled, can introduce errors in methods such as fluctuation correlation spectroscopy or computational imaging, for example, localization microscopy using maximum likelihood estimation. We measured the distributions and spatial maps of individual pixel offset, dark current, read noise, linearity, photoresponse non-uniformity and variance distributions of individual pixels for standard, off-the-shelf Hamamatsu ORCA-Flash4.0 V3 sCMOS cameras using highly uniform and controlled illumination conditions, from dark conditions to multiple low light levels between 20 to 1,000 photons / pixel per frame to higher light conditions. We further show that using pixel variance for flat field correction leads to errors in cameras with good factory calibration.
Klopotek, Yvonne; Franken, Philipp; Klaering, Hans-Peter; Fischer, Kerstin; Hause, Bettina; Hajirezaei, Mohammad-Reza; Druege, Uwe
2016-02-01
The contribution of carbon assimilation and allocation and of invertases to the stimulation of adventitious root formation in response to a dark pre-exposure of petunia cuttings was investigated, considering the rooting zone (stem base) and the shoot apex as competing sinks. Dark exposure had no effect on photosynthesis and dark respiration during the subsequent light period, but promoted dry matter partitioning to the roots. Under darkness, higher activities of cytosolic and vacuolar invertases were maintained in both tissues when compared to cuttings under light. This was partially associated with higher RNA levels of respective genes. However, activity of cell wall invertases and transcript levels of one cell wall invertase isogene increased specifically in the stem base during the first two days after cutting excision under both light and darkness. During five days after excision, RNA accumulation of four invertase genes indicated preferential expression in the stem base compared to the apex. Darkness shifted the balance of expression of one cytosolic and two vacuolar invertase genes towards the stem base. The results indicate that dark exposure before planting enhances the carbon sink competitiveness of the rooting zone and that expression and activity of invertases contribute to the shift in carbon allocation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Characterization of gigahertz (GHz) bandwidth photomultipliers
NASA Technical Reports Server (NTRS)
Abshire, J. B.; Rowe, H. E.
1977-01-01
The average impulse response, root-mean-square times jitter as a function of signal level, single photoelectron distribution, and multiphotoelectron dark-count distribution have been measured for two static crossed-field and five electrostatic photomultipliers. The optical signal source for the first three of these tests was a 30 picosecond mode-locked laser pulse at 0.53 micron. The static crossed-field detectors had 2-photoelectron resolution, less than 200 ps rise times, and rms time jitters of 30 ps at the single photoelectron level. The electrostatic photomultipliers had rise times from 1 to 2.5 nanoseconds, and rms time jitters from 160 to 650 ps at the same signal level. The two static crossed-field photomultipliers had ion-feedback-generated dark pulses to the 50-photoelectron level, whereas one electrostatic photomultiplier had dark pulses to the 30-photoelectron level.
Multicomponent Dark Matter in Radiative Seesaw Models
NASA Astrophysics Data System (ADS)
Aoki, Mayumi; Kaneko, Daiki; Kubo, Jisuke
2017-11-01
We discuss radiative seesaw models, in which an exact Z_2¥times Z_2' symmetry is imposed. Due to the exact Z_2¥times Z_2' symmetry, neutrino masses are generated at a two-loop level and at least two extra stable electrically neutral particles are predicted. We consider two models: one has a multi-component dark matter system and the other one has a dark radiation in addition to a dark matter. In the multi-component dark matter system, non-standard dark matter annihilation processes exist. We find that they play important roles in determining the relic abundance and also responsible for the monochromatic neutrino lines resulting from the dark matter annihilation process. In the model with the dark radiation, the structure of the Yukawa coupling is considerably constrained and gives an interesting relationship among cosmology, lepton flavor violating decay of the charged leptons and the decay of the inert Higgs bosons.
He, Zhiyang; Liu, Qiao; Hou, Huilin; Gao, Fengmei; Tang, Bin; Yang, Weiyou
2015-05-27
In this work, polycrystalline WO3 nanobelts were fabricated via an electrospinning process combined with subsequent air calcination. The resultant products were characterized by X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy in regard to the structures. It has been found that the applied voltage during the electrospinning process played the determined role in the formation of the WO3 nanobelts, allowing the controlled growth of the nanobelts. The ultraviolet (UV) photodetector assembled by an individual WO3 nanobelt exhibits a high sensitivity and a precise selectivity to the different wavelength lights, with a very low dark current and typical photo-dark current ratio up to 1000, which was the highest for any WO3 photodectectors ever reported. This work could not only push forward the facile preparation of WO3 nanobelts but also represent, for the first time, the possibility that the polycrystalline WO3 nanobelts could be a promising building block for the highly efficient UV photodetectors.
Low dark current photovoltaic multiquantum well long wavelength infrared detectors
NASA Technical Reports Server (NTRS)
Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.
1990-01-01
The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) detector. With a blocking layer, the MQW detector exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron detector at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW detector without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).
Dark-matter QCD-axion searches
Rosenberg, Leslie J.
2015-01-12
In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10 -(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.« less
Gravitational collapse of dark energy field configurations and supermassive black hole formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jhalani, V.; Kharkwal, H.; Singh, A., E-mail: anupamsingh.iitk@gmail.com
Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-timemore » and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.« less
MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM
NASA Astrophysics Data System (ADS)
Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.
2016-09-01
We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.
Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current
NASA Astrophysics Data System (ADS)
Eich, D.; Schirmacher, W.; Hanna, S.; Mahlein, K. M.; Fries, P.; Figgemeier, H.
2017-09-01
We present our latest results on cooled p-on- n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature ( T op), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on- n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 μm to about 13.5 μm at 80 K. The development of the p-on- n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20- μm pixel pitch. For the VLWIR, dark currents significantly reduced as compared to `Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20- μm pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 × 768 pixels at a 10- μm pitch. Excellent performance at an operating temperature of 160 K is demonstrated.
From SED HI concept to Pleiades FM detection unit measurements
NASA Astrophysics Data System (ADS)
Renard, Christophe; Dantes, Didier; Neveu, Claude; Lamard, Jean-Luc; Oudinot, Matthieu; Materne, Alex
2017-11-01
The first flight model PLEIADES high resolution instrument under Thales Alenia Space development, on behalf of CNES, is currently in integration and test phases. Based on the SED HI detection unit concept, PLEIADES detection unit has been fully qualified before the integration at telescope level. The main radiometric performances have been measured on engineering and first flight models. This paper presents the results of performances obtained on the both models. After a recall of the SED HI concept, the design and performances of the main elements (charge coupled detectors, focal plane and video processing unit), detection unit radiometric performances are presented and compared to the instrument specifications for the panchromatic and multispectral bands. The performances treated are the following: - video signal characteristics, - dark signal level and dark signal non uniformity, - photo-response non uniformity, - non linearity and differential non linearity, - temporal and spatial noises regarding system definitions PLEIADES detection unit allows tuning of different functions: reference and sampling time positioning, anti-blooming level, gain value, TDI line number. These parameters are presented with their associated criteria of optimisation to achieve system radiometric performances and their sensitivities on radiometric performances. All the results of the measurements performed by Thales Alenia Space on the PLEIADES detection units demonstrate the high potential of the SED HI concept for Earth high resolution observation system allowing optimised performances at instrument and satellite levels.
... include those with high levels of iron (beef, dark green leafy vegetables, dried fruits, and nuts), vitamin ... meat and dairy), and folic acid (citrus juices, dark green leafy vegetables, legumes, and fortified cereals). A ...
Dubas, Judith Semon; Baams, Laura; Doornwaard, Suzan M; van Aken, Marcel A G
2017-10-01
Research on how dark personality traits develop and relate to risky behaviors and family relations during adolescence is scarce. This study used a person-oriented approach to examine (a) whether distinct groups of adolescents could be identified based on their developmental profiles of callous-unemotional (CU), grandiose manipulative (GM), and dysfunctional impulsivity (DI) traits and (b) whether these groups differ in their problem behaviors and parent-adolescent relationship quality. Latent class growth analyses on 4-wave data of 1,131 Dutch adolescents revealed 3 personality profiles: (1) a dark impulsive group (13.9%), with high scores on all 3 traits (CU, GM, and DI) that were stable over time; (2) an impulsive group (26.1%), with high and increasing levels of impulsivity and relatively low scores on CU and GM; and (3) and a low risk group (60.0%), with relatively low levels on all 3 personality characteristics, with impulsivity decreasing over time. Compared with adolescents in the low risk group, adolescents in the dark impulsive and impulsive groups reported higher initial levels of substance use, sexual risk behaviors, permissive sexual attitudes, parent-adolescent conflict, and lower parent-adolescent satisfaction, as well as greater increases in sexual risk behavior over time. Compared with adolescents in the impulsive group, those in the dark impulsive group showed the highest levels of risk behaviors. Hence, dark personality traits coupled with impulsivity may be indicative of an earlier and more severe trajectory of problem behaviors that may differ from the trajectory of youth who are only impulsive. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Non-thermal leptogenesis with distinct CP violation and minimal dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hang; Gu, Pei-Hong, E-mail: einsteinzh@sjtu.edu.cn, E-mail: peihong.gu@sjtu.edu.cn
We demonstrate a unified scenario for neutrino mass, baryon asymmetry, dark matter and inflation. In addition to a fermion triplet for the so-called minimal dark matter, we extend the standard model by three heavy fields including a scalar singlet, a fermion triplet and a fermion singlet/Higgs triplet. The heavy scalar singlet, which is expected to drive an inflation, and the dark matter fermion triplet are odd under an unbroken Z {sub 2} discrete symmetry, while the other fields are all even. The heavy fermion triplet offers a tree-level type-III seesaw and then mediates a three-body decay of the inflaton intomore » the standard model lepton and Higgs doublets with the dark matter fermion triplet. The heavy fermion singlet/Higgs triplet not only results in a type-I/II seesaw at tree level but also contributes to the inflaton decay at one-loop level. In this scenario, the type-I/II seesaw contains all of the physical CP phases in the lepton sector and hence the CP violation for the non-thermal leptogenesis by the inflaton decay exactly comes from the imaginary part of the neutrino mass matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, M. K.; Anderson, W. A.
1980-11-03
Fabrication techniques and improved a-Si:H film processing have been achieved to produce a short circuit current density of 7.5 mA/cm/sup 2/ and open circuit voltage of 740 mV on large area (2cm/sup 2/) a-Si cells by the deposition of an inexpensive semitransparent metal (Cr) as a top electrode on a N-I-P structure. This corresponds to a 2% efficiency using AMl illumination. A V/sub oc/ of 830 mV and fill factor of 0.54 have also been separately obtained. A relatively simple and inexpensive deposition technique using a one pumpdown vacuum system, Al grid and thin metal film structure have been appliedmore » to reduce the cost of a-Si:H cell fabrication. A SEM study of a-Si film quality shows the substrate texture to greatly influence the film morphology. This in turn serves to influence the uniformity of photovoltaic response on completed solar cells. The studies of optical transmittance of various thin metal films promote the utilization of Cr and Cu as a top electrode. Dark and illuminated I-V characteristics show that current conduction mechanisms and recombination pheonomena are not the same under dark and illuminated conditions. Furthermore, spectral response analysis and reverse illuminated saturation current under different illumination levels show photoconductivity and collection efficiency to be a function of illumination level. Significant differences in spectral response are observed when comparing P-I-N, N-I-P and I-N structures. A Schottky barrier lowering effect is proposed to explain some spectral response data. The importance of the top junction region to carrier collection is also discussed.« less
NASA Astrophysics Data System (ADS)
Borah, Debasish; Dasgupta, Arnab; Adhikari, Rathin
2015-10-01
We attempt to simultaneously explain the recently observed 3.55 keV x-ray line in the analysis of XMM-Newton telescope data and the Galactic Center gamma ray excess observed by the Fermi Gamma Ray Space Telescope within an Abelian gauge extension of the standard model. We consider a two component dark matter scenario with tree level mass difference 3.55 keV such that the heavier one can decay into the lighter one and a photon with energy 3.55 keV. The lighter dark matter candidate is protected from decaying into the standard model particles by a remnant Z2 symmetry into which the Abelian gauge symmetry gets spontaneously broken. If the mass of the dark matter particle is chosen to be within 31-40 GeV, then this model can also explain the Galactic Center gamma ray excess if the dark matter annihilation into b b ¯ pairs has a cross section of ⟨σ v ⟩≃(1.4 -2.0 )×1 0-26 cm3/s . We constrain the model from the requirement of producing correct dark matter relic density, 3.55 keV x-ray line flux, and Galactic Center gamma ray excess. We also impose the bounds coming from dark matter direct detection experiments as well as collider limits on additional gauge boson mass and gauge coupling. We also briefly discuss how this model can give rise to subelectron volt neutrino masses at tree level as well as the one-loop level while keeping the dark matter mass at a few tens of giga-electron volts. We also constrain the model parameters from the requirement of keeping the one-loop mass difference between two dark matter particles below a kilo-electron volt. We find that the constraints from light neutrino mass and kilo-electron volt mass splitting between two dark matter components show more preference for opposite C P eigenvalues of the two fermion singlet dark matter candidates in the model.
Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B
2014-05-02
We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeV
Radio for hidden-photon dark matter detection
Chaudhuri, Saptarshi; Graham, Peter W.; Irwin, Kent; ...
2015-10-08
We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled “hidden electric field,” oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that the observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Ourmore » “straw man” setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies, there is an upper limit to the useful size of a single resonator set by 1/ν. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. As a result, we find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher.« less
Last electroweak WIMP standing: pseudo-dirac higgsino status and compact stars as future probes
NASA Astrophysics Data System (ADS)
Krall, Rebecca; Reece, Matthew
2018-04-01
Electroweak WIMPs are under intense scrutiny from direct detection, indirect detection, and collider experiments. Nonetheless the pure (pseudo-Dirac) higgsino, one of the simplest such WIMPs, remains elusive. We present an up-to-date assessment of current experimental constraints on neutralino dark matter. The strongest bound on pure higgsino dark matter currently may arise from AMS-02 measurements of antiprotons, though the interpretation of these results has sizable uncertainty. We discuss whether future astrophysical observations could offer novel ways to test higgsino dark matter, especially in the challenging regime with order MeV mass splitting between the two neutral higgsinos. We find that heating of white dwarfs by annihilation of higgsinos captured via inelastic scattering could be one useful probe, although it will require challenging observations of distant dwarf galaxies or a convincing case to be made for substantial dark matter content in ω Cen, a globular cluster that may be a remnant of a disrupted dwarf galaxy. White dwarfs and neutron stars give a target for astronomical observations that could eventually help to close the last, most difficult corner of parameter space for dark matter with weak interactions. Supported by NSF (PHY-1415548) and NASA ATP (NNX16AI12G)
Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities
NASA Astrophysics Data System (ADS)
Yang, Qiaoli; Di, Haoran
2017-04-01
We explore a scenario that dark matter is a boson condensate created by the misalignment mechanism, in which a spin 0 boson (an axionlike particle) and a spin 1 boson (the dark photon) are considered, respectively. We find that although the sub-MeV dark matter boson is extremely stable, the huge number of dark matter particles in a galaxy halo makes the decaying signal detectable. A galaxy halo is a large structure bounded by gravity with a typical ˜1 012 solar mass, and the majority of its components are made of dark matter. For the axionlike particle case, it decays via ϕ →γ γ , therefore the photon spectrum is monochromatic. For the dark photon case, it is a three body decay A'→γ γ γ . However, we find that the photon spectrum is heavily peaked at M /2 and thus can facilitate observation. We also suggest a physical explanation for the three body decay spectrum by comparing the physics in the decay of orthopositronium. In addition, for both cases, the decaying photon flux can be measured for some regions of parameter space using current technologies.
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
NASA Astrophysics Data System (ADS)
Zhao, Hong Sheng
2008-11-01
Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.
Search for right-handed neutrinos from dark matter annihilation with gamma-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E.
Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handedmore » neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10{sup −26} cm{sup 3} s {sup −1} , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.« less
Non-thermal production of minimal dark matter via right-handed neutrino decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi; Vicente, Avelino
2015-09-29
Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermalmore » equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.« less
Non-thermal production of minimal dark matter via right-handed neutrino decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi; Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be
2015-09-01
Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermalmore » equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.« less
Searching for light dark matter with the SLAC millicharge experiment.
Diamond, M; Schuster, P
2013-11-27
New sub-GeV gauge forces ("dark photons") that kinetically mix with the photon provide a promising scenario for MeV-GeV dark matter and are the subject of a program of searches at fixed-target and collider facilities around the world. In such models, dark photons produced in collisions may decay invisibly into dark-matter states, thereby evading current searches. We reexamine results of the SLAC mQ electron beam dump experiment designed to search for millicharged particles and find that it was strongly sensitive to any secondary beam of dark matter produced by electron-nucleus collisions in the target. The constraints are competitive for dark photon masses in the ~1-30 MeV range, covering part of the parameter space that can reconcile the apparent (g-2)(μ) anomaly. Simple adjustments to the original SLAC search for millicharges may extend sensitivity to cover a sizable portion of the remaining (g-2)(μ) anomaly-motivated region. The mQ sensitivity is therefore complementary to ongoing searches for visible decays of dark photons. Compared to existing direct-detection searches, mQ sensitivity to electron-dark-matter scattering cross sections is more than an order of magnitude better for a significant range of masses and couplings in simple models.
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures ∼10 000 K) objects. We follow the evolution of dark stars from their inception at ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >[Formula: see text] and luminosities >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
NASA Astrophysics Data System (ADS)
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures ˜10 000 K) objects. We follow the evolution of dark stars from their inception at ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >{{10}6}{{M}⊙} and luminosities >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
Cancellation Mechanism for Dark-Matter-Nucleon Interaction.
Gross, Christian; Lebedev, Oleg; Toma, Takashi
2017-11-10
We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.
InGaAs focal plane array developments at III-V Lab
NASA Astrophysics Data System (ADS)
Rouvié, Anne; Reverchon, Jean-Luc; Huet, Odile; Djedidi, Anis; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Bria, Toufiq; Pires, Mauricio; Decobert, Jean; Costard, Eric
2012-06-01
SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. For few years, III-VLab has been studying InGaAs imagery, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has lead to put quickly on the market a 320x256 InGaAs module, exhibiting high performances in terms of dark current, uniformity and quantum efficiency. In this paper, we present the last developments achieved in our laboratory, mainly focused on increasing the pixels number to VGA format associated to pixel pitch decrease (15μm) and broadening detection spectrum toward visible wavelengths. Depending on targeted applications, different Read Out Integrated Circuits (ROIC) have been used. Low noise ROIC have been developed by CEA LETI to fit the requirements of low light level imaging whereas logarithmic ROIC designed by NIT allows high dynamic imaging adapted for automotive safety.
NASA Astrophysics Data System (ADS)
Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene
2018-06-01
We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.
Testing for Dark Matter Trapped in the Solar System
NASA Technical Reports Server (NTRS)
Krisher, Timothy P.
1996-01-01
We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.
Dark Higgs bosons at the ForwArd Search ExpeRiment
NASA Astrophysics Data System (ADS)
Feng, Jonathan L.; Galon, Iftah; Kling, Felix; Trojanowski, Sebastian
2018-03-01
FASER, ForwArd Search ExpeRiment at the LHC, has been proposed as a small, very far forward detector to discover new, light, weakly-coupled particles. Previous work showed that with a total volume of just ˜0.1 - 1 m3 , FASER can discover dark photons in a large swath of currently unconstrained parameter space, extending the discovery reach of the LHC program. Here we explore FASER's discovery prospects for dark Higgs bosons. These scalar particles are an interesting foil for dark photons, as they probe a different renormalizable portal interaction and are produced dominantly through B and K meson decays, rather than pion decays, leading to less collimated signals. Nevertheless, we find that FASER is also a highly sensitive probe of dark Higgs bosons with significant discovery prospects that are comparable to, and complementary to, much larger proposed experiments.
Probing sub-GeV dark matter-baryon scattering with cosmological observables
NASA Astrophysics Data System (ADS)
Xu, Weishuang Linda; Dvorkin, Cora; Chael, Andrew
2018-05-01
We derive new limits on the elastic scattering cross section between baryons and dark matter using cosmic microwave background data from the Planck satellite and measurements of the Lyman-alpha forest flux power spectrum from the Sloan Digital Sky Survey. Our analysis addresses generic cross sections of the form σ ∝vn , where v is the dark matter-baryon relative velocity, allowing for constraints on the cross section independent of specific particle physics models. We include high-ℓ polarization data from Planck in our analysis, improving over previous constraints. We apply a more careful treatment of dark matter thermal evolution than previously done, allowing us to extend our constraints down to dark matter masses of ˜MeV . We show in this work that cosmological probes are complementary to current direct detection and astrophysical searches.
Enlightening Students about Dark Matter
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Barr, Alex; Eidelman, Dave
2018-01-01
Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.
Ricci-Gauss-Bonnet holographic dark energy
NASA Astrophysics Data System (ADS)
Saridakis, Emmanuel N.
2018-03-01
We present a model of holographic dark energy in which the infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the infrared cutoff, and consequently the holographic dark energy density, does not depend on the future or the past evolution of the universe, but only on its current features, and moreover it is determined by invariants, whose role is fundamental in gravitational theories. We extract analytical solutions for the behavior of the dark energy density and equation-of-state parameters as functions of the redshift. These reveal the usual thermal history of the universe, with the sequence of radiation, matter and dark energy epochs, resulting in the future to a complete dark energy domination. The corresponding dark energy equation-of-state parameter can lie in the quintessence or phantom regime, or experience the phantom-divide crossing during the cosmological evolution, and its asymptotic value can be quintessencelike, phantomlike, or be exactly equal to the cosmological-constant value. Finally, we extract the constraints on the model parameters that arise from big bang nucleosynthesis.
Multi-component dark matter through a radiative Higgs portal
DiFranzo, Anthony; Univ. of California, Irvine, CA; Rutgers Univ., Piscataway, NJ; ...
2017-01-18
Here, we study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged undermore » $$SU(2)_W \\times U(1)_Y$$ and under the dark gauge group, $$U(1)^\\prime$$. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.« less
Anxiolytic-like effects of restraint during the dark cycle in adolescent mice.
Ota, Yuki; Ago, Yukio; Tanaka, Tatsunori; Hasebe, Shigeru; Toratani, Yui; Onaka, Yusuke; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio
2015-05-01
Stress during developmental stage may cause psychological morbidities, and then the studies on stress are important in adolescent rodents. Restraint is used as a common stressor in rodents and the effects of restraint during the light cycle have been studied, but those of restraint during the dark cycle have not. The present study examined the effects of restraint during the light and dark cycles on anxiety behaviors in adolescent mice. Restraint for 3h during either the light or dark cycle impaired memory function in the fear conditioning test, but did not affect locomotor activity. In the elevated plus-maze test, restraint during the dark cycle reduced anxiety-like behaviors in mice. Repeated exposure to a 3-h period dark cycle restraint for 2 weeks had a similar anxiolytic-like effect. In contrast, restraint for 3h during the light cycle produced anxiety behavior in adolescent, but not adult, mice. The light cycle stress increased plasma corticosterone levels, and elevated c-Fos expression in the prefrontal cortex, paraventricular hypothalamic nucleus, basolateral amygdala and dentate gyrus, and enhanced serotonin turnover in the hippocampus and striatum, while the dark cycle stress did not. There was no difference in the stress-mediated reduction in pentobarbital-induced sleeping time between dark and light cycle restraint. These findings suggest that the anxiolytic effect of dark cycle restraint is mediated by corticosterone, serotonin or γ-aminobutyric acid-independent mechanisms, although the anxiogenic effect of light cycle restraint is associated with changes in plasma corticosterone levels and serotonin turnover in specific brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Iigo, Masayuki; Azuma, Teruo; Iwata, Munehico
2007-01-01
Melatonin profiles were determined in the plasma in vivo and in the pineal organ in vitro of the sockeye salmon (Oncorhynchus nerka) under various light conditions to test whether they are under circadian regulation. When serial blood samples were taken at 4-h intervals for 3 days via a cannula inserted into the dorsal aorta, plasma melatonin exhibited significant fluctuation under a light-dark cycle, with higher levels during the dark phase than during the light phase. No rhythmic fluctuations persisted under either constant dark or constant light, with constant low and high levels, respectively. Melatonin release from the pineal organ in flow-through culture exhibited a similar pattern in response to the change in light conditions, with high and low release associated with the dark and light phases, respectively. These results indicate that melatonin production in the sockeye salmon is driven by light and darkness but lacks circadian regulation.
Constraints on supersymmetric dark matter for heavy scalar superpartners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Peisi; Roglans, Roger A.; Spiegel, Daniel D.
2017-05-01
We study the constraints on neutralino dark matter in minimal low energy supersymmetry models and the case of heavy lepton and quark scalar superpartners. For values of the Higgsino and gaugino mass parameters of the order of the weak scale, direct detection experiments are already putting strong bounds on models in which the dominant interactions between the dark matter candidates and nuclei are governed by Higgs boson exchange processes, particularly for positive values of the Higgsino mass parameter mu. For negative values of mu, there can be destructive interference between the amplitudes associated with the exchange of the standard CP-evenmore » Higgs boson and the exchange of the nonstandard one. This leads to specific regions of parameter space which are consistent with the current experimental constraints and a thermal origin of the observed relic density. In this article, we study the current experimental constraints on these scenarios, as well as the future experimental probes, using a combination of direct and indirect dark matter detection and heavy Higgs and electroweakino searches at hadron colliders« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins, C.J.A.P.; Pinho, A.M.M.; Alves, R.F.C.
2015-08-01
Astrophysical tests of the stability of fundamental couplings, such as the fine-structure constant α, are becoming an increasingly powerful probe of new physics. Here we discuss how these measurements, combined with local atomic clock tests and Type Ia supernova and Hubble parameter data, constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, ζ, to the electromagnetic sector) the α variation. Specifically, current data tightly constrains a combination of ζ and the present dark energy equation of state w{sub 0}. Moreover, inmore » these models the new degree of freedom inevitably couples to nucleons (through the α dependence of their masses) and leads to violations of the Weak Equivalence Principle. We obtain indirect bounds on the Eötvös parameter η that are typically stronger than the current direct ones. We discuss the model-dependence of our results and briefly comment on how the forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.« less
Deep level defects in dilute GaAsBi alloys grown under intense UV illumination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, P. M.; Tarun, Marianne; Beaton, D. A.
2016-07-21
Dilute GaAs1-xBix alloys exhibiting narrow band edge photoluminescence (PL) were recently grown by molecular beam epitaxy (MBE) with the growth surface illuminated by intense UV radiation. To investigate whether the improved optical quality of these films results from a reduction in the concentration of deep level defects, p+/n and n+/p junction diodes were fabricated on both the illuminated and dark areas of several samples. Deep Level Transient Spectroscopy (DLTS) measurements show that the illuminated and dark areas of both the n- and p-type GaAs1-xBix epi-layers have similar concentrations of near mid-gap electron and hole traps, in the 1015 cm-3 range.more » Thus the improved PL spectra cannot be explained by a reduction in non-radiative recombination at deep level defects. We note that carrier freeze-out above 35 K is significantly reduced in the illuminated areas of the p-type GaAs1-xBix layers compared to the dark areas, allowing the first DLTS measurements of defect energy levels close to the valence band edge. These defect levels may account for differences in the PL spectra from the illuminated and dark areas of un-doped layers with a similar Bi fraction.« less
Dark Energy and Dark Matter from Emergent Gravity Picture
NASA Astrophysics Data System (ADS)
Seok Yang, Hyun
2018-01-01
We suggest that dark energy and dark matter may be a cosmic uroboros of quantum gravity due to the coherent vacuum structure of spacetime. We apply the emergent gravity to a large N matrix model by considering the vacuum in the noncommutative (NC) Coulomb branch satisfying the Heisenberg algebra. We observe that UV fluctuations in the NC Coulomb branch are always paired with IR fluctuations and these UV/IR fluctuations can be extended to macroscopic scales. We show that space-like fluctuations give rise to the repulsive gravitational force while time-like fluctuations generate the attractive gravitational force. When considering the fact that the fluctuations are random in nature and we are living in the (3+1)-dimensional spacetime, the ratio of the repulsive and attractive components will end in ¾ : ¼= 75 : 25 and this ratio curiously coincides with the dark composition of our current Universe. If one includes ordinary matters which act as the attractive gravitational force, the emergent gravity may explain the dark sector of our Universe more precisely.
Connecting dark matter annihilation to the vertex functions of Standard Model fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Jason; Light, Christopher, E-mail: jkumar@hawaii.edu, E-mail: lightc@hawaii.edu
We consider scenarios in which dark matter is a Majorana fermion which couples to Standard Model fermions through the exchange of charged mediating particles. The matrix elements for various dark matter annihilation processes are then related to one-loop corrections to the fermion-photon vertex, where dark matter and the charged mediators run in the loop. In particular, in the limit where Standard Model fermion helicity mixing is suppressed, the cross section for dark matter annihilation to various final states is related to corrections to the Standard Model fermion charge form factor. These corrections can be extracted in a gauge-invariant manner frommore » collider cross sections. Although current measurements from colliders are not precise enough to provide useful constraints on dark matter annihilation, improved measurements at future experiments, such as the International Linear Collider, could improve these constraints by several orders of magnitude, allowing them to surpass the limits obtainable by direct observation.« less
NASA Astrophysics Data System (ADS)
de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth
2018-01-01
The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.
Narrowband ultraviolet photodetector based on MgZnO and NPB heterojunction.
Hu, Zuofu; Li, Zhenjun; Zhu, Lu; Liu, Fengjuan; Lv, Yanwu; Zhang, Xiqing; Wang, Yongsheng
2012-08-01
An ultraviolet photodetector was fabricated based on Mg0.07Zn0.93O heterojunction. N, N'-bis (naphthalen-1-y1)-N, N'-bis(pheny) benzidine was selected as the hole transporting layer. I-V characteristic curves of the device were measured in the dark and under the illumination of 340 nm UV light with density of 1.33 mW/cm2. The device showed a low dark current of about 3×10(-10) A and a high photo-dark current ratio of 1×10(5) at -2 V bias. A narrowband photoresponse was observed from 300 to 400 nm and centered at 340 nm with a full width at half-maximum of only 30 nm. The maximum peak response is at 340 nm, which is 0.192 A/W at the bias of -1 V.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Stereopsis and positional acuity under dark adaptation.
Livingstone, M S; Hubel, D H
1994-03-01
Though experience tells us we can perceive depth in dim light, it is not so obvious that one of the chief mechanisms for depth perception, stereopsis, is possible under scotopic conditions. The only studies on human stereopsis in the dark adapted state seem to be those of Nagel [(1902) Zeitschrift für Psychologie, 27, 264-266] and Mueller and Lloyd [(1948) Proceedings of the National Academy of Science, U.S.A., 34, 223-227], both of which used real objects or line stereograms. We tested stereopsis using both random-dot and line stereograms and, in agreement with these studies, found that stereopsis is indeed possible in dark adaptation. We also measured stereo acuity and positional acuity (both of which are examples of hyperacuity) and compared these with grating acuity at several levels of light and dark adaptation. At all illumination levels tested, acuities for stereopsis and relative line position were both higher than for grating acuity. As light levels decreased, positional and grating acuity declined in parallel fashion, whereas stereoacuity declined more steeply.
Violaxanthin is an abscisic acid precursor in water-stressed dark-grown bean leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Walton, D.C.
The leaves a dark-grown bean (Phaseolus vulgaris L.) seedlings accumulate considerably lower quantities of xanthophylls and carotenes than do leaves of light-grown seedlings, but they synthesize at least comparable amounts of abscisic acid (ABA) and its metabolites when water stressed. We observed a 1:1 relationship on a molar basis between the reduction in levels of ciolaxanthin, 9{prime}-cis-neoxanthin, and 9-cis-violaxanthin and the accumulation of ABA, phaseic acid, and dihydrophaseic acid, when leaves from dark-grown plants were stressed for 7 hours. Early in the stress period, reductions in xanthophylls were greater than the accumulation of ABA and its metabolites, suggesting the accumulationmore » of an intermediate which was subsequently converted to ABA. Leaves which were detached, but no stressed, did not accumulate ABA nor were their xanthophyll levels reduced. Leaves from plants that had been sprayed with cycloheximido did not accumulate ABA when stressed, nor were their xanthophyll levels reduced significantly. Incubation of dark-grown stressed leaves in an {sup 18}O{sub 2}-containing atmosphere resulted in the synthesis of ABA with levels of {sup 18}O in the carboxyl group that were virtually identical to those observed in light-grown leaves. The results of these experiments indicate that violaxanthin is an ABA precursor in stressed dark-grown leaves, and they are used to suggest several possible pathways from violaxanthin to ABA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamanini, Nicola; Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energymore » models.« less
Single Particle Damage Events in Candidate Star Camera Sensors
NASA Technical Reports Server (NTRS)
Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott
2005-01-01
Si charge coupled devices (CCDs) are currently the preeminent detector in star cameras as well as in the near ultraviolet (uv) to visible wavelength region for astronomical observations in space and in earth-observing space missions. Unfortunately, the performance of CCDs is permanently degraded by total ionizing dose (TID) and displacement damage effects. TID produces threshold voltage shifts on the CCD gates and displacement damage reduces the charge transfer efficiency (CTE), increases the dark current, produces dark current nonuniformities and creates random telegraph noise in individual pixels. In addition to these long term effects, cosmic ray and trapped proton transients also interfere with device operation on orbit. In the present paper, we investigate the dark current behavior of CCDs - in particular the formation and annealing of hot pixels. Such pixels degrade the ability of a CCD to perform science and also can present problems to the performance of star camera functions (especially if their numbers are not correctly anticipated). To date, most dark current radiation studies have been performed by irradiating the CCDs at room temperature but this can result in a significantly optimistic picture of the hot pixel count. We know from the Hubble Space Telescope (HST) that high dark current pixels (so-called hot pixels or hot spikes) accumulate as a function of time on orbit. For example, the HST Advanced Camera for Surveys/Wide Field Camera instrument performs monthly anneals despite the loss of observational time, in order to partially anneal the hot pixels. Note that the fact that significant reduction in hot pixel populations occurs for room temperature anneals is not presently understood since none of the commonly expected defects in Si (e.g. divacancy, E center, and A-center) anneal at such a low temperature. A HST Wide Field Camera 3 (WFC3) CCD manufactured by E2V was irradiated while operating at -83C and the dark current studied as a function of temperature while the CCD was warmed to a sequence of temperatures up to a maximum of +30C. The device was then cooled back down to -83 and re-measured. Hot pixel populations were tracked during the warm-up and cool-down. Hot pixel annealing began below 40C and the anneal process was largely completed before the detector reached +3OC. There was no apparent sharp temperature dependence in the annealing. Although a large fraction of the hot pixels fell below the threshold to be counted as a hot pixel, they nevertheless remained warmer than the remaining population. The details of the mechanism for the formation and annealing of hot pixels is not presently understood, but it appears likely that hot pixels are associated with displacement damage occurring in high electric field regions.
[Influence of combined vitamin deficiency on unconditioned reflexes and learning in growing rats].
Vrzhesinskaya, O A; Kodentsova, V M; Beketova, N A; Pereverzeva, O G; Kosheleva, O V; Sidorova, Yu S; Zorin, S N; Mazo, V K
2015-01-01
The aim of this study was to investigate the effect of combined deficiency of all vitamins on the manifestation of unconditioned reflex and learning (in response to an electric current) in growing Wistar rats with initial body weight 53.4 ± 1.2 g (45.5-62.0 g). 20 of 46 tested male rats (latent period of transition from the illuminated chamber to the dark compartment did not exceed 60 s) were included in the experiment. Rats were randomly divided into 2 groups (control and experimental) for the duration of the latent period and body mass. Within 23 days the rats of the control group received a complete semisynthetic diet. Combined vitamin deficiency in tested rats was caused by 5-fold diet decrease of the amount of vitamin mixture without vitamin E. On the 12th day the second phase of testing was performed, during which the rat received electrocutaneous irritation on paws (current 0.4 mA, 8 seconds) after transition to the dark compartment of the chamber. Preservation of the conducted reflex was performed 24 h and 9 days after training. On the 23rd day pre-anesthetized with ether rats were taken out from the experiment by decapitation. The content of vitamin A (retinol and retinol palmitate) and E (tocopherols) in plasma and liver and in the sunflower oil was analyzed by HPLC, the level of vitamins B1 and B2 in liver and casein by fluorimetric method, blood serum malondialdehyde content--by spectrophotometric method. Reducing of vitamin mixture amount of the diet lead to significant reduction in liver vitamin A, E, B1, and B2 level and in blood plasma vitamin A and E concentration by the end of the experiment, but had no effect on blood plasma MDA concentration. On the 12th day of vitamin deficiency in rats manifestation of unconditioned reflex (photophobia) has been deteriorated, as evidenced by the significant 3,2-fold increase of latent period of transition to the dark compartment compared with animals fed a complete diet (47.8 ± 15.8 vs 14.8 ± 3.6 sec), but their ability to learn hadn't been effected. Based on the data that vitamin deficiency, especially of vitamin-antioxidants, causes oxidative stress, and that increase of corticosterone level in hippocampus during aging significantly inhibits the function of the brain, we can assume that increasing of corticosterone level may be one of the cause of the detected cognitive impairment, as isolated vitamin A deficiency in rats increases tissue corticosterone levels.
Mechanisms Affecting Performance of the BaBar Resistive Plate Chambers and Searches for Remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Changguo
2003-09-19
The BaBar experiment at PEPII relies on the Instrumentation of the Flux Return (IFR) for both muon identification and KL detection. The active detector is composed of Resistive Plate Chambers (RPC's) operated in streamer mode. Since the start of operation the RPC's have suffered persistent efficiency deterioration and dark current increase problems. The ''autopsy'' of bad BaBar RPC's revealed that in many cases uncured Linseed oil droplets had formed on the inner surface of the Bakelite plates, leading to current paths from oil ''stalagmites'' bridging the 2 mm gap. In this paper a possible model of this ''stalagmite'' formation andmore » its effect on the dark current and efficiency of RPC chambers is presented. Laboratory test results strongly support this model. Based upon this model we are searching for solutions to eliminate the unfavorable effect of the oil stalagmites. The lab tests show that the stalagmite resistivity increases dramatically if exposed to the air, an observation that points to a possible way to remedy the damage and increase the efficiency. We have seen that flowing an oxygen gas mixture into the chamber helps to polymerize the uncured linseed oil. Consequently the resistivity of the bridged oil stalagmites increases, as does that of the oil coating on the frame edges and spacers, significantly reducing the RPC dark currents and low-efficiency regions. We have tested this idea on two chambers removed from BaBar because of their low efficiency and high dark current. These test results are reported in the paper, and two other remediation methods also mentioned. We continue to study this problem, and try to find new treatments with permanent improvement.« less
First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz
2017-03-01
Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.
Jin, Liang; Feng, Tao; Chai, Jing; Ghazalli, Nadiah; Gao, Dan; Zerda, Ricardo; Li, Zhuo; Hsu, Jasper; Mahdavi, Alborz; Tirrell, David A.; Riggs, Arthur D.; Ku, Hsun Teresa
2014-01-01
In our previous studies, colony-forming progenitor cells isolated from murine embryonic stem cell-derived cultures were differentiated into morphologically distinct insulin-expressing colonies. These colonies were small and not light-reflective when observed by phase-contrast microscopy (therefore termed “Dark” colonies). A single progenitor cell capable of giving rise to a Dark colony was termed a Dark colony-forming unit (CFU-Dark). The goal of the current study was to test whether endogenous pancreas, and its developmentally related liver, harbored CFU-Dark. Here we show that dissociated single cells from liver and pancreas of one-week-old mice give rise to Dark colonies in methylcellulose-based semisolid culture media containing either Matrigel or laminin hydrogel (an artificial extracellular matrix protein). CFU-Dark comprise approximately 0.1% and 0.03% of the postnatal hepatic and pancreatic cells, respectively. Adult liver also contains CFU-Dark, but at a much lower frequency (~0.003%). Microfluidic qRT-PCR, immunostaining, and electron microscopy analyses of individually handpicked colonies reveal the expression of insulin in many, but not all, Dark colonies. Most pancreatic insulin-positive Dark colonies also express glucagon, whereas liver colonies do not. Liver CFU-Dark require Matrigel, but not laminin hydrogel, to become insulin-positive. In contrast, laminin hydrogel is sufficient to support the development of pancreatic Dark colonies that express insulin. Postnatal liver CFU-Dark display a cell surface marker CD133+CD49flowCD107blow phenotype, while pancreatic CFU-Dark are CD133-. Together, these results demonstrate that specific progenitor cells in the postnatal liver and pancreas are capable of developing into insulin-expressing colonies, but they differ in frequency, marker expression, and matrix protein requirements for growth. PMID:25148366
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
2014-04-15
Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.
Dips in the diffuse supernova neutrino background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman; Palomares-Ruiz, Sergio, E-mail: yasaman@theory.ipm.ac.ir, E-mail: Sergio.Palomares.Ruiz@ific.uv.es
2014-06-01
Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.
Hunting the Dark Matter with DEAP/CLEAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, F.
2010-02-10
The potential of the DEAP/CLEAN program for direct Dark Matter detection to test various dark matter models is illustrated. The scintillation pulse of a noble liquid like Argon or Neon has two well distinguished time constants allowing a very reliable correlation between pulse shape and type of event. This pulse shape discrimination already provides the power of rejecting a background10{sup 8}-10{sup 9} times larger than the signal. MiniCLEAN, a 500 kg LAr detector, is currently under construction, and a 3.6 ton detector, DEAP-3600, under development.
Lincoln, Don
2018-01-16
Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.
Tyrosine administration enhances dopamine synthesis and release in light-activated rat retina
NASA Technical Reports Server (NTRS)
Gibson, C. J.; Watkins, C. J.; Wurtman, R. J.
1983-01-01
Exposure of dark-adapted albino rats to light (350 lux) significantly elevated retinal levels of the dopamine metabolite dihydroxyphenyl acetic acid during the next hour; their return to a dark environment caused dihydroxyphenyl acetic acid levels to fall. Retinal dopamine levels were increased slightly by light exposure, suggesting that the increase in dihydroxyphenyl acetic acid reflected accelerated dopamine synthesis. Administration of tyrosine (100 mg/kg, i.p.) further elevated retinal dihydroxyphenyl acetic acid among light-exposed animals, but failed to affect dopamine release among animals in the dark. These observations show that a physiological stimulus - light exposure - can cause catecholaminergic neurons to become tyrosine-dependent; they also suggest that food consumption may affect neurotransmitter release within the retina.
Focal plane infrared readout circuit with automatic background suppression
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Sun, Chao (Inventor); Shaw, Timothy J. (Inventor); Wrigley, Chris J. (Inventor)
2002-01-01
A circuit for reading out a signal from an infrared detector includes a current-mode background-signal subtracting circuit having a current memory which can be enabled to sample and store a dark level signal from the infrared detector during a calibration phase. The signal stored by the current memory is subtracted from a signal received from the infrared detector during an imaging phase. The circuit also includes a buffered direct injection input circuit and a differential voltage readout section. By performing most of the background signal estimation and subtraction in a current mode, a low gain can be provided by the buffered direct injection input circuit to keep the gain of the background signal relatively small, while a higher gain is provided by the differential voltage readout circuit. An array of such readout circuits can be used in an imager having an array of infrared detectors. The readout circuits can provide a high effective handling capacity.
NASA Technical Reports Server (NTRS)
Fahrenbruch, A. L.; Bube, R. H.
1974-01-01
The photovoltaic properties of single-crystal Cu2S-CdS heterojunctions have been investigated as a function of heat treatment by detailed measurements of the dependence of short-circuit current on photon energy, temperature, and the state of optical degradation or enhancement. A coherent picture is formulated for the relationship between enhancement and optical degradation, and their effect on the transport of short-circuit photoexcited current and dark, forward-bias current in the cell. Optical degradation in the Cu2S-CdS cell is shown to be closely identical to optical degradation of lifetime in a homogeneous CdS:Cd:Cu crystal, indicating that the CdS:Cu layer near the junction interface controls carrier transport in the cell. It is proposed that both the photoexcited short-circuit current and the dark, forward-bias current are controlled by a tunneling-recombination process through interface states.
I-V-T analysis of radiation damage in high efficiency Si solar cells
NASA Technical Reports Server (NTRS)
Banerjee, S.; Anderson, W. A.; Rao, B. B.
1985-01-01
A detailed analysis of current-voltage characteristics of N(+)-P/P solar cells indicate that there is a combination of different mechanisms which results in an enhancement in the dark current and in turn deteriorates the photovoltaic performance of the solar cells after 1 MeV e(-) irradiation. The increase in the dark current is due to three effects, i.e., bulk recombination, space charge recombination by deep traps and space charge recombination through shallow traps. It is shown that the increase in bulk recombination current is about 2 to 3 orders of magnitude whereas space charge recombination current due to shallow traps increases only by an order or so and no space charge recombination through deep traps was observed after irradiation. Thus, in order to improve the radiation hardness of these devices, bulk properties should be preserved.
NASA Astrophysics Data System (ADS)
Samuroff, S.; Bridle, S. L.; Zuntz, J.; Troxel, M. A.; Gruen, D.; Rollins, R. P.; Bernstein, G. M.; Eifler, T. F.; Huff, E. M.; Kacprzak, T.; Krause, E.; MacCrann, N.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; James, D. J.; Jarvis, M.; Jeltema, T.; Kirk, D.; Kuehn, K.; Kuhlmann, S.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Menanteau, F.; Miquel, R.; Nord, B.; Ogando, R. L. C.; Plazas, A. A.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; DES Collaboration
2018-04-01
We use a suite of simulated images based on Year 1 of the Dark Energy Survey to explore the impact of galaxy neighbours on shape measurement and shear cosmology. The HOOPOE image simulations include realistic blending, galaxy positions, and spatial variations in depth and point spread function properties. Using the IM3SHAPE maximum-likelihood shape measurement code, we identify four mechanisms by which neighbours can have a non-negligible influence on shear estimation. These effects, if ignored, would contribute a net multiplicative bias of m ˜ 0.03-0.09 in the Year One of the Dark Energy Survey (DES Y1) IM3SHAPE catalogue, though the precise impact will be dependent on both the measurement code and the selection cuts applied. This can be reduced to percentage level or less by removing objects with close neighbours, at a cost to the effective number density of galaxies neff of 30 per cent. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude S8 ≡ σ8(Ωm/0.3)0.5 by 2σ towards low values. Finally, we use the HOOPOE simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the impact on the recovered S8 of ignoring such correlations to be subdominant to statistical error at the current level of precision.
Sex differences in sleep pattern of rats in an experimental model of osteoarthritis.
Silva, Andressa; Araujo, Paula; Zager, Adriano; Tufik, Sergio; Andersen, Monica Levy
2011-07-01
Osteoarthritis (OA) is a major healthcare burden with increasing incidence, and is characterised by the degeneration of articular cartilage. OA is associated with chronic pain and sleep disturbance. The current study examined and compared the long-term effects of chronic articular pain on sleep patterns between female and male rats in an experimental model of OA. Rats were implanted with electrodes for electrocorticography and electromyography and assigned to control, sham or OA groups. OA was induced by the intra-articular administration of (2 mg) monosodium iodoacetate into the left knee joint in male and female rats (at estrus and diestrus phases). Sleep was monitored at days 1, 10, 15, 20 and 28 after iodoacetate injection during light and dark periods. The results showed that the overall sleep architecture changed in both sexes. These alterations occurred during the light and dark periods, began on D1 and persisted until the end of the study. OA rats, regardless of sex, showed a fragmented sleep pattern with reduced sleep efficiency, slow-wave sleep and paradoxical sleep, and fewer paradoxical sleep bouts. However, the males showed lower sleep efficiency and reduced slow-wave sleep compared to females during the dark period. Additionally, OA affected the hormonal levels in male rats, as testosterone levels were reduced in comparison to the control and sham groups. In females, progesterone and estradiol remained unchanged throughout the study. Our results suggest that the chronic model of OA influenced the sleep patterns in both sexes. However, males appeared to be more affected. Copyright © 2010. Published by Elsevier Ltd.
ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.
2015-08-21
Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Smith, R. Chris; Smith, Malcolm; Pompea, Stephen; Sanhueza, Pedro; AURA-Chile EPO Team
2018-01-01
For over 20 years, AURA has been leading efforts promoting the protection of dark skies in northern Chile. Efforts began in the early 1990s at AURA's Cerro Tololo Inter-American Observatory (CTIO), working in collaboration with other international observatories in Chile including Las Campanas Observatory (LCO) and the European Southern Observatory (ESO). CTIO also partnered with local communities, for example supporting Vicuña's effort to establish the first municipal observatory in Chile. Today we have developed a multifaceted effort of dark sky protection, including proactive government relations at national and local levels, a strong educational and public outreach program, and a program of highlighting international recognition of the dark skies through the IDA Dark Sky Places program. Work on international recognition has included the declaration of the Gabriel Mistral IDA Dark Sky Sanctuary, the first such IDA sanctuary in the world.
A Stab in the Dark?: A Research Note on Temporal Patterns of Street Robbery.
Tompson, Lisa; Bowers, Kate
2013-11-01
Test the influence of darkness in the street robbery crime event alongside temperature. Negative binomial regression models tested darkness and temperature as predictors of street robbery. Units of analysis were four 6-hr time intervals in two U.K. study areas that have different levels of darkness and variations of temperature throughout the year. Darkness is a key factor related to robbery events in both study areas. Traversing from full daylight to full darkness increased the predicted volume of robbery by a multiple of 2.6 in London and 1.2 in Glasgow. Temperature was significant only in the London study area. Interaction terms did not enhance the predictive power of the models. Darkness is an important driving factor in seasonal variation of street robbery. A further implication of the research is that time of the day patterns are crucial to understanding seasonal trends in crime data.
A power-law coupled three-form dark energy model
NASA Astrophysics Data System (ADS)
Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He
2018-02-01
We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.
Moriya, Shunpei; Tahara, Yu; Sasaki, Hiroyuki; Ishigooka, Jun; Shibata, Shigenobu
2015-11-01
A number of animal studies have implicated circadian clock genes in the regulation of mood, anxiety, and reward. However, the effect of misalignment of the environmental light-dark and internal circadian clock on the monoamine system is not fully understood. In the present study, we examined whether an abnormal light-dark schedule would affect behavior-, circadian clock-, and monoamine-related gene expressions, along with monoamine contents in the amygdala and hippocampus of mice. Mice were subjected to an 8-hour phase delay in the light-dark cycle (Shift) every two days for four weeks, and locomotor activity was continuously measured. We examined the circadian expression of clock genes (Per1, Per2, and Bmal1) and genes of the NE/5HT uptake transporters (Net and Sert). In addition, the levels of NE/5HT and their metabolites MHPG/5HIAA were analyzed in the amygdala and hippocampus. Locomotor activity showed a free-running phenotype with a longer period (>24 hours) and showed misalignment between the light-dark and inactive-active cycles. The amplitude of the day-night fluctuation of Bmal1 expression was reduced in the amygdala and hippocampus of light-dark-shifted mice. Net gene expression in the Shift group showed different profiles compared with the Control group. In addition, NE and 5HT levels in the amygdala of the Shift group increased during the active period. The present results suggest that misalignment of the internal and external clocks by continuous shifting of the light-dark cycle affects the circadian clocks and monoamine metabolism in the amygdala and hippocampus of mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Updated constraints on the dark matter interpretation of CDMS-II-Si data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Samuel J.; Gelmini, Graciela B., E-mail: switte@physics.ucla.edu, E-mail: gelmini@physics.ucla.edu
2017-05-01
We present an updated halo-dependent and halo-independent analysis of viable light WIMP dark matter candidates which could account for the excess observed in CDMS-II-Si. We include recent constraints from LUX, PandaX-II, and PICO-60, as well as projected sensitivities for XENON1T, SuperCDMS SNOLAB, LZ, DARWIN, DarkSide-20k, and PICO-250, on candidates with spin-independent isospin conserving and isospin-violating interactions, and either elastic or exothermic scattering. We show that there exist dark matter candidates which can explain the CDMS-II-Si data and remain very marginally consistent with the null results of all current experiments, however such models are highly tuned, making a dark matter interpretationmore » of CDMS-II-Si very unlikely. We find that these models can only be ruled out in the future by an experiment comparable to LZ or PICO-250.« less
Dark interactions and cosmological fine-tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E
2008-05-15
Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less
Accurate Modeling of Dark-Field Scattering Spectra of Plasmonic Nanostructures.
Jiang, Liyong; Yin, Tingting; Dong, Zhaogang; Liao, Mingyi; Tan, Shawn J; Goh, Xiao Ming; Allioux, David; Hu, Hailong; Li, Xiangyin; Yang, Joel K W; Shen, Zexiang
2015-10-27
Dark-field microscopy is a widely used tool for measuring the optical resonance of plasmonic nanostructures. However, current numerical methods for simulating the dark-field scattering spectra were carried out with plane wave illumination either at normal incidence or at an oblique angle from one direction. In actual experiments, light is focused onto the sample through an annular ring within a range of glancing angles. In this paper, we present a theoretical model capable of accurately simulating the dark-field light source with an annular ring. Simulations correctly reproduce a counterintuitive blue shift in the scattering spectra from gold nanodisks with a diameter beyond 140 nm. We believe that our proposed simulation method can be potentially applied as a general tool capable of simulating the dark-field scattering spectra of plasmonic nanostructures as well as other dielectric nanostructures with sizes beyond the quasi-static limit.
Hassler, Sebastian; Jung, Benjamin; Lemke, Lilia; Novák, Ondřej; Strnad, Miroslav; Martinoia, Enrico; Neuhaus, H. Ekkehard
2016-01-01
The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a ‘pleiotropic’ process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 + and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence. PMID:27325894
MadDM: Computation of dark matter relic abundance
NASA Astrophysics Data System (ADS)
Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew
2017-12-01
MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.
Directional detection of dark matter with two-dimensional targets
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less
Directional detection of dark matter with two-dimensional targets
NASA Astrophysics Data System (ADS)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.
2017-09-01
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.
Directional detection of dark matter with two-dimensional targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela
We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less
Detecting ultralight bosonic dark matter via absorption in superconductors
Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.
2016-07-18
Superconducting targets have recently been proposed for the direct detection of dark matter as light as a keV, via elastic scattering off conduction electrons in Cooper pairs. Detecting such light dark matter requires sensitivity to energies as small as the superconducting gap of O(meV). Here we show that these same superconducting devices can detect much lighter DM, of meV to eV mass, via dark matter absorption on a conduction electron, followed by emission of an athermal phonon. Lastly, we demonstrate the power of this setup for relic kinetically mixed hidden photons, pseudoscalars, and scalars, showing that the reach can exceedmore » current astrophysical and terrestrial constraints with only a moderate exposure.« less
What We Know About Dark Energy From Supernovae
Filippenko, Alex
2018-01-24
The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.
Dark Skies Rangers - Fighting light pollution and simulating dark skies
NASA Astrophysics Data System (ADS)
Doran, Rosa; Correia, Nelson; Guerra, Rita; Costa, Ana
2015-03-01
Dark Skies Rangers is an awareness program aimed at students of all ages to stimulate them to make an audit of light pollution in their school/district. The young light pollution fighters evaluate the level of light pollution, how much energy is being wasted, and produce a report to be delivered to the local authorities. They are also advised to promote a light pollution awareness campaign to the local community targeting not only the dark skies but also other implications such as effects in our health, to the flora and fauna, etc.
Loop induced type-II seesaw model and GeV dark matter with U(1)B - L gauge symmetry
NASA Astrophysics Data System (ADS)
Nomura, Takaaki; Okada, Hiroshi
2017-11-01
We propose a model with U(1) B - L gauge symmetry and several new fermions in no conflict with anomaly cancellation where the neutrino masses are given by the vacuum expectation value of Higgs triplet induced at the one-loop level. The new fermions are odd under discrete Z2 symmetry and the lightest one becomes dark matter candidate. We find that the mass of dark matter is typically O (1)- O (10) GeV. Then relic density of the dark matter is discussed.
Enlightenment and the "Heart of Darkness": (Neo)Imperialism in the Congo, and Elsewhere
ERIC Educational Resources Information Center
Stronach, Ian
2006-01-01
This article approaches the current state of qualitative inquiry by constructing an allegory of neo-imperialism. It is based substantively on a history and contemporary anthro-politics of the Congo and in particular the city of Kisangani; metaphorically on Conrad's unsettling deployment of that same place as "the heart of darkness"; and…
"Dark energy" in the Local Void
NASA Astrophysics Data System (ADS)
Villata, M.
2012-05-01
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.
NASA Astrophysics Data System (ADS)
Reiter, R. J.; Hurlbut, E. C.; King, T. S.; Richardson, B. A.; Vaughan, M. K.; Kosub, K. Y.
1982-12-01
When adult male Syrian hamsters were maintained under 14 h light and 10 h darkness daily (lights on from 0600-2000 h), peak pineal melatonin levels (705 pg/gland) were attained at 0500 h. When the dark phase of the light:dark cycle was interrupted with a 15 min pulse of light from 2300 2315 h (3 h after lights out), the highest melatonin levels achieved was roughly 400 pg/gland. Finally, if the 15 min pulse of light was given at 0200 0215 h (6 h after lights out) the nocturnal rise in pineal melatonin was completely abolished. Having made these observations, a second experiment was designed to determine the ability of afternoon melatonin injections to inhibit reproduction in hamsters kept under an uninterrupted 14∶10 cycle or under the same lighting regimen where the dark phase was interrupted with a 15 min pulse of light (0200 0215 h). In the uninterrupted light:dark schedule the daily afternoon injection of 25 μg melatonin caused the testes and the accessory sex organs to atrophy within 11 weeks. Conversely, if the dark phase was interrupted with light between 0200 0215 h, afternoon melatonin injections were incapable of inhibiting the growth of the reproductive organs. The findings suggest that exogenously administered melatonin normally synergizes with endogenously produced melatonin to cause gonadal involution in hamsters.
NASA Astrophysics Data System (ADS)
Hui, Qiao; Weida, Hu; Zhenhua, Ye; Xiangyang, Li; Haimei, Gong
2010-03-01
The influence of hydrogenation on the dark current mechanism of HgCdTe photovoltaic detectors is studied. The hydrogenation is achieved by exposing samples to a H2/Ar plasma atmosphere that was produced during a reactive ion etching process. A set of variable-area photomask was specially designed to evaluate the hydrogenation effect. It was found that the current-voltage characteristics were gradually improved when detectors were hydrogenated by different areas. The fitting results of experimental results at reverse bias conditions sustained that the improvement of current-voltage curves was due to the suppression of trap assisted tunneling current and the enhancement of minority lifetime in the depletion region. It was also found that the dominative forward current was gradually converted from a generation-recombination current to a diffusion current with the enlargement of the hydrogenation area, which was infered from the ideality factors by abstraction of forward resistance-voltage curves of different detectors.
Simplified phenomenology for colored dark sectors
NASA Astrophysics Data System (ADS)
El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose
2017-04-01
We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.
Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Buckley, James
2009-05-01
AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.
Brand, Christine; Burkhardt, Eva; Schaeffel, Frank; Choi, Jeong Won; Feldkaemper, Marita Pauline
2005-04-28
To analyze mRNA expression changes of Egr-1, VIP, and Shh under different light and treatment conditions in mice. The mRNA expression levels of the three genes and additionally the Egr-1 protein expression were compared in form deprived eyes and eyes with normal vision. Moreover, the influence of dark to light and light to dark transitions and of changes in retinal illumination on mRNA levels was investigated. Form deprivation of mice was induced by fitting frosted diffusers over one eye and an attentuation matched neutral density (ND) filter over the other eye. To measure the effects of retinal illumination changes on mRNA expression, animals were bilaterally fitted with different ND filters. Semiquantitative real-time RT-PCR was used to measure the mRNA levels and immunohistochemistry was applied to localize and detect Egr-1 protein. The expression levels of both Egr-1 mRNA and protein were reduced in form deprived eyes compared to their fellow eyes after 30 min and 1 h, respectively. Egr-1 mRNA was strikingly upregulated both after dark to light and light to dark transitions, whereas minor changes in retinal illumination by covering the eyes with neutral density filters did not alter Egr-1 mRNA expression. In mice, the mRNA levels of VIP and Shh were not affected by form deprivation, but they were found to be regulated depending on the time of day. Both Egr-1 mRNA and protein expression levels were strongly regulated by light, especially by transitions between light and darkness. Image contrast may exert an additional influence on mRNA and protein expression of Egr-1, particularly in the cells in the ganglion cell layer and in bipolar cells.
Khizhkin, Evgeniy A; Ilukha, Victor A; Vinogradova, Irina A; Uzenbaeva, Lyudmila B; Ilyina, Tatiana N; Yunash, Victoria D; Morozov, Artem V; Anisimov, Vladimir N
2017-01-01
The present study was aimed to identify how age-related changes in some physiological and biochemical systems are related to changes in the life span of rats with long-term pineal gland hypo- and hyperfunction induced by constant light and constant darkness, respectively. At the age of 25 days the rats were randomly divided into 3 groups: standard light/dark regimen (LD), constant light (LL) and constant darkness (DD). Age-related Antioxidant System (AOS) changes in liver tissues, alteration of immunoreactivity in blood smears were investigated, pubescence and lifespan of the animals were determined. Modification of the level of melatonin synthesis induced by constant light results in interrelated rearrangements in the functioning of the investigated physiological systems. Elevated activity of the antioxidant system extends the lifespan, while at the same time slowing down pubescence and altering the morpho-functional properties of leukocytes in blood. The absence of light/dark alternation (constant light and constant darkness) affects only those physiological indices that follow the organism's circadian rhythms (Activity of Antioxidant Enzymes (AOE), levels of individual immune system cell types), whereas changes in the parameters not governed by circadian fluctuations (vitamin concentrations, pubescence, and aging) depend on the level of melatonin produced by the pineal gland.
Acute Consumption of Flavan-3-ol-Enriched Dark Chocolate Affects Human Endogenous Metabolism.
Ostertag, Luisa M; Philo, Mark; Colquhoun, Ian J; Tapp, Henri S; Saha, Shikha; Duthie, Garry G; Kemsley, E Kate; de Roos, Baukje; Kroon, Paul A; Le Gall, Gwénaëlle
2017-07-07
Flavan-3-ols and methylxanthines have potential beneficial effects on human health including reducing cardiovascular risk. We performed a randomized controlled crossover intervention trial to assess the acute effects of consumption of flavan-3-ol-enriched dark chocolate, compared with standard dark chocolate and white chocolate, on the human metabolome. We assessed the metabolome in urine and blood plasma samples collected before and at 2 and 6 h after consumption of chocolates in 42 healthy volunteers using a nontargeted metabolomics approach. Plasma samples were assessed and showed differentiation between time points with no further separation among the three chocolate treatments. Multivariate statistics applied to urine samples could readily separate the postprandial time points and distinguish between the treatments. Most of the markers responsible for the multivariate discrimination between the chocolates were of dietary origin. Interestingly, small but significant level changes were also observed for a subset of endogenous metabolites. 1 H NMR revealed that flavan-3-ol-enriched dark chocolate and standard dark chocolate reduced urinary levels of creatinine, lactate, some amino acids, and related degradation products and increased the levels of pyruvate and 4-hydroxyphenylacetate, a phenolic compound of bacterial origin. This study demonstrates that an acute chocolate intervention can significantly affect human metabolism.
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel
2014-11-01
We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.
Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos
NASA Astrophysics Data System (ADS)
Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.
2018-06-01
We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.
Simulated Milky Way analogues: implications for dark matter direct searches
NASA Astrophysics Data System (ADS)
Bozorgnia, Nassim; Calore, Francesca; Schaller, Matthieu; Lovell, Mark; Bertone, Gianfranco; Frenk, Carlos S.; Crain, Robert A.; Navarro, Julio F.; Schaye, Joop; Theuns, Tom
2016-05-01
We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (with peak speed of 223-289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.
Current Status of the dark matter experiment DarkSide-50
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marini, L.; Pagani, Ioanna; Agnes, P.
2016-07-12
DarkSide-50 is a dark matter direct search experiment at LNGS, searching for rare nuclear recoils possibly induced by WIMPs. It has two nested vetoes and a dual phase liquid argon TPC as dark matter detector. Key features of this experiment are the use of underground argon as radio-pure target and of muon and neutron active vetoes to suppress the background. The first data-taking campaign was running from November 2013 to April 2015 with an atmospheric argon target and a reduced efficiency neutron veto due to internal contamination. However, an upper limit on the WIMP-nucleon cross section of 6.1×10-44 cm2 atmore » 90% CL was obtained for a WIMP mass of 100 GeV/c2 and an exposure of (1422 ± 67) kg·d. At present DarkSide-50 started a 3 years run, intended to be background-free because the neutron veto was successfully recovered and underground argon replaced the atmospheric one. Additionally calibration campaigns for both the TPC and the neutron veto were completed. Thanks to the good performance of the background rejection, the results obtained so far suggest the scalability of DarkSide-50 to a ton-scale detector, which will play a key role into the dark matter search scenario.« less
Current status of the dark matter experiment DarkSide-50
NASA Astrophysics Data System (ADS)
Marini, L.; Pagani, L.; Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.; DarkSide Collaboration
2016-01-01
DarkSide-50 is a dark matter direct search experiment at LNGS, searching for rare nuclear recoils possibly induced by WIMPs. It has two nested vetoes and a dual phase liquid argon TPC as dark matter detector. Key features of this experiment are the use of underground argon as radio-pure target and of muon and neutron active vetoes to suppress the background. The first data-taking campaign was running from November 2013 to April 2015 with an atmospheric argon target and a reduced efficiency neutron veto due to internal contamination. However, an upper limit on the WIMP-nucleon cross section of 6.1×10-44 cm2 at 90% CL was obtained for a WIMP mass of 100 GeV/c2 and an exposure of (1422±67) kg . d . At present DarkSide-50 started a 3 years run, intended to be background-free because the neutron veto was successfully recovered and underground argon replaced the atmospheric one. Additionally calibration campaigns for both the TPC and the neutron veto were completed. Thanks to the good performance of the background rejection, the results obtained so far suggest the scalability of DarkSide-50 to a ton-scale detector, which will play a key role into the dark matter search scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp
Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less
Microbial Ecology of the Dark Ocean above, at, and below the Seafloor†
Orcutt, Beth N.; Sylvan, Jason B.; Knab, Nina J.; Edwards, Katrina J.
2011-01-01
Summary: The majority of life on Earth—notably, microbial life—occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean—the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.—has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats. PMID:21646433
Yang, Jiading; Worley, Eric
2014-01-01
Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (−196 to −162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA. PMID:25516602
Modelling the line-of-sight contribution in substructure lensing
NASA Astrophysics Data System (ADS)
Despali, Giulia; Vegetti, Simona; White, Simon D. M.; Giocoli, Carlo; van den Bosch, Frank C.
2018-04-01
We investigate how Einstein rings and magnified arcs are affected by small-mass dark-matter haloes placed along the line of sight to gravitational lens systems. By comparing the gravitational signature of line-of-sight haloes with that of substructures within the lensing galaxy, we derive a mass-redshift relation that allows us to rescale the detection threshold (i.e. lowest detectable mass) for substructures to a detection threshold for line-of-sight haloes at any redshift. We then quantify the line-of-sight contribution to the total number density of low-mass objects that can be detected through strong gravitational lensing. Finally, we assess the degeneracy between substructures and line-of-sight haloes of different mass and redshift to provide a statistical interpretation of current and future detections, with the aim of distinguishing between cold dark matter and warm dark matter. We find that line-of-sight haloes statistically dominate with respect to substructures, by an amount that strongly depends on the source and lens redshifts, and on the chosen dark-matter model. Substructures represent about 30 percent of the total number of perturbers for low lens and source redshifts (as for the SLACS lenses), but less than 10 per cent for high-redshift systems. We also find that for data with high enough signal-to-noise ratio and angular resolution, the non-linear effects arising from a double-lens-plane configuration are such that one is able to observationally recover the line-of-sight halo redshift with an absolute error precision of 0.15 at the 68 per cent confidence level.
Peña, Catherine Jensen; Champagne, Frances A.
2014-01-01
Previous studies in Long-Evans rats demonstrated a significant relationship between variation in pup licking/grooming and arched-back nursing (LG-ABN) and offspring development. However, maternal care is dynamic and exhibits significant temporal variation. In the current study, we assessed temporal variation in LG and ABN in lactating rats across the circadian cycle and determined the impact of these behaviors for the prediction of offspring hypothalamic gene expression, anxiety-like behavior, and responsiveness to high fat diet (HFD). We find that distinguishing between dams that engage in stable individual differences in maternal behavior (Low, Mid, High) requires assessment across the light-dark phases of the light cycle and across multiple postpartum days. Amongst juvenile female offspring, we find a positive correlation between maternal LG and mRNA levels of estrogen receptor alpha and beta and the oxytocin receptor (when LG is assessed across the light-dark cycle or in the dark phase). In young adults, we find sex-specific effects, with female High LG offspring exhibiting increased exploration of a novel environment and increased latency to approach HFD and male High LG offspring displaying increased activity in a novel environment and reduced HFD consumption. Importantly, these effects on behavior were primarily evident when LG was assessed across the light-dark cycle and ABN was not associated with these measures. Overall, our findings illustrate the dissociation between the effects of LG and ABN on offspring development and provide critical insights into the temporal characteristics of maternal behavior that have methodological implications for the study of maternal effects. PMID:23398440
Rozov, Stanislav V.; Zant, Janneke C.; Gurevicius, Kestutis; Porkka-Heiskanen, Tarja; Panula, Pertti
2016-01-01
Aim: Under natural conditions diurnal rhythms of biological processes of the organism are synchronized with each other and to the environmental changes by means of the circadian system. Disturbances of the latter affect hormonal levels, sleep-wakefulness cycle and cognitive performance. To study mechanisms of such perturbations animal models subjected to artificial photoperiods are often used. The goal of current study was to understand the effects of circadian rhythm disruption, caused by a short light-dark cycle regime, on activity of the cerebral cortex in rodents. Methods: We used electroencephalogram to assess the distribution of vigilance states, perform spectral analysis, and estimate the homeostatic sleep drive. In addition, we analyzed spontaneous locomotion of C57BL/6J mice under symmetric, 22-, 21-, and 20-h-long light–dark cycles using video recording and tracking methods. Results and Conclusions: We found that shortening of photoperiod caused a significant increase of slow wave activity during non-rapid eye movement sleep suggesting an elevation of sleep pressure under such conditions. While the rhythm of spontaneous locomotion was completely entrained by all light–dark cycles tested, periodic changes in the power of the θ- and γ-frequency ranges during wakefulness gradually disappeared under 22- and 21-h-long light–dark cycles. This was associated with a significant increase in the θ–γ phase-amplitude coupling during wakefulness. Our results thus provide deeper understanding of the mechanisms underlying the impairment of learning and memory retention, which is associated with disturbed circadian regulation. PMID:27630549
Interacting dark sector and precision cosmology
NASA Astrophysics Data System (ADS)
Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs
2018-01-01
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.
Revisiting the direct detection of dark matter in simplified models
NASA Astrophysics Data System (ADS)
Li, Tong
2018-07-01
In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-suppressed spin-independent WIMP-nucleon cross sections from loop diagrams and investigate the constrained space of dark matter mass and mediator mass by Xenon1T. The constraints from indirect detection and collider search are also discussed.
The cosmological dark sector as a scalar σ -meson field
NASA Astrophysics Data System (ADS)
Carneiro, Saulo
2018-03-01
Previous quantum field estimations of the QCD vacuum in the expanding space-time lead to a dark energy component scaling linearly with the Hubble parameter, which gives the correct figure for the observed cosmological term. Here we show that this behaviour also appears at the classical level, as a result of the chiral symmetry breaking in a low energy, effective σ -model. The dark sector is described in a unified way by the σ condensate and its fluctuations, giving rise to a decaying dark energy and a homogeneous creation of non-relativistic dark particles. The creation rate and the future asymptotic de Sitter horizon are both determined by the σ mass scale.
Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yun; Tegmark, Max; Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter {omega}{sub m} can be accurately measured from other data, then the dark-energy density history X(z)={rho}{sub X}(z)/{rho}{sub X}(0) can trivially be derived from this expansion history H(z). In contrast to customary 'black box' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z){sup -1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin,more » making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30%-40% accuracy.« less
Unified scenario for composite right-handed neutrinos and dark matter
NASA Astrophysics Data System (ADS)
Davoudiasl, Hooman; Giardino, Pier Paolo; Neil, Ethan T.; Rinaldi, Enrico
2017-12-01
We entertain the possibility that neutrino masses and dark matter (DM) originate from a common composite dark sector. A minimal effective theory can be constructed based on a dark S U (3 )D interaction with three flavors of massless dark quarks; electroweak symmetry breaking gives masses to the dark quarks. By assigning a Z2 charge to one flavor, a stable "dark kaon" can provide a good thermal relic DM candidate. We find that "dark neutrons" may be identified as right handed Dirac neutrinos. Some level of "neutron-anti-neutron" oscillation in the dark sector can then result in non-zero Majorana masses for light standard model neutrinos. A simple ultraviolet completion is presented, involving additional heavy S U (3 )D-charged particles with electroweak and lepton Yukawa couplings. At our benchmark point, there are "dark pions" that are much lighter than the Higgs and we expect spectacular collider signals arising from the UV framework. This includes the decay of the Higgs boson to τ τ ℓℓ', where ℓ(ℓ') can be any lepton, with displaced vertices. We discuss the observational signatures of this UV framework in dark matter searches and primordial gravitational wave experiments; the latter signature is potentially correlated with the H →τ τ ℓℓ' decay.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters
NASA Astrophysics Data System (ADS)
Kiew, Ching-Yee; Hwang, Chorng-Yuan; Zainal Abibin, Zamri
2017-05-01
By assuming the dark matter to be composed of neutralinos, we used the detection of upper limit on diffuse radio emission in a sample of galaxy clusters to put constraint on the properties of neutralinos. We showed the upper limit constraint on <σv>-mχ space with neutralino annihilation through b\\bar{b} and μ+μ- channels. The best constraint is from the galaxy clusters A2199 and A1367. We showed the uncertainty due to the density profile and cluster magnetic field. The largest uncertainty comes from the uncertainty in dark matter spatial distribution. We also investigated the constraints on minimal Supergravity (mSUGRA) and minimal supersymmetric standard model (MSSM) parameter space by scanning the parameters using the darksusy package. By using the current radio observation, we managed to exclude 40 combinations of mSUGRA parameters. On the other hand, 573 combinations of MSSM parameters can be excluded by current observation.
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
NASA Technical Reports Server (NTRS)
Jones, A. M.; Cochran, D. S.; Lamerson, P. M.; Evans, M. L.; Cohen, J. D.
1991-01-01
We examined the changes in the levels of indoleacetic acid (IAA), IAA esters, and a 22-kilodalton subunit auxin-binding protein (ABP1) in apical mesocotyl tissue of maize (Zea mays L.) during continuous red light (R) irradiation. These changes were compared with the kinetics of R-induced growth inhibition in the same tissue. Upon the onset of continuous irradiation, growth decreased in a continuous manner following a brief lag period. The decrease in growth continued for 5 hours, then remained constant at 25% of the dark rate. The abundance of ABP1 and the level of free IAA both decreased in the mesocotyl. Only the kinetics of the decrease in IAA within the apical mesocotyl correlated with the initial change in growth, although growth continued to decrease even after IAA content reached its final level, 50% of the dark control. This decrease in IAA within the mesocotyl probably occurs primarily by a change in its transport within the shoot since auxin applied as a pulse move basipetally in R-irradiated tissue at the same rate but with half the area as dark control tissue. In situ localization of auxin in etiolated maize shoots revealed that R-irradiated shoots contained less auxin in the epidermis than the dark controls. Irradiated mesocotyl grew 50% less than the dark controls even when incubated in an optimal level of auxin. However, irradiated and dark tissue contained essentially the same amount of radioactivity after incubation in [14C]IAA indicating that the light treatment does not affect the uptake into the tissue through the cut end, although it is possible that a small subset of cells within the mesocotyl is affected. These observations support the hypothesis that R causes a decrease in the level of auxin in epidermal cells of the mesocotyl, consequently constraining the growth of the entire mesocotyl.
Boosted dark matter signals uplifted with self-interaction
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themore » assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.« less
Boosted dark matter signals uplifted with self-interaction
NASA Astrophysics Data System (ADS)
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.