Sample records for dark detecting dark

  1. Effect of hydrodynamical-simulation–inspired dark matter velocity profile on directional detection of dark matter

    DOE PAGES

    Laha, Ranjan

    2018-02-01

    Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less

  2. Effect of hydrodynamical-simulation–inspired dark matter velocity profile on directional detection of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laha, Ranjan

    Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less

  3. Probing dark energy using convergence power spectrum and bi-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinda, Bikash R., E-mail: bikash@ctp-jamia.res.in

    Weak lensing convergence statistics is a powerful tool to probe dark energy. Dark energy plays an important role to the structure formation and the effects can be detected through the convergence power spectrum, bi-spectrum etc. One of the most promising and simplest dark energy model is the ΛCDM . However, it is worth investigating different dark energy models with evolving equation of state of the dark energy. In this work, detectability of different dark energy models from ΛCDM model has been explored through convergence power spectrum and bi-spectrum.

  4. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on allmore » four of those approaches.« less

  5. Directly detecting isospin-violating dark matter

    NASA Astrophysics Data System (ADS)

    Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl

    2018-03-01

    We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.

  6. Multi-Messenger Astronomy and Dark Matter

    NASA Astrophysics Data System (ADS)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  7. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  8. Chiral Dark Sector

    NASA Astrophysics Data System (ADS)

    Co, Raymond T.; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-01

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U (1 )D , which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U (1 )D quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U (1 )D gauge boson. Alternatively, if the dark pion stays light due to a specific U (1 )D charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  9. Chiral Dark Sector.

    PubMed

    Co, Raymond T; Harigaya, Keisuke; Nomura, Yasunori

    2017-03-10

    We present a simple and natural dark sector model in which dark matter particles arise as composite states of hidden strong dynamics and their stability is ensured by accidental symmetries. The model has only a few free parameters. In particular, the gauge symmetry of the model forbids the masses of dark quarks, and the confinement scale of the dynamics provides the unique mass scale of the model. The gauge group contains an Abelian symmetry U(1)_{D}, which couples the dark and standard model sectors through kinetic mixing. This model, despite its simple structure, has rich and distinctive phenomenology. In the case where the dark pion becomes massive due to U(1)_{D} quantum corrections, direct and indirect detection experiments can probe thermal relic dark matter which is generically a mixture of the dark pion and the dark baryon, and the Large Hadron Collider can discover the U(1)_{D} gauge boson. Alternatively, if the dark pion stays light due to a specific U(1)_{D} charge assignment of the dark quarks, then the dark pion constitutes dark radiation. The signal of this radiation is highly correlated with that of dark baryons in dark matter direct detection.

  10. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Zurek, Kathryn M.; Grushin, Adolfo G.; Ilan, Roni; Griffin, Sinéad M.; Liu, Zhen-Fei; Weber, Sophie F.; Neaton, Jeffrey B.

    2018-01-01

    We propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of O (meV ) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculate the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.

  11. Signatures of dark radiation in neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  12. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    DOE PAGES

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; ...

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(N D) strongly coupled theory with even N D ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweakmore » precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass m B ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less

  13. Statistical analyses of Higgs- and Z -portal dark matter models

    NASA Astrophysics Data System (ADS)

    Ellis, John; Fowlie, Andrew; Marzola, Luca; Raidal, Martti

    2018-06-01

    We perform frequentist and Bayesian statistical analyses of Higgs- and Z -portal models of dark matter particles with spin 0, 1 /2 , and 1. Our analyses incorporate data from direct detection and indirect detection experiments, as well as LHC searches for monojet and monophoton events, and we also analyze the potential impacts of future direct detection experiments. We find acceptable regions of the parameter spaces for Higgs-portal models with real scalar, neutral vector, Majorana, or Dirac fermion dark matter particles, and Z -portal models with Majorana or Dirac fermion dark matter particles. In many of these cases, there are interesting prospects for discovering dark matter particles in Higgs or Z decays, as well as dark matter particles weighing ≳100 GeV . Negative results from planned direct detection experiments would still allow acceptable regions for Higgs- and Z -portal models with Majorana or Dirac fermion dark matter particles.

  14. Dark matter annihilation at the galactic center

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the role of future telescopes in differentiating a dark matter model from astrophysical emission.

  15. Detecting superlight dark matter with Fermi-degenerate materials

    DOE PAGES

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; ...

    2016-08-08

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10 –3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in ordermore » to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.« less

  16. Dark sequential Z ' portal: Collider and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Campos, Miguel D.; Lindner, Manfred; Masiero, Antonio; Queiroz, Farinaldo S.

    2018-02-01

    We revisit the status of a Majorana fermion as a dark matter candidate when a sequential Z' gauge boson dictates the dark matter phenomenology. Direct dark matter detection signatures rise from dark matter-nucleus scatterings at bubble chamber and liquid xenon detectors, and from the flux of neutrinos from the Sun measured by the IceCube experiment, which is governed by the spin-dependent dark matter-nucleus scattering. On the collider side, LHC searches for dilepton and monojet + missing energy signals play an important role. The relic density and perturbativity requirements are also addressed. By exploiting the dark matter complementarity we outline the region of parameter space where one can successfully have a Majorana dark matter particle in light of current and planned experimental sensitivities.

  17. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  18. Superconducting Detectors for Superlight Dark Matter

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M.

    2016-01-01

    We propose and study a new class of superconducting detectors that are sensitive to O (meV ) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, mX≳1 keV . We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  19. DAEδALUS and dark matter detection

    DOE PAGES

    Kahn, Yonatan; Krnjaic, Gordan; Thaler, Jesse; ...

    2015-03-05

    Among laboratory probes of dark matter, fixed-target neutrino experiments are particularly well suited to search for light weakly coupled dark sectors. Here in this paper, we show that the DAEδALUS source setup$-$an 800 MeV proton beam impinging on a target of graphite and copper$-$can improve the present LSND bound on dark photon models by an order of magnitude over much of the accessible parameter space for light dark matter when paired with a suitable neutrino detector such as LENA. Interestingly, both DAEδALUS and LSND are sensitive to dark matter produced from off-shell dark photons. We show for the first timemore » that LSND can be competitive with searches for visible dark photon decays and that fixed-target experiments have sensitivity to a much larger range of heavy dark photon masses than previously thought. We review the mechanism for dark matter production and detection through a dark photon mediator, discuss the beam-off and beam-on backgrounds, and present the sensitivity in dark photon kinetic mixing for both the DAEδALUS/LENA setup and LSND in both the on- and off-shell regimes.« less

  20. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    DOE PAGES

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...

    2018-01-08

    Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less

  1. Detection of sub-MeV dark matter with three-dimensional Dirac materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela

    Here, we propose the use of three-dimensional Dirac materials as targets for direct detection of sub-MeV dark matter. Dirac materials are characterized by a linear dispersion for low-energy electronic excitations, with a small band gap of Ο(meV) if lattice symmetries are broken. Dark matter at the keV scale carrying kinetic energy as small as a few meV can scatter and excite an electron across the gap. Alternatively, bosonic dark matter as light as a few meV can be absorbed by the electrons in the target. We develop the formalism for dark matter scattering and absorption in Dirac materials and calculatemore » the experimental reach of these target materials. We find that Dirac materials can play a crucial role in detecting dark matter in the keV to MeV mass range that scatters with electrons via a kinetically mixed dark photon, as the dark photon does not develop an in-medium effective mass. The same target materials provide excellent sensitivity to absorption of light bosonic dark matter in the meV to hundreds of meV mass range, superior to all other existing proposals when the dark matter is a kinetically mixed dark photon.« less

  2. Dark matter direct detection of a fermionic singlet at one loop

    NASA Astrophysics Data System (ADS)

    Herrero-García, Juan; Molinaro, Emiliano; Schmidt, Michael A.

    2018-06-01

    The strong direct detection limits could be pointing to dark matter - nucleus scattering at loop level. We study in detail the prototype example of an electroweak singlet (Dirac or Majorana) dark matter fermion coupled to an extended dark sector, which is composed of a new fermion and a new scalar. Given the strong limits on colored particles from direct and indirect searches we assume that the fields of the new dark sector are color singlets. We outline the possible simplified models, including the well-motivated cases in which the extra scalar or fermion is a Standard Model particle, as well as the possible connection to neutrino masses. We compute the contributions to direct detection from the photon, the Z and the Higgs penguins for arbitrary quantum numbers of the dark sector. Furthermore, we derive compact expressions in certain limits, i.e., when all new particles are heavier than the dark matter mass and when the fermion running in the loop is light, like a Standard Model lepton. We study in detail the predicted direct detection rate and how current and future direct detection limits constrain the model parameters. In case dark matter couples directly to Standard Model leptons we find an interesting interplay between lepton flavor violation, direct detection and the observed relic abundance.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo, E-mail: n.bozorgnia@uva.nl, E-mail: gelmini@physics.ucla.edu, E-mail: paolo@physics.utah.edu

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the meanmore » recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.« less

  4. Absorption of light dark matter in semiconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derivemore » the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. Finally, with only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.« less

  5. Dark-matter decay as a complementary probe of multicomponent dark sectors.

    PubMed

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2015-02-06

    In single-component theories of dark matter, the 2→2 amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. The detection techniques based on these processes are thus complementary. However, multicomponent theories exhibit an additional direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter components. We discuss how this new detection channel may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  6. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    PubMed

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  7. Direct detection constraints on dark photon dark matter

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; Ritz, Adam

    2015-07-01

    Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons) in the 0.01- 100 keV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to O (10-15), assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity to dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. We also revisit indirect constraints from V → 3 γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.

  8. Direct detection constraints on dark photon dark matter

    DOE PAGES

    An, Haipeng; Pospelov, Maxim; Pradler, Josef; ...

    2015-06-11

    Dark matter detectors built primarily to probe elastic scattering of WIMPs on nuclei are also precise probes of light, weakly coupled, particles that may be absorbed by the detector material. In this paper, we derive constraints on the minimal model of dark matter comprised of long-lived vector states V (dark photons) in the 0.01–100KeV mass range. The absence of an ionization signal in direct detection experiments such as XENON10 and XENON100 places a very strong constraint on the dark photon mixing angle, down to Ο(10 –15), assuming that dark photons comprise the dominant fraction of dark matter. This sensitivity tomore » dark photon dark matter exceeds the indirect bounds derived from stellar energy loss considerations over a significant fraction of the available mass range. As a result, we also revisit indirect constraints from V → 3γ decay and show that limits from modifications to the cosmological ionization history are comparable to the updated limits from the diffuse γ-ray flux.« less

  9. EDITORIAL: Focus on Dark Matter and Particle Physics

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von Doetinchem, H Gast, T Kirn and S Schael Axion searches with helioscopes and astrophysical signatures for axion(-like) particles K Zioutas, M Tsagri, Y Semertzidis, T Papaevangelou, T Dafni and V Anastassopoulos The indirect search for dark matter with IceCube Francis Halzen and Dan Hooper DIRECT DARK MATTER SEARCHES:EXPERIMENTS Gaseous dark matter detectors G Sciolla and C J Martoff Search for dark matter with CRESST Rafael F Lang and Wolfgang Seidel DIRECT AND INDIRECT PARTICLE DARK MATTER SEARCHES:THEORY Dark matter annihilation around intermediate mass black holes: an update Gianfranco Bertone, Mattia Fornasa, Marco Taoso and Andrew R Zentner Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses John Ellis, Keith A Olive and Pearl Sandick Dark stars: a new study of the first stars in the Universe Katherine Freese, Peter Bodenheimer, Paolo Gondolo and Douglas Spolyar Determining the mass of dark matter particles with direct detection experiments Chung-Lin Shan The detection of subsolar mass dark matter halos Savvas M Koushiappas Neutrino coherent scattering rates at direct dark matter detectors Louis E Strigari Gamma rays from dark matter annihilation in the central region of the Galaxy Pasquale Dario Serpico and Dan Hooper DARK MATTER MODELS The dark matter interpretation of the 511 keV line Céline Boehm Axions as dark matter particles Leanne D Duffy and Karl van Bibber Sterile neutrinos Alexander Kusenko Dark matter candidates Lars Bergström Minimal dark matter: model and results Marco Cirelli and Alessandro Strumia Shedding light on the dark sector with direct WIMP production Partha Konar, Kyoungchul Kong, Konstantin T Matchev and Maxim Perelstein Axinos as dark matter particles Laura Covi and Jihn E Kim

  10. Prospects for detecting a net photon circular polarization produced by decaying dark matter

    NASA Astrophysics Data System (ADS)

    Elagin, Andrey; Kumar, Jason; Sandick, Pearl; Teng, Fei

    2017-11-01

    If dark matter interactions with Standard Model particles are C P violating, then dark matter annihilation/decay can produce photons with a net circular polarization. We consider the prospects for experimentally detecting evidence for such a circular polarization. We identify optimal models for dark matter interactions with the Standard Model, from the point of view of detectability of the net polarization, for the case of either symmetric or asymmetric dark matter. We find that, for symmetric dark matter, evidence for net polarization could be found by a search of the Galactic center by an instrument sensitive to circular polarization with an efficiency-weighted exposure of at least 50 ,000 cm2 yr , provided the systematic detector uncertainties are constrained at the 1% level. Better sensitivity can be obtained in the case of asymmetric dark matter. We discuss the prospects for achieving the needed level of performance using possible detector technologies.

  11. Directional detection of dark matter in universal bound states

    DOE PAGES

    Laha, Ranjan

    2015-10-06

    It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less

  12. The fraternal WIMP miracle

    DOE PAGES

    Craig, Nathaniel; Katz, Andrey

    2015-10-27

    We identify and analyze thermal dark matter candidates in the fraternal twin Higgs model and its generalizations. The relic abundance of fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. As such, the dark matter candidates benefit from a "fraternal WIMP miracle'', reproducing the observed dark matter abundance for dark matter masses between 50 and 150 GeV . However, the couplings dominantly responsible for dark matter annihilation do not lead to interactions with the visible sector. The direct detection rate is instead setmore » via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation. Finally, the predicted direct detection cross section is close to current LUX bounds and presents an opportunity for the next generation of direct detection experiments.« less

  13. Towards understanding thermal history of the Universe through direct and indirect detection of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roszkowski, Leszek; Trojanowski, Sebastian; Turzyński, Krzysztof, E-mail: leszek.roszkowski@ncbj.gov.pl, E-mail: sebastian.trojanowski@uci.edu, E-mail: Krzysztof-Jan.Turzynski@fuw.edu.pl

    We examine the question to what extent prospective detection of dark matter by direct and indirect- detection experiments could shed light on what fraction of dark matter was generated thermally via the freeze-out process in the early Universe. By simulating putative signals that could be seen in the near future and using them to reconstruct WIMP dark matter properties, we show that, in a model- independent approach this could only be achieved in a thin sliver of the parameter space. However, with additional theoretical input the hypothesis about the thermal freeze-out as the dominant mechanism for generating dark matter canmore » potentially be verified. We illustrate this with two examples: an effective field theory of dark matter with a vector messenger and a higgsino or wino dark matter within the MSSM.« less

  14. Effect of Age and Glaucoma on the Detection of Darks and Lights

    PubMed Central

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W.; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-01-01

    Purpose We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. Methods We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. Results We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. Conclusions We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma. PMID:26513506

  15. Effect of Age and Glaucoma on the Detection of Darks and Lights.

    PubMed

    Zhao, Linxi; Sendek, Caroline; Davoodnia, Vandad; Lashgari, Reza; Dul, Mitchell W; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    We have shown previously that normal observers detect dark targets faster and more accurately than light targets, when presented in noisy backgrounds. We investigated how these differences in detection time and accuracy are affected by age and ganglion cell pathology associated with glaucoma. We asked 21 glaucoma patients, 21 age-similar controls, and 5 young control observers to report as fast as possible the number of 1 to 3 light or dark targets. The targets were positioned at random in a binary noise background, within the central 30° of the visual field. We replicate previous findings that darks are detected faster and more accurately than lights. We extend these findings by demonstrating that differences in detection of darks and lights are found reliably across different ages and in observers with glaucoma. We show that differences in detection time increase at a rate of approximately 55 msec/dB at early stages of glaucoma and then remain constant at later stages at approximately 800 msec. In normal subjects, differences in detection time increase with age at a rate of approximately 8 msec/y. We also demonstrate that the accuracy to detect lights and darks is significantly correlated with the severity of glaucoma and that the mean detection time is significantly longer for subjects with glaucoma than age-similar controls. We conclude that differences in detection of darks and lights can be demonstrated over a wide range of ages, and asymmetries in dark/light detection increase with age and early stages of glaucoma.

  16. Direct detection of sub-GeV dark matter with semiconductor targets

    DOE PAGES

    Essig, Rouven; Fernández-Serra, Marivi; Mardon, Jeremy; ...

    2016-05-09

    Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their O(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcomingmore » several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. In conclusion, the searches we propose will probe vast new regions of unexplored dark matter model and parameter space.« less

  17. Searching for dark absorption with direct detection experiments

    DOE PAGES

    Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku; ...

    2017-06-16

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less

  18. Searching for dark absorption with direct detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Itay M.; Essig, Rouven; Tobioka, Kohsaku

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB formore » silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond known stellar cooling bounds. However, projected sensitivities of the upcoming SuperCDMS SNOLAB using germanium can go beyond these and even probe parameter space consistent with possible hints from the white dwarf luminosity function. We find similar results for dark photons from the sun. For all cases, direct-detection experiments can have unprecedented sensitivity to dark-sector particles.« less

  19. Directional detection of dark matter with two-dimensional targets

    DOE PAGES

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; ...

    2017-09-01

    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less

  20. Directional detection of dark matter with two-dimensional targets

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela; Tully, Christopher G.; Zurek, Kathryn M.

    2017-09-01

    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. We show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. This proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.

  1. Directional detection of dark matter with two-dimensional targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, Yonit; Kahn, Yonatan; Lisanti, Mariangela

    We propose two-dimensional materials as targets for direct detection of dark matter. Using graphene as an example, we focus on the case where dark matter scattering deposits sufficient energy on a valence-band electron to eject it from the target. Here, we show that the sensitivity of graphene to dark matter of MeV to GeV mass can be comparable, for similar exposure and background levels, to that of semiconductor targets such as silicon and germanium. Moreover, a two-dimensional target is an excellent directional detector, as the ejected electron retains information about the angular dependence of the incident dark matter particle. Ourmore » proposal can be implemented by the PTOLEMY experiment, presenting for the first time an opportunity for directional detection of sub-GeV dark matter.« less

  2. Simultaneous wood and metal particle detection on dark-field radiography.

    PubMed

    Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela

    2018-01-01

    Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.

  3. Dark Energy and Gravity Experiment Explorer and Pathfinder

    NASA Astrophysics Data System (ADS)

    Chiow, S.-w.; Yu, N.

    2018-02-01

    We propose to utilize the unique gravity and vacuum environment in the orbits of the Deep Space Gateway for direct detections of dark energy using atom interferometers, and for pathfinder experiments for future gravitational wave and dark matter detections.

  4. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  5. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo

    2015-08-13

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  6. Global limits and interference patterns in dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu

    2015-08-01

    We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less

  7. Hypercharged dark matter and direct detection as a probe of reheating.

    PubMed

    Feldstein, Brian; Ibe, Masahiro; Yanagida, Tsutomu T

    2014-03-14

    The lack of new physics at the LHC so far weakens the argument for TeV scale thermal dark matter. On the other hand, heavier, nonthermal dark matter is generally difficult to test experimentally. Here we consider the interesting and generic case of hypercharged dark matter, which can allow for heavy dark matter masses without spoiling testability. Planned direct detection experiments will be able to see a signal for masses up to an incredible 1010  GeV, and this can further serve to probe the reheating temperature up to about 109  GeV, as determined by the nonthermal dark matter relic abundance. The Z-mediated nature of the dark matter scattering may be determined in principle by comparing scattering rates on different detector nuclei, which in turn can reveal the dark matter mass. We will discuss the extent to which future experiments may be able to make such a determination.

  8. Dual-Use of Compact HF Radars for the Detection of Mid-and Large-size Vessels

    DTIC Science & Technology

    2010-01-01

    make detecting a ship nearby very difficult. The zero-Doppler is from signals returned from any stationary object wile the sea-echo Bragg peaks are due...the six detection processes IIR-128 (blue), IIR-256 (red), IIR-256 (magenta), Median-64 (dark brown ), Median-128 ( brown ), Median-256 (dark green). As...IIR-256 (red), IIR-256 (magenta), Median-64 (dark brown ), Median-128 ( brown ), Median-256 (dark green). Acknowledgements This work was funded by the

  9. Probing Sub-GeV Dark Matter with Conventional Detectors.

    PubMed

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  10. Searching for dark matter

    NASA Astrophysics Data System (ADS)

    Mateo, Mario

    1994-01-01

    Three teams of astronomers believe they have independently found evidence for dark matter in our galaxy. A brief history of the search for dark matter is presented. The use of microlensing-event observation for spotting dark matter is described. The equipment required to observe microlensing events and three groups working on dark matter detection are discussed. The three groups are the Massive Compact Halo Objects (MACHO) Project team, the Experience de Recherche d'Objets Sombres (EROS) team, and the Optical Gravitational Lensing Experiment (OGLE) team. The first apparent detections of microlensing events by the three teams are briefly reported.

  11. Direct detection with dark mediators

    DOE PAGES

    Curtin, David; Surujon, Ze'ev; Tsai, Yuhsin

    2014-10-16

    We introduce dark mediator Dark Matter (dmDM) where the dark and visible sectors are connected by at least one light mediator Φ carrying the same dark charge that stabilizes DM. Φ is coupled to the Standard Model via an operator q¯qΦΦ*/Λ, and to dark matter via a Yukawa coupling y χX¯ cXΦ. Direct detection is realized as the 2 → 3 process χN → χ¯NΦ at tree-level for m Φ≲10 keV and small Yukawa coupling, or alternatively as a loop-induced 2 → 2 process χN → χN. We explore the direct-detection consequences of this scenario and find that a heavymore » O(100 GeV) dmDM candidate fakes different O(10 GeV) standard WIMPs in different experiments. Large portions of the dmDM parameter space are detectable above the irreducible neutrino background and not yet excluded by any bounds. Interestingly, for the m Φ range leading to novel direct detection phenomenology, dmDM is also a form of Self-Interacting Dark Matter (SIDM), which resolves inconsistencies between dwarf galaxy observations and numerical simulations.« less

  12. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  13. Detection of Frictional Heating on Faults Using Raman Spectra of Carbonaceous Material

    NASA Astrophysics Data System (ADS)

    Ito, K.; Ujiie, K.; Kagi, H.

    2017-12-01

    Raman spectra of carbonaceous material (RSCM) have been used as geothermometer in sedimentary and metamorphic rocks. However, it remains poorly understood whether RSCM are useful for detecting past frictional heating on faults. To detect increased heating during seismic slip, we examine the thrust fault in the Jurassic accretionary complex, central Japan. The thrust fault zone includes 10 cm-thick cataclasite and a few mm-thick dark layer. The cataclasite is characterized by fragments of black and gray chert in the black carbonaceous mudstone matrix. The dark layer is marked by intensely cracked gray chert fragments in the dark matrix of carbonaceous mudstone composition, which bounds the fractured gray chert above from the cataclasite below. The RSCM are analyzed for carbonaceous material in the cataclasite, dark layer, and host rock <10 mm from cataclasite and dark layer boundaries. The result indicates that there is no increased carbonization in the cataclasite. In contrast, the dark layer and part of host rocks <2 mm from the dark layer boundaries show prominent increase in carbonization. The absent of increased carbonization in the cataclasite could be attributed to insufficient frictional heating associated with distributed shear and/or faulting at low slip rates. The dark layer exhibits the appearance of fault and injection veins, and the dark layer boundaries are irregularly embayed or intensely cracked; these features have been characteristically observed in pseudotachylytes. Therefore, the increased carbonization in the dark layer is likely resulted from increased heating during earthquake faulting. The intensely cracked fragments in the dark layer and cracked wall rocks may reflect thermal fracturing in chert, which is caused by heat conduction from the molten zone. We suggest that RSCM are useful for the detection of increased heating on faults, particularly when the temperature is high enough for frictional melting and thermal fracturing.

  14. Light dark matter, naturalness, and the radiative origin of the electroweak scale

    DOE PAGES

    Altmannshofer, Wolfgang; Bardeen, William A.; Bauer, Martin; ...

    2015-01-09

    We study classically scale invariant models in which the Standard Model Higgs mass term is replaced in the Lagrangian by a Higgs portal coupling to a complex scalar field of a dark sector. We focus on models that are weakly coupled with the quartic scalar couplings nearly vanishing at the Planck scale. The dark sector contains fermions and scalars charged under dark SU(2) × U(1) gauge interactions. Radiative breaking of the dark gauge group triggers electroweak symmetry breaking through the Higgs portal coupling. Requiring both a Higgs boson mass of 125.5 GeV and stability of the Higgs potential up tomore » the Planck scale implies that the radiative breaking of the dark gauge group occurs at the TeV scale. We present a particular model which features a long-range abelian dark force. The dominant dark matter component is neutral dark fermions, with the correct thermal relic abundance, and in reach of future direct detection experiments. The model also has lighter stable dark fermions charged under the dark force, with observable effects on galactic-scale structure. Collider signatures include a dark sector scalar boson with mass ≲ 250 GeV that decays through mixing with the Higgs boson, and can be detected at the LHC. As a result, the Higgs boson, as well as the new scalar, may have significant invisible decays into dark sector particles.« less

  15. Inelastic Boosted Dark Matter at direct detection experiments

    NASA Astrophysics Data System (ADS)

    Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-05-01

    We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.

  16. Dark matter repulsion could thwart direct detection

    DOE PAGES

    Davoudiasl, Hooman

    2017-11-20

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less

  17. Dark matter repulsion could thwart direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davoudiasl, Hooman

    We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less

  18. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment

    PubMed Central

    Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András

    2017-01-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection–polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny–shady–patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies. PMID:29291065

  19. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment.

    PubMed

    Horváth, Gábor; Szörényi, Tamás; Pereszlényi, Ádám; Gerics, Balázs; Hegedüs, Ramón; Barta, András; Åkesson, Susanne

    2017-11-01

    Horseflies (Tabanidae) are polarotactic, being attracted to linearly polarized light when searching for water or host animals. Although it is well known that horseflies prefer sunlit dark and strongly polarizing hosts, the reason for this preference is unknown. According to our hypothesis, horseflies use their polarization sensitivity to look for targets with higher degrees of polarization in their optical environment, which as a result facilitates detection of sunlit dark host animals. In this work, we tested this hypothesis. Using imaging polarimetry, we measured the reflection-polarization patterns of a dark host model and a living black cow under various illumination conditions and with different vegetation backgrounds. We focused on the intensity and degree of polarization of light originating from dark patches of vegetation and the dark model/cow. We compared the chances of successful host selection based on either intensity or degree of polarization of the target and the combination of these two parameters. We show that the use of polarization information considerably increases the effectiveness of visual detection of dark host animals even in front of sunny-shady-patchy vegetation. Differentiation between a weakly polarizing, shady (dark) vegetation region and a sunlit, highly polarizing dark host animal increases the efficiency of host search by horseflies.

  20. Revisiting the direct detection of dark matter in simplified models

    NASA Astrophysics Data System (ADS)

    Li, Tong

    2018-07-01

    In this work we numerically re-examine the loop-induced WIMP-nucleon scattering cross section for the simplified dark matter models and the constraint set by the latest direct detection experiment. We consider a fermion, scalar or vector dark matter component from five simplified models with leptophobic spin-0 mediators coupled only to Standard Model quarks and dark matter particles. The tree-level WIMP-nucleon cross sections in these models are all momentum-suppressed. We calculate the non-suppressed spin-independent WIMP-nucleon cross sections from loop diagrams and investigate the constrained space of dark matter mass and mediator mass by Xenon1T. The constraints from indirect detection and collider search are also discussed.

  1. Review of indirect detection of dark matter with neutrinos

    NASA Astrophysics Data System (ADS)

    Danninger, Matthias

    2017-09-01

    Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.

  2. Simulated Milky Way analogues: implications for dark matter direct searches

    NASA Astrophysics Data System (ADS)

    Bozorgnia, Nassim; Calore, Francesca; Schaller, Matthieu; Lovell, Mark; Bertone, Gianfranco; Frenk, Carlos S.; Crain, Robert A.; Navarro, Julio F.; Schaye, Joop; Theuns, Tom

    2016-05-01

    We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (with peak speed of 223-289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp

    Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10 –3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in ordermore » to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.« less

  5. Identifying WIMP dark matter from particle and astroparticle data

    NASA Astrophysics Data System (ADS)

    Bertone, Gianfranco; Bozorgnia, Nassim; Kim, Jong Soo; Liem, Sebastian; McCabe, Christopher; Otten, Sydney; Ruiz de Austri, Roberto

    2018-03-01

    One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.

  6. DarkBit: a GAMBIT module for computing dark matter observables and likelihoods

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Kahlhoefer, Felix; Kvellestad, Anders; Putze, Antje; Savage, Christopher; Scott, Pat; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-12-01

    We introduce DarkBit, an advanced software code for computing dark matter constraints on various extensions to the Standard Model of particle physics, comprising both new native code and interfaces to external packages. This release includes a dedicated signal yield calculator for gamma-ray observations, which significantly extends current tools by implementing a cascade-decay Monte Carlo, as well as a dedicated likelihood calculator for current and future experiments ( gamLike). This provides a general solution for studying complex particle physics models that predict dark matter annihilation to a multitude of final states. We also supply a direct detection package that models a large range of direct detection experiments ( DDCalc), and that provides the corresponding likelihoods for arbitrary combinations of spin-independent and spin-dependent scattering processes. Finally, we provide custom relic density routines along with interfaces to DarkSUSY, micrOMEGAs, and the neutrino telescope likelihood package nulike. DarkBit is written in the framework of the Global And Modular Beyond the Standard Model Inference Tool ( GAMBIT), providing seamless integration into a comprehensive statistical fitting framework that allows users to explore new models with both particle and astrophysics constraints, and a consistent treatment of systematic uncertainties. In this paper we describe its main functionality, provide a guide to getting started quickly, and show illustrative examples for results obtained with DarkBit (both as a stand-alone tool and as a GAMBIT module). This includes a quantitative comparison between two of the main dark matter codes ( DarkSUSY and micrOMEGAs), and application of DarkBit 's advanced direct and indirect detection routines to a simple effective dark matter model.

  7. First direct detection limits on sub-GeV dark matter from XENON10.

    PubMed

    Essig, Rouven; Manalaysay, Aaron; Mardon, Jeremy; Sorensen, Peter; Volansky, Tomer

    2012-07-13

    The first direct detection limits on dark matter in the MeV to GeV mass range are presented, using XENON10 data. Such light dark matter can scatter with electrons, causing ionization of atoms in a detector target material and leading to single- or few-electron events. We use 15  kg day of data acquired in 2006 to set limits on the dark-matter-electron scattering cross section. The strongest bound is obtained at 100 MeV where σ(e)<3×10(-38)  cm2 at 90% C.L., while dark-matter masses between 20 MeV and 1 GeV are bounded by σ(e)<10(-37)  cm2 at 90% C.L. This analysis provides a first proof of principle that direct detection experiments can be sensitive to dark-matter candidates with masses well below the GeV scale.

  8. Dark and white lesions observed in central serous chorioretinopathy on optical coherence tomography angiography.

    PubMed

    De Bats, Flore; Cornut, Pierre-Loïc; Wolff, Benjamin; Kodjikian, Laurent; Mauget-Faÿsse, Martine

    2018-03-01

    To describe abnormal dark (hyposignal) and white (hypersignal) lesions observed on optical coherence tomography angiography in central serous chorioretinopathy. Prospective, multicenter, and descriptive study including patients with active or quiescent central serous chorioretinopathy. All patients had undergone a complete ophthalmic examination. Abnormal dark lesions were detected as "dark spots" and "dark areas" on optical coherence tomography angiography. A "dark spot" could correspond to six different abnormalities: pigment epithelium detachment, subretinal deposit, "Lucency" within surrounding subretinal fibrin, choroidal cavitation, choroidal excavation, and choroidal fluid. A "dark area" could be related to a serous retinal detachment or choriocapillary compression. Abnormal white lesions were also detected: A "white spot" could correspond with the leaking point on fluorescein angiography or with hyper-reflective dots; A "white filamentous pattern" at the Brüch's membrane level corresponded to abnormal choroidal neovascular vessels. A semiology is described using optical coherence tomography angiography in central serous chorioretinopathy as abnormal dark and white lesions. Multimodal imaging is mandatory in addition to optical coherence tomography angiography to diagnose non-neovascular retinal and choroidal central serous chorioretinopathy lesions. However, optical coherence tomography angiography alone is helpful in detecting choroidal neovascular membrane in central serous chorioretinopathy.

  9. Dark photons from the center of the Earth: Smoking-gun signals of dark matter

    NASA Astrophysics Data System (ADS)

    Feng, Jonathan L.; Smolinsky, Jordan; Tanedo, Philip

    2016-01-01

    Dark matter may be charged under dark electromagnetism with a dark photon that kinetically mixes with the Standard Model photon. In this framework, dark matter will collect at the center of the Earth and annihilate into dark photons, which may reach the surface of the Earth and decay into observable particles. We determine the resulting signal rates, including Sommerfeld enhancements, which play an important role in bringing the Earth's dark matter population to their maximal, equilibrium value. For dark matter masses mX˜100 GeV - 10 TeV , dark photon masses mA'˜MeV -GeV , and kinetic mixing parameters ɛ ˜1 0-9- 1 0-7 , the resulting electrons, muons, photons, and hadrons that point back to the center of the Earth are a smoking-gun signal of dark matter that may be detected by a variety of experiments, including neutrino telescopes, such as IceCube, and space-based cosmic ray detectors, such as Fermi-LAT and AMS. We determine the signal rates and characteristics and show that large and striking signals—such as parallel muon tracks—are possible in regions of the (mA',ɛ ) plane that are not probed by direct detection, accelerator experiments, or astrophysical observations.

  10. Lepton flavor violation induced by dark matter

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Queiroz, Farinaldo S.; Santos, A. C. O.

    2018-04-01

    Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our Universe induces the lepton flavor violation (LFV) decays μ →e γ and μ →e e e as well as μ -e conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candidate yielding flavor violation signatures that can be probed in the upcoming experiments. In fact, keeping the dark matter mass at the TeV scale, a sizable LFV signal is possible, while reproducing the correct dark matter relic density and meeting limits from direct-detection experiments.

  11. Constraining Secluded Dark Matter models with the public data from the 79-string IceCube search for dark matter in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardid, M.; Felis, I.; Martínez-Mora, J.A.

    The 79-string IceCube search for dark matter in the Sun public data is used to test Secluded Dark Matter models. No significant excess over background is observed and constraints on the parameters of the models are derived. Moreover, the search is also used to constrain the dark photon model in the region of the parameter space with dark photon masses between 0.22 and ∼ 1 GeV and a kinetic mixing parameter ε ∼ 10{sup −9}, which remains unconstrained. These are the first constraints of dark photons from neutrino telescopes. It is expected that neutrino telescopes will be efficient tools tomore » test dark photons by means of different searches in the Sun, Earth and Galactic Center, which could complement constraints from direct detection, accelerators, astrophysics and indirect detection with other messengers, such as gamma rays or antiparticles.« less

  12. The impact of baryons on the direct detection of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelso, Chris; Savage, Christopher; Freese, Katherine

    2016-08-01

    The spatial and velocity distributions of dark matter particles in the Milky Way Halo affect the signals expected to be observed in searches for dark matter. Results from direct detection experiments are often analyzed assuming a simple isothermal distribution of dark matter, the Standard Halo Model (SHM). Yet there has been skepticism regarding the validity of this simple model due to the complicated gravitational collapse and merger history of actual galaxies. In this paper we compare the SHM to the results of cosmological hydrodynamical simulations of galaxy formation to investigate whether or not the SHM is a good representation ofmore » the true WIMP distribution in the analysis of direct detection data. We examine two Milky Way-like galaxies from the MaGICC cosmological simulations (a) with dark matter only and (b) with baryonic physics included. The inclusion of baryons drives the shape of the DM halo to become more spherical and makes the velocity distribution of dark matter particles less anisotropic especially at large heliocentric velocities, thereby making the SHM a better fit. We also note that we do not find a significant disk-like rotating dark matter component in either of the two galaxy halos with baryons that we examine, suggesting that dark disks are not a generic prediction of cosmological hydrodynamical simulations. We conclude that in the Solar neighborhood, the SHM is in fact a good approximation to the true dark matter distribution in these cosmological simulations (with baryons) which are reasonable representations of the Milky Way, and hence can also be used for the purpose of dark matter direct detection calculations.« less

  13. The darkside multiton detector for the direct dark matter search

    DOE PAGES

    Aalseth, C. E.; Agnes, P.; Alton, A.; ...

    2015-01-01

    Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing observable low-energy (<100 keV) nuclear recoils. The DarkSide program aims at the WIPMs detection using a liquid argon time projection chamber (LAr-TPC). In this paper we quickly review the DarkSide program focusing in particular on the next generation experiment DarkSide-G2, a 3.6-ton LAr-TPC. The different detector components are described as wellmore » as the improvements needed to scale the detector from DarkSide-50 (50 kg LAr-TPC) up to DarkSide-G2. Finally, the preliminary results on background suppression and expected sensitivity are presented.« less

  14. AntiparticleDM: Discriminating between Majorana and Dirac Dark Matter

    NASA Astrophysics Data System (ADS)

    Kavanagh, Bradley J.; Queiroz, Farinaldo S.; Rodejohann, Werner; Yaguna, Carlos E.

    2018-02-01

    AntiparticleDM calculates the prospects of future direct detection experiments to discriminate between Majorana and Dirac Dark Matter (i.e., to determine whether Dark Matter is its own antiparticle). Direct detection event rates and mock data generation are dealt with by a variation of the WIMpy code.

  15. Simulated Milky Way analogues: implications for dark matter direct searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozorgnia, Nassim; Calore, Francesca; Lovell, Mark

    2016-05-01

    We study the implications of galaxy formation on dark matter direct detection using high resolution hydrodynamic simulations of Milky Way-like galaxies simulated within the EAGLE and APOSTLE projects. We identify Milky Way analogues that satisfy observational constraints on the Milky Way rotation curve and total stellar mass. We then extract the dark matter density and velocity distribution in the Solar neighbourhood for this set of Milky Way analogues, and use them to analyse the results of current direct detection experiments. For most Milky Way analogues, the event rates in direct detection experiments obtained from the best fit Maxwellian distribution (withmore » peak speed of 223–289 km/s) are similar to those obtained directly from the simulations. As a consequence, the allowed regions and exclusion limits set by direct detection experiments in the dark matter mass and spin-independent cross section plane shift by a few GeV compared to the Standard Halo Model, at low dark matter masses. For each dark matter mass, the halo-to-halo variation of the local dark matter density results in an overall shift of the allowed regions and exclusion limits for the cross section. However, the compatibility of the possible hints for a dark matter signal from DAMA and CDMS-Si and null results from LUX and SuperCDMS is not improved.« less

  16. Determining dark matter properties with a XENONnT/LZ signal and LHC Run 3 monojet searches

    NASA Astrophysics Data System (ADS)

    Baum, Sebastian; Catena, Riccardo; Conrad, Jan; Freese, Katherine; Krauss, Martin B.

    2018-04-01

    We develop a method to forecast the outcome of the LHC Run 3 based on the hypothetical detection of O (100 ) signal events at XENONnT. Our method relies on a systematic classification of renormalizable single-mediator models for dark matter-quark interactions and is valid for dark matter candidates of spin less than or equal to one. Applying our method to simulated data, we find that at the end of the LHC Run 3 only two mutually exclusive scenarios would be compatible with the detection of O (100 ) signal events at XENONnT. In the first scenario, the energy distribution of the signal events is featureless, as for canonical spin-independent interactions. In this case, if a monojet signal is detected at the LHC, dark matter must have spin 1 /2 and interact with nucleons through a unique velocity-dependent operator. If a monojet signal is not detected, dark matter interacts with nucleons through canonical spin-independent interactions. In a second scenario, the spectral distribution of the signal events exhibits a bump at nonzero recoil energies. In this second case, a monojet signal can be detected at the LHC Run 3; dark matter must have spin 1 /2 and interact with nucleons through a unique momentum-dependent operator. We therefore conclude that the observation of O (100 ) signal events at XENONnT combined with the detection, or the lack of detection, of a monojet signal at the LHC Run 3 would significantly narrow the range of possible dark matter-nucleon interactions. As we argued above, it can also provide key information on the dark matter particle spin.

  17. Modeling The Distribution Of Dark Matter And Its Connection To Galaxies

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan

    2016-06-01

    Despite the mysterious nature of dark matter and dark energy, the Lambda-Cold Dark Matter (LCDM) model provides a reasonably accurate description of the evolution of the cosmos and the distribution of galaxies. Today, we are set to tackle more specific and quantitative questions about the galaxy formation physics, the nature of dark matter, and the connection between the dark and the visible components. The answers to these questions are however elusive, because dark matter is not directly observable, and various unknowns lie between what we can observe and what we can calculate. Hence, mathematical models that bridge the observable and the calculable are essential for the study of modern cosmology. The aim of my thesis work is to improve existing models and also to construct new models for various aspects of the dark matter distribution, as dark matter structures the cosmic web and forms the nests of visible galaxies. Utilizing a series of cosmological dark matter simulations which span a wide dynamical range and a statistical sample of zoom-in simulations which focus on individual dark matter halos, we develop models for the spatial and velocity distribution of dark matter particles, the abundance of dark substructures, and the empirical connection between dark matter and galaxies. As more precise observational results become available, more accurate models are then required to test the consistency between these results and the LCDM predictions. For all the models we investigate, we find that the formation history of dark matter halos always plays a crucial role. Neglecting the halo formation history would result in systematic biases when we interpret various observational results, including dark matter direct detection experiments, the detection of dark substructures with strong-lensed systems, the large-scale spatial clustering of galaxies, and the abundance of dwarf galaxies. Rectifying this, our work will enable us to fully utilize the complementary power of diverse observational datasets to test the LCDM model and to seek new physics.

  18. Dark Matter Detection Using Helium Evaporation and Field Ionization

    NASA Astrophysics Data System (ADS)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek

    2017-11-01

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  19. Dark Matter Detection Using Helium Evaporation and Field Ionization.

    PubMed

    Maris, Humphrey J; Seidel, George M; Stein, Derek

    2017-11-03

    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  20. Dark sector shining through 750 GeV dark Higgs boson at the LHC

    NASA Astrophysics Data System (ADS)

    Ko, P.; Nomura, Takaaki

    2016-07-01

    We consider a dark sector with SU(3)C × U(1)Y × U(1)X and three families of dark fermions that are chiral under dark U(1)X gauge symmetry, whereas scalar dark matter X is the SM singlet. U(1)X dark symmetry is spontaneously broken by nonzero VEV of dark Higgs field 〈 Φ 〉, generating the masses of dark fermions and dark photon Z‧. The resulting dark Higgs boson ϕ can be produced at the LHC by dark quark loop (involving 3 generations) and will decay into a pair of photon through charged dark fermion loop. Its decay width can be easily ∼ 45 GeV due to its possible decays into a pair of dark photon, which is not strongly constrained by the current LHC searches pp → ϕ →Z‧Z‧ followed by Z‧ decays into the SM fermion pairs. The scalar DM can achieve thermal relic density without conflict with direct detection bound or the invisible ϕ decay into a pair of DM.

  1. Simplified models for dark matter face their consistent completions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistentmore » $${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.« less

  2. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  3. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  4. Dark Matter "Collider" from Inelastic Boosted Dark Matter.

    PubMed

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2017-10-20

    We propose a novel dark matter (DM) detection strategy for models with a nonminimal dark sector. The main ingredients in the underlying DM scenario are a boosted DM particle and a heavier dark sector state. The relativistic DM impinged on target material scatters off inelastically to the heavier state, which subsequently decays into DM along with lighter states including visible (standard model) particles. The expected signal event, therefore, accompanies a visible signature by the secondary cascade process associated with a recoiling of the target particle, differing from the typical neutrino signal not involving the secondary signature. We then discuss various kinematic features followed by DM detection prospects at large-volume neutrino detectors with a model framework where a dark gauge boson is the mediator between the standard model particles and DM.

  5. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    PubMed

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)  GeV dark matter may also be significant, depending on the threshold energy of the experiment.

  6. Charting the Unknown: A Hunt in the Dark

    NASA Astrophysics Data System (ADS)

    Mohlabeng, Gopolang Mokoka

    Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects at current and future large volume experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we analyze a different non-minimal dark sector in which its interactions with the standard model sector are mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter preserved under the same stabilization symmetry. We find that the presence of both species in the early Universe results in rare processes contributing to the dark matter relic abundance. We conclude that connecting these three frameworks under one main dark matter program, instead of concentrating on them individually, could help us understand what we are missing, and may assist us to produce ground breaking ideas which lead to the discovery of a signal in the near future.

  7. Dark matter in the coming decade: Complementary paths to discovery and beyond

    DOE PAGES

    Bauer, Daniel; Buckley, James; Cahill-Rowley, Matthew; ...

    2015-05-27

    Here, we summarize the many dark matter searches currently being pursued through four complementary approaches: direct detection, indirect detection, collider experiments, and astrophysical probes. The essential features of broad classes of experiments are described, each with their own strengths and weaknesses. Furthermore, we discuss the complementarity of the different dark matter searches qualitatively and illustrated quantitatively in two simple theoretical frameworks. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program drawing from all four approaches.

  8. Dark Matters

    ScienceCinema

    Joseph Silk

    2018-04-17

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  9. First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.

    We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eVmore » $$c^{-2}$$ with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter $$\\kappa$$ is competitive with constraints from solar emission, reaching a minimum value of 2.2$$\\times$$$10^{-14}$$ at 17 eV$$c^{-2}$$. These results are the most stringent direct detection constraints on hidden-photon dark matter with masses 3-12 eV$$c^{-2}$$ and the first demonstration of direct experimental sensitivity to ionization signals $<$12 eV from dark matter interactions.« less

  10. WIMP dark matter candidates and searches-current status and future prospects.

    PubMed

    Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian

    2018-06-01

    We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.

  11. WIMP dark matter candidates and searches—current status and future prospects

    NASA Astrophysics Data System (ADS)

    Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian

    2018-06-01

    We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.

  12. Indirect detection of neutrino portal dark matter

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Han, Tao; Shams Es Haghi, Barmak

    2018-05-01

    We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the type-I seesaw mechanism and simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxy and Galactic center gamma-ray observations, and AMS-02 antiproton observations, and we also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic center gamma-ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.

  13. Perturbative unitarity constraints on gauge portals

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-12-01

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.

  14. Monthly modulation in dark matter direct-detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britto, Vivian; Meyers, Joel, E-mail: vivian.britto@mail.utoronto.ca, E-mail: jmeyers@cita.utoronto.ca

    2015-11-01

    The signals in dark matter direct-detection experiments should exhibit modulation signatures due to the Earth's motion with respect to the Galactic dark matter halo. The annual and daily modulations, due to the Earth's revolution about the Sun and rotation about its own axis, have been explored previously. Monthly modulation is another such feature present in direct detection signals, and provides a nearly model-independent method of distinguishing dark matter signal events from background. We study here monthly modulations in detail for both WIMP and WISP dark matter searches, examining both the effect of the motion of the Earth about the Earth-Moonmore » barycenter and the gravitational focusing due to the Moon. For WIMP searches, we calculate the monthly modulation of the count rate and show the effects are too small to be observed in the foreseeable future. For WISP dark matter experiments, we show that the photons generated by WISP to photon conversion have frequencies which undergo a monthly modulating shift which is detectable with current technology and which cannot in general be neglected in high resolution WISP searches.« less

  15. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE PAGES

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; ...

    2017-03-15

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  16. Doppler effect on indirect detection of dark matter using dark matter only simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometermore » on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥ 3σ. As a result, the halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.« less

  17. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.

    PubMed

    Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.

  18. DEPFET detectors for direct detection of MeV Dark Matter particles

    NASA Astrophysics Data System (ADS)

    Bähr, A.; Kluck, H.; Ninkovic, J.; Schieck, J.; Treis, J.

    2017-12-01

    The existence of dark matter is undisputed, while the nature of it is still unknown. Explaining dark matter with the existence of a new unobserved particle is among the most promising possible solutions. Recently dark matter candidates in the MeV mass region received more and more interest. In comparison to the mass region between a few GeV to several TeV, this region is experimentally largely unexplored. We discuss the application of a RNDR DEPFET semiconductor detector for direct searches for dark matter in the MeV mass region. We present the working principle of the RNDR DEPFET devices and review the performance obtained by previously performed prototype measurements. The future potential of the technology as dark matter detector is discussed and the sensitivity for MeV dark matter detection with RNDR DEPFET sensors is presented. Under the assumption of six background events in the region of interest and an exposure of 1 kg year a sensitivity of about \\overline{σ }e = 10^{-41} {cm}^2 for dark matter particles with a mass of 10 MeV can be reached.

  19. Exothermic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni

    2010-09-15

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass {approx}few GeV and splittings {approx}5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state.more » In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.« less

  20. An SO(10) × SO(10)' model for common origin of neutrino masses, ordinary and dark matter-antimatter asymmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Pei-Hong, E-mail: peihong.gu@sjtu.edu.cn

    2014-12-01

    We propose an SO(10) × SO(10)' model to simultaneously realize a seesaw for Dirac neutrino masses and a leptogenesis for ordinary and dark matter-antimatter asymmetries. A (16 × 1-bar 6-bar '){sub H} scalar crossing the SO(10) and SO(10)' sectors plays an essential role in this seesaw-leptogenesis scenario. As a result of lepton number conservation, the lightest dark nucleon as the dark matter particle should have a determined mass around 15 GeV to explain the comparable fractions of ordinary and dark matter in the present universe. The (16 × 1-bar 6-bar '){sub H} scalar also mediates a U(1){sub em} × U(1)'{submore » em} kinetic mixing after the ordinary and dark left-right symmetry breaking so that we can expect a dark nucleon scattering in direct detection experiments and/or a dark nucleon decay in indirect detection experiments. Furthermore, we can impose a softly broken mirror symmetry to simplify the parameter choice.« less

  1. Gravitational waves in cold dark matter

    NASA Astrophysics Data System (ADS)

    Flauger, Raphael; Weinberg, Steven

    2018-06-01

    We study the effects of cold dark matter on the propagation of gravitational waves of astrophysical and primordial origin. We show that the dominant effect of cold dark matter on gravitational waves from astrophysical sources is a small frequency dependent modification of the propagation speed of gravitational waves. However, the magnitude of the effect is too small to be detected in the near future. We furthermore show that the spectrum of primordial gravitational waves in principle contains detailed information about the properties of dark matter. However, depending on the wavelength, the effects are either suppressed because the dark matter is highly nonrelativistic or because it contributes a small fraction of the energy density of the universe. As a consequence, the effects of cold dark matter on primordial gravitational waves in practice also appear too small to be detectable.

  2. Current status of direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Liu, Jianglai; Chen, Xun; Ji, Xiangdong

    2017-03-01

    Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.

  3. Adaptive Weibull Multiplicative Model and Multilayer Perceptron Neural Networks for Dark-Spot Detection from SAR Imagery

    PubMed Central

    Taravat, Alireza; Oppelt, Natascha

    2014-01-01

    Oil spills represent a major threat to ocean ecosystems and their environmental status. Previous studies have shown that Synthetic Aperture Radar (SAR), as its recording is independent of clouds and weather, can be effectively used for the detection and classification of oil spills. Dark formation detection is the first and critical stage in oil-spill detection procedures. In this paper, a novel approach for automated dark-spot detection in SAR imagery is presented. A new approach from the combination of adaptive Weibull Multiplicative Model (WMM) and MultiLayer Perceptron (MLP) neural networks is proposed to differentiate between dark spots and the background. The results have been compared with the results of a model combining non-adaptive WMM and pulse coupled neural networks. The presented approach overcomes the non-adaptive WMM filter setting parameters by developing an adaptive WMM model which is a step ahead towards a full automatic dark spot detection. The proposed approach was tested on 60 ENVISAT and ERS2 images which contained dark spots. For the overall dataset, an average accuracy of 94.65% was obtained. Our experimental results demonstrate that the proposed approach is very robust and effective where the non-adaptive WMM & pulse coupled neural network (PCNN) model generates poor accuracies. PMID:25474376

  4. Boosted dark matter signals uplifted with self-interaction

    DOE PAGES

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul

    2015-04-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themore » assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.« less

  5. Boosted dark matter signals uplifted with self-interaction

    NASA Astrophysics Data System (ADS)

    Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul

    2015-04-01

    We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.

  6. Looking for the WIMP next door

    NASA Astrophysics Data System (ADS)

    Evans, Jared A.; Gori, Stefania; Shelton, Jessie

    2018-02-01

    We comprehensively study experimental constraints and prospects for a class of minimal hidden sector dark matter (DM) models, highlighting how the cosmological history of these models informs the experimental signals. We study simple `secluded' models, where the DM freezes out into unstable dark mediator states, and consider the minimal cosmic history of this dark sector, where coupling of the dark mediator to the SM was sufficient to keep the two sectors in thermal equilibrium at early times. In the well-motivated case where the dark mediators couple to the Standard Model (SM) via renormalizable interactions, the requirement of thermal equilibrium provides a minimal, UV-insensitive, and predictive cosmology for hidden sector dark matter. We call DM that freezes out of a dark radiation bath in thermal equilibrium with the SM a WIMP next door, and demonstrate that the parameter space for such WIMPs next door is sharply defined, bounded, and in large part potentially accessible. This parameter space, and the corresponding signals, depend on the leading interaction between the SM and the dark mediator; we establish it for both Higgs and vector portal interactions. In particular, there is a cosmological lower bound on the portal coupling strength necessary to thermalize the two sectors in the early universe. We determine this thermalization floor as a function of equilibration temperature for the first time. We demonstrate that direct detection experiments are currently probing this cosmological lower bound in some regions of parameter space, while indirect detection signals and terrestrial searches for the mediator cut further into the viable parameter space. We present regions of interest for both direct detection and dark mediator searches, including motivated parameter space for the direct detection of sub-GeV DM.

  7. Detecting particle dark matter signatures by cross-correlating γ-ray anisotropies with weak lensing

    NASA Astrophysics Data System (ADS)

    Camera, S.; Fornasa, M.; Fornengo, N.; Regis, M.

    2016-05-01

    The underlying nature of dark matter still represents one of the fundamental questions in contemporary cosmology. Although observations well agree with its description in terms of a new fundamental particle, neither direct nor indirect signatures of its particle nature have been detected so far, despite a strong experimental effort. Similarly, particle accelerators have hitherto failed at producing dark matter particles in collider physics experiments. Here, we illustrate how the cross-correlation between anisotropies in the diffuse γ-ray background and weak gravitational lensing effects represents a novel promising way in the quest of detecting particle dark matter signatures.

  8. Detecting ultralight axion dark matter wind with laser interferometers

    NASA Astrophysics Data System (ADS)

    Aoki, Arata; Soda, Jiro

    The ultralight axion with mass around 10-22eV is known as a candidate of dark matter. A peculiar feature of the ultralight axion is oscillating pressure in time, which produces oscillation of gravitational potentials. Since the solar system moves through the dark matter halo at the velocity of about v ˜ 300km/s = 10-3, there exists axion wind, which looks like scalar gravitational waves for us. Hence, there is a chance to detect ultralight axion dark matter with a wide mass range by using laser interferometer detectors. We calculate the detector signal induced by the oscillating pressure of the ultralight axion field, which would be detected by future laser interferometer experiments. We also argue that the detector signal can be enhanced due to the resonance in modified gravity theory explaining the dark energy.

  9. First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB.

    PubMed

    Aguilar-Arevalo, A; Amidei, D; Bertou, X; Butner, M; Cancelo, G; Castañeda Vázquez, A; Cervantes Vergara, B A; Chavarria, A E; Chavez, C R; de Mello Neto, J R T; D'Olivo, J C; Estrada, J; Fernandez Moroni, G; Gaïor, R; Guardincerri, Y; Hernández Torres, K P; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Letessier-Selvon, A; Liao, J; Matalon, A; Mello, V B B; Molina, J; Privitera, P; Ramanathan, K; Sarkis, Y; Schwarz, T; Settimo, M; Sofo Haro, M; Thomas, R; Tiffenberg, J; Tiouchichine, E; Torres Machado, D; Trillaud, F; You, X; Zhou, J

    2017-04-07

    We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30  eV c^{-2} with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter κ is competitive with constraints from solar emission, reaching a minimum value of 2.2×10^{-14} at 17  eV c^{-2}. These results are the most stringent direct detection constraints on hidden-photon dark matter in the galactic halo with masses 3-12  eV c^{-2} and the first demonstration of direct experimental sensitivity to ionization signals <12  eV from dark matter interactions.

  10. Perturbative unitarity constraints on gauge portals

    DOE PAGES

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-10-03

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs andmore » dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. Here, we briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.« less

  11. Perturbative unitarity constraints on gauge portals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs andmore » dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. Here, we briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.« less

  12. Fermilab Center for Particle Astrophysics | FCPA

    Science.gov Websites

    Us About Us Contact Science Dark Matter Dark Energy Cosmic Microwave Background Radiation (CMBR) New detection and detailed study of the properties of cosmic dark matter particles in the laboratory » Hunting for Light Dark Matter in a Bubble Chamber September 18, 2013 | Hugh Lippincott The

  13. Dark matter freeze-out in a nonrelativistic sector

    NASA Astrophysics Data System (ADS)

    Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-08-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the cannibal dark matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of cannibal dark matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  14. Can tonne-scale direct detection experiments discover nuclear dark matter?

    NASA Astrophysics Data System (ADS)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.

    2017-10-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ.

  15. Can tonne-scale direct detection experiments discover nuclear dark matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with amore » decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .« less

  16. The cryogenic dark matter search low ionization-threshold experiment

    NASA Astrophysics Data System (ADS)

    Basu Thakur, Ritoban

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and indirectly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise.In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge transport. This technology allows us to reach very low thresholds and reliably measure and investigate low energy recoils from light Dark Matter particles. This thesis describes the physics behind CDMSlite, the experimenta design and the first science results from CDMSlite operated at the Soudan Underground Laboratory.

  17. The Cryogenic Dark Matter Search low ionization-threshold experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu Thakur, Ritoban

    2014-01-01

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hencemore » life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c 2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c 2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge transport. This technology allows us to reach very low thresholds and reliably measure and investigate low energy recoils from light Dark Matter particles. This thesis describes the physics behind CDMSlite, the experimental design and the first science results from CDMSlite operated at the Soudan Underground Laboratory.« less

  18. ASSESSING ASTROPHYSICAL UNCERTAINTIES IN DIRECT DETECTION WITH GALAXY SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloane, Jonathan D.; Buckley, Matthew R.; Brooks, Alyson M.

    2016-11-01

    We study the local dark matter velocity distribution in simulated Milky Way-mass galaxies, generated at high resolution with both dark matter and baryons. We find that the dark matter in the solar neighborhood is influenced appreciably by the inclusion of baryons, increasing the speed of dark matter particles compared to dark matter-only simulations. The gravitational potential due to the presence of a baryonic disk increases the amount of high velocity dark matter, resulting in velocity distributions that are more similar to the Maxwellian Standard Halo Model than predicted from dark matter-only simulations. Furthermore, the velocity structures present in baryonic simulationsmore » possess a greater diversity than expected from dark matter-only simulations. We show that the impact on the direct detection experiments LUX, DAMA/Libra, and CoGeNT using our simulated velocity distributions, and explore how resolution and halo mass within the Milky Way’s estimated mass range impact the results. A Maxwellian fit to the velocity distribution tends to overpredict the amount of dark matter in the high velocity tail, even with baryons, and thus leads to overly optimistic direct detection bounds on models that are dependent on this region of phase space for an experimental signal. Our work further demonstrates that it is critical to transform simulated velocity distributions to the lab frame of reference, due to the fact that velocity structure in the solar neighborhood appears when baryons are included. There is more velocity structure present when baryons are included than in dark matter-only simulations. Even when baryons are included, the importance of the velocity structure is not as apparent in the Galactic frame of reference as in the Earth frame.« less

  19. Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability

    DOE PAGES

    Appelquist, T.; Berkowitz, E.; Brower, R. C.; ...

    2015-10-23

    We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m 6 B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less

  20. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Berlin, Asher; Hooper, Dan

    2016-12-01

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance ( m {sub DM} ≅ m {sub Z} /2) or greater than 200 GeV, or with a vector coupling and with m {sub DM} > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole ( m {sub DM} ≅ m {sub H} /2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. With the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  1. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE PAGES

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher; ...

    2016-12-15

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  2. Searching for dark matter with neutron star mergers and quiet kilonovae

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Linden, Tim; Tsai, Yu-Dai

    2018-03-01

    We identify new astrophysical signatures of dark matter that implodes neutron stars (NSs), which could decisively test whether NS-imploding dark matter is responsible for missing pulsars in the Milky Way galactic center, the source of some r -process elements, and the origin of fast-radio bursts. First, NS-imploding dark matter forms ˜10-10 solar mass or smaller black holes inside neutron stars, which proceed to convert neutron stars into ˜1.5 solar mass black holes (BHs). This decreases the number of neutron star mergers seen by LIGO/Virgo (LV) and associated merger kilonovae seen by telescopes like DES, BlackGEM, and ZTF, instead producing a population of "black mergers" containing ˜1.5 solar mass black holes. Second, dark matter-induced neutron star implosions may create a new kind of kilonovae that lacks a detectable, accompanying gravitational signal, which we call "quiet kilonovae." Using DES data and the Milky Way's r-process abundance, we constrain quiet kilonovae. Third, the spatial distribution of neutron star merger kilonovae and quiet kilonovae in galaxies can be used to detect dark matter. NS-imploding dark matter destroys most neutron stars at the centers of disc galaxies, so that neutron star merger kilonovae would appear mostly in a donut at large radii. We find that as few as ten neutron star merger kilonova events, located to ˜1 kpc precision could validate or exclude dark matter-induced neutron star implosions at 2 σ confidence, exploring dark matter-nucleon cross-sections 4-10 orders of magnitude below current direct detection experimental limits. Similarly, NS-imploding dark matter as the source of fast radio bursts can be tested at 2 σ confidence once 20 bursts are located in host galaxies by radio arrays like CHIME and HIRAX.

  3. Toward (finally!) ruling out Z and Higgs mediated dark matter models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escudero, Miguel; Fermi National Accelerator Lab.; Berlin, Asher

    In recent years, direct detection, indirect detection, and collider experiments have placed increasingly stringent constraints on particle dark matter, exploring much of the parameter space associated with the WIMP paradigm. In this paper, we focus on the subset of WIMP models in which the dark matter annihilates in the early universe through couplings to either the Standard Model Z or the Standard Model Higgs boson. Considering fermionic, scalar, and vector dark matter candidates within a model-independent context, we find that the overwhelming majority of these dark matter candidates are already ruled out by existing experiments. In the case of Zmore » mediated dark matter, the only scenarios that are not currently excluded are those in which the dark matter is a fermion with an axial coupling and with a mass either within a few GeV of the Z resonance (m DM ≃ m Z/2) or greater than 200 GeV, or with a vector coupling and with m DM > 6 TeV . Several Higgs mediated scenarios are currently viable if the mass of the dark matter is near the Higgs pole (m DM ≃ m H/2). Otherwise, the only scenarios that are not excluded are those in which the dark matter is a scalar (vector) heavier than 400 GeV (1160 GeV) with a Higgs portal coupling, or a fermion with a pseudoscalar (CP violating) coupling to the Standard Model Higgs boson. Furthermore, with the exception of dark matter with a purely pseudoscalar coupling to the Higgs, it is anticipated that planned direct detection experiments will probe nearly the entire range of models considered in this study.« less

  4. The cosmological constant and dark energy

    NASA Astrophysics Data System (ADS)

    Peebles, P. J.; Ratra, Bharat

    2003-04-01

    Physics welcomes the idea that space contains energy whose gravitational effect approximates that of Einstein’s cosmological constant, Λ; today the concept is termed dark energy or quintessence. Physics also suggests that dark energy could be dynamical, allowing for the arguably appealing picture of an evolving dark-energy density approaching its natural value, zero, and small now because the expanding universe is old. This would alleviate the classical problem of the curious energy scale of a millielectron volt associated with a constant Λ. Dark energy may have been detected by recent cosmological tests. These tests make a good scientific case for the context, in the relativistic Friedmann-Lemaître model, in which the gravitational inverse-square law is applied to the scales of cosmology. We have well-checked evidence that the mean mass density is not much more than one-quarter of the critical Einstein de Sitter value. The case for detection of dark energy is not yet as convincing but still serious; we await more data, which may be derived from work in progress. Planned observations may detect the evolution of the dark-energy density; a positive result would be a considerable stimulus for attempts at understanding the microphysics of dark energy. This review presents the basic physics and astronomy of the subject, reviews the history of ideas, assesses the state of the observational evidence, and comments on recent developments in the search for a fundamental theory.

  5. A strong test of the dark matter origin of a TeV electron excess using icecube neutrinos

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Fang, Ke; Su, Meng; Miller, M. Coleman

    2018-06-01

    Due to the electroweak symmetry, high energy neutrinos and charged leptons are generically produced simultaneously in heavy dark matter decay or annihilation process. Correlating these two channels in dark matter indirect detections may provide important information on the intrinsic production mechanism. In this paper, we demonstrate this point by studying the tentative excess in the electron spectrum at 1.4 TeV reported by the DArk Matter Particle Explorer (DAMPE). A non-astrophysical scenario in which dark matter particles annihilate or decay in a local clump has been invoked to explain the excess. If e± annihilation channels in the final states are mediated by left-handed leptons as a component in the SU(2)L doublet, neutrinos with similar energies should have been simultaneously produced. We demonstrate that generic dark matter models can be decisively tested by the existing IceCube data. In case of a non-detection, such models would be excluded at the 5σ level by the five-year data for a point-like source and by the ten-year data for an extended source of dark matter particles with left-handed leptons. This serves as an example of the importance of correlating charged lepton and neutrino channels. It would be fruitful to conduct similar studies related to other approaches to the indirect detection of dark matter.

  6. Hydroxyl as a Tracer of Dark Gas in a Diffuse Molecular Cloud

    NASA Astrophysics Data System (ADS)

    White, Josh; Donate, Emmanuel; Magnani, Loris A.

    2017-06-01

    In an attempt to determine the extent of dark molecular gas at high Galactic latitudes, we have conducted a survey of OH at 18 cm in a region containing the diffuse molecular cloud MBM 53. Dark molecular gas is a term that refers to molecular hydrogen that is either difficult or impossible to detect by conventional spectroscopic means. While models of photo-dissociation regions predict that some molecular hydrogen is found under conditions where other species are too low in abundance to be detected by radio spectroscopy, recent estimates have predicted that as much dark molecular gas exists as that normally detected by CO(1-0) surveys. However, more sensitive surveys either in the CO(1-0) line or other tracers should detect some of this gas. We observed 44 lines of sight at 18 cm to see if very sensitive OH observations could detect some of the dark molecular gas in the Pegasus-Pisces region. Our data were taken with the 305 m Arecibo radiotelescope and have typical rms values of 6-7 mK. We compared our OH observations with the Georgia/Harvard-Smithsonian CfA high-latitude CO(1-0) survey. Of 8 OH detections at 1667 MHz, 5 were not detected by the CO survey and indicate that at least some of the dark molecular gas may be traced by sensitive OH observations.

  7. Detecting ultralight bosonic dark matter via absorption in superconductors

    DOE PAGES

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2016-07-18

    Superconducting targets have recently been proposed for the direct detection of dark matter as light as a keV, via elastic scattering off conduction electrons in Cooper pairs. Detecting such light dark matter requires sensitivity to energies as small as the superconducting gap of O(meV). Here we show that these same superconducting devices can detect much lighter DM, of meV to eV mass, via dark matter absorption on a conduction electron, followed by emission of an athermal phonon. Lastly, we demonstrate the power of this setup for relic kinetically mixed hidden photons, pseudoscalars, and scalars, showing that the reach can exceedmore » current astrophysical and terrestrial constraints with only a moderate exposure.« less

  8. Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes

    NASA Astrophysics Data System (ADS)

    Shandera, Sarah; Jeong, Donghui; Gebhardt, Henry S. Grasshorn

    2018-06-01

    We explore the possible spectrum of binary mergers of subsolar mass black holes formed out of dark matter particles interacting via a dark electromagnetism. We estimate the properties of these dark black holes by assuming that their formation process is parallel to Population-III star formation, except that dark molecular cooling can yield a smaller opacity limit. We estimate the binary coalescence rates for the Advanced LIGO and Einstein telescope, and find that scenarios compatible with all current constraints could produce dark black holes at rates high enough for detection by Advanced LIGO.

  9. Robustness of dark matter constraints and interplay with collider searches for New Physics

    NASA Astrophysics Data System (ADS)

    Arbey, A.; Boudaud, M.; Mahmoudi, F.; Robbins, G.

    2017-11-01

    We study the implications of dark matter searches, together with collider constraints, on the phenomenological MSSM with neutralino dark matter and focus on the consequences of the related uncertainties in some detail. We consider, inter alia, the latest results from AMS-02, Fermi-LAT and XENON1T. In particular, we examine the impact of the choice of the dark matter halo profile, as well as the propagation model for cosmic rays, for dark matter indirect detection and show that the constraints on the MSSM differ by one to two orders of magnitude depending on the astrophysical hypotheses. On the other hand, our limited knowledge of the local relic density in the vicinity of the Earth and the velocity of Earth in the dark matter halo leads to a factor 3 in the exclusion limits obtained by direct detection experiments. We identified the astrophysical models leading to the most conservative and the most stringent constraints and for each case studied the complementarities with the latest LHC measurements and limits from Higgs, SUSY and monojet searches. We show that combining all data from dark matter searches and colliders, a large fraction of our supersymmetric sample could be probed. Whereas the direct detection constraints are rather robust under the astrophysical assumptions, the uncertainties related to indirect detection can have an important impact on the number of the excluded points.

  10. Very heavy dark Skyrmions

    NASA Astrophysics Data System (ADS)

    Dick, Rainer

    2017-12-01

    A dark sector with a solitonic component provides a means to circumvent the problem of generically low annihilation cross sections of very heavy dark matter particles. At the same time, enhanced annihilation cross sections are necessary for indirect detection of very heavy dark matter components beyond 100 TeV. Non-thermally produced dark matter in this mass range could therefore contribute to the cosmic γ -ray and neutrino flux above 100 TeV, and massive Skyrmions provide an interesting framework for the discussion of these scenarios. Therefore a Higgs portal and a neutrino portal for very heavy Skyrmion dark matter are discussed. The Higgs portal model demonstrates a dark mediator bottleneck, where limitations on particle annihilation cross sections will prevent a signal from the potentially large soliton annihilation cross sections. This problem can be avoided in models where the dark mediator decays. This is illustrated by the neutrino portal for Skyrmion dark matter.

  11. Dark SU (N ) glueball stars on fluid branes

    NASA Astrophysics Data System (ADS)

    da Rocha, Roldão

    2017-06-01

    The glueball dark matter, in the pure SU (N ) Yang-Mills theory, engenders dark SU (N ) stars that comprise self-gravitating compact configurations of scalar glueball fields. Corrections to the highest frequency of gravitational wave radiation emitted by dark SU (N ) star mergers on a fluid brane with variable tension, implemented by the minimal geometric deformation, are derived, and their consequences are analyzed. Hence, dark SU (N ) star mergers on a fluid braneworld are shown to be better detectable by the LIGO and the eLISA experiments.

  12. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  13. Complementary test of the dark matter self-interaction in dark U(1) model by direct and indirect dark matter detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chian-Shu; Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30010 R.O.C.; Institute of Physics, Academia Sinica, 128 Sec. 2,Academia Rd., Nangang, Taipei, Taiwan, 11529 R.O.C.

    2016-01-07

    The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less

  14. Complementary test of the dark matter self-interaction in dark U(1) model by direct and indirect dark matter detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chian-Shu; Lin, Guey-Lin; Lin, Yen-Hsun, E-mail: chianshu@gmail.com, E-mail: glin@cc.nctu.edu.tw, E-mail: chris.py99g@g2.nctu.edu.tw

    2016-01-01

    The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less

  15. Realistic estimation for the detectability of dark matter subhalos using Fermi-LAT catalogs

    NASA Astrophysics Data System (ADS)

    Calore, Francesca; De Romeri, Valentina; Di Mauro, Mattia; Donato, Fiorenza; Marinacci, Federico

    2017-09-01

    Numerical simulations of structure formation have made remarkable progress in recent years, in particular due to the inclusion of baryonic physics evolving with the dark matter component. We generate Monte Carlo realizations of the dark matter subhalo population based on the results of the recent hydrodynamical simulation suite of Milky Way-sized galaxies [F. Marinacci, R. Pakmor, and V. Springel, Mon. Not. R. Astron. Soc. 437, 1750 (2014)., 10.1093/mnras/stt2003]. We then simulate the gamma-ray sky for both the setup of the 3FGL and 2FHL Fermi Large Area Telescope (LAT) catalogs, including the contribution from the annihilation of dark matter in the subhalos. We find that the flux sensitivity threshold strongly depends on the particle dark matter mass and, more mildly, also on its annihilation channel and the observation latitude. The results differ for the 3FGL and 2FHL catalogs, given their different energy thresholds. We also predict that the number of dark matter subhalos among the unassociated sources is very small. A null number of detectable subhalos in the Fermi-LAT 3FGL catalog would imply upper limits on the dark matter annihilation cross section into b b ¯ of 2 ×10-26(5 ×10-25) cm3 /s with MDM=50 (1000 ) GeV . We find less than one extended subhalo in the Fermi-LAT 3FGL catalog. As a matter of fact, the differences in the spatial and mass distribution of subhalos between hydrodynamic and dark matter-only runs do not have significant impact on the detectability of dark subhalos in gamma rays.

  16. A taste of dark matter: Flavour constraints on pseudoscalar mediators

    DOE PAGES

    Dolan, Matthew J.; Kahlhoefer, Felix; McCabe, Christopher; ...

    2015-03-31

    Dark matter interacting via the exchange of a light pseudoscalar can induce observable signals in indirect detection experiments and experience large self-interactions while evading the strong bounds from direct dark matter searches. The pseudoscalar mediator will however induce flavour-changing interactions in the Standard Model, providing a promising alternative way to test these models. We investigate in detail the constraints arising from rare meson decays and fixed target experiments for different coupling structures between the pseudoscalar and Standard Model fermions. The resulting bounds are highly complementary to the information inferred from the dark matter relic density and the constraints from primordialmore » nucleosynthesis. We discuss the implications of our findings for the dark matter self-interaction cross section and the prospects of probing dark matter coupled to a light pseudoscalar with direct or indirect detection experiments. In particular, we find that a pseudoscalar mediator can only explain the Galactic Centre excess if its mass is above that of the B mesons, and that it is impossible to obtain a sufficiently large direct detection cross section to account for the DAMA modulation.« less

  17. Collider detection of dark matter electromagnetic anapole moments

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver

    2018-03-01

    Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.

  18. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    NASA Astrophysics Data System (ADS)

    Emken, Timon; Kouvaris, Chris

    2017-10-01

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.

  19. DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emken, Timon; Kouvaris, Chris, E-mail: emken@cp3.sdu.dk, E-mail: kouvaris@cp3.sdu.dk

    Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold bymore » the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.« less

  20. Light dark Higgs boson in minimal sub-GeV dark matter scenarios

    NASA Astrophysics Data System (ADS)

    Darmé, Luc; Rao, Soumya; Roszkowski, Leszek

    2018-03-01

    Minimal scenarios with light (sub-GeV) dark matter whose relic density is obtained from thermal freeze-out must include new light mediators. In particular, a very well-motivated case is that of a new "dark" massive vector gauge boson mediator. The mass term for such mediator is most naturally obtained by a "dark Higgs mechanism" which leads to the presence of an often long-lived dark Higgs boson whose mass scale is the same as that of the mediator. We study the phenomenology and experimental constraints on two minimal, self-consistent dark sectors that include such a light dark Higgs boson. In one the dark matter is a pseudo-Dirac fermion, in the other a complex scalar. We find that the constraints from BBN and CMB are considerably relaxed in the framework of such minimal dark sectors. We present detection prospects for the dark Higgs boson in existing and projected proton beam-dump experiments. We show that future searches at experiments like Xenon1T or LDMX can probe all the relevant parameter space, complementing the various upcoming indirect constraints from astrophysical observations.

  1. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  2. Mitigating direct detection bounds in non-minimal Higgs portal scalar dark matter models

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Subhaditya; Ghosh, Purusottam; Maity, Tarak Nath; Ray, Tirtha Sankar

    2017-10-01

    The minimal Higgs portal dark matter model is increasingly in tension with recent results form direct detection experiments like LUX and XENON. In this paper we make a systematic study of simple extensions of the Z_2 stabilized singlet scalar Higgs portal scenario in terms of their prospects at direct detection experiments. We consider both enlarging the stabilizing symmetry to Z_3 and incorporating multipartite features in the dark sector. We demonstrate that in these non-minimal models the interplay of annihilation, co-annihilation and semi-annihilation processes considerably relax constraints from present and proposed direct detection experiments while simultaneously saturating observed dark matter relic density. We explore in particular the resonant semi-annihilation channel within the multipartite Z_3 framework which results in new unexplored regions of parameter space that would be difficult to constrain by direct detection experiments in the near future. The role of dark matter exchange processes within multi-component Z_3× Z_3^' } framework is illustrated. We make quantitative estimates to elucidate the role of various annihilation processes in the different allowed regions of parameter space within these models.

  3. Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter

    NASA Astrophysics Data System (ADS)

    Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott

    2018-03-01

    We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout from free streaming. The enhanced small-scale structure is expected to survive today in the form of compact microhalos and can lead to significant boost factors for indirect-detection experiments, such as FERMI, where dark matter would appear as point sources.

  4. The dark components of the Universe are slowly clarified

    NASA Astrophysics Data System (ADS)

    Burdyuzha, V. V.

    2017-02-01

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a "crisis" before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5-10-3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was "repeated" by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.

  5. Prospects for detection of target-dependent annual modulation in direct dark matter searches

    DOE PAGES

    Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J.

    2016-02-03

    Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy E R imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from E R to v min, the minimum speed a dark matter particle must have to impart a fixed E R to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the darkmore » matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of v min can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential cross section with a non-factorizable dependence on the dark matter velocity.« less

  6. SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crisler, Michael; Essig, Rouven; Estrada, Juan

    The Sub-Electron-Noise Skipper CCD Experimental Instrument (SENSEI) uses the recently developed Skipper-CCD technology to search for electron recoils from the interaction of sub-GeV dark matter particles with electrons in silicon. We report first results from a prototype SENSEI detector, which collected 0.019 gram-days of commissioning data above ground at Fermi National Accelerator Laboratory. These commissioning data are sufficient to set new direct-detection constraints for dark matter particles with masses between ~500 keV and 4 MeV. Moreover, since these data were taken on the surface, they disfavor previously allowed strongly interacting dark matter particles with masses between ~500 keV and amore » few hundred MeV. We discuss the implications of these data for several dark matter candidates, including one model proposed to explain the anomalously large 21-cm signal observed by the EDGES Collaboration. SENSEI is the first experiment dedicated to the search for electron recoils from dark matter, and these results demonstrate the power of the Skipper-CCD technology for dark matter searches.« less

  7. Vector Dark Matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.

    2016-04-21

    We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU(2)more » $$_W \\times$$ U(1)$$_Y$$ and under the dark gauge group, U(1)$$^\\prime$$, generate an effective interaction between the Higgs and the dark matter at one loop. Furthermore, we explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.« less

  8. Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2009-05-01

    AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  9. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Green, Anne M.

    2017-08-01

    The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.

  10. Exploring the Cosmic Frontier, Task A - Direct Detection of Dark Matter, Task B - Experimental Particle Astrophysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, John A.J.; Gold, Michael S.

    This report summarizes the work of Task A and B for the period 2013-2016. For Task A the work is for direct detection of dark matter with the single-phase liquid argon experiment Mini-CLEAN. For Task B the work is for the search for new physics in the analysis of fluorescence events with the Auger experiment and for the search for the indirect detection of dark matter with the HAWC experiment.

  11. Neutron stars at the dark matter direct detection frontier

    NASA Astrophysics Data System (ADS)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  12. Preclinical x-ray dark-field imaging: foreign body detection

    NASA Astrophysics Data System (ADS)

    Braig, Eva-Maria; Muenzel, Daniela; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Pfeiffer, Franz; Noel, Peter

    2017-03-01

    The purpose of this study was to evaluate the performance of X-ray dark-field imaging for detection of retained foreign bodies in ex-vivo hands and feet. X-ray dark-field imaging, acquired with a three-grating Talbot-Lau interferometer, has proven to provide access to sub-resolution structures due to small-angle scattering. The study was institutional review board (IRB) approved. Foreign body parts included pieces of wood and metal which were placed in a formalin fixated human ex-vivo hand. The samples were imaged with a grating-based interferometer consisting of a standard microfocus X-ray tube (60 kVp, 100 W) and a Varian 2520-DX detector (pixel size: 127 μm). The attenuation and the dark-field signals provide complementary diagnostic information for this clinical task. With regard to detecting of wooden objects, which are clinically the most relevant, only the dark-field image revealed the locations. The signal is especially strong for dry wood which in comparison is poorly to non-visible in computed tomography. The detection of high atomic-number or dense material and wood-like or porous materials in a single X-ray scan is enabled by the simultaneous acquisition of the conventional attenuation and dark-field signal. Our results reveal that with this approach one can reach a significantly improved sensitivity for detection of foreign bodies, while an easy implementation into the clinical arena is becoming feasible.

  13. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran

    The first stars in the history of the universe are likely to form in the dense central regions of {approx}10{sup 5}-10{sup 6} M{sub sun} cold dark matter halos at z {approx} 10-50. The annihilation of dark matter particles in these environments may lead to the formation of so-called dark stars, which are predicted to be cooler, larger, more massive, and potentially more long-lived than conventional population III stars. Here, we investigate the prospects of detecting high-redshift dark stars with the upcoming James Webb Space Telescope (JWST). We find that all dark stars with masses up to 10{sup 3} M{sub sun}more » are intrinsically too faint to be detected by JWST at z > 6. However, by exploiting foreground galaxy clusters as gravitational telescopes do, certain varieties of cool (T{sub eff} {<=} 30, 000 K) dark stars should be within reach at redshifts up to z {approx} 10. If the lifetimes of dark stars are sufficiently long, many such objects may also congregate inside the first galaxies. We demonstrate that this could give rise to peculiar features in the integrated spectra of galaxies at high redshifts, provided that dark stars make up at least {approx}1% of the total stellar mass in such objects.« less

  15. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Albert, A.; Anderson, B.; ...

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via γ rays. We report on γ -ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in γ rays, and we present γ -ray flux upper limits between 500 MeVmore » and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. Furthermore, we set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical standard model channels. We also find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse γ -ray background modeling, and assumed dark matter density profile.« less

  16. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    NASA Technical Reports Server (NTRS)

    Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  17. Searching For Dark Matter Annihilation In The Smith High-Velocity Cloud

    DOE PAGES

    Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; ...

    2014-06-27

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation crossmore » section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (~3 × 10 -26 cm3 s -1) for dark matter masses . 30 GeV annihilating via the b¯b or τ⁺τ⁻ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.« less

  18. Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boveia, Antonio; Buchmueller, Oliver; Busoni, Giorgio

    2016-03-14

    This document summarises the proposal of the LHC Dark Matter Working Group on how to present LHC results on s-channel simplified dark matter models and to compare them to direct (indirect) detection experiments.

  19. Dark matter spin determination with directional direct detection experiments

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.

    2018-01-01

    If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.

  20. Ultra Light Axionic Dark Matter: Galactic Halos and Implications for Observations with Pulsar Timing Arrays

    NASA Astrophysics Data System (ADS)

    de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth

    2018-01-01

    The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.

  1. Implications of two-component dark matter induced by forbidden channels and thermal freeze-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@tum.de

    2017-01-01

    We consider a model of two-component dark matter based on a hidden U(1) {sub D} symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden U(1) {sub D} symmetry is spontaneously broken to a residual Z{sub 4} symmetry, and the lightest Z{sub 4} charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared tomore » the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of ΛCDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore detectabilities of these dark matter particles and show some parameter space can be tested by the SHiP experiment.« less

  2. Dark Matter Decay between Phase Transitions at the Weak Scale.

    PubMed

    Baker, Michael J; Kopp, Joachim

    2017-08-11

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  3. Dark Matter Decay between Phase Transitions at the Weak Scale

    NASA Astrophysics Data System (ADS)

    Baker, Michael J.; Kopp, Joachim

    2017-08-01

    We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S3 and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S3 potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.

  4. New LUX result constrains exotic quark mediators with the vector dark matter

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Ren; Li, Ming-Jie

    2016-12-01

    The scenario of the compressed mass spectrum between heavy quark and dark matter is a challenge for LHC searches. However, the elastic scattering cross-section between dark matter and nuclei in dark matter direct detection experiments can be enhanced with nearly degenerate masses between heavy quarks and dark matter. In this paper, we illustrate such scenario with a vector dark matter, using the latest result from LUX 2016. The mass constraints on heavy quarks can be more stringent than current limits from LHC, unless the coupling strength is very small. However, the compress mass spectrum with allowed tiny coupling strength makes the decay lifetime of heavy quarks longer than the timescale of QCD hadronization.

  5. Cosmological simulations of multicomponent cold dark matter.

    PubMed

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  6. Dark cosmic rays

    DOE PAGES

    Hu, Ping-Kai; Kusenko, Alexander; Takhistov, Volodymyr

    2017-02-22

    If dark matter particles have an electric charge, as in models of millicharged dark matter, such particles should be accelerated in the same astrophysical accelerators that produce ordinary cosmic rays, and their spectra should have a predictable rigidity dependence. Depending on the charge, the resulting “dark cosmic rays” can be detected as muon-like or neutrino-like events in Super-Kamiokande, IceCube, and other detectors. We present new limits and propose several new analyses, in particular, for the Super-Kamiokande experiment, which can probe a previously unexplored portion of the millicharged dark matter parameter space. Here, most of our results are fairly general andmore » apply to a broad class of dark matter models.« less

  7. Detecting Dark Photons with Reactor Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Park, H. K.

    2017-08-01

    We propose to search for light U (1 ) dark photons, A', produced via kinetically mixing with ordinary photons via the Compton-like process, γ e-→A'e-, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ɛ , the A'-γ mixing parameter, ɛ , for dark-photon masses below 1 MeV of ɛ <1.3 ×10-5 and ɛ <2.1 ×10-5, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.

  8. The dark components of the Universe are slowly clarified

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdyuzha, V. V., E-mail: burdyuzh@asc.rssi.ru

    The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by themore » vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10{sup —5}–10{sup –3} eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.« less

  9. Cosmology beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Wells, Christopher M.

    The Standard Model of Cosmology, like its particle physics counterpart, is incomplete in its present form theoretically and observationally. Additional structure, in the form of an early period of accelerated expansion (inflation), is suggested by the special initial conditions required to produce the visible universe. Furthermore, a wide variety of indirect observations indicate that 80% of the mass in the universe is dark. In this thesis, we construct a class of inflation models free from the usual pathologies. In particular, we build a novel realization of hybrid inflation, in which both the inflaton and waterfall degrees of freedom are moduli of a higher dimensional compactification. Because the inflationary fields are realized as global degrees of freedom in the extra dimension, they are protected from the 4D quantum corrections that would otherwise spoil inflation. Via the Ads/CFT correspondence we can relate our construction to a dual theory of composite inflationary degrees of freedom. We then turn to studying the problem of missing matter in the Standard Cosmology. Despite an abundance of indirect observations of dark matter, direct detection experiments have produced conflicting results which seem to point to a more complicated dark sector. In this thesis, we propose that dark matter be made up primarily of non-relativistic bound states, i.e. dark atoms. We explore the atomic parameter space allowed by the demands that dark matter is predominantly atomic and that the dark atoms and ions satisfy observational bounds on dark matter self-interactions. We then study possible interactions between dark matter and normal matter such that dark atoms scatter inelastically from nuclei in direct detection experiments.

  10. The Dark Triad and the PID-5 Maladaptive Personality Traits: Accuracy, Confidence and Response Bias in Judgments of Veracity.

    PubMed

    Wissing, Benno G; Reinhard, Marc-André

    2017-01-01

    The Dark Triad traits-narcissism, Machiavellianism and psychopathy-have been found to be associated with intra- or interpersonal deception production frequency. This cross-sectional study ( N = 207) investigated if the Dark Triad traits are also associated with deception detection accuracy, as implicated by the recent conception of a deception-general ability. To investigate associations between maladaptive personality space and deception, the PID-5 maladaptive personality traits were included to investigate if besides Machiavellianism, Detachment is negatively associated with response bias. Finally, associations between the Dark Triad traits, Antagonism, Negative Affectivity and confidence judgments were investigated. Participants watched videos of lying vs. truth-telling senders and judged the truthfulness of the statements. None of the Dark Triad traits was found to be associated with the ability to detect deception. Detachment was negatively associated with response bias. Psychopathy was associated with global confidence judgments. The results provide additional support that dark and maladaptive personality traits are associated with judgmental biases but not with accuracy in deception detection. The internal consistencies of 4 of the 8 subscales of the used personality short scales were only low and nearly sufficient (αs =0.65-0.69).

  11. Organic-inorganic hybrid inverted photodiode with planar heterojunction for achieving low dark current and high detectivity

    NASA Astrophysics Data System (ADS)

    Ha, JaeUn; Yoon, Seongwon; Lee, Jong-Soo; Chung, Dae Sung

    2016-03-01

    In this study, the strategy of using an organic-inorganic hybrid planar heterojunction consisting of polymeric semiconductors and inorganic nanocrystals is introduced to realize a high-performance hybrid photodiode (HPD) with low dark current and high detectivity. To prevent undesired charge injection under the reverse bias condition, which is the major dark current source of the photodiode, a well-defined planar heterojunction is strategically constructed via smart solution process techniques. The optimized HPD renders a low dark current of ˜10-5 mA cm-2 at -5 V and ˜10-6 mA cm-2 at -1 V, as well as a high detectivity ˜1012 Jones across the entire visible wavelength range. Furthermore, excellent photocurrent stability is demonstrated under continuous light exposure. We believe that the solution-processed planar heterojunction with inverted structure can be an attractive alternative diode structure for fabricating high-performance HPDs, which usually suffer from high dark current issues.

  12. Pinning down inelastic dark matter in the Sun and in direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juhg@kth.se

    2016-04-01

    We study the solar capture rate of inelastic dark matter with endothermic and/or exothermic interactions. By assuming that an inelastic dark matter signal will be observed in next generation direct detection experiments we can set a lower bound on the capture rate that is independent of the local dark matter density, the velocity distribution, the galactic escape velocity as well as the scattering cross section. In combination with upper limits from neutrino observatories we can place upper bounds on the annihilation channels leading to neutrinos. We find that, while endothermic scattering limits are weak in the isospin-conserving case, strong boundsmore » may be set for exothermic interactions, in particular in the spin-dependent case. Furthermore, we study the implications of observing two direct detection signals, in which case one can halo-independently obtain the dark matter mass and the mass splitting, and disentangle the endothermic/exothermic nature of the scattering. Finally we discuss isospin violation.« less

  13. Hunting for Dark Matter particles with new detectors.

    PubMed

    Angloher, Godehard; Jochum, Josef

    2005-03-01

    Although first hints of the existence of Dark Matter were observed by the Swiss astronomer Zwicky already in the 1930s, only in recent years has it become known that the universe, in fact, is dominated by particles whose nature is almost unknown and which have never been directly observed. Meanwhile, as the existence of these particles is postulated not only by astronomy, but also cosmology and theoretical particle physics, there is significant effort to detect them in a laboratory experiment and determine their physical properties. However, as the interaction rate between Dark Matter particles and ordinary matter is extremely low, detectors have to be extremely sensitive. Low temperature detectors have been available for more than a decade and have now reached the highest sensitivity for direct Dark Matter detection. In this article, we give a short overview of observational results that suggest the existence of Dark Matter particles and what physicists have learned so far about their properties. The main focus is on the experimental challenges and effort for their direct detection.

  14. A balance for dark matter bound states

    NASA Astrophysics Data System (ADS)

    Nozzoli, F.

    2017-05-01

    Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.

  15. The LZ dark matter experiment

    NASA Astrophysics Data System (ADS)

    McKinsey, D. N.; LZ Collaboration

    2016-05-01

    The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.

  16. Dark forces in the sky: signals from Z{sup ′} and the dark Higgs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K.

    2016-08-01

    We consider the indirect detection signals for a self-consistent hidden U(1) model containing a Majorana dark matter candidate, χ, a dark gauge boson, Z{sup ′}, and a dark Higgs, s. Compared with a model containing only a dark matter candidate and Z{sup ′} mediator, the addition of the scalar provides a mass generation mechanism for the dark sector particles and is required in order to avoid unitarity violation at high energies. We find that the inclusion of the two mediators opens up a new two-body s-wave annihilation channel, χχ→sZ{sup ′}. This new process, which is missed in the usual single-mediatormore » simplified model approach, can be the dominant annihilation channel. This provides rich phenomenology for indirect detection searches, allows indirect searches to explore regions of parameter space not accessible with other commonly considered s-wave annihilation processes, and enables both the Z{sup ′} and scalar couplings to be probed. We examine the phenomenology of the sector with a focus on this new process, and determine the limits on the model parameter space from Fermi data on dwarf spheriodal galaxies and other relevant experiments.« less

  17. Quantum foam, gravitational thermodynamics, and the dark sector

    NASA Astrophysics Data System (ADS)

    Ng, Y. Jack

    2017-05-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected dark matter.

  18. Holographic vortices in the presence of dark matter sector

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-12-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  19. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  20. MeV dark matter complementarity and the dark photon portal

    NASA Astrophysics Data System (ADS)

    Dutra, Maíra; Lindner, Manfred; Profumo, Stefano; Queiroz, Farinaldo S.; Rodejohann, Werner; Siqueira, Clarissa

    2018-03-01

    We discuss the phenomenology of an MeV-scale Dirac fermion coupled to the Standard Model through a dark photon with kinetic mixing with the electromagnetic field. We compute the dark matter relic density and explore the interplay of direct detection and accelerator searches for dark photons. We show that precise measurements of the temperature and polarization power spectra of the Cosmic Microwave Background Radiation lead to stringent constraints, leaving a small window for the thermal production of this MeV dark matter candidate. The forthcoming MeV gamma-ray telescope e-ASTROGAM will offer important and complementary opportunities to discover dark matter particles with masses below ~ 10 MeV . Lastly, we discuss how a late-time inflation episode and freeze-in production could conspire to yield the correct relic density while being consistent with existing and future constraints.

  1. Dark matter effective field theory scattering in direct detection experiments

    DOE PAGES

    Schneck, K.

    2015-05-01

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  2. Dark matter effective field theory scattering in direct detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  3. Dark matter effective field theory scattering in direct detection experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  4. Direct detection of sub-GeV dark matter with scintillating targets

    DOE PAGES

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea; ...

    2017-07-28

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  5. Direct detection of sub-GeV dark matter with scintillating targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derenzo, Stephen; Essig, Rouven; Massari, Andrea

    We suggest a novel experimental concept for detecting MeV-to-GeV-mass dark matter, in which the dark matter scatters off electrons in a scintillating target and produces a signal of one or a few photons. New large-area photodetectors are needed to measure the photon signal with negligible dark counts, which could be constructed from transition edge sensor (TES) or microwave kinetic inductance detector (MKID) technology. Alternatively, detecting two photons in coincidence may allow the use of conventional photodetectors like photomultiplier tubes. Here we describe why scintillators may have distinct advantages over other experiments searching for a low ionization signal from sub-GeV darkmore » matter, as there are fewer potential sources of spurious backgrounds. We discuss various target choices, but focus on calculating the expected dark matter-electron scattering rates in three scintillating crystals: sodium iodide (NaI), cesium iodide (CsI), and gallium arsenide (GaAs). Among these, GaAs has the lowest band gap (1.52 eV) compared to NaI (5.9 eV) or CsI (6.4 eV), which in principle allows it to probe dark matter masses as low as ~0.5 MeV, compared to ~1.5 MeV with NaI or CsI. We compare these scattering rates with those expected in silicon (Si) and germanium (Ge). The proposed experimental concept presents an important complementary path to existing efforts, and its potential advantages may make it the most sensitive direct-detection probe of dark matter down to MeV masses.« less

  6. SABRE: A search for dark matter and a test of the DAMA/LIBRA annual-modulation result using thallium-doped sodium-iodide scintillation detectors

    NASA Astrophysics Data System (ADS)

    Shields, Emily Kathryn

    Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark-matter measurement. In addition, recent controversy surrounding the value of an important parameter for direct detection---the nuclear quenching factor---prompted SABRE to perform a measurement of the quenching factor in sodium. The measurement, its results, and the implications for DAMA/LIBRA and dark matter are also described.

  7. Mineral Detected from Orbit Found in Dark Veneers

    NASA Image and Video Library

    2014-01-23

    Researchers used NASA Mars Exploration Rover Opportunity to find a water-related mineral on the ground that had been detected from orbit, and found it in the dark veneer of rocks on the rim of Endeavour Crater.

  8. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate

    PubMed Central

    Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.

    2013-01-01

    Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696

  9. Multi-component dark matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Univ. of California, Irvine, CA; Rutgers Univ., Piscataway, NJ; ...

    2017-01-18

    Here, we study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged undermore » $$SU(2)_W \\times U(1)_Y$$ and under the dark gauge group, $$U(1)^\\prime$$. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.« less

  10. Baryon acoustic oscillation intensity mapping of dark energy.

    PubMed

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B; McDonald, Patrick

    2008-03-07

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called "dark energy." To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 10(9) individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  11. Hidden SU ( N ) glueball dark matter

    DOE PAGES

    Soni, Amarjit; Zhang, Yue

    2016-06-21

    Here we investigate the possibility that the dark matter candidate is from a pure non-abelian gauge theory of the hidden sector, motivated in large part by its elegance and simplicity. The dark matter is the lightest bound state made of the confined gauge fields, the hidden glueball. We point out this simple setup is capable of providing rich and novel phenomena in the dark sector, especially in the parameter space of large N. They include self-interacting and warm dark matter scenarios, Bose-Einstein condensation leading to massive dark stars possibly millions of times heavier than our sun giving rise to gravitationalmore » lensing effects, and indirect detections through higher dimensional operators as well as interesting collider signatures.« less

  12. Prospects for dark matter detection with inelastic transitions of xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Christopher

    2016-05-16

    Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon detectors in which dark matter inelastically scatters off the {sup 129}Xe or {sup 131}Xe isotope. We do this by implementing a realistic simulationmore » of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrimination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the {sup 129}Xe or {sup 131}Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting an inelastic signal from the axial-vector interaction will be almost entirely excluded.« less

  13. Dark Matter Indirect Detection with Gamma Rays

    DOE PAGES

    Patrick Harding, J.

    2017-07-27

    Searches for weakly interacting massive particle (WIMP) dark matter with gamma-ray instruments are a way to get a unique observational handle on the particle nature of dark matter. I will discuss the details of how to perform these searches, both for annihilating and decaying WIMPs. I will discuss the calculation of the gamma-ray flux from possible sources of dark matter annihilation or decay and show examples of limits which have been calculated using these techniques.

  14. Point sources from dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Randall, Lisa

    2017-12-01

    If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.

  15. Indirect search for dark matter in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, Carsten, E-mail: rott@skku.edu

    If dark matter is be captured in the Sun and self-annihilate, evidence of this process might be observable on the Earth in form of a neutrinos, which are copiously produced in the annihilation process. We discuss a novel signature of dark matter annihilations in the Sun that originates from monoenergetic neutrinos produced in pion and kaon decays. Based on this signature we find competitive sensitivities for the detection of dark matter at present and next-generation neutrino detectors.

  16. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.

    PubMed

    Hellbach, Katharina; Baehr, Andrea; De Marco, Fabio; Willer, Konstantin; Gromann, Lukas B; Herzen, Julia; Dmochewitz, Michaela; Auweter, Sigrid; Fingerle, Alexander A; Noël, Peter B; Rummeny, Ernst J; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Wieberneit, Nataly; Proksa, Roland; Koehler, Thomas; Rindt, Karsten; Schroeter, Tobias J; Mohr, Juergen; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Reiser, Maximilian F

    2018-02-08

    The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.

  17. Simulations of galaxy cluster collisions with a dark plasma component

    NASA Astrophysics Data System (ADS)

    Spethmann, Christian; Veermäe, Hardi; Sepp, Tiit; Heikinheimo, Matti; Deshev, Boris; Hektor, Andi; Raidal, Martti

    2017-12-01

    Context. Dark plasma is an intriguing form of self-interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. Aims: We aim to find an explanation for an isolated mass clump in the Abell 520 system, which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations. Methods: We performed N-body smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 10-40% mass fraction of dark plasma. Results: The mass of a possible dark clump was calculated for each simulation in a parameter scan over the underlying model parameters. In two higher resolution simulations shock-waves and Mach cones were observed to form in the dark plasma halos. Conclusions: By choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org

  18. Dynamical dark matter: A new framework for dark-matter physics

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Thomas, Brooks

    2013-05-01

    Although much remains unknown about the dark matter of the universe, one property is normally considered sacrosanct: dark matter must be stable well beyond cosmological time scales. However, a new framework for dark-matter physics has recently been proposed which challenges this assumption. In the "dynamical dark matter" (DDM) framework, the dark sector consists of a vast ensemble of individual dark-matter components with differing masses, lifetimes, and cosmological abundances. Moreover, the usual requirement of stability is replaced by a delicate balancing between lifetimes and cosmological abundances across the ensemble as a whole. As a result, it is possible for the DDM ensemble to remain consistent with all experimental and observational bounds on dark matter while nevertheless giving rise to collective behaviors which transcend those normally associated with traditional dark-matter candidates. These include a new, non-trivial darkmatter equation of state as well as potentially distinctive signatures in collider and direct-detection experiments. In this review article, we provide a self-contained introduction to the DDM framework and summarize some of the work which has recently been done in this area. We also present an explicit model within the DDM framework, and outline a number of ideas for future investigation.

  19. Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states

    NASA Astrophysics Data System (ADS)

    Cirelli, Marco; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco

    2017-05-01

    Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.

  20. Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirelli, Marco; Petraki, Kalliopi; Sala, Filippo

    Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeVmore » to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.« less

  1. A global fit of the γ-ray galactic center excess within the scalar singlet Higgs portal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuoco, Alessandro; Eiteneuer, Benedikt; Heisig, Jan

    2016-06-28

    We analyse the excess in the γ-ray emission from the center of our galaxy observed by Fermi-LAT in terms of dark matter annihilation within the scalar Higgs portal model. In particular, we include the astrophysical uncertainties from the dark matter distribution and allow for unspecified additional dark matter components. We demonstrate through a detailed numerical fit that the strength and shape of the γ-ray spectrum can indeed be described by the model in various regions of dark matter masses and couplings. Constraints from invisible Higgs decays, direct dark matter searches, indirect searches in dwarf galaxies and for γ-ray lines, andmore » constraints from the dark matter relic density reduce the parameter space to dark matter masses near the Higgs resonance. We find two viable regions: one where the Higgs-dark matter coupling is of O(10{sup −2}), and an additional dark matter component beyond the scalar WIMP of our model is preferred, and one region where the Higgs-dark matter coupling may be significantly smaller, but where the scalar WIMP constitutes a significant fraction or even all of dark matter. Both viable regions are hard to probe in future direct detection and collider experiments.« less

  2. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration.

    PubMed

    Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K

    2017-01-01

    Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.

  3. Detecting Dark Photons with Reactor Neutrino Experiments.

    PubMed

    Park, H K

    2017-08-25

    We propose to search for light U(1) dark photons, A^{'}, produced via kinetically mixing with ordinary photons via the Compton-like process, γe^{-}→A^{'}e^{-}, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ε, the A^{'}-γ mixing parameter, ε, for dark-photon masses below 1 MeV of ε<1.3×10^{-5} and ε<2.1×10^{-5}, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.

  4. Dark Matter Limits from Dwarf Spheroidal Galaxies with the HAWC Gamma-Ray Observatory

    NASA Astrophysics Data System (ADS)

    Albert, A.; Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Bautista-Elivar, N.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Bernal, A.; Braun, J.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Engel, K.; Fiorino, D. W.; Fraija, N.; García-González, J. A.; Garfias, F.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez, S.; Hernandez-Almada, A.; Hona, B.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Kieda, D.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Longo Proper, M.; Raya, G. Luis; Luna-García, R.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Vianello, G.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Younk, P. W.; Zhou, H.

    2018-02-01

    The High Altitude Water Cherenkov (HAWC) gamma-ray observatory is a wide field of view observatory sensitive to 500 GeV–100 TeV gamma-rays and cosmic rays. It can also perform diverse indirect searches for dark matter annihilation and decay. Among the most promising targets for the indirect detection of dark matter are dwarf spheroidal galaxies. These objects are expected to have few astrophysical sources of gamma-rays but high dark matter content, making them ideal candidates for an indirect dark matter detection with gamma-rays. Here we present individual limits on the annihilation cross section and decay lifetime for 15 dwarf spheroidal galaxies within the field of view, as well as their combined limit. These are the first limits on the annihilation cross section and decay lifetime using data collected with HAWC. We also present the HAWC flux upper limits of the 15 dwarf spheroidal galaxies in half-decade energy bins.

  5. Updated collider and direct detection constraints on Dark Matter models for the Galactic Center gamma-ray excess

    DOE PAGES

    Escudero, Miguel; Hooper, Dan; Witte, Samuel J.

    2017-02-20

    Utilizing an exhaustive set of simplified models, we revisit dark matter scenarios potentially capable of generating the observed Galactic Center gamma-ray excess, updating constraints from the LUX and PandaX-II experiments, as well as from the LHC and other colliders. We identify a variety of pseudoscalar mediated models that remain consistent with all constraints. In contrast, dark matter candidates which annihilate through a spin-1 mediator are ruled out by direct detection constraints unless the mass of the mediator is near an annihilation resonance, or the mediator has a purely vector coupling to the dark matter and a purely axial coupling tomore » Standard Model fermions. Furthermore, all scenarios in which the dark matter annihilates through t-channel processes are now ruled out by a combination of the constraints from LUX/PandaX-II and the LHC.« less

  6. Little composite dark matter.

    PubMed

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  7. Little composite dark matter

    NASA Astrophysics Data System (ADS)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  8. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos

    NASA Astrophysics Data System (ADS)

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-01

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2 ×10-45 cm2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  9. Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos.

    PubMed

    Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal

    2017-09-29

    We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45}  cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.

  10. Phenomenology of ELDER dark matter

    NASA Astrophysics Data System (ADS)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2017-08-01

    We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.

  11. Searching for a dark photon with DarkLight

    DOE PAGES

    Corliss, R.

    2016-07-30

    Here, we describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c 2 could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. We will detect the complete final state including scattered electron, recoil proton, and e +e - pair. A phase-I experiment has been funded and is expectedmore » to take data in the next eighteen months. The complete phase-II experiment is under final design and could run within two years after phase-I is completed. The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers.« less

  12. Bright gamma-ray Galactic Center excess and dark dwarfs: Strong tension for dark matter annihilation despite Milky Way halo profile and diffuse emission uncertainties

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.; Keeley, Ryan E.

    2016-04-01

    We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.

  13. Higgs portal dark matter in non-standard cosmological histories

    NASA Astrophysics Data System (ADS)

    Hardy, Edward

    2018-06-01

    A scalar particle with a relic density set by annihilations through a Higgs portal operator is a simple and minimal possibility for dark matter. However, assuming a thermal cosmological history this model is ruled out over most of parameter space by collider and direct detection constraints. We show that in theories with a non-thermal cosmological history Higgs portal dark matter is viable for a wide range of dark matter masses and values of the portal coupling, evading existing limits. In particular, we focus on the string theory motivated scenario of a period of matter domination due to a light modulus with a decay rate that is suppressed by the Planck scale. Dark matter with a mass ≲ GeV is possible without additional hidden sector states, and this can have astrophysically relevant self-interactions. We also study the signatures of such models at future direct, indirect, and collider experiments. Searches for invisible Higgs decays at the high luminosity LHC or an e + e - collider could cover a significant proportion of the parameter space for low mass dark matter, and future direct detection experiments will play a complementary role.

  14. Cornering pseudoscalar-mediated dark matter with the LHC and cosmology

    NASA Astrophysics Data System (ADS)

    Banerjee, Shankha; Barducci, Daniele; Bélanger, Geneviève; Fuks, Benjamin; Goudelis, Andreas; Zaldivar, Bryan

    2017-07-01

    Models in which dark matter particles communicate with the visible sector through a pseudoscalar mediator are well-motivated both from a theoretical and from a phenomenological standpoint. With direct detection bounds being typically subleading in such scenarios, the main constraints stem either from collider searches for dark matter, or from indirect detection experiments. However, LHC searches for the mediator particles themselves can not only compete with — or even supersede — the reach of direct collider dark matter probes, but they can also test scenarios in which traditional monojet searches become irrelevant, especially when the mediator cannot decay on-shell into dark matter particles or its decay is suppressed. In this work we perform a detailed analysis of a pseudoscalar-mediated dark matter simplified model, taking into account a large set of collider constraints and concentrating on the parameter space regions favoured by cos-mological and astrophysical data. We find that mediator masses above 100-200 GeV are essentially excluded by LHC searches in the case of large couplings to the top quark, while forthcoming collider and astrophysical measurements will further constrain the available parameter space.

  15. Stellar Wakes from Dark Matter Subhalos

    NASA Astrophysics Data System (ADS)

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R.; Wu, Chih-Liang

    2018-05-01

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ˜107 M⊙ or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  16. A New Dark Vortex

    NASA Astrophysics Data System (ADS)

    Wong, Michael

    2015-10-01

    A bright, unusually long-lived outburst of cloud activity on Neptune was observed in 2015. This led to speculation about whether the clouds were convective in nature, or bright companions to an unseen dark vortex (similar to the Great Dark Spot studied in detail by Voyager 2). HST OPAL images at blue wavelengths finally answered this question by discovering a new dark vortex at 45 deg S. We call this feature SDS-2015, for southern dark spot discovered in 2015.Dark vortices on Neptune are rare; SDS-2015 is only the fifth ever seen. All five were diverse in terms of size and shape, the distribution of bright companion clouds, and horizontal motions (oscillations and drifts). The drift of these vortices is highly sensitive to horizontal and vertical wind shear, making them valuable probes into the structure of Neptune's atmospheric jets. We have traced oscillations in the longitudinal positions of bright companion clouds of SDS-2015, but a second epoch of HST imaging is needed to measure latitudinal motion of the dark vortex itself.Only HST can image dark vortices on Neptune. Ground-based facilities lack the resolution to detect these low-contrast features at blue optical wavelengths, while infrared observations don't detect the dark spots themselves, only their bright companion features. We propose observations of SDS-2015, in order to measure its size, drift rate, and aerosol structure, and to trace its temporal evolution. The observations will improve our understanding of the life cycle of neptunian vortices, of their influence on the surrounding atmosphere, and of the structure of planetary jets.

  17. Phospholipase C mediated Suppression of Dark Noise Enables Single Photon Detection in Drosophila Photoreceptors

    PubMed Central

    Katz, Ben; Minke, Baruch

    2012-01-01

    Drosophila photoreceptor cells use the ubiquitous G-protein-mediated phospholipase C (PLC) cascade to achieve ultimate single photon sensitivity. This is manifested in the single photon responses (quantum bumps). In photoreceptor cells, dark activation of Gqα molecules occurs spontaneously and produces unitary dark events (dark bumps). A high rate of spontaneous Gqα activation and dark bump production potentially hampers single photon detection. We found that in wild type flies the in vivo rate of spontaneous Gqα activation is very high. Nevertheless, this high rate is not manifested in a substantially high rate of dark bumps. Therefore, it is unclear how phototransduction suppresses dark bump production, arising from spontaneous Gqα activation, while still maintaining high-fidelity representation of single photons. In this study we show that reduced PLC catalytic activity selectively suppressed production of dark bumps but not light-induced bumps. Manipulations of PLC activity using PLC mutant flies and Ca2+ modulations revealed that a critical level of PLC activity is required to induce bump production. The required minimal level of PLC activity, selectively suppressed random production of single Gqα-activated dark bumps despite a high rate of spontaneous Gqα activation. This minimal PLC activity level is reliably obtained by photon induced synchronized activation of several neighboring Gqα molecules activating several PLC molecules, but not by random activation of single Gqα molecules. We thus demonstrate how a G-protein-mediated transduction system, with PLC as its target, selectively suppresses its intrinsic noise while preserving reliable signaling. PMID:22357856

  18. SiC-based Photo-detectors for UV, VUV, EUV and Soft X-ray Detection

    NASA Technical Reports Server (NTRS)

    Yan, Feng

    2006-01-01

    A viewgraph presentation describing an ideal Silicon Carbide detector for ultraviolet, vacuum ultraviolet, extreme ultraviolet and soft x-ray detection is shown. The topics include: 1) An ideal photo-detector; 2) Dark current density of SiC photodiodes at room temperature; 3) Dark current in SiC detectors; 4) Resistive and capacitive feedback trans-impedance amplifier; 5) Avalanche gain; 6) Excess noise; 7) SNR in single photon counting mode; 8) Structure of SiC single photon counting APD and testing structure; 9) Single photon counting waveform and testing circuit; 10) Amplitude of SiC single photon counter; 11) Dark count of SiC APD photon counters; 12) Temperature-dependence of dark count rate; 13) Reduce the dark count rate by reducing the breakdown electric field; 14) Spectrum range for SiC detectors; 15) QE curves of Pt/4H-SiC photodiodes; 16) QE curve of SiC; 17) QE curves of SiC photodiode vs. penetration depth; 18) Visible rejection of SiC photodiodes; 19) Advantages of SiC photodiodes; 20) Competitors of SiC detectors; 21) Extraterrestrial solar spectra; 22) Visible-blind EUV detection; 23) Terrestrial solar spectra; and 24) Less than 1KeV soft x-ray detection.

  19. Dark matter signals from Draco and Willman 1: prospects for MAGIC II and CTA

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Doro, Michele; Fornasa, Mattia

    2009-01-01

    The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promising candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to considerably enhance, in some cases, the gamma-ray flux in the high energies domain where Atmospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.

  20. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode.

    PubMed

    Martinez, Nicholas J D; Gehl, Michael; Derose, Christopher T; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2017-07-10

    We examine gated-Geiger mode operation of an integrated waveguide-coupled Ge-on-Si lateral avalanche photodiode (APD) and demonstrate single photon detection at low dark count for this mode of operation. Our integrated waveguide-coupled APD is fabricated using a selective epitaxial Ge-on-Si growth process resulting in a separate absorption and charge multiplication (SACM) design compatible with our silicon photonics platform. Single photon detection efficiency and dark count rate is measured as a function of temperature in order to understand and optimize performance characteristics in this device. We report single photon detection of 5.27% at 1310 nm and a dark count rate of 534 kHz at 80 K for a Ge-on-Si single photon avalanche diode. Dark count rate is the lowest for a Ge-on-Si single photon detector in this range of temperatures while maintaining competitive detection efficiency. A jitter of 105 ps was measured for this device.

  1. Effect of processing on recovery and variability associated with immunochemical analytical methods for multiple allergens in a single matrix: dark chocolate.

    PubMed

    Khuda, Sefat; Slate, Andrew; Pereira, Marion; Al-Taher, Fadwa; Jackson, Lauren; Diaz-Amigo, Carmen; Bigley, Elmer C; Whitaker, Thomas; Williams, Kristina

    2012-05-02

    Immunodetection of allergens in dark chocolate is complicated by interference from the chocolate components. The objectives of this study were to establish reference materials for detecting multiple allergens in dark chocolate and to determine the accuracy and precision of allergen detection by enzyme-linked immunosorbent assay (ELISA) before and after chocolate processing. Defatted peanut flour, whole egg powder, and spray-dried milk were added to melted chocolate at seven incurred levels and tempered for 4 h. Allergen concentrations were measured using commercial ELISA kits. Tempering decreased the detection of casein and β-lactoglobulin (BLG), but had no significant effect on the detection of peanut and egg. Total coefficients of variation were higher in tempered than untempered chocolate for casein and BLG, but total and analytical CVs were comparable for peanut and egg. These findings indicate that processing has a greater effect on recovery and variability of casein and BLG than peanut and egg detection in a dark chocolate matrix.

  2. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Wechsler, Risa H.; Loeb, Abraham, E-mail: behroozi@stanford.edu, E-mail: aloeb@cfa.harvard.edu, E-mail: rwechsler@stanford.edu

    2013-06-01

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  3. Unbound particles in dark matter halos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches formore » intergalactic supernovae.« less

  4. Constraining the interaction between dark sectors with future HI intensity mapping observations

    NASA Astrophysics Data System (ADS)

    Xu, Xiaodong; Ma, Yin-Zhe; Weltman, Amanda

    2018-04-01

    We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at z ˜1 , which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.

  5. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  6. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, Xi.; Xiao, X.; Xu, J.; Yang, C.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-12-01

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  7. CALIS—A CALibration Insertion System for the DarkSide-50 dark matter search experiment

    DOE PAGES

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; ...

    2017-12-18

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  8. The Sun as a sub-GeV dark matter accelerator

    NASA Astrophysics Data System (ADS)

    Emken, Timon; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2018-03-01

    Sub-GeV halo dark matter that enters the Sun can potentially scatter off hot solar nuclei and be ejected much faster than its incoming velocity. We derive an expression for the rate and velocity distribution of these reflected particles, taking into account the Sun's temperature and opacity. We further demonstrate that future direct-detection experiments could use these energetic reflected particles to probe light dark matter in parameter space that cannot be accessed via ordinary halo dark matter.

  9. Cancellation Mechanism for Dark-Matter-Nucleon Interaction.

    PubMed

    Gross, Christian; Lebedev, Oleg; Toma, Takashi

    2017-11-10

    We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.

  10. Constraining heavy decaying dark matter with the high energy gamma-ray limits

    NASA Astrophysics Data System (ADS)

    Kalashev, O. E.; Kuznetsov, M. Yu.

    2016-09-01

    We consider decaying dark matter with masses 1 07≲M ≲1 016 GeV as a source of ultrahigh energy (UHE) gamma rays. Using recent limits on UHE gamma-ray flux for energies Eγ>2 ×1 014 eV , provided by extensive air shower observatories, we put limits on masses and lifetimes of the dark matter. We also discuss possible dark matter decay origin of tentative 100 PeV photon flux detected with the EAS-MSU experiment.

  11. Proposal for Axion Dark Matter Detection Using an L C Circuit

    DOE PAGES

    Sikivie, P.; Sullivan, N.; Tanner, D. B.

    2014-03-01

    Here, we show that dark matter axions cause an oscillating electric current to flow along magnetic field lines. The oscillating current induced in a strong magnetic field B → 0 produces a small magnetic field B → a. We propose to amplify and detect B → a using a cooled LC circuit and a very sensitive magnetometer. This appears to be a suitable approach to searching for axion dark matter in the 10 –7 to 10 –9 eV mass range.

  12. [Does dark field microscopy according to Enderlein allow for cancer diagnosis? A prospective study].

    PubMed

    El-Safadi, Samer; Tinneberg, Hans-Rudolf; von Georgi, Richard; Münstedt, Karsten; Brück, Friede

    2005-06-01

    Dark field microscopy according to Enderlin claims to be able to detect forthcoming or beginning cancer at an early stage through minute abnormalities in the blood. In Germany and the USA, this method is used by an increasing number of physicians and health practitioners (non-medically qualified complementary practitioners), because this easy test seems to give important information about patients' health status. Can dark field microscopy reliably detect cancer? In the course of a prospective study on iridology, blood samples were drawn for dark field microscopy in 110 patients. A health practitioner with several years of training in the field carried out the examination without prior information about the patients. Out of 12 patients with present tumor metastasis as confirmed by radiological methods (CT, MRI or ultra-sound) 3 were correctly identified. Analysis of sensitivity (0.25), specificity (0.64), positive (0.09) and negative (0.85) predictive values revealed unsatisfactory results. Dark field micoroscopy does not seem to reliably detect the presence of cancer. Clinical use of the method can therefore not be recommended until future studies are conducted.

  13. Dark stars: a review.

    PubMed

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures  ∼10 000 K) objects. We follow the evolution of dark stars from their inception at  ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >[Formula: see text] and luminosities  >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  14. Dark stars: a review

    NASA Astrophysics Data System (ADS)

    Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica

    2016-06-01

    Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures  ˜10 000 K) objects. We follow the evolution of dark stars from their inception at  ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses  >{{10}6}{{M}⊙} and luminosities  >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.

  15. MadDM: Computation of dark matter relic abundance

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Kong, Kyoungchul; McCaskey, Mathew

    2017-12-01

    MadDM computes dark matter relic abundance and dark matter nucleus scattering rates in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. The direct detection module of MadDM calculates spin independent / spin dependent dark matter-nucleon cross sections and differential recoil rates as a function of recoil energy, angle and time. The code provides a simplified simulation of detector effects for a wide range of target materials and volumes.

  16. Baryon Acoustic Oscillation Intensity Mapping of Dark Energy

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick

    2008-03-01

    The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

  17. Dark matter and neutrino masses from a scale-invariant multi-Higgs portal

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2015-10-01

    We consider a classically scale invariant version of the Standard Model, extended by an extra dark S U (2 )X gauge group. Apart from the dark gauge bosons and a dark scalar doublet which is coupled to the Standard Model Higgs through a portal coupling, we incorporate right-handed neutrinos and an additional real singlet scalar field. After symmetry breaking à la Coleman-Weinberg, we examine the multi-Higgs sector and impose theoretical and experimental constraints. In addition, by computing the dark matter relic abundance and the spin-independent scattering cross section off a nucleon we determine the viable dark matter mass range in accordance with present limits. The model can be tested in the near future by collider experiments and direct detection searches such as XENON 1T.

  18. Beyond vanilla dark matter: New channels in the multifaceted search for dark matter

    NASA Astrophysics Data System (ADS)

    Yaylali, David E.

    Though we are extremely confident that non-baryonic dark matter exists in our universe, very little is known about its fundamental nature or its relationship with the Standard Model. Guided by theoretical motivations, a desire for generality in our experimental strategies, and a certain amount of hopeful optimism, we have established a basic framework and set of assumptions about the dark sector which we are now actively testing. After years of probing the parameter spaces of these vanilla dark-matter scenarios, through a variety of different search channels, a conclusive direct (non-gravitational) discovery of dark matter eludes us. This very well may suggest that our first-order expectations of the dark sector are too simplistic. This work describes two ways in which we can expand the experimental reach of vanilla dark-matter scenarios while maintaining the model-independent generality which is at this point still warranted. One way in which this is done is to consider coupling structures between the SM and the dark sector other than the two canonical types --- scalar and axial-vector --- leading to spin dependent and independent interactions at direct-detection experiments. The second way we generalize the vanilla scenarios is to consider multi-component dark sectors. We find that both of these generalizations lead to new and interesting phenomenology, and provide a richer complementarity structure between the different experimental probes we are using to search for dark matter.

  19. Dark matter line emission constraints from NuSTAR observations of the bullet cluster

    DOE PAGES

    Riemer-Sørensen, S.; Wik, D.; Madejski, G.; ...

    2015-08-27

    Some dark matter candidates, e.g., sterile neutrinos, provide observable signatures in the form of mono-energetic line emission. Here, we present the first search for dark matter line emission in themore » $$3-80\\;\\mathrm{keV}$$ range in a pointed observation of the Bullet Cluster with NuSTAR. We do not detect any significant line emission and instead we derive upper limits (95% CL) on the flux, and interpret these constraints in the context of sterile neutrinos and more generic dark matter candidates. NuSTAR does not have the sensitivity to constrain the recently claimed line detection at $$3.5\\;\\mathrm{keV}$$, but improves on the constraints for energies of $$10-25\\;\\mathrm{keV}$$.« less

  20. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  1. Scalar dark matter in leptophilic two-Higgs-doublet model

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa

    2018-04-01

    Two-Higgs-Doublet Model of Type-X in the large tan ⁡ β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.

  2. The Edges Of Dark Matter Halos: Theory And Observations

    NASA Astrophysics Data System (ADS)

    More, Surhud

    2017-06-01

    I discuss recent theoretical advances which have led us to suggest a physical definition for the boundary of dark matter halos. We propose using the "splashback radius" which corresponds to the apocenter of recently infalling material as a physical boundary for dark matter halos. We also present how the splashback radius can be detected in observations.

  3. Dynamics of Dark-Fly Genome Under Environmental Selections.

    PubMed

    Izutsu, Minako; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, Naoyuki

    2015-12-04

    Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize "Dark-fly", a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly. Copyright © 2016 Izutsu et al.

  4. Dynamics of Dark-Fly Genome Under Environmental Selections

    PubMed Central

    Izutsu, Minako; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu; Fuse, Naoyuki

    2015-01-01

    Environmental adaptation is one of the most fundamental features of organisms. Modern genome science has identified some genes associated with adaptive traits of organisms, and has provided insights into environmental adaptation and evolution. However, how genes contribute to adaptive traits and how traits are selected under an environment in the course of evolution remain mostly unclear. To approach these issues, we utilize “Dark-fly”, a Drosophila melanogaster line maintained in constant dark conditions for more than 60 years. Our previous analysis identified 220,000 single nucleotide polymorphisms (SNPs) in the Dark-fly genome, but did not clarify which SNPs of Dark-fly are truly adaptive for living in the dark. We found here that Dark-fly dominated over the wild-type fly in a mixed population under dark conditions, and based on this domination we designed an experiment for genome reselection to identify adaptive genes of Dark-fly. For this experiment, large mixed populations of Dark-fly and the wild-type fly were maintained in light conditions or in dark conditions, and the frequencies of Dark-fly SNPs were compared between these populations across the whole genome. We thereby detected condition-dependent selections toward approximately 6% of the genome. In addition, we observed the time-course trajectory of SNP frequency in the mixed populations through generations 0, 22, and 49, which resulted in notable categorization of the selected SNPs into three types with different combinations of positive and negative selections. Our data provided a list of about 100 strong candidate genes associated with the adaptive traits of Dark-fly. PMID:26637434

  5. Agreement between gonioscopy and ultrasound biomicroscopy in detecting iridotrabecular apposition.

    PubMed

    Barkana, Yaniv; Dorairaj, Syril K; Gerber, Yariv; Liebmann, Jeffrey M; Ritch, Robert

    2007-10-01

    To assess the agreement between findings obtained at dark-room gonioscopy and ultrasound biomicroscopy (UBM) in the diagnosis of iridotrabecular apposition in light and dark conditions. We enrolled patients with appositional angle closure at dark-room gonioscopy performed using a 1-mm slitlamp beam that did not cross the pupil. Ultrasound biomicroscopic images were acquired in normal room light and subsequently with all room lights off. Images were evaluated for the presence or absence of iris-cornea contact. The angle opening distance at 500 microm was calculated. Iridotrabecular apposition in at least 1 angle quadrant was demonstrated in all 18 eyes at dark-room gonioscopy, 17 eyes (94%) at dark-room UBM, and only 10 eyes (56%) at UBM in room light. Of 18 superior angles that were appositionally closed at dark-room gonioscopy, apposition was demonstrated on UBM images in 16 (89%) in a dark room but only 6 (33%) in room light. Angle opening distance was less during dark-room gonioscopy in all but the nasal quadrant. We found high agreement between gonioscopy and UBM when both are performed in a completely dark room. Our findings support the recommendation that, in routine clinical practice, gonioscopy be performed in a dark room to avoid misdiagnosis of treatable iridotrabecular apposition.

  6. Genome Features of “Dark-Fly”, a Drosophila Line Reared Long-Term in a Dark Environment

    PubMed Central

    Zhou, Jun; Sugiyama, Yuzo; Nishimura, Osamu; Aizu, Tomoyuki; Toyoda, Atsushi; Fujiyama, Asao; Agata, Kiyokazu

    2012-01-01

    Organisms are remarkably adapted to diverse environments by specialized metabolisms, morphology, or behaviors. To address the molecular mechanisms underlying environmental adaptation, we have utilized a Drosophila melanogaster line, termed “Dark-fly”, which has been maintained in constant dark conditions for 57 years (1400 generations). We found that Dark-fly exhibited higher fecundity in dark than in light conditions, indicating that Dark-fly possesses some traits advantageous in darkness. Using next-generation sequencing technology, we determined the whole genome sequence of Dark-fly and identified approximately 220,000 single nucleotide polymorphisms (SNPs) and 4,700 insertions or deletions (InDels) in the Dark-fly genome compared to the genome of the Oregon-R-S strain, a control strain. 1.8% of SNPs were classified as non-synonymous SNPs (nsSNPs: i.e., they alter the amino acid sequence of gene products). Among them, we detected 28 nonsense mutations (i.e., they produce a stop codon in the protein sequence) in the Dark-fly genome. These included genes encoding an olfactory receptor and a light receptor. We also searched runs of homozygosity (ROH) regions as putative regions selected during the population history, and found 21 ROH regions in the Dark-fly genome. We identified 241 genes carrying nsSNPs or InDels in the ROH regions. These include a cluster of alpha-esterase genes that are involved in detoxification processes. Furthermore, analysis of structural variants in the Dark-fly genome showed the deletion of a gene related to fatty acid metabolism. Our results revealed unique features of the Dark-fly genome and provided a list of potential candidate genes involved in environmental adaptation. PMID:22432011

  7. Good Liars Are Neither ‘Dark’ Nor Self-Deceptive

    PubMed Central

    Wright, Gordon R. T.; Berry, Christopher J.; Catmur, Caroline; Bird, Geoffrey

    2015-01-01

    Deception is a central component of the personality 'Dark Triad' (Machiavellianism, Psychopathy and Narcissism). However, whether individuals exhibiting high scores on Dark Triad measures have a heightened deceptive ability has received little experimental attention. The present study tested whether the ability to lie effectively, and to detect lies told by others, was related to Dark Triad, Lie Acceptability, or Self-Deceptive measures of personality using an interactive group-based deception task. At a group level, lie detection accuracy was correlated with the ability to deceive others—replicating previous work. No evidence was found to suggest that Dark Triad traits confer any advantage either to deceive others, or to detect deception in others. Participants who considered lying to be more acceptable were more skilled at lying, while self-deceptive individuals were generally less credible and less confident when lying. Results are interpreted within a framework in which repeated practice results in enhanced deceptive ability. PMID:26083765

  8. Stellar Wakes from Dark Matter Subhalos.

    PubMed

    Buschmann, Malte; Kopp, Joachim; Safdi, Benjamin R; Wu, Chih-Liang

    2018-05-25

    We propose a novel method utilizing stellar kinematic data to detect low-mass substructure in the Milky Way's dark matter halo. By probing characteristic wakes that a passing dark matter subhalo leaves in the phase-space distribution of ambient halo stars, we estimate sensitivities down to subhalo masses of ∼10^{7}  M_{⊙} or below. The detection of such subhalos would have implications for dark matter and cosmological models that predict modifications to the halo-mass function at low halo masses. We develop an analytic formalism for describing the perturbed stellar phase-space distributions, and we demonstrate through idealized simulations the ability to detect subhalos using the phase-space model and a likelihood framework. Our method complements existing methods for low-mass subhalo searches, such as searches for gaps in stellar streams, in that we can localize the positions and velocities of the subhalos today.

  9. Scale-invariant scalar field dark matter through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Cosme, Catarina; Rosa, João G.; Bertolami, O.

    2018-05-01

    We discuss the dynamics and phenomenology of an oscillating scalar field coupled to the Higgs boson that accounts for the dark matter in the Universe. The model assumes an underlying scale invariance such that the scalar field only acquires mass after the electroweak phase transition, behaving as dark radiation before the latter takes place. While for a positive coupling to the Higgs field the dark scalar is stable, for a negative coupling it acquires a vacuum expectation value after the electroweak phase transition and may decay into photon pairs, albeit with a mean lifetime much larger than the age of the Universe. We explore possible astrophysical and laboratory signatures of such a dark matter candidate in both cases, including annihilation and decay into photons, Higgs decay, photon-dark scalar oscillations and induced oscillations of fundamental constants. We find that dark matter within this scenario will be generically difficult to detect in the near future, except for the promising case of a 7 keV dark scalar decaying into photons, which naturally explains the observed galactic and extra-galactic 3.5 keV X-ray line.

  10. Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauro, Mattia Di; Donato, Fiorenza; Fornengo, Nicolao

    We perform a detailed quantitative analysis of the recent AMS-02 electron and positron data. We investigate the interplay between the emission from primary astrophysical sources, namely Supernova Remnants and Pulsar Wind Nebulae, and the contribution from a dark matter annihilation or decay signal. Our aim is to assess the information that can be derived on dark matter properties when both dark matter and primary astrophysical sources are assumed to jointly contribute to the leptonic observables measured by the AMS-02 experiment. We investigate both the possibility to set robust constraints on the dark matter annihilation/decay rate and the possibility to lookmore » for dark matter signals within realistic models that take into account the full complexity of the astrophysical background. Our results show that AMS-02 data enable to probe efficiently vast regions of the dark matter parameter space and, in some cases, to set constraints on the dark matter annihilation/decay rate that are comparable or even stronger than the ones derived from other indirect detection channels.« less

  11. Explaining dark matter and B decay anomalies with an L μ - L τ model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano

    We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less

  12. Explaining dark matter and B decay anomalies with an L μ - L τ model

    DOE PAGES

    Altmannshofer, Wolfgang; Gori, Stefania; Profumo, Stefano; ...

    2016-12-20

    We present a dark sector model based on gauging the L μ - L τ symmetry that addresses anomalies in b→ sμ +μ - decays and that features a particle dark matter candidate. The dark matter particle candidate is a vector-like Dirac fermion coupled to the Z' gauge boson of the L μ - L τ symmetry. We compute the dark matter thermal relic density, its pair-annihilation cross section, and the loop-suppressed dark matter-nucleon scattering cross section, and compare our predictions with current and future experimental results. We demonstrate that after taking into account bounds from Bs meson oscillations, darkmore » matter direct detection, and the CMB, the model is highly predictive: B physics anomalies and a viable particle dark matter candidate, with a mass of ~ (5 - 23) GeV, can be accommodated only in a tightly-constrained region of parameter space, with sharp predictions for future experimental tests. The viable region of parameter space expands if the dark matter is allowed to have L μ - L τ charges that are smaller than those of the SM leptons.« less

  13. Dark Matter Freeze-in Production in Fast-Expanding Universes

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2018-02-01

    If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified cosmological history can drastically affect the abundance of relic dark matter particles. Here, we assume that an additional species to radiation dominates at early times, causing the expansion rate at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter abundance to be as large as observations, couplings between the dark matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds some optimistic prospects for the otherwise dire experimental and observational outlook of detecting dark matter produced by freeze-in.

  14. DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, C.E.; et al.

    Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LArTPC) with an active (fiducial) mass of 23 t (20 t). The DarkSide-20k LArTPC will be deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). Operation of DarkSide-50 demonstrated a major reduction in the dominantmore » $$^{39}$$Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $$\\gt3\\times10^9$$ is achievable. This, along with the use of the veto system, is the key to unlocking the path to large LArTPC detector masses, while maintaining an "instrumental background-free" experiment, an experiment in which less than 0.1 events (other than $$\

  15. Dark matter in dwarf spheroidal galaxies and indirect detection: a review

    NASA Astrophysics Data System (ADS)

    Strigari, Louis E.

    2018-05-01

    Indirect dark matter searches targeting dwarf spheroidal galaxies (dSphs) have matured rapidly during the past decade. This has been because of the substantial increase in kinematic data sets from the dSphs, the new dSphs that have been discovered, and the operation of the Fermi-LAT and many ground-based gamma-ray experiments. Here we review the analysis methods that have been used to determine the dSph dark matter distributions, in particular the ‘J-factors’, comparing and contrasting them, and detailing the underlying systematics that still affect the analysis. We discuss prospects for improving measurements of dark matter distributions, and how these interplay with future indirect dark matter searches.

  16. Dark matter in dwarf spheroidal galaxies and indirect detection: a review.

    PubMed

    Strigari, Louis E

    2018-05-01

    Indirect dark matter searches targeting dwarf spheroidal galaxies (dSphs) have matured rapidly during the past decade. This has been because of the substantial increase in kinematic data sets from the dSphs, the new dSphs that have been discovered, and the operation of the Fermi-LAT and many ground-based gamma-ray experiments. Here we review the analysis methods that have been used to determine the dSph dark matter distributions, in particular the 'J-factors', comparing and contrasting them, and detailing the underlying systematics that still affect the analysis. We discuss prospects for improving measurements of dark matter distributions, and how these interplay with future indirect dark matter searches.

  17. Dark matter, shared asymmetries, and galactic gamma ray signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fonseca, Nayara; Necib, Lina; Thaler, Jesse, E-mail: nayara@if.usp.br, E-mail: lnecib@mit.edu, E-mail: jthaler@mit.edu

    2016-02-01

    We introduce a novel dark matter scenario where the visible sector and the dark sector share a common asymmetry. The two sectors are connected through an unstable mediator with baryon number one, allowing the standard model baryon asymmetry to be shared with dark matter via semi-annihilation. The present-day abundance of dark matter is then set by thermal freeze-out of this semi-annihilation process, yielding an asymmetric version of the WIMP miracle as well as promising signals for indirect detection experiments. As a proof of concept, we find a viable region of parameter space consistent with the observed Fermi excess of GeVmore » gamma rays from the galactic center.« less

  18. Direct detection of light dark matter and solar neutrinos via color center production in crystals

    NASA Astrophysics Data System (ADS)

    Budnik, Ranny; Cheshnovsky, Ori; Slone, Oren; Volansky, Tomer

    2018-07-01

    We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O (10) MeV through nuclear scattering. Another feature of defect creation in crystals is directional information, which presents as a spectacular signal and a handle on background reduction in the form of daily modulation of the interaction rate. We discuss the envisioned setup and detection technique, as well as background reduction. We further calculate the expected rates for dark matter and solar neutrinos in two example crystals for which available data exists, demonstrating the prospective sensitivity of such experiments.

  19. The dark side of plasmonics.

    PubMed

    Gómez, D E; Teo, Z Q; Altissimo, M; Davis, T J; Earl, S; Roberts, A

    2013-08-14

    Plasmonic dark modes are pure near-field modes that can arise from the plasmon hybridization in a set of interacting nanoparticles. When compared to bright modes, dark modes have longer lifetimes due to their lack of a net dipole moment, making them attractive for a number of applications. We demonstrate the excitation and optical detection of a collective dark plasmonic mode from individual plasmonic trimers. The trimers consist of triangular arrangements of gold nanorods, and due to this symmetry, the lowest-energy dark plasmonic mode can interact with radially polarized light. The experimental data presented confirm the excitation of this mode, and its assignment is supported with an electrostatic approximation wherein these dark modes are described in terms of plasmon hybridization. The strong confinement of energy in these modes and their associated near fields hold great promise for achieving strong coupling to single photon emitters.

  20. Dark matter from a classically scale-invariant S U (3 )X

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Tamvakis, Kyriakos

    2016-09-01

    In this work we study a classically scale-invariant extension of the Standard Model in which the dark matter and electroweak scales are generated through the Coleman-Weinberg mechanism. The extra S U (3 )X gauge factor gets completely broken by the vacuum expectation values of two scalar triplets. Out of the eight resulting massive vector bosons the three lightest are stable due to an intrinsic Z2×Z2' discrete symmetry and can constitute dark matter candidates. We analyze the phenomenological viability of the predicted multi-Higgs sector imposing theoretical and experimental constraints. We perform a comprehensive analysis of the dark matter predictions of the model solving numerically the set of coupled Boltzmann equations involving all relevant dark matter processes and explore the direct detection prospects of the dark matter candidates.

  1. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  2. Studies of dark energy with X-ray observatories.

    PubMed

    Vikhlinin, Alexey

    2010-04-20

    I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity.

  3. Observations of SO in dark and molecular clouds

    NASA Technical Reports Server (NTRS)

    Rydbeck, O. E. H.; Hjalmarson, A.; Rydbeck, G.; Ellder, J.; Kollberg, E.; Irvine, W. M.

    1980-01-01

    The 1(0)-0(1) transition of SO at 30 GHz has been observed in several sources, including the first detection of sulfur monoxide in cold dark clouds without apparent internal energy sources. The SO transition appears to be an excellent tracer of structure in dark clouds, and the data support suggestions that self-absorption is important in determining emission profiles in such regions for large line-strength transitions. Column densities estimated from a comparison of the results for the two isotopic species indicate a high fractional abundance of SO in dark clouds.

  4. Detectability of Light Dark Matter with Superfluid Helium.

    PubMed

    Schutz, Katelin; Zurek, Kathryn M

    2016-09-16

    We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ∼keV warm dark matter mass limit. This mass reach is 3 orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. For dark matter lighter than ∼100  keV, the kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.

  5. Dark matter subhalos and unidentified sources in the Fermi 3FGL source catalog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoonenberg, Djoeke; Gaskins, Jennifer; Bertone, Gianfranco

    2016-05-01

    If dark matter consists of weakly interacting massive particles (WIMPs), dark matter subhalos in the Milky Way could be detectable as gamma-ray point sources due to WIMP annihilation. In this work, we perform an updated study of the detectability of dark matter subhalos as gamma-ray sources with the Fermi Large Area Telescope (Fermi LAT). We use the results of the Via Lactea II simulation, scaled to the Planck 2015 cosmological parameters, to predict the local dark matter subhalo distribution. Under optimistic assumptions for the WIMP parameters—a 40 GeV particle annihilating to b b-bar with a thermal cross-section, as required tomore » explain the Galactic center GeV excess—we predict that at most ∼ 10 subhalos might be present in the third Fermi LAT source catalog (3FGL). This is a smaller number than has been predicted by prior studies, and we discuss the origin of this difference. We also compare our predictions for the detectability of subhalos with the number of subhalo candidate sources in 3FGL, and derive upper limits on the WIMP annihilation cross-section as a function of the particle mass. If a dark matter interpretation could be excluded for all 3FGL sources, our constraints would be competitive with those found by indirect searches using other targets, such as known Milky Way satellite galaxies.« less

  6. On the direct detection of multi-component dark matter: sensitivity studies and parameter estimation

    NASA Astrophysics Data System (ADS)

    Herrero-Garcia, Juan; Scaffidi, Andre; White, Martin; Williams, Anthony G.

    2017-11-01

    We study the case of multi-component dark matter, in particular how direct detection signals are modified in the presence of several stable weakly-interacting-massive particles. Assuming a positive signal in a future direct detection experiment, stemming from two dark matter components, we study the region in parameter space where it is possible to distinguish a one from a two-component dark matter spectrum. First, we leave as free parameters the two dark matter masses and show that the two hypotheses can be significantly discriminated for a range of dark matter masses with their splitting being the critical factor. We then investigate how including the effects of different interaction strengths, local densities or velocity dispersions for the two components modifies these conclusions. We also consider the case of isospin-violating couplings. In all scenarios, we show results for various types of nuclei both for elastic spin-independent and spin-dependent interactions. Finally, assuming that the two-component hypothesis is confirmed, we quantify the accuracy with which the parameters can be extracted and discuss the different degeneracies that occur. This includes studying the case in which only a single experiment observes a signal, and also the scenario of having two signals from two different experiments, in which case the ratios of the couplings to neutrons and protons may also be extracted.

  7. Probing velocity dependent self-interacting dark matter with neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Robertson, Denis S.; Albuquerque, Ivone F. M.

    2018-02-01

    Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.

  8. Not-so-well-tempered neutralino

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Stefaniak, Tim; Stephenson-Haskins, Laurel

    2017-09-01

    Light electroweakinos, the neutral and charged fermionic supersymmetric partners of the standard model SU (2 )×U (1 ) gauge bosons and of the two SU(2) Higgs doublets, are an important target for searches for new physics with the Large Hadron Collider (LHC). However, if the lightest neutralino is the dark matter, constraints from direct dark matter detection experiments rule out large swaths of the parameter space accessible to the LHC, including in large part the so-called "well-tempered" neutralinos. We focus on the minimal supersymmetric standard model (MSSM) and explore in detail which regions of parameter space are not excluded by null results from direct dark matter detection, assuming exclusive thermal production of neutralinos in the early universe, and illustrate the complementarity with current and future LHC searches for electroweak gauginos. We consider both bino-Higgsino and bino-wino "not-so-well-tempered" neutralinos, i.e. we include models where the lightest neutralino constitutes only part of the cosmological dark matter, with the consequent suppression of the constraints from direct and indirect dark matter searches.

  9. Signatures of compact halos of sterile-neutrino dark matter

    NASA Astrophysics Data System (ADS)

    Kühnel, Florian; Ohlsson, Tommy

    2017-11-01

    We investigate compact halos of sterile-neutrino dark matter and examine observable signatures with respect to neutrino and photon emission. Primarily, we consider two cases: primordial black-hole halos and ultracompact minihalos. In both cases, we find that there exists a broad range of possible parameter choices such that detection in the near future with x-ray and gamma-ray telescopes might be well possible. In fact, for energies above 10 TeV, the neutrino telescope IceCube would be a splendid detection machine for such macroscopic dark-matter candidates.

  10. Search for gamma-ray emission from dark matter annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope

    DOE PAGES

    Caputo, Regina; Buckley, Matthew R.; Martin, Pierrick; ...

    2016-03-22

    The Small Magellanic Cloud (SMC) is the second-largest satellite galaxy of the Milky Way and is only 60 kpc away. As a nearby, massive, and dense object with relatively low astrophysical backgrounds, it is a natural target for dark matter indirect detection searches. In this work, we use six years of Pass 8 data from the Fermi Large Area Telescope to search for gamma-ray signals of dark matter annihilation in the SMC. Using data-driven fits to the gamma-ray backgrounds, and a combination of N-body simulations and direct measurements of rotation curves to estimate the SMC DM density profile, we found that themore » SMC was well described by standard astrophysical sources, and no signal from dark matter annihilation was detected. We set conservative upper limits on the dark matter annihilation cross section. Furthermore, these constraints are in agreement with stronger constraints set by searches in the Large Magellanic Cloud and approach the canonical thermal relic cross section at dark matter masses lower than 10 GeV in the bb¯ and τ +τ - channels.« less

  11. Light dark matter in superfluid helium: Detection with multi-excitation production

    DOE PAGES

    Knapen, Simon; Lin, Tongyan; Zurek, Kathryn M.

    2017-03-22

    We examine in depth a recent proposal to utilize superfluid helium for direct detection of sub-MeV mass dark matter. For sub-keV recoil energies, nuclear scattering events in liquid helium primarily deposit energy into long-lived phonon and roton quasiparticle excitations. If the energy thresholds of the detector can be reduced to the meV scale, then dark matter as light as ~MeV can be reached with ordinary nuclear recoils. If, on the other hand, two or more quasiparticle excitations are directly produced in the dark matter interaction, the kinematics of the scattering allows sensitivity to dark matter as light as ~keV atmore » the same energy resolution. We present in detail the theoretical framework for describing excitations in superfluid helium, using it to calculate the rate for the leading dark matter scattering interaction, where an off-shell phonon splits into two or more higher-momentum excitations. Here, we validate our analytic results against the measured and simulated dynamic response of superfluid helium. Finally, we apply this formalism to the case of a kinetically mixed hidden photon in the superfluid, both with and without an external electric field to catalyze the processes.« less

  12. Strongly self-interacting vector dark matter via freeze-in

    NASA Astrophysics Data System (ADS)

    Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da

    2018-01-01

    We study a vector dark matter (VDM) model in which the dark sector couples to the Standard Model sector via a Higgs portal. If the portal coupling is small enough the VDM can be produced via the freeze-in mechanism. It turns out that the electroweak phase transition have a substantial impact on the prediction of the VDM relic density. We further assume that the dark Higgs boson which gives the VDM mass is so light that it can induce strong VDM self-interactions and solve the small-scale structure problems of the Universe. As illustrated by the latest LUX data, the extreme smallness of the Higgs portal coupling required by the freeze-in mechanism implies that the dark matter direct detection bounds are easily satisfied. However, the model is well constrained by the indirect detections of VDM from BBN, CMB, AMS-02, and diffuse γ/X-rays. Consequently, only when the dark Higgs boson mass is at most of O (keV) does there exist a parameter region which leads to a right amount of VDM relic abundance and an appropriate VDM self-scattering while satisfying all other constraints simultaneously.

  13. Black holes and gravitational waves in models of minicharged dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, Vitor; Perimeter Institute for Theoretical Physics,31 Caroline Street North Waterloo, Ontario N2L 2Y5; Macedo, Caio F.B.

    In viable models of minicharged dark matter, astrophysical black holes might be charged under a hidden U(1) symmetry and are formally described by the same Kerr-Newman solution of Einstein-Maxwell theory. These objects are unique probes of minicharged dark matter and dark photons. We show that the recent gravitational-wave detection of a binary black-hole coalescence by aLIGO provides various observational bounds on the black hole’s charge, regardless of its nature. The pre-merger inspiral phase can be used to constrain the dipolar emission of (ordinary and dark) photons, whereas the detection of the quasinormal modes set an upper limit on the finalmore » black hole’s charge. By using a toy model of a point charge plunging into a Reissner-Nordstrom black hole, we also show that in dynamical processes the (hidden) electromagnetic quasinormal modes of the final object are excited to considerable amplitude in the gravitational-wave spectrum only when the black hole is nearly extremal. The coalescence produces a burst of low-frequency dark photons which might provide a possible electromagnetic counterpart to black-hole mergers in these scenarios.« less

  14. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2011-01-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(exp -26) cm(exp 3) / s at 5 GeV to about 5 X 10(exp -23) cm(exp 3)/ s at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (approx 3 X 10(exp -26) cm(exp 3)/s for a purely s-wave cross section), without assuming additional boost factors.

  15. Skew-flavored dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  16. Skew-flavored dark matter

    DOE PAGES

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  17. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cañadas, B.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jeltema, T. E.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Profumo, S.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strigari, L.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.; Kaplinghat, M.; Martinez, G. D.

    2011-12-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10-26cm3s-1 at 5 GeV to about 5×10-23cm3s-1 at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (˜3×10-26cm3s-1 for a purely s-wave cross section), without assuming additional boost factors.

  18. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% con dence level upper limits range from about 10 -26 cm3s -1 at 5 GeV to about 5 X10 -23 cm3smore » -1 at 1 TeV, depending on the dark matter annihilation nal state. For the rst time, using gamma rays, we are able to rule out models with the most generic cross section (~ 3 X 10 -26 cm 3s -1 for a purely s-wave cross section), without assuming additional boost factors.« less

  19. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2011-12-01

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% con dence level upper limits range from about 10 -26 cm3s -1 at 5 GeV to about 5 X10 -23 cm3smore » -1 at 1 TeV, depending on the dark matter annihilation nal state. For the rst time, using gamma rays, we are able to rule out models with the most generic cross section (~ 3 X 10 -26 cm 3s -1 for a purely s-wave cross section), without assuming additional boost factors.« less

  20. The emergence of gravity as a retro-causal post-inflation macro-quantum-coherent holographic vacuum Higgs-Goldstone field

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack; Levit, Creon

    2009-06-01

    We present a model for the origin of gravity, dark energy and dark matter: Dark energy and dark matter are residual pre-inflation false vacuum random zero point energy (w = - 1) of large-scale negative, and short-scale positive pressure, respectively, corresponding to the "zero point" (incoherent) component of a superfluid (supersolid) ground state. Gravity, in contrast, arises from the 2nd order topological defects in the post-inflation virtual "condensate" (coherent) component. We predict, as a consequence, that the LHC will never detect exotic real on-mass-shell particles that can explain dark matter ΩMDM approx 0.23. We also point out that the future holographic dark energy de Sitter horizon is a total absorber (in the sense of retro-causal Wheeler-Feynman action-at-a-distance electrodynamics) because it is an infinite redshift surface for static detectors. Therefore, the advanced Hawking-Unruh thermal radiation from the future de Sitter horizon is a candidate for the negative pressure dark vacuum energy.

  1. Self-Destructing Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, Yuval; Harnik, Roni; Telem, Ofri

    We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of modelsmore » which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.« less

  2. Readout technologies for directional WIMP Dark Matter detection

    NASA Astrophysics Data System (ADS)

    Battat, J. B. R.; Irastorza, I. G.; Aleksandrov, A.; Asada, T.; Baracchini, E.; Billard, J.; Bosson, G.; Bourrion, O.; Bouvier, J.; Buonaura, A.; Burdge, K.; Cebrián, S.; Colas, P.; Consiglio, L.; Dafni, T.; D'Ambrosio, N.; Deaconu, C.; De Lellis, G.; Descombes, T.; Di Crescenzo, A.; Di Marco, N.; Druitt, G.; Eggleston, R.; Ferrer-Ribas, E.; Fusayasu, T.; Galán, J.; Galati, G.; García, J. A.; Garza, J. G.; Gentile, V.; Garcia-Sciveres, M.; Giomataris, Y.; Guerrero, N.; Guillaudin, O.; Guler, A. M.; Harton, J.; Hashimoto, T.; Hedges, M. T.; Iguaz, F. J.; Ikeda, T.; Jaegle, I.; Kadyk, J. A.; Katsuragawa, T.; Komura, S.; Kubo, H.; Kuge, K.; Lamblin, J.; Lauria, A.; Lee, E. R.; Lewis, P.; Leyton, M.; Loomba, D.; Lopez, J. P.; Luzón, G.; Mayet, F.; Mirallas, H.; Miuchi, K.; Mizumoto, T.; Mizumura, Y.; Monacelli, P.; Monroe, J.; Montesi, M. C.; Naka, T.; Nakamura, K.; Nishimura, H.; Ochi, A.; Papevangelou, T.; Parker, J. D.; Phan, N. S.; Pupilli, F.; Richer, J. P.; Riffard, Q.; Rosa, G.; Santos, D.; Sawano, T.; Sekiya, H.; Seong, I. S.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Sugiyama, A.; Taishaku, R.; Takada, A.; Takeda, A.; Tanaka, M.; Tanimori, T.; Thorpe, T. N.; Tioukov, V.; Tomita, H.; Umemoto, A.; Vahsen, S. E.; Yamaguchi, Y.; Yoshimoto, M.; Zayas, E.

    2016-11-01

    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies.

  3. Vector dark energy and high-z massive clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.

    2011-12-01

    The detection of extremely massive clusters at z > 1 such as SPT-CL J0546-5345, SPT-CL J2106-5844 and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard Λ cold dark matter cosmology. In fact, assuming Gaussian initial conditions, the theoretical expectation of detecting such objects is as low as ≤1 per cent. In this paper we discuss the probability of the existence of such objects in the light of the vector dark energy paradigm, showing by means of a series of N-body simulations that chances of detection are substantially enhanced in this non-standard framework.

  4. Effects of the Sagittarius dwarf tidal stream on dark matter detectors.

    PubMed

    Freese, Katherine; Gondolo, Paolo; Newberg, Heidi Jo; Lewis, Matthew

    2004-03-19

    The Sagittarius dwarf tidal stream may be showering dark matter onto the solar neighborhood, which can change the results and interpretation of direct detection searches for weakly interacting massive particles (WIMPs). Stars in the stream may already have been detected in the solar neighborhood, and the dark matter in the stream is (0.3-25)% of the local density. Experiments should see an annually modulated steplike feature in the energy recoil spectrum that would be a smoking gun for WIMP detection. The total count rate in detectors is not a cosine curve in time and peaks at a different time of year than the standard case.

  5. Conceptual problems in detecting the evolution of dark energy when using distance measurements

    NASA Astrophysics Data System (ADS)

    Bolejko, K.

    2011-01-01

    Context. Dark energy is now one of the most important and topical problems in cosmology. The first step to reveal its nature is to detect the evolution of dark energy or to prove beyond doubt that the cosmological constant is indeed constant. However, in the standard approach to cosmology, the Universe is described by the homogeneous and isotropic Friedmann models. Aims: We aim to show that in the perturbed universe (even if perturbations vanish if averaged over sufficiently large scales) the distance-redshift relation is not the same as in the unperturbed universe. This has a serious consequence when studying the nature of dark energy and, as shown here, can impair the analysis and studies of dark energy. Methods: The analysis is based on two methods: the linear lensing approximation and the non-linear Szekeres Swiss-Cheese model. The inhomogeneity scale is ~50 Mpc, and both models have the same density fluctuations along the line of sight. Results: The comparison between linear and non-linear methods shows that non-linear corrections are not negligible. When inhomogeneities are present the distance changes by several percent. To show how this change influences the measurements of dark energy, ten future observations with 2% uncertainties are generated. It is shown the using the standard methods (i.e. under the assumption of homogeneity) the systematics due to inhomogeneities can distort our analysis, and may lead to a conclusion that dark energy evolves when in fact it is constant (or vice versa). Conclusions: Therefore, if future observations are analysed only within the homogeneous framework then the impact of inhomogeneities (such as voids and superclusters) can be mistaken for evolving dark energy. Since the robust distinction between the evolution and non-evolution of dark energy is the first step to understanding the nature of dark energy a proper handling of inhomogeneities is essential.

  6. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  7. Infrared Telescopes Spy Small, Dark Asteroids

    NASA Image and Video Library

    2011-09-29

    This chart based on data from NASA Wide-field Infrared Survey Explorer illustrates why infrared-sensing telescopes are more suited to finding small, dark asteroids than telescopes that detect visible light.

  8. Analysis of the 3’ untranslated regions of α-tubulin and S-crystallin mRNA and the identification of CPEB in dark- and light-adapted octopus retinas

    PubMed Central

    Kelly, Shannan; Yamamoto, Hideki

    2008-01-01

    Purpose We previously reported the differential expression and translation of mRNA and protein in dark- and light-adapted octopus retinas, which may result from cytoplasmic polyadenylation element (CPE)–dependent mRNA masking and unmasking. Here we investigate the presence of CPEs in α-tubulin and S-crystallin mRNA and report the identification of cytoplasmic polyadenylation element binding protein (CPEB) in light- and dark-adapted octopus retinas. Methods 3’-RACE and sequencing were used to isolate and analyze the 3’-UTRs of α-tubulin and S-crystallin mRNA. Total retinal protein isolated from light- and dark-adapted octopus retinas was subjected to western blot analysis followed by CPEB antibody detection, PEP-171 inhibition of CPEB, and dephosphorylation of CPEB. Results The following CPE-like sequence was detected in the 3’-UTR of isolated long S-crystallin mRNA variants: UUUAACA. No CPE or CPE-like sequences were detected in the 3’-UTRs of α-tubulin mRNA or of the short S-crystallin mRNA variants. Western blot analysis detected CPEB as two putative bands migrating between 60-80 kDa, while a third band migrated below 30 kDa in dark- and light-adapted retinas. Conclusions The detection of CPEB and the identification of the putative CPE-like sequences in the S-crystallin 3’-UTR suggest that CPEB may be involved in the activation of masked S-crystallin mRNA, but not in the regulation of α-tubulin mRNA, resulting in increased S-crystallin protein synthesis in dark-adapted octopus retinas. PMID:18682811

  9. Searching for light dark matter with the SLAC millicharge experiment.

    PubMed

    Diamond, M; Schuster, P

    2013-11-27

    New sub-GeV gauge forces ("dark photons") that kinetically mix with the photon provide a promising scenario for MeV-GeV dark matter and are the subject of a program of searches at fixed-target and collider facilities around the world. In such models, dark photons produced in collisions may decay invisibly into dark-matter states, thereby evading current searches. We reexamine results of the SLAC mQ electron beam dump experiment designed to search for millicharged particles and find that it was strongly sensitive to any secondary beam of dark matter produced by electron-nucleus collisions in the target. The constraints are competitive for dark photon masses in the ~1-30 MeV range, covering part of the parameter space that can reconcile the apparent (g-2)(μ) anomaly. Simple adjustments to the original SLAC search for millicharges may extend sensitivity to cover a sizable portion of the remaining (g-2)(μ) anomaly-motivated region. The mQ sensitivity is therefore complementary to ongoing searches for visible decays of dark photons. Compared to existing direct-detection searches, mQ sensitivity to electron-dark-matter scattering cross sections is more than an order of magnitude better for a significant range of masses and couplings in simple models.

  10. Dark-field imaging in coronary atherosclerosis.

    PubMed

    Hetterich, Holger; Webber, Nicole; Willner, Marian; Herzen, Julia; Birnbacher, Lorenz; Auweter, Sigrid; Schüller, Ulrich; Bamberg, Fabian; Notohamiprodjo, Susan; Bartsch, Harald; Wolf, Johannes; Marschner, Mathias; Pfeiffer, Franz; Reiser, Maximilian; Saam, Tobias

    2017-09-01

    Dark-field imaging based on small angle X-ray scattering has been shown to be highly sensitive for microcalcifications, e.g. in breast tissue. We hypothesized (i) that high signal areas in dark-field imaging of atherosclerotic plaque are associated with microcalcifications and (ii) that dark-field imaging is more sensitive for microcalcifications than attenuation-based imaging. Fifteen coronary artery specimens were examined at an experimental set-up consisting of X-ray tube (40kV), grating-interferometer and detector. Tomographic dark-field-, attenuation-, and phase-contrast data were simultaneously acquired. Histopathology served as standard of reference. To explore the potential of dark field imaging in a full-body CT system, simulations were carried out with spherical calcifications of different sizes to simulate small and intermediate microcalcifications. Microcalcifications were present in 10/10 (100%) cross-sections with high dark-field signal and without evidence of calcifications in attenuation- or phase contrast. In positive controls with high signal areas in all three modalities, 10/10 (100%) cross-sections showed macrocalcifications. In negative controls without high signal areas, no calcifications were detected. Simulations showed that the microcalcifications generate substantially higher dark-field than attenuation signal. Dark-field imaging is highly sensitive for microcalcifications in coronary atherosclerotic plaque and might provide complementary information in the assessment of plaque instability. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The nongravitational interactions of dark matter in colliding galaxy clusters.

    PubMed

    Harvey, David; Massey, Richard; Kitching, Thomas; Taylor, Andy; Tittley, Eric

    2015-03-27

    Collisions between galaxy clusters provide a test of the nongravitational forces acting on dark matter. Dark matter's lack of deceleration in the "bullet cluster" collision constrained its self-interaction cross section σ(DM)/m < 1.25 square centimeters per gram (cm(2)/g) [68% confidence limit (CL)] (σ(DM), self-interaction cross section; m, unit mass of dark matter) for long-ranged forces. Using the Chandra and Hubble Space Telescopes, we have now observed 72 collisions, including both major and minor mergers. Combining these measurements statistically, we detect the existence of dark mass at 7.6σ significance. The position of the dark mass has remained closely aligned within 5.8 ± 8.2 kiloparsecs of associated stars, implying a self-interaction cross section σ(DM)/m < 0.47 cm(2)/g (95% CL) and disfavoring some proposed extensions to the standard model. Copyright © 2015, American Association for the Advancement of Science.

  12. Gravity-mediated dark matter annihilation in the Randall-Sundrum model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.

    Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less

  13. Gravity-mediated dark matter annihilation in the Randall-Sundrum model

    DOE PAGES

    Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.

    2017-10-13

    Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less

  14. Dark Matter Core Defies Explanation

    NASA Image and Video Library

    2017-12-08

    NASA image release March 2, 2012 This composite image shows the distribution of dark matter, galaxies, and hot gas in the core of the merging galaxy cluster Abell 520, formed from a violent collision of massive galaxy clusters. The natural-color image of the galaxies was taken with NASA's Hubble Space Telescope and with the Canada-France-Hawaii Telescope in Hawaii. Superimposed on the image are "false-colored" maps showing the concentration of starlight, hot gas, and dark matter in the cluster. Starlight from galaxies, derived from observations by the Canada-France-Hawaii Telescope, is colored orange. The green-tinted regions show hot gas, as detected by NASA's Chandra X-ray Observatory. The gas is evidence that a collision took place. The blue-colored areas pinpoint the location of most of the mass in the cluster, which is dominated by dark matter. Dark matter is an invisible substance that makes up most of the universe's mass. The dark-matter map was derived from the Hubble Wide Field Planetary Camera 2 observations, by detecting how light from distant objects is distorted by the cluster galaxies, an effect called gravitational lensing. The blend of blue and green in the center of the image reveals that a clump of dark matter resides near most of the hot gas, where very few galaxies are found. This finding confirms previous observations of a dark-matter core in the cluster. The result could present a challenge to basic theories of dark matter, which predict that galaxies should be anchored to dark matter, even during the shock of a collision. Abell 520 resides 2.4 billion light-years away. To read more go to: www.nasa.gov/mission_pages/hubble/science/dark-matter-cor... Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  15. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  16. Searching for Decaying Dark Matter in Deep XMM-Newton Observation of the Draco Dwarf Spheroidal

    NASA Technical Reports Server (NTRS)

    Ruchayskiy, Oleg; Boyardsky, Alex; Iakbovskyi, Dmytro; Bulbul, Esra; Eckert, Domique; Franse, Jeron; Malyshev, Denys; Markevitch, Maxim; Neronov, Andrii

    2016-01-01

    We present results of a search for the 3.5 keV emission line in our recent very long (approx. 1.4 Ms) XMM-Newton observation of the Draco dwarf spheroidal galaxy. The astrophysical X-ray emission from such dark matter-dominated galaxies is faint, thus they provide a test for the dark matter origin of the 3.5 keV line previously detected in other massive, but X-ray bright objects, such as galaxies and galaxy clusters. We do not detect a statistically significant emission line from Draco; this constrains the lifetime of a decaying dark matter particle to tau >(7-9) × 10(exp 27) s at 95% CL (combining all three XMM-Newton cameras; the interval corresponds to the uncertainty of the dark matter column density in the direction of Draco). The PN camera, which has the highest sensitivity of the three, does show a positive spectral residual (above the carefully modeled continuum) at E = 3.54 +/- 0.06 keV with a 2.3(sigma) significance. The two MOS cameras show less-significant or no positive deviations, consistently within 1(sigma) with PN. Our Draco limit on tau is consistent with previous detections in the stacked galaxy clusters, M31 and the Galactic Centre within their 1 - 2(sigma) uncertainties, but is inconsistent with the high signal from the core of the Perseus cluster (which has itself been inconsistent with the rest of the detections). We conclude that this Draco observation does not exclude the dark matter interpretation of the 3.5 keV line in those objects.

  17. Neutrinos from the terrestrial passage of supersymmetric dark-matter Q-balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusenko, Alexander; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Shoemaker, Ian M.

    2009-07-15

    Supersymmetry implies that stable nontopological solitons, Q-balls, could form in the early universe and could make up all or part of dark matter. We show that the relic Q-balls passing through Earth can produce a detectable neutrino flux. The peculiar zenith angle dependence and a small annual modulation of this flux can be used as signatures of dark-matter Q-balls.

  18. Search for dark matter with the bolometric technique

    NASA Astrophysics Data System (ADS)

    Giuliani, Andrea

    2014-07-01

    After a concise introduction about the dark matter issue and a discussion of the problematics related to its direct detection, the bolometric technique is presented in this context, with a special focus on double-readout devices. The bolometric experiments for the search for dark matter are then described and reviewed. Their present and future roles are discussed, arguing about pros and cons of this technology.

  19. Purpose-Driven Communities in Multiplex Networks: Thresholding User-Engaged Layer Aggregation

    DTIC Science & Technology

    2016-06-01

    dark networks is a non-trivial yet useful task. Because terrorists work hard to hide their relationships/network, analysts have an incomplete picture...them identify meaningful terrorist communities. This thesis introduces a general-purpose algorithm for community detection in multiplex dark networks...aggregation, dark networks, conductance, cluster adequacy, mod- ularity, Louvain method, shortest path interdiction 15. NUMBER OF PAGES 155 16. PRICE CODE

  20. Sub-MeV bosonic dark matter, misalignment mechanism, and galactic dark matter halo luminosities

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoli; Di, Haoran

    2017-04-01

    We explore a scenario that dark matter is a boson condensate created by the misalignment mechanism, in which a spin 0 boson (an axionlike particle) and a spin 1 boson (the dark photon) are considered, respectively. We find that although the sub-MeV dark matter boson is extremely stable, the huge number of dark matter particles in a galaxy halo makes the decaying signal detectable. A galaxy halo is a large structure bounded by gravity with a typical ˜1 012 solar mass, and the majority of its components are made of dark matter. For the axionlike particle case, it decays via ϕ →γ γ , therefore the photon spectrum is monochromatic. For the dark photon case, it is a three body decay A'→γ γ γ . However, we find that the photon spectrum is heavily peaked at M /2 and thus can facilitate observation. We also suggest a physical explanation for the three body decay spectrum by comparing the physics in the decay of orthopositronium. In addition, for both cases, the decaying photon flux can be measured for some regions of parameter space using current technologies.

  1. Dark matter and alternative recipes for the missing mass

    NASA Astrophysics Data System (ADS)

    Tortora, Crescenzo; Jetzer, Philippe; Napolitano, Nicola R.

    2012-03-01

    Within the standard cosmological scenario the Universe is found to be filled by obscure components (dark matter and dark energy) for ~ 95% of its energy budget. In particular, almost all the matter content in the Universe is given by dark matter, which dominates the mass budget and drives the dynamics of galaxies and clusters of galaxies. Unfortunately, dark matter and dark energy have not been detected and no direct or indirected observations have allowed to prove their existence and amount. For this reason, some authors have suggested that a modification of Einstein Relativity or the change of the Newton's dynamics law (within a relativistic and classical framework, respectively) could allow to replace these unobserved components. We will start discussing the role of dark matter in the early-type galaxies, mainly in their central regions, investigating how its content changes as a function of the mass and the size of each galaxy and few considerations about the stellar Initial mass function have been made. In the second part of the paper we have described, as examples, some ways to overcome the dark matter hypothesis, by fitting to the observations the modified dynamics coming out from general relativistic extended theories and the MOdyfled Newtonian dynamics (MOND).

  2. Hidden sector monopole, vector dark matter and dark radiation with Higgs portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, Seungwon; Ko, P.; Park, Wan-Il, E-mail: sbaek1560@gmail.com, E-mail: pko@kias.re.kr, E-mail: wipark@kias.re.kr

    2014-10-01

    We show that the 't Hooft-Polyakov monopole model in the hidden sector with Higgs portal interaction makes a viable dark matter model, where monopole and massive vector dark matter (VDM) are stable due to topological conservation and the unbroken subgroup U(1 {sub X}. We show that, even though observed CMB data requires the dark gauge coupling to be quite small, a right amount of VDM thermal relic can be obtained via s-channel resonant annihilation for the mass of VDM close to or smaller than the half of SM higgs mass, thanks to Higgs portal interaction. Monopole relic density turns outmore » to be several orders of magnitude smaller than the observed dark matter relic density. Direct detection experiments, particularly, the projected XENON1T experiment, may probe the parameter space where the dark Higgs is lighter than ∼< 50 GeV. In addition, the dark photon associated with the unbroken U(1 {sub X} contributes to the radiation energy density at present, giving Δ N{sub eff}{sup ν} ∼ 0.1 as the extra relativistic neutrino species.« less

  3. Search for right-handed neutrinos from dark matter annihilation with gamma-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, Miguel D.; Queiroz, Farinaldo S.; Yaguna, Carlos E.

    Several extensions of the Standard Model contain right-handed (sterile) neutrinos in the GeV-TeV mass range. Due to their mixing with the active neutrinos, they may give rise to novel effects in cosmology, neutrino physics, and collider searches. In addition, right-handed neutrinos can also appear as final states from dark matter annihilations, with important implications for dark matter indirect detection searches. In this paper, we use current data from the Fermi Large Area Telescope (6-year observation of dwarf spheroidal galaxies) and H.E.S.S. (10-year observation of the Galactic center) to constrain the annihilation of dark matter into right-handed neutrinos. We consider right-handedmore » neutrino with masses between 10 GeV and 1 TeV, including both two-body and three-body decays, to derive bounds on the dark matter annihilation rate, ( σ v ), as a function of the dark matter mass. Our results show, in particular, that the thermal dark matter annihilation cross section, 3× 10{sup −26} cm{sup 3} s {sup −1} , into right-handed neutrinos is excluded for dark matter masses smaller than 200 GeV.« less

  4. Coherent photon scattering background in sub- GeV / c 2 direct dark matter searches

    DOE PAGES

    Robinson, Alan E.

    2017-01-18

    Here, proposed dark matter detectors with eV-scale sensitivities will detect a large background of atomic (nuclear) recoils from coherent photon scattering of MeV-scale photons. This background climbs steeply below ~10 eV, far exceeding the declining rate of low-energy Compton recoils. The upcoming generation of dark matter detectors will not be limited by this background, but further development of eV-scale and sub-eV detectors will require strategies, including the use of low nuclear mass target materials, to maximize dark matter sensitivity while minimizing the coherent photon scattering background.

  5. Phytochrome and Seed Germination. V. Changes of Phytochrome Content During the Germination of Cucumber Seeds 1

    PubMed Central

    Mancinelli, Alberto L.; Tolkowsky, Abby

    1968-01-01

    Cucumber seeds are light-sensitive, dark-germinating seeds. Inhibition of germination can be induced by prolonged exposure to continuous or intermittent FR. The dark germination process and the response to FR are phytochrome controlled. Phytochrome can be detected in these seeds by differential spectrophotometry in vivo. Spectrophotometrically measurable phytochrome increases during dark germination. The rate of increase is temperature dependent. Light treatments which are inhibitory for germination result in phytochrome contents lower than those of the seeds germinating in darkness. Treatments which restore germination also restore phytochrome formation. PMID:16656797

  6. Spectral analysis of the gamma-ray background near the dwarf Milky Way satellite Segue 1: Improved limits on the cross section of neutralino dark matter annihilation

    DOE PAGES

    Baushev, A. N.; Federici, S.; Pohl, M.

    2012-09-20

    The indirect detection of dark matter requires that dark matter annihilation products be discriminated from conventional astrophysical backgrounds. We re-analyze GeV-band gamma-ray observations of the prominent Milky Way dwarf satellite galaxy Segue 1, for which the expected astrophysical background is minimal. Here, we explicitly account for the angular extent of the conservatively expected gamma-ray signal and keep the uncertainty in the dark-matter profile external to the likelihood analysis of the gamma-ray data.

  7. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2018-05-11

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  8. Weak mixing below the weak scale in dark-matter direct detection

    NASA Astrophysics Data System (ADS)

    Brod, Joachim; Grinstein, Benjamin; Stamou, Emmanuel; Zupan, Jure

    2018-02-01

    If dark matter couples predominantly to the axial-vector currents with heavy quarks, the leading contribution to dark-matter scattering on nuclei is either due to one-loop weak corrections or due to the heavy-quark axial charges of the nucleons. We calculate the effects of Higgs and weak gauge-boson exchanges for dark matter coupling to heavy-quark axial-vector currents in an effective theory below the weak scale. By explicit computation, we show that the leading-logarithmic QCD corrections are important, and thus resum them to all orders using the renormalization group.

  9. Charged mediators in dark matter scattering

    NASA Astrophysics Data System (ADS)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  10. Dark Galaxies and Lost Baryons (IAU S244)

    NASA Astrophysics Data System (ADS)

    Davies, Jonathan I.; Disney, Michael J.

    2008-05-01

    Preface; Conference prelims; The HI that barked in the night M. J. Disney; The detection of dark galaxies in blind HI surveys J. I. Davies; Red haloes of galaxies - reservoirs of baryonic dark matter? E. Zackrisson, N. Bergvall, C. Flynn, G. Ostlin, G. Micheva and B. Baldwell; Constraints on dark and visible mass in galaxies from strong gravitational lensing S. Dye and S. Warren; Lost baryons at low redshift S. Mathur, F. Nicastro and R. Williams; Observed properties of dark matter on small spatial scales R. Wyse and G. Gilmore; The mass distribution in spiral galaxies P. Salucci; Connecting lost baryons and dark galaxies via QSO absorption lines T. Tripp; ALFALFA: HI cosmology in the local universe R. Giovanelli; The ALFALFA search for (almost) dark galaxies across the HI mass function M. Haynes; HI clouds detected towards Virgo with the Arecibo Legacy Fast ALFA Survey B. Kent; Cosmic variance in the HI mass function S. Schneider; The Arecibo Galaxy Environments Survey - potential for finding dark galaxies and results so far R. Minchin et al.; Free-floating HI clouds in the M81 group E. Brinks, F. Walter and E. Skillman; Where are the stars in dark galaxies J. Rosenberg, J. Salzer and J. Cannon; The halo by halo missing baryon problem S. McGaugh; The local void is really empty R. Tully; Voids in the local volume: a limit on appearance of a galaxy in a dark matter halo A. Tikhonov and A. Klypin; Dim baryons in the cosmic web C. Impey; A census of baryons in galaxy clusters and groups A. Gonzalez, D. Zaritsky and A. Zabludo; Statistical properties of the intercluster light from SDSS image stacking S. Zibetti; QSO strong gravitational lensing and the detection of dark halos A. Maccio; Strong gravitational lensing: bright galaxies and lost dark-matter L. Koopmans; Mapping the distribution of luminous and dark matter in strong lensing galaxies I. Ferreras, P. Saha, L. Williams and S. Burles; Tidal debris posing as dark galaxies P. Duc, F. Bournaud and E. Brinks; Numerical simulation of the dwarf companions of giant galaxies A. Nelson and P. Williams; Delayed galaxies C. Struck, M. Hancock, B. Smith, P. Appleton, V. Charmandaris and M. Giroux; Probe of dark galaxies via disturbed/lopsided isolated galaxies I. Karachentsev, V. Karachentseva, W. Huchtmeier, D. Makarov and S. Kaisin; Star formation thresholds J. Schaye; Scaling relations of dwarf galaxies without supernova-driven winds K. Tassis, A. Kravtsov and N. Gnedin; Star formation in massive low surface brightness galaxies K. O'Neil; Linking clustering properties and the evolution of low surface brightness galaxies D. Bomans and S. Rosenbaum; Too small to form a galaxy: how the UV background determines the baryon fraction M. Hoeft, G. Yepes and S. Gottlober; Star formation in damped Lyman selected galaxies L. Christensen; Dark-matter content of early-type galaxies with planetary nebulae N. Napolitano et al.; Hunting for ghosts: low surface brightnesses from pixels R. Scaramella and S. Sabatini; Baryonic properties of the darkest galaxies E. Grebel; The dwarf low surface brightness population in different environments of the local universe S. Sabatini, J. Davies, S. Roberts and R. Scaramella; Mass modelling of dwarf spheroidal galaxies J. Klimentowski et al.; Evolution of dwarf galaxies in the Centaurus A Group L. Makarova and D. Makarov; A flat faint end of the Fornax cluster galaxy luminosity function S. Mieske, M. Hilker, L. Infante and C. Mendes de Oliveira; Can massive dark halos destroy the discs of dwarf galaxies? B. Fuchs and O. Esquivel; 'Dark galaxies' and local very metal-poor gas-rich galaxies: possible interrelations S. Pustilnik; Morphology and environment of dwarf galaxies in the local universe H. Ann; Arecibo survey of HI emission from disk galaxies at redshift z 0.2 B. Catinella, M. Haynes, J. Gardner, A. Connolly and R. Giovanelli; AGES observations of

  11. The phenomenology of maverick dark matter

    NASA Astrophysics Data System (ADS)

    Krusberg, Zosia Anna Celina

    Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both spin-independent (XENON100 and SuperCDMS) and spin-dependent (COUPP) experiments. We further study the distinguishability of maverick WIMP production signals at the Tevatron and the LHC---at its early and nominal configurations---using standard simulation packages, place constraints on maverick WIMP properties using existing collider data, and determine projected mass reaches in future data from both colliders. We find ourselves in a unique era of theoretically-motivated, high-precision dark matter searches that hold the potential to give us important insights, not only into the nature of dark matter, but also into the physics that lies beyond the standard model.

  12. Detecting Axion Dark Matter with Superconducting Qubits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Akash; Chou, Aaron; Schuster, David

    Axion dark matter haloscopes aim to detect dark matter axions converting to single photons in resonant cavities bathed in a uniform magnetic field. A qubit (two level system) operating as a single microwave photon detector is a viable readout system for such detectors and may offer advantages over the quantum limited amplifiers currently used. When weakly coupled to the detection cavity, the qubit transition frequency is shifted by an amount proportional to the cavity photon number. Through spectroscopy of the qubit, the frequency shift is measured and the cavity occupation number is extracted. At low enough temperatures, this would allowmore » sensitivities exceeding that of the standard quantum limit.« less

  13. Indirect searches for dark matter with the Fermi large area telescope

    DOE PAGES

    Albert, Andrea

    2015-03-24

    There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce γ rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for γ-ray spectral lines and γ-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.

  14. Minding the MeV gap: The indirect detection of low mass dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boddy, Kimberly K.; Kumar, Jason, E-mail: jkumar@hawaii.edu

    2016-06-21

    We consider the prospects for the indirect detection of low mass dark matter which couples dominantly to quarks. If the center of mass energy is below about 280 MeV, the kinematically allowed final states will be dominated by photons and neutral pions, producing striking signatures at gamma ray telescopes. In fact, an array of new instruments have been proposed, which would greatly improve sensitivity to photons in this energy range. We find that planned instruments can improve on current sensitivity to dark matter models of this type by up to a few orders of magnitude.

  15. Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; McDermott, Samuel D.

    2018-06-01

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range of 10-27 cm2≲σDM -p≲10-24 cm2 . With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.

  16. Sterile neutrinos and indirect dark matter searches in IceCube

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; Kopp, Joachim

    2012-07-01

    If light sterile neutrinos exist and mix with the active neutrino flavors, this mixing will affect the propagation of high-energy neutrinos from dark matter annihilation in the Sun. In particular, new Mikheyev-Smirnov-Wolfenstein resonances can occur, leading to almost complete conversion of some active neutrino flavors into sterile states. We demonstrate how this can weaken IceCube limits on neutrino capture and annihilation in the Sun and how potential future conflicts between IceCube constraints and direct detection or collider data might be resolved by invoking sterile neutrinos. We also point out that, if the dark matter-nucleon scattering cross section and the allowed annihilation channels are precisely measured in direct detection and collider experiments in the future, IceCube can be used to constrain sterile neutrino models using neutrinos from the dark matter annihilation.

  17. Peaked signals from dark matter velocity structures in direct detection experiments

    NASA Astrophysics Data System (ADS)

    Lang, Rafael F.; Weiner, Neal

    2010-06-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

  18. Z boson mediated dark matter beyond the effective theory

    DOE PAGES

    Kearney, John; Orlofsky, Nicholas; Pierce, Aaron

    2017-02-17

    Here, direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter—a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Zmore » boson but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches.« less

  19. Search for dark matter effects on gravitational signals from neutron star mergers

    NASA Astrophysics Data System (ADS)

    Ellis, John; Hektor, Andi; Hütsi, Gert; Kannike, Kristjan; Marzola, Luca; Raidal, Martti; Vaskonen, Ville

    2018-06-01

    Motivated by the recent detection of the gravitational wave signal emitted by a binary neutron star merger, we analyse the possible impact of dark matter on such signals. We show that dark matter cores in merging neutron stars may yield an observable supplementary peak in the gravitational wave power spectral density following the merger, which could be distinguished from the features produced by the neutron components.

  20. Exploring ν signals in dark matter detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnik, Roni; Kopp, Joachim; Machado, Pedro A.N., E-mail: roni@fnal.gov, E-mail: jkopp@fnal.gov, E-mail: accioly@fma.if.usp.br

    2012-07-01

    We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments reach the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a ''dark photon'') or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino-electron and neutrino-nucleusmore » scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.« less

  1. Recognising Axionic Dark Matter by Compton and de-Broglie Scale Modulation of Pulsar Timing

    NASA Astrophysics Data System (ADS)

    De Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-11-01

    Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the "no-WIMP era". Galaxy formation is suppressed below a Jeans scale, of ≃ 10^8 M_⊙ by setting the axion mass to, m_B ˜ 10^{-22}eV, and the large dark cores of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, ω_B= (2.5 months)^{-1}(m_B/10^{-22}eV), would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size ≃ 150pc, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of ≃ 400nsec/(m_B/10^{-22}eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  2. Exploring nu Signals in Dark Matter Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnik, Roni; Kopp, Joachim; Machado, Pedro A.N.

    2012-02-01

    We investigate standard and non-standard solar neutrino signals in direct dark matter detection experiments. It is well known that even without new physics, scattering of solar neutrinos on nuclei or electrons is an irreducible background for direct dark matter searches, once these experiments each the ton scale. Here, we entertain the possibility that neutrino interactions are enhanced by new physics, such as new light force carriers (for instance a "dark photon") or neutrino magnetic moments. We consider models with only the three standard neutrino flavors, as well as scenarios with extra sterile neutrinos. We find that low-energy neutrino--electron and neutrino--nucleusmore » scattering rates can be enhanced by several orders of magnitude, potentially enough to explain the event excesses observed in CoGeNT and CRESST. We also investigate temporal modulation in these neutrino signals, which can arise from geometric effects, oscillation physics, non-standard neutrino energy loss, and direction-dependent detection efficiencies. We emphasize that, in addition to providing potential explanations for existing signals, models featuring new physics in the neutrino sector can also be very relevant to future dark matter searches, where, on the one hand, they can be probed and constrained, but on the other hand, their signatures could also be confused with dark matter signals.« less

  3. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  4. Gravitational waves from dark first order phase transitions and dark photons

    NASA Astrophysics Data System (ADS)

    Addazi, Andrea; Marcianò, Antonino

    2018-01-01

    Cold Dark Matter particles may interact with ordinary particles through a dark photon, which acquires a mass thanks to a spontaneous symmetry breaking mechanism. We discuss a dark photon model in which the scalar singlet associated to the spontaneous symmetry breaking has an effective potential that induces a first order phase transition in the early Universe. Such a scenario provides a rich phenomenology for electron-positron colliders and gravitational waves interferometers, and may be tested in several different channels. The hidden first order phase transition implies the emission of gravitational waves signals, which may constrain the dark photon’s space of parameters. Compared limits from electron-positron colliders, astrophysics, cosmology and future gravitational waves interferometers such as eLISA, U-DECIGO and BBO are discussed. This highly motivates a cross-checking strategy of data arising from experiments dedicated to gravitational waves, meson factories, the International Linear Collider (ILC), the Circular Electron Positron Collider (CEPC) and other underground direct detection experiments of cold dark matter candidates. Supported by the Shanghai Municipality (KBH1512299) and Fudan University (JJH1512105)

  5. Enlightening Students about Dark Matter

    NASA Astrophysics Data System (ADS)

    Hamilton, Kathleen; Barr, Alex; Eidelman, Dave

    2018-01-01

    Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.

  6. Hunting for dark matter with ultra-stable fibre as frequency delay system.

    PubMed

    Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye

    2015-07-10

    Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.

  7. Hunting for dark matter with ultra-stable fibre as frequency delay system

    PubMed Central

    Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye

    2015-01-01

    Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs’ arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on “frequency-delay system” to search dark-matter by “self-frequency comparison” of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level. PMID:26159113

  8. Nonstandard Yukawa couplings and Higgs portal dark matter

    DOE PAGES

    Bishara, Fady; Brod, Joachim; Uttayarat, Patipan; ...

    2016-01-04

    We study the implications of non-standard Higgs Yukawa couplings to light quarks on Higgs-portal dark matter phenomenology. Saturating the present experimental bounds on up-quark, down-quark, or strange-quark Yukawa couplings, the predicted direct dark matter detection scattering rate can increase by up to four orders of magnitude. The effect on the dark matter annihilation cross-section, on the other hand, is subleading unless the dark matter is very light — a scenario that is already excluded by measurements of the Higgs invisible decay width. We investigate the expected size of corrections in multi-Higgs-doublet models with natural flavor conservation, the type-II two-Higgs-doublet model,more » the Giudice-Lebedev model of light quark masses, minimal flavor violation new physics models, Randall-Sundrum, and composite Higgs models. We find that an enhancement in the dark matter scattering rate of an order of magnitude is possible. In conclusion, we point out that a discovery of Higgs-portal dark matter could lead to interesting bounds on the light-quark Yukawa couplings.« less

  9. Indirect detection constraints on s- and t-channel simplified models of dark matter

    NASA Astrophysics Data System (ADS)

    Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica; Linden, Tim

    2016-09-01

    Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as b b ¯ or τ+τ- . In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final-state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of effective field theory contact interactions in the high-mass limit.

  10. Dark matter searches for monoenergetic neutrinos arising from stopped meson decay in the Sun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, Carsten; In, Seongjin; Kumar, Jason

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showersmore » give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.« less

  11. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{supmore » -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.« less

  12. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Cañadas, B; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, R P; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lionetto, A M; Llena Garde, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Profumo, S; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Roth, M; Sadrozinski, H F-W; Sbarra, C; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Kaplinghat, M; Martinez, G D

    2011-12-09

    Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26)  cm3  s(-1) at 5 GeV to about 5×10(-23)   cm3  s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26)  cm3  s(-1) for a purely s-wave cross section), without assuming additional boost factors.

  13. Form factors for dark matter capture by the Sun in effective theories

    NASA Astrophysics Data System (ADS)

    Catena, Riccardo; Schwabe, Bodo

    2015-04-01

    In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, 3He, 4He, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 40Ar, 40Ca, 56Fe, and 59Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark matter capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.

  14. First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice

    NASA Astrophysics Data System (ADS)

    Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia

    2017-03-01

    Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.

  15. The DarkSide-50 outer detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Aldo, Ianni; Andrea, Ianni; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; DSkorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-05-01

    DarkSide-50 is a dark matter detection experiment searching for Weakly Interacting Massive Particles (WIMPs), in Gran Sasso National Laboratory. For experiments like DarkSide-50, neutrons are one of the primary backgrounds that can mimic WIMP signals. The experiment consists of three nested detectors: a liquid argon time projection chamber surrounded by two outer detectors. The outermost detector is a 10 m by 11 m cylindrical water Cherenkov detector with 80 PMTs, designed to provide shielding and muon vetoing. Inside the water Cherenkov detector is the 4 m diameter spherical boron-loaded liquid scintillator veto, with a cocktail of pseudocumene, trimethyl borate, and PPO wavelength shifter, designed to provide shielding, neutron vetoing, and in situ measurements of the TPC backgrounds. We present design and performance details of the DarkSide-50 outer detectors.

  16. Significant gamma lines from inert Higgs dark matter.

    PubMed

    Gustafsson, Michael; Lundström, Erik; Bergström, Lars; Edsjö, Joakim

    2007-07-27

    One way to unambiguously confirm the existence of particle dark matter and determine its mass would be to detect its annihilation into monochromatic gamma-rays in upcoming telescopes. One of the most minimal models for dark matter is the inert doublet model, obtained by adding another Higgs doublet with no direct coupling to fermions. For a mass between 40 and 80 GeV, the lightest of the new inert Higgs particles can give the correct cosmic abundance of cold dark matter in agreement with current observations. We show that for this scalar dark matter candidate, the annihilation signal of monochromatic gammagamma and Zgamma final states would be exceptionally strong. The energy range and rates for these gamma-ray line signals make them ideal to search for with the soon upcoming GLAST satellite.

  17. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless ofmore » the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  18. Spin precession experiments for light axionic dark matter

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.; Trahms, Lutz; Wilkason, Thomas

    2018-03-01

    Axionlike particles are promising candidates to make up the dark matter of the Universe, but it is challenging to design experiments that can detect them over their entire allowed mass range. Dark matter in general, and, in particular, axionlike particles and hidden photons, can be as light as roughly 10-22 eV (˜10-8 Hz ), with astrophysical anomalies providing motivation for the lightest masses ("fuzzy dark matter"). We propose experimental techniques for direct detection of axionlike dark matter in the mass range from roughly 10-13 eV (˜102 Hz ) down to the lowest possible masses. In this range, these axionlike particles act as a time-oscillating magnetic field coupling only to spin, inducing effects such as a time-oscillating torque and periodic variations in the spin-precession frequency with the frequency and direction of these effects set by the axion field. We describe how these signals can be measured using existing experimental technology, including torsion pendulums, atomic magnetometers, and atom interferometry. These experiments demonstrate a strong discovery capability, with future iterations of these experiments capable of pushing several orders of magnitude past current astrophysical bounds.

  19. Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales

    PubMed

    Wittman; Tyson; Kirkman; Dell'Antonio; Bernstein

    2000-05-11

    Most of the matter in the Universe is not luminous, and can be observed only through its gravitational influence on the appearance of luminous matter. Weak gravitational lensing is a technique that uses the distortions of the images of distant galaxies as a tracer of dark matter: such distortions are induced as the light passes through large-scale distributions of dark matter in the foreground. The patterns of the induced distortions reflect the density of mass along the line of sight and its distribution, and the resulting 'cosmic shear' can be used to distinguish between alternative cosmologies. But previous attempts to measure this effect have been inconclusive. Here we report the detection of cosmic shear on angular scales of up to half a degree using 145,000 galaxies and along three separate lines of sight. We find that the dark matter is distributed in a manner consistent with either an open universe, or a flat universe that is dominated by a cosmological constant. Our results are inconsistent with the standard cold-dark-matter model.

  20. Review of the Theoretical and Experimental Status of Dark Matter Identification with Cosmic-Ray Antideuterons

    NASA Technical Reports Server (NTRS)

    Aramaki, T.; Boggs, S.; Bufalino, S.; Dal, L.; von Doetinchem, P.; Donato, F.; Fornengo, N.; Fuke, H.; Grefe, M.; Hailey, C.; hide

    2016-01-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectable cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth's geomagnetic field, and the atmosphere. Finally, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Therefore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.

  1. Plant-environment interactions: Accumulation of hypericin in dark glands of Hypericum perforatum.

    PubMed

    Zobayed, S M A; Afreen, F; Goto, E; Kozai, T

    2006-10-01

    Hypericum perforatum is a perennial herbaceous plant and an extract from this plant has a significant antidepressant effect when administered to humans. The plant is characterized by its secretory glands, also known as dark glands, which are mainly visible on leaves and flowers. The current study evaluates the influence of several environmental factors and developmental stages of the plant on the accumulation and synthesis of hypericin and pseudohypericin (Hy-G), the major bioactive constituents, in H. perforatum plants. The appearance of dark glands on different parts of the plant, under several environmental conditions, was monitored by microscopy. Hy-G concentrations were quantified by high-performance liquid chromatography. A significant presence of dark glands accompanying the highest concentrations of Hy-G was observed in the stamen tissues more than in any other organ of H. perforatum. A linear relationship between the number of dark glands and net photosynthetic rate of the leaf and Hy-G concentration in the leaf tissue was also established. A very high concentration of Hy-G was measured in the dark-gland tissues, but in the tissues without any dark glands it was almost absent. The presence of emodin, a precursor of Hy-G, at a high concentration in the dark-gland tissues, and its absence in the surrounding tissues was also observed, suggesting that the site of biosynthesis of Hy-G is in the dark-gland cells. A significantly low concentration of Hy-G (occasionally non-detectable) was measured in the xylem sap of the stem tissues. The dark-gland tissues collected from leaves, stems or flowers contained similar concentrations of Hy-G. The concentration of Hy-G in various organs of H. perforatum plants is dependent on the number of dark glands, their size or area, not on the location of the dark glands on the plant. The study provides the first experimental evidence that Hy-G is synthesized and accumulates in dark glands.

  2. Hearing the signal of dark sectors with gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Khoze, Valentin V.; Spannowsky, Michael

    2016-11-01

    Motivated by advanced LIGO (aLIGO)'s recent discovery of gravitational waves, we discuss signatures of new physics that could be seen at ground- and space-based interferometers. We show that a first-order phase transition in a dark sector would lead to a detectable gravitational wave signal at future experiments, if the phase transition has occurred at temperatures few orders of magnitude higher than the electroweak scale. The source of gravitational waves in this case is associated with the dynamics of expanding and colliding bubbles in the early universe. At the same time we point out that topological defects, such as dark sector domain walls, may generate a detectable signal already at aLIGO. Both bubble and domain-wall scenarios are sourced by semiclassical configurations of a dark new physics sector. In the first case, the gravitational wave signal originates from bubble wall collisions and subsequent turbulence in hot plasma in the early universe, while the second case corresponds to domain walls passing through the interferometer at present and is not related to gravitational waves. We find that aLIGO at its current sensitivity can detect smoking-gun signatures from domain-wall interactions, while future proposed experiments including the fifth phase of aLIGO at design sensitivity can probe dark sector phase transitions.

  3. Searching for dark matter with single phase liquid argon

    NASA Astrophysics Data System (ADS)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.

  4. Chance Discovery with Data Crystallization: A Basic Research for Discovering Unobservable Events

    DTIC Science & Technology

    2006-05-10

    matter in cosmology. The dark matter refers to hypothetical particles which do not emit or reflect radiation to be detected directly. But its presence...can be inferred from gravitational effects on visible matter such as stars and galaxies. The dark matter hypothesis aims to explain several anomalous...astronomical observations in the stellar dynamics. Estimates of the amount of the dark matter suggest that there is far more matter than is directly

  5. Weak scratch detection and defect classification methods for a large-aperture optical element

    NASA Astrophysics Data System (ADS)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  6. Prospects for indirect detection of frozen-in dark matter

    NASA Astrophysics Data System (ADS)

    Heikinheimo, Matti; Tenkanen, Tommi; Tuominen, Kimmo

    2018-03-01

    We study observational consequences arising from dark matter (DM) of nonthermal origin, produced by dark freeze-out from a hidden sector heat bath. We assume this heat bath was populated by feebly coupled mediator particles, produced via a Higgs portal interaction with the Standard Model (SM). The dark sector then attained internal equilibrium with a characteristic temperature different from the SM photon temperature. We find that even if the coupling between the DM and the SM sectors is very weak, the scenario allows for indirect observational signals. We show how the expected strength of these signals depends on the temperature of the hidden sector at DM freeze-out.

  7. Collider study on the loop-induced dark matter mediation

    NASA Astrophysics Data System (ADS)

    Tsai, Yuhsin

    2016-06-01

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.

  8. Dark Matter Mystery Deepens in Cosmic "Train Wreck"

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Astronomers have discovered a chaotic scene unlike any witnessed before in a cosmic "train wreck" between giant galaxy clusters. NASA's Chandra X-ray Observatory and optical telescopes revealed a dark matter core that was mostly devoid of galaxies, which may pose problems for current theories of dark matter behavior. "These results challenge our understanding of the way clusters merge," said Dr. Andisheh Mahdavi of the University of Victoria, British Columbia. "Or, they possibly make us even reexamine the nature of dark matter itself." There are three main components to galaxy clusters: individual galaxies composed of billions of stars, hot gas in between the galaxies, and dark matter, a mysterious substance that dominates the cluster mass and can be detected only through its gravitational effects. Illustration of Abell 520 System Illustration of Abell 520 System Optical telescopes can observe the starlight from the individual galaxies, and can infer the location of dark matter by its subtle light-bending effects on distant galaxies. X-ray telescopes like Chandra detect the multimillion-degree gas. A popular theory of dark matter predicts that dark matter and galaxies should stay together, even during a violent collision, as observed in the case of the so-called Bullet Cluster. However, when the Chandra data of the galaxy cluster system known as Abell 520 was mapped along with the optical data from the Canada-France-Hawaii Telescope and Subaru Telescope atop Mauna Kea, HI, a puzzling picture emerged. A dark matter core was found, which also contained hot gas but no bright galaxies. "It blew us away that it looks like the galaxies are removed from the densest core of dark matter," said Dr. Hendrik Hoekstra, also of University of Victoria. "This would be the first time we've seen such a thing and could be a huge test of our knowledge of how dark matter behaves." Animation of Galaxy Cluster Animation of Galaxy Cluster In addition to the dark matter core, a corresponding "light region" containing a group of galaxies with little or no dark matter was also detected. The dark matter appears to have separated from the galaxies. "The observation of this group of galaxies that is almost devoid of dark matter flies in the face of our current understanding of the cosmos," said Dr. Arif Babul, University of Victoria. "Our standard model is that a bound group of galaxies like this should have a lot of dark matter. What does it mean that this one doesn't?" In the Bullet Cluster, known as 1E 0657-56, the hot gas is slowed down during the collision but the galaxies and dark matter appear to continue on unimpeded. In Abell 520, it appears that the galaxies were unimpeded by the collision, as expected, while a significant amount of dark matter has remained in the middle of the cluster along with the hot gas. Mahdavi and his colleagues have two possible explanations for their findings, both of which are uncomfortable for prevailing theories. The first option is that the galaxies were separated from the dark matter through a complex set of gravitational "slingshots." This explanation is problematic because computer simulations have not been able to produce slingshots that are nearly powerful enough to cause such a separation. The second option is that dark matter is affected not only by gravity, but also by an as-yet-unknown interaction between dark matter particles. This exciting alternative would require new physics and could be difficult to reconcile with observations of other galaxies and galaxy clusters, such as the aforementioned Bullet Cluster. In order to confirm and fully untangle the evidence for the Abell 520 dark matter core, the researchers have secured time for new data from Chandra plus the Hubble Space Telescope. With the additional observations, the team hopes to resolve the mystery surrounding this system. These results are scheduled to appear in the October 20th issue of The Astrophysical Journal. Other members of the research team included David Balam (University of Victoria) and Peter Capak (California Institute of Technology). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. CFHT is a joint facility of National Research Council of Canada, Centre National de la Recherche Scientifique of France, and University of Hawaii.

  9. Possible layout solutions for the improvement of the dark rate of geiger mode avalanche structures in the GLOBALFOUNDRIES BCDLITE 0.18 μm CMOS technology

    NASA Astrophysics Data System (ADS)

    D'Ascenzo, N.; Xie, Q.

    2018-04-01

    Modern concepts of single photon or charged particle detection systems are based on geiger mode avalanche devices developed in CMOS technology. The key-problem encountered in the fabrication of these devices in CMOS is the dark rate level. The dark rate and single photon signal are not distinguishable. This sets also the limits of the application of geiger mode avalanche devices to single photon or charged particle detection systems. We report the design and fabrication of four possible layouts of these devices using the 0.18 μm BCDLite GLOBALFOUNDRIES process. The devices have an area of 50×50 μm2. They are characterized by a fast response time and an approximately 60 ns recovery time. The best topology exhibits an average dark rate as low as 3×103 kHz/mm2.

  10. Simulation of argon response and light detection in the DarkSide-50 dual phase TPC

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Vincenzi, M.; Derbin, A. V.; De Rosa, G.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Longo, G.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Meyers, P. D.; Milincic, R.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Navrer Agasson, A.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Sands, W.; Sanfilippo, S.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.

    2017-10-01

    A Geant4-based Monte Carlo package named G4DS has been developed to simulate the response of DarkSide-50, an experiment operating since 2013 at LNGS, designed to detect WIMP interactions in liquid argon. In the process of WIMP searches, DarkSide-50 has achieved two fundamental milestones: the rejection of electron recoil background with a power of ~107, using the pulse shape discrimination technique, and the measurement of the residual 39Ar contamination in underground argon, ~3 orders of magnitude lower with respect to atmospheric argon. These results rely on the accurate simulation of the detector response to the liquid argon scintillation, its ionization, and electron-ion recombination processes. This work provides a complete overview of the DarkSide Monte Carlo and of its performance, with a particular focus on PARIS, the custom-made liquid argon response model.

  11. Broadband and Resonant Approaches to Axion Dark Matter Detection.

    PubMed

    Kahn, Yonatan; Safdi, Benjamin R; Thaler, Jesse

    2016-09-30

    When ultralight axion dark matter encounters a static magnetic field, it sources an effective electric current that follows the magnetic field lines and oscillates at the axion Compton frequency. We propose a new experiment to detect this axion effective current. In the presence of axion dark matter, a large toroidal magnet will act like an oscillating current ring, whose induced magnetic flux can be measured by an external pickup loop inductively coupled to a SQUID magnetometer. We consider both resonant and broadband readout circuits and show that a broadband approach has advantages at small axion masses. We estimate the reach of this design, taking into account the irreducible sources of noise, and demonstrate potential sensitivity to axionlike dark matter with masses in the range of 10^{-14}-10^{-6}  eV. In particular, both the broadband and resonant strategies can probe the QCD axion with a GUT-scale decay constant.

  12. Robust Constraints and Novel Gamma-Ray Signatures of Dark Matter That Interacts Strongly With Nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; McDermott, Samuel D.

    Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models, and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range ofmore » $$10^{-27} {\\rm cm}^2 < \\sigma_{{\\rm DM}-p} < 10^{-24} \\, {\\rm cm}^{2}$$. With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.« less

  13. Searching for Dark Photons with the SeaQuest Spectrometer

    NASA Astrophysics Data System (ADS)

    Uemura, Sho; SeaQuest Collaboration

    2017-09-01

    The existence of a dark sector, containing families of particles that do not couple directly to the Standard Model, is motivated as a possible model for dark matter. A ``dark photon'' - a massive vector boson that couples weakly to electric charge - is a common component of dark sector models. The SeaQuest spectrometer at Fermilab is designed to detect dimuon pairs produced by the interaction of a 120 GeV proton beam with a rotating set of thin fixed targets. An iron-filled magnet downstream of the target, 5 meters in length, serves as a beam dump. The SeaQuest spectrometer is sensitive to dark photons that are mostly produced in the beam dump and decay to dimuons, and a SeaQuest search for dark sector particles was approved as Fermilab experiment E1067. As part of E1067, a displaced-vertex trigger was built, installed and commissioned this year. This trigger uses two planes of extruded scintillators to identify dimuons originating far downstream of the target, and is sensitive to dark photons that travel deep inside the beam dump before decaying to dimuons. This trigger will be used to take data parasitically with the primary SeaQuest physics program. In this talk I will present the displaced-vertex trigger and its performance, and projected sensitivity from future running.

  14. Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, Asher; Gratia, Pierre; Hooper, Dan

    2014-07-24

    The gamma-ray excess observed from the Galactic Center can be interpreted as dark matter particles annihilating into Standard Model fermions with a cross section near that expected for a thermal relic. Although many particle physics models have been shown to be able to account for this signal, the fact that this particle has not yet been observed in direct detection experiments somewhat restricts the nature of its interactions. One way to suppress the dark matter's elastic scattering cross section with nuclei is to consider models in which the dark matter is part of a hidden sector. In such models, themore » dark matter can annihilate into other hidden sector particles, which then decay into Standard Model fermions through a small degree of mixing with the photon, Z, or Higgs bosons. After discussing the gamma-ray signal from hidden sector dark matter in general terms, we consider two concrete realizations: a hidden photon model in which the dark matter annihilates into a pair of vector gauge bosons that decay through kinetic mixing with the photon, and a scenario within the generalized NMSSM in which the dark matter is a singlino-like neutralino that annihilates into a pair of singlet Higgs bosons, which decay through their mixing with the Higgs bosons of the MSSM.« less

  15. The DarkSide experiment

    NASA Astrophysics Data System (ADS)

    Bottino, B.; Aalseth, C. E.; Acconcia, G.; Acerbi, F.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A.; Ampudia, P.; Ardito, R.; Arisaka, K.; Arnquist, I. J.; Asner, D. M.; Back, H. O.; Baldin, B.; Batignani, G.; Biery, K.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Bunker, R.; Bussino, S.; Buttafava, M.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Calandri, N.; Calaprice, F.; Calvo, J.; Campajola, L.; Canci, N.; Candela, A.; Cantini, C.; Cao, H.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Citterio, M.; Cocco, A. G.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Angelo, D.; D'Incecco, M.; Daniel, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Guido, G.; De Vincenzi, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dromia, I.; Dussoni, S.; Edkins, E.; Empl, A.; Fan, A.; Ferri, A.; Filip, C. O.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Gendotti, A.; Ghioni, M.; Ghisi, A.; Giagu, S.; Gibertoni, G.; Giganti, C.; Giorgi, M.; Giovannetti, G. K.; Gligan, M. L.; Gola, A.; Goretti, A.; Granato, F.; Grassi, M.; Grate, J. W.; Gromov, M.; Guan, M.; Guardincerri, Y.; Gulinatti, A.; Haaland, R. K.; Hackett, B.; Harrop, B.; Herner, K.; Hoppe, E. W.; Horikawa, S.; Hungerford, E.; Ianni, Al.; Ianni, An.; Ivashchuk, O.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M. W.; Lissia, M.; Li, X.; Lodi, G. U.; Lombardi, P.; Longo, G.; Loverre, P.; Luitz, S.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I.; Mais, L.; Mandarano, A.; Mapelli, L.; Marcante, M.; Mari, S.; Mariani, M.; Maricic, J.; Marinelli, M.; Marini, L.; Martoff, C. J.; Mascia, M.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Miller, J. D.; Moioli, S.; Monasterio, S.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Morrocchi, M.; Mosteiro, P.; Mount, B.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Napolitano, J.; Nelson, A.; Nosov, V.; Nurakhov, N. N.; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pantic, E.; Paoloni, E.; Parmeggiano, S.; Paternoster, G.; Pazzona, F.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perasso, S.; Peronio, P.; Perotti, F.; Perruzza, R.; Piemonte, C.; Pilo, F.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Radics, B.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Rech, I.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A.; Rescigno, M.; Ricotti, M.; Riffard, Q.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rountree, D.; Rubbia, A.; Ruggeri, A.; Sablone, D.; Saggese, P.; Salatino, P.; Salemme, L.; Sands, W.; Sangiorgio, S.; Sant, M.; Santorelli, R.; Sanzaro, M.; Savarese, C.; Sechi, E.; Segreto, E.; Semenov, D.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Shields, E.; Simeone, M.; Singh, P. N.; Skorokhvatov, M.; Smallcomb, M.; Smirnov, O.; Sokolov, A.; Sotnikov, A.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tamborini, D.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E.; Vacca, A.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wilhelmi, J.; Wojcik, M.; Wu, S.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zappa, F.; Zappalà, G.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zullo, A.; Zullo, M.; Zuzel, G.

    2017-01-01

    DarkSide is a dark matter direct search experiment at Laboratori Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear recoils possibly induced by hypothetical dark matter particles, which are supposed to be neutral, massive (m>10{ GeV}) and weakly interactive (WIMP). The dark matter detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid argon. The TPC is placed inside a muon and a neutron active vetoes to suppress the background. Using argon as active target has many advantages, the key features are the strong discriminant power between nuclear and electron recoils, the spatial reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50 is filled with ultra-pure argon, extracted from underground sources, and from April 2015 it is taking data in its final configuration. When combined with the preceding search with an atmospheric argon target, it is possible to set a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 2.0×10^{-44} cm ^2 for a WIMP mass of 100 GeV/ c^2 . The next phase of the experiment, DarkSide-20k, will be the construction of a new detector with an active mass of ˜20 tons.

  16. Light higgsino dark matter from non-thermal cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less

  17. Light higgsino dark matter from non-thermal cosmology

    DOE PAGES

    Aparicio, Luis; Cicoli, Michele; Dutta, Bhaskar; ...

    2016-11-01

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rulemore » out non-thermal higgsinos with masses below 300 GeV. A future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. Finally, we describe the impact of embedding higgsino dark matter in these scenarios.« less

  18. Ordinary Dark Matter versus Mysterious Dark Matter in Galactic Rotation

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.; Feng, James

    2008-04-01

    To theoretically describe the measured rotational velocity curves of spiral galaxies, there are two different approaches and conclusions. (1) ORDINARY DARK MATTER. We assume Newtonian gravity/dynamics and successfully find (via computer) mass distributions in bulge/disk configurations that duplicate the measured rotational velocities. There is ordinary dark matter within the galactic disk towards the cooler periphery which has lower emissivity/opacity. There are no mysteries in this scenario based on verified physics. (2) MYSTERIOUS DARK MATTER. Others INaccurately assume the galactic mass distributions follow the measured light distributions, and then the measured rotational velocity curves are NOT duplicated. To alleviate this discrepancy, speculations are invoked re ``Massive Peripheral Spherical Halos of Mysterious Dark Matter.'' But NO matter has been detected in this UNtenable Halo configuration. Many UNverified ``Mysteries'' are invoked as necessary and convenient. CONCLUSION. The first approach utilizing Newtonian gravity/dynamics and searching for the ordinary mass distributions within the galactic disk simulates reality and agrees with data.

  19. LHC searches for dark sector showers

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong; Mishra-Sharma, Siddharth

    2017-11-01

    This paper proposes a new search program for dark sector parton showers at the Large Hadron Collider (LHC). These signatures arise in theories characterized by strong dynamics in a hidden sector, such as Hidden Valley models. A dark parton shower can be composed of both invisible dark matter particles as well as dark sector states that decay to Standard Model particles via a portal. The focus here is on the specific case of `semi-visible jets,' jet-like collider objects where the visible states in the shower are Standard Model hadrons. We present a Simplified Model-like parametrization for the LHC observables and propose targeted search strategies for regions of parameter space that are not covered by existing analyses. Following the `mono- X' literature, the portal is modeled using either an effective field theoretic contact operator approach or with one of two ultraviolet completions; sensitivity projections are provided for all three cases. We additionally highlight that the LHC has a unique advantage over direct detection experiments in the search for this class of dark matter theories.

  20. Study of dark matter and QCD-charged mediators in the quasidegenerate regime

    NASA Astrophysics Data System (ADS)

    Davidson, Andrew; Kelso, Chris; Kumar, Jason; Sandick, Pearl; Stengel, Patrick

    2017-12-01

    We study a scenario in which the only light new particles are a Majorana fermion dark matter candidate and one or more QCD-charged scalars, which couple to light quarks. This scenario has several interesting phenomenological features if the new particles are nearly degenerate in mass. In particular, LHC searches for the light scalars have reduced sensitivity, since the visible and invisible products tend to be softer. Moreover, dark matter-scalar coannihilation can allow even relatively heavy dark matter candidates to be consistent thermal relics. Finally, the dark matter nucleon scattering cross section is enhanced in the quasidegenerate limit, allowing direct detection experiments to use both spin-independent and spin-dependent scattering to probe regions of parameter space beyond those probed by the LHC. Although this scenario has a broad application, we phrase this study in terms of the minimal supersymmetric standard model, in the limit where the only light sparticles are a binolike dark matter candidate and light-flavored squarks.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rott, Carsten; In, Seongjin; Kumar, Jason

    Dark matter can be gravitationally captured by the Sun after scattering off solar nuclei. Annihilations of the dark matter trapped and accumulated in the centre of the Sun could result in one of the most detectable and recognizable signals for dark matter. Searches for high-energy neutrinos produced in the decay of annihilation products have yielded extremely competitive constraints on the spin-dependent scattering cross sections of dark matter with nuclei. Recently, the low energy neutrino signal arising from dark-matter annihilation to quarks which then hadronize and shower has been suggested as a competitive and complementary search strategy. These high-multiplicity hadronic showersmore » give rise to a large amount of pions which will come to rest in the Sun and decay, leading to a unique sub-GeV neutrino signal. We here improve on previous works by considering the monoenergetic neutrino signal arising from both pion and kaon decay. We consider searches at liquid scintillation, liquid argon, and water Cherenkov detectors and find very competitive sensitivities for few-GeV dark matter masses.« less

  2. Compositional mapping of Saturn's satellite Dione with Cassini VIMS and implications of dark material in the Saturn system

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Jaumann, R.; Cruikshank, D.P.; Brown, R.H.; Hoefen, T.M.; Stephan, K.; Moore, Johnnie N.; Buratti, B.J.; Baines, K.H.; Nicholson, P.D.; Nelson, R.M.

    2008-01-01

    Cassini VIMS has obtained spatially resolved imaging spectroscopy data on numerous satellites of Saturn. A very close fly-by of Dione provided key information for solving the riddle of the origin of the dark material in the Saturn system. The Dione VIMS data show a pattern of bombardment of fine, sub-0.5-??m diameter particles impacting the satellite from the trailing side direction. Multiple lines of evidence point to an external origin for the dark material on Dione, including the global spatial pattern of dark material, local patterns including crater and cliff walls shielding implantation on slopes facing away from the trailing side, exposing clean ice, and slopes facing the trailing direction which show higher abundances of dark material. Multiple spectral features of the dark material match those seen on Phoebe, Iapetus, Hyperion, Epimetheus and the F-ring, implying the material has a common composition throughout the Saturn system. However, the exact composition of the dark material remains a mystery, except that bound water and, tentatively, ammonia are detected, and there is evidence both for and against cyanide compounds. Exact identification of composition requires additional laboratory work. A blue scattering peak with a strong UV-visible absorption is observed in spectra of all satellites which contain dark material, and the cause is Rayleigh scattering, again pointing to a common origin. The Rayleigh scattering effect is confirmed with laboratory experiments using ice and 0.2-??m diameter carbon grains when the carbon abundance is less than about 2% by weight. Rayleigh scattering in solids is also confirmed in naturally occurring terrestrial rocks, and in previously published reflectance studies. The spatial pattern, Rayleigh scattering effect, and spectral properties argue that the dark material is only a thin coating on Dione's surface, and by extension is only a thin coating on Phoebe, Hyperion, and Iapetus, although the dark material abundance appears higher on Iapetus, and may be locally thick. As previously concluded for Phoebe, the dark material appears to be external to the Saturn system and may be cometary in origin. We also report a possible detection of material around Dione which may indicate Dione is active and contributes material to the E-ring, but this observation must be confirmed.

  3. Z' portal to Chern-Simons Dark Matter

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Ghosh, Pradipta; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.

    2017-11-01

    We study the phenomenological credibility of a vectorial dark matter, coupled to a Z' portal through Chern-Simons interaction. We scrutinize two possibilities of connecting a Z' with the Standard Model: (1) through kinetic mixing and (2) from a second Chern-Simons interaction. Both scenarios are characterized by suppressed nuclear recoil scatterings, rendering direct detection searches not promising. Indirect detection experiments, on the other hand, furnish complementary limits for TeV scale masses, specially with the CTA. Searches for mono-jet and dileptons signals at the LHC are important to partially probe the kinetic mixing setup. Finally we propose an UV completion of the Chern-Simons Dark Matter framework.

  4. Form factors for dark matter capture by the Sun in effective theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Schwabe, Bodo

    2015-04-24

    In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less

  5. Warm dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Shunsaku, E-mail: horiuchi@vt.edu

    2016-06-21

    The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm darkmore » matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.« less

  6. Probing sub-GeV dark matter-baryon scattering with cosmological observables

    NASA Astrophysics Data System (ADS)

    Xu, Weishuang Linda; Dvorkin, Cora; Chael, Andrew

    2018-05-01

    We derive new limits on the elastic scattering cross section between baryons and dark matter using cosmic microwave background data from the Planck satellite and measurements of the Lyman-alpha forest flux power spectrum from the Sloan Digital Sky Survey. Our analysis addresses generic cross sections of the form σ ∝vn , where v is the dark matter-baryon relative velocity, allowing for constraints on the cross section independent of specific particle physics models. We include high-ℓ polarization data from Planck in our analysis, improving over previous constraints. We apply a more careful treatment of dark matter thermal evolution than previously done, allowing us to extend our constraints down to dark matter masses of ˜MeV . We show in this work that cosmological probes are complementary to current direct detection and astrophysical searches.

  7. Direct Search for Dark Matter with DarkSide

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2015-11-01

    The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.

  8. Flavored Dark Matter and the Galactic Center Gamma-Ray Excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Batell, Brian; Hooper, Dan

    Thermal relic dark matter particles with a mass of 31-40 GeV and that dominantly annihilate to bottom quarks have been shown to provide an excellent description of the excess gamma rays observed from the center of the Milky Way. Flavored dark matter provides a well-motivated framework in which the dark matter can dominantly couple to bottom quarks in a flavor-safe manner. We propose a phenomenologically viable model of bottom flavored dark matter that can account for the spectral shape and normalization of the gamma-ray excess while naturally suppressing the elastic scattering cross sections probed by direct detection experiments. This modelmore » will be definitively tested with increased exposure at LUX and with data from the upcoming high-energy run of the Large Hadron Collider (LHC).« less

  9. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Ratcheting Up The Search for Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel Dylan

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, Imore » report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and decay of the Higgs boson represent a unique entry p! oint to searches for new kinds of physics. Continuing to refine our understanding of the Higgs boson will also allow us to learn about a vast array of possible new physics. This dissertation includes work parameterizing some of the scenarios that are most likely to be discovered with future Higgs data.« less

  11. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2010-05-20

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits excludemore » large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~ 5 over a smooth-halo assumption. Here, we also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. Finally, in this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.« less

  12. Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles

    NASA Astrophysics Data System (ADS)

    He, Yu; Lin, Wen-bin

    2017-04-01

    The cosmological model of cold dark matter (CDM) with the dark energy and a scale-invariant adiabatic primordial power spectrum has been considered as the standard cosmological model, i.e. the ΛCDM model. Weakly interacting massive particles (WIMPs) become a prominent candidate for the CDM. Many models extended from the standard model can provide the WIMPs naturally. The standard calculations of relic abundance of dark matter show that the WIMPs are well in agreement with the astronomical observation of ΩDM h2 ≈0.11. The WIMPs have a relatively large mass, and a relatively slow velocity, so they are easy to aggregate into clusters, and the results of numerical simulations based on the WIMPs agree well with the observational results of cosmic large-scale structures. In the aspect of experiments, the present accelerator or non-accelerator direct/indirect detections are mostly designed for the WIMPs. Thus, a wide attention has been paid to the CDM model based on the WIMPs. However, the ΛCDM model has a serious problem for explaining the small-scale structures under one Mpc. Different dark matter models have been proposed to alleviate the small-scale problem. However, so far there is no strong evidence enough to exclude the CDM model. We plan to introduce the research progress of the dark matter model based on the WIMPs, such as the WIMPs miracle, numerical simulation, small-scale problem, and the direct/indirect detection, to analyze the criterion for discriminating the ;cold;, ;hot;, and ;warm; dark matter, and present the future prospects for the study in this field.

  13. A Robust Approach to Constraining Dark Matter from Gamma-Ray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Eric J.; /Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott

    2011-03-01

    Photons produced in the annihilations of dark matter particles can be detected by gamma-ray telescopes; this technique of indirect detection serves as a cornerstone of the upcoming assault on the dark matter paradigm. The main obstacle to the extraction of information about dark matter from the annihilation photons is the presence of large and uncertain gamma-ray backgrounds. We present a new technique for using gamma-ray data to constrain the properties of dark matter that makes minimal assumptions about the dark matter and the backgrounds. The technique relies on two properties of the expected signal from annihilations of the smooth darkmore » matter component in our Galaxy: (1) it is approximately rotationally symmetric around the axis connecting us to the Galactic center, and (2) variations from the mean signal are uncorrelated from one pixel to the next. We apply this technique to recent data from the Fermi telescope to generate constraints on the dark matter mass and cross section for a variety of annihilation channels. We quantify the uncertainty introduced into our constraints by uncertainties in the halo profile and by the possibility that the halo is triaxial. The resultant constraint, the flux F {le} 4.5 x 10{sup -6} cm{sup -2} s{sup -1} sr{sup -1} for energies between 1 and 100 GeV at an angle 15{sup o} away from the Galactic center, translates into an upper limit on the velocity-weighted annihilation cross section of order 10{sup -25} cm{sup 3} s{sup -1}, depending on the annihilation mode.« less

  14. Bringing isolated dark matter out of isolation: Late-time reheating and indirect detection

    NASA Astrophysics Data System (ADS)

    Erickcek, Adrienne L.; Sinha, Kuver; Watson, Scott

    2016-09-01

    In standard cosmology, the growth of structure becomes significant following matter-radiation equality. In nonthermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior to big bang nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum. Density perturbations that enter the horizon during the early matter-dominated era (EMDE) grow linearly with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on small scales if dark matter (DM) thermally and kinetically decouples during the EMDE. The microhalos that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter. This has important implications for indirect detection experiments: the larger annihilation rate may result in observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle, we consider binos in heavy supersymmetry with an intermediate extended Higgs sector and all other superpartners decoupled. We find that these isolated binos, which lie under the neutrino floor, can account for the dark matter relic density and decouple from the standard model early enough to preserve the enhanced small-scale inhomogeneity generated during the EMDE. If early forming microhalos survive as subhalos within larger microhalos, the resulting boost to the annihilation rate for bino dark matter near the pseudoscalar resonance exceeds the upper limit established by Fermi-LAT's observations of dwarf spheroidal galaxies. These DM candidates motivate the N -body simulations required to eliminate uncertainties in the microhalos' internal structure by exemplifying how an EMDE can enable Fermi-LAT to probe isolated dark matter.

  15. The metal-poor stellar halo in RAVE-TGAS and its implications for the velocity distribution of dark matter

    NASA Astrophysics Data System (ADS)

    Herzog-Arbeitman, Jonah; Lisanti, Mariangela; Necib, Lina

    2018-04-01

    The local velocity distribution of dark matter plays an integral role in interpreting the results from direct detection experiments. We previously showed that metal-poor halo stars serve as excellent tracers of the virialized dark matter velocity distribution using a high-resolution hydrodynamic simulation of a Milky Way-like halo. In this paper, we take advantage of the first Gaia data release, coupled with spectroscopic measurements from the RAdial Velocity Experiment (RAVE), to study the kinematics of stars belonging to the metal-poor halo within an average distance of ~5 kpc of the Sun. We study stars with iron abundances [Fe/H] < ‑1.5 and ‑1.8 that are located more than 1.5 kpc from the Galactic plane. Using a Gaussian mixture model analysis, we identify the stars that belong to the halo population, as well as some kinematic outliers. We find that both metallicity samples have similar velocity distributions for the halo component, within uncertainties. Assuming that the stellar halo velocities adequately trace the virialized dark matter, we study the implications for direct detection experiments. The Standard Halo Model, which is typically assumed for dark matter, is discrepant with the empirical distribution by ~6σ, predicts fewer high-speed particles, and is anisotropic. As a result, the Standard Halo Model overpredicts the nuclear scattering rate for dark matter masses below ~10 GeV. The kinematic outliers that we identify may potentially be correlated with dark matter substructure, though further study is needed to establish this correspondence.

  16. Light dark matter and galaxy formation

    NASA Astrophysics Data System (ADS)

    Ascasibar, Yago

    2006-11-01

    What if dark matter particles were as light as a few MeV? Well, they would ``just'' need to decay or annihilate in exactly the right amount to explain the observed dark matter density... However, such a process would yield a detectable imprint on both particle and cosmological scales. Some of the signatures would be difficult to measure; some others would determine whether a galaxy can form stars or not. Does any (actually all) of these weird things happen?

  17. Direct Search for Low Mass Dark Matter Particles with CCDs

    DOE PAGES

    Barreto, J.; Cease, H.; Diehl, H. T.; ...

    2012-05-15

    A direct dark matter search is performed using fully-depleted high-resistivity CCD detectors. Due to their low electronic readout noise (RMS ~7 eV) these devices operate with a very low detection threshold of 40 eV, making the search for dark matter particles with low masses (~5 GeV) possible. The results of an engineering run performed in a shallow underground site are presented, demonstrating the potential of this technology in the low mass region.

  18. Possible interaction between baryons and dark-matter particles revealed by the first stars

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan

    2018-03-01

    The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars. By observing this 21-centimetre signal—either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers—we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

  19. Synchrotron Emission from Dark Matter Annihilation: Predictions for Constraints from Non-detections of Galaxy Clusters with New Radio Surveys

    NASA Astrophysics Data System (ADS)

    Storm, Emma; Jeltema, Tesla E.; Splettstoesser, Megan; Profumo, Stefano

    2017-04-01

    The annihilation of dark matter particles is expected to yield a broad radiation spectrum via the production of Standard Model particles in astrophysical environments. In particular, electrons and positrons from dark matter annihilation produce synchrotron radiation in the presence of magnetic fields. Galaxy clusters are the most massive collapsed structures in the universe, and are known to host ˜μG-scale magnetic fields. They are therefore ideal targets to search for, or to constrain the synchrotron signal from dark matter annihilation. In this work, we use the expected sensitivities of several planned surveys from the next generation of radio telescopes to predict the constraints on dark matter annihilation models which will be achieved in the case of non-detections of diffuse radio emission from galaxy clusters. Specifically, we consider the Tier 1 survey planned for the Low Frequency Array (LOFAR) at 120 MHz, the Evolutionary Map of the Universe (EMU) survey planned for the Australian Square Kilometre Array Pathfinder (ASKAP) at 1.4 GHz, and planned surveys for Aperture Tile in Focus (APERTIF) at 1.4 GHz. We find that, for massive clusters and dark matter masses ≲ 100 {GeV}, the predicted limits on the annihilation cross section would rule out vanilla thermal relic models for even the shallow LOFAR Tier 1, ASKAP, and APERTIF surveys.

  20. Possible interaction between baryons and dark-matter particles revealed by the first stars.

    PubMed

    Barkana, Rennan

    2018-02-28

    The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars. By observing this 21-centimetre signal-either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers-we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.

  1. Recognizing Axionic Dark Matter by Compton and de Broglie Scale Modulation of Pulsar Timing.

    PubMed

    De Martino, Ivan; Broadhurst, Tom; Tye, S-H Henry; Chiueh, Tzihong; Schive, Hsi-Yu; Lazkoz, Ruth

    2017-12-01

    Light axionic dark matter, motivated by string theory, is increasingly favored for the "no weakly interacting massive particle era". Galaxy formation is suppressed below a Jeans scale of ≃10^{8}  M_{⊙} by setting the axion mass to m_{B}∼10^{-22}  eV, and the large dark cores of dwarf galaxies are explained as solitons on the de Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency ω_{B}=(2.5  months)^{-1}(m_{B}/10^{-22}  eV) would be definitive. By evolving the coupled Schrödinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de Broglie interference, with a dense soliton core of size ≃150  pc, at the Galactic center. The oscillating field pressure induces general relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals of ≃400  nsec/(m_{B}/10^{-22}  eV). This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.

  2. Effect of electromagnetic dipole dark matter on energy transport in the solar interior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geytenbeek, Ben; Rao, Soumya; White, Martin

    In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or anmore » anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Schwabe, Bodo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: bodo.schwabe@theorie.physik.uni-goettingen.de

    In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less

  4. Indirect detection of dark matter with γ rays.

    PubMed

    Funk, Stefan

    2015-10-06

    The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today-80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles.

  5. Indirect detection of dark matter with γ rays

    PubMed Central

    Funk, Stefan

    2015-01-01

    The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today—80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles. PMID:24821791

  6. Interplay and characterization of Dark Matter searches at colliders and in direct detection experiments

    DOE PAGES

    Malik, Sarah A.; McCabe, Christopher; Araujo, Henrique; ...

    2015-05-18

    In our White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Furthermore, based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.

  7. Quantifying (dis)agreement between direct detection experiments in a halo-independent way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldstein, Brian; Kahlhoefer, Felix, E-mail: brian.feldstein@physics.ox.ac.uk, E-mail: felix.kahlhoefer@physics.ox.ac.uk

    We propose an improved method to study recent and near-future dark matter direct detection experiments with small numbers of observed events. Our method determines in a quantitative and halo-independent way whether the experiments point towards a consistent dark matter signal and identifies the best-fit dark matter parameters. To achieve true halo independence, we apply a recently developed method based on finding the velocity distribution that best describes a given set of data. For a quantitative global analysis we construct a likelihood function suitable for small numbers of events, which allows us to determine the best-fit particle physics properties of darkmore » matter considering all experiments simultaneously. Based on this likelihood function we propose a new test statistic that quantifies how well the proposed model fits the data and how large the tension between different direct detection experiments is. We perform Monte Carlo simulations in order to determine the probability distribution function of this test statistic and to calculate the p-value for both the dark matter hypothesis and the background-only hypothesis.« less

  8. Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-06-15

    Dark matter in the Milky Way may annihilate directly into γ rays, producing a monoenergetic spectral line. Therefore, detecting such a signature would be strong evidence for dark matter annihilation or decay. We search for spectral lines in the Fermi Large Area Telescope observations of the Milky Way halo in the energy range 200 MeV–500 GeV using analysis methods from our most recent line searches. The main improvements relative to previous works are our use of 5.8 years of data reprocessed with the Pass 8 event-level analysis and the additional data resulting from the modified observing strategy designed to increasemore » exposure of the Galactic center region. Furthermore, we search in five sky regions selected to optimize sensitivity to different theoretically motivated dark matter scenarios and find no significant detections. In addition to presenting the results from our search for lines, we also investigate the previously reported tentative detection of a line at 133 GeV using the new Pass 8 data.« less

  9. Collider study on the loop-induced dark matter mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Yuhsin, E-mail: yhtsai@umd.edu

    2016-06-21

    Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less

  10. Testing for Dark Matter Trapped in the Solar System

    NASA Technical Reports Server (NTRS)

    Krisher, Timothy P.

    1996-01-01

    We consider the possibility of dark matter trapped in the solar system in bound solar orbits. If there exist mechanisms for dissipating excess kinetic energy by an amount sufficient for generating bound solar orbits, then trapping of galactic dark matter might have taken place during formation of the solar system, or could be an ongoing process. Possible locations for acumulation of trapped dark matter are orbital resonances with the planets or regions in the outer solar system. It is posible to test for the presence of unseen matter by detecting its gravitational effects. Current results for dynamical limits obtained from analyses of planetary ephemeris data and spacecraft tracking data are presented. Possible future improvements are discussed.

  11. Exothermic double-disk dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCullough, Matthew; Randall, Lisa, E-mail: mccull@mit.edu, E-mail: randall@physics.harvard.edu

    2013-10-01

    If a subdominant component of dark matter (DM) interacts via long-range dark force carriers it may cool and collapse to form complex structures within the Milky Way galaxy, such as a rotating dark disk. This scenario was proposed recently and termed ''Double-Disk Dark Matter'' (DDDM). In this paper we consider the possibility that DDDM remains in a cosmologically long-lived excited state and can scatter exothermically on nuclei (ExoDDDM). We investigate the current status of ExoDDDM direct detection and find that ExoDDDM can readily explain the recently announced ∼ 3σ excess observed at CDMS-Si, with almost all of the 90% best-fitmore » parameter space in complete consistency with limits from other experiments, including XENON10 and XENON100. In the absence of isospin-dependent couplings, this consistency requires light DM with mass typically in the 5-15 GeV range. The hypothesis of ExoDDDM can be tested in direct detection experiments through its peaked recoil spectra, reduced annual modulation amplitude, and, in some cases, its novel time-dependence. We also discuss future direct detection prospects and additional indirect constraints from colliders and solar capture of ExoDDDM. As theoretical proof-of-principle, we combine the features of exothermic DM models and DDDM models to construct a complete model of ExoDDDM, exhibiting all the required properties.« less

  12. A filament of dark matter between two clusters of galaxies.

    PubMed

    Dietrich, Jörg P; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2012-07-12

    It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.

  13. Dark matter in E 6 Grand unification

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, Jakob

    2018-02-01

    We discuss fermionic dark matter in non-supersymmetric E 6 Grand Unification. The fundamental representation of E 6 contains, in addition to the standard model fermions, exotic fermions and we argue that one of them is a viable, interesting dark matter candidate. Its stability is guaranteed by a discrete remnant symmetry, which is an unbroken subgroup of the E 6 gauge symmetry. We compute the symmetry breaking scales and the effect of possible threshold corrections by solving the renormalization group equations numerically after imposing gauge coupling unification. Since the Yukawa couplings of the exotic and the standard model fermions have a common origin, the mass of the dark matter particles is constrained. We find a mass range of 3 · 109 GeV ≲ m DM ≲ 1 · 1013 GeV for our E 6 dark matter candidate, which is within the reach of next-generation direct detection experiments.

  14. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  15. Search for Dark Matter in Events with One Jet and Missing Transverse Energy in pp̄ Collisions at √s=1.96 TeV

    DOE PAGES

    Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...

    2012-05-23

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction belowmore » a dark matter candidate mass of 5 GeV/c², and on spin-dependent interactions up to masses of 200 GeV/c².« less

  16. Search for dark matter in events with one jet and missing transverse energy in pp¯ collisions at √s=1.96 TeV.

    PubMed

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Bai, Y; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Fox, P J; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harnik, R; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-05-25

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp[over ¯] collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb(-1) recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c(2), and on spin-dependent interactions up to masses of 200 GeV/c(2).

  17. X-ray lines and self-interacting dark matter.

    PubMed

    Mambrini, Yann; Toma, Takashi

    We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.

  18. Gravitationally Focused Dark Matter around Compact Stars

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  19. Direct search for dark matter with DarkSide

    DOE PAGES

    Agnes, P.

    2015-11-16

    Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10 -44 cm 2 (for a WIMP mass of 100 GeV/c 2) and it's currently the most sensitive limit obtained with an Argon target.« less

  20. Biophotons Contribute to Retinal Dark Noise.

    PubMed

    Li, Zehua; Dai, Jiapei

    2016-06-01

    The discovery of dark noise in retinal photoreceptors resulted in a long-lasting controversy over its origin and the underlying mechanisms. Here, we used a novel ultra-weak biophoton imaging system (UBIS) to detect biophotonic activity (emission) under dark conditions in rat and bullfrog (Rana catesbeiana) retinas in vitro. We found a significant temperature-dependent increase in biophotonic activity that was completely blocked either by removing intracellular and extracellular Ca(2+) together or inhibiting phosphodiesterase 6. These findings suggest that the photon-like component of discrete dark noise may not be caused by a direct contribution of the thermal activation of rhodopsin, but rather by an indirect thermal induction of biophotonic activity, which then activates the retinal chromophore of rhodopsin. Therefore, this study suggests a possible solution regarding the thermal activation energy barrier for discrete dark noise, which has been debated for almost half a century.

  1. The Higgs seesaw induced neutrino masses and dark matter

    DOE PAGES

    Cai, Yi; Chao, Wei

    2015-08-12

    In this study we propose a possible explanation of the active neutrino Majorana masses with the TeV scale new physics which also provide a dark matter candidate. We extend the Standard Model (SM) with a local U(1)' symmetry and introduce a seesaw relation for the vacuum expectation values (VEVs) of the exotic scalar singlets, which break the U(1)' spontaneously. The larger VEV is responsible for generating the Dirac mass term of the heavy neutrinos, while the smaller for the Majorana mass term. As a result active neutrino masses are generated via the modified inverse seesaw mechanism. The lightest of themore » new fermion singlets, which are introduced to cancel the U(1)' anomalies, can be a stable particle with ultra flavor symmetry and thus a plausible dark matter candidate. We explore the parameter space with constraints from the dark matter relic abundance and dark matter direct detection.« less

  2. Constraining neutrinos as background to wimp-nucleon dark matter particle searches for DaMIC: CCD physics analysis and electronics development

    NASA Astrophysics Data System (ADS)

    Butner, Melissa Jean

    The DaMIC (Dark Matter in CCDs) experiment searches for dark matter particles using charge coupled devices (CCDs) operated at a low detection threshold of ˜40 eV electron equivalent energy (eVee). A multiplexor board is tested for DAMIC100+ which has the ability to control up to 16 CCDs at one time allowing for the selection of a single CCD for readout while leaving all others static and maintaining sub-electron noise. A dark matter limit is produced using the results of physics data taken with the DAMIC experiment. Next, the contribution from neutrino-nucleus coherent scattering is investigated using data from the Coherent Neutrino Nucleus Interaction Experiment (CONnuIE) using the same CCD technology. The results are used to explore the performance of CCD detectors that ultimately will limit the ability to differentiate incident solar and atmospheric neutrinos from dark matter particles.

  3. Underwater detectibility of a lighting system on a helicopter escape exit.

    PubMed

    O'Neill, Brendan D; Kozey, John W; Brooks, Chris J

    2004-06-01

    When a helicopter ditches into water, it immediately inverts due to the weight of the engines and then fills with water. Locating the emergency exit for escape under such conditions is a difficult task. A new lighting system for an escape exit has been developed that illuminates on contact with water. The detectibility of the lighting was investigated under varying conditions of ambient illumination, water turbidity, and viewing distance. A total of 288 underwater detection trials were carried out by 9 subjects with an illuminated hatch placed at 2 distances (1.5 m and 3.1 m), under 2 ambient illuminations (bright: > 3000 lux and dark: < 0.1 lux), and in 2 conditions of water turbidity. The water temperature was 12 degrees C for all conditions. At 1.5 m, the lighting system was detectable in less than 1.5 s by all subjects in both clear and turbid water and under both bright and dark conditions. At 3.1 m, the lights were detectable in both clear and turbid water under the dark condition and in clear water under the bright condition. However, the lighting was not reliably detected in turbid water under bright condition. The system met original design requirements in terms of detectibility at 1.5 m. The detection time was always under 1.5 s. It could also be detected at 3.1 m in clear and turbid water, under dark conditions. However, the detectibility at 3.1 m in turbid water, under bright condition was less reliable.

  4. Dark plasmonic mode based perfect absorption and refractive index sensing.

    PubMed

    Yang, W H; Zhang, C; Sun, S; Jing, J; Song, Q; Xiao, S

    2017-07-06

    Dark plasmonic resonances in metallic nanostructures are essential for many potential applications such as refractive index sensing, single molecule detection, nanolasers etc. However, it is difficult to excite the dark modes in optical experiments and thus the practical applications are severely limited. Herein, we demonstrate a simple method to experimentally excite the quadrupolar and higher-order plasmonic modes with normal incident light. By directionally depositing silver films onto the sidewalls of metal-covered one-dimensional grating, we have experimentally observed a series of asymmetrical resonances at the plasmonic ranges of silver gratings. Interestingly, both of the reflection and transmission coefficients of high-order plasmonic modes are reduced to around zero, demonstrating the perfect absorption very well. The corresponding numerical simulations show that these resonances are the well-known dark modes. Different from the conventional dark modes in plasmonic dimers, here the dark modes are the electric oscillations (as standing waves) within the silver sidewalls that are excited by charge accumulation via the bright plasmonic resonance of the top silver strips. In addition to the simple realization of perfect absorption, the dark modes are found to be quite sensitive to the environmental changes. The experimentally measured reflective index sensitivity is around 458 nm per RIU (refractive index unit), which is much higher than the sensitivity of the metal-covered grating without silver sidewalls. This research shall pave new routes to practical applications of dark surface plasmons.

  5. The dark cube: dark and light character profiles.

    PubMed

    Garcia, Danilo; Rosenberg, Patricia

    2016-01-01

    Background. Research addressing distinctions and similarities between people's malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger's character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger's "light" character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people's dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon's Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals' dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad.

  6. The dark cube: dark and light character profiles

    PubMed Central

    2016-01-01

    Background. Research addressing distinctions and similarities between people’s malevolent character traits (i.e., the Dark Triad: Machiavellianism, narcissism, and psychopathy) has detected inconsistent linear associations to temperament traits. Additionally, these dark traits seem to have a common core expressed as uncooperativeness. Hence, some researchers suggest that the dark traits are best represented as one global construct (i.e., the unification argument) rather than as ternary construct (i.e., the uniqueness argument). We put forward the dark cube (cf. Cloninger’s character cube) comprising eight dark profiles that can be used to compare individuals who differ in one dark character trait while holding the other two constant. Our aim was to investigate in which circumstances individuals who are high in each one of the dark character traits differ in Cloninger’s “light” character traits: self-directedness, cooperativeness, and self-transcendence. We also investigated if people’s dark character profiles were associated to their light character profiles. Method. A total of 997 participants recruited from Amazon’s Mechanical Turk (MTurk) responded to the Short Dark Triad and the Short Character Inventory. Participants were allocated to eight different dark profiles and eight light profiles based on their scores in each of the traits and any possible combination of high and low scores. We used three-way interaction regression analyses and t-tests to investigate differences in light character traits between individuals with different dark profiles. As a second step, we compared the individuals’ dark profile with her/his character profile using an exact cell-wise analysis conducted in the ROPstat software (http://www.ropstat.com). Results. Individuals who expressed high levels of Machiavellianism and those who expressed high levels of psychopathy also expressed low self-directedness and low cooperativeness. Individuals with high levels of narcissism, in contrast, scored high in self-directedness. Moreover, individuals with a profile low in the dark traits were more likely to end up with a profile high in cooperativeness. The opposite was true for those individuals with a profile high in the dark traits. The rest of the cross-comparisons revealed some of the characteristics of human personality as a non-linear complex dynamic system. Conclusions. Our study suggests that individuals who are high in Machiavellianism and psychopathy share a unified non-agentic and uncooperative character (i.e., irresponsible, low in self-control, unempathetic, unhelpful, untolerant), while individuals high in narcissism have a more unique character configuration expressed as high agency and, when the other dark traits are high, highly spiritual but uncooperative. In other words, based on differences in their associations to the light side of character, the Dark Triad seems to be a dyad rather than a triad. PMID:26966650

  7. Relativistic Dark Matter at the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  8. A method for characterizing after-pulsing and dark noise of PMTs and SiPMs

    NASA Astrophysics Data System (ADS)

    Butcher, A.; Doria, L.; Monroe, J.; Retière, F.; Smith, B.; Walding, J.

    2017-12-01

    Photo-multiplier tubes (PMTs) and silicon photo-multipliers (SiPMs) are detectors sensitive to single photons that are widely used for the detection of scintillation and Cerenkov light in subatomic physics and medical imaging. This paper presents a method for characterizing two of the main noise sources that PMTs and SiPMs share: dark noise and correlated noise (after-pulsing). The proposed method allows for a model-independent measurement of the after-pulsing timing distribution and dark noise rate.

  9. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Joshua; Cui, Yanou; Zhao, Yue, E-mail: jberger@slac.stanford.edu, E-mail: ycui@perimeterinstitute.ca, E-mail: zhaoyue@stanford.edu

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we proposemore » a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.« less

  10. High Detectivity Graphene-Silicon Heterojunction Photodetector.

    PubMed

    Li, Xinming; Zhu, Miao; Du, Mingde; Lv, Zheng; Zhang, Li; Li, Yuanchang; Yang, Yao; Yang, Tingting; Li, Xiao; Wang, Kunlin; Zhu, Hongwei; Fang, Ying

    2016-02-03

    A graphene/n-type silicon (n-Si) heterojunction has been demonstrated to exhibit strong rectifying behavior and high photoresponsivity, which can be utilized for the development of high-performance photodetectors. However, graphene/n-Si heterojunction photodetectors reported previously suffer from relatively low specific detectivity due to large dark current. Here, by introducing a thin interfacial oxide layer, the dark current of graphene/n-Si heterojunction has been reduced by two orders of magnitude at zero bias. At room temperature, the graphene/n-Si photodetector with interfacial oxide exhibits a specific detectivity up to 5.77 × 10(13) cm Hz(1/2) W(-1) at the peak wavelength of 890 nm in vacuum, which is highest reported detectivity at room temperature for planar graphene/Si heterojunction photodetectors. In addition, the improved graphene/n-Si heterojunction photodetectors possess high responsivity of 0.73 A W(-1) and high photo-to-dark current ratio of ≈10(7) . The current noise spectral density of the graphene/n-Si photodetector has been characterized under ambient and vacuum conditions, which shows that the dark current can be further suppressed in vacuum. These results demonstrate that graphene/Si heterojunction with interfacial oxide is promising for the development of high detectivity photodetectors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Detecting boosted dark matter from the Sun with large volume neutrino detectors

    NASA Astrophysics Data System (ADS)

    Berger, Joshua; Cui, Yanou; Zhao, Yue

    2015-02-01

    We study novel scenarios where thermal dark matter (DM) can be efficiently captured in the Sun and annihilate into boosted dark matter. In models with semi-annihilating DM, where DM has a non-minimal stabilization symmetry, or in models with a multi-component DM sector, annihilations of DM can give rise to stable dark sector particles with moderate Lorentz boosts. We investigate both of these possibilities, presenting concrete models as proofs of concept. Both scenarios can yield viable thermal relic DM with masses O(1)-O(100) GeV. Taking advantage of the energetic proton recoils that arise when the boosted DM scatters off matter, we propose a detection strategy which uses large volume terrestrial detectors, such as those designed to detect neutrinos or proton decays. In particular, we propose a search for proton tracks pointing towards the Sun. We focus on signals at Cherenkov-radiation-based detectors such as Super-Kamiokande (SK) and its upgrade Hyper-Kamiokande (HK). We find that with spin-dependent scattering as the dominant DM-nucleus interaction at low energies, boosted DM can leave detectable signals at SK or HK, with sensitivity comparable to DM direct detection experiments while being consistent with current constraints. Our study provides a new search path for DM sectors with non-minimal structure.

  12. Mapping all the mass in the universe (with weak gravitational lensing) - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everett, Spencer

    Recent discoveries have shown that most of the universe is made of an exotic dark matter that behaves much differently than the normal matter that we experience in everyday life. As we cannot detect dark matter directly, we must infer its location in the universe by indirect effects, such as the distortion of light from distant galaxies as it travels through large clouds of dark matter. While the degree of distortion should be proportional to the amount of dark matter present, we don't know the original shape of the galaxy so the distortion is difficult to quantify. If we hadmore » a model of how dark matter is linked to galaxies, and thus be able predict the amount of distortion that should occur, we could apply the model to galaxy surveys to map out the dark matter in our universe. In this research, I attach a spherical 'halo' of dark matter to each galaxy in a simulated universe to approximate its known complex dark matter structure. I then predict how the halos distort the light from distant galaxies generated behind the halos. As the data is simulated, the true distortion of the light is known which is compared to the halo-predicted distortion. I find that, on average, the model under-predicts the degree of distortion on all scales and fails to capture distortions from large-scale dark matter structure. These issues are likely due to missing features in the model, as the halo model is a greatly simplified version of the actual distribution of dark matter. Potential improvements to the model for future work are discussed.« less

  13. Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2009-12-01

    Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.

  14. Dark matter directionality revisited with a high pressure xenon gas detector

    DOE PAGES

    Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; ...

    2015-07-20

    An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less

  15. Halo-independent direct detection analyses without mass assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}− g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentummore » (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-tilde (p{sub R}). The entire family of conventional halo-independent g-tilde (v{sub min}) plots for all DM masses are directly found from the single h-tilde (p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde (p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde (v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  16. Halo-independent direct detection analyses without mass assumptions

    DOE PAGES

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; ...

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m χ – σ n plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v min – g ~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v minmore » to nuclear recoil momentum (p R), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(p R). The entire family of conventional halo-independent tilde g ~(v min) plots for all DM masses are directly found from the single tilde h ~(p R) plot through a simple rescaling of axes. By considering results in tildeh ~(p R) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g ~(v min) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  17. Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuterons

    DOE PAGES

    Aramaki, T.; Boggs, S.; Bufalino, S.; ...

    2016-01-27

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches using positrons, antiprotons, or γ-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This article is based on the first dedicated cosmic-ray antideuteron workshop, which was held at UCLA in June 2014. It reviews broad classes of dark matter candidates that result in detectablemore » cosmic-ray antideuteron fluxes, as well as the status and prospects of current experimental searches. The coalescence model of antideuteron production and the influence of antideuteron measurements at particle colliders are discussed. This is followed by a review of the modeling of antideuteron propagation through the magnetic fields, plasma currents, and molecular material of our Galaxy, the solar system, the Earth’s geomagnetic field, and the atmosphere. Lastly, the three ongoing or planned experiments that are sensitive to cosmic-ray antideuterons, BESS, AMS-02, and GAPS, are detailed. As cosmic-ray antideuteron detection is a rare event search, multiple experiments with orthogonal techniques and backgrounds are essential. Furthermore, the combination of AMS-02 and GAPS antideuteron searches is highly desirable. Many theoretical and experimental groups have contributed to these studies over the last decade, this review aims to provide the first coherent discussion of the relevant dark matter theories that antideuterons probe, the challenges to predictions and interpretations of antideuteron signals, and the experimental efforts toward cosmic antideuteron detection.« less

  18. Complementarity of dark matter searches in the phenomenological MSSM

    DOE PAGES

    Cahill-Rowley, Matthew; Cotta, Randy; Drlica-Wagner, Alex; ...

    2015-03-11

    As is well known, the search for and eventual identification of dark matter in supersymmetry requires a simultaneous, multipronged approach with important roles played by the LHC as well as both direct and indirect dark matter detection experiments. We examine the capabilities of these approaches in the 19-parameter phenomenological MSSM which provides a general framework for complementarity studies of neutralino dark matter. We summarize the sensitivity of dark matter searches at the 7 and 8 (and eventually 14) TeV LHC, combined with those by Fermi, CTA, IceCube/DeepCore, COUPP, LZ and XENON. The strengths and weaknesses of each of these techniques aremore » examined and contrasted and their interdependent roles in covering the model parameter space are discussed in detail. We find that these approaches explore orthogonal territory and that advances in each are necessary to cover the supersymmetric weakly interacting massive particle parameter space. We also find that different experiments have widely varying sensitivities to the various dark matter annihilation mechanisms, some of which would be completely excluded by null results from these experiments.« less

  19. Search for light scalar dark matter with atomic gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Arvanitaki, Asimina; Graham, Peter W.; Hogan, Jason M.; Rajendran, Surjeet; Van Tilburg, Ken

    2018-04-01

    We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. We point out a new time-domain signature of this effect in a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.

  20. Electrophilic dark matter with dark photon: From DAMPE to direct detection

    NASA Astrophysics Data System (ADS)

    Gu, Pei-Hong; He, Xiao-Gang

    2018-03-01

    The electron-positron excess reported by the DAMPE collaboration recently may be explained by an electrophilic dark matter (DM). A standard model singlet fermion may play the role of such a DM when it is stabilized by some symmetries, such as a dark U(1)X gauge symmetry, and dominantly annihilates into the electron-positron pairs through the exchange of a scalar mediator. The model, with appropriate Yukawa couplings, can well interpret the DAMPE excess. Naively one expects that in this type of models the DM-nucleon cross section should be small since there is no tree-level DM-quark interactions. We however find that at one-loop level, a testable DM-nucleon cross section can be induced for providing ways to test the electrophilic model. We also find that a U (1) kinetic mixing can generate a sizable DM-nucleon cross section although the U(1)X dark photon only has a negligible contribution to the DM annihilation. Depending on the signs of the mixing parameter, the dark photon can enhance/reduce the one-loop induced DM-nucleon cross section.

  1. Impact of Sommerfeld enhancement on helium reionization via WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Bidisha; Schleicher, Dominik R. G.

    2018-03-01

    Dark matter annihilation can have a strong impact on many astrophysical processes in the Universe. In the case of Sommerfeld-enhanced annihilation cross sections, the annihilation rates are enhanced at late times, thus enhancing the potential annihilation signatures. We here calculate the Sommerfeld-enhanced annihilation signatures during the epoch of helium reionization, the epoch where helium becomes fully ionized due to energetic photons. When considering the upper limits on the energy injection from the CMB, we find that the resulting abundance of He++ becomes independent of the dark matter particle mass. The resulting enhancement compared to a standard scenario is thus 1-2 orders of magnitude higher. For realistic scenarios compatible with CMB constraints, there is no significant shift in the epoch of helium reionization, which is completed between redshifts 3 and 4. While it is thus difficult to disentangle dark matter annihilation from astrophysical contributions (active galactic nuclei), a potential detection of dark matter particles and its interactions using the Large Hadron Collider (LHC) would allow one to quantify the dark matter contribution.

  2. Observational difference between gamma and X-ray properties of optically dark and bright GRBs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balazs, L. G.; Horvath, I.; Bagoly, Zs.

    2008-05-22

    Using the discriminant analysis of the multivariate statistical analysis we compared the distribution of the physical quantities of the optically dark and bright GRBs, detected by the BAT and XRT on board of the Swift Satellite. We found that the GRBs having detected optical transients (OT) have systematically higher peak fluxes and lower HI column densities than those without OT.

  3. Distribution of tubulin, kinesin, and dynein in light- and dark-adapted octopus retinas.

    PubMed

    Martinez, J M; Elfarissi, H; De Velasco, B; Ochoa, G H; Miller, A M; Clark, Y M; Matsumoto, B; Robles, L J

    2000-01-01

    Cephalopod retinas exhibit several responses to light and dark adaptation, including rhabdom size changes, photopigment movements, and pigment granule migration. Light- and dark-directed rearrangements of microfilament and microtubule cytoskeletal transport pathways could drive these changes. Recently, we localized actin-binding proteins in light-/dark-adapted octopus rhabdoms and suggested that actin cytoskeletal rearrangements bring about the formation and degradation of rhabdomere microvilli subsets. To determine if the microtubule cytoskeleton and associated motor proteins control the other light/dark changes, we used immunoblotting and immunocytochemical procedures to map the distribution of tubulin, kinesin, and dynein in dorsal and ventral halves of light- and dark-adapted octopus retinas. Immunoblots detected alpha- and beta-tubulin, dynein intermediate chain, and kinesin heavy chain in extracts of whole retinas. Epifluorescence and confocal microscopy showed that the tubulin proteins were distributed throughout the retina with more immunoreactivity in retinas exposed to light. Kinesin localization was heavy in the pigment layer of light- and dark-adapted ventral retinas but was less prominent in the dorsal region. Dynein distribution also varied in dorsal and ventral retinas with more immunoreactivity in light- and dark-adapted ventral retinas and confocal microscopy emphasized the granular nature of this labeling. We suggest that light may regulate the distribution of microtubule cytoskeletal proteins in the octopus retina and that position, dorsal versus ventral, also influences the distribution of motor proteins. The microtubule cytoskeleton is most likely involved in pigment granule migration in the light and dark and with the movement of transport vesicles from the photoreceptor inner segments to the rhabdoms.

  4. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    NASA Astrophysics Data System (ADS)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  5. Studying generalised dark matter interactions with extended halo-independent methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahlhoefer, Felix; Wild, Sebastian

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysicalmore » uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.« less

  6. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    DOE PAGES

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; ...

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark mattermore » particles with elastic spin-independent interactions and neutron to proton coupling ratio f n/f p=-0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f n/f p=-0.8.« less

  7. Improved Limits for Higgs-Portal Dark Matter from LHC Searches.

    PubMed

    Hoferichter, Martin; Klos, Philipp; Menéndez, Javier; Schwenk, Achim

    2017-11-03

    Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the standard model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parametrized in a single quantity f_{N}. We evaluate f_{N} using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as f_{N}=0.308(18), show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.

  8. Model-independent comparison of annual modulation and total rate with direct detection experiments

    NASA Astrophysics Data System (ADS)

    Kahlhoefer, Felix; Reindl, Florian; Schäffner, Karoline; Schmidt-Hoberg, Kai; Wild, Sebastian

    2018-05-01

    The relative sensitivity of different direct detection experiments depends sensitively on the astrophysical distribution and particle physics nature of dark matter, prohibiting a model-independent comparison. The situation changes fundamentally if two experiments employ the same target material. We show that in this case one can compare measurements of an annual modulation and exclusion bounds on the total rate while making no assumptions on astrophysics and no (or only very general) assumptions on particle physics. In particular, we show that the dark matter interpretation of the DAMA/LIBRA signal can be conclusively tested with COSINUS, a future experiment employing the same target material. We find that if COSINUS excludes a dark matter scattering rate of about 0.01 kg‑1 days‑1 with an energy threshold of 1.8 keV and resolution of 0.2 keV, it will rule out all explanations of DAMA/LIBRA in terms of dark matter scattering off sodium and/or iodine.

  9. Turnover time of fluorescent dissolved organic matter in the dark global ocean.

    PubMed

    Catalá, Teresa S; Reche, Isabel; Fuentes-Lema, Antonio; Romera-Castillo, Cristina; Nieto-Cid, Mar; Ortega-Retuerta, Eva; Calvo, Eva; Álvarez, Marta; Marrasé, Cèlia; Stedmon, Colin A; Álvarez-Salgado, X Antón

    2015-01-29

    Marine dissolved organic matter (DOM) is one of the largest reservoirs of reduced carbon on Earth. In the dark ocean (>200 m), most of this carbon is refractory DOM. This refractory DOM, largely produced during microbial mineralization of organic matter, includes humic-like substances generated in situ and detectable by fluorescence spectroscopy. Here we show two ubiquitous humic-like fluorophores with turnover times of 435±41 and 610±55 years, which persist significantly longer than the ~350 years that the dark global ocean takes to renew. In parallel, decay of a tyrosine-like fluorophore with a turnover time of 379±103 years is also detected. We propose the use of DOM fluorescence to study the cycling of resistant DOM that is preserved at centennial timescales and could represent a mechanism of carbon sequestration (humic-like fraction) and the decaying DOM injected into the dark global ocean, where it decreases at centennial timescales (tyrosine-like fraction).

  10. Augury of darkness: the low-mass dark Z' portal

    DOE PAGES

    Alves, Alexandre; Arcadi, Giorgio; Mambrini, Yann; ...

    2017-04-28

    Dirac fermion dark matter models with heavy Z' mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z' resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z' masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z' gauge bosons using themore » CL S method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. In conclusion, we show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.« less

  11. Gravitational detection of a low-mass dark satellite galaxy at cosmological distance.

    PubMed

    Vegetti, S; Lagattuta, D J; McKean, J P; Auger, M W; Fassnacht, C D; Koopmans, L V E

    2012-01-18

    The mass function of dwarf satellite galaxies that are observed around Local Group galaxies differs substantially from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at a redshift of 0.222 was recently found using a method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low-mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a (1.9 ± 0.1) × 10(8) M dark satellite galaxy in the Einstein ring system JVAS B1938+666 (ref. 11) at a redshift of 0.881, where M denotes the solar mass. This satellite galaxy has a mass similar to that of the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be 1.1(+0.6)(-0.4), with an average mass fraction of 3.3(+3.6)(-1.8) per cent, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.

  12. Solar neutrinos as a signal and background in direct-detection experiments searching for sub-GeV dark matter with electron recoils

    NASA Astrophysics Data System (ADS)

    Essig, Rouven; Sholapurkar, Mukul; Yu, Tien-Tien

    2018-05-01

    Direct-detection experiments sensitive to low-energy electron recoils from sub-GeV dark matter interactions will also be sensitive to solar neutrinos via coherent neutrino-nucleus scattering (CNS), since the recoiling nucleus can produce a small ionization signal. Solar neutrinos constitute both an interesting signal in their own right and a potential background to a dark matter search that cannot be controlled or reduced by improved shielding, material purification and handling, or improved detector design. We explore these two possibilities in detail for semiconductor (silicon and germanium) and xenon targets, considering several possibilities for the unmeasured ionization efficiency at low energies. For dark-matter-electron-scattering searches, neutrinos start being an important background for exposures larger than ˜1 - 10 kg -years in silicon and germanium, and for exposures larger than ˜0.1 - 1 kg -year in xenon. For the absorption of bosonic dark matter (dark photons and axion-like particles) by electrons, neutrinos are most relevant for masses below ˜1 keV and again slightly more important in xenon. Treating the neutrinos as a signal, we find that the CNS of 8B neutrinos can be observed with ˜2 σ significance with exposures of ˜2 , 7, and 20 kg-years in xenon, germanium, and silicon, respectively, assuming there are no other backgrounds. We give an example for how this would constrain nonstandard neutrino interactions. Neutrino components at lower energy can only be detected if the ionization efficiency is sufficiently large. In this case, observing pep neutrinos via CNS requires exposures ≳10 - 100 kg -years in silicon or germanium (˜1000 kg -years in xenon), and observing CNO neutrinos would require an order of magnitude more exposure. Only silicon could potentially detect 7Be neutrinos. These measurements would allow for a direct measurement of the electron-neutrino survival probability over a wide energy range.

  13. What the Milky Way's dwarfs tell us about the Galactic Center extended gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Keeley, Ryan E.; Abazajian, Kevork N.; Kwa, Anna; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-05-01

    The Milky Way's Galactic Center harbors a gamma-ray excess that is a candidate signal of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected commensurate emission. In this work we quantify the degree of consistency between these two observations through a joint likelihood analysis. In doing so we incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center extended gamma-ray excess (GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihilation rates and masses expands when including these unknowns. Even so, using two recent determinations of the Milky Way halo's local density leaves the GCE preferred region of single-channel dark matter annihilation models to be in strong tension with annihilation searches in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alleviates this tension. Our joint likelihood analysis allows us to quantify this inconsistency. We provide a set of tools for testing dark matter annihilation models' consistency within this combined data set. As an example, we test a representative inverse Compton sourced self-interacting dark matter model, which is consistent with both the GCE and dwarfs.

  14. Probing the Dark Sector with Dark Matter Bound States

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-01

    A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  15. Viable dark matter via radiative symmetry breaking in a scalar singlet Higgs portal extension of the standard model.

    PubMed

    Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B

    2014-05-02

    We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeV80 GeV detection region of the next generation XENON experiment.

  16. Constraining early and interacting dark energy with gravitational wave standard sirens: the potential of the eLISA mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caprini, Chiara; Tamanini, Nicola, E-mail: chiara.caprini@cea.fr, E-mail: nicola.tamanini@cea.fr

    We perform a forecast analysis of the capability of the eLISA space-based interferometer to constrain models of early and interacting dark energy using gravitational wave standard sirens. We employ simulated catalogues of standard sirens given by merging massive black hole binaries visible by eLISA, with an electromagnetic counterpart detectable by future telescopes. We consider three-arms mission designs with arm length of 1, 2 and 5 million km, 5 years of mission duration and the best-level low frequency noise as recently tested by the LISA Pathfinder. Standard sirens with eLISA give access to an intermediate range of redshift 1 ∼< zmore » ∼< 8, and can therefore provide competitive constraints on models where the onset of the deviation from ΛCDM (i.e. the epoch when early dark energy starts to be non-negligible, or when the interaction with dark matter begins) occurs relatively late, at z ∼< 6. If instead early or interacting dark energy is relevant already in the pre-recombination era, current cosmological probes (especially the cosmic microwave background) are more efficient than eLISA in constraining these models, except possibly in the interacting dark energy model if the energy exchange is proportional to the energy density of dark energy.« less

  17. Status of the scalar singlet dark matter model

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Balázs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Kahlhoefer, Felix; Krislock, Abram; Kvellestad, Anders; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Serra, Nicola; Weniger, Christoph; White, Martin

    2017-08-01

    One of the simplest viable models for dark matter is an additional neutral scalar, stabilised by a Z_2 symmetry. Using the GAMBIT package and combining results from four independent samplers, we present Bayesian and frequentist global fits of this model. We vary the singlet mass and coupling along with 13 nuisance parameters, including nuclear uncertainties relevant for direct detection, the local dark matter density, and selected quark masses and couplings. We include the dark matter relic density measured by Planck, direct searches with LUX, PandaX, SuperCDMS and XENON100, limits on invisible Higgs decays from the Large Hadron Collider, searches for high-energy neutrinos from dark matter annihilation in the Sun with IceCube, and searches for gamma rays from annihilation in dwarf galaxies with the Fermi-LAT. Viable solutions remain at couplings of order unity, for singlet masses between the Higgs mass and about 300 GeV, and at masses above ˜ 1 TeV. Only in the latter case can the scalar singlet constitute all of dark matter. Frequentist analysis shows that the low-mass resonance region, where the singlet is about half the mass of the Higgs, can also account for all of dark matter, and remains viable. However, Bayesian considerations show this region to be rather fine-tuned.

  18. Probing the Dark Sector with Dark Matter Bound States.

    PubMed

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  19. The density of dark matter in the Galactic bulge and implications for indirect detection

    DOE PAGES

    Hooper, Dan

    2016-11-29

    A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less

  20. Diagnostic Sensitivity and Specificity of Dark Adaptometry for Detection of Age-Related Macular Degeneration

    PubMed Central

    Jackson, Gregory R.; Scott, Ingrid U.; Kim, Ivana K.; Quillen, David A.; Iannaccone, Alessandro; Edwards, John G.

    2014-01-01

    Purpose. Difficulty with night vision is a common complaint of patients with age-related macular degeneration (AMD). Consistent with this complaint, dark adaptation (DA) is substantially impaired in these patients. Because of the severity of the deficit, measurement of DA has been suggested as a means for the diagnosis of AMD. Previous methods for measurement of DA were time intensive (>30 minutes), which made them unsuitable for clinical use. This study evaluated a rapid DA test (≤6.5 minutes) for the detection of AMD. Methods. Dark adaptation was measured by using the AdaptDx dark adaptometer in two groups: subjects with normal retinal health and subjects with AMD. Subjects were assigned to their group by clinical examination and grading of fundus photographs. Subjects were classified as having DA consistent with normal retinal health (rod intercept ≤ 6.5 minutes) or having dark adaptation consistent with AMD (rod intercept > 6.5 minutes). Results. The eligible sample for analysis included 21 normal adults and 127 AMD patients. The rapid test was found to have a diagnostic sensitivity of 90.6% (P < 0.001) and specificity of 90.5% (P < 0.027). Thus, abnormal DA was detected in 115 of 127 AMD patients, and normal DA was found in 19 of 21 normal adults. Conclusions. The high diagnostic sensitivity and specificity compared favorably to long-duration research methods for the measurement of DA, and slit lamp biomicroscopy performed by a retina specialist. These results suggest that a rapid DA test is useful for the detection of AMD. PMID:24550363

  1. The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; et al.

    2014-12-09

    It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems ofmore » the DS detectors, designed to detect the residual ionization from such collisions.« less

  2. Asymmetric twin Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of themore » cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.« less

  3. Asymmetric twin Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, Marco, E-mail: mf627@cornell.edu

    2015-11-01

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of themore » cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.« less

  4. Chiral effective theory of dark matter direct detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishara, Fady; Brod, Joachim; Grinstein, Benjamin

    2017-02-01

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces.more » Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.« less

  5. Galaxy motions cause trouble for cosmology

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael

    2018-02-01

    According to the widely accepted dark energy plus cold dark matter (ΛCDM) model, dark matter is responsible for both the growth of cosmological structures and the motions of galaxies relative to the expansion of the universe. The dynamics of small galaxies orbiting larger ones provides a crucial window into this mysterious dark matter, which leaves its gravitational mark throughout the universe but has not yet been detected directly. On page 534 of this issue, Müller et al. (1) describe observations of satellite galaxies around Centaurus A, the largest galaxy system in the vicinity of the Milky Way. The results may lead to either a better understanding of galaxy formation within the ΛCDM model or a push to overthrow its underlying assumptions.

  6. Detection of nitric oxide in the dark cloud L134N

    NASA Technical Reports Server (NTRS)

    Mcgonagle, D.; Irvine, W. M.; Minh, Y. C.; Ziurys, L. M.

    1990-01-01

    The first detection of interstellar nitric oxide (NO) in a cold dark cloud, L134N is reported. Nitric oxide was observed by means of its two 2 Pi 1/2, J = 3/2 - 1/2, rotational transitions at 150.2 and 150.5 GHz, which occur because of Lambda-doubling. The inferred column density for L134N is about 5 x 10 to the 14th/sq cm toward the SO peak in that cloud. This value corresponds to a fractional abundance relative to molecular hydrogen of about 6 x 10 to the -8th and is in good agreement with predictions of quiescent cloud ion-molecule chemistry. NO was not detected toward the dark cloud TMC-1 at an upper limit of 3 x 10 to the -8th or less.

  7. Dark matter annihilations in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gondolo, Paolo

    1994-05-01

    I examine the possibility of detecting high energy γ-rays from non-baryonic dark matter annihilations in the central region of the Large Magellanic Cloud. Present address: LPTHE, Université Paris VII, Tour 24-14, 5 étage, 2 Place Jussieu, 75251 Paris Cédex 05, France;

  8. 76 FR 17064 - Shared Use Path Accessibility Guidelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... industry professionals regarding matters covered in this notice. In particular, the Board invites comments... shared use path surfaces, either light-on-dark or dark-on-light. Size. Detectable warning surfaces shall... information on any additional areas that should be addressed in the guidelines. Regulatory Process Matters The...

  9. Results from the DarkSide-50 Dark Matter Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Alden

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP darkmore » matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion curve in the WIMP mass vs. spin-independent WIMP-nucleon scattering cross section plane. This work was supervised by Hanguo Wang and was completed in collaboration with members of the DarkSide collaboration.« less

  10. Manifestations of Dark matter and variation of the fundamental constants in atomic and astrophysical phenomena

    NASA Astrophysics Data System (ADS)

    Flambaum, Victor

    2016-05-01

    Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].

  11. 3.55 keV line from exciting dark matter without a hidden sector

    DOE PAGES

    Berlin, Asher; DiFranzo, Anthony; Hooper, Dan

    2015-04-24

    In this study, models in which dark matter particles can scatter into a slightly heavier state which promptly decays to the lighter state and a photon (known as eXciting Dark Matter, or XDM) have been shown to be capable of generating the 3.55 keV line observed from galaxy clusters, while suppressing the flux of such a line from smaller halos, including dwarf galaxies. In most of the XDM models discussed in the literature, this up-scattering is mediated by a new light particle, and dark matter annihilations proceed into pairs of this same light state. In these models, the dark matter andmore » the mediator effectively reside within a hidden sector, without sizable couplings to the Standard Model. In this paper, we explore a model of XDM that does not include a hidden sector. Instead, the dark matter both up-scatters and annihilates through the near resonant exchange of an O(10 2) GeV pseudoscalar with large Yukawa couplings to the dark matter and smaller, but non-neglibile, couplings to Standard Model fermions. The dark matter and the mediator are each mixtures of Standard Model singlets and SU(2) W doublets. We identify parameter space in which this model can simultaneously generate the 3.55 keV line and the gamma-ray excess observed from the Galactic center, without conflicting with constraints from colliders, direct detection experiments, or observations of dwarf galaxies.« less

  12. Prospects for indirect dark matter searches with MeV photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartels, Richard; Gaggero, Daniele; Weniger, Christoph, E-mail: r.t.bartels@uva.nl, E-mail: d.gaggero@uva.nl, E-mail: c.weniger@uva.nl

    2017-05-01

    Over the past decade, extensive studies have been undertaken to search for photon signals from dark matter annihilation or decay for dark matter particle masses above ∼1 GeV. However, due to the lacking sensitivity of current experiments at MeV–GeV energies, sometimes dubbed the 'MeV gap', dark matter models with MeV to sub-GeV particle masses have received little attention so far. Various proposed MeV missions (like, e.g., e-ASTROGAM or AMEGO) are aimed at closing this gap in the mid- or long-term future. This, and the absence of clear dark matter signals in the GeV–TeV range, makes it relevant to carefully reconsidermore » the expected experimental instrumental sensitivities in this mass range. The most common two-body annihilation channels for sub-GeV dark matter are to neutrinos, electrons, pions or directly to photons. Among these, only the electron channel has been extensively studied, and almost exclusively in the context of the 511 keV line. In this work, we study the prospects for detecting MeV dark matter annihilation in general in future MeV missions, using e-ASTROGAM as reference, and focusing on dark matter masses in the range 1 MeV–3 GeV. In the case of leptonic annihilation, we emphasise the importance of the often overlooked bremsstrahlung and in-flight annihilation spectral features, which in many cases provide the dominant gamma-ray signal in this regime.« less

  13. Dark matter haloes: a multistream view

    NASA Astrophysics Data System (ADS)

    Ramachandra, Nesar S.; Shandarin, Sergei F.

    2017-09-01

    Mysterious dark matter constitutes about 85 per cent of all masses in the Universe. Clustering of dark matter plays a dominant role in the formation of all observed structures on scales from a fraction to a few hundreds of Mega-parsecs. Galaxies play a role of lights illuminating these structures so they can be observed. The observations in the last several decades have unveiled opulent geometry of these structures currently known as the cosmic web. Haloes are the highest concentrations of dark matter and host luminous galaxies. Currently the most accurate modelling of dark matter haloes is achieved in cosmological N-body simulations. Identifying the haloes from the distribution of particles in N-body simulations is one of the problems attracting both considerable interest and efforts. We propose a novel framework for detecting potential dark matter haloes using the field unique for dark matter-multistream field. The multistream field emerges at the non-linear stage of the growth of perturbations because the dark matter is collisionless. Counting the number of velocity streams in gravitational collapses supplements our knowledge of spatial clustering. We assume that the virialized haloes have convex boundaries. Closed and convex regions of the multistream field are hence isolated by imposing a positivity condition on all three eigenvalues of the Hessian estimated on the smoothed multistream field. In a single-scale analysis of high multistream field resolution and low softening length, the halo substructures with local multistream maxima are isolated as individual halo sites.

  14. An FPGA-based data acquisition system for directional dark matter detection

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Nicoloff, Catherine; Sanaullah, Ahmed; Sridhar, Arvind; Herbordt, Martin; Battat, James; Battat Lab at Wellesley College Team; CAAD Lab at Boston University Team

    2017-01-01

    Directional dark matter detection is a powerful tool in the search for dark matter. Low-pressure gas TPCs are commonly used for directional detection, and dark-matter-induced recoils are mm long. These tracks can be reconstructed by micropatterned readouts. Because large detector volumes are needed, a cost-effective data acquisition system capable of scaling to large channel counts (105 or 106) is required. The Directional Recoil Identification From Tracks (DRIFT) collaboration has pioneered the use of TPCs for directional detection. We employ a negative ion gas with drift speed comparable to the electron drift speed in liquid argon (LAr). We aim to use electronics developed for million-channel readouts in large LAr neutrino detectors. We have built a prototype Micromegas-based directional detector with 103 channels. A FPGA-based back-end system (BE) receives a 12 Gbps data stream from eight ASIC-based front-end boards (FE), each with 128 detector channels. The BE buffers 3 μs of pretrigger data for all channels in DRAM, and streams triggered data to a host PC. We will describe the system architecture and present preliminary measurements from the DAQ. We acknowledge the support of the Research Corporation for Science Advancement, the NSF and the Massachusetts Space Grant Consortium.

  15. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jonathan H., E-mail: jonathan.h.m.davis@gmail.com

    2015-03-01

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable throughmore » a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.« less

  16. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Jonathan H.

    2015-03-09

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable throughmore » a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments.« less

  17. Last electroweak WIMP standing: pseudo-dirac higgsino status and compact stars as future probes

    NASA Astrophysics Data System (ADS)

    Krall, Rebecca; Reece, Matthew

    2018-04-01

    Electroweak WIMPs are under intense scrutiny from direct detection, indirect detection, and collider experiments. Nonetheless the pure (pseudo-Dirac) higgsino, one of the simplest such WIMPs, remains elusive. We present an up-to-date assessment of current experimental constraints on neutralino dark matter. The strongest bound on pure higgsino dark matter currently may arise from AMS-02 measurements of antiprotons, though the interpretation of these results has sizable uncertainty. We discuss whether future astrophysical observations could offer novel ways to test higgsino dark matter, especially in the challenging regime with order MeV mass splitting between the two neutral higgsinos. We find that heating of white dwarfs by annihilation of higgsinos captured via inelastic scattering could be one useful probe, although it will require challenging observations of distant dwarf galaxies or a convincing case to be made for substantial dark matter content in ω Cen, a globular cluster that may be a remnant of a disrupted dwarf galaxy. White dwarfs and neutron stars give a target for astronomical observations that could eventually help to close the last, most difficult corner of parameter space for dark matter with weak interactions. Supported by NSF (PHY-1415548) and NASA ATP (NNX16AI12G)

  18. GW170817 falsifies dark matter emulators

    NASA Astrophysics Data System (ADS)

    Boran, S.; Desai, S.; Kahya, E. O.; Woodard, R. P.

    2018-02-01

    On August 17, 2017 the LIGO interferometers detected the gravitational wave (GW) signal (GW170817) from the coalescence of binary neutron stars. This signal was also simultaneously seen throughout the electromagnetic (EM) spectrum from radio waves to gamma rays. We point out that this simultaneous detection of GW and EM signals rules out a class of modified gravity theories, termed "dark matter emulators," which dispense with the need for dark matter by making ordinary matter couple to a different metric from that of GW. We discuss other kinds of modified gravity theories which dispense with the need for dark matter and are still viable. This simultaneous observation also provides the first observational test of Einstein's weak equivalence principle (WEP) between gravitons and photons. We estimate the Shapiro time delay due to the gravitational potential of the total dark matter distribution along the line of sight (complementary to the calculation by Abbott et al. [Astrophys. J. Lett. 848, L13 (2017)], 10.3847/2041-8213/aa920c) to be about 400 days. Using this estimate for the Shapiro delay and from the time difference of 1.7 seconds between the GW signal and gamma rays, we can constrain violations of the WEP using the parametrized post-Newtonian parameter γ , and it is given by |γGW-γEM|<9.8 ×10-8.

  19. Global constraints on vector-like WIMP effective interactions

    DOE PAGES

    Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique; ...

    2016-04-07

    In this work we combine information from relic abundance, direct detection, cosmic microwave background, positron fraction, gamma rays, and colliders to explore the existing constraints on couplings between Dark Matter and Standard Model constituents when no underlying model or correlation is assumed. For definiteness, we include independent vector-like effective interactions for each Standard Model fermion. Our results show that low Dark Matter masses below 20 GeV are disfavoured at the 3 σ  level with respect to higher masses, due to the tension between the relic abundance requirement and upper constraints on the Dark Matter couplings. Lastly, large couplings are typically onlymore » allowed in combinations which avoid effective couplings to the nuclei used in direct detection experiments.« less

  20. Light weakly interacting massive particles

    NASA Astrophysics Data System (ADS)

    Gelmini, Graciela B.

    2017-08-01

    Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.

  1. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.

    This paper describes the design, fabrication, commissioning and use of a CALibration source Insertion System (CALIS) in the DarkSide-50 direct dark matter search experiment. CALIS deploys radioactive sources into the liquid scintillator veto to characterize the detector response and detection efficiency of the DarkSide-50 Liquid Argon Time Projection Chamber, and the surrounding 30 t organic liquid scintillator neutron veto. It was commissioned in September 2014 and has been used successfully in several gamma and neutron source campaigns since then. A description of the hardware and an excerpt of calibration analysis results are given below.

  3. Dips in the diffuse supernova neutrino background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman; Palomares-Ruiz, Sergio, E-mail: yasaman@theory.ipm.ac.ir, E-mail: Sergio.Palomares.Ruiz@ific.uv.es

    2014-06-01

    Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.

  4. SQUID-based microwave cavity search for dark-matter axions.

    PubMed

    Asztalos, S J; Carosi, G; Hagmann, C; Kinion, D; van Bibber, K; Hotz, M; Rosenberg, L J; Rybka, G; Hoskins, J; Hwang, J; Sikivie, P; Tanner, D B; Bradley, R; Clarke, J

    2010-01-29

    Axions in the microeV mass range are a plausible cold dark-matter candidate and may be detected by their conversion into microwave photons in a resonant cavity immersed in a static magnetic field. We report the first result from such an axion search using a superconducting first-stage amplifier (SQUID) replacing a conventional GaAs field-effect transistor amplifier. This experiment excludes KSVZ dark-matter axions with masses between 3.3 microeV and 3.53 microeV and sets the stage for a definitive axion search utilizing near quantum-limited SQUID amplifiers.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Alan E.

    Here, proposed dark matter detectors with eV-scale sensitivities will detect a large background of atomic (nuclear) recoils from coherent photon scattering of MeV-scale photons. This background climbs steeply below ~10 eV, far exceeding the declining rate of low-energy Compton recoils. The upcoming generation of dark matter detectors will not be limited by this background, but further development of eV-scale and sub-eV detectors will require strategies, including the use of low nuclear mass target materials, to maximize dark matter sensitivity while minimizing the coherent photon scattering background.

  6. Hunting the Dark Matter with DEAP/CLEAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giuliani, F.

    2010-02-10

    The potential of the DEAP/CLEAN program for direct Dark Matter detection to test various dark matter models is illustrated. The scintillation pulse of a noble liquid like Argon or Neon has two well distinguished time constants allowing a very reliable correlation between pulse shape and type of event. This pulse shape discrimination already provides the power of rejecting a background10{sup 8}-10{sup 9} times larger than the signal. MiniCLEAN, a 500 kg LAr detector, is currently under construction, and a 3.6 ton detector, DEAP-3600, under development.

  7. Quantitative nanoimmunosensor based on dark-field illumination with enhanced sensitivity and on-off switching using scattering signals.

    PubMed

    Lee, Seungah; Nan, He; Yu, Hyunung; Kang, Seong Ho

    2016-05-15

    A nanoimmunosensor based on wavelength-dependent dark-field illumination with enhanced sensitivity was used to detect a disease-related protein molecule at zeptomolar (zM) concentrations. The assay platform of 100-nm gold nanospots could be selectively acquired using the wavelength-dependence of enhanced scattering signals from antibody-conjugated plasmonic silver nanoparticles (NPs) with on-off switching using optical filters. Detection of human thyroid-stimulating hormone (hTSH) at a sensitivity of 100 zM, which corresponds to 1-2 molecules per gold spot, was possible within a linear range of 100 zM-100 fM (R=0.9968). A significantly enhanced sensitivity (~4-fold) was achieved with enhanced dark-field illumination compared to using a total internal reflection fluorescence immunosensor. Immunoreactions were confirmed via optical axial-slicing based on the spectral characteristics of two plasmonic NPs. This method of using wavelength-dependent dark-field illumination had an enhanced sensitivity and a wide, linear dynamic range of 100 zM-100 fM, and was an effective tool for quantitatively detecting a single molecule on a nanobiochip for molecular diagnostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Self-interacting inelastic dark matter: a viable solution to the small scale structure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au

    2017-03-01

    Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less

  9. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert

    2016-11-01

    In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, andmore » test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (∼10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.« less

  10. Dark adaptation in relation to choroidal thickness in healthy young subjects: a cross-sectional, observational study.

    PubMed

    Munch, Inger Christine; Altuntas, Cigdem; Li, Xiao Qiang; Jackson, Gregory R; Klefter, Oliver Niels; Larsen, Michael

    2016-07-11

    Dark adaptation is an energy-requiring process in the outer retina nourished by the profusely perfused choroid. We hypothesized that variations in choroidal thickness might affect the rate of dark adaptation. Cross-sectional, observational study of 42 healthy university students (mean age 25 ± 2.0 years, 29 % men) who were examined using an abbreviated automated dark adaptometry protocol with a 2° diameter stimulus centered 5° above the point of fixation. The early, linear part of the rod-mediated dark adaptation curve was analyzed to extract the time required to reach a sensitivity of 5.0 × 10(-3) cd/m2 (time to rod intercept) and the slope (rod adaptation rate). The choroid was imaged using enhanced-depth imaging spectral-domain optical coherence tomography (EDI-OCT). The time to the rod intercept was 7.3 ± 0.94 (range 5.1 - 10.2) min. Choroidal thickness 2.5° above the fovea was 348 ± 104 (range 153-534) μm. There was no significant correlation between any of the two measures of rod-mediated dark adaptation and choroidal thickness (time to rod intercept versus choroidal thickness 0.072 (CI95 -0.23 to 0.38) min/100 μm, P = 0.64, adjusted for age and sex). There was no association between the time-to-rod-intercept or the dark adaptation rate and axial length, refraction, gender or age. Choroidal thickness, refraction and ocular axial length had no detectable effect on rod-mediated dark adaptation in healthy young subjects. Our results do not support that variations in dark adaptation can be attributed to variations in choroidal thickness.

  11. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE PAGES

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  12. The LZ Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Gehman, Victor M.

    2012-10-01

    One of the most important open questions in physics is the fundamental nature of the dark matter. The direct detection of a dark matter particle in a terrestrial experiment would dramatically impact cosmology and particle physics, and would open a window on a new type of observational astrophysics. The LZ collaboration has proposed to construct a 7-ton liquid xenon dark matter detector at the 4850 level of the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector will be based upon the well-established liquid xenon TPC technology, and will capitalize upon the existing infrastructure of the LUX experiment to allow for a rapid turn-around after the conclusion of LUX data taking. With a ducial mass of more than 5 tons, the experiment will probe WIMP-nucleon cross sections down to 2x10-48 cm^2 in 3 years of operation. This represents an improvement of approximately 5000 times over current results, covering a substantial range of theoretically-motivated particle dark matter candidates.

  13. Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.

    PubMed

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver

    2013-08-02

    We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.

  14. DarkSide-50: A WIMP Search with a Two-phase Argon TPC

    NASA Astrophysics Data System (ADS)

    Meyers, P. D.; Agnes, P.; Alton, D.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; DAngelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B.; Herner, K.; Humble, P.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Joliet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Perfetto, F.; Pocar, A.; Pordes, S.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, R.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zuzel, G.

    DarkSide-50 is a two phase argon TPC for direct dark matter detection which is installed at the Gran Sasso underground laboratory, Italy. DarkSide-50 has a 50-kg active volume and will make use of underground argon low in 39Ar. The TPC is installed inside an active neutron veto made with boron-loaded high radiopurity liquid scintillator. The neutron veto is installed inside a 1000 m3 water Cherenkov muon veto. The DarkSide-50 TPC and cryostat are assembled in two radon-free clean rooms to reduce radioactive contaminants. The overall design aims for a background free exposure after selection cuts are applied. The expected sensitivity for WIMP-nucleon cross section is of the order of 10-45 cm2 for WIMP masses around 100 GeV/c2. The commissioning and performance of the detector are described. Details of the low-radioactivity underground argon and other unique features of the projects are reported.

  15. Electroweak Kaluza-Klein dark matter

    DOE PAGES

    Flacke, Thomas; Kang, Dong Woo; Kong, Kyoungchul; ...

    2017-04-07

    In models with universal extra dimensions (UED), the lightest Kaluza-Klein excitation of neutral electroweak gauge bosons is a stable, weakly interacting massive particle and thus is a candidate for dark matter thanks to Kaluza-Klein parity. We examine concrete model realizations of such dark matter in the context of non-minimal UED extensions. The boundary localized kinetic terms for the electroweak gauge bosons lead to a non-trivial mixing among the first Kaluza-Klein excitations of themore » $${\\rm SU}(2)_W$$ and $${\\rm U}(1)_Y$$ gauge bosons and the resultant low energy phenomenology is rich. We investigate implications of various experiments including low energy electroweak precision measurements, direct and indirect detection of dark matter particles and direct collider searches at the LHC. Furthermore, we show that the electroweak Kaluza-Klein dark matter can be as heavy as 2.4 TeV, which is significantly higher than $1.3$ TeV as is indicated as an upper bound in the minimal UED model.« less

  16. Lectures on Dark Matter Physics

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

  17. DAMA confronts null searches in the effective theory of dark matter-nucleon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catena, Riccardo; Ibarra, Alejandro; Wild, Sebastian

    2016-05-17

    We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with spin 0 or 1/2 off a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. To this end, we develop a novel semi-analytical approach formore » comparing experimental results in the high-dimensional parameter space of the non-relativistic effective theory. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out of this conclusion.« less

  18. Baryonic Dark Matter: The Results from Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Drake, Andrew J.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Minniti, Dante; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    Baryonic material can exist in several dark forms: ``planets," brown dwarfs, very old degenerate dwarf stars, and neutron stars. (Black holes are frequently added to this list, even though a black hole has no baryon number.) These objects, most of which emit some light but at levels below present day detection thresholds, are collectively known as Machos. Several groups have exploited the gravitational microlens signature to search for Machos in the dark halo of the Milky Way. Over 200 microlensing events have been reported (most by the MACHO Project, which uses the Great Melbourne Telescope near this conference site), of which about 20 are toward the Magellanic Clouds. The most straightforward interpretation of the results is that Machos make up between 20% and 100% of the dark matter in the halo, and that these objects weigh about 0.5 msun. Objects of substellar mass do not comprise much of the dark matter. Many alternative interpretations of these results have been proposed. We will discuss strategies for resolving the differences among these competing explanations.

  19. Electromagnetic waves propagating in the string axiverse

    NASA Astrophysics Data System (ADS)

    Yoshida, Daiske; Soda, Jiro

    2018-04-01

    It is widely believed that axions are ubiquitous in string theory and could be dark matter. The peculiar features of axion dark matter are coherent oscillations and a coupling to the electromagnetic field through the Chern-Simons term. In this letter, we study the consequences of these two features of axions with mass in the range 10^{-13} eV to 103 eV. First, we study the parametric resonance of electromagnetic waves induced by the coherent oscillation of the axion. Since the resonance frequency is determined by the mass of the axion dark matter, if we detect this signal, we can get information on the mass of the axion dark matter. Second, we study the velocity of light in the background of the axion dark matter. In the presence of the Chern-Simons term, the dispersion relation is modified and the speed of light will oscillate in time. It turns out that the change in the speed of light would be difficult to observe. We argue that future radio wave observations of the resonance can give rise to a stronger constraint on the coupling constant and/or the density of the axion dark matter.

  20. Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario

    DOE PAGES

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia; ...

    2017-10-24

    The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less

  1. Results from the first use of low radioactivity argon in a dark matter search

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  2. Results from the first use of low radioactivity argon in a dark matter search

    DOE PAGES

    Agnes, P.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 10 3 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data,more » accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10 -44 cm 2 (8.6 x 10 -44 cm 2, 8.0 x 10 -43 cm 2) for a WIMP mass of 100 GeV/c 2 (1 TeV/c 2 , 10 TeV/c 2).« less

  3. Thermal dark matter through the Dirac neutrino portal

    NASA Astrophysics Data System (ADS)

    Batell, Brian; Han, Tao; McKeen, David; Haghi, Barmak Shams Es

    2018-04-01

    We study a simple model of thermal dark matter annihilating to standard model neutrinos via the neutrino portal. A (pseudo-)Dirac sterile neutrino serves as a mediator between the visible and the dark sectors, while an approximate lepton number symmetry allows for a large neutrino Yukawa coupling and, in turn, efficient dark matter annihilation. The dark sector consists of two particles, a Dirac fermion and complex scalar, charged under a symmetry that ensures the stability of the dark matter. A generic prediction of the model is a sterile neutrino with a large active-sterile mixing angle that decays primarily invisibly. We derive existing constraints and future projections from direct detection experiments, colliders, rare meson and tau decays, electroweak precision tests, and small scale structure observations. Along with these phenomenological tests, we investigate the consequences of perturbativity and scalar mass fine tuning on the model parameter space. A simple, conservative scheme to confront the various tests with the thermal relic target is outlined, and we demonstrate that much of the cosmologically-motivated parameter space is already constrained. We also identify new probes of this scenario such as multibody kaon decays and Drell-Yan production of W bosons at the LHC.

  4. Dark Matter and the elusive Z' in a dynamical Inverse Seesaw scenario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Romeri, Valentina; Fernandez-Martinez, Enrique; Gehrlein, Julia

    The Inverse Seesaw naturally explains the smallness of neutrino masses via an approximate $B-L$ symmetry broken only by a correspondingly small parameter. In this work the possible dynamical generation of the Inverse Seesaw neutrino mass mechanism from the spontaneous breaking of a gauged $U(1)$ $B-L$ symmetry is investigated. Interestingly, the Inverse Seesaw pattern requires a chiral content such that anomaly cancellation predicts the existence of extra fermions belonging to a dark sector with large, non-trivial, charges under the $U(1)$ $B-L$. We investigate the phenomenology associated to these new states and find that one of them is a viable dark mattermore » candidate with mass around the TeV scale, whose interaction with the Standard Model is mediated by the $Z'$ boson associated to the gauged $U(1)$ $B-L$ symmetry. Given the large charges required for anomaly cancellation in the dark sector, the $B-L$ $Z'$ interacts preferentially with this dark sector rather than with the Standard Model. This suppresses the rate at direct detection searches and thus alleviates the constraints on $Z'$-mediated dark matter relic abundance. Furthermore, the collider phenomenology of this elusive $Z'$ is also discussed.« less

  5. A study of nuclear recoil backgrounds in dark matter detectors

    NASA Astrophysics Data System (ADS)

    Westerdale, Shawn S.

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the 1-1000 GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering off of nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating (alpha, n) yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development that informed the design of the DarkSide-50 boron-loaded liquid scintillator neutron veto. We describe the specific implementation of this veto system in DarkSide-50, including a description of its performance, and show that it can reject neutrons with a high enough efficiency to allow DarkSide-50 to run background-free for three years.

  6. A possible signature of annihilating dark matter

    NASA Astrophysics Data System (ADS)

    Chan, Man Ho

    2018-02-01

    In this article, we report a new signature of dark matter annihilation based on the radio continuum data of NGC 1569 galaxy detected in the past few decades. After eliminating the thermal contribution of the radio signal, an abrupt change in the spectral index is shown in the radio spectrum. Previously, this signature was interpreted as an evidence of convective outflow of cosmic ray. However, we show that the cosmic ray contribution is not enough to account for the observed radio flux. We then discover that if dark matter annihilates via the 4-e channel with the thermal relic cross-section, the electrons and positrons produced would emit a strong radio flux which can provide an excellent agreement with the observed signature. The best-fitting dark matter mass is 25 GeV.

  7. Hybrid anomaly and gravity mediation for electroweak supersymmetry

    NASA Astrophysics Data System (ADS)

    Zhu, Bin; Ding, Ran; Li, Tianjun

    2018-03-01

    In this paper, we propose a hybrid mediation and hybrid supersymmetry breaking. In particular, the RG-invariant anomaly mediation is considered. Together with additional gravity mediation, the slepton tachyon problem of anomaly mediation is solved automatically. The special properties are that all color sparticles masses fall into several TeV regions due to the large m0 and m32 which are well beyond the scope of current LHC Run II limits. Unlike the gauge mediation, the dark matter candidate is still the lightest neutralino and the correct dark matter relic density can be realized within the framework of mixed axion-Wino dark matter. Due to the existence of multi-component axion-Wino dark matter, the direct detection cross-section is suppressed to evade the tightest LUX, PandaX bound.

  8. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  9. Probing leptophilic dark sectors with hadronic processes

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-08-01

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.

  10. Probing leptophilic dark sectors with hadronic processes

    DOE PAGES

    D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo

    2017-05-29

    We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton–antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. Wemore » use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.« less

  11. New Models and Methods for the Electroweak Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, Linda

    2017-09-26

    This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less

  12. Regulation of melanopsin expression.

    PubMed

    Hannibal, Jens

    2006-01-01

    Circadian rhythms in mammals are adjusted daily to the environmental day/night cycle by photic input via the retinohypothalamic tract (RHT). Retinal ganglion cells (RGCs) of the RHT constitute a separate light-detecting system in the mammalian retina used for irradiance detection and for transmission to the circadian system and other non-imaging forming processes in the brain. The RGCs of the RHT are intrinsically photosensitive due to the expression of melanopsin, an opsin-like photopigment. This notion is based on anatomical and functional data and on studies of mice lacking melanopsin. Furthermore, heterologous expression of melanopsin in non-neuronal mammalian cell lines was found sufficient to render these cells photosensitive. Even though solid evidence regarding the function of melanopsin exists, little is known about the regulation of melanopsin gene expression. Studies in albino Wistar rats showed that the expression of melanopsin is diurnal at both the mRNA and protein levels. The diurnal changes in melanopsin expression seem, however, to be overridden by prolonged exposure to light or darkness. Significant increase in melanopsin expression was observed from the first day in constant darkness and the expression continued to increase during prolonged exposure in constant darkness. Prolonged exposure to constant light, on the other hand, decreased melanopsin expression to an almost undetectable level after 5 days of constant light. The induction of melanopsin by darkness was even more pronounced if darkness was preceded by light suppression for 5 days. These observations show that dual mechanisms regulate melanopsin gene expression and that the intrinsic light-responsive RGCs in the albino Wistar rat adapt their expression of melanopsin to environmental light and darkness.

  13. One-step surface doping of organic nanofibers to achieve high dark conductivity and chemiresistor sensing of amines.

    PubMed

    Huang, Helin; Gross, Dustin E; Yang, Xiaomei; Moore, Jeffrey S; Zang, Ling

    2013-08-28

    High dark electrical conductivity was obtained for a p-type organic nanofibril material simply through a one-step surface doping. The nanofibril composite thus fabricated has been proven robust under ambient conditions. The high conductivity, combined with the intrinsic large surface area of the nanofibers, enables development of chemiresistor sensors for trace vapor detection of amines, with detection limit down to sub-parts per billion range.

  14. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    DOE PAGES

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.; ...

    2017-08-23

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  15. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    NASA Astrophysics Data System (ADS)

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.; White, Martin; Williams, Anthony G.

    2017-08-01

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. We discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  16. Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beniwal, Ankit; Lewicki, Marek; Wells, James D.

    We analyse a simple extension of the SM with just an additional scalar singlet coupled to the Higgs boson. Here, we discuss the possible probes for electroweak baryogenesis in this model including collider searches, gravitational wave and direct dark matter detection signals. We show that a large portion of the model parameter space exists where the observation of gravitational waves would allow detection while the indirect collider searches would not.

  17. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  18. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths

    PubMed Central

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.

    2015-01-01

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283

  19. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  20. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.

    PubMed

    Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P

    2015-06-10

    Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.

Top