NASA Astrophysics Data System (ADS)
Asrar, Ghassem; Dozier, Jeff
Market: Students and researchers in geophysics, astronomy, and astrophysics. This book reports on the timely Earth Observing System (EOS) Program's wide range of scientific investigations, observational capabilities, vast data and information system, and educational activities. Because its primary goal is to determine the extent, causes, and regional consequences of global climate change, this program provides the scientific knowledge needed by world leaders to formulate sound and equitable environmental policies.
G-corrected holographic dark energy model
NASA Astrophysics Data System (ADS)
Malekjani, M.; Honari-Jafarpour, M.
2013-08-01
Here we investigate the holographic dark energy model in the framework of FRW cosmology where the Newtonian gravitational constant, G, is varying with cosmic time. Using the complementary astronomical data which support the time dependency of G, the evolutionary treatment of EoS parameter and energy density of dark energy model are calculated in the presence of time variation of G. It has been shown that in this case, the phantom regime can be achieved at the present time. We also calculate the evolution of G-corrected deceleration parameter for holographic dark energy model and show that the dependency of G on the comic time can influence on the transition epoch from decelerated expansion to the accelerated phase. Finally we perform the statefinder analysis for G-corrected holographic model and show that this model has a shorter distance from the observational point in s- r plane compare with original holographic dark energy model.
Inflation, Dark Matter, Dark Energy
NASA Astrophysics Data System (ADS)
Kolb, Edward W.
2005-06-01
Remarkable 20th-century cosmological discoveries and theoretical ideas led to the development of the present cosmological "standard model." In this lecture I will focus on one of the more recent ideas that may now be regarded as part of the framework of the standard big-bang model; namely, that structure in the universe results from the growth of small seed density fluctuations produced during the inflationary universe. In order to complete this picture, I will also discuss the idea that the present mass density is dominated by dark matter and that there is now a preponderance of dark energy.
Analysis of dark matter and dark energy
NASA Astrophysics Data System (ADS)
Yongquan, Han
2016-05-01
As the law of unity of opposites of the Philosophy tells us, the bright material exists, the dark matter also exists. Dark matter and dark energy should allow the law of unity of opposites. The Common attributes of the matter is radiation, then common attributes of dark matter must be absorb radiation. Only the rotation speed is lower than the speed of light radiation, can the matter radiate, since the speed of the matter is lower than the speed of light, so the matter is radiate; The rotate speed of the dark matter is faster than the light , so the dark matter doesn't radiate, it absorbs radiation. The energy that the dark matter absorb radiation produced (affect the measurement of time and space distribution of variations) is dark energy, so the dark matter produce dark energy only when it absorbs radiation. Dark matter does not radiate, two dark matters does not exist inevitably forces, and also no dark energy. Called the space-time ripples, the gravitational wave is bent radiation, radiation particles should be graviton, graviton is mainly refers to the radiation particles whose wavelength is small. Dark matter, dark energy also confirms the existence of the law of symmetry.
Sapone, Domenico; Kunz, Martin
2009-10-15
Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called 'dark energy'. We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.
NASA Astrophysics Data System (ADS)
Domínguez, I.; Bravo, E.; Piersanti, L.; Straniero, O.; Tornambé, A.
2009-08-01
A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scale structure, etc.) agree that our Universe is made of about 70% of dark energy, 25% of cold dark matter and only 5% of known, familiar matter. This Universe is geometrically flat, older than previously thought, its destiny is no longer linked to its geometry but to dark energy, and we ignore about 95% of its components. To understand the nature of dark energy is probably the most fundamental problem in physics today. Current astronomical observations are compatible with dark energy being the vacuum energy. Supernovae have played a fundamental role in modern Cosmology and it is expected that they will contribute to unveil the dark energy. In order to do that it is mandatory to understand the limits of supernovae as cosmological distance indicators, improving their precision by a factor 10.
Professor Sean Carroll
2016-07-12
General relativity is inconsistent with cosmological observations unless we invoke components of dark matter and dark energy that dominate the universe. While it seems likely that these exotic substances really do exist, the alternative is worth considering: that Einstein's general relativity breaks down on cosmological scales. I will discuss models of modified gravity, tests in the solar system and elsewhere, and consequences for cosmology.
Coupling dark energy to dark matter inhomogeneities
NASA Astrophysics Data System (ADS)
Marra, Valerio
2016-09-01
We propose that dark energy in the form of a scalar field could effectively couple to dark matter inhomogeneities. Through this coupling energy could be transferred to/from the scalar field, which could possibly enter an accelerated regime. Though phenomenological, this scenario is interesting as it provides a natural trigger for the onset of the acceleration of the universe, since dark energy starts driving the expansion of the universe when matter inhomogeneities become sufficiently strong. Here we study a possible realization of this idea by coupling dark energy to dark matter via the linear growth function of matter perturbations. The numerical results show that it is indeed possible to obtain a viable cosmology with the expected series of radiation, matter and dark-energy dominated eras. In particular, the current density of dark energy is given by the value of the coupling parameters rather than by very special initial conditions for the scalar field. In other words, this model-unlike standard models of cosmic late acceleration-does not suffer from the so-called "coincidence problem" and its related fine tuning of initial conditions.
Lincoln, Don
2014-04-15
Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.
Dutta, Sourish; Maor, Irit
2007-03-15
We investigate the clustering properties of a dynamical dark energy component. In a cosmic mix of a pressureless fluid and a light scalar field, we follow the linear evolution of spherical matter perturbations. We find that the scalar field tends to form underdensities in response to the gravitationally collapsing matter. We thoroughly investigate these voids for a variety of initial conditions, explain the physics behind their formation, and consider possible observational implications. Detection of dark energy voids will clearly rule out the cosmological constant as the main source of the present acceleration.
Lincoln, Don
2016-07-12
Scientists were shocked in 1998 when the expansion of the universe wasn't slowing down as expected by our best understanding of gravity at the time; the expansion was speeding up! That observation is just mind blowing, and yet it is true. In order to explain the data, physicists had to resurrect an abandoned idea of Einstein's now called dark energy. In this video, Fermilab's Dr. Don Lincoln tells us a little about the observations that led to the hypothesis of dark energy and what is the status of current research on the subject.
Urban, Federico R.; Zhitnitsky, Ariel R.
2010-08-30
We review two mechanisms rooted in the infrared sector of QCD which, by exploiting the properties of the QCD ghost, as introduced by Veneziano, provide new insight on the cosmological dark energy problem, first, in the form of a Casimir-like energy from quantising QCD in a box, and second, in the form of additional, time-dependent, vacuum energy density in an expanding universe. Based on [1, 2].
Wechsler, Risa
2007-10-30
What is the Universe made of? This question has been asked as long as humans have been questioning, and astronomers and physicists are finally converging on an answer. The picture which has emerged from numerous complementary observations over the past decade is a surprising one: most of the matter in the Universe isn't visible, and most of the Universe isn't even made of matter. In this talk, I will explain what the rest of this stuff, known as 'Dark Energy' is, how it is related to the so-called 'Dark Matter', how it impacts the evolution of the Universe, and how we can study the dark universe using observations of light from current and future telescopes.
Explosive Products EOS: Adjustment for detonation speed and energy release
Menikoff, Ralph
2014-09-05
Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-01
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales.
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-01
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. PMID:25745164
Dai, D.-C.; Stojkovic, Dejan; Dutta, Sourish
2009-09-15
We examine a dark energy model where a scalar unparticle degree of freedom plays the role of quintessence. In particular, we study a model where the unparticle degree of freedom has a standard kinetic term and a simple mass potential, the evolution is slowly rolling and the field value is of the order of the unparticle energy scale ({lambda}{sub u}). We study how the evolution of w depends on the parameters B (a function of unparticle scaling dimension d{sub u}), the initial value of the field {phi}{sub i} (or equivalently, {lambda}{sub u}) and the present matter density {omega}{sub m0}. We use observational data from type Ia supernovae, baryon acoustic oscillations and the cosmic microwave background to constrain the model parameters and find that these models are not ruled out by the observational data. From a theoretical point of view, unparticle dark energy model is very attractive, since unparticles (being bound states of fundamental fermions) are protected from radiative corrections. Further, coupling of unparticles to the standard model fields can be arbitrarily suppressed by raising the fundamental energy scale M{sub F}, making the unparticle dark energy model free of most of the problems that plague conventional scalar field quintessence models.
Dark matter superfluid and DBI dark energy
NASA Astrophysics Data System (ADS)
Cai, Rong-Gen; Wang, Shao-Jiang
2016-01-01
It was shown recently that, without jeopardizing the success of the Λ cold dark matter model on cosmic scales, the modified Newtonian dynamics (MOND) can be derived as an emergent phenomenon when axionlike dark matter particles condense into superfluid on the galactic scales. We propose in this paper a Dirac-Born-Infeld (DBI) scalar field conformally coupled to the matter components. To maintain the success of MOND phenomenon of dark matter superfluid on the galactic scales, the fifth force introduced by the DBI scalar should be screened on the galactic scales. It turns out that the screening effect naturally leads to a simple explanation for a longstanding puzzle that the MOND critical acceleration coincides with present Hubble scale. This galactic coincidence problem is solved, provided that the screened DBI scalar also plays the role of dark energy on the cosmic scales.
Gurwich, Ilya
2010-06-23
1 construct a general description for neutrino dark energy models, that do not require exotic particles or strange couplings. With the help of the above, this class of models is reduced to a single function with several constraints. It is shown that these models lead to some concrete predictions that can be verified (or disproved) within the next decade, using results from PLANK, EUCLID and JDEM.
Copeland, Edmund J.
2007-11-20
I briefly review attempts that have been made to model dark energy. These include models of a cosmological constant, dynamical models where a scalar field may be responsible for the observed late time acceleration through to the possibility that we are not fully in control of the gravity sector and the acceleration may be some manifestation of modified gravity. In all cases we will see some degree of fine tuning is required with the current models.
On dark energy isocurvature perturbation
Liu, Jie; Zhang, Xinmin; Li, Mingzhe E-mail: limz@nju.edu.cn
2011-06-01
Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data.
Dark energy and extended dark matter halos
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2012-03-01
The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even
New holographic dark energy model inspired by the DGP braneworld
NASA Astrophysics Data System (ADS)
Sheykhi, A.; Dehghani, M. H.; Ghaffari, S.
2016-11-01
The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann-Robertson-Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, L = H-1, as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).
Flaugher, B.; Diehl, H. T.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Buckley-Geer, E. J.; Honscheid, K.; Abbott, T. M. C.; Bonati, M.; Antonik, M.; Brooks, D.; Ballester, O.; Cardiel-Sas, L.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Boprie, D.; Campa, J.; Castander, F. J.; Collaboration: DES Collaboration; and others
2015-11-15
The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel{sup −1}. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6–9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.
Flaugher, B.
2015-04-11
The Dark Energy Camera is a new imager with a 2.2-degree diameter field of view mounted at the prime focus of the Victor M. Blanco 4-meter telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration, and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five element optical corrector, seven filters, a shutter with a 60 cm aperture, and a CCD focal plane of 250-μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 Mpixel focal plane comprises 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. The CCDs have 15μm x 15μm pixels with a plate scale of 0.263" per pixel. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 seconds with 6-9 electrons readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.
NASA Astrophysics Data System (ADS)
Flaugher, B.; Diehl, H. T.; Honscheid, K.; Abbott, T. M. C.; Alvarez, O.; Angstadt, R.; Annis, J. T.; Antonik, M.; Ballester, O.; Beaufore, L.; Bernstein, G. M.; Bernstein, R. A.; Bigelow, B.; Bonati, M.; Boprie, D.; Brooks, D.; Buckley-Geer, E. J.; Campa, J.; Cardiel-Sas, L.; Castander, F. J.; Castilla, J.; Cease, H.; Cela-Ruiz, J. M.; Chappa, S.; Chi, E.; Cooper, C.; da Costa, L. N.; Dede, E.; Derylo, G.; DePoy, D. L.; de Vicente, J.; Doel, P.; Drlica-Wagner, A.; Eiting, J.; Elliott, A. E.; Emes, J.; Estrada, J.; Fausti Neto, A.; Finley, D. A.; Flores, R.; Frieman, J.; Gerdes, D.; Gladders, M. D.; Gregory, B.; Gutierrez, G. R.; Hao, J.; Holland, S. E.; Holm, S.; Huffman, D.; Jackson, C.; James, D. J.; Jonas, M.; Karcher, A.; Karliner, I.; Kent, S.; Kessler, R.; Kozlovsky, M.; Kron, R. G.; Kubik, D.; Kuehn, K.; Kuhlmann, S.; Kuk, K.; Lahav, O.; Lathrop, A.; Lee, J.; Levi, M. E.; Lewis, P.; Li, T. S.; Mandrichenko, I.; Marshall, J. L.; Martinez, G.; Merritt, K. W.; Miquel, R.; Muñoz, F.; Neilsen, E. H.; Nichol, R. C.; Nord, B.; Ogando, R.; Olsen, J.; Palaio, N.; Patton, K.; Peoples, J.; Plazas, A. A.; Rauch, J.; Reil, K.; Rheault, J.-P.; Roe, N. A.; Rogers, H.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schindler, R. H.; Schmidt, R.; Schmitt, R.; Schubnell, M.; Schultz, K.; Schurter, P.; Scott, L.; Serrano, S.; Shaw, T. M.; Smith, R. C.; Soares-Santos, M.; Stefanik, A.; Stuermer, W.; Suchyta, E.; Sypniewski, A.; Tarle, G.; Thaler, J.; Tighe, R.; Tran, C.; Tucker, D.; Walker, A. R.; Wang, G.; Watson, M.; Weaverdyck, C.; Wester, W.; Woods, R.; Yanny, B.; DES Collaboration
2015-11-01
The Dark Energy Camera is a new imager with a 2.°2 diameter field of view mounted at the prime focus of the Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. The camera was designed and constructed by the Dark Energy Survey Collaboration and meets or exceeds the stringent requirements designed for the wide-field and supernova surveys for which the collaboration uses it. The camera consists of a five-element optical corrector, seven filters, a shutter with a 60 cm aperture, and a charge-coupled device (CCD) focal plane of 250 μm thick fully depleted CCDs cooled inside a vacuum Dewar. The 570 megapixel focal plane comprises 62 2k × 4k CCDs for imaging and 12 2k × 2k CCDs for guiding and focus. The CCDs have 15 μm × 15 μm pixels with a plate scale of 0.″263 pixel-1. A hexapod system provides state-of-the-art focus and alignment capability. The camera is read out in 20 s with 6-9 electron readout noise. This paper provides a technical description of the camera's engineering, construction, installation, and current status.
Linder, Eric V.
2004-04-01
The physical process leading to the acceleration of the expansion of the universe is unknown. It may involve new high energy physics or extensions to gravitation. Calling this generically dark energy, we examine the consistencies and relations between these two approaches, showing that an effective equation of state function w(z) is broadly useful in describing the properties of the dark energy. A variety of cosmological observations can provide important information on the dynamics of dark energy and the future looks bright for constraining dark energy, though both the measurements and the interpretation will be challenging. We also discuss a more direct relation between the spacetime geometry and acceleration, via ''geometric dark energy'' from the Ricci scalar, and superacceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Astrophysical constraints on dark energy
NASA Astrophysics Data System (ADS)
Ho, Chiu Man; Hsu, Stephen D. H.
2016-02-01
Dark energy (i.e., a cosmological constant) leads, in the Newtonian approximation, to a repulsive force which grows linearly with distance and which can have astrophysical consequences. For example, the dark energy force overcomes the gravitational attraction from an isolated object (e.g., dwarf galaxy) of mass 107M⊙ at a distance of 23 kpc. Observable velocities of bound satellites (rotation curves) could be significantly affected, and therefore used to measure or constrain the dark energy density. Here, isolated means that the gravitational effect of large nearby galaxies (specifically, of their dark matter halos) is negligible; examples of isolated dwarf galaxies include Antlia or DDO 190.
Dark matter and dark energy: The critical questions
Michael S. Turner
2002-11-19
Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% {+-} 1% baryons; 29% {+-} 4% cold dark matter; and 66% {+-} 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.
Inflation, dark matter, and dark energy in the string landscape.
Liddle, Andrew R; Ureña-López, L Arturo
2006-10-20
We consider the conditions needed to unify the description of dark matter, dark energy, and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.
Optimizing New Dark Energy Experiments
Tyson, J. Anthony
2013-08-26
Next generation “Stage IV” dark energy experiments under design during this grant, and now under construction, will enable the determination of the properties of dark energy and dark matter to unprecedented precision using multiple complementary probes. The most pressing challenge in these experiments is the characterization and understanding of the systematic errors present within any given experimental configuration and the resulting impact on the accuracy of our constraints on dark energy physics. The DETF and the P5 panel in their reports recommended “Expanded support for ancillary measurements required for the long-term program and for projects that will improve our understanding and reduction of the dominant systematic measurement errors.” Looking forward to the next generation Stage IV experiments we have developed a program to address the most important potential systematic errors within these experiments. Using data from current facilities it has been feasible and timely to undertake a detailed investigation of the systematic errors. In this DOE grant we studied of the source and impact of the dominant systematic effects in dark energy measurements, and developed new analysis tools and techniques to minimize their impact. Progress under this grant is briefly reviewed in this technical report. This work was a necessary precursor to the coming generations of wide-deep probes of the nature of dark energy and dark matter. The research has already had an impact on improving the efficiencies of all Stage III and IV dark energy experiments.
Entropy bounds and dark energy
NASA Astrophysics Data System (ADS)
Hsu, Stephen D. H.
2004-07-01
Entropy bounds render quantum corrections to the cosmological constant Λ finite. Under certain assumptions, the natural value of Λ is of order the observed dark energy density ~10-10 eV4, thereby resolving the cosmological constant problem. We note that the dark energy equation of state in these scenarios is w≡p/ρ=0 over cosmological distances, and is strongly disfavored by observational data. Alternatively, Λ in these scenarios might account for the diffuse dark matter component of the cosmological energy density. Permanent address: Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, OR 97403.
Direct reconstruction of dark energy.
Clarkson, Chris; Zunckel, Caroline
2010-05-28
An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data. PMID:20867085
Dark Energy Rules the Universe
Linder, Eric
2008-01-01
Berkeley Lab theoretical physicist Eric Linder previews his Nov. 24, 2008 talk on the mystery of dark energy. Catch his full lecture here: http://www.osti.gov/sciencecinema/servlets/purl/1007511?format=mp4
Direct reconstruction of dark energy.
Clarkson, Chris; Zunckel, Caroline
2010-05-28
An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data.
Decoupling dark energy from matter
Brax, Philippe; Davis, Anne-Christine; Martin, Jérôme E-mail: c.vandebruck@sheffield.ac.uk E-mail: jmartin@iap.fr
2009-09-01
We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kähler potential, the coupling to matter remains small. However, the cosmological dynamics are largely affected by the shift symmetry breaking operators leading to the appearance of a minimum of the scalar potential such that dark energy behaves like an effective cosmological constant from very early on in the history of the universe.
Dark Energy and Termonuclear Supernovae
NASA Astrophysics Data System (ADS)
Domíngez, I.; Bravo, E.; Piersanti, L.; Tornambé, A.; Straniero, O.; Höflich, P.
2008-12-01
Nowadays it is widely accepted that the current Universe is dominated by dark energy and exotic matter, the so called StandardModel of Cosmoloy or CDM model. All the available data (Thermonuclear Supernovae, Cosmic Microwave Background, Baryon Acoustic Oscillations, Large Scale Structure, etc.) are compatible with a flat Universe made by ~70% of dark energy. Up to now observations agree that dark energy may be the vacuum energy (or cosmological constant) although improvements are needed to constrain further its equation of state. In this context, the cosmic destiny of the Universe is no longer linked to its geometry but to the nature of dark energy; it may be flat and expand forever or collapse. To understand the nature of dark energy is probably the most fundamental problem in physics today; it may open new roads of knowledge and led to unify gravity with the other fundamental interactions in nature. It is expected that astronomical data will continue to provide directions to theorists and experimental physicists. Type Ia supernovae (SNe Ia) have played a fundamental role, showing the acceleration of the expansion rate of the Universe a decade ago, and up to now they are the only astronomical observations that provide a direct evidence of the acceleration. However, in order to determine the source of the dark energy term it is mandatory to improve the precision of supernovae as distance indicators on cosmological scale.
Generalized ghost pilgrim dark energy in F(T,TG) cosmology
NASA Astrophysics Data System (ADS)
Sharif, M.; Nazir, Kanwal
2016-07-01
This paper is devoted to study the generalized ghost pilgrim dark energy (PDE) model in F(T,TG) gravity with flat Friedmann-Robertson-Walker (FRW) universe. In this scenario, we reconstruct F(T,TG) models and evaluate the corresponding equation of state (EoS) parameter for different choices of the scale factors. We assume power-law scale factor, scale factor for unification of two phases, intermediate and bouncing scale factor. We study the behavior of reconstructed models and EoS parameters graphically. It is found that all the reconstructed models show decreasing behavior for PDE parameter u = -2. On the other hand, the EoS parameter indicates transition from dust-like matter to phantom era for all choices of the scale factor except intermediate for which this is less than - 1. We conclude that all the results are in agreement with PDE phenomenon.
QCD nature of dark energy at finite temperature: Cosmological implications
NASA Astrophysics Data System (ADS)
Azizi, K.; Katırcı, N.
2016-05-01
The Veneziano ghost field has been proposed as an alternative source of dark energy, whose energy density is consistent with the cosmological observations. In this model, the energy density of the QCD ghost field is expressed in terms of QCD degrees of freedom at zero temperature. We extend this model to finite temperature to search the model predictions from late time to early universe. We depict the variations of QCD parameters entering the calculations, dark energy density, equation of state, Hubble and deceleration parameters on temperature from zero to a critical temperature. We compare our results with the observations and theoretical predictions existing at different eras. It is found that this model safely defines the universe from quark condensation up to now and its predictions are not in tension with those of the standard cosmology. The EoS parameter of dark energy is dynamical and evolves from -1/3 in the presence of radiation to -1 at late time. The finite temperature ghost dark energy predictions on the Hubble parameter well fit to those of Λ CDM and observations at late time.
NASA Astrophysics Data System (ADS)
Greyber, Howard
2009-11-01
By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum
Anisotropic universe with magnetized dark energy
NASA Astrophysics Data System (ADS)
Goswami, G. K.; Dewangan, R. N.; Yadav, Anil Kumar
2016-04-01
In the present work we have searched the existence of the late time acceleration of the Universe filled with cosmic fluid and uniform magnetic field as source of matter in anisotropic Heckmann-Schucking space-time. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to vacuum energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ωm)0 & (Ω_{Λ})0 are estimated in view of the latest 287 high red shift (0.3 ≤ z ≤1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (Ω_{Λ})0 are 0.2820 & 0.7177 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP [2001-2013], Planck [latest 2015] & BOSS. Various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (Ω_{Λ})0. Also we have estimated that the acceleration would have begun in the past at z = 0.71131 ˜6.2334 Gyrs before from present.
Dark energy and dark matter from primordial QGP
Vaidya, Vaishali Upadhyaya, G. K.
2015-07-31
Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.
Neutron Star EOS and Symmetry Energy in RMF model with three-body couplings
NASA Astrophysics Data System (ADS)
Tsubakihara, Kohsuke; Ohnishi, Akira; Harada, Toru
2014-09-01
Neutron Star EOS(NS-EOS) is one of most interesting topics not only in astrophysics but also in nuclear physics. Symmetry energy in nuclear system and the emergence of hyperons in dense matter are key ingredients to investigate NS-EOS theoretically. We introduced n = 3 three-body couplings to RMF model and examine how valid they are to give reasonable descriptions of nuclear/hypernuclear properties. We have been able to obtain the quantitatively enough fit of both the bulk properties of finite nuclear systems and consistent symmetry energy with the one deduced from recent observations simultaneously. In this presentation, we present the results of hadronic star matter EOS, M-R relation, possibility of appearance of Σ- in NS-EOS providing we fix isovector-vector couplings by fitting Σ- atomic shift data, and so on.
Dynamics of dark energy with a coupling to dark matter
Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth
2008-07-15
Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.
Chapline, G
2005-03-08
Event horizons and closed time-like curves cannot exist in the real world for the simple reason that they are inconsistent with quantum mechanics. Following ideas originated by Robert Laughlin, Pawel Mazur, Emil Mottola, David Santiago, and the speaker it is now possible to describe in some detail what happens physically when one approaches and crosses a region of space-time where classical general relativity predicts there should be an infinite red shift surface. This quantum critical physics provides a new perspective on a variety of enigmatic astrophysical phenomena including supernovae explosions, gamma ray bursts, positron emission, and dark matter.
Dark matter and dark energy: summary and future directions.
Ellis, John
2003-11-15
This paper reviews the progress reported at the Discussion Meeting and advertises some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the Wilkinson Microwave Anisotropy Probe satellite, which were published shortly after this meeting. In the first part of this paper, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequently, particle candidates for dark matter are mentioned, and detection strategies are discussed. Finally, ideas are presented for calculating the amounts of dark matter and dark energy, and possibly relating them to laboratory data.
Binder, Gary A.; /Caltech /SLAC
2010-08-25
In order to make accurate measurements of dark energy, a system is needed to monitor the focus and alignment of the Dark Energy Camera (DECam) to be located on the Blanco 4m Telescope for the upcoming Dark Energy Survey. One new approach under development is to fit out-of-focus star images to a point spread function from which information about the focus and tilt of the camera can be obtained. As a first test of a new algorithm using this idea, simulated star images produced from a model of DECam in the optics software Zemax were fitted. Then, real images from the Mosaic II imager currently installed on the Blanco telescope were used to investigate the algorithm's capabilities. A number of problems with the algorithm were found, and more work is needed to understand its limitations and improve its capabilities so it can reliably predict camera alignment and focus.
How many dark energy parameters?
Linder, Eric V.; Huterer, Dragan
2005-05-16
For exploring the physics behind the accelerating universe a crucial question is how much we can learn about the dynamics through next generation cosmological experiments. For example, in defining the dark energy behavior through an effective equation of state, how many parameters can we realistically expect to tightly constrain? Through both general and specific examples (including new parametrizations and principal component analysis) we argue that the answer is 42 - no, wait, two. Cosmological parameter analyses involving a measure of the equation of state value at some epoch (e.g., w_0) and a measure of the change in equation of state (e.g., w') are therefore realistic in projecting dark energy parameter constraints. More elaborate parametrizations could have some uses (e.g., testing for bias or comparison with model features), but do not lead to accurately measured dark energy parameters.
Unified dark energy-dark matter model with inverse quintessence
Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
Measuring Dark Energy with CHIME
NASA Astrophysics Data System (ADS)
Newburgh, Laura; Chime Collaboration
2015-04-01
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a new radio transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use the 21 cm emission line of neutral hydrogen to map baryon acoustic oscillations between 400-800 MHz across 3/4 of the sky. These measurements will yield sensitive constraints on the dark energy equation of state between redshifts 0.8 - 2.5, a fascinating but poorly probed era corresponding to when dark energy began to impact the expansion history of the Universe. I will describe theCHIME instrument, the analysis challenges, the calibration requirements, and current status.
Observing dark energy with SNAP
Linder, Eric V.; SNAP Collaboration
2004-06-07
The nature of dark energy is of such fundamental importance -- yet such a mystery -- that a dedicated dark energy experiment should be as comprehensive and powerfully incisive as possible. The Supernova/Acceleration Probe robustly controls for a wide variety of systematic uncertainties, employing the Type Ia supernova distance method, with high signal to noise light curves and spectra over the full redshift range from z=0.1-1.7, and the weak gravitational lensing method with an accurate and stable point spread function.
Cahn, Robert N.; de Putter, Roland; Linder, Eric V.
2008-07-08
Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.
NASA Astrophysics Data System (ADS)
Dodelson, Scott; Huterer, Dragan
2015-03-01
Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy.
Dark Energy/matter Unification
NASA Astrophysics Data System (ADS)
Davidson, Aharon; Lederer, Yoav; Karasik, David
2003-03-01
Let our Universe resemble a 4-dim bubble, floating in a flat (or AdS) 5-dim background, but insist on its evolution being governed by the standard Einstein-Hilbert action. The conserved bulk energy then parameterizes an intriguing deviation from general relativity with an essential built-in Einstein limit. Even an apparently `empty' bubble Universe is effectively infested by a dark (= beyond Einstein) component. In particular, the geodetic evolution of a Λ-dominated toy Universe, absolutely free of genuine matter, gets translated into a specific FRW cosmology which is barely distinguishable from ΛCDM. A more realistic model presents a dark dominated era which bridges past (radiation/baryon dominated) and future (Λ-dominated) Einstein regimes. To prove the clumpiness property of our unified dark component, we have derived the geodesic brane analog of Schwarzschild solution. It is characterized by (i) Dark cosmological background, (ii) Newtonian limit, and quite serendipitously allows for (iii) Non-singular dusty core.
Do neutrinos contribute to total dark energy
NASA Astrophysics Data System (ADS)
Manihar Singh, Koijam; Mahanta, K. L.
2016-02-01
From a critical study of our present universe it is found that dark energy, and of course, dark matter are there in the universe from the beginning of its evolution manifesting in one form or the other. The different forms contained in our model are found to be generalized Chaplygin gas, quintessence and phantom energy; of course, the generalized Chaplygin gas can explain the origin of dark energy as well as dark matter in our universe simultaneously. However the more beauty in our study is that there is high possibility of the energy produced from the neutrinos might contribute to the dark energy prevalent in this universe.
The Dark Energy Survey: more than dark energy - an overview
NASA Astrophysics Data System (ADS)
Dark Energy Survey Collaboration; Abbott, T.; Abdalla, F. B.; Aleksić, J.; Allam, S.; Amara, A.; Bacon, D.; Balbinot, E.; Banerji, M.; Bechtol, K.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Blazek, J.; Bonnett, C.; Bridle, S.; Brooks, D.; Brunner, R. J.; Buckley-Geer, E.; Burke, D. L.; Caminha, G. B.; Capozzi, D.; Carlsen, J.; Carnero-Rosell, A.; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Castander, F. J.; Clerkin, L.; Collett, T.; Conselice, C.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, T. M.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Dodelson, S.; Doel, P.; Drlica-Wagner, A.; Estrada, J.; Etherington, J.; Evrard, A. E.; Fabbri, J.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Guarnieri, P.; Gutierrez, G.; Hartley, W.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Jouvel, S.; Kessler, R.; King, A.; Kirk, D.; Kron, R.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Makler, M.; Manera, M.; Maraston, C.; Marshall, J. L.; Martini, P.; McMahon, R. G.; Melchior, P.; Merson, A.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Morice-Atkinson, X.; Naidoo, K.; Neilsen, E.; Nichol, R. C.; Nord, B.; Ogando, R.; Ostrovski, F.; Palmese, A.; Papadopoulos, A.; Peiris, H. V.; Peoples, J.; Percival, W. J.; Plazas, A. A.; Reed, S. L.; Refregier, A.; Romer, A. K.; Roodman, A.; Ross, A.; Rozo, E.; Rykoff, E. S.; Sadeh, I.; Sako, M.; Sánchez, C.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Soumagnac, M.; Suchyta, E.; Sullivan, M.; Swanson, M.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Vieira, J. D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Weller, J.; Wester, W.; Whiteway, L.; Wilcox, H.; Yanny, B.; Zhang, Y.; Zuntz, J.
2016-08-01
This overview paper describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4 m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion, the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae and other transients. The main goals of DES are to characterize dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large-scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper, we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the Solar system, the Milky Way, galaxy evolution, quasars and other topics. In addition, we show that if the cosmological model is assumed to be Λ+cold dark matter, then important astrophysics can be deduced from the primary DES probes. Highlights from DES early data include the discovery of 34 trans-Neptunian objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).
The Dark Energy Survey: More than dark energy - An overview
Abbott, T.
2016-03-21
This overview article describes the legacy prospect and discovery potential of the Dark Energy Survey (DES) beyond cosmological studies, illustrating it with examples from the DES early data. DES is using a wide-field camera (DECam) on the 4m Blanco Telescope in Chile to image 5000 sq deg of the sky in five filters (grizY). By its completion the survey is expected to have generated a catalogue of 300 million galaxies with photometric redshifts and 100 million stars. In addition, a time-domain survey search over 27 sq deg is expected to yield a sample of thousands of Type Ia supernovae andmore » other transients. The main goals of DES are to characterise dark energy and dark matter, and to test alternative models of gravity; these goals will be pursued by studying large scale structure, cluster counts, weak gravitational lensing and Type Ia supernovae. However, DES also provides a rich data set which allows us to study many other aspects of astrophysics. In this paper we focus on additional science with DES, emphasizing areas where the survey makes a difference with respect to other current surveys. The paper illustrates, using early data (from `Science Verification', and from the first, second and third seasons of observations), what DES can tell us about the solar system, the Milky Way, galaxy evolution, quasars, and other topics. In addition, we show that if the cosmological model is assumed to be Lambda+ Cold Dark Matter (LCDM) then important astrophysics can be deduced from the primary DES probes. Lastly, highlights from DES early data include the discovery of 34 Trans Neptunian Objects, 17 dwarf satellites of the Milky Way, one published z > 6 quasar (and more confirmed) and two published superluminous supernovae (and more confirmed).« less
Reconstruction of the interaction term between dark matter and dark energy using SNe Ia
NASA Astrophysics Data System (ADS)
Cueva Solano, Freddy; Nucamendi, Ulises
2012-04-01
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM)\\@. The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w = -1 (an interacting cosmological Λ), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from ``The Supernova Cosmology Project'' (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q = 0 in the recent past within the 1σ and 2σ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.
Reconstruction of the interaction term between dark matter and dark energy using SNe Ia
Solano, Freddy Cueva; Nucamendi, Ulises E-mail: ulises@ifm.umich.mx
2012-04-01
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM)\\@. The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w = −1 (an interacting cosmological Λ), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from ''The Supernova Cosmology Project'' (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q = 0 in the recent past within the 1σ and 2σ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.
A two measure model of dark energy and dark matter
Guendelman, Eduardo; Singleton, Douglas; Yongram, N. E-mail: dougs@csufresno.edu
2012-11-01
In this work we construct a unified model of dark energy and dark matter. This is done with the following three elements: a gravitating scalar field, φ with a non-conventional kinetic term, as in the string theory tachyon; an arbitrary potential, V(φ); two measures — a metric measure ((−g){sup 1/2}) and a non-metric measure (Φ). The model has two interesting features: (i) For potentials which are unstable and would give rise to tachyonic scalar field, this model can stabilize the scalar field. (ii) The form of the dark energy and dark matter that results from this model is fairly insensitive to the exact form of the scalar field potential.
Dark matter and dark energy from quark bag model
Brilenkov, Maxim; Eingorn, Maxim; Jenkovszky, Laszlo; Zhuk, Alexander E-mail: maxim.eingorn@gmail.com E-mail: ai.zhuk2@gmail.com
2013-08-01
We calculate the present expansion of our Universe endowed with relict colored objects — quarks and gluons — that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.
Renewable Energy Requirement Guidance for EPACT 2005 and EO 13423
2009-01-18
Describes what counts toward the federal goals, the definition of "new" for renewable power/renewable energy certificate (REC) purchases, and what types of on-site projects will get double credit (Section 203 (C)).
Holographic dark energy from minimal supergravity
NASA Astrophysics Data System (ADS)
Landim, Ricardo C. G.
2016-02-01
We embed models of holographic dark energy (HDE) coupled to dark matter (DM) in minimal supergravity plus matter, with one chiral superfield. We analyze two cases. The first one has the Hubble radius as the infrared (IR) cutoff and the interaction between the two fluids is proportional to the energy density of the DE. The second case has the future event horizon as IR cutoff while the interaction is proportional to the energy density of both components of the dark sector.
Space Based Dark Energy Surveys
NASA Astrophysics Data System (ADS)
Dore, Olivier
2016-03-01
Dark energy, the name given to the cause of the accelerating expansion of the Universe, is one of the most tantalizing mystery in modern physics. Current cosmological models hold that dark energy is currently the dominant component of the Universe, but the exact nature of DE remains poorly understood. There are ambitious ground-based surveys underway that seek to understand DE and NASA is participating in the development of significantly more ambitious space-based surveys planned for the next decade. NASA has provided mission enabling technology to the European Space Agency's (ESA) Euclid mission in exchange for US scientists to participate in the Euclid mission. NASA is also developing the Wide Field Infrared Survey Telescope-Astrophysics Focused Telescope Asset (WFIRST) mission for possible launch in 2024. WFIRST was the highest ranked space mission in the Astro2010 Decadal Survey and the current design uses a 2.4m space telescope to go beyond what was then envisioned. Understanding DE is one of the primary science goals of WFIRST-AFTA. This talk will review the state of DE, the relevant activities of the Cosmic Structure Interest Group (CoSSIG) of the PhyPAG, and detail the status and complementarity between Euclid, WFIRST and ot ambitious ground-based efforts.
Disformal dark energy at colliders
NASA Astrophysics Data System (ADS)
Brax, Philippe; Burrage, Clare; Englert, Christoph
2015-08-01
Disformally coupled, light scalar fields arise in many of the theories of dark energy and modified gravity that attempt to explain the accelerated expansion of the Universe. They have proved difficult to constrain with precision tests of gravity because they do not give rise to fifth forces around static nonrelativistic sources. However, because the scalar field couples derivatively to standard model matter, measurements at high-energy particle colliders offer an effective way to constrain and potentially detect a disformally coupled scalar field. Here we derive new constraints on the strength of the disformal coupling from LHC run 1 data and provide a forecast for the improvement of these constraints from run 2. We additionally comment on the running of disformal and standard model couplings in this scenario under the renormalization group flow.
Dark energy in hybrid inflation
Gong, Jinn-Ouk; Kim, Seongcheol
2007-03-15
The situation that a scalar field provides the source of the accelerated expansion of the Universe while rolling down its potential is common in both the simple models of the primordial inflation and the quintessence-based dark energy models. Motivated by this point, we address the possibility of causing the current acceleration via the primordial inflation using a simple model based on hybrid inflation. We trigger the onset of the motion of the quintessence field via the waterfall field, and find that the fate of the Universe depends on the true vacuum energy determined by choosing the parameters. We also briefly discuss the variation of the equation of state and the possible implementation of our scenario in supersymmetric theories.
Description of dark energy and dark matter by vector fields
NASA Astrophysics Data System (ADS)
Meierovich, Boris E.
A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate tool for oscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the Universe. In particular, the singular "big bang" turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding unnecessary model assumptions.
Constraining the dark energy equation of state with H II galaxies
NASA Astrophysics Data System (ADS)
Chávez, R.; Plionis, M.; Basilakos, S.; Terlevich, R.; Terlevich, E.; Melnick, J.; Bresolin, F.; González-Morán, A. L.
2016-11-01
We use the H II galaxies L-σ relation and the resulting Hubble expansion cosmological probe of a sample of just 25 high-z (up to z ˜ 2.33) H II galaxies, in a joint likelihood analysis with other well tested cosmological probes (cosmic microwave background, CMB, Baryon Acoustic Oscillations, BAOs) in an attempt to constrain the dark energy equation of state (EoS). The constraints, although still weak, are in excellent agreement with those of a similar joint analysis using the well established SNIa Hubble expansion probe. Interestingly, even with the current small number of available high redshift H II galaxies, the H II/BAO/CMB joint analysis gives a 13 per cent improvement of the quintessence dark energy cosmological constraints compared to the BAO/CMB joint analysis. We have further performed extensive Monte Carlo simulations, with a realistic redshift sampling, to explore the extent to which the use of the L-σ relation, observed in H II galaxies, can constrain effectively the parameter space of the dark energy EoS. The simulations predict substantial improvement in the constraints when increasing the sample of high-z H II galaxies to 500, a goal that can be achieved in reasonable observing times with existing large telescopes and state-of-the-art instrumentation.
Probing the matter and dark energy sources in a viable Big Rip model of the Universe
NASA Astrophysics Data System (ADS)
Kumar, Suresh
2014-08-01
Chevallier-Polarski-Linder (CPL) parametrization for the equation of state (EoS) of dark energy in terms of cosmic redshift or scale factor have been frequently studied in the literature. In this study, we consider cosmic time-based CPL parametrization for the EoS parameter of the effective cosmic fluid that fills the fabric of spatially flat and homogeneous Robertson-Walker (RW) spacetime in General Relativity. The model exhibits two worthy features: (i) It fits the observational data from the latest H(z) and Union 2.1 SN Ia compilations matching the success of ΛCDM model. (ii) It describes the evolution of the Universe from the matter-dominated phase to the recent accelerating phase similar to the ΛCDM model but leads to Big Rip end of the Universe contrary to the everlasting de Sitter expansion in the ΛCDM model. We investigate the matter and dark energy sources in the model, in particular, behavior of the dynamical dark energy responsible for the Big Rip end of Universe.
How clustering dark energy affects matter perturbations
NASA Astrophysics Data System (ADS)
Mehrabi, A.; Basilakos, S.; Pace, F.
2015-09-01
The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.
[Dark matter and dark energy of the universe].
Aguilar Peris, José
2005-01-01
At the turn of the 20th Century, the Universe was thought to consist of our solar system, the Sun, planets, satellites and comets, floating under the Milky Way. The astronomers were ignorant of the existence of galaxies, clusters, quasars and black holes. Over the last ten years the Cosmology has made remarkable progress in our understanding of the composition of the Universe: 23 per cent is in an unknown form called dark matter; 73 per cent in another form called dark energy; 3 per cent is made of free hydrogen and helium atoms; 0.5 per cent makes up all the light we see in the night including the stars, clusters and superclusters; 0.3 per cent is in free neutrino particles; and finally, 0.03 per cent is in the heavier nuclei of which the Sun, the Earth and ourselves are made. In this work we study specially the dark matter and the dark energy. The first one appears to be attached to galaxies, and astronomers agree that it is cold, meaning that the particles that make up that matter are not moving fast. Very recently astronomers discovered that a tremendous amount of the so-cahled dark energy exists and that it is pushing and accelerating the expansion of the Universe. Should this expansion continue for another 14,000 million years, the sky will darken with only a handful of galaxies remaining visible.
Physical evidence for dark energy
Scranton, Ryan; Connolly, Andrew J.; Nichol, Robert C.; Stebbins, Albert; Szapudi, Istvan; Eisenstein, Daniel J.; Afshordi, Niayesh; Budavari, Tamas; Csabai, Istvan; Frieman, Joshua A.; Gunn, James E.; Johnston, David; Loh, Yeong-Shang; Lupton, Robert H.; Miller, Christopher J.; Sheldon, Erin Scott; Sheth, Ravi K.; Szalay, Alexander S.; Tegmark, Max; Xu, Yongzhong; Anderson, Scott F.; /Pittsburgh U. /Carnegie Mellon U. /Fermilab /Inst. Astron., Honolulu /Arizona U., Astron. Dept. - Steward Observ. /Princeton U. Observ. /Johns Hopkins U. /Eotvos U. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Pennsylvania U. /Washington U., Seattle, Astron. Dept. /Apache Point Observ. /Illinois U., Urbana, Astron. Dept. /Tokyo U., ICRR /LLNL, Livermore /Sussex U., Astron. Ctr. /Baltimore, Space Telescope Sci. /Michigan U. /Naval Observ., Flagstaff /Penn State U., Astron. Astrophys.
2003-07-01
The authors present measurements of the angular cross-correlation between luminous red galaxies from the Sloan Digital Sky Survey and the cosmic microwave background temperature maps from the Wilkinson Microwave Anisotropy Probe. They find a statistically significant achromatic positive correlation between these two data sets, which is consistent with the expected signal from the late Integrated Sachs-Wolfe (ISW) effect. they do not detect any anti-correlation on small angular scales as would be produced from a large Sunyaev-Zel'dovich (SZ) effect, although they do see evidence for some SZ effect for their highest redshift samples. Assuming a flat universe, their preliminary detection of the ISW effect provides independent physical evidence for the existence of dark energy.
Cosmological constraints on superconducting dark energy models
NASA Astrophysics Data System (ADS)
Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong
2015-12-01
We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.
Effective equation of state for running vacuum: `mirage' quintessence and phantom dark energy
NASA Astrophysics Data System (ADS)
Basilakos, Spyros; Solà, Joan
2014-02-01
Past analyses of the equation of state (EoS) of the Dark Energy (DE) were not incompatible with a phantom phase near our time. This has been the case in the years of Wilkinson Microwave Anisotropy Probe observations, in combination with the remaining cosmological observables. Such situations did not completely disappear from the data collected from the Planck satellite mission. In it the EoS analysis may still be interpreted as suggesting ωD ≲ -1, and so a mildly evolving DE cannot be discarded. In our opinion, the usual ansatzs made on the structure of the EoS for dynamical DE models (e.g. quintessence and the like) is too simplified. In this work, we examine in detail some of these issues and suggest that a general class of models with a dynamical vacuum energy density could explain the persistent phantom anomaly, despite this there is no trace of real phantom behaviour in them. The spurious or `mirage' effect is caused by an attempt to describe them as if the DE would be caused by fundamental phantom scalar fields. Remarkably, the effective DE behaviour can also appear as quintessence in transit to phantom, or vice versa.
Cosmology: Hydrogen wisps reveal dark energy
NASA Astrophysics Data System (ADS)
Davis, Tamara M.
2013-06-01
Traces of hydrogen gas, detected over vast regions of space, have for the first time been used as a standard ruler to measure dark energy -- the unknown cosmic energy that is causing the Universe's expansion to speed up.
Holographic dark energy in a cyclic universe
NASA Astrophysics Data System (ADS)
Zhang, Jingfei; Zhang, Xin; Liu, Hongya
2007-11-01
In this paper we study the cosmological evolution of the holographic dark energy in a cyclic universe, generalizing the model of holographic dark energy proposed by Li. The holographic dark energy with c<1 can realize a quintom behavior; namely, it evolves from a quintessence-like component to a phantom-like one. The holographic phantom energy density grows rapidly and dominates the late-time expanding phase, helping to realize a cyclic universe scenario in which the high energy regime is modified by the effects of quantum gravity, causing a turn-around (and a bounce) of the universe. The dynamical evolution of holographic dark energy in the regimes of low energy and high energy is governed by two differential equations, respectively. It is of importance to link the two regimes for this scenario. We propose a link condition giving rise to a complete picture of holographic evolution of a cyclic universe.
Possible dark energy imprints in the gravitational wave spectrum of mixed neutron-dark-energy stars
Yazadjiev, Stoytcho S.; Doneva, Daniela D. E-mail: daniela.doneva@uni-tuebingen.de
2012-03-01
In the present paper we study the oscillation spectrum of neutron stars containing both ordinary matter and dark energy in different proportions. Within the model we consider, the equilibrium configurations are numerically constructed and the results show that the properties of the mixed neuron-dark-energy star can differ significantly when the amount of dark energy in the stars is varied. The oscillations of the mixed neuron-dark-energy stars are studied in the Cowling approximation. As a result we find that the frequencies of the fundamental mode and the higher overtones are strongly affected by the dark energy content. This can be used in the future to detect the presence of dark energy in the neutron stars and to constrain the dark-energy models.
Embrace the Dark Side: Advancing the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Suchyta, Eric
The Dark Energy Survey (DES) is an ongoing cosmological survey intended to study the properties of the accelerated expansion of the Universe. In this dissertation, I present work of mine that has advanced the progress of DES. First is an introduction, which explores the physics of the cosmos, as well as how DES intends to probe it. Attention is given to developing the theoretical framework cosmologists use to describe the Universe, and to explaining observational evidence which has furnished our current conception of the cosmos. Emphasis is placed on the dark sector - dark matter and dark energy - the content of the Universe not explained by the Standard Model of particle physics. As its name suggests, the Dark Energy Survey has been specially designed to measure the properties of dark energy. DES will use a combination of galaxy cluster, weak gravitational lensing, angular clustering, and supernovae measurements to derive its state of the art constraints, each of which is discussed in the text. The work described in this dissertation includes science measurements directly related to the first three of these probes. The dissertation presents my contributions to the readout and control system of the Dark Energy Camera (DECam); the name of this software is SISPI. SISPI uses client-server and publish-subscribe communication patterns to coordinate and command actions among the many hardware components of DECam - the survey instrument for DES, a 570 megapixel CCD camera, mounted at prime focus of the Blanco 4-m Telescope. The SISPI work I discuss includes coding applications for DECam's filter changer mechanism and hexapod, as well as developing the Scripts Editor, a GUI application for DECam users to edit and export observing sequence SISPI can load and execute. Next, the dissertation describes the processing of early DES data, which I contributed. This furnished the data products used in the first-completed DES science analysis, and contributed to improving the
Dark Energy, Particle Physics and Cosmology
NASA Astrophysics Data System (ADS)
Turner, Michael S.
2012-05-01
Dark energy and cosmic acceleration is one of the three pillars of the current cosmological paradigm. Moreover, both raise fundamental issues in cosmology and particle physics. In particle physics, the dark energy problem is intimately related to the perplexing issue of why the quantum energy of the vacuum is so small. In cosmology, the nature of the dark energy is crucial to understanding the destiny of the Universe. I will discuss the status of current models for dark energy -- including vacuum energy and rolling scalar fields -- their implications for cosmology and for particle physics and how they can be tested by WFIRST. I will also address the status of the possibility that cosmic acceleration is explained by modifying or replacing general relativity.
Dark energy, inflation, and extra dimensions
Steinhardt, Paul J.; Wesley, Daniel
2009-05-15
We consider how accelerated expansion, whether due to inflation or dark energy, imposes strong constraints on fundamental theories obtained by compactification from higher dimensions. For theories that obey the null energy condition (NEC), we find that inflationary cosmology is impossible for a wide range of compactifications; and a dark energy phase consistent with observations is only possible if both Newton's gravitational constant and the dark energy equation of state vary with time. If the theory violates the NEC, inflation and dark energy are only possible if the NEC-violating elements are inhomogeneously distributed in the compact dimensions and vary with time in precise synchrony with the matter and energy density in the noncompact dimensions. Although our proofs are derived assuming general relativity applies in both four and higher dimensions and certain forms of metrics, we argue that similar constraints must apply for more general compactifications.
Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.
Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H
2014-04-18
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14 eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20 μm (95% C.L.).
Probing the dynamics of dark energy with divergence-free parametrizations: A global fit study
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Xin
2011-09-01
The CPL parametrization is very important for investigating the property of dark energy with observational data. However, the CPL parametrization only respects the past evolution of dark energy but does not care about the future evolution of dark energy, since w ( z ) diverges in the distant future. In a recent paper [J.Z. Ma, X. Zhang, Phys. Lett. B 699 (2011) 233], a robust, novel parametrization for dark energy, w ( z ) = w + w ( l n ( 2 + z ) 1 + z - l n 2 ) , has been proposed, successfully avoiding the future divergence problem in the CPL parametrization. On the other hand, an oscillating parametrization (motivated by an oscillating quintom model) can also avoid the future divergence problem. In this Letter, we use the two divergence-free parametrizations to probe the dynamics of dark energy in the whole evolutionary history. In light of the data from 7-year WMAP temperature and polarization power spectra, matter power spectrum of SDSS DR7, and SN Ia Union2 sample, we perform a full Markov Chain Monte Carlo exploration for the two dynamical dark energy models. We find that the best-fit dark energy model is a quintom model with the EOS across -1 during the evolution. However, though the quintom model is more favored, we find that the cosmological constant still cannot be excluded.
Dark Energy, Dark Matter and Science with Constellation-X
NASA Technical Reports Server (NTRS)
Cardiff, Ann Hornschemeier
2005-01-01
Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.
Effective theory of interacting dark energy
Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo; Langlois, David E-mail: langlois@apc.univ-paris7.fr E-mail: filippo.vernizzi@cea.fr
2015-08-01
We present a unifying treatment of dark energy and modified gravity that allows distinct conformal-disformal couplings of matter species to the gravitational sector. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities. We compute the equations of motion for background quantities and linear perturbations. We illustrate our formalism with two simple scenarios, where either cold dark matter or a relativistic fluid is nonminimally coupled. This extends previous studies of coupled dark energy to a much broader spectrum of gravitational theories.
Dark Energy Models in f( R, T) Theory with Variable Deceleration Parameter
NASA Astrophysics Data System (ADS)
Mishra, R. K.; Chand, Avtar; Pradhan, Anirudh
2016-02-01
In this communication we have investigated Bianchi type-II dark energy (DE) cosmological models with and without presence of magnetic field in modified f( R, T) gravity theory as proposed by Harko et al. (Phys. Rev. D, 84, 024020, 2011). The exact solution of the field equations is obtained by setting the deceleration parameter q as a time function along with suitable assumption the scale factor a(t)= [sinh(α t)]^{{1/n}}, α and n are positive constant. We have obtained a class of accelerating and decelerating DE cosmological models for different values of n and α. The present study believes that the mysterious dark energy is the main responsible force for accelerating expansion of the universe. For our constructed models the DE candidates cosmological constant (Λ) and the EoS parameter ( ω) both are found to be time varying quantities. The cosmological constant Λ is very large at early time and approaches to a small positive value at late time whereas the EoS parameters is found small negative at present time. Physical and kinematical properties of the models are discussed with the help of pictorial representations of the parameters. We have observed that our constructed models are compatible with recent cosmological observations.
Dark Energy Found Stifling Growth in Universe
NASA Astrophysics Data System (ADS)
2008-12-01
WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its
The accelerating universe and dark energy
NASA Astrophysics Data System (ADS)
Baltay, Charles
2014-05-01
The recent discovery by Riess et al.1 and Perlmutter et al.2 that the expansion of the universe is accelerating is one of the most significant discoveries in cosmology in the last few decades. To explain this acceleration a mysterious new component of the universe, dark energy, was hypothesized. Using general relativity (GR), the measured rate of acceleration translates to the present understanding that the baryonic matter, of which the familiar world is made of, is a mere 4% of the total mass-energy of the universe, with nonbaryonic dark matter making up 24% and dark energy making up the majority 72%. Dark matter, by definition, has attractive gravity, and even though we presently do not know what it is, it could be made of the next heavy particles discovered by particle physicists. Dark energy, however, is much more mysterious, in that even though we do not know what it is, it must have some kind of repulsive gravity and negative pressure, very unusual properties that are not part of the present understanding of physics. Investigating the nature of dark energy is therefore one of the most important areas of cosmology. In this review, the cosmology of an expanding universe, based on GR, is discussed. The methods of studying the acceleration of the universe, and the nature of dark energy, are presented. A large amount of experimentation on this topic has taken place in the decade since the discovery of the acceleration. These are discussed and the present state of knowledge of the cosmological parameters is summarized in Table 7 below. A vigorous program to further these studies is under way. These are presented and the expected results are summarized in Table 10 below. The hope is that at the end of this program, it would be possible to tell whether dark energy is due to Einstein's cosmological constant or is some other new constituent of the universe, or alternately the apparent acceleration is due to some modification of GR.
Report of the Dark Energy Task Force
DOE R&D Accomplishments Database
Albrecht, Andreas; Bernstein, Gary; Cahn, Robert; Freedman, Wendy L.; Hewitt, Jacqueline; Hu, Wayne; Huth, John; Kamionkowski, Marc; Kolb, Edward W.; Knox, Lloyd; Mather, John C.
2006-01-01
Dark energy appears to be the dominant component of the physical Universe, yet there is no persuasive theoretical explanation for its existence or magnitude. The acceleration of the Universe is, along with dark matter, the observed phenomenon that most directly demonstrates that our theories of fundamental particles and gravity are either incorrect or incomplete. Most experts believe that nothing short of a revolution in our understanding of fundamental physics will be required to achieve a full understanding of the cosmic acceleration. For these reasons, the nature of dark energy ranks among the very most compelling of all outstanding problems in physical science. These circumstances demand an ambitious observational program to determine the dark energy properties as well as possible.
Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys
NASA Astrophysics Data System (ADS)
Cieplak, Agnieszka M.
This thesis addresses astrophysical probes to constrain dark matter (DM) and dark energy models. Primordial black holes (PBHs) remain one of the few DM candidates within the Standard Model of Particle Physics. This thesis presents a new probe of this PBH DM, using the microlensing of the source stars monitored by the already existing Kepler satellite. With its photometric precision and the large projected cross section of the nearby stars, it is found that previous constraints on PBH DM could theoretically be extended by two orders of magnitude. Correcting a well-known microlensing formula, a limb-darkening analysis is included, and a new approximation is calculated for future star selection. A preliminary prediction is calculated for the planned Wide-Field Infrared Survey Telescope. A preliminary study of the first two years of publicly available Kepler data is presented. The investigation yields many new sources of background error not predicted in the theoretical calculations, such as stellar flares and comets in the field of view. Since no PBH candidates are detected, an efficiency of detection is therefore calculated by running a Monte Carlo with fake limb-darkened finite-source microlensing events. It is found that with just the first 8 quarters of data, a full order of magnitude of the PBH mass range can be already constrained. Finally, one of the astrophysical probes of dark energy is also addressed - specifically, the baryon acoustic oscillations (BAO) measurement in the gas distribution, as detected in quasar absorption lines. This unique measurement of dark energy at intermediate redshifts is being measured by current telescope surveys. The last part of this thesis therefore focuses on understanding the systematic effects in such a detection. Since the bias between the underlying dark matter distribution and the measured gas flux distribution is based on gas physics, hydrodynamic simulations are used to understand the evolution of neutral hydrogen over
Polytropic dark matter flows illuminate dark energy and accelerated expansion
NASA Astrophysics Data System (ADS)
Kleidis, K.; Spyrou, N. K.
2015-04-01
Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the
Transition from a matter-dominated era to a dark energy universe
Nojiri, Shin'ichi; Odintsov, Sergei D.; Stefancic, Hrvoje
2006-10-15
We develop a general program of the unification of a matter-dominated era with an acceleration epoch for scalar-tensor theory or a dark fluid. The general reconstruction of the scalar-tensor theory is fulfilled. The explicit form of the scalar potential for which the theory admits a matter-dominated era, a transition to an acceleration, and an (asymptotically de Sitter) acceleration epoch consistent with Wilkinson Microwave Anisotropy Probe data is found. The interrelation of the epochs of deceleration-acceleration transition and matter dominance-dark energy transition for dark fluids with a general equation of state (EOS) is investigated. We give several examples of such models with explicit EOS (using redshift parametrization) where matter-dark energy domination transition may precede the deceleration-acceleration transition. As a by-product, the reconstruction scheme is applied to scalar-tensor theory to define the scalar potentials which may produce the dark matter effect. The obtained modification of Newton potential may explain the rotation curves of galaxies.
Falsification of dark energy by fluid mechanics
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2011-11-01
The 2011 Nobel Prize in Physics has been awarded for the discovery from observations of increased supernovae dimness interpreted as distance, so that the Universe expansion rate has changed from a rate decreasing since the big bang to one that is now increasing, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanical considerations falsify both the accelerating expansion and dark energy concepts. Kinematic viscosity is neglected in current stan- dard models of self-gravitational structure formation, which rely on cold dark matter CDM condensations and clusterings that are also falsified by fluid mechanics. Weakly collisional CDM particles do not condense but diffuse away. Photon viscosity predicts su- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the plasma fragments into Earth-mass gas planets in trillion planet clumps (proto-globular-star-cluster PGCs). The hydrogen planets freeze to form the dark matter of galaxies and merge to form their stars. Dark energy is a systematic dimming error for Supernovae Ia caused by dark matter planets near hot white dwarf stars at the Chandrasekhar carbon limit. Evaporated planet atmospheres may or may not scatter light from the events depending on the line of sight.
"Dark energy" in the Local Void
NASA Astrophysics Data System (ADS)
Villata, M.
2012-05-01
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.
Probing gravitation, dark energy, and acceleration
Linder, Eric V.
2004-02-20
The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime geometry quantities involving the acceleration, such as ''geometric dark energy'' from the Ricci scalar. We investigate these interrelationships, including for the case of super acceleration or phantom energy where the fate of the universe may be more gentle than the Big Rip.
Dark goo: bulk viscosity as an alternative to dark energy
Gagnon, Jean-Sebastien; Lesgourgues, Julien E-mail: julien.lesgourgues@cern.ch
2011-09-01
We present a simple (microscopic) model in which bulk viscosity plays a role in explaining the present acceleration of the universe. The effect of bulk viscosity on the Friedmann equations is to turn the pressure into an 'effective' pressure containing the bulk viscosity. For a sufficiently large bulk viscosity, the effective pressure becomes negative and could mimic a dark energy equation of state. Our microscopic model includes self-interacting spin-zero particles (for which the bulk viscosity is known) that are added to the usual energy content of the universe. We study both background equations and linear perturbations in this model. We show that a dark energy behavior is obtained for reasonable values of the two parameters of the model (i.e. the mass and coupling of the spin-zero particles) and that linear perturbations are well-behaved. There is no apparent fine tuning involved. We also discuss the conditions under which hydrodynamics holds, in particular that the spin-zero particles must be in local equilibrium today for viscous effects to be important.
The Logotropic Dark Fluid as a unification of dark matter and dark energy
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2016-07-01
We propose a heuristic unification of dark matter and dark energy in terms of a single "dark fluid" with a logotropic equation of state P = Aln (ρ /ρP), where ρ is the rest-mass density, ρP = 5.16 ×1099gm-3 is the Planck density, and A is the logotropic temperature. The energy density ɛ is the sum of a rest-mass energy term ρc2 ∝a-3 mimicking dark matter and an internal energy term u (ρ) = - P (ρ) - A = 3 Aln a + C mimicking dark energy (a is the scale factor). The logotropic temperature is approximately given by A ≃ρΛc2 / ln (ρP /ρΛ) ≃ρΛc2 / [ 123 ln (10) ], where ρΛ = 6.72 ×10-24gm-3 is the cosmological density and 123 is the famous number appearing in the ratio ρP /ρΛ ∼10123 between the Planck density and the cosmological density. More precisely, we obtain A = 2.13 ×10-9gm-1s-2 that we interpret as a fundamental constant. At the cosmological scale, our model fulfills the same observational constraints as the ΛCDM model (they will differ in about 25 Gyrs when the logotropic universe becomes phantom). However, the logotropic dark fluid has a nonzero speed of sound and a nonzero Jeans length which, at the beginning of the matter era, is about λJ = 40.4pc, in agreement with the minimum size of the dark matter halos observed in the universe. The existence of a nonzero Jeans length may solve the missing satellite problem. At the galactic scale, the logotropic pressure balances the gravitational attraction, providing halo cores instead of cusps. This may solve the cusp problem. The logotropic equation of state generates a universal rotation curve that agrees with the empirical Burkert profile of dark matter halos up to the halo radius. In addition, it implies that all the dark matter halos have the same surface density Σ0 =ρ0rh = 141M⊙ /pc2 and that the mass of dwarf galaxies enclosed within a sphere of fixed radius ru = 300pc has the same value M300 = 1.93 ×107M⊙, in remarkable agreement with the observations
Anisotropic perturbations due to dark energy
NASA Astrophysics Data System (ADS)
Battye, Richard A.; Moss, Adam
2006-08-01
A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.
The CMB as a Dark Energy probe
NASA Astrophysics Data System (ADS)
Baccigalupi, Carlo
We give a brief review of the known effects of a dynamical vacuum cosmological component, the dark energy, on the anisotropies of the cosmic microwave background (CMB). We distinguish between a "classic" class of observables, used so far to constrain the average of the dark energy abundance in the redshift interval in which it is relevant for acceleration, and a "modern" class, aiming at the measurement of its differential redshift behavior. We show that the gravitationally lensed CMB belongs to the second class, as it can give a measure of the dark energy abundance at the time of equality with matter, occurring at about redshift 0.5. Indeed, the dark energy abundance at that epoch influences directly the lensing strength, which is injected at about the same time, if the source is the CMB. We illustrate this effect focusing on the curl (BB) component of CMB polarization, which is dominated by lensing on arcminute angular scales. An increasing dark energy abundance at the time of equality with matter, parameterized by a rising first order redshift derivative of its equation of state today, makes the BB power drop- ping with respect to a pure ΛCDM cosmology, keeping the other cosmological parameters and primordial amplitude fixed. We briefly comment on the forthcoming probes which might measure the lensing power on CMB.
Dark Energy and the Hubble Law
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.
The Big Bang predicted by Friedmann could not be empirically discovered in the 1920th, since global cosmological distances (more than 300-1000 Mpc) were not available for observations at that time. Lemaitre and Hubble studied receding motions of galaxies at local distances of less than 20-30 Mpc and found that the motions followed the (nearly) linear velocity-distance relation, known now as Hubble's law. For decades, the real nature of this phenomenon has remained a mystery, in Sandage's words. After the discovery of dark energy, it was suggested that the dynamics of local expansion flows is dominated by omnipresent dark energy, and it is the dark energy antigravity that is able to introduce the linear velocity-distance relation to the flows. It implies that Hubble's law observed at local distances was in fact the first observational manifestation of dark energy. If this is the case, the commonly accepted criteria of scientific discovery lead to the conclusion: In 1927, Lemaitre discovered dark energy and Hubble confirmed this in 1929.
Distinguishing modified gravity from dark energy
Bertschinger, Edmund; Zukin, Phillip
2008-07-15
The acceleration of the Universe can be explained either through dark energy or through the modification of gravity on large scales. In this paper we investigate modified gravity models and compare their observable predictions with dark energy models. Modifications of general relativity are expected to be scale independent on superhorizon scales and scale dependent on subhorizon scales. For scale-independent modifications, utilizing the conservation of the curvature scalar and a parametrized post-Newtonian formulation of cosmological perturbations, we derive results for large-scale structure growth, weak gravitational lensing, and cosmic microwave background anisotropy. For scale-dependent modifications, inspired by recent f(R) theories we introduce a parametrization for the gravitational coupling G and the post-Newtonian parameter {gamma}. These parametrizations provide a convenient formalism for testing general relativity. However, we find that if dark energy is generalized to include both entropy and shear stress perturbations, and the dynamics of dark energy is unknown a priori, then modified gravity cannot in general be distinguished from dark energy using cosmological linear perturbations.
Non-linear dark energy clustering
Anselmi, Stefano; Ballesteros, Guillermo; Pietroni, Massimo E-mail: ballesteros@pd.infn.it
2011-11-01
We consider a dark energy fluid with arbitrary sound speed and equation of state and discuss the effect of its clustering on the cold dark matter distribution at the non-linear level. We write the continuity, Euler and Poisson equations for the system in the Newtonian approximation. Then, using the time renormalization group method to resum perturbative corrections at all orders, we compute the total clustering power spectrum and matter power spectrum. At the linear level, a sound speed of dark energy different from that of light modifies the power spectrum on observationally interesting scales, such as those relevant for baryonic acoustic oscillations. We show that the effect of varying the sound speed of dark energy on the non-linear corrections to the matter power spectrum is below the per cent level, and therefore these corrections can be well modelled by their counterpart in cosmological scenarios with smooth dark energy. We also show that the non-linear effects on the matter growth index can be as large as 10–15 per cent for small scales.
HETDEX: Measuring Dark Energy at High Redshift
NASA Astrophysics Data System (ADS)
Gebhardt, Karl; Hill, G.; Komatsu, E.; Drory, N.; DePoy, D.; Ciardullo, R.; Gronwall, C.; Fabricius, M.; Wisotzki, L.; HETDEX Collaboration
2012-01-01
The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey to map the evolution of dark energy using Lyman-alpha emitting galaxies as tracers. The survey instrument, VIRUS, consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each 50x50 sq. arcsec IFU is made up of 448 1.5-arcsec fibers, and feeds a pair of spectrographs with a fixed bandpass of 350-550 nm and resolving power R 700. Each exposure gathers 33,600 spectra. The baseline survey will deliver spectra of 0.8M LAEs in a 9 cubic Gpc volume with 1.9 < z < 3.5, and 1M [OII] emitters with z < 0.48. We expect to measure both the Hubble parameter and angular diameter distance to better than 1%. HETDEX will provide a unique window on the evolution of dark energy.
Likelihood methods for cluster dark energy surveys
Hu, Wayne; Cohn, J. D.
2006-03-15
Galaxy cluster counts at high redshift, binned into spatial pixels and binned into ranges in an observable proxy for mass, contain a wealth of information on both the dark energy equation of state and the mass selection function required to extract it. The likelihood of the number counts follows a Poisson distribution whose mean fluctuates with the large-scale structure of the universe. We develop a joint likelihood method that accounts for these distributions. Maximization of the likelihood over a theoretical model that includes both the cosmology and the observable-mass relations allows for a joint extraction of dark energy and cluster structural parameters.
DESTINY, The Dark Energy Space Telescope
NASA Technical Reports Server (NTRS)
Pasquale, Bert A.; Woodruff, Robert A.; Benford, Dominic J.; Lauer, Tod
2007-01-01
We have proposed the development of a low-cost space telescope, Destiny, as a concept for the NASA/DOE Joint Dark Energy Mission. Destiny is a 1.65m space telescope, featuring a near-infrared (0.85-1.7m) survey camera/spectrometer with a moderate flat-field field of view (FOV). Destiny will probe the properties of dark energy by obtaining a Hubble diagram based on Type Ia supernovae and a large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift.
Dark Energy: A Crisis for Fundamental Physics
Stubbs, Christopher
2010-04-12
Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.
Dark Energy: A Crisis for Fundamental Physics
Stubbs, Christopher [Harvard University, Cambridge, Massachusetts, USA
2016-07-12
Astrophysical observations provide robust evidence that our current picture of fundamental physics is incomplete. The discovery in 1998 that the expansion of the Universe is accelerating (apparently due to gravitational repulsion between regions of empty space!) presents us with a profound challenge, at the interface between gravity and quantum mechanics. This "Dark Energy" problem is arguably the most pressing open question in modern fundamental physics. The first talk will describe why the Dark Energy problem constitutes a crisis, with wide-reaching ramifications. One consequence is that we should probe our understanding of gravity at all accessible scales, and the second talk will present experiments and observations that are exploring this issue.
Dark Energy and The Dark Matter Relic Abundance
Rosati, Francesca
2004-11-17
Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.
Dark energy in systems of galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.
2013-11-01
The precise observational data of the Hubble Space Telescope have been used to study nearby galaxy systems. The main result is the detection of dark energy in groups, clusters, and flows of galaxies on a spatial scale of about 1-10 Mpc. The local density of dark energy in these systems, which is determined by various methods, is close to the global value or even coincides with it. A theoretical model of the nearby Universe has been constructed, which describes the Local Group of galaxies with the flow of dwarf galaxies receding from this system. The key physical parameter of the group-flow system is zero gravity radius, which is the distance at which the gravity of dark matter is compensated by dark-energy antigravity. The model predicts the existence of local regions of space where Einstein antigravity is stronger than Newton gravity. Six such regions have been revealed in the data of the Hubble space telescope. The nearest of these regions is at a distance of 1-3 Mpc from the center of the Milky Way. Antigravity in this region is several times stronger than gravity. Quasiregular flows of receding galaxies, which are accelerated by the dark-energy antigravity, exist in these regions. The model of the nearby Universe at the scale of groups of galaxies (˜1 Mpc) can be extended to the scale of clusters (˜10 Mpc). The systems of galaxies with accelerated receding flows constitute a new and probably widespread class of metagalactic populations. Strong dynamic effects of local dark energy constitute the main characteristic feature of these systems.
Advanced Dark Energy Physics Telescope (ADEPT)
Charles L. Bennett
2009-03-26
In 2006, we proposed to NASA a detailed concept study of ADEPT (the Advanced Dark Energy Physics Telescope), a potential space mission to reliably measure the time-evolution of dark energy by conducting the largest effective volume survey of the universe ever done. A peer-review panel of scientific, management, and technical experts reported back the highest possible 'excellent' rating for ADEPT. We have since made substantial advances in the scientific and technical maturity of the mission design. With this Department of Energy (DOE) award we were granted supplemental funding to support specific extended research items that were not included in the NASA proposal, many of which were intended to broadly advance future dark energy research, as laid out by the Dark Energy Task Force (DETF). The proposed work had three targets: (1) the adaptation of large-format infrared arrays to a 2 micron cut-off; (2) analytical research to improve the understanding of the dark energy figure-of- merit; and (3) extended studies of baryon acoustic oscillation systematic uncertainties. Since the actual award was only for {approx}10% of the proposed amount item (1) was dropped and item (2) work was severely restricted, consistent with the referee reviews of the proposal, although there was considerable contradictions between reviewer comments and several comments that displayed a lack of familiarity with the research. None the less, item (3) was the focus of the work. To characterize the nature of the dark energy, ADEPT is designed to observe baryon acoustic oscillations (BAO) in a large galaxy redshift survey and to obtain substantial numbers of high-redshift Type Ia supernovae (SNe Ia). The 2003 Wilkinson Microwave Anisotropy Probe (WMAP) made a precise determination of the BAO 'standard ruler' scale, as it was imprinted on the cosmic microwave background (CMB) at z {approx} 1090. The standard ruler was also imprinted on the pattern of galaxies, and was first detected in 2005 in Sloan
NASA Astrophysics Data System (ADS)
Ranjit, Chayan; Rudra, Prabir
2016-10-01
The present work is based on the idea of an interacting framework of new holographic dark energy (HDE) with cold dark matter in the background of f(T) gravity. Here, we have considered the flat modified Friedmann universe for f(T) gravity which is filled with new HDE and dark matter. We have derived some cosmological parameters like deceleration parameter, equation of state (EoS) parameter, state-finder parameters, cosmographic parameters, Om parameter and graphically investigated the nature of these parameters for the above mentioned interacting scenario. The results are found to be consistent with the accelerating universe. Also, we have graphically investigated the trajectories in ω-ω‧ plane for different values of the interacting parameter and explored the freezing region and thawing region in ω-ω‧ plane. Finally, we have analyzed the stability of this model.
Planck priors for dark energy surveys
Mukherjee, Pia; Parkinson, David; Kunz, Martin; Wang Yun
2008-10-15
Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), l{sub a} (angular scale of sound horizon at last scattering), {omega}{sub b}h{sup 2} (baryon density fraction) and n{sub s} (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.
Stringy Model of Cosmological Dark Energy
Aref'eva, Irina Ya.
2007-11-20
A string field theory (SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.
Falsification of Dark Energy by Fluid Mechanics
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2012-03-01
The 2011 Nobel Prize in Physics was awarded for the discovery of accelerating super- novae dimness, suggesting a remarkable reversal in the expansion rate of the Universe from a decrease to an increase, driven by anti-gravity forces of a mysterious dark energy material comprising 70% of the Universe mass-energy. Fluid mechanics and Herschel- Planck-Spitzer-Hubble etc. space telescope observations falsify both the accelerating ex- pansion rate and dark energy concepts. Kinematic viscosity is neglected in models of self-gravitational structure formation. Large plasma photon viscosity predicts protosu- perclustervoid fragmentation early in the plasma epoch and protogalaxies at the end. At the plasma-gas transition, the gas protogalaxies fragment into Earth-mass rogue plan- ets in highly persistent, trillion-planet clumps (proto-globular-star-cluster PGCs). PGC planets freeze to form the dark matter of galaxies and merge to form their stars, giving the hydrogen triple-point (14 K) infrared emissions observed. Dark energy is a system- atic dimming error for Supernovae Ia caused by partially evaporated planets feeding hot white dwarf stars at the Chandrasekhar carbon limit. Planet atmospheres may or may not dim light from SNe-Ia events depending on the line of sight.
Supernovae from the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Gupta, Ravi
2016-03-01
The nature of dark energy is one of the greatest unsolved problems in physics today. Its existence was inferred from observations of exploding stars known as Type Ia supernovae (SNe Ia). These SNe Ia are standardizable candles that are excellent cosmological tools for probing dark energy through the distance-redshift relation. The Dark Energy Survey (DES) Supernova Program is repeatedly observing 30 square degrees within the full 5000-square-degree DES footprint and has discovered thousands of SNe Ia, in addition to many other types of SNe. DES has recently completed Year 3 of observations, with at least two more years still to go. In this talk, I will highlight the papers that have been published by the DES SN Program as well the ongoing analyses and projects within the group. I will introduce frameworks being developed for cosmological inference using Bayesian hierarchical regression models and discuss the steps needed for this. These include the transient detection pipeline, photometric calibration, host galaxy identification, follow-up spectroscopy of SNe and host galaxies, and SN photometric classification. I will also discuss DES discoveries of several superluminous SNe. On behalf of the Dark Energy Survey collaboration.
Dark energy: The observational challenge [review article
NASA Astrophysics Data System (ADS)
Weinberg, David H.
2005-11-01
Nearly all proposed tests for the nature of dark energy measure some combination of four fundamental observables: the Hubble parameter H( z), the distance-redshift relation d( z), the age-redshift relation t( z), or the linear growth factor D1( z). I discuss the sensitivity of these observables to the value and redshift history of the equation of state parameter w, emphasizing where these different observables are and are not complementary. Demonstrating time-variability of w is difficult in most cases because dark energy is dynamically insignificant at high redshift. Time-variability in which dark energy tracks the matter density at high redshift and changes to a cosmological constant at low redshift is relatively easy to detect. However, even a sharp transition of this sort at zc = 1 produces only percent-level differences in d( z) or D1( z) over the redshift range 0.4 ⩽ z ⩽ 1.8, relative to the closest constant- w model. Estimates of D1( z) or H( z) at higher redshift, potentially achievable with the Ly α forest, galaxy redshift surveys, and the CMB power spectrum, can add substantial leverage on such models, given precise distance constraints at z < 2. The most promising routes to obtaining sub-percent precision on dark energy observables are space-based studies of Type Ia supernovae, which measure d( z) directly, and of weak gravitational lensing, which is sensitive to d( z), D1( z), and H( z).
The Dark Energy Spectroscopic Instrument (DESI)
NASA Astrophysics Data System (ADS)
Flaugher, Brenna; Bebek, Chris
2014-07-01
The Dark Energy Spectroscopic Instrument (DESI) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar spectroscopic redshift survey. The DESI instrument consists of a new wide-field (3.2 deg. linear field of view) corrector plus a multi-object spectrometer with up to 5000 robotically positioned optical fibers and will be installed at prime focus on the Mayall 4m telescope at Kitt Peak, Arizona. The fibers feed 10 three-arm spectrographs producing spectra that cover a wavelength range from 360-980 nm and have resolution of 2000-5500 depending on the wavelength. The DESI instrument is designed for a 14,000 sq. deg. multi-year survey of targets that trace the evolution of dark energy out to redshift 3.5 using the redshifts of luminous red galaxies (LRGs), emission line galaxies (ELGs) and quasars. DESI is the successor to the successful Stage-III BOSS spectroscopic redshift survey and complements imaging surveys such as the Stage-III Dark Energy Survey (DES, currently operating) and the Stage-IV Large Synoptic Survey Telescope (LSST, planned start early in the next decade).
Dark Energy Found Stifling Growth in Universe
NASA Astrophysics Data System (ADS)
2008-12-01
WASHINGTON -- For the first time, astronomers have clearly seen the effects of "dark energy" on the most massive collapsed objects in the universe using NASA's Chandra X-ray Observatory. By tracking how dark energy has stifled the growth of galaxy clusters and combining this with previous studies, scientists have obtained the best clues yet about what dark energy is and what the destiny of the universe could be. This work, which took years to complete, is separate from other methods of dark energy research such as supernovas. These new X-ray results provide a crucial independent test of dark energy, long sought by scientists, which depends on how gravity competes with accelerated expansion in the growth of cosmic structures. Techniques based on distance measurements, such as supernova work, do not have this special sensitivity. Scientists think dark energy is a form of repulsive gravity that now dominates the universe, although they have no clear picture of what it actually is. Understanding the nature of dark energy is one of the biggest problems in science. Possibilities include the cosmological constant, which is equivalent to the energy of empty space. Other possibilities include a modification in general relativity on the largest scales, or a more general physical field. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters Powerful Nearby Supernova Caught By Web Cassiopeia A Comes Alive Across Time and Space To help decide between these options, a new way of looking at dark energy is required. It is accomplished by observing how cosmic acceleration affects the growth of galaxy clusters over time. "This result could be described as 'arrested development of the universe'," said Alexey Vikhlinin of the Smithsonian Astrophysical Observatory in Cambridge, Mass., who led the research. "Whatever is forcing the expansion of the universe to speed up is also forcing its
Constraints on the coupling between dark energy and dark matter from CMB data
NASA Astrophysics Data System (ADS)
Murgia, R.; Gariazzo, S.; Fornengo, N.
2016-04-01
We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H0 and σ8, already present for standard cosmology, increases: this model in fact predicts lower H0 and higher σ8, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H0 and σ8 nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.
Piattella, O.F.; Martins, D.L.A.; Casarini, L. E-mail: denilsonluizm@gmail.com
2014-10-01
We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100.
Supersymmetric cosmological FRW model and dark energy
Rosales, J. J.; Tkach, V. I.
2010-11-15
In this work we consider a flat cosmological model with a set of fluids in the framework of supersymmetric cosmology. The obtained supersymmetric algebra allowed us to take quantum solutions. It is shown that only in the case of a cosmological constant do we have a condition between the density of dark energy {rho}{sub {Lambda}} and density energy of matter {rho}{sub M}, {rho}{sub {Lambda}>}2{rho}{sub M}.
FAST TRACK COMMUNICATION: A dark energy multiverse
NASA Astrophysics Data System (ADS)
Robles-Pérez, Salvador; Martín-Moruno, Prado; Rozas-Fernández, Alberto; González-Díaz, Pedro F.
2007-05-01
We present cosmic solutions corresponding to universes filled with dark and phantom energy, all having a negative cosmological constant. All such solutions contain infinite singularities, successively and equally distributed along time, which can be either big bang/crunches or big rips singularities. Classically these solutions can be regarded as associated with multiverse scenarios, being those corresponding to phantom energy that may describe the current accelerating universe.
Agegraphic Dark Energy with the Sign-Changeable Interaction in Non-Flat Universe
NASA Astrophysics Data System (ADS)
Xu, You-Dong; Yuan, Dong-Qing
2016-04-01
In this paper, we investigate the agegraphic dark energy (ADE) model by including the sign-changeable interaction between ADE and dark matter in non-flat universe. The interaction Q can change its sign from Q < 0 to Q > 0 as the universe expands. This indicates that at first dark matter decays to ADE, and then ADE decays to dark matter. We study the dynamical behavior of the model by using the phase-plane analysis. It is shown numerically that the coupling constant β plays an important role in the evolution of the universe. The equation of state (EoS) of ADE with the sign-changeable interaction is more likely to cross the phantom divide wd = -1 from top to bottom with the increasing of the |β|. Whereas in ADE model with usual interaction, wd can cross the phantom divide from bottom to top. We also find that our model is consistent with the observational data. Supported by National Nature Science Foundation of China under Grant No. 51405181, Natural Science Foundation for Youths of Jiangsu Province under Grant No. BK20130407, and Colleges and Universities Natural Science Fundation of Jiangsu Province under Grant No. 13KJB460001
Greeff, Carl W
2011-01-12
An approach to creating accurate EOS for pressure standards is described. Applications to Cu, Au, and Ta are shown. Extension of the method to high compressions using DFT is illustrated. Comparisons with modern functionals show promise.
Cosmological constraints on coupled dark energy
NASA Astrophysics Data System (ADS)
Yang, Weiqiang; Li, Hang; Wu, Yabo; Lu, Jianbo
2016-10-01
The coupled dark energy model provides a possible approach to mitigate the coincidence problem of cosmological standard model. Here, the coupling term is assumed as bar Q = 3Hξxbar rhox, which is related to the interaction rate and energy density of dark energy. We derive the background and perturbation evolution equations for several coupled models. Then, we test these models by currently available cosmic observations which include cosmic microwave background radiation from Planck 2015, baryon acoustic oscillation, type Ia supernovae, fσ8(z) data points from redshift-space distortions, and weak gravitational lensing. The constraint results tell us there is no evidence of interaction at 2σ level, it is very hard to distinguish different coupled models from other ones.
Symmetron dark energy in laboratory experiments.
Upadhye, Amol
2013-01-18
The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.
Cosmological explorations: From primordial non-Gaussianity to dynamical dark energy
NASA Astrophysics Data System (ADS)
Sarkar, Devdeep
Future-generation astronomical observations are expected to significantly improve our understanding of the nature of the constituents of the universe and the inherent mechanisms that led the universe to its current state. In this report I address the heart of some of these projects. I discuss the effect of gravitational lensing on the measurement of the CMB bispectrum, which is a well-known probe of the non-Gaussianity of primordial perturbations. In the context detecting gravity waves, which can open up a unique window to study the physics driving inflation, I discuss the possibility of such a detection through its effect on the cosmic shear. I then focus on the measurements of the Dark Energy Equation of State (EOS) from a combination of future-generation surveys. To this end, I first try to motivate a model-independent approach to constrain the EOS and emphasize the importance of a high-precision measurement of the Hubble constant in this context. I also discuss the consequences of the fact that the estimates of the EOS are intrinsically skewed toward the negative. Finally, I concentrate on two potential sources of uncertainties in the EOS: systematics incorporated due to the lensing of supernova (SN), and systematics based on the the existence of two different SN populations.
A divergence-free parametrization of deceleration parameter for scalar field dark energy
NASA Astrophysics Data System (ADS)
Al Mamon, Abdulla; Das, Sudipta
2016-01-01
In this paper, we have considered a spatially flat FRW universe filled with pressureless matter and dark energy (DE). We have considered a phenomenological parametrization of the deceleration parameter q(z) and from this, we have reconstructed the equation-of-state (EoS) for DE ωϕ(z). This divergence-free parametrization of the deceleration parameter is inspired from one of the most popular parametrization of the DE EoS given by Barboza and Alcaniz [see E. M. Barboza and J. S. Alcaniz, Phys. Lett. B 666 (2008) 415]. Using the combination of datasets (Type Ia Supernova (SN Ia) + Hubble + baryonic acoustic oscillations/cosmic microwave background (BAO/CMB)), we have constrained the transition redshift zt (at which the universe switches from a decelerating to an accelerating phase) and have found the best fit value of zt. We have also compared the reconstructed results of q(z) and ωϕ(z) and have found that the results are compatible with a ΛCDM universe if we consider SN Ia + Hubble data, but inclusion of BAO/CMB data makes q(z) and ωϕ(z) incompatible with ΛCDM model. The potential term for the present toy model is found to be functionally similar to a Higgs potential.
Deformed matter bounce with dark energy epoch
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-09-01
We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.
Dark energy and the anthropic principle
NASA Astrophysics Data System (ADS)
Křížek, Michal
2012-01-01
The Hubble constant is split into two terms H = H1 + H2 , where H1 is a decreasing function due to the Big Bang and the subsequent gravitational interaction that slows the expansion of the Universe and H2 is an increasing function that corresponds to dark energy which accelerates this expansion. For T = 13.7 Gyr we prove that H2( T) > 5 m/(yr AU). This is a quite large number and thus the impact of dark energy, which is spread almost everywhere uniformly, should be observable not only on large scales, but also in our Solar system. In particular, we show that Earth, Mars and other planets were closer to the Sun 4.5 Gyr ago. The recession speed ≈5.3 m/yr of the Earth from the Sun seems to be just right for an almost constant influx of solar energy from the origin of life on Earth up to the present over which time the Sun's luminosity has increased approximately linearly. This presents further support for the Anthropic Principle. Namely, the existence of dark energy guarantees very stable conditions for the development of intelligent life on Earth over a period of 3.5 Gyr.
Dark energy simulacrum in nonlinear electrodynamics
Labun, Lance; Rafelski, Johann
2010-03-15
Quasiconstant external fields in nonlinear electromagnetism generate a global contribution proportional to g{sup {mu}{nu}}in the energy-momentum tensor, thus a simulacrum of dark energy. To provide a thorough understanding of the origin and strength of its effects, we undertake a complete theoretical and numerical study of the energy-momentum tensor T{sup {mu}{nu}}for nonlinear electromagnetism. The Euler-Heisenberg nonlinearity due to quantum fluctuations of spinor and scalar matter fields is considered and contrasted with the properties of classical nonlinear Born-Infeld electromagnetism. We address modifications of charged particle kinematics by strong background fields.
The Discovery of Dark Energy: Historical Reflections
NASA Astrophysics Data System (ADS)
Crease, Robert P.
2009-09-01
The discovery of dark energy by supernovae-culminating in Riess et al. Astron. J. 116, 1998, 1009, and Perlmutter et al. Astrophys. J. 511 1999 565-is likely to become a classic discovery story in the history of science. It exhibits at lease five features that attract the interest of historians: 1) the role of evolving techniques in making a discovery possible; 2) the existence of ambiguities in the discovery process; 3) the existence of ambiguities in discovery announcements; 4) different forms of competition and cooperation; and 5) the way discoveries can open new chapters in science. The dark-energy discovery provides dramatic examples of such features, even apart from the differing memories and judgments that may exist about the events. This article engages in a thought-experiment: what in this discovery story is likely to attract the interest of a science historian looking back on this discovery a hundred years from now?
Scale Dependence of Dark Energy Antigravity
NASA Astrophysics Data System (ADS)
Perivolaropoulos, L.
2002-09-01
We investigate the effects of negative pressure induced by dark energy (cosmological constant or quintessence) on the dynamics at various astrophysical scales. Negative pressure induces a repulsive term (antigravity) in Newton's law which dominates on large scales. Assuming a value of the cosmological constant consistent with the recent SnIa data we determine the critical scale $r_c$ beyond which antigravity dominates the dynamics ($r_c \\sim 1Mpc $) and discuss some of the dynamical effects implied. We show that dynamically induced mass estimates on the scale of the Local Group and beyond are significantly modified due to negative pressure. We also briefly discuss possible dynamical tests (eg effects on local Hubble flow) that can be applied on relatively small scales (a few $Mpc$) to determine the density and equation of state of dark energy.
Simple implementation of general dark energy models
Bloomfield, Jolyon K.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk
2014-03-01
We present a formalism for the numerical implementation of general theories of dark energy, combining the computational simplicity of the equation of state for perturbations approach with the generality of the effective field theory approach. An effective fluid description is employed, based on a general action describing single-scalar field models. The formalism is developed from first principles, and constructed keeping the goal of a simple implementation into CAMB in mind. Benefits of this approach include its straightforward implementation, the generality of the underlying theory, the fact that the evolved variables are physical quantities, and that model-independent phenomenological descriptions may be straightforwardly investigated. We hope this formulation will provide a powerful tool for the comparison of theoretical models of dark energy with observational data.
Dark energy as a kinematic effect
NASA Astrophysics Data System (ADS)
Jennen, H.; Pereira, J. G.
2016-03-01
We present a generalization of teleparallel gravity that is consistent with local spacetime kinematics regulated by the de Sitter group SO(1 , 4) . The mathematical structure of teleparallel gravity is shown to be given by a nonlinear Riemann-Cartan geometry without curvature, which inspires us to build the generalization on top of a de Sitter-Cartan geometry with a cosmological function. The cosmological function is given its own dynamics and naturally emerges nonminimally coupled to the gravitational field in a manner akin to teleparallel dark energy models or scalar-tensor theories in general relativity. New in the theory here presented, the cosmological function gives rise to a kinematic contribution in the deviation equation for the world lines of adjacent free-falling particles. While having its own dynamics, dark energy manifests itself in the local kinematics of spacetime.
Dynamical dark energy: Current constraints and forecasts
NASA Astrophysics Data System (ADS)
Upadhye, Amol; Ishak, Mustapha; Steinhardt, Paul J.
2005-09-01
We consider how well the dark energy equation of state w as a function of redshift z will be measured using current and anticipated experiments. We use a procedure which takes fair account of the uncertainties in the functional dependence of w on z, as well as the parameter degeneracies, and avoids the use of strong prior constraints. We apply the procedure to current data from the Wilkinson Microwave Anisotropy Probe, Sloan Digital Sky Survey, and the supernova searches, and obtain results that are consistent with other analyses using different combinations of data sets. The effects of systematic experimental errors and variations in the analysis technique are discussed. Next, we use the same procedure to forecast the dark energy constraints achievable by the end of the decade, assuming 8 years of Wilkinson Microwave Anisotropy Probe data and realistic projections for ground-based measurements of supernovae and weak lensing. We find the 2σ constraints on the current value of w to be Δw0(2σ)=0.20, and on dw/dz (between z=0 and z=1) to be Δw1(2σ)=0.37. Finally, we compare these limits to other projections in the literature. Most show only a modest improvement; others show a more substantial improvement, but there are serious concerns about systematics. The remaining uncertainty still allows a significant span of competing dark energy models. Most likely, new kinds of measurements, or experiments more sophisticated than those currently planned, are needed to reveal the true nature of dark energy.
Dark energy domination in the Virgocentric flow
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Nasonova, O. G.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2010-09-01
Context. The standard ΛCDM cosmological model implies that all celestial bodies are embedded in a perfectly uniform dark energy background, represented by Einstein's cosmological constant, and experience its repulsive antigravity action. Aims: Can dark energy have strong dynamical effects on small cosmic scales as well as globally? Continuing our efforts to clarify this question, we now focus on the Virgo Cluster and the flow of expansion around it. Methods: We interpret the Hubble diagram from a new database of velocities and distances of galaxies in the cluster and its environment, using a nonlinear analytical model, which incorporates the antigravity force in terms of Newtonian mechanics. The key parameter is the zero-gravity radius, the distance at which gravity and antigravity are in balance. Results: 1. The interplay between the gravity of the cluster and the antigravity of the dark energy background determines the kinematical structure of the system and controls its evolution. 2. The gravity dominates the quasi-stationary bound cluster, while the antigravity controls the Virgocentric flow, bringing order and regularity to the flow, which reaches linearity and the global Hubble rate at distances ⪆15 Mpc. 3. The cluster and the flow form a system similar to the Local Group and its outflow. In the velocity-distance diagram, the cluster-flow structure reproduces the group-flow structure with a scaling factor of about 10; the zero-gravity radius for the cluster system is also 10 times larger. Conclusions: The phase and dynamical similarity of the systems on the scales of 1-30 Mpc suggests that a two-component pattern may be universal for groups and clusters: a quasi-stationary bound central component and an expanding outflow around it, caused by the nonlinear gravity-antigravity interplay with the dark energy dominating in the flow component.
Studying Dark Energy with Galaxy Cluster Surveys
NASA Astrophysics Data System (ADS)
Mohr, J.; Majumdar, S.
2003-05-01
Galaxy cluster surveys provide a powerful means of studying the amount and nature of the dark energy. Cluster surveys are complementary to studies using supernova distance estimates, because the cosmological parameter degeneracies are quite different. The redshift distribution of detected clusters in a deep, large solid angle survey is very sensitive to the dark energy equation of state, but robust constraints require mass--observable relations that connect cluster halo mass to observables such as the X-ray luminosity, Sunyaev-Zel'dovich effect distortion, galaxy light or weak lensing shear. Observed regularity in the cluster population and the application of multiple, independent mass estimators provide evidence that these scaling relations exist in the local and intermediate redshift universe. Large cluster surveys contain enough information to study the dark energy and solve for these scaling relations and their evolution with redshift. This self--calibrating nature of galaxy cluster surveys provides a level of robustness that is extremely attractive. Cosmological constraints from a survey can be improved by including more than just the redshift distribution. Limited followup of as few as 1% of the surveyed clusters to make detailed mass measurements improves the cosmological constraints. Including constraints on the mass function at each redshift provides additional power in solving for the evolution of the mass--observable relation. An analysis of the clustering of the surveyed clusters provides additional cosmological discriminating power. There are several planned or proposed cluster surveys that will take place over the next decade. Observational challenges include estimating cluster redshifts and understanding the survey completeness. These challenges vary with wavelength regime, suggesting that multiwavelength surveys provide the most promising avenue for precise galaxy cluster studies of the dark energy. This work is supported in part by the NASA Long
Probing dark energy via galaxy cluster outskirts
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming
2016-04-01
We present a Bayesian approach to combine Planck data and the X-ray physical properties of the intracluster medium in the virialization region of a sample of 320 galaxy clusters (0.056 < z < 1.24, kT ≳ 3 keV) observed with Chandra. We exploited the high level of similarity of the emission measure in the cluster outskirts as cosmology proxy. The cosmological parameters are thus constrained assuming that the emission measure profiles at different redshift are weakly self-similar, that is their shape is universal, explicitly allowing for temperature and redshift dependence of the gas fraction. This cosmological test, in combination with Planck+SNIa data, allows us to put a tight constraint on the dark energy models. For a constant-w model, we have w = -1.010 ± 0.030 and Ωm = 0.311 ± 0.014, while for a time-evolving equation of state of dark energy w(z) we have Ωm = 0.308 ± 0.017, w0 = -0.993 ± 0.046 and wa = -0.123 ± 0.400. Constraints on the cosmology are further improved by adding priors on the gas fraction evolution from hydrodynamic simulations. Current data favour the cosmological constant with w ≡ -1, with no evidence for dynamic dark energy. We checked that our method is robust towards different sources of systematics, including background modelling, outlier measurements, selection effects, inhomogeneities of the gas distribution and cosmic filaments. We also provided for the first time constraints on which definition of cluster boundary radius is more tenable, namely based on a fixed overdensity with respect to the critical density of the Universe. This novel cosmological test has the capacity to provide a generational leap forward in our understanding of the equation of state of dark energy.
Detecting dark energy with wavelets on the sphere
NASA Astrophysics Data System (ADS)
McEwen, Jason D.
2007-09-01
Dark energy dominates the energy density of our Universe, yet we know very little about its nature and origin. Although strong evidence in support of dark energy is provided by the cosmic microwave background, the relic radiation of the Big Bang, in conjunction with either observations of supernovae or of the large scale structure of the Universe, the verification of dark energy by independent physical phenomena is of considerable interest. We review works that, through a wavelet analysis on the sphere, independently verify the existence of dark energy by detecting the integrated Sachs-Wolfe effect. The effectiveness of a wavelet analysis on the sphere is demonstrated by the highly statistically significant detections of dark energy that are made. Moreover, the detection is used to constrain properties of dark energy. A coherent picture of dark energy is obtained, adding further support to the now well established cosmological concordance model that describes our Universe.
Holographic dark energy with cosmological constant
NASA Astrophysics Data System (ADS)
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao E-mail: mli@itp.ac.cn E-mail: zhangzhh@mail.ustc.edu.cn
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Counting voids to probe dark energy
NASA Astrophysics Data System (ADS)
Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D.; Hirata, Christopher M.
2015-10-01
We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the equation of state of dark energy. Using the Fisher matrix formalism, we find the error ellipses in the w0-wa plane when the equation of state of dark energy is assumed to be of the form wCPL(z )=w0+waz /(1 +z ) . We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST mission, taking into account updated details of the surveys to reach accurate estimates of their power. The theoretical model for the forecast of the number of voids is based on matches between abundances in simulations and the analytical prediction. To take into account the uncertainties within the model, we marginalize over its free parameters when calculating the Fisher matrices. The addition of the void abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the w0-wa parameter space. We, thus, quantify the improvement in the constraints due to the use of voids and demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.
Neutron Interferometric Search for Chameleon Dark Energy
NASA Astrophysics Data System (ADS)
Heacock, Benjamin; Index Collaboration
2015-10-01
The chameleon model for dark energy proposed by Khoury and Weltman is one of the only theories of dark energy which can be tested using laboratory experiments. The theory consists of a nonlinear scalar field whose range and intensity is a sensitive function of the local matter density, with the field becoming nonzero over ranges greater than 100 microns in only low density regions of space. We are searching for the induced phase shift due to a coupling of the chameleon to matter using neutron interferometry. By placing a two-chamber gas cell inside the neutron interferometer, we measure the neutron phase difference between low pressure (0.00025 torr) and higher pressure (0.1 torr) helium gas. The chameleon field is predicted to be suppressed only at the higher pressure, resulting in a phase from the chameleon on the low pressure side of the chamber. A double-difference technique is used to subtract the phase shift from the gas and chamber walls. We will discuss this experiment, ran at the NIST Center for Neutron Research, and present current constraints on the chameleon field. Interferometric Dark Energy eXperiment
Testing the interaction between dark energy and dark matter via the latest observations
He Jianhua; Wang Bin; Abdalla, Elcio
2011-03-15
Cosmological analyses based on currently available observations are unable to rule out a sizeable coupling between dark energy and dark matter. However, the signature of the coupling is not easy to grasp, since the coupling is degenerate with other cosmological parameters, such as the dark energy equation of state and the dark matter abundance. We discuss possible ways to break such degeneracy. Based on the perturbation formalism, we carry out the global fitting by using the latest observational data and get a tight constraint on the interaction between dark sectors. We find that the appropriate interaction can alleviate the coincidence problem.
Present and future evidence for evolving dark energy
Liddle, Andrew R.; Mukherjee, Pia; Parkinson, David; Wang Yun
2006-12-15
We compute the Bayesian evidences for one- and two-parameter models of evolving dark energy, and compare them to the evidence for a cosmological constant, using current data from Type Ia supernova, baryon acoustic oscillations, and the cosmic microwave background. We use only distance information, ignoring dark energy perturbations. We find that, under various priors on the dark energy parameters, {lambda}CDM is currently favored as compared to the dark energy models. We consider the parameter constraints that arise under Bayesian model averaging, and discuss the implication of our results for future dark energy projects seeking to detect dark energy evolution. The model selection approach complements and extends the figure-of-merit approach of the Dark Energy Task Force in assessing future experiments, and suggests a significantly-modified interpretation of that statistic.
NASA Astrophysics Data System (ADS)
2008-01-01
observations show that the temperature changes with radius are much steeper than predicted by the currently favoured models, indicating that most of the near-infrared emission emerges from hot material located very close to the star, that is, within one or two times the Earth-Sun distance (1-2 AU). This also implies that dust cannot exist so close to the star, since the strong energy radiated by the star heats and ultimately destroys the dust grains. ESO PR Photo 03/08 ESO PR Photo 03b/08 The Region Around MWC 147 "We have performed detailed numerical simulations to understand these observations and reached the conclusion that we observe not only the outer dust disc, but also measure strong emission from a hot inner gaseous disc. This suggests that the disc is not a passive one, simply reprocessing the light from the star," explained Kraus. "Instead, the disc is active, and we see the material, which is just transported from the outer disc parts towards the forming star." ESO PR Photo 03/08 ESO PR Photo 03c/08 Close-up on MWC 147 The best-fit model is that of a disc extending out to 100 AU, with the star increasing in mass at a rate of seven millionths of a solar mass per year. "Our study demonstrates the power of ESO's VLTI to probe the inner structure of discs around young stars and to reveal how stars reach their final mass," said Stefan Kraus. More Information The authors report their results in a paper in the Astrophysical Journal ("Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147", by Stefan Kraus, Thomas Preibisch, Keichii Ohnaka").
DARK FLUID: A UNIFIED FRAMEWORK FOR MODIFIED NEWTONIAN DYNAMICS, DARK MATTER, AND DARK ENERGY
Zhao Hongsheng; Li Baojiu E-mail: b.li@damtp.cam.ac.u
2010-03-20
Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and nuLAMBDA theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.
NASA Technical Reports Server (NTRS)
1994-01-01
This Earth Observing System (EOS) directory is divided into two main sections: white and yellow pages. The white pages list alphabetically the names and addresses -- including e-mail, phone, and fax when available -- of all individuals involved with EOS, from graduate students to panel members to program management and more. The yellow pages list the names, affiliation, and phone number of participants divided by project management, program management, individual project participants, interdisciplinary investigations (listed alphabetically by PI), the Science Executive Committee, various panels, platforms, working groups, fellowships, and contractors.
A look to nonlinear interacting Ghost dark energy cosmology
NASA Astrophysics Data System (ADS)
Khurshudyan, Martiros
2016-07-01
In this paper, we organize a look to nonlinear interacting Ghost dark energy cosmology involving a discussion on the thermodynamics of the Ghost dark energy, when the universe is bounded via the Hubble horizon. One of the ways to study a dark energy model, is to reconstruct thermodynamics of it. Ghost dark energy is one of the models of the dark energy which has an explicitly given energy density as a function of the Hubble parameter. There is an active discussion towards various cosmological scenarios, where the Ghost dark energy interacts with the pressureless cold dark matter (CDM). Recently, various models of the varying Ghost dark energy has been suggested, too. To have a comprehensive understanding of suggested models, we will discuss behavior of the cosmological parameters on parameter-redshift z plane. Some discussion on Om and statefinder hierarchy analysis of these models is presented. Moreover, up to our knowledge, suggested forms of interaction between the Ghost dark energy and cold dark matter (CDM) are new, therefore, within obtained results, we provide new contribution to previously discussed models available in the literature. Our study demonstrates that the forms of the interactions considered in the Ghost dark energy cosmology are not exotic and the justification of this is due to the recent observational data.
Dark energy, matter creation and curvature
NASA Astrophysics Data System (ADS)
Cárdenas, Víctor H.
2012-09-01
The most studied way to explain the current accelerated expansion of the universe is to assume the existence of dark energy; a new component that fills the universe, does not form clumps, currently dominates the evolution, and has a negative pressure. In this work I study an alternative model proposed by Lima et al. (Abramo and Lima in Class. Quantum Gravity 13:2953, 1996; Zimdahl in Phys. Rev. D 53:5483, 1996; Zimdahl and Pavón in Mon. Not. R. Astron. Soc. 266:872, 1994), which does not need an exotic equation of state, but assumes instead the existence of gravitational particle creation. Because this model fits the supernova observations as well as the ΛCDM model, I perform in this work a thorough study of this model, considering an explicit spatial curvature. I found that in this scenario we can alleviate the cosmic coincidence problem, basically showing that these two components, dark matter and dark energy, are of the same nature, but they act at different scales. I also shown the inadequacy of some particle creation models, and I study a previously proposed new model that overcomes these difficulties.
A transitioning universe with anisotropic dark energy
NASA Astrophysics Data System (ADS)
Yadav, Anil Kumar
2016-08-01
In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.
Dark Energy and Key Physical Parameters of Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.
We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.
Repulsive gravity model for dark energy
NASA Astrophysics Data System (ADS)
Hohmann, Manuel; Wohlfarth, Mattias N. R.
2010-05-01
We construct a multimetric gravity theory containing N≥3 copies of standard model matter and a corresponding number of metrics. In the Newtonian limit, this theory generates attractive gravitational forces within each matter sector and repulsive forces of the same strength between matter from different sectors. This result demonstrates that the recently proven no-go theorem that forbids gravity theories of this type in N=2 cannot be extended beyond the bimetric case. We apply our theory to cosmology and show that the repulsion between different types of matter may induce the observed accelerating expansion of the universe. In this way dark energy can be explained simply by dark copies of the well-understood standard model.
Interacting vacuum energy in the dark sector
Chimento, L. P.; Carneiro, S.
2015-03-26
We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.
Dark energy and key physical parameters of clusters of galaxies
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Chernin, A. D.
2012-04-01
We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.
Unified Dark Matter and Dark Energy Description in a Chiral Cosmological Model
NASA Astrophysics Data System (ADS)
Abbyazov, Renat R.; Chervon, Sergey V.
2013-03-01
We show the way of dark matter and dark energy presentation via ansatzs on the kinetic energies of the fields in the two-component chiral cosmological model (CCM). To connect a kinetic interaction of dark matter and dark energy with observational data the reconstruction procedure for the chiral metric component h22 and the potential of (self-)interaction V has been developed. The reconstruction of h22 and V for the early and later inflation have been performed. The proposed model is confronted to ΛCDM model as well.
Observational constraints on holographic tachyonic dark energy in interaction with dark matter
Micheletti, Sandro M. R.
2010-05-01
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Constraining interacting dark energy models with latest cosmological observations
NASA Astrophysics Data System (ADS)
Xia, Dong-Mei; Wang, Sai
2016-11-01
The local measurement of H0 is in tension with the prediction of Λ cold dark matter model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on cosmic microwave background, the baryon acoustic oscillation, large-scale structure, supernovae, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.
A Kinematical Approach to Dark Energy Studies
Rapetti, David; Allen, Steven W.; Amin, Mustafa A.; Blandford, Roger D.; /KIPAC, Menlo Park
2006-06-06
We present and employ a new kinematical approach to cosmological ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t) = 1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to the three best available sets of redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t) = j, we measure q{sub 0} = -0.81 {+-} 0.14 and j = 2.16{sub -0.75}{sup +0.81}, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. A standard ''dynamical'' analysis of the same data, employing the Friedmann equations and modeling the dark energy as a fluid with an equation of state parameter, w (constant), gives {Omega}{sub m} = 0.306{sub -0.040}{sup +0.042} and w = -1.15{sub -0.18}{sup +0.14}, also consistent with {Lambda}CDM at about the 1{sigma} level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible. Our results provide further interesting support for the concordance {Lambda}CDM paradigm.
Structure formation in inhomogeneous Early Dark Energy models
Batista, R.C.; Pace, F. E-mail: francesco.pace@port.ac.uk
2013-06-01
We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ{sub c} parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts.
Dark energy properties in DBI theory
Ahn, Changrim; Kim, Chanju; Linder, Eric V.
2009-12-15
The Dirac-Born-Infeld (DBI) action from string theory provides several new classes of dark energy behavior beyond quintessence due to its relativistic kinematics. We constrain parameters of natural potentials and brane tensions with cosmological observations as well as showing how to design these functions for a desired expansion history. We enlarge the attractor solutions, including new ways of obtaining cosmological constant behavior, to the case of generalized DBI theory with multiple branes. An interesting novel signature of DBI attractors is that the sound speed is driven to zero, unlike for quintessence where it is the speed of light.
The Dark Energy Survey CCD imager design
Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Guarino, V.; Kuk, K.; Kuhlmann, S.; Schultz, K.; Schmitt, R.L.; Stefanik, A.; /Fermilab /Ohio State U. /Argonne
2008-06-01
The Dark Energy Survey is planning to use a 3 sq. deg. camera that houses a {approx} 0.5m diameter focal plane of 62 2kx4k CCDs. The camera vessel including the optical window cell, focal plate, focal plate mounts, cooling system and thermal controls is described. As part of the development of the mechanical and cooling design, a full scale prototype camera vessel has been constructed and is now being used for multi-CCD readout tests. Results from this prototype camera are described.
Probing dark energy with atom interferometry
Burrage, Clare; Copeland, Edmund J.; Hinds, E.A. E-mail: Edmund.Copeland@nottingham.ac.uk
2015-03-01
Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.
Imperfect dark energy from kinetic gravity braiding
Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander E-mail: oriol.pujolas@cern.ch E-mail: alexander.vikman@nyu.edu
2010-10-01
We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.
Dark energy from primordial inflationary quantum fluctuations.
Ringeval, Christophe; Suyama, Teruaki; Takahashi, Tomo; Yamaguchi, Masahide; Yokoyama, Shuichiro
2010-09-17
We show that current cosmic acceleration can be explained by an almost massless scalar field experiencing quantum fluctuations during primordial inflation. Provided its mass does not exceed the Hubble parameter today, this field has been frozen during the cosmological ages to start dominating the Universe only recently. By using supernovae data, completed with baryonic acoustic oscillations from galaxy surveys and cosmic microwave background anisotropies, we infer the energy scale of primordial inflation to be around a few TeV, which implies a negligible tensor-to-scalar ratio of the primordial fluctuations. Moreover, our model suggests that inflation lasted for an extremely long period. Dark energy could therefore be a natural consequence of cosmic inflation close to the electroweak energy scale.
Holographic Ricci dark energy as running vacuum
NASA Astrophysics Data System (ADS)
George, Paxy; Mathew, Titus K.
2016-04-01
Holographic Ricci dark energy (DE) that has been proposed ago has faced problems of future singularity. In the present work, we consider the Ricci DE with an additive constant in its density as running vacuum energy. We have analytically solved the Friedmann equations and also the role played by the general conservation law followed by the cosmic components together. We have shown that the running vacuum energy status of the Ricci DE helps to remove the possible future singularity in the model. The additive constant in the density of the running vacuum played an important role, such that, without that, the model predicts either eternal deceleration or eternal acceleration. But along with the additive constant, equivalent to a cosmological constant, the model predicts a late time acceleration in the expansion of the universe, and in the far future of the evolution it tends to de Sitter universe.
De-Santiago, Josue; Cervantes-Cota, Jorge L.
2011-03-15
We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. D 79, 103517 (2009).] with a more general kinetic term that was proposed by Chimento in Phys. Rev. D 69, 123517 (2004). We demonstrate that the model is viable at the background and linear perturbation levels.
Ellis, Richard, S.
2008-02-01
This program is concerned with developing and verifying the validityof observational methods for constraining the properties of dark matter and dark energy in the universe. Excellent progress has been made in comparing observational projects involving weak gravitational lensing using both ground and space-based instruments, in further constraining the nature of dark matter via precise measures of its distribution in clusters of galaxies using strong gravitational lensing, in demonstrating the possible limitations of using distant supernovae in future dark energy missions, and in investigating the requirement for ground-based surveys of baryonic acoustic oscillations.
An accelerating cosmology without dark energy
Steigman, G.; Santos, R.C.; Lima, J.A.S. E-mail: cliviars@astro.iag.usp.br
2009-06-01
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Γ = βH+γH{sub 0}, where H is the Hubble parameter and H{sub 0} is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z{sub eq}, the redshift of the epoch of matter — radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z{sub eq} ≈ 3000 and z ≈ 0) in the evolution of the Universe. The comparison of the parameter values, (β, γ), determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z{sub eq} from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for β = 0 this conflict is only at ∼< 2σ, it worsens as β increases from zero.
Dissipative or conservative cosmology with dark energy?
Szydlowski, Marek Hrycyna, Orest
2007-12-15
All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analyzed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property-acceleration-is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in a one-dimensional potential which is parameterized by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We characterize the class of dark energy models that admit late time de Sitter attractor solution in terms of the potential function of corresponding conservative system. We argue that inclusion of dissipation effects makes the model more realistic because of its structural stability. We also confront viscous models with SNIa observations. The best fitted models are obtained by minimizing the {chi}{sup 2} function which is illustrated by residuals and {chi}{sup 2} levels in the space of model independent parameters. The general conclusion is that SNIa data supports the viscous model without the cosmological constant. The obtained values of {chi}{sup 2} statistic are comparable for both the viscous model and {lambda}CDM model. The Bayesian information criteria are used to compare the models with different power-law parameterization of viscous effects. Our result of this analysis shows that SNIa data supports viscous cosmology more than the {lambda}CDM model if the coefficient in viscosity parameterization is fixed. The Bayes factor is also used to obtain the posterior probability of the model.
Can the Existence of Dark Energy be Directly Detected?
Perl, Martin L.; /SLAC /KIPAC, Menlo Park
2011-11-23
The majority of astronomers and physicists accept the reality of dark energy and also believe that it can only be studied indirectly through observation of the motions of stars and galaxies. In this paper I open the experimental question of whether it is possible to directly detect dark energy through the presence of dark energy density. Two thirds of this paper outlines the major aspects of dark energy density as now comprehended by the astronomical and physics community. The final third summarizes various proposals for direct detection of dark energy density or its possible effects. At this time I do not have a fruitful answer to the question: Can the Existence of Dark Energy Be Directly Detected?
NASA Technical Reports Server (NTRS)
Leberl, Franz; Karspeck, Milan; Millot, Michel; Maurice, Kelly; Jackson, Matt
1992-01-01
This final report summarizes the work done from mid-1989 until January 1992 to develop a prototype set of tools for the analysis of EOS-type images. Such images are characterized by great multiplicity and quantity. A single 'snapshot' of EOS-type imagery may contain several hundred component images so that on a particular pixel, one finds multiple gray values. A prototype EOS-sensor, AVIRIS, has 224 gray values at each pixel. The work focused on the ability to utilize very large images and continuously roam through those images, zoom and be able to hold more than one black and white or color image, for example for stereo viewing or for image comparisons. A second focus was the utilization of so-called 'image cubes', where multiple images need to be co-registered and then jointly analyzed, viewed, and manipulated. The target computer platform that was selected was a high-performance graphics superworkstation, Stardent 3000. This particular platform offered many particular graphics tools such as the Application Visualization System (AVS) or Dore, but it missed availability of commercial third-party software for relational data bases, image processing, etc. The project was able to cope with these limitations and a phase-3 activity is currently being negotiated to port the software and enhance it for use with a novel graphics superworkstation to be introduced into the market in the Spring of 1993.
The growth of structure in interacting dark energy models
Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte E-mail: roy.maartens@port.ac.uk
2009-07-01
If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a{sup −3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction generalises the simple cases where one dark fluid decays into the other. In order to calculate the effect on structure formation, we perform a careful analysis of the perturbed interaction and its effect on peculiar velocities. Assuming a normalization to today's values of dark matter density and overdensity, the signal of the interaction is an enhancement (suppression) of both the growth factor and the lensing power, when the energy transfer in the background is from dark matter to dark energy (dark energy to dark matter)
Wieman, H.H.; EOS Collaboration
1994-05-01
The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z.
DESTINY: The Dark Energy Space Telescope
NASA Astrophysics Data System (ADS)
Lauer, T. R.; Destiny Science Team
2005-08-01
The Dark Energy Space Telescope (DESTINY) is an all-grism NIR 1.8-m survey camera optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SN) over the redshift range 0.5 < z < 1.7 for determining cosmological distances, measuring the expansion rate of the Universe as a function of time, and characterizing the nature of the so-called ``dark energy" component of the Universe. SN will be discovered by repeated imaging of a 7.5-sq.-deg. area located at the north ecliptic poles. Grism spectra with resolving power λ/Δλ = R˜75 will provide broad-band spectrophotometry, redshifts, SN classification, and valuable time-resolved diagnostic data for understanding the SN explosion physics. This methodology features only a single mode of operation with no time-critical interactions, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared with SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of being able to observe a large field of view simultaneously over a full octave in wavelength makes this approach highly competitive.
DESTINY, the Dark Energy Space Telescope
NASA Astrophysics Data System (ADS)
Lauer, T. R.; Morse, J. A.; Destiny Science Team
2003-12-01
We describe a mission concept for a 1.8-meter near-infrared (NIR) grism-mode space telescope optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SNe) over the redshift range 0.5 < z < 1.7 for determining cosmological distances, measuring the expansion rate of the Universe as a function of time, and characterizing the nature of dark energy. The central concept for our proposed Dark Energy Space Telescope (DESTINY) is an all-grism NIR survey camera. SNe will be discovered by repeated imaging of an area located at the north ecliptic pole. Grism spectra with resolving power l/Dl = R * 100 will provide broad-band spectrophotometry, redshifts, SNe classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. Our approach features only a single mode of operation, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared to SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of observing a large field-of-view over a full octave in wavelength simultaneously makes this approach highly competitive.
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys. PMID:23215174
Examining the evidence for dynamical dark energy.
Zhao, Gong-Bo; Crittenden, Robert G; Pogosian, Levon; Zhang, Xinmin
2012-10-26
We apply a new nonparametric Bayesian method for reconstructing the evolution history of the equation of state w of dark energy, based on applying a correlated prior for w(z), to a collection of cosmological data. We combine the latest supernova (SNLS 3 year or Union 2.1), cosmic microwave background, redshift space distortion, and the baryonic acoustic oscillation measurements (including BOSS, WiggleZ, and 6dF) and find that the cosmological constant appears consistent with current data, but that a dynamical dark energy model which evolves from w<-1 at z~0.25 to w>-1 at higher redshift is mildly favored. Estimates of the Bayesian evidence show little preference between the cosmological constant model and the dynamical model for a range of correlated prior choices. Looking towards future data, we find that the best fit models for current data could be well distinguished from the ΛCDM model by observations such as Planck and Euclid-like surveys.
The effective field theory of dark energy
NASA Astrophysics Data System (ADS)
Gubitosi, Giulia; Piazza, Federico; Vernizzi, Filippo
2013-02-01
We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.
HUBBLE PARAMETER MEASUREMENT CONSTRAINTS ON DARK ENERGY
Farooq, Omer; Mania, Data; Ratra, Bharat E-mail: mania@phys.ksu.edu
2013-02-20
We use 21 Hubble parameter versus redshift data points from Simon et al., Gaztanaga et al., Stern et al., and Moresco et al. to place constraints on model parameters of constant and time-evolving dark energy cosmologies. The inclusion of the eight new measurements results in H(z) constraints more restrictive than those derived by Chen and Ratra. These constraints are now almost as restrictive as those that follow from current Type Ia supernova (SNIa) apparent magnitude versus redshift data, which now more carefully account for systematic uncertainties. This is a remarkable result. We emphasize, however, that SNIa data have been studied for a longer time than the H(z) data, possibly resulting in a better estimate of potential systematic errors in the SNIa case. A joint analysis of the H(z), baryon acoustic oscillation peak length scale, and SNIa data favors a spatially flat cosmological model currently dominated by a time-independent cosmological constant but does not exclude slowly evolving dark energy.
The Dark Energy Survey Camera (DECam)
Diehl, H.Thomas; /Fermilab
2011-09-09
The Dark Energy Survey (DES) is a next generation optical survey aimed at understanding the expansion rate of the Universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera that will be mounted at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory. CCD production has finished, yielding roughly twice the required 62 2k x 4k detectors. The construction of DECam is nearly finished. Integration and commissioning on a 'telescope simulator' of the major hardware and software components, except for the optics, recently concluded at Fermilab. Final assembly of the optical corrector has started at University College, London. Some components have already been received at CTIO. 'First-light' will be sometime in 2012. This oral presentation concentrates on the technical challenges involved in building DECam (and how we overcame them), and the present status of the instrument.
The Dark Energy Survey instrument design
Flaugher, B.; /Fermilab
2006-05-01
We describe a new project, the Dark Energy Survey (DES), aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of {approx}5%, with four complementary techniques. The survey will use a new 3 sq. deg. mosaic camera (DECam) mounted at the prime focus of the Blanco 4m telescope at the Cerro-Tololo International Observatory (CTIO). DECam includes a large mosaic camera, a five element optical corrector, four filters (g,r,i,z), and the associated infrastructure for operation in the prime focus cage. The focal plane consists of 62 2K x 4K CCD modules (0.27''/pixel) arranged in a hexagon inscribed within the 2.2 deg. diameter field of view. We plan to use the 250 micron thick fully-depleted CCDs that have been developed at the Lawrence Berkeley National Laboratory (LBNL). At Fermilab, we will establish a packaging factory to produce four-side buttable modules for the LBNL devices, as well as to test and grade the CCDs. R&D is underway and delivery of DECam to CTIO is scheduled for 2009.
Probing Dark Energy with Constellation-X
Rapetti, David; Allen, Steven W.; /KIPAC, Menlo Park
2006-09-08
Constellation-X (Con-X) will carry out two powerful and independent sets of tests of dark energy based on X-ray observations of galaxy clusters, providing comparable accuracy to other leading dark energy probes. The first group of tests will measure the absolute distances to clusters, primarily using measurements of the X-ray gas mass fraction in the largest, dynamically relaxed clusters, but with additional constraining power provided by follow-up observations of the Sunyaev-Zel'dovich (SZ) effect. As with supernovae studies, such data determine the transformation between redshift and true distance, d(z), allowing cosmic acceleration to be measured directly. The second, independent group of tests will use the exquisite spectroscopic capabilities of Con-X to determine scaling relations between X-ray observables and mass. Together with forthcoming X-ray and SZ cluster surveys, these data will help to constrain the growth of structure, which is also a strong function of cosmological parameters.
Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx
2013-05-01
We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.
The Hubble constant and dark energy from cosmological distance measures
Ichikawa, Kazuhide; Takahashi, Tomo E-mail: tomot@cc.saga-u.ac.jp
2008-04-15
We study how the determination of the Hubble constant from cosmological distance measures is affected by models of dark energy and vice versa. For this purpose, constraints on the Hubble constant and dark energy are investigated using the cosmological observations of cosmic microwave background, baryon acoustic oscillations and type Ia supernovae. When one investigates dark energy, the Hubble constant is often a nuisance parameter; thus it is usually marginalized over. On the other hand, when one focuses on the Hubble constant, simple dark energy models such as a cosmological constant and a constant equation of state are usually assumed. Since we do not know the nature of dark energy yet, it is interesting to investigate the Hubble constant assuming some types of dark energy and see to what extent the constraint on the Hubble constant is affected by the assumption concerning dark energy. We show that the constraint on the Hubble constant is not affected much by the assumption for dark energy. We furthermore show that this holds true even if we remove the assumption that the universe is flat. We also discuss how the prior on the Hubble constant affects the constraints on dark energy and/or the curvature of the universe.
Nonparametric dark energy reconstruction from supernova data.
Holsclaw, Tracy; Alam, Ujjaini; Sansó, Bruno; Lee, Herbert; Heitmann, Katrin; Habib, Salman; Higdon, David
2010-12-10
Understanding the origin of the accelerated expansion of the Universe poses one of the greatest challenges in physics today. Lacking a compelling fundamental theory to test, observational efforts are targeted at a better characterization of the underlying cause. If a new form of mass-energy, dark energy, is driving the acceleration, the redshift evolution of the equation of state parameter w(z) will hold essential clues as to its origin. To best exploit data from observations it is necessary to develop a robust and accurate reconstruction approach, with controlled errors, for w(z). We introduce a new, nonparametric method for solving the associated statistical inverse problem based on Gaussian process modeling and Markov chain Monte Carlo sampling. Applying this method to recent supernova measurements, we reconstruct the continuous history of w out to redshift z=1.5.
Cosmological anisotropy from non-comoving dark matter and dark energy
Harko, Tiberiu; Lobo, Francisco S. N. E-mail: flobo@cii.fc.ul.pt
2013-07-01
We consider a cosmological model in which the two major fluid components of the Universe, dark energy and dark matter, flow with distinct four-velocities. This cosmological configuration is equivalent to a single anisotropic fluid, expanding with a four-velocity that is an appropriate combination of the two fluid four-velocities. The energy density of the single cosmological fluid is larger than the sum of the energy densities of the two perfect fluids, i.e., dark energy and dark matter, respectively, and contains a correction term due to the anisotropy generated by the differences in the four-velocities. Furthermore, the gravitational field equations of the two-fluid anisotropic cosmological model are obtained for a Bianchi type I geometry. By assuming that the non-comoving motion of the dark energy and dark matter induces small perturbations in the homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker type cosmological background, and that the anisotropy parameter is small, the equations of the cosmological perturbations due to the non-comoving nature of the two major components are obtained. The time evolution of the metric perturbations is explicitly obtained for the cases of the exponential and power law background cosmological expansion. The imprints of a non-comoving dark energy - dark matter on the Cosmic Microwave Background and on the luminosity distance are briefly discussed, and the temperature anisotropies and the quadrupole are explicitly obtained in terms of the metric perturbations of the flat background metric. Therefore, if there is a slight difference between the four-velocities of the dark energy and dark matter, the Universe would acquire some anisotropic characteristics, and its geometry will deviate from the standard FLRW one. In fact, the recent Planck results show that the presence of an intrinsic large scale anisotropy in the Universe cannot be excluded a priori, so that the model presented in this work can be considered as a
Dark matter and dark energy from the solution of the strong CP problem.
Mainini, Roberto; Bonometto, Silvio A
2004-09-17
The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.
Interacting agegraphic dark energy models in phase space
Lemets, O.A.; Yerokhin, D.A.; Zazunov, L.G. E-mail: denyerokhin@gmail.com
2011-01-01
Agegraphic dark energy, has been recently proposed, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In the first part of the article we study the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. The phase space analysis was made and the critical points were found, one of which is the attractor corresponding to an accelerated expanding Universe. Recent observations of near supernova show that the acceleration of Universe decreases. This phenomenon is called the transient acceleration. In the second part of Article we consider the 3-component Universe composed of a scalar field, interacting with the dark matter on the agegraphic dark energy background. We show that the transient acceleration appears in frame of such a model. The obtained results agree with the observations.
The traces of anisotropic dark energy in light of Planck
Cardona, Wilmar; Kunz, Martin; Hollenstein, Lukas E-mail: lukas.hollenstein@zhaw.ch
2014-07-01
We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.
Constraining interacting dark energy models with latest cosmological observations
NASA Astrophysics Data System (ADS)
Xia, Dong-Mei; Wang, Sai
2016-08-01
The local measurement of H0 is in tension with the prediction of ΛCDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.
Weak lensing in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Troxel, Michael
2016-03-01
I will present the current status of weak lensing results from the Dark Energy Survey (DES). DES will survey 5000 square degrees in five photometric bands (grizY), and has already provided a competitive weak lensing catalog from Science Verification data covering just 3% of the final survey footprint. I will summarize the status of shear catalog production using observations from the first year of the survey and discuss recent weak lensing science results from DES. Finally, I will report on the outlook for future cosmological analyses in DES including the two-point cosmic shear correlation function and discuss challenges that DES and future surveys will face in achieving a control of systematics that allows us to take full advantage of the available statistical power of our shear catalogs.
Calibration Monitor for Dark Energy Experiments
Kaiser, M. E.
2009-11-23
The goal of this program was to design, build, test, and characterize a flight qualified calibration source and monitor for a Dark Energy related experiment: ACCESS - 'Absolute Color Calibration Experiment for Standard Stars'. This calibration source, the On-board Calibration Monitor (OCM), is a key component of our ACCESS spectrophotometric calibration program. The OCM will be flown as part of the ACCESS sub-orbital rocket payload in addition to monitoring instrument sensitivity on the ground. The objective of the OCM is to minimize systematic errors associated with any potential changes in the ACCESS instrument sensitivity. Importantly, the OCM will be used to monitor instrument sensitivity immediately after astronomical observations while the instrument payload is parachuting to the ground. Through monitoring, we can detect, track, characterize, and thus correct for any changes in instrument senstivity over the proposed 5-year duration of the assembled and calibrated instrument.
Neutrino dark energy in grand unified theories
Bhatt, Jitesh R.; Sarkar, Utpal; Singh, Santosh K.; Gu, P.-H.
2009-10-01
We studied a left-right symmetric model that can accommodate the neutrino dark energy ({nu}DE) proposal. The type-III seesaw mechanism is implemented to give masses to the neutrinos. After explaining the model, we study the consistency of the model by minimizing the scalar potential and obtaining the conditions for the required vacuum expectation values of the different scalar fields. This model is then embedded in an SO(10) grand unified theory and the allowed symmetry breaking scales are determined by the condition of the gauge coupling unification. Although SU(2){sub R} breaking is required to be high, its Abelian subgroup U(1){sub R} is broken in the TeV range, which can then give the required neutrino masses and predicts new gauge bosons that could be detected at LHC. The neutrino masses are studied in detail in this model, which shows that at least 3 singlet fermions are required.
Does Cometary Panspermia Falsify Dark Energy?
NASA Astrophysics Data System (ADS)
Gibson, Carl H.
2011-10-01
The 2011 Nobel Prize for physics has been awarded to Saul Perlmutter, Brian P. Schmidt, and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae", judged to be the "most important discovery or invention within the field of physics" (Excerpt from the will of Alfred Nobel). Are we forced by this claimed discovery to believe the universe is dominated by anti- gravitational dark energy? Can the discovery be falsified? Because life as we observe it on Earth is virtually impossible by the standard ΛCDMHC model, extraterrestrial life and cometary panspermia may provide the first definitive falsification of a Nobel Prize in Physics since its first award in 1901 to Wilhelm Röntgen for his discovery of X-rays.
Dark energy camera installation at CTIO: overview
NASA Astrophysics Data System (ADS)
Abbott, Timothy M.; Muñoz, Freddy; Walker, Alistair R.; Smith, Chris; Montane, Andrés.; Gregory, Brooke; Tighe, Roberto; Schurter, Patricio; van der Bliek, Nicole S.; Schumacher, German
2012-09-01
The Dark Energy Camera (DECam) has been installed on the V. M. Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. This major upgrade to the facility has required numerous modifications to the telescope and improvements in observatory infrastructure. The telescope prime focus assembly has been entirely replaced, and the f/8 secondary change procedure radically changed. The heavier instrument means that telescope balance has been significantly modified. The telescope control system has been upgraded. NOAO has established a data transport system to efficiently move DECam's output to the NCSA for processing. The observatory has integrated the DECam highpressure, two-phase cryogenic cooling system into its operations and converted the Coudé room into an environmentally-controlled instrument handling facility incorporating a high quality cleanroom. New procedures to ensure the safety of personnel and equipment have been introduced.
About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model
NASA Astrophysics Data System (ADS)
Fiscaletti, Davide
2016-10-01
A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space-time similar to the curvature produced by a "dark energy" density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.
Dynamics of minimally coupled dark energy in spherical halos of dark matter
NASA Astrophysics Data System (ADS)
Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij
2016-03-01
We analyse the evolution of scalar field dark energy in the spherical halos of dark matter at the late stages of formation of gravitationally bound systems in the expanding Universe. The dynamics of quintessential dark energy at the center of dark matter halo strongly depends on the value of effective sound speed c_s (in units of speed of light). If c_s˜ 1 (classical scalar field) then the dark energy in the gravitationally bound systems is only slightly perturbed and its density is practically the same as in cosmological background. The dark energy with small value of sound speed (c_s<0.1), on the contrary, is important dynamical component of halo at all stages of their evolution: linear, non-linear, turnaround, collapse, virialization and later up to current epoch. These properties of dark energy can be used for constraining the value of effective sound speed c_s by comparison the theoretical predictions with observational data related to the large scale gravitationally bound systems.
Baryon Acoustic Oscillation Intensity Mapping of Dark Energy
NASA Astrophysics Data System (ADS)
Chang, Tzu-Ching; Pen, Ue-Li; Peterson, Jeffrey B.; McDonald, Patrick
2008-03-01
The expansion of the Universe appears to be accelerating, and the mysterious antigravity agent of this acceleration has been called “dark energy.” To measure the dynamics of dark energy, baryon acoustic oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as 109 individual galaxies, by observing the 21 cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three-dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.
The CHASE laboratory search for chameleon dark energy
Steffen, Jason H.; /Fermilab
2010-11-01
A scalar field is a favorite candidate for the particle responsible for dark energy. However, few theoretical means exist that can simultaneously explain the observed acceleration of the Universe and evade tests of gravity. The chameleon mechanism, whereby the properties of a particle depend upon the local environment, is one possible avenue. We present the results of the Chameleon Afterglow Search (CHASE) experiment, a laboratory probe for chameleon dark energy. CHASE marks a significant improvement other searches for chameleons both in terms of its sensitivity to the photon/chameleon coupling as well as its sensitivity to the classes of chameleon dark energy models and standard power-law models. Since chameleon dark energy is virtually indistinguishable from a cosmological constant, CHASE tests dark energy models in a manner not accessible to astronomical surveys.
Induced gravity and the attractor dynamics of dark energy/dark matter
Cervantes-Cota, Jorge L.; Putter, Roland de; Linder, Eric V. E-mail: rdeputter@berkeley.edu
2010-12-01
Attractor solutions that give dynamical reasons for dark energy to act like the cosmological constant, or behavior close to it, are interesting possibilities to explain cosmic acceleration. Coupling the scalar field to matter or to gravity enlarges the dynamical behavior; we consider both couplings together, which can ameliorate some problems for each individually. Such theories have also been proposed in a Higgs-like fashion to induce gravity and unify dark energy and dark matter origins. We explore restrictions on such theories due to their dynamical behavior compared to observations of the cosmic expansion. Quartic potentials in particular have viable stability properties and asymptotically approach general relativity.
Technically natural dark energy from Lorentz breaking
Blas, D.
2011-07-01
We construct a model of dark energy with a technically natural small contribution to cosmic acceleration, i.e. this contribution does not receive corrections from other scales in the theory. The proposed acceleration mechanism appears generically in the low-energy limit of gravity theories with violation of Lorentz invariance that contain a derivatively coupled scalar field Θ. The latter may be the Goldstone field of a broken global symmetry. The model, that we call ΘCDM, is a valid effective field theory up to a high cutoff just a few orders of magnitude below the Planck scale. Furthermore, it can be ultraviolet-completed in the context of Hořava gravity. We discuss the observational predictions of the model. Even in the absence of a cosmological constant term, the expansion history of the Universe is essentially indistinguishable from that of ΛCDM. The difference between the two theories appears at the level of cosmological perturbations. We find that in ΘCDM the matter power spectrum is enhanced at subhorizon scales compared to ΛCDM. This property can be used to discriminate the model from ΛCDM with current cosmological data.
Planck constraints on holographic dark energy
Li, Miao; Zhang, Zhenhui; Li, Xiao-Dong; Ma, Yin-Zhe; Zhang, Xin E-mail: xiaodongli@kias.re.kr E-mail: zhangxin@mail.neu.edu.cn
2013-09-01
We perform a detailed investigation on the cosmological constraints on the holographic dark energy (HDE) model by using the Plank data. We find that HDE can provide a good fit to the Plank high-l (l ∼> 40) temperature power spectrum, while the discrepancy at l ≅ 20-40 found in the ΛCDM model remains unsolved in the HDE model. The Plank data alone can lead to strong and reliable constraint on the HDE parameter c. At the 68% confidence level (CL), we obtain c = 0.508 ± 0.207 with Plank+WP+lensing, favoring the present phantom behavior of HDE at the more than 2σ CL. By combining Plank+WP with the external astrophysical data sets, i.e. the BAO measurements from 6dFGS+SDSS DR7(R)+BOSS DR9, the direct Hubble constant measurement result (H{sub 0} = 73.8 ± 2.4 kms{sup −1}Mpc{sup −1}) from the HST, the SNLS3 supernovae data set, and Union2.1 supernovae data set, we get the 68% CL constraint results c = 0.484 ± 0.070, 0.474 ± 0.049, 0.594 ± 0.051, and 0.642 ± 0.066, respectively. The constraints can be improved by 2%-15% if we further add the Plank lensing data into the analysis. Compared with the WMAP-9 results, the Plank results reduce the error by 30%-60%, and prefer a phantom-like HDE at higher significant level. We also investigate the tension between different data sets. We find no evident tension when we combine Plank data with BAO and HST. Especially, we find that the strong correlation between Ω{sub m}h{sup 3} and dark energy parameters is helpful in relieving the tension between the Plank and HST measurements. The residual value of χ{sup 2}{sub Plank+WP+HST}−χ{sup 2}{sub Plank+WP} is 7.8 in the ΛCDM model, and is reduced to 1.0 or 0.3 if we switch the dark energy to w model or the holographic model. When we introduce supernovae data sets into the analysis, some tension appears. We find that the SNLS3 data set is in tension with all other data sets; for example, for the Plank+WP, WMAP-9 and BAO+HST, the corresponding Δχ{sup 2} is equal to 6
A Possible Solution to the Smallness Problem of Dark Energy
Chen, Pisin; Gu, Je-An; /Taiwan, Natl. Taiwan U.
2005-07-08
The smallness of the dark energy density has been recognized as the most crucial difficulty in understanding dark energy and also one of the most important questions in the new century. In a recent paper[1], we proposed a new dark energy model in which the smallness of the cosmological constant is naturally achieved by invoking the Casimir energy in a supersymmetry-breaking brane-world. In this paper we review the basic notions of this model. Various implications, perspectives, and subtleties of this model are briefly discussed.
Constraining neutrinos and dark energy with galaxy clustering in the dark energy survey
NASA Astrophysics Data System (ADS)
Zablocki, Alan
2016-08-01
We determine the forecast errors on the absolute neutrino mass scale and the equation of state of dark energy by combining synthetic data from the Dark Energy Survey (DES) and the cosmic microwave background Planck surveyor. We use angular clustering of galaxies for DES in seven redshift shells up to z ˜1.7 including cross-correlations between different redshift shells. We study models with massless and massive neutrinos and three different dark energy models: Λ cold dark matter (CDM) (w =-1 ), w CDM (constant w ), and waCDM [evolving equation of state parameter w (a )=w0+wa(1 -a )]. We include the impact of uncertainties in modeling galaxy bias using a constant and a redshift-evolving bias model. For the Λ CDM model we obtain an upper limit for the sum of neutrino masses from DES +Planck of Σ mν<0.08 eV (95% C.L.) for a fiducial mass of Σ mν=0.047 eV , with a 1 σ error of 0.02 eV, assuming perfect knowledge of galaxy bias. For the w CDM model the limit is Σ mν<0.10 eV . For a w CDM model where galaxy bias evolves with redshift, the upper limit on the sum of neutrino masses increases to 0.29 eV. DES will be able to place competitive upper limits on the sum of neutrino masses of 0.1-0.3 eV and could therefore strongly constrain the inverted mass hierarchy of neutrinos. In a w CDM model the 1 σ error on constant w is Δ w =0.03 from DES galaxy clustering and Planck. Allowing Σ mν as a free parameter increases the error on w by a factor of 2, with Δ w =0.06 . In a waCDM model, in which the dark energy equation of state varies with time, the errors are Δ w0=0.2 and Δ wa=0.42 . Including neutrinos and redshift-dependent galaxy bias increases the errors to Δ w0=0.39 and Δ wa=0.99 .
Search for dark energy potentials in quintessence
NASA Astrophysics Data System (ADS)
Muromachi, Yusuke; Okabayashi, Akira; Okada, Daiki; Hara, Tetsuya; Itoh, Yutaka
2015-09-01
The time evolution of the equation of state w for quintessence models with a scalar field as dark energy is studied up to the third derivative big (d^3w/da^3big ) with respect to the scale factor a, in order to predict future observations and specify the scalar potential parameters with the observables. The third derivative of w for general potential V is derived and applied to several types of potentials. They are the inverse power law big (V=M^{4+α }/Q^{α }big ), the exponential big (V=M^4exp {β M/Q}big ), the mixed big (V=M^{4+γ }exp {β M/Q}/Q^{γ }big ), the cosine big (V=M^4[cos (Q/f)+1]big ), and the Gaussian types big (V=M^4exp big {-Q^2/σ ^2big }big ), which are prototypical potentials for the freezing and thawing models. If the parameter number for a potential form is n, it is necessary to find at least n+2 independent observations to identify the potential form and the evolution of the scalar field (Q and dot {Q}). Such observations would be the values of Ω _Q, w, dw/da,ldots , dw^n/da^n. From these specific potentials, we can predict the n+1 and higher derivatives of w: dw^{n+1}/da^{n+1},ldots . Since four of the abovementioned potentials have two parameters, it is necessary to calculate the third derivative of w for them to estimate the predicted values. If they are tested observationally, it will be understood whether the dark energy can be described by a scalar field with this potential. At least it will satisfy the necessary conditions. Numerical analysis for d^3w/da^3 is performed with some specified parameters in the investigated potentials, except for the mixed one. It becomes possible to distinguish the potentials by accurately observing dw/da and d^2w/da^2 for some parameters.
Cosmological consequences of interacting modified holographic Ricci dark energy
NASA Astrophysics Data System (ADS)
Chattopadhyay, Surajit
2016-07-01
In this present work, we have studied various aspects of modified holographic Ricci dark energy interacting with pressureless dark matter in a flat Friedman-Robertson-Walker universe. We have observed that reconstructed Hubble parameter H={dot{a}}/{a}, expressed as a function of redshift z=a^{-1}-1, exhibits an increasing pattern with evolution of the universe. The equation of state parameter has behaved like ``quintessence" for various combinations of α and β. Deceleration parameter has stayed in negative level and this has indicated accelerated expansion of the universe. Fractional densities expressed as function of z has indicated transition of the universe from a matter dominated to dark energy dominated phase. Finally we have created statefinder trajectories in {r-s} plane and we have observed that for modified holographic Ricci dark energy interacting with pressureless dark matter it is possible to attain ΛCDM phase of the universe.
New constraints on interacting dark energy from cosmic chronometers
NASA Astrophysics Data System (ADS)
Nunes, Rafael C.; Pan, Supriya; Saridakis, Emmanuel N.
2016-07-01
We use the latest compilation of observational Hubble parameter measurements estimated with the differential evolution of cosmic chronometers, in combination with the local value of the Hubble constant recently measured with 2.4% precision, to constrain the cosmological scenario where dark energy interacts directly with the dark matter sector. To diminish the degeneracy between the parameters we additionally consider standard probes, such as supernovae type Ia from joint light-curve analysis samples, baryon acoustic oscillation distance measurements (BAO), and cosmic microwave background data from Planck 2015 estimations. Our analysis shows that the direct interaction between dark energy and dark matter is mildly favored, while the dark energy equation-of-state parameter is w <-1 at a 3 σ confidence level.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector. PMID:27517328
NASA Astrophysics Data System (ADS)
Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavón, D.
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Emergent cosmology, inflation and dark energy
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo; Herrera, Ramón; Labrana, Pedro; Nissimov, Emil; Pacheva, Svetlana
2015-02-01
A new class of gravity-matter models defined in terms of two independent non-Riemannian volume forms (alternative generally covariant integration measure densities) on the space-time manifold are studied in some detail. These models involve an additional (square of the scalar curvature) term as well as scalar matter field potentials of appropriate form so that the pertinent action is invariant under global Weyl-scale symmetry. Scale invariance is spontaneously broken upon integration of the equations of motion for the auxiliary volume-form degrees of freedom. After performing transition to the physical Einstein frame we obtain: (1) an effective potential for the scalar field with two flat regions which allows for a unified description of both early universe inflation as well as of present dark energy epoch; (2) for a definite parameter range the model possesses a non-singular "emergent universe" solution which describes an initial phase of evolution that precedes the inflationary phase; (3) for a reasonable choice of the parameters the present model conforms to the Planck Collaboration data.
The Dark Energy Survey Data Management System
Sevilla, I.; Armstrong, R.; Jarvis, M.; Bertin, E.; Carlson, A.; Desai, S.; Mohr, J.; Daues, G.; Gower, M.; Gruendl, R.; Petravick, D.; /Illinois U., Urbana /Illinois U., Urbana /Chicago U. /Fermilab /Brookhaven /Harvard-Smithsonian Ctr. Astrophys.
2011-09-01
The Dark Energy Survey (DES) is a project with the goal of building, installing and exploiting a new 74 CCD-camera at the Blanco telescope, in order to study the nature of cosmic acceleration. It will cover 5000 square degrees of the southern hemisphere sky and will record the positions and shapes of 300 million galaxies up to redshift 1.4. The survey will be completed using 525 nights during a 5-year period starting in 2012. About O(1 TB) of raw data will be produced every night, including science and calibration images. The DES data management system has been designed for the processing, calibration and archiving of these data. It is being developed by collaborating DES institutions, led by NCSA. In this contribution, we describe the basic functions of the system, what kind of scientific codes are involved and how the Data Challenge process works, to improve simultaneously the Data Management system algorithms and the Science Working Group analysis codes.
Cooling the dark energy camera instrument
Schmitt, R.L.; Cease, H.; DePoy, D.; Diehl, H.T.; Estrada, J.; Flaugher, B.; Kuhlmann, S.; Onal, Birce; Stefanik, A.; /Fermilab
2008-06-01
DECam, camera for the Dark Energy Survey (DES), is undergoing general design and component testing. For an overview see DePoy, et al in these proceedings. For a description of the imager, see Cease, et al in these proceedings. The CCD instrument will be mounted at the prime focus of the CTIO Blanco 4m telescope. The instrument temperature will be 173K with a heat load of 113W. In similar applications, cooling CCD instruments at the prime focus has been accomplished by three general methods. Liquid nitrogen reservoirs have been constructed to operate in any orientation, pulse tube cryocoolers have been used when tilt angles are limited and Joule-Thompson or Stirling cryocoolers have been used with smaller heat loads. Gifford-MacMahon cooling has been used at the Cassegrain but not at the prime focus. For DES, the combined requirements of high heat load, temperature stability, low vibration, operation in any orientation, liquid nitrogen cost and limited space available led to the design of a pumped, closed loop, circulating nitrogen system. At zenith the instrument will be twelve meters above the pump/cryocooler station. This cooling system expected to have a 10,000 hour maintenance interval. This paper will describe the engineering basis including the thermal model, unbalanced forces, cooldown time, the single and two-phase flow model.
Quantum Yang-Mills Dark Energy
NASA Astrophysics Data System (ADS)
Pasechnik, Roman
2016-02-01
In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.
Essential building blocks of dark energy
Gleyzes, Jerome; Vernizzi, Filippo; Langlois, David; Piazza, Federico E-mail: langlois@apc.univ-paris7.fr E-mail: filippo.vernizzi@cea.fr
2013-08-01
We propose a minimal description of single field dark energy/modified gravity within the effective field theory formalism for cosmological perturbations, which encompasses most existing models. We start from a generic Lagrangian given as an arbitrary function of the lapse and of the extrinsic and intrinsic curvature tensors of the time hypersurfaces in unitary gauge, i.e. choosing as time slicing the uniform scalar field hypersurfaces. Focusing on linear perturbations, we identify seven Lagrangian operators that lead to equations of motion containing at most two (space or time) derivatives, the background evolution being determined by the time-dependent coefficients of only three of these operators. We then establish a dictionary that translates any existing or future model whose Lagrangian can be written in the above form into our parametrized framework. As an illustration, we study Horndeski's — or generalized Galileon — theories and show that they can be described, up to linear order, by only six of the seven operators mentioned above. This implies, remarkably, that the dynamics of linear perturbations can be more general than that of Horndeski while remaining second order. Finally, in order to make the link with observations, we provide the entire set of linear perturbation equations in Newtonian gauge, the effective Newton constant in the quasi-static approximation and the ratio of the two gravitational potentials, in terms of the time-dependent coefficients of our Lagrangian.
Probing Dark Energy models with neutrons
NASA Astrophysics Data System (ADS)
Pignol, Guillaume
2015-07-01
There is a deep connection between cosmology — the science of the infinitely large — and particle physics — the science of the infinitely small. This connection is particularly manifest in neutron particle physics. Basic properties of the neutron — its Electric Dipole Moment and its lifetime — are intertwined with baryogenesis and nucleosynthesis in the early Universe. I will cover this topic in the first part, that will also serve as an introduction (or rather a quick recap) of neutron physics and Big Bang cosmology. Then, the rest of the paper will be devoted to a new idea: using neutrons to probe models of Dark Energy. In the second part, I will present the chameleon theory: a light scalar field accounting for the late accelerated expansion of the Universe, which interacts with matter in such a way that it does not mediate a fifth force between macroscopic bodies. However, neutrons can alleviate the chameleon mechanism and reveal the presence of the scalar field with properly designed experiments. In the third part, I will describe a recent experiment performed with a neutron interferometer at the Institut Laue Langevin that sets already interesting constraints on the chameleon theory. Last, the chameleon field can be probed by measuring the quantum states of neutrons bouncing over a mirror. In the fourth part, I will present the status and prospects of the GRANIT experiment at the ILL.
k-essence model of inflation, dark matter, and dark energy
Bose, Nilok; Majumdar, A. S.
2009-05-15
We investigate the possibility for k-essence dynamics to reproduce the primary features of inflation in the early universe, generate dark matter subsequently, and finally account for the presently observed acceleration. We first show that for a purely kinetic k-essence model the late-time energy density of the universe when expressed simply as a sum of a cosmological constant and a dark matter term leads to a static universe. We then study another k-essence model in which the Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term. We show that such a model generates the basic features of inflation in the early universe, and also gives rise to dark matter and dark energy at appropriate subsequent stages. Observational constraints on the parameters of this model are obtained.
Unified model of k-inflation, dark matter, and dark energy
Bose, Nilok; Majumdar, A. S.
2009-11-15
We present a k-essence model where a single scalar field is responsible for the early expansion of the Universe through the process of k inflation and at appropriate subsequent stages acts both as dark matter and dark energy. The Lagrangian contains a potential for the scalar field as well as a noncanonical kinetic term, and is of the form F(X)V({phi}) which has been widely used as a k-essence Lagrangian. After the period of inflation is over the model can be approximated as purely kinetic k essence, generating dark matter and dark energy at late times. We show how observational results are used to put constraints on the parameters of this model.
NASA Astrophysics Data System (ADS)
de-Santiago, Josue; Cervantes-Cota, Jorge L.
2011-03-01
We study a unification model for dark energy, dark matter, and inflation with a single scalar field with noncanonical kinetic term. In this model, the kinetic term of the Lagrangian accounts for the dark matter and dark energy, and at early epochs, a quadratic potential accounts for slow roll inflation. The present work is an extension to the work by Bose and Majumdar [Phys. Rev. DPRVDAQ1550-7998 79, 103517 (2009).10.1103/PhysRevD.79.103517] with a more general kinetic term that was proposed by Chimento in Phys. Rev. DPRVDAQ0556-2821 69, 123517 (2004).10.1103/PhysRevD.69.123517 We demonstrate that the model is viable at the background and linear perturbation levels.
Dark Energy and Dark Matter in Some Cosmological Models (as remnants of visible universe)
NASA Astrophysics Data System (ADS)
El Fady Morcos, Abd
2016-07-01
Homogeneity and isotropy distribution of matter, have been considered in most of cosmological models. The formation possibility of clusters of galaxies in some stable models, have been studied. In the present work we are going to consider the dark energy and dark matter as the rest of the visible universe. The self-consistent model formulated in the context of the Generalized Field Theory , the standard model built in the General Theory of Relativity, and Saez and de Juan model constructed in the background of Møller Tetrad Theory of gravitation have been used. It is found these the dark matter and dark energy is related to a parameter ɛ. This parameter depends on the used model and availability of formation of condensations in it.
Dynamical analysis for a vector-like dark energy
NASA Astrophysics Data System (ADS)
Landim, Ricardo C. G.
2016-09-01
In this paper we perform a dynamical analysis for a vector field as a candidate for the dark energy, in the presence of a barotropic fluid. The vector is one component of the so-called cosmic triad, which is a set of three identical copies of an abelian field pointing mutually in orthogonal directions. In order to generalize the analysis, we also assumed the interaction between dark energy and the barotropic fluid, with a phenomenological coupling. Both matter and dark energy eras can be successfully described by the critical points, indicating that the dynamical system theory is a viable tool to analyze asymptotic states of such cosmological models.
Neutrino mass and dark energy from weak lensing.
Abazajian, Kevork N; Dodelson, Scott
2003-07-25
Weak gravitational lensing of background galaxies by intervening matter directly probes the mass distribution in the Universe. This distribution is sensitive to both the dark energy and neutrino mass. We examine the potential of lensing experiments to measure features of both simultaneously. Focusing on the radial information contained in a future deep 4000 deg(2) survey, we find that the expected (1-sigma) error on a neutrino mass is 0.1 eV, if the dark-energy parameters are allowed to vary. The constraints on dark-energy parameters are similarly restrictive, with errors on w of 0.09. PMID:12906650
Studies of dark energy with X-ray observatories.
Vikhlinin, Alexey
2010-04-20
I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity. PMID:20404207
Studies of dark energy with x-ray observatories
Vikhlinin, Alexey
2010-01-01
I review the contribution of Chandra X-ray Observatory to studies of dark energy. There are two broad classes of observable effects of dark energy: evolution of the expansion rate of the Universe, and slow down in the rate of growth of cosmic structures. Chandra has detected and measured both of these effects through observations of galaxy clusters. A combination of the Chandra results with other cosmological datasets leads to 5% constraints on the dark energy equation-of-state parameter, and limits possible deviations of gravity on large scales from general relativity. PMID:20404207
Dark energy and the quietness of the local Hubble flow
NASA Astrophysics Data System (ADS)
Axenides, M.; Perivolaropoulos, L.
2002-06-01
The linearity and quietness of the local (<10 Mpc) Hubble flow (LHF) in view of the very clumpy local universe is a long standing puzzle in standard and in open CDM (cold dark matter) cosmogony. The question addressed in this paper is whether the antigravity component of the recently discovered dark energy can cool the velocity flow enough to provide a solution to this puzzle. We calculate the growth of matter fluctuations in a flat universe containing a fraction ΩX(t0) of dark energy obeying the time independent equation of state pX=wρX. We find that dark energy can indeed cool the LHF. However the dark energy parameter values required to make the predicted velocity dispersion consistent with the observed value vrms~=40 km/s have been ruled out by other observational tests constraining the dark energy parameters w and ΩX. Therefore despite the claims of recent qualitative studies, dark energy with time independent equation of state cannot by itself explain the quietness and linearity of the local Hubble flow.
Spectroscopic Needs for Imaging Dark Energy Experiments
Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Comparat, Johan; Coupon, Jean; Cheu, Elliott; Cunha, Carlos E.; de la Macorra, Alex; Dell’Antonio, Ian P.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Honscheid, Klaus; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean -Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Marshall, Jennifer L.; Matthews, Daniel J.; Menard, Brice; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Park, Changbom; Rhodes, Jason; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.
2015-03-15
Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce scatter
Spectroscopic Needs for Imaging Dark Energy Experiments
Newman, Jeffrey A.; Slosar, Anze; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; et al
2015-03-15
Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z’s): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z’s will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large setsmore » of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our “training set” of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ~30,000 objects over >~15 widely-separated regions, each at least ~20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo-z algorithms and reduce
Dark Energy Domination In The Virgocentric Flow
NASA Astrophysics Data System (ADS)
Byrd, Gene; Chernin, A. D.; Karachentsev, I. D.; Teerikorpi, P.; Valtonen, M.; Dolgachev, V. P.; Domozhilova, L. M.
2011-04-01
Dark energy (DE) was first observationally detected at large Gpc distances. If it is a vacuum energy formulated as Einstein's cosmological constant, Λ, DE should also have dynamical effects at much smaller scales. Previously, we found its effects on much smaller Mpc scales in our Local Group (LG) as well as in other nearby groups. We used new HST observations of member 3D distances from the group centers and Doppler shifts. We find each group's gravity dominates a bound central system of galaxies but DE antigravity results in a radial recession increasing with distance from the group center of the outer members. Here we focus on the much larger (but still cosmologically local) Virgo Cluster and systems around it using new observations of velocities and distances. We propose an analytic model whose key parameter is the zero-gravity radius (ZGR) from the cluster center where gravity and DE antigravity balance. DE brings regularity to the Virgocentric flow. Beyond Virgo's 10 Mpc ZGR, the flow curves to approach a linear global Hubble law at larger distances. The Virgo cluster and its outer flow are similar to the Local Group and its local outflow with a scaling factor of about 10; the ZGR for Virgo is 10 times larger than that of the LG. The similarity of the two systems on the scales of 1 to 30 Mpc suggests that a quasi-stationary bound central component and an expanding outflow applies to a wide range of groups and clusters due to small scale action of DE as well as gravity. Chernin, et al 2009 Astronomy and Astrophysics 507, 1271 http://arxiv.org/abs/1006.0066 http://arxiv.org/abs/1006.0555
Effective dark energy models and dark energy models with bounce in frames of F( T) gravity
NASA Astrophysics Data System (ADS)
Astashenok, Artyom V.
2014-05-01
Various cosmological models in frames of F( T) gravity are considered. The general scheme of constructing effective dark energy models with various evolution is presented. It is showed that these models in principle are compatible with ΛCDM model. The dynamics of universe governed by F( T) gravity can mimics ΛCDM evolution in past but declines from it in a future. We also construct some dark energy models with the "real" (non-effective) equation-of-state parameter w such that w≤-1. It is showed that in F( T) gravity the Universe filled phantom field not necessarily ends its existence in singularity. There are two possible mechanisms permitting the final singularity. Firstly due to the nonlinear dependence between energy density and H 2 ( H is the Hubble parameter) the universe can expands not so fast as in the general relativity and in fact Little Rip regime take place instead Big Rip. We also considered the models with possible bounce in future. In these models the universe expansion can mimics the dynamics with future singularity but due to bounce in future universe begin contracts.
Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2016-08-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.
Testing the interaction between dark energy and dark matter with H(z) data
NASA Astrophysics Data System (ADS)
Yu, Pan; Li, Li; Shuo, Cao; Na-na, Pan; Yi, Zhang; Zi-xuan, Hu
2016-04-01
With the Markov Chain Monte Carlo (MCMC) method, we constrain an interactive dark energy model by combing the up-to-date observational data of Hubble parameter H(z) with the 7-year baryon acoustic oscillation (BAO) data, and the cosmic microwave background (CMB) data observed by the Planck satellite. Under the joint constraint of the three kinds of data, the best-fit values of the model parameters and their 1-σ errors are obtained as follows: the energy density Ωm =0.266-0.028+0.028 (1 σ) , the interaction factor γ =0.090-0.098+0.100 (1 σ) , the parameter of state equation of dark matter wX = -1.307-0.269+0.263 (1 σ) , and the Hubble Constant H0 =7420-4.56+4.66 (1 σ) , where the coupling parameter γ > 0 means that the energy is transferred from dark matter to dark energy, and the coincidence problem in the Lambda-Cold Dark Matter (ΛCDM) model is slightly alleviated in the 1σ range. For comparisons, we constrain the same model with the BAO+CMB observations and H(z) data separately. The results are as follows: (1) The H(z) data could put stricter constraint on the parameter γ than the BAO+CMB observations. (2) The ΛCDM model is best fitted, and the coupling parameter γ is correlated with parameters Ωm and H0. (3) The inconsistency of the constraint results of H0 between the local distance ladder measurements and the Planck observations can be alleviated after taking account of the interaction between dark energy and dark matter.
Model selection as a science driver for dark energy surveys
NASA Astrophysics Data System (ADS)
Mukherjee, Pia; Parkinson, David; Corasaniti, Pier Stefano; Liddle, Andrew R.; Kunz, Martin
2006-07-01
A key science goal of upcoming dark energy surveys is to seek time-evolution of the dark energy. This problem is one of model selection, where the aim is to differentiate between cosmological models with different numbers of parameters. However, the power of these surveys is traditionally assessed by estimating their ability to constrain parameters, which is a different statistical problem. In this paper, we use Bayesian model selection techniques, specifically forecasting of the Bayes factors, to compare the abilities of different proposed surveys in discovering dark energy evolution. We consider six experiments - supernova luminosity measurements by the Supernova Legacy Survey, SNAP, JEDI and ALPACA, and baryon acoustic oscillation measurements by WFMOS and JEDI - and use Bayes factor plots to compare their statistical constraining power. The concept of Bayes factor forecasting has much broader applicability than dark energy surveys.
"CosmoMicroPhysics" Approach to Study the Dark Matter and Dark Energy
NASA Astrophysics Data System (ADS)
Vavilova, Iryna; Shulga, Valery M.
In 2007-2009 the Complex Research Program of the NAS of Ukraine titled "Study of the Structure of the Universe, Dark Matter and Dark Energy" (CosmoMicroPhysics) was con-ducted with the aim to join efforts of the Ukrainian scientists for resolving this actual task (http://www.nas.gov.ua/ResearchActivities/ComplexProgram/Pages/17.aspx). Our research team is presented by the scientists and post-graduated students from 15 institutes and univer-sities of Ukraine ()about 70 persons) working in the different fields (astrophysics, mathematics, theoretical physics, and nuclear physics). The main scientific goals, which were put forwards on the observational and theoretical revelations of dark matter/dark energy, were the follow-ing: -Observational base of the astronomical revelations of dark matter and dark energy as well as candidates to the different baryonic components of the hidden mass of the Universe; -Observational base of the earlier evolution of the Universe and properties of the large-scale structure; -Theoretical support for such observational data and creation of the cosmological models; -Experimental search of the WIMPs and study of the neutrino properties as one of the main components of a dark matter; -Theoretical research of the classical and quantum fields in astrophysics and cosmology. We will discuss the main results obtained by our team as the essential contribution to resolve this problem: * Observations, data analysis, and estimation as regarding the various LMS components of the Universe, at the first turn as the candidates to the dark matter (AGNs, black holes in double stars, halo of galaxies and galaxy groups/clusters, mass-to-luminosity estimation for isolated galaxies and galaxies in clusters/groups, brawn dwarfs etc.); * Gravitational lenses as the sources of the mass distribution data in the Universe; *Theoretical models of the Universe with cosmological fields, Dark energy models, and research of the dark energy impact on the evolution of the
The Dark Energy Survey Data Management System
Mohr, Joseph J.; Barkhouse, Wayne; Beldica, Cristina; Bertin, Emmanuel; Dora Cai, Y.; Nicolaci da Costa, Luiz A.; Darnell, J.Anthony; Daues, Gregory E.; Jarvis, Michael; Gower, Michelle; Lin, Huan; /Fermilab /Rio de Janeiro Observ.
2008-07-01
The Dark Energy Survey (DES) collaboration will study cosmic acceleration with a 5000 deg2 griZY survey in the southern sky over 525 nights from 2011-2016. The DES data management (DESDM) system will be used to process and archive these data and the resulting science ready data products. The DESDM system consists of an integrated archive, a processing framework, an ensemble of astronomy codes and a data access framework. We are developing the DESDM system for operation in the high performance computing (HPC) environments at the National Center for Supercomputing Applications (NCSA) and Fermilab. Operating the DESDM system in an HPC environment offers both speed and flexibility. We will employ it for our regular nightly processing needs, and for more compute-intensive tasks such as large scale image coaddition campaigns, extraction of weak lensing shear from the full survey dataset, and massive seasonal reprocessing of the DES data. Data products will be available to the Collaboration and later to the public through a virtual-observatory compatible web portal. Our approach leverages investments in publicly available HPC systems, greatly reducing hardware and maintenance costs to the project, which must deploy and maintain only the storage, database platforms and orchestration and web portal nodes that are specific to DESDM. In Fall 2007, we tested the current DESDM system on both simulated and real survey data. We used TeraGrid to process 10 simulated DES nights (3TB of raw data), ingesting and calibrating approximately 250 million objects into the DES Archive database. We also used DESDM to process and calibrate over 50 nights of survey data acquired with the Mosaic2 camera. Comparison to truth tables in the case of the simulated data and internal crosschecks in the case of the real data indicate that astrometric and photometric data quality is excellent.
What do we really know about dark energy?
Durrer, Ruth
2011-12-28
In this paper, we discuss what we truly know about dark energy. I shall argue that, to date, our single indication for the existence of dark energy comes from distance measurements and their relation to redshift. Supernovae, cosmic microwave background anisotropies and observations of baryon acoustic oscillations simply tell us that the observed distance to a given redshift z is larger than the one expected from a Friedmann-Lemaître universe with matter only and the locally measured Hubble parameter.
New Light on Dark Energy (LBNL Science at the Theater)
Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew
2011-04-25
A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.
New Light on Dark Energy (LBNL Science at the Theater)
Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew
2016-07-12
A panel of Lab scientists â including Eric Linder, Shirly Ho, and Greg Aldering â along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.
An interacting dark energy model with nonminimal derivative coupling
NASA Astrophysics Data System (ADS)
Nozari, Kourosh; Behrouz, Noushin
2016-09-01
We study cosmological dynamics of an extended gravitational theory that gravity is coupled non-minimally with derivatives of a dark energy component and there is also a phenomenological interaction between the dark energy and dark matter. Depending on the direction of energy flow between the dark sectors, the phenomenological interaction gets two different signs. We show that this feature affects the existence of attractor solution, the rate of growth of perturbations and stability of the solutions. By considering an exponential potential as a self-interaction potential of the scalar field, we obtain accelerated scaling solutions that are attractors and have the potential to alleviate the coincidence problem. While in the absence of the nonminimal derivative coupling there is no attractor solution for phantom field when energy transfers from dark matter to dark energy, we show an attractor solution exists if one considers an explicit nonminimal derivative coupling for phantom field in this case of energy transfer. We treat the cosmological perturbations in this setup with details to show that with phenomenological interaction, perturbations can grow faster than the minimal case.
Reconstruction of dark energy and expansion dynamics using Gaussian processes
Seikel, Marina; Clarkson, Chris; Smith, Mathew E-mail: chris.clarkson@uct.ac.za
2012-06-01
An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to σ{sub w} = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z ∼ 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever. A code for calculating functions and their first three derivatives using Gaussian processes has been developed and is available for download.
Scaling cosmology with variable dark-energy equation of state
Castro, David R.; Velten, Hermano; Zimdahl, Winfried E-mail: velten@physik.uni-bielefeld.de
2012-06-01
Interactions between dark matter and dark energy which result in a power-law behavior (with respect to the cosmic scale factor) of the ratio between the energy densities of the dark components (thus generalizing the ΛCDM model) have been considered as an attempt to alleviate the cosmic coincidence problem phenomenologically. We generalize this approach by allowing for a variable equation of state for the dark energy within the CPL-parametrization. Based on analytic solutions for the Hubble rate and using the Constitution and Union2 SNIa sets, we present a statistical analysis and classify different interacting and non-interacting models according to the Akaike (AIC) and the Bayesian (BIC) information criteria. We do not find noticeable evidence for an alleviation of the coincidence problem with the mentioned type of interaction.
Unified dark energy and dark matter from a scalar field different from quintessence
Gao Changjun; Kunz, Martin; Liddle, Andrew R.; Parkinson, David
2010-02-15
We explore unification of dark matter and dark energy in a theory containing a scalar field of non-Lagrangian type, obtained by direct insertion of a kinetic term into the energy-momentum tensor. This scalar is different from quintessence, having an equation of state between -1 and 0 and a zero sound speed in its rest frame. We solve the equations of motion for an exponential potential via a rewriting as an autonomous system, and demonstrate the observational viability of the scenario, for sufficiently small exponential potential parameter {lambda}, by comparison to a compilation of kinematical cosmological data.
Interacting ghost dark energy models with variable G and Λ
Sadeghi, J.; Farahani, H.; Khurshudyan, M.; Movsisyan, A. E-mail: martiros.khurshudyan@nano.cnr.it E-mail: h.farahani@umz.ac.ir
2013-12-01
In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ{sub 1} and ρ{sub 2} assumed as Q = 3Hb(ρ{sub 1}+ρ{sub 2}). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
NASA Astrophysics Data System (ADS)
Zhao, Hong Sheng
2008-11-01
Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.
Dark energy from quantum uncertainty of distant clock
NASA Astrophysics Data System (ADS)
Luo, M. J.
2015-06-01
The observed cosmic acceleration was attributed to an exotic dark energy in the framework of classical general relativity. The dark energy behaves very similar with vacuum energy in quantum mechanics. However, once the quantum effects are seriously taken into account, it predicts a completely wrong result and leads to a severe fine-tuning. To solve the problem, the exact meaning of time in quantum mechanics is reexamined. We abandon the standard interpretation of time in quantum mechanics that time is just a global parameter, replace it by a quantum dynamical variable playing the role of physical clock. We find that synchronization of two spatially separated clocks can not be precisely realized at quantum level. There is an intrinsic quantum uncertainty of distant clock time, which implies an apparent vacuum energy fluctuation and gives an observed dark energy density at tree level approximation, where L P and L H are the Planck and Hubble scale cutoffs. The fraction of the dark energy is given by , which does not evolve with the internal clock time. The "dark energy" as a quantum cosmic variance is always seen comparable with the matter energy density by an observer using the internal clock time. The corrected distance-redshift relation of cosmic observations due to the distant clock effect are also discussed, which again gives a redshift independent fraction . The theory is consistent with current cosmic observations.
The abnormally weighting energy hypothesis: the missing link between dark matter and dark energy
Alimi, J-M; Fuezfa, A E-mail: andre.fuzfa@fundp.ac.be
2008-09-15
We generalize tensor-scalar theories of gravitation by the introduction of an 'abnormally weighting' type of energy. This theory of tensor-scalar anomalous gravity is based on a relaxation of the weak equivalence principle that is currently restricted to ordinary visible matter only. As a consequence, the mechanism of convergence toward general relativity is modified and produces cosmic acceleration naturally as an inescapable gravitational feedback induced by the mass variation of some invisible sector. The cosmological implications of this new theoretical framework are studied. From the Hubble diagram cosmological test alone, this theory provides estimates of the amount of baryons and dark matter in the Universe that are consistent with the independent cosmological tests of the cosmic microwave background and big bang nucleosynthesis. Cosmic coincidence is naturally achieved from an equally natural assumption on the amplitude of the scalar coupling strength. Finally, from the adequacy for supernovae data, we derive a new intriguing relation between the space-time dependences of the gravitational coupling and the dark matter mass, providing an example of a crucial constraint on microphysics from cosmology. This provides glimpses of an enticing new symmetry between the visible and invisible sectors, namely that the scalar charges of visible and invisible matter are exactly opposite.
The abnormally weighting energy hypothesis: the missing link between dark matter and dark energy
NASA Astrophysics Data System (ADS)
Alimi, J.-M.; Füzfa, A.
2008-09-01
We generalize tensor-scalar theories of gravitation by the introduction of an 'abnormally weighting' type of energy. This theory of tensor-scalar anomalous gravity is based on a relaxation of the weak equivalence principle that is currently restricted to ordinary visible matter only. As a consequence, the mechanism of convergence toward general relativity is modified and produces cosmic acceleration naturally as an inescapable gravitational feedback induced by the mass variation of some invisible sector. The cosmological implications of this new theoretical framework are studied. From the Hubble diagram cosmological test alone, this theory provides estimates of the amount of baryons and dark matter in the Universe that are consistent with the independent cosmological tests of the cosmic microwave background and big bang nucleosynthesis. Cosmic coincidence is naturally achieved from an equally natural assumption on the amplitude of the scalar coupling strength. Finally, from the adequacy for supernovae data, we derive a new intriguing relation between the space-time dependences of the gravitational coupling and the dark matter mass, providing an example of a crucial constraint on microphysics from cosmology. This provides glimpses of an enticing new symmetry between the visible and invisible sectors, namely that the scalar charges of visible and invisible matter are exactly opposite.
Thermodynamics of Interacting new Agegraphic Dark Energy and Dark Matter Due to Bianchi Type I Model
NASA Astrophysics Data System (ADS)
Hossienkhani, Hossien
2016-07-01
We study a thermodynamical description of the interaction between new agegraphic dark energy (NADE) and dark matter (DM) in an anisotropic universe. We find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a DM sector is addressed. We also show that if one wants to solve the coincidence problem by using this mutual interaction, then the coupling constants of the interaction will be constrained. Finally, we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests. Our study shows that, with the local equilibrium assumption, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon.
The Higgs Portal and AN Unified Model for Dark Energy and Dark Matter
NASA Astrophysics Data System (ADS)
Bertolami, O.; Rosenfeld, R.
We examine a scenario where the Higgs boson is coupled to an additional Standard Model singlet scalar field from a hidden sector. We show that, in the case where this field is very light and has already relaxed to its nonzero vacuum expectation value, one gets a very stringent limit on the mixing angle between the hidden sector scalar and the Higgs field from fifth force experiments. However, this limit does not imply in a small coupling due to the large difference of vacuum expectation values. In the case that the hidden sector scalar is identified with the quintessence field, responsible for the recent acceleration of the universe, the most natural potential describing the interaction is disfavored since it results in a time-variation of the Fermi scale. We show that an ad hoc modification of the potential describing the Higgs interaction with the quintessence field may result in an unified picture of dark matter and dark energy, where dark energy is the zero-mode classical field rolling the usual quintessence potential and the dark matter candidate is the quantum excitation (particle) of the field, which is produced in the universe due to its coupling to the Higgs boson. This coupling also generates a mass for the new particle that, contrary to usual quintessence models, does not have to be small, since it does not affect the evolution of classical field. In this scenario, a feasible dark matter density can be, under conditions, obtained.
A Possible Connection Between Dark Energy And the Hierarchy
Chen, Pisin; Gu, Je-An; /NCTS, Hsinchu
2007-11-16
Recently it was suggested that the dark energy maybe related to the well-known hierarchy between the Planck scale ({approx} 10{sup 19} GeV) and the TeV scale. The same brane-world setup to address this hierarchy problem may also in principle address the smallness problem of dark energy. Specifically, the Planck-SM hierarchy ratio was viewed as a quantum gravity-related, dimensionless fine structure constant where various physical energy scales in the system are associated with the Planck mass through different powers of the 'gravity fine structure constant'. In this paper we provide a toy model based on the Randall-Sundrum geometry where SUSY-breaking is induced by the coupling between a SUSY-breaking Higgs field on the brane and the KK gravitinos. We show that the associated Casimir energy density indeed conforms with the dark energy scale.
Phenomenology of hybrid scenarios of neutrino dark energy
Antusch, Stefan; Dutta, Koushik; Das, Subinoy E-mail: subinoy@nyu.edu
2008-10-15
We study the phenomenology of hybrid scenarios of neutrino dark energy, where in addition to a so-called mass-varying neutrino (MaVaN) sector a cosmological constant (from a false vacuum) is driving the accelerated expansion of the universe today. For general power law potentials we calculate the effective equation of state parameter w{sub eff}(z) in terms of the neutrino mass scale. Due to the interaction of the dark energy field ('acceleron') with the neutrino sector, w{sub eff}(z) is predicted to become smaller than -1 for z>0, which could be tested in future cosmological observations. For the scenarios considered, the neutrino mass scale additionally determines which fraction of the dark energy is dynamical, and which originates from the 'cosmological-constant-like' vacuum energy of the false vacuum. On the other hand, the field value of the 'acceleron' field today as well as the masses of the right-handed neutrinos, which appear in the seesaw-type mechanism for small neutrino masses, are not fixed. This, in principle, allows us to realize hybrid scenarios of neutrino dark energy with a 'high-scale' seesaw where the right-handed neutrino masses are close to the GUT scale. We also comment on how MaVaN hybrid scenarios with 'high-scale' seesaw might help to resolve stability problems of dark energy models with non-relativistic neutrinos.
Chandra Opens New Line of Investigation on Dark Energy
NASA Astrophysics Data System (ADS)
2004-05-01
Astronomers have detected and probed dark energy by applying a powerful, new method that uses images of galaxy clusters made by NASA's Chandra X-ray Observatory. The results trace the transition of the expansion of the Universe from a decelerating to an accelerating phase several billion years ago, and give intriguing clues about the nature of dark energy and the fate of the Universe. "Dark energy is perhaps the biggest mystery in physics," said Steve Allen of the Institute of Astronomy (IoA) at the University of Cambridge in England, and leader of the study. "As such, it is extremely important to make an independent test of its existence and properties." Abell 2029 Chandra X-ray Image of Abell 2029 Allen and his colleagues used Chandra to study 26 clusters of galaxies at distances corresponding to light travel times of between one and eight billion years. These data span the time when the Universe slowed from its original expansion, before speeding up again because of the repulsive effect of dark energy. "We're directly seeing that the expansion of the Universe is accelerating by measuring the distances to these galaxy clusters," said Andy Fabian also of the IoA, a co-author on the study. The new Chandra results suggest that the dark energy density does not change quickly with time and may even be constant, consistent with the "cosmological constant" concept first introduced by Albert Einstein. If so, the Universe is expected to continue expanding forever, so that in many billions of years only a tiny fraction of the known galaxies will be observable. More Animations Animation of the "Big Rip" If the dark energy density is constant, more dramatic fates for the Universe would be avoided. These include the "Big Rip," where dark energy increases until galaxies, stars, planets and eventually atoms are eventually torn apart. The "Big Crunch," where the Universe eventually collapses on itself, would also be ruled out. Chandra's probe of dark energy relies on the unique
NASA Astrophysics Data System (ADS)
Zhang, Xin
2009-05-01
In this work, we consider the cosmological constraints on the holographic Ricci dark energy proposed by Gao et al. [Phys. Rev. DPRVDAQ1550-7998 79, 043511 (2009)10.1103/PhysRevD.79.043511], by using the observational data currently available. The main characteristic of holographic Ricci dark energy is governed by a positive numerical parameter α in the model. When α<1/2, the holographic Ricci dark energy will exhibit a quintomlike behavior; i.e., its equation of state will evolve across the cosmological-constant boundary w=-1. The parameter α can be determined only by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the Universe, it is of extraordinary importance to constrain the parameter α by using the observational data. In this paper, we derive constraints on the holographic Ricci dark energy model from the latest observational data including the Union sample of 307 type Ia supernovae, the shift parameter of the cosmic microwave background given by the five-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey. The joint analysis gives the best-fit results (with 1σ uncertainty): α=0.359-0.025+0.024 and Ωm0=0.318-0.024+0.026. That is to say, according to the observations, the holographic Ricci dark energy takes on the quintom feature. Finally, in light of the results of the cosmological constraints, we discuss the issue of the scalar-field dark energy reconstruction, based on the scenario of the holographic Ricci vacuum energy.
Higgs seesaw mechanism as a source for dark energy.
Krauss, Lawrence M; Dent, James B
2013-08-01
Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea. PMID:23971559
Nonparametric reconstruction of the dark energy equation of state
Heitmann, Katrin; Holsclaw, Tracy; Alam, Ujjaini; Habib, Salman; Higdon, David; Sanso, Bruno; Lee, Herbie
2009-01-01
The major aim of ongoing and upcoming cosmological surveys is to unravel the nature of dark energy. In the absence of a compelling theory to test, a natural approach is to first attempt to characterize the nature of dark energy in detail, the hope being that this will lead to clues about the underlying fundamental theory. A major target in this characterization is the determination of the dynamical properties of the dark energy equation of state w. The discovery of a time variation in w(z) could then lead to insights about the dynamical origin of dark energy. This approach requires a robust and bias-free method for reconstructing w(z) from data, which does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new non parametric reconstruction method for the dark energy equation of state based on Gaussian Process models. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demollstrate the power of the method on different sets of simulated supernova data. The GP model approach is very easily extended to include diverse cosmological probes.
Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2015-10-01
We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √{-g} (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless "dust" fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies.
Instability in interacting dark sector: an appropriate holographic Ricci dark energy model
NASA Astrophysics Data System (ADS)
Herrera, Ramón; Hipólito-Ricaldi, W. S.; Videla, Nelson
2016-08-01
In this paper we investigate the consequences of phantom crossing considering the perturbative dynamics in models with interaction in their dark sector. By mean of a general study of gauge-invariant variables in comoving gauge, we relate the sources of instabilities in the structure formation process with the phantom crossing. In order to illustrate these relations and its consequences in more detail, we consider a specific case of an holographic dark energy interacting with dark matter. We find that in spite of the model is in excellent agreement with observational data at background level, however it is plagued of instabilities in its perturbative dynamics. We reconstruct the model in order to avoid these undesirable instabilities, and we show that this implies a modification of the concordance model at background. Also we find drastic changes on the parameters space in our model when instabilities are avoided.
Hydrodynamical N-body simulations of coupled dark energy cosmologies
NASA Astrophysics Data System (ADS)
Baldi, Marco; Pettorino, Valeria; Robbers, Georg; Springel, Volker
2010-04-01
If the accelerated expansion of the Universe at the present epoch is driven by a dark energy scalar field, there may well be a non-trivial coupling between the dark energy and the cold dark matter (CDM) fluid. Such interactions give rise to new features in cosmological structure growth, like an additional long-range attractive force between CDM particles, or variations of the dark matter particle mass with time. We have implemented these effects in the N-body code GADGET-2 and present results of a series of high-resolution N-body simulations where the dark energy component is directly interacting with the CDM. As a consequence of the new physics, CDM and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of CDM haloes are less concentrated in coupled dark energy cosmologies compared with ΛCDM, and that this feature does not depend on the initial conditions setup, but is a specific consequence of the extra physics induced by the coupling. Also, the baryon fraction in haloes in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the ΛCDM model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter space of such scenarios.
Dark Energy and Dark Matter as w = -1 Virtual Particles and the World Hologram Model
NASA Astrophysics Data System (ADS)
Sarfatti, Jack
2011-04-01
The elementary physics battle-tested principles of Lorentz invariance, Einstein equivalence principle and the boson commutation and fermion anti-commutation rules of quantum field theory explain gravitationally repulsive dark energy as virtual bosons and gravitationally attractive dark matter as virtual fermion-antifermion pairs. The small dark energy density in our past light cone is the reciprocal entropy-area of our future light cone's 2D future event horizon in a Novikov consistent loop in time in our accelerating universe. Yakir Aharonov's "back-from-the-future" post-selected final boundary condition is set at our observer-dependent future horizon that also explains why the irreversible thermodynamic arrow of time of is aligned with the accelerating dark energy expansion of the bulk 3D space interior to our future 2D horizon surrounding it as the hologram screen. Seth Lloyd has argued that all 2D horizon surrounding surfaces are pixelated quantum computers projecting interior bulk 3D quanta of volume (Planck area)Sqrt(area of future horizon) as their hologram images in 1-1 correspondence.
Non-virialized clusters for detection of dark energy-dark matter interaction
NASA Astrophysics Data System (ADS)
Le Delliou, M.; Marcondes, R. J. F.; Lima Neto, G. B.; Abdalla, E.
2015-10-01
The observation of galaxy and gas distributions, as well as cosmological simulations in a ΛCDM cold dark matter universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a dark matter-dark energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer-Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak-lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of -1.99^{+2.56}_{-16.00}, compatible with no interaction, but also a compounded rest virial ratio of -0.79 ± 0.13, which would entail a 2σ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.
Can a galaxy redshift survey measure dark energy clustering?
Takada, Masahiro
2006-08-15
A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales, which carries invaluable information on horizon-scale physics complementarily to the cosmic microwave background (CMB). Assuming the planned survey consisting of z{approx}1 and z{approx}3 surveys with areas of 2000 and 300 deg.{sup 2}, respectively, we study the prospects for probing dark energy clustering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy are specified in terms of the equation of state and the effective sound speed c{sub e} in the context of an adiabatic cold dark dominated matter model. The dark energy clustering adds a power to the galaxy power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find that the galaxy survey, when combined with CMB expected from the Planck satellite mission, can distinguish dark energy clustering from a smooth dark energy model such as the quintessence model (c{sub e}=1), when c{sub e} < or approx. 0.04 (0.02) in the case of the constant equation of state w{sub 0}=-0.9 (-0.95). An ultimate full-sky survey of z{approx}1 galaxies allows the detection when c{sub e}(less-or-similar sign)0.08 (0.04) for w{sub 0}=0.9 (-0.95). These forecasts show a compatible power with an all-sky CMB and galaxy cross correlation that probes the integrated Sachs-Wolfe effect. We also investigate a degeneracy between the dark energy clustering and the nonrelativistic neutrinos implied from the neutrino oscillation experiments, because the two effects both induce a scale-dependent modification in the galaxy power spectrum shape at largest spatial scales accessible from the galaxy survey. It is shown that a wider redshift coverage can efficiently separate the two effects by utilizing the different redshift dependences, where dark energy clustering is apparent only at
Determination of Dark Matter Properties at High-Energy Colliders
Baltz, Edward A.; Battaglia, Marco; Peskin, Michael E.; Wizansky, Tommer
2006-11-05
If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the nextgeneration of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.
Precision Photometry to Study the Nature of Dark Energy
Lorenzon, Wolfgang; Schubnell, Michael
2011-01-30
Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task, and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength.
Can we distinguish early dark energy from a cosmological constant?
NASA Astrophysics Data System (ADS)
Shi, Difu; Baugh, Carlton M.
2016-07-01
Early dark energy (EDE) models are a class of quintessence dark energy with a dynamically evolving scalar field which display a small but non-negligible amount of dark energy at the epoch of matter-radiation equality. Compared with a cosmological constant, the presence of dark energy at early times changes the cosmic expansion history and consequently the shape of the linear theory power spectrum and potentially other observables. We constrain the cosmological parameters in the EDE cosmology using recent measurements of the cosmic microwave background and baryon acoustic oscillations. The best-fitting models favour no EDE; here we consider extreme examples which are in mild tension with current observations in order to explore the observational consequences of a maximally allowed amount of EDE. We study the non-linear evolution of cosmic structure in EDE cosmologies using large-volume N-body simulations. Many large-scale structure statistics are found to be very similar between the Λ cold dark matter (ΛCDM) and EDE models. We find that EDE cosmologies predict fewer massive haloes in comparison to ΛCDM, particularly at high redshifts. The most promising way to distinguish EDE from ΛCDM is to measure the power spectrum on large scales, where differences of up to 15 per cent are expected.
New limits on coupled dark energy from Planck
Xia, Jun-Qing
2013-11-01
Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction β. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as β < 0.102 at 95% confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ''Union2.1 compilation'' and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction β < 0.052 (95% C.L.). Interestingly, we also find a non-zero coupling β = 0.078±0.022 (68% C.L.) when we use the Planck, the ''SNLS'' supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct H{sub 0} probes from HST.
What We Know About Dark Energy From Supernovae
Filippenko, Alex [University of California, Berkeley, California, United States
2016-07-12
The measured distances of type Ia (white dwarf) supernovae as a function of redshift (z) have shown that the expansion of the Universe is currently accelerating, probably due to the presence of dark energy (X) having a negative pressure. Combining all of the data with existing results from large-scale structure surveys, we find a best fit for Omega M and Omega X of 0.28 and 0.72 (respectively), in excellent agreement with the values derived independently from WMAP measurements of the cosmic microwave background radiation. Thus far, the best-fit value for the dark energy equation-of-state parameter is -1, and its first derivative is consistent with zero, suggesting that the dark energy may indeed be Einstein's cosmological constant.
Voids as a precision probe of dark energy
Biswas, Rahul; Alizadeh, Esfandiar; Wandelt, Benjamin D.
2010-07-15
The shapes of cosmic voids, as measured in spectroscopic galaxy redshift surveys, constitute a promising new probe of dark energy (DE). We forecast constraints on the DE equation of state and its variation from current and future surveys and find that the promise of void shape measurements compares favorably to that of standard methods such as supernovae and cluster counts even for currently available data. Owing to the complementary nature of the constraints, void shape measurements improve the Dark Energy Task Force figure of merit by 2 orders of magnitude for a future large scale experiment such as EUCLID when combined with other probes of dark energy available on a similar time scale. Modeling several observational and theoretical systematics has only moderate effects on these forecasts. We discuss additional systematics which will require further study using simulations.
Dark energy, scalar-tensor gravity, and large extra dimensions
Kainulainen, Kimmo; Sunhede, Daniel
2006-04-15
We explore in detail a dilatonic scalar-tensor theory of gravity inspired by large extra dimensions, where a radion field from compact extra dimensions gives rise to quintessence in our 4-dimensional world. We show that the model can give rise to other types of cosmologies as well, some more akin to k-essence and possibly variants of phantom dark energy. In our model the field (or radius) stabilization arises from quantum corrections to the effective 4D Ricci scalar. We then show that various constraints nearly determine the model parameters, and give an example of a quintessence-type cosmology consistent with observations. We show that the upcoming SNAP-experiment would easily distinguish the present model from a constant {lambda} model with an equal amount of dark energy, but that the SNAP-data alone will not be able distinguish it from a {lambda} model with about 5% less dark energy.
Low redshift universe and a varying ghost dark energy
NASA Astrophysics Data System (ADS)
Khurshudyan, M.
2016-03-01
Recently, a phenomenological modification of ghost dark energy has been suggested and appropriate models of low redshift universe have been constructed. In this paper, we will consider a model of low redshift universe in General Relativity containing another model of varying ghost dark energy. In this model, an effective fluid is a radiation-like fluid in an early universe and evolves to quintessence dark energy in large scale universe. Cosmographic analysis of new model is performed and appropriate constraints on the parameters of the model are obtained. We have a look at suggested model via statefinder hierarchy in addition to thermodynamical description of it. We also study massless particle creation possibility in a radiation dominated universe of our cosmological model. According to our theoretical results, massless particle production is possible. To study particle creation, a straight analogy between quantization in Minkowski background and canonical quantization of a scalar field in curved dynamical backgrounds is taken into account.
Status of the Dark Energy Survey Camera (DECam) Project
Flaugher, Brenna L.; Abbott, Timothy M.C.; Angstadt, Robert; Annis, Jim; Antonik, Michelle, L.; Bailey, Jim; Ballester, Otger.; Bernstein, Joseph P.; Bernstein, Rebbeca; Bonati, Marco; Bremer, Gale; /Fermilab /Cerro-Tololo InterAmerican Obs. /ANL /Texas A-M /Michigan U. /Illinois U., Urbana /Ohio State U. /University Coll. London /LBNL /SLAC /IFAE
2012-06-29
The Dark Energy Survey Collaboration has completed construction of the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted on the Blanco 4-meter telescope at CTIO. DECam will be used to perform the 5000 sq. deg. Dark Energy Survey with 30% of the telescope time over a 5 year period. During the remainder of the time, and after the survey, DECam will be available as a community instrument. All components of DECam have been shipped to Chile and post-shipping checkout finished in Jan. 2012. Installation is in progress. A summary of lessons learned and an update of the performance of DECam and the status of the DECam installation and commissioning will be presented.
A New Viewpoint (The expanding universe, Dark energy and Dark matter)
NASA Astrophysics Data System (ADS)
Cwele, Daniel
2011-10-01
Just as the relativity paradox once threatened the validity of physics in Albert Einstein's days, the cosmos paradox, the galaxy rotation paradox and the experimental invalidity of the theory of dark matter and dark energy threaten the stability and validity of physics today. These theories and ideas and many others, including the Big Bang theory, all depend almost entirely on the notion of the expanding universe, Edwin Hubble's observations and reports and the observational inconsistencies of modern day theoretical Physics and Astrophysics on related subjects. However, much of the evidence collected in experimental Physics and Astronomy aimed at proving many of these ideas and theories is ambiguous, and can be used to prove other theories, given a different interpretation of its implications. The argument offered here is aimed at providing one such interpretation, attacking the present day theories of dark energy, dark matter and the Big Bang, and proposing a new Cosmological theory based on a modification of Isaac Newton's laws and an expansion on Albert Einstein's theories, without assuming any invalidity or questionability on present day cosmological data and astronomical observations.
Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence
NASA Astrophysics Data System (ADS)
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2016-02-01
We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a "dust" fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R - α R^2 generalized gravity. Upon deriving the corresponding "Einstein-frame" effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic "k-essence" gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic "k-essence" gravity-matter model is also briefly discussed.
Time arrow is influenced by the dark energy.
Allahverdyan, A E; Gurzadyan, V G
2016-05-01
The arrow of time and the accelerated expansion are two fundamental empirical facts of the universe. We advance the viewpoint that the dark energy (positive cosmological constant) accelerating the expansion of the universe also supports the time asymmetry. It is related to the decay of metastable states under generic perturbations, as we show on example of a microcanonical ensemble. These states will not be metastable without dark energy. The latter also ensures a hyperbolic motion leading to dynamic entropy production with the rate determined by the cosmological constant. PMID:27300848
Dark energy properties from large future galaxy surveys
Basse, Tobias; Bjælde, Ole Eggers; Hannestad, Steen; Hamann, Jan; Wong, Yvonne Y.Y. E-mail: oeb@phys.au.dk E-mail: sth@phys.au.dk
2014-05-01
We perform a detailed forecast on how well a Euclid-like survey will be able to constrain dark energy and neutrino parameters from a combination of its cosmic shear power spectrum, galaxy power spectrum, and cluster mass function measurements. We find that the combination of these three probes vastly improves the survey's potential to measure the time evolution of dark energy. In terms of a dark energy figure-of-merit defined as (σ(w{sub p})σ(w{sub a})){sup −1}, we find a value of 690 for Euclid-like data combined with Planck-like measurements of the cosmic microwave background anisotropies in a 10-dimensional cosmological parameter space, assuming a ΛCDM fiducial cosmology. For the more commonly used 7-parameter model, we find a figure-of-merit of 1900 for the same data combination. We consider also the survey's potential to measure dark energy perturbations in models wherein the dark energy is parameterised as a fluid with a nonstandard non-adiabatic sound speed, and find that in an optimistic scenario in which w{sub 0} deviates from -1 by as much as is currently observationally allowed, models with c-circumflex {sub s}{sup 2} = 10{sup −6} and c-circumflex {sub s}{sup 2} = 1 can be distinguished from one another at more than 2σ significance. We emphasise that constraints on the dark energy sound speed from cluster measurements are strongly dependent on the modelling of the cluster mass function; significantly weaker sensitivities ensue if we modify our model to include fewer features of nonlinear dark energy clustering. Finally, we find that the sum of neutrino masses can be measured with a 1σ precision of 0.015 eV, even in complex cosmological models in which the dark energy equation of state varies with time. The 1σ sensitivity to the effective number of relativistic species N{sub eff}{sup ml} is approximately 0.03, meaning that the small deviation of 0.046 from 3 in the standard value of N{sub eff}{sup ml} due to non-instantaneous decoupling and
Quantisation of the holographic Ricci dark energy model
Albarran, Imanol; Bouhmadi-López, Mariam E-mail: mbl@ubi.pt
2015-08-01
While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not only avoid future singularities but also the past Big Bang.
First SN Discoveries from the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Abbott, T.; Abdalla, F.; Achitouv, I.; Ahn, E.; Aldering, G.; Allam, S.; Alonso, D.; Amara, A.; Annis, J.; Antonik, M.; Aragon-Salamanca, A.; Armstrong, R.; Ashall, C.; Asorey, J.; Bacon, D.; Balbinot, E.; Banerji, M.; Barbary, K.; Barkhouse, W.; Baruah, L.; Bauer, A.; Bechtol, K.; Becker, M.; Bender, R.; Benoist, C.; Benoit-Levy, A.; Bernardi, M.; Bernstein, G.; Bernstein, J. P.; Bernstein, R.; Bertin, E.; Beynon, E.; Bhattacharya, S.; Biesiadzinski, T.; Biswas, R.; Blake, C.; Bloom, J. S.; Bocquet, S.; Brandt, C.; Bridle, S.; Brooks, D.; Brown, P. J.; Brunner, R.; Buckley-Geer, E.; Burke, D.; Burkert, A.; Busha, M.; Campa, J.; Campbell, H.; Cane, R.; Capozzi, D.; Carlstrom, J.; Rosell, A. Carnero; Carollo, M.; Carrasco-Kind, M.; Carretero, J.; Carter, M.; Casas, R.; Castander, F. J.; Chen, Y.; Chiu, I.; Chue, C.; Clampitt, J.; Clerkin, L.; Cohn, J.; Colless, M.; Copeland, E.; Covarrubias, R. A.; Crittenden, R.; Crocce, M.; Cunha, C.; Costa, L. da; D, C.; #39; Andrea; Das, S.; Das, R.; Davis, T. M.; Deb, S.; DePoy, D.; Derylo, G.; Desai, S.; de Simoni, F.; Devlin, M.; Diehl, H. T.; Dietrich, J.; Dodelson, S.; Doel, P.; Dolag, K.; Efstathiou, G.; Eifler, T.; Erickson, B.; Eriksen, M.; Estrada, J.; Etherington, J.; Evrard, A.; Farrens, S.; Neto, A. Fausti; Fernandez, E.; Ferreira, P. C.; Finley, D.; Fischer, J. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Furlanetto, C.; Garcia-Bellido, J.; Gaztanaga, E.; Gelman, M.; Gerdes, D.; Giannantonio, T.; Gilhool, S.; Gill, M.; Gladders, M.; Gladney, L.; Glazebrook, K.; Gray, M.; Gruen, D.; Gruendl, R.; Gupta, R.; Gutierrez, G.; Habib, S.; Hall, E.; Hansen, S.; Hao, J.; Heitmann, K.; Helsby, J.; Henderson, R.; Hennig, C.; High, W.; Hirsch, M.; Hoffmann, K.; Holhjem, K.; Honscheid, K.; Host, O.; Hoyle, B.; Hu, W.; Huff, E.; Huterer, D.; Jain, B.; James, D.; Jarvis, M.; Jarvis, M. J.; Jeltema, T.; Johnson, M.; Jouvel, S.; Kacprzak, T.; Karliner, I.; Katsaros, J.; Kent, S.; Kessler, R.; Kim, A.; Kim-Vy, T.; King, L.; Kirk, D.; Kochanek, C.; Kopp, M.; Koppenhoefer, J.; Kovacs, E.; Krause, E.; Kravtsov, A.; Kron, R.; Kuehn, K.; Kuemmel, M.; Kuhlmann, S.; Kunder, A.; Kuropatkin, N.; Kwan, J.; Lahav, O.; Leistedt, B.; Levi, M.; Lewis, P.; Liddle, A.; Lidman, C.; Lilly, S.; Lin, H.; Liu, J.; Lopez-Arenillas, C.; Lorenzon, W.; LoVerde, M.; Ma, Z.; Maartens, R.; Maccrann, N.; Macri, L.; Maia, M.; Makler, M.; Manera, M.; Maraston, C.; March, M.; Markovic, K.; Marriner, J.; Marshall, J.; Marshall, S.; Martini, P.; Sanahuja, P. Marti; Mayers, J.; McKay, T.; McMahon, R.; Melchior, P.; Merritt, K. W.; Merson, A.; Miller, C.; Miquel, R.; Mohr, J.; Moore, T.; Mortonson, M.; Mosher, J.; Mould, J.; Mukherjee, P.; Neilsen, E.; Ngeow, C.; Nichol, R.; Nidever, D.; Nord, B.; Nugent, P.; Ogando, R.; Old, L.; Olsen, J.; Ostrovski, F.; Paech, K.; Papadopoulos, A.; Papovich, C.; Patton, K.; Peacock, J.; Pellegrini, P. S. S.; Peoples, J.; Percival, W.; Perlmutter, S.; Petravick, D.; Plazas, A.; Ponce, R.; Poole, G.; Pope, A.; Refregier, A.; Reyes, R.; Ricker, P.; Roe, N.; Romer, K.; Roodman, A.; Rooney, P.; Ross, A.; Rowe, B.; Rozo, E.; Rykoff, E.; Sabiu, C.; Saglia, R.; Sako, M.; Sanchez, A.; Sanchez, C.; Sanchez, E.; Sanchez, J.; Santiago, B.; Saro, A.; Scarpine, V.; Schindler, R.; Schmidt, B. P.; Schmitt, R. L.; Schubnell, M.; Seitz, S.; Senger, R.; Sevilla, I.; Sharp, R.; Sheldon, E.; Sheth, R.; Smith, R. C.; Smith, M.; Snigula, J.; Soares-Santos, M.; Sobreira, F.; Song, J.; Soumagnac, M.; Spinka, H.; Stebbins, A.; Stoughton, C.; Suchyta, E.; Suhada, R.; Sullivan, M.; Sun, F.; Suntzeff, N.; Sutherland, W.; Swanson, M. E. C.; Sypniewski, A. J.; Szepietowski, R.; Talaga, R.; Tarle, G.; Tarrant, E.; Balan, S. Thaithara; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D.; Uddin, S. A.; Ural, S.; Vikram, V.; Voigt, L.; Walker, A. R.; Walker, T.; Wechsler, R.; Weinberg, D.; Weller, J.; Wester, W.; Wetzstein, M.; White, M.; Wilcox, H.; Wilman, D.; Yanny, B.; Young, J.; Zablocki, A.; Zenteno, A.; Zhang, Y.; Zuntz, J.
2012-12-01
The Dark Energy Survey (DES) report the discovery of the first set of supernovae (SN) from the project. Images were observed as part of the DES Science Verification phase using the newly-installed 570-Megapixel Dark Energy Camera on the CTIO Blanco 4-m telescope by observers J. Annis, E. Buckley-Geer, and H. Lin. SN observations are planned throughout the observing campaign on a regular cadence of 4-6 days in each of the ten 3-deg2 fields in the DES griz filters.
The phenomenological approach to modeling the dark energy
NASA Astrophysics Data System (ADS)
Kunz, Martin
2012-07-01
In this mini-review we discuss first why we should investigate cosmological models beyond ΛCDM. We then show how to describe dark energy or modified gravity models in a fluid language with the help of one background and two perturbation quantities. We review a range of dark energy models and study how they fit into the phenomenological framework, including generalizations like phantom crossing, sound speeds different from c and non-zero anisotropic stress, and how these effective quantities are linked to the underlying physical models. We also discuss the limits of what can be measured with cosmological data, and some challenges for the framework.
Can we test dark energy with running fundamental constants?
NASA Astrophysics Data System (ADS)
Doran, Michael
2005-04-01
We investigate a link between the running of the fine structure constant α and a time evolving scalar dark energy field. Employing a versatile parametrization for the equation of state, we exhaustively cover the space of dark energy models. Under the assumption that the change in α is to first order given by the evolution of the quintessence field, we show that current Oklo, quasi-stellar object and equivalence principle observations restrict the model parameters considerably more strongly than observations of the cosmic microwave background, large scale structure and supernovae Ia combined.
Early massive clusters and the bouncing coupled dark energy
NASA Astrophysics Data System (ADS)
Baldi, Marco
2012-02-01
The abundance of the most massive objects in the Universe at different epochs is a very sensitive probe of the cosmic background evolution and of the growth history of density perturbations, and could provide a powerful tool to distinguish between a cosmological constant and a dynamical dark energy field. In particular, the recent detection of very massive clusters of galaxies at high redshifts has attracted significant interest as a possible indication of a failure of the standard Λ cold dark matter model. Several attempts have been made in order to explain such detections in the context of non-Gaussian scenarios or interacting dark energy models, showing that both these alternative cosmologies predict an enhanced number density of massive clusters at high redshifts, possibly alleviating the tension. However, all the models proposed so far also overpredict the abundance of massive clusters at the present epoch, and are therefore in contrast with observational bounds on the low-redshift halo mass function. In this paper we present for the first time a new class of interacting dark energy models that simultaneously account for an enhanced number density of massive clusters at high redshifts and for both the standard cluster abundance at the present time and the standard power spectrum normalization at cosmic microwave background (CMB). The key feature of this new class of models is the 'bounce' of the dark energy scalar field on the cosmological constant barrier at relatively recent epochs. We present the background and linear perturbations evolution of the model, showing that the standard amplitude of density perturbations is recovered both at CMB and at the present time, and we demonstrate by means of large N-body simulations that our scenario predicts an enhanced number of massive clusters at high redshifts without affecting the present halo abundance. Such behaviour could not arise in non-Gaussian models, and is therefore a characteristic feature of the
LSST Dark Energy Science Final Report
Asztalos, S
2007-02-15
Three decadal surveys recommend a large-aperture synoptic survey telescope (LSST) to allow time-domain and cosmological studies of distant objects. LLNL designed the optical system and also is expected to play a significant role in the engineering associated with the camera. Precision cosmology from ground-based instruments is in a sense terra incognita. Numerous systematic effects occur that would be minimal or absent in their space-based counterparts. We proposed developing some basic tools and techniques for investigating ''dark sector'' cosmological science with such next-generation, large-aperture, real-time telescopes. The critical research involved determining whether systematic effects might dominate the extremely small distortions (''shears'') in images of faint background galaxies. To address these issues we carried out a comprehensive data campaign and developed detailed computer simulations.
Encircling the dark: constraining dark energy via cosmic density in spheres
NASA Astrophysics Data System (ADS)
Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.
2016-08-01
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.
Dynamical behavior of the extended holographic dark energy with the Hubble horizon
Liu Jie; Gong Yungui; Chen Ximing
2010-04-15
The extended holographic dark energy model with the Hubble horizon as the infrared cutoff avoids the problem of the circular reasoning of the holographic dark energy model. Unfortunately, it is hit with the no-go theorem. In this paper, we consider the extended holographic dark energy model with a potential, V({phi}), for the Brans-Dicke scalar field. With the addition of a potential for the Brans-Dicke scalar field, the extended holographic dark energy model using the Hubble horizon as the infrared cutoff is a viable dark energy model, and the model has the dark energy dominated attractor solution.
The signature of dark energy perturbations in galaxy cluster surveys
Abramo, L.R.; Batista, R.C.; Rosenfeld, R. E-mail: rbatista@fma.if.usp.br
2009-07-01
Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel'dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.
NASA Astrophysics Data System (ADS)
Cao, Shuo; Liang, Nan
2013-12-01
In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γmIDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γdIDE model, the interacting quintessence and phantom models by four orders of magnitude.
New Approaches To Off-Shore Wind Energy Management Exploiting Satellite EO Data
NASA Astrophysics Data System (ADS)
Morelli, Marco; Masini, Andrea; Venafra, Sara; Potenza, Marco Alberto Carlo
2013-12-01
Wind as an energy resource has been increasingly in focus over the past decades, starting with the global oil crisis in the 1970s. The possibility of expanding wind power production to off-shore locations is attractive, especially in sites where wind levels tend to be higher and more constant. Off-shore high-potential sites for wind energy plants are currently being looked up by means of wind atlases, which are essentially based on NWP (Numerical Weather Prediction) archive data and that supply information with low spatial resolution and very low accuracy. Moreover, real-time monitoring of active off- shore wind plants is being carried out using in-situ installed anemometers, that are not very reliable (especially on long time periods) and that should be periodically substituted when malfunctions or damages occur. These activities could be greatly supported exploiting archived and near real-time satellite imagery, that could provide accurate, global coverage and high spatial resolution information about both averaged and near real-time off-shore windiness. In this work we present new methodologies aimed to support both planning and near-real-time monitoring of off-shore wind energy plants using satellite SAR(Synthetic Aperture Radar) imagery. Such methodologies are currently being developed in the scope of SATENERG, a research project funded by ASI (Italian Space Agency). SAR wind data are derived from radar backscattering using empirical geophysical model functions, thus achieving greater accuracy and greater resolution with respect to other wind measurement methods. In detail, we calculate wind speed from X-band and C- band satellite SAR data, such as Cosmo-SkyMed (XMOD2) and ERS and ENVISAT (CMOD4) respectively. Then, using also detailed models of each part of the wind plant, we are able to calculate the AC power yield expected behavior, which can be used to support either the design of potential plants (using historical series of satellite images) or the
Dark Energy and the Cosmological Constant: A Brief Introduction
ERIC Educational Resources Information Center
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
Inflation, Dark Energy, and the Fate of the Universe
Linde, Andrei
2003-11-12
Inflationary theory, which describes an accelerated expansion of the early universe, gradually becomes a standard cosmological paradigm. It solves many complicated problems of the usual big bang theory, explains the origin of galaxies, and makes several predictions, which, so far, are in a good agreement with cosmological observations. Recently we learned that few billion years ago the universe entered the second stage of acceleration, driven by mysterious 'dark energy'. According to the simplest version of inflationary theory, the universe is an eternally existing self-reproducing fractal consisting of different balloons of exponentially large size. The universe as a whole can be immortal, but the fate of each of these balloons, including the one in which we live now, depends on the properties of dark energy. According to some of the theories of dark energy, our part of the universe will continue its accelerated expansion forever. Other theories predict that eventually our part of the universe will become ten-dimensional and stop accelerating. Still another possibility is that our part of the universe will collapse. I will describe recent developments in inflationary theory and the theory of dark energy, and discuss the possibility to find our fate by cosmological observations.
Swiss cheese model with the superstring dark energy
NASA Astrophysics Data System (ADS)
Stuchlík, Zdeněk; Kološ, Martin
2005-12-01
The Swiss cheese model of the Universe with the superstring dark energy is constructed. The junction conditions are shown to be fulfilled and time evolution of the matching hypersurface of the internal Schwarzschild spacetime and homogeneous external Friedman Universe is studied.
Dark energy oscillations in mimetic F (R ) gravity
NASA Astrophysics Data System (ADS)
Odintsov, S. D.; Oikonomou, V. K.
2016-08-01
In this paper we address the problem of dark energy oscillations in the context of mimetic F (R ) gravity with potential. The issue of dark energy oscillations can be a problem in some models of ordinary F (R ) gravity, and a remedy that can make the oscillations milder is to introduce additional modifications in the functional form of the F (R ) gravity. As we demonstrate, the power-law modifications are not necessary in the mimetic F (R ) case, and by appropriately choosing the mimetic potential and the Lagrange multiplier, it is possible to make the oscillations almost vanish at the end of the matter domination era and during the late-time acceleration era. We examine the behavior of the dark energy equation of state parameter and of the total effective equation of state parameter as functions of the redshift, and we compare the resulting picture with the ordinary F (R ) gravity case. As we also show that the present day values of the dark energy equation of state parameter and of the total effective equation of state parameter are in better agreement with the observational data, in comparison to the ordinary F (R ) gravity case. Finally, we study the evolution of the growth factor as a function of the redshift for all the mimetic models we use.
Induced dark energy in a warped braneworld and accelerating universe
NASA Astrophysics Data System (ADS)
Lee, Tae Hoon
2016-10-01
In the six-dimensional (6D) Einstein gravity with a negative cosmological constant, we determine the structure of warped spacetimes bounded by 4-branes. We find an accelerating Universe solution with the induced dark energy, from the 4-brane obtained by orbifolding an external space, and suggest a possibility of addressing problems related to the cosmological constant.
Distance measurements from supernovae and dark energy constraints
Wang Yun
2009-12-15
Constraints on dark energy from current observational data are sensitive to how distances are measured from Type Ia supernova (SN Ia) data. We find that flux averaging of SNe Ia can be used to test the presence of unknown systematic uncertainties, and yield more robust distance measurements from SNe Ia. We have applied this approach to the nearby+SDSS+ESSENCE+SNLS+HST set of 288 SNe Ia, and the 'Constitution' set of 397 SNe Ia. Combining the SN Ia data with cosmic microwave background anisotropy data from Wilkinson Microwave Anisotropy Probe 5 yr observations, the Sloan Digital Sky Survey baryon acoustic oscillation measurements, the data of 69 gamma-ray bursts (GRBs) , and the Hubble constant measurement from the Hubble Space Telescope project SHOES, we measure the dark energy density function X(z){identical_to}{rho}{sub X}(z)/{rho}{sub X}(0) as a free function of redshift (assumed to be a constant at z>1 or z>1.5). Without the flux averaging of SNe Ia, the combined data using the Constitution set of SNe Ia seem to indicate a deviation from a cosmological constant at {approx}95% confidence level at 0 < or apporx. z < or approx. 0.8; they are consistent with a cosmological constant at {approx}68% confidence level when SNe Ia are flux averaged. The combined data using the nearby+SDSS+ESSENCE+SNLS+HST data set of SNe Ia are consistent with a cosmological constant at 68% confidence level with or without flux averaging of SNe Ia, and give dark energy constraints that are significantly more stringent than that using the Constitution set of SNe Ia. Assuming a flat Universe, dark energy is detected at >98% confidence level for z{<=}0.75 using the combined data with 288 SNe Ia from nearby+SDSS+ESSENCE+SNLS+HST, independent of the assumptions about X(z{>=}1). We quantify dark energy constraints without assuming a flat Universe using the dark energy figure of merit for both X(z) and a dark energy equation-of-state linear in the cosmic scale factor.
Topology and dark energy: testing gravity in voids.
Spolyar, Douglas; Sahlén, Martin; Silk, Joe
2013-12-13
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field--here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.
Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion
Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; et al
2014-03-15
The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansionmore » such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.« less
Growth of Cosmic Structure: Probing Dark Energy Beyond Expansion
Huterer, Dragan; Kirkby, David; Bean, Rachel; Connolly, Andrew; Dawson, Kyle; Dodelson, Scott; Evrard, August; Jain, Bhuvnesh; Jarvis, Michael; Linder, Eric; Mandelbaum, Rachel; May, Morgan; Raccanelli, Alvise; Reid, Beth; Rozo, Eduardo; Schmidt, Fabian; Sehgal, Neelima; Slosar, Anze; Van Engelen, Alex; Wu, Hao-Yi; Zhao, Gongbo
2014-03-15
The quantity and quality of cosmic structure observations have greatly accelerated in recent years, and further leaps forward will be facilitated by imminent projects. These will enable us to map the evolution of dark and baryonic matter density fluctuations over cosmic history. The way that these fluctuations vary over space and time is sensitive to several pieces of fundamental physics: the primordial perturbations generated by GUT-scale physics; neutrino masses and interactions; the nature of dark matter and dark energy. We focus on the last of these here: the ways that combining probes of growth with those of the cosmic expansion such as distance-redshift relations will pin down the mechanism driving the acceleration of the Universe.
On the observability of coupled dark energy with cosmic voids
NASA Astrophysics Data System (ADS)
Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander
2015-01-01
Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.
Separating Dark Physics from Physical Darkness: Minimalist Modified Gravity vs. Dark Energy
Huterer, Dragan; Linder, Eric V.
2007-01-31
The acceleration of the cosmic expansion may be due to a new component of physical energy density or a modification of physics itself. Mapping the expansion of cosmic scales and the growth of large scale structure in tandem can provide insights to distinguish between the two origins. Using Minimal Modified Gravity (MMG) - a single parameter gravitational growth index formalism to parameterize modified gravity theories - we examine the constraints that cosmological data can place on the nature of the new physics. For next generation measurements combining weak lensing, supernovae distances, and the cosmic microwave background we can extend the reach of physics to allow for fitting gravity simultaneously with the expansion equation of state, diluting the equation of state estimation by less than 25percent relative to when general relativity is assumed, and determining the growth index to 8percent. For weak lensing we examine the level of understanding needed of quasi- and nonlinear structure formation in modified gravity theories, and the trade off between stronger precision but greater susceptibility to bias as progressively more nonlinear information is used.
Fine Structure of Dark Energy and New Physics
Jejjala, Vishnu; Kavic, Michael; Minic, Djordje
2007-01-01
Following our recent work on the cosmological constant problem, in this letter we make a specific proposal regarding the fine structure (i.e., the spectrum) of dark energy. The proposal is motivated by a deep analogy between the blackbody radiation problem, which led to the development of quantum theory, and the cosmological constant problem, for which we have recently argued calls for a conceptual extension of the quantum theory. We argue that the fine structure of dark energy is governed by a Wien distribution, indicating its dual quantum and classical nature. We discuss observational consequences of such a picture of darkmore » energy and constrain the distribution function.« less
Quintessence in a quandary: Prior dependence in dark energy models
NASA Astrophysics Data System (ADS)
Marsh, David J. E.; Bull, Philip; Ferreira, Pedro G.; Pontzen, Andrew
2014-11-01
The archetypal theory of dark energy is quintessence: a minimally coupled scalar field with a canonical kinetic energy and potential. By studying random potentials, we show that quintessence imposes a restricted set of priors on the equation of state of dark energy. Focusing on the commonly used parametrization, w (a )≈w0+wa(1 -a ) , we show that there is a natural scale and direction in the (w0,wa) plane that distinguishes quintessence as a general framework. We calculate the expected information gain for a given survey and show that, because of the nontrivial prior information, it is a function of more than just the figure of merit. This allows us to make a quantitative case for novel survey strategies. We show that the scale of the prior sets target observational requirements for gaining significant information. This corresponds to a figure of merit FOM ≳200 , a requirement that future galaxy redshift surveys will meet.
Testing coupled dark energy with large scale structure observation
Yang, Weiqiang; Xu, Lixin E-mail: lxxu@dlut.edu.cn
2014-08-01
The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3Hξ{sub x}ρ-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and fσ{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in σ regions: ξ{sub x} = 0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the σ region.
Semi-analytic galaxy formation in coupled dark energy cosmologies
NASA Astrophysics Data System (ADS)
Fontanot, Fabio; Baldi, Marco; Springel, Volker; Bianchi, Davide
2015-09-01
Among the possible alternatives to the standard cosmological model (ΛCDM), coupled dark energy models postulate that dark energy (DE), seen as a dynamical scalar field, may interact with dark matter (DM), giving rise to a `fifth-force', felt by DM particles only. In this paper, we study the impact of these cosmologies on the statistical properties of galaxy populations by combining high-resolution numerical simulations with semi-analytic models (SAMs) of galaxy formation and evolution. New features have been implemented in the reference SAM in order to have it run self-consistently and calibrated on these cosmological simulations. They include an appropriate modification of the mass-temperature relation and of the baryon fraction in DM haloes, due to the different virial scalings and to the gravitational bias, respectively. Our results show that the predictions of our coupled-DE SAM do not differ significantly from theoretical predictions obtained with standard SAMs applied to a reference Λ cold dark matter (ΛCDM) simulation, implying that the statistical properties of galaxies provide only a weak probe for these alternative cosmological models. On the other hand, we show that both galaxy bias and the galaxy pairwise velocity distribution are sensitive to coupled DE models: this implies that these probes might be successfully applied to disentangle among quintessence, f(R)-gravity and coupled DE models.
An Intimate Relationship between Higgs Forces, Dark Matter, and Dark Energy
NASA Astrophysics Data System (ADS)
Colella, Antonio
2015-04-01
Our universe's 8 permanent matter particles were: up quark, down quark, electron, electron-neutrino, muon-neutrino, tau-neutrino, zino, and photino. Zino and photino were dark matter particles. Each permanent matter particle had an associated supersymmetric Higgs force. Sum of the 8 Higgs force energies was dark energy. Amplifications of Higgs theory included: 16 SM matter/force particles, 16 superpartners, 32 anti-particles, and 64 associated supersymmetric Higgs particles; 17 Higgs forces and 15 Higgsinos; Higgs force was a residual super force; Matter particles and associated Higgs forces were one and inseparable and modeled as underweight porcupine with overgrown spines; Mass given to a matter particle via associated Higgs force and gravitational force messenger particles; Super force condensed into 17 matter/Higgs forces at 17 extremely high temperatures; 9 transient matter particles/Higgs forces evaporated to super force and condensed to 8 permanent matter particles/Higgs forces (decay); Spontaneous symmetry breaking was bidirectional; Matter/Higgs force creation was time synchronous with inflation and one to seven Planck cubes energy to matter expansion; 128 matter/force particles required for Conservation of Energy/Mass accountability at t = 100s.
James Webb Space Telescope Studies of Dark Energy
NASA Technical Reports Server (NTRS)
Gardner, Jonathan P.; Stiavelli, Massimo; Mather, John C.
2010-01-01
The Hubble Space Telescope (HST) has contributed significantly to studies of dark energy. It was used to find the first evidence of deceleration at z=1.8 (Riess et al. 2001) through the serendipitous discovery of a type 1a supernova (SN1a) in the Hubble Deep Field. The discovery of deceleration at z greater than 1 was confirmation that the apparent acceleration at low redshift (Riess et al. 1998; Perlmutter et al. 1999) was due to dark energy rather than observational or astrophysical effects such as systematic errors, evolution in the SN1a population or intergalactic dust. The GOODS project and associated follow-up discovered 21 SN1a, expanding on this result (Riess et al. 2007). HST has also been used to constrain cosmological parameters and dark energy through weak lensing measurements in the COSMOS survey (Massey et al 2007; Schrabback et al 2009) and strong gravitational lensing with measured time delays (Suyu et al 2010). Constraints on dark energy are often parameterized as the equation of state, w = P/p. For the cosmological constant model, w = -1 at all times; other models predict a change with time, sometimes parameterized generally as w(a) or approximated as w(sub 0)+(1-a)w(sub a), where a = (1+z)(sup -1) is the scale factor of the universe relative to its current scale. Dark energy can be constrained through several measurements. Standard candles, such as SN1a, provide a direct measurement of the luminosity distance as a function of redshift, which can be converted to H(z), the change in the Hubble constant with redshift. An analysis of weak lensing in a galaxy field can be used to derive the angular-diameter distance from the weak-lensing equation and to measure the power spectrum of dark-matter halos, which constrains the growth of structure in the Universe. Baryonic acoustic oscillations (BAO), imprinted on the distribution of matter at recombination, provide a standard rod for measuring the cosmological geometry. Strong gravitational lensing of a
Destiny: a candidate architecture for the Joint Dark Energy Mission
NASA Astrophysics Data System (ADS)
Benford, Dominic J.; Lauer, Tod R.
2006-06-01
<~Destiny is a simple, direct, low cost mission to determine the properties of dark energy by obtaining a cosmologically deep supernova (SN) type Ia Hubble diagram. Its science instrument is a 1.65m space telescope, featuring a grism-fed near-infrared (NIR) (0.85-1.7 μm) survey camera/spectrometer with a 0.12 square degree field of view (FOV) covered by a mosaic of 16 2k x 2k HgCdTe arrays. For maximum operational simplicity and instrument stability, Destiny will be deployed into a halo-orbit about the Second Sun-Earth Lagrange Point. During its two-year primary mission, Destiny will detect, observe, and characterize ~3000 SN Ia events over the redshift interval 0.4 < z < 1.7 within a 3 square degree survey area. In conjunction with ongoing ground-based SN Ia surveys for z < 0.8, Destiny mission data will be used to construct a high-precision Hubble diagram and thereby constrain the dark energy equation of state. The total range of redshift is sufficient to explore the expansion history of the Universe from an early time, when it was strongly matter-dominated, to the present when dark energy dominates. The grism-images will provide a spectral resolution of R≡λ/Δλ=75 spectrophotometry that will simultaneously provide broad-band photometry, redshifts, and SN classification, as well as time-resolved diagnostic data, which is valuable for investigating additional SN luminosity diagnostics. Destiny will be used in its third year as a high resolution, wide-field imager to conduct a multicolor NIR weak lensing (WL) survey covering 1000 square degrees. The large-scale mass power spectrum derived from weak lensing distortions of field galaxies as a function of redshift will provide independent and complementary constraints on the dark energy equation of state. The combination of SN and WL is much more powerful than either technique on its own. Used together, these surveys will have more than an order of magnitude greater sensitivity (by the Dark Energy Task Force
Limits on dark energy scalars using atom interferometry
NASA Astrophysics Data System (ADS)
Hamilton, Paul; Jaffe, Matt; Haslinger, Philipp; Simmons, Ethan; Khoury, Justin; Müller, Holger
2015-05-01
Dark energy makes up 70% of the mass-energy of the universe yet its identity remains unknown. Using atom interferometry we tightly constrain dark energy models based on scalar fields which become heavily screened in the presence of macroscopic matter. These ``chameleon'' fields were proposed as a form of quintessence which would be undetectable to macroscopic experiments searching for fifth forces. Combined with an ultra-high vacuum environment, the small mass of individual atoms prevents screening and makes them ideal test masses for detecting small forces from chameleons. We use our recently developed optical cavity atom interferometer to limit anomalous accelerations below 10-6g at millimeter-scale distances from a spherical source mass. This rules out a large range of chameleon theories consistent with the cosmological dark-energy density. With feasible improvements in sensitivity, we could detect chameleon fields with couplings up to the expected limit of the Planck mass scale. Adding a second source mass would also allow the measurement of the gravitational Aharonov-Bohm effect.
Illuminating dark photons with high-energy colliders
NASA Astrophysics Data System (ADS)
Curtin, David; Essig, Rouven; Gori, Stefania; Shelton, Jessie
2015-02-01
High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ ZZ D →4 ℓ, and in Drell-Yan events, pp→ Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4 ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ɛ ≳ 9 × 10-4 (4 × 10-4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ɛ ≳ 10-9 - 10-6 (10-10 - 10-7) for the mass range by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ɛ as low as 3 × 10-2. Sensitivity can be improved by up to a factor of ˜ 2 with HL-LHC data, and an additional factor of ˜ 4 with ILC/GigaZ data.
Dark energy and the cosmic microwave background radiation
NASA Technical Reports Server (NTRS)
Dodelson, S.; Knox, L.
2000-01-01
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.
Dark energy and the cosmic microwave background radiation.
Dodelson, S; Knox, L
2000-04-17
We find that current cosmic microwave background anisotropy data strongly constrain the mean spatial curvature of the Universe to be near zero, or, equivalently, the total energy density to be near critical-as predicted by inflation. This result is robust to editing of data sets, and variation of other cosmological parameters (totaling seven, including a cosmological constant). Other lines of argument indicate that the energy density of nonrelativistic matter is much less than critical. Together, these results are evidence, independent of supernovae data, for dark energy in the Universe.
No-Go Theorem for k-Essence Dark Energy
Bonvin, Camille; Caprini, Chiara; Durrer, Ruth
2006-08-25
We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.
System Architecture of the Dark Energy Survey Camera Readout Electronics
Shaw, Theresa; Ballester, Otger; Cardiel-Sas, Laia; Castilla, Javier; Chappa, Steve; de Vicente, Juan; Holm, Scott; Huffman, Dave; Kozlovsky, Mark; Martinez, Gustavo; Moore, Todd; /Madrid, CIEMAT /Fermilab /Illinois U., Urbana /Fermilab
2010-05-27
The Dark Energy Survey makes use of a new camera, the Dark Energy Camera (DECam). DECam will be installed in the Blanco 4M telescope at Cerro Tololo Inter-American Observatory (CTIO). DECam is presently under construction and is expected to be ready for observations in the fall of 2011. The focal plane will make use of 62 2Kx4K and 12 2kx2k fully depleted Charge-Coupled Devices (CCDs) for guiding, alignment and focus. This paper will describe design considerations of the system; including, the entire signal path used to read out the CCDs, the development of a custom crate and backplane, the overall grounding scheme and early results of system tests.
Higher signal harmonics, LISA's angular resolution, and dark energy
Arun, K. G.; Iyer, Bala R.; Sathyaprakash, B. S.; Broeck, Chris van den; Sinha, Siddhartha
2007-11-15
It is generally believed that the angular resolution of the Laser Interferometer Space Antenna (LISA) for binary supermassive black holes (SMBH) will not be good enough to identify the host galaxy or galaxy cluster. This conclusion, based on using only the dominant harmonic of the binary SMBH signal, changes substantially when higher signal harmonics are included in assessing the parameter estimation problem. We show that in a subset of the source parameter space the angular resolution increases by more than a factor of 10, thereby making it possible for LISA to identify the host galaxy/galaxy cluster. Thus, LISA's observation of certain binary SMBH coalescence events could constrain the dark energy equation of state to within a few percent, comparable to the level expected from other dark energy missions.
Covariant extrinsic gravity and the geometric origin of dark energy
NASA Astrophysics Data System (ADS)
Jalalzadeh, S.; Rostami, T.
2015-01-01
In this paper, we construct the covariant or model independent induced Einstein-Yang-Mills field equations on a four-dimensional brane embedded isometrically in an D-dimensional bulk space, assuming the matter fields are confined to the brane. Applying this formalism to cosmology, we derive the generalized Friedmann equations. We derive the density parameter of dark energy in terms of width of the brane, normal curvature radii and the number of extra large dimensions. We show that dark energy could actually be the manifestation of the local extrinsic shape of the brane. It is shown that the predictions of this model are in good agreement with observation if we consider an 11-dimensional bulk space.
Fundamental Constants as Monitors of Particle Physics and Dark Energy
NASA Astrophysics Data System (ADS)
Thompson, Rodger
2016-03-01
This contribution considers the constraints on particle physics and dark energy parameter space imposed by the astronomical observational constraints on the variation of the proton to electron mass ratio μ and the fine structure constant α. These constraints impose limits on the temporal variation of these parameters on a time scale greater than half the age of the universe, a time scale inaccessible by laboratory facilities such as the Large Hadron Collider. The limits on the variance of μ and α constrain combinations of the QCD Scale, the Higgs VEV and the Yukawa coupling on the particle physics side and a combination of the temporal variation of rolling scalar field and its coupling to the constants on the dark energy side.
ASTROPHYSICS. Atom-interferometry constraints on dark energy.
Hamilton, P; Jaffe, M; Haslinger, P; Simmons, Q; Müller, H; Khoury, J
2015-08-21
If dark energy, which drives the accelerated expansion of the universe, consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultrahigh-vacuum chamber, we reduced the screening mechanism by probing the field with individual atoms rather than with bulk matter. We thereby constrained a wide class of dark energy theories, including a range of chameleon and other theories that reproduce the observed cosmic acceleration.
Dark energy and the return of the phoenix universe
Lehners, Jean-Luc; Steinhardt, Paul J.
2009-03-15
In cyclic universe models based on a single scalar field (e.g., the radion determining the distance between branes in M theory), virtually the entire Universe makes it through the ekpyrotic smoothing and flattening phase, bounces, and enters a new epoch of expansion and cooling. This stable evolution cannot occur, however, if scale-invariant curvature perturbations are produced by the entropic mechanism because it requires two scalar fields (e.g., the radion and the Calabi-Yau dilaton) evolving along an unstable classical trajectory. In fact, we show here that an overwhelming fraction of the Universe fails to make it through the ekpyrotic phase; nevertheless, a sufficient volume survives and cycling continues forever provided the dark energy phase of the cycle lasts long enough, of order a trillion years. Two consequences are a new role for dark energy and a global structure of the Universe radically different from that of eternal inflation.
The scale factor in a Universe with dark energy
NASA Astrophysics Data System (ADS)
Sazhin, M. V.; Sazhina, O. S.
2016-04-01
The solution of the Friedmann cosmological equations for the scale factor in a model of the Universe containing matter having the equation of state of dust and dark energy is considered. The equation-of-state parameter of the dark energy is taken to be an arbitrary constant w = -1.006 ± 0.045, whose value is constrained by the current observational limits. An exact solution for the scale factor as a function of physical time and conformal time is obtained. Approximate solutions have been found for the entire admissible conformal time interval with an accuracy better than 1%, which exceeds the accuracy of the determined global parameters of our Universe. This is the first time an exact solution for the scale factor describing the evolution of the Universe in a unified way, beginning with the matter-dominated epoch and ending with the infinitely remote future, has been obtained.
Constraining dark energy through the stability of cosmic structures
Pavlidou, V.; Tetradis, N.; Tomaras, T.N. E-mail: ntetrad@phys.uoa.gr
2014-05-01
For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.
NASA Astrophysics Data System (ADS)
Baldi, Marco
2014-04-01
The recently proposed Multi-coupled Dark Energy (McDE) scenario - characterised by two distinct cold dark matter (CDM) particle species with opposite couplings to a Dark Energy scalar field - introduces a number of novel features in the small-scale dynamics of cosmic structures, most noticeably the simultaneous existence of both attractive and repulsive fifth-forces. Such small-scale features are expected to imprint possibly observable footprints on nonlinear cosmic structures, that might provide a direct way to test the scenario. In order to unveil such footprints, we have performed the first suite of high-resolution N-body simulations of McDE cosmologies, covering the coupling range |β| ≤ 1. We find that for coupling values corresponding to fifth-forces weaker than standard gravity, the impact on structure formation is very mild, thereby showing a new type of screening mechanism for long-range scalar interactions. On the contrary, for fifth-forces comparable to or stronger than standard gravity a number of effects appear in the statistical and structural properties of CDM halos. Collapsed structures start to fragment into pairs of smaller objects that move on different trajectories, providing a direct evidence of the violation of the weak equivalence principle. Consequently, the relative abundance of halos of different masses is significantly modified. For sufficiently large coupling values, the expected number of clusters is strongly suppressed, which might alleviate the present tension between CMB- and cluster-based cosmological constraints. Finally, the internal structure of halos is also modified, with a significant suppression of the inner overdensity, and a progressive segregation of the two CDM species.
Heal the world: Avoiding the cosmic doomsday in the holographic dark energy model
NASA Astrophysics Data System (ADS)
Zhang, Xin
2010-01-01
The current observational data imply that the universe would end with a cosmic doomsday in the holographic dark energy model. However, unfortunately, the big-rip singularity will ruin the theoretical foundation of the holographic dark energy scenario. To rescue the holographic scenario of dark energy, we employ the braneworld cosmology and incorporate the extra-dimension effects into the holographic theory of dark energy. We find that such a mend could erase the big-rip singularity and leads to a de Sitter finale for the holographic cosmos. Therefore, in the holographic dark energy model, the extra-dimension recipe could heal the world.
Effective field theory of dark energy: a dynamical analysis
Frusciante, Noemi; Raveri, Marco; Silvestri, Alessandra E-mail: mraveri@sissa.it
2014-02-01
The effective field theory (EFT) of dark energy relies on three functions of time to describe the dynamics of background cosmology. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism and the corresponding compatibility requirements for the EFT functions. The machinery that we set up serves different purposes. It offers a general scheme for performing dynamical analysis of dark energy and modified gravity models within the model independent framework of EFT; the general results, obtained with this technique, can be projected into specific models, as we show in one example. It also can be used to determine appropriate ansätze for the three EFT background functions when studying the dynamics of cosmological perturbations in the context of large scale structure tests of gravity.
Probing dark energy dynamics from current and future cosmological observations
Zhao Gongbo; Zhang Xinmin
2010-02-15
We report the constraints on the dark energy equation-of-state w(z) using the latest 'Constitution' SNe sample combined with the WMAP5 and Sloan Digital Sky Survey data. Assuming a flat Universe, and utilizing the localized principal component analysis and the model selection criteria, we find that the {Lambda}CDM model is generally consistent with the current data, yet there exists a weak hint of the possible dynamics of dark energy. In particular, a model predicting w(z)<-1 at z is an element of [0.25,0.5) and w(z)>-1 at z is an element of [0.5,0.75), which means that w(z) crosses -1 in the range of z is an element of [0.25,0.75), is mildly favored at 95% confidence level. Given the best fit model for current data as a fiducial model, we make future forecast from the joint data sets of Joint Dark Energy Mission, Planck, and Large Synoptic Survey Telescope, and we find that the future surveys can reduce the error bars on the w bins by roughly a factor of 10 for a 5-w-bin model.
Local dark matter and dark energy as estimated on a scale of ~1 Mpc in a self-consistent way
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2009-12-01
Context: Dark energy was first detected from large distances on gigaparsec scales. If it is vacuum energy (or Einstein's Λ), it should also exist in very local space. Here we discuss its measurement on megaparsec scales of the Local Group. Aims: We combine the modified Kahn-Woltjer method for the Milky Way-M 31 binary and the HST observations of the expansion flow around the Local Group in order to study in a self-consistent way and simultaneously the local density of dark energy and the dark matter mass contained within the Local Group. Methods: A theoretical model is used that accounts for the dynamical effects of dark energy on a scale of ~1 Mpc. Results: The local dark energy density is put into the range 0.8-3.7ρv (ρv is the globally measured density), and the Local Group mass lies within 3.1-5.8×1012 M⊙. The lower limit of the local dark energy density, about 4/5× the global value, is determined by the natural binding condition for the group binary and the maximal zero-gravity radius. The near coincidence of two values measured with independent methods on scales differing by ~1000 times is remarkable. The mass ~4×1012 M⊙ and the local dark energy density ~ρv are also consistent with the expansion flow close to the Local Group, within the standard cosmological model. Conclusions: One should take into account the dark energy in dynamical mass estimation methods for galaxy groups, including the virial theorem. Our analysis gives new strong evidence in favor of Einstein's idea of the universal antigravity described by the cosmological constant.
Inflation, Dark Energy and the AFTA: Survey Evaluation Tools
NASA Astrophysics Data System (ADS)
Bennett, Charles
We propose to address these questions about the Astrophysics Focused Telescope Assets (AFTA) implementation of the Wide-Field Infra-Red Survey Telescope (WFIRST): (1) What constraints does WFIRST/AFTA place on inflationary and dark energy cosmological parameters for a given set of nominal instrument design and observing parameters? (2) How do these constraints change with variations in mission parameters (sky area, observing duration, sensitivity, purity, astrophysical assumptions, etc.)? and (3) How should requirements or capabilities be included in the design to ensure the dark energy and inflation parameter estimates can be met? To answer these questions we propose to develop a set of simulation tools to better understand the dependencies of the cosmological results on the mission design. We emphasize that it is not our intent to argue for particular changes to the mission, but rather to provide the WFIRST/AFTA Study Office with insights, specific numbers, and functional dependencies so that the Study Office can make informed decisions. Early time accelerated expansion (inflation) and late time accelerated expansion (from dark energy) have physical similarities and differences. They are both, in their simplest form, exponential expansions with the equation of state parameter w = -1, yet they appear unrelated in the sense that they occur on vastly different energy scales. Neither is well understood, hence the strong desire for improved measurements. In a practical sense, the interpretation of future measurements are interdependent. Flatness (Omega_k=0) is often assumed to deduce limits on w, or alternatively w = -1 is assumed to deduce limits on flatness. Baryon acoustic oscillations (BAO) are effectively differential and hence approximately independent of the detailed shape of the power spectrum, P(k), but if the AFTA galaxy redshift survey is used to deduce P(k), then there is a strong interaction between the interpretation of P(k) and inflation, including its
NASA Technical Reports Server (NTRS)
Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.
1973-01-01
Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.
Constraints on interacting dark energy from time delay lenses
NASA Astrophysics Data System (ADS)
Pan, Yu; Cao, Shuo; Li, Li
2016-10-01
We use the time delay measurements between multiple images of lensed sources in 18 strongly gravitationally lensed (SGL) systems to put additional constraints on three phenomenological interaction models for dark energy (DE) and dark matter (DM). The compatibility among the fits on the three models seems to imply that the coupling between DE and DM is a small value close to zero, which is compatible with the previous results for constraining interacting DE parameters. We find that, among the three interacting DE models, the γmIDE model with the interaction term Q proportional to the energy density of DM provides relatively better fits to recent observations. However, the coincidence problem is still very severe in the framework of three interacting DE models, since the fitting results do not show any preference for a nonzero coupling between DE and DM. More importantly, we have studied the significance of the current strong lensing data in deriving the interacting information between dark sectors, which highlights the importance of strong lensing time delay measurements to provide additional observational fits on alternative cosmological models.
Galactic cluster winds in presence of a dark energy
NASA Astrophysics Data System (ADS)
Bisnovatyi-Kogan, G. S.; Merafina, M.
2013-10-01
We obtain a solution for the hydrodynamic outflow of the polytropic gas from the gravitating centre, in the presence of the uniform dark energy (DE). The antigravity of DE is enlightening the outflow and makes the outflow possible at smaller initial temperature, at the same density. The main property of the wind in the presence of DE is its unlimited acceleration after passing the critical point. In application of this solution to the winds from galaxy clusters, we suggest that collision of the strongly accelerated wind with another galaxy cluster, or with another galactic cluster wind, could lead to the formation of a highest energy cosmic rays.
Inflation and dark energy from the Brans-Dicke theory
Artymowski, Michał; Lalak, Zygmunt; Lewicki, Marek
2015-06-17
We consider the Brans-Dicke theory motivated by the f(R)=R+αR{sup n}−βR{sup 2−n} model to obtain a stable minimum of the Einstein frame scalar potential of the Brans-Dicke field. As a result we have obtained an inflationary scalar potential with non-zero value of residual vacuum energy, which may be a source of dark energy. In addition we discuss the probability of quantum tunnelling from the minimum of the potential. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n and ω.
Inflation and dark energy from f(R) gravity
Artymowski, Michał; Lalak, Zygmunt E-mail: Zygmunt.Lalak@fuw.edu.pl
2014-09-01
The standard Starobinsky inflation has been extended to the R + α R{sup n} - β R{sup 2-n} model to obtain a stable minimum of the Einstein frame scalar potential of the auxiliary field. As a result we have obtained obtain a scalar potential with non-zero value of residual vacuum energy, which may be a source of Dark Energy. Our results can be easily consistent with PLANCK or BICEP2 data for appropriate choices of the value of n.
NASA Astrophysics Data System (ADS)
Dymnikova, Irina
2016-01-01
The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum dark fluid essentially anisotropic and allows it to be evolving and clustering. The relevant regular solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy through the de Sitter vacuum interior: regular black holes, their remnants and self-gravitating vacuum solitons — which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry.
Vector dark energy and high-z massive clusters
NASA Astrophysics Data System (ADS)
Carlesi, Edoardo; Knebe, Alexander; Yepes, Gustavo; Gottlöber, Stefan; Jiménez, Jose Beltrán.; Maroto, Antonio L.
2011-12-01
The detection of extremely massive clusters at z > 1 such as SPT-CL J0546-5345, SPT-CL J2106-5844 and XMMU J2235.3-2557 has been considered by some authors as a challenge to the standard Λ cold dark matter cosmology. In fact, assuming Gaussian initial conditions, the theoretical expectation of detecting such objects is as low as ≤1 per cent. In this paper we discuss the probability of the existence of such objects in the light of the vector dark energy paradigm, showing by means of a series of N-body simulations that chances of detection are substantially enhanced in this non-standard framework.
Neutrino oscillations as a probe of dark energy.
Kaplan, David B; Nelson, Ann E; Weiner, Neal
2004-08-27
We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.
Instability of Interacting Ghost Dark Energy Model in an Anisotropic Universe
NASA Astrophysics Data System (ADS)
Azimi, N.; Barati, F.
2016-07-01
A new dark energy model called "ghost dark energy" was recently suggested to explain the observed accelerating expansion of the universe. This model originates from the Veneziano ghost of QCD. The dark energy density is proportional to Hubble parameter, ρ Λ = α H, where α is a constant of order {Λ }3_{QCD} and Λ Q C D ˜ 100 M e V is QCD mass scale. In this paper, we investigate about the stability of generalized QCD ghost dark energy model against perturbations in the anisotropic background. At first, the ghost dark energy model of the universe with spatial BI model with/without the interaction between dark matter and dark energy is discussed. In particular, the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy model are obtained. Then, we use the squared sound speed {vs2} the sign of which determines the stability of the model. We explore the stability of this model in the presence/absence of interaction between dark energy and dark matter in both flat and non-isotropic geometry. In conclusion, we find evidence that the ghost dark energy might can not lead to a stable universe favored by observations at the present time in BI universe.
Has ESA's XMM-Newton cast doubt over dark energy?
NASA Astrophysics Data System (ADS)
2003-12-01
Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM
NASA Astrophysics Data System (ADS)
Pasqua, Antonio; Chattopadhyay, Surajit; Assaf, Khudhair A.; Salako, Ines G.
2016-06-01
In this paper, we study the properties of the Holographic Dark Energy (HDE) model in the context of Kaluza-Klein (KK) cosmology with infrared cut-off given by the recently proposed by Granda-Oliveros cut-off, which contains a term proportional to the time derivative of the Hubble parameter and one proportional to the Hubble parameter squared. Moreover, this cut-off is characterized by two free parameters which are the proportional constants of the two terms of the cut-off. We derive the expression of the Equation of State (EoS) parameter ωD and of the deceleration parameter q for both non-interacting and interacting Dark Sectors and in the limiting case of a flat Dark Dominated Universe. Moreover, we study the squared speed of the sound vs2 and the statefinder diagnostic \\{r,s\\} in order to understand the cosmological properties of the model considered. We also develop a correspondence between the model considered and three scalar field models: the tachyon, the k-essence and the quintessence ones.
A Terrestrial Search for Dark Contents of the Vacuum, Such as Dark Energy, Using Atom Interferometry
Adler, Ronald J.; Muller, Holger; Perl, Martin L.; /KIPAC, Menlo Park /SLAC
2012-06-11
We describe the theory and first experimental work on our concept for searching on earth for the presence of dark contents of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but which might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong nongravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO. The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The laboratory apparatus is now being constructed.
Traversable geometric dark energy wormholes constrained by astrophysical observations
NASA Astrophysics Data System (ADS)
Wang, Deng; Meng, Xin-he
2016-09-01
In this paper, we introduce the astrophysical observations into the wormhole research. We investigate the evolution behavior of the dark energy equation of state parameter ω by constraining the dark energy model, so that we can determine in which stage of the universe wormholes can exist by using the condition ω <-1. As a concrete instance, we study the Ricci dark energy (RDE) traversable wormholes constrained by astrophysical observations. Particularly, we find from Fig. 5 of this work, when the effective equation of state parameter ω _X<-1 (or z<0.109), i.e., the null energy condition (NEC) is violated clearly, the wormholes will exist (open). Subsequently, six specific solutions of statically and spherically symmetric traversable wormhole supported by the RDE fluids are obtained. Except for the case of a constant redshift function, where the solution is not only asymptotically flat but also traversable, the five remaining solutions are all non-asymptotically flat, therefore, the exotic matter from the RDE fluids is spatially distributed in the vicinity of the throat. Furthermore, we analyze the physical characteristics and properties of the RDE traversable wormholes. It is worth noting that, using the astrophysical observations, we obtain the constraints on the parameters of the RDE model, explore the types of exotic RDE fluids in different stages of the universe, limit the number of available models for wormhole research, reduce theoretically the number of the wormholes corresponding to different parameters for the RDE model, and provide a clearer picture for wormhole investigations from the new perspective of observational cosmology.
Interacting cosmic fluids and phase transitions under a holographic modeling for dark energy
NASA Astrophysics Data System (ADS)
Lepe, Samuel; Peña, Francisco
2016-09-01
We discuss the consequences of possible sign changes of the Q-function which measures the transfer of energy between dark energy and dark matter. We investigate this scenario from a holographic perspective by modeling dark energy by a linear parametrization and CPL-parametrization of the equation of state (ω ). By imposing the strong constraint of the second law of thermodynamics, we show that the change of sign for Q, due to the cosmic evolution, imply changes in the temperatures of dark energy and dark matter. We also discuss the phase transitions, in the past and future, experienced by dark energy and dark matter (or, equivalently, the sign changes of their heat capacities).
Cosmic acceleration without dark energy: background tests and thermodynamic analysis
Lima, J.A.S.; Graef, L.L.; Pavón, D.; Basilakos, Spyros E-mail: leilagraef@usp.br E-mail: svasil@academyofathens.gr
2014-10-01
A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests.
Generalized holographic dark energy and the IR cutoff problem
Guberina, B.; Horvat, R.; Nikolic, H.
2005-12-15
We consider a holographic dark energy model, in which both the cosmological-constant (CC) energy density {rho}{sub {lambda}} and the Newton constant G{sub N} are varying quantities, to study the problem of setting an effective field-theory IR cutoff. Assuming that ordinary matter scales canonically, we show that the continuity equation univocally fixes the IR cutoff, provided a law of variation for either {rho}{sub {lambda}} or G{sub N} is known. Previous considerations on holographic dark energy disfavor the Hubble parameter as a candidate for the IR cutoff (for spatially flat universes), since in this case the ratio of dark energy to dark matter is not allowed to vary, thus hindering a deceleration era of the universe for the redshifts z > or approx. 0.5. On the other hand, the future event horizon as a choice for the IR cutoff is being favored in the literature, although the 'coincidence problem' usually cannot be addressed in that case. We extend considerations to spatially curved universes, and show that with the Hubble parameter as a choice for the IR cutoff one always obtains a universe that never accelerates or a universe that accelerates all the time, thus making the transition from deceleration to acceleration impossible. Next, we apply the IR cutoff consistency procedure to a renormalization-group (RG) running CC model, in which the low-energy variation of the CC is due to quantum effects of particle fields having masses near the Planck scale. We show that bringing such a model (having the most general cosmology for running CC universes) in full accordance with holography amounts to having such an IR cutoff which scales as a square root of the Hubble parameter. We find that such a setup, in which the only undetermined input represents the true ground state of the vacuum, can give early deceleration as well as late-time acceleration. The possibility of further improvement of the model is also briefly indicated.
Linear perturbation constraints on multi-coupled dark energy
Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de
2014-02-01
The Multi-coupled Dark Energy (McDE) scenario has been recently proposed as a specific example of a cosmological model characterized by a non-standard physics of the dark sector of the universe that nevertheless gives an expansion history which does not significantly differ from the one of the standard ΛCDM model. Thanks to a dynamical screening mechanism, in fact, the interaction between the Dark Energy field and the Dark Matter sector is effectively suppressed at the background level during matter domination. As a consequence, background observables cannot discriminate a McDE cosmology from ΛCDM for a wide range of model parameters. On the other hand, linear perturbations are expected to provide tighter bounds due to the existence of attractive and repulsive fifth-forces associated with the dark interactions. In this work, we present the first constraints on the McDE scenario obtained by comparing the predicted evolution of linear density perturbations with a large compilation of recent data sets for the growth rate fσ{sub 8}, including 6dFGS, LRG, BOSS, WiggleZ and VIPERS. Confirming qualitative expectations, growth rate data provide much tighter bounds on the model parameters as compared to the extremely loose bounds that can be obtained when only the background expansion history is considered. In particular, the 95% confidence level on the coupling strength |β| is reduced from |β| ≤ 83 (background constraints only) to |β| ≤ 0.88 (background and linear perturbation constraints). We also investigate how these constraints further improve when using data from future wide-field surveys such as supernova data from LSST and growth rate data from Euclid-type missions. In this case the 95% confidence level on the coupling further reduce to |β| ≤ 0.85. Such constraints are in any case still consistent with a scalar fifth-force of gravitational strength, and we foresee that tighter bounds might be possibly obtained from the investigation of nonlinear
Early Science Results from the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Ross, Ashley
2015-04-01
The Dark Energy Survey (DES) is a next-generation large galaxy survey designed to unravel the mystery of the nature of the dark energy that powers the current accelerated expansion of the Universe. The DES collaboration built and participated in the installation and commissioning of DECam, a 570 mega-pixel optical and near-infrared camera with a large 3 deg2 field of view, set at the prime focus of the Víctor M. Blanco 4-meter telescope in at the Cerro Tololo Inter-American Observatory in Chile. Using DECam, DES will map 5000 deg2 to a depth IAB ~ 24 and observe designated supernova survey fields at high cadence. These data will allow DES to measure positions, approximate redshifts, and shapes for 300 million galaxies, the light-curves of several thousand supernovae, and the masses of tens of thousands of galaxy clusters. Using these data, DES will use four main probes to study the properties of dark energy: galaxy clustering on large scales, weak gravitational lensing, galaxy-cluster abundance, and supernova distances. I describe the early progress of the survey and provide highlights of the science analyses that have been completed so far. These include: large-scale galaxy clustering measurements; significant detection of a cross-correlation with SPT CMB lensing maps; galaxy-shear and shear-shear correlation function measurements; discoveries of super-luminous supernovae, dozens of strong lenses, and redshift > 6 quasars; and characterization of DES galaxy clusters and SNe1a light-curves.
Confronting dark energy models using galaxy cluster number counts
Basilakos, S.; Plionis, M.; Lima, J. A. S.
2010-10-15
The mass function of cluster-size halos and their redshift distribution are computed for 12 distinct accelerating cosmological scenarios and confronted to the predictions of the conventional flat {Lambda}CDM model. The comparison with {Lambda}CDM is performed by a two-step process. First, we determine the free parameters of all models through a joint analysis involving the latest cosmological data, using supernovae type Ia, the cosmic microwave background shift parameter, and baryon acoustic oscillations. Apart from a braneworld inspired cosmology, it is found that the derived Hubble relation of the remaining models reproduces the {Lambda}CDM results approximately with the same degree of statistical confidence. Second, in order to attempt to distinguish the different dark energy models from the expectations of {Lambda}CDM, we analyze the predicted cluster-size halo redshift distribution on the basis of two future cluster surveys: (i) an X-ray survey based on the eROSITA satellite, and (ii) a Sunayev-Zeldovich survey based on the South Pole Telescope. As a result, we find that the predictions of 8 out of 12 dark energy models can be clearly distinguished from the {Lambda}CDM cosmology, while the predictions of 4 models are statistically equivalent to those of the {Lambda}CDM model, as far as the expected cluster mass function and redshift distribution are concerned. The present analysis suggests that such a technique appears to be very competitive to independent tests probing the late time evolution of the Universe and the associated dark energy effects.
Ghost dark energy models in specific modified gravity
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Salako, Ines G.; Sohail, Ayesha
2016-09-01
The paper is devoted to the study of the cosmic acceleration through ghost dark energy models (its simple and generalized form) in the dynamical Chern-Simons modified gravity. In order to check the reliability of this scenario, we explore different cosmological parameters, such as deceleration, equation of state parameters and squared speed of sound. The cosmological planes ωD - 'D and r- s are also investigated in this framework. The obtained results are consistent with observational data of various schemes (WMAP+eCAMB+BAO+H0).
Calibrating CHIME: a new radio interferometer to probe dark energy
NASA Astrophysics Data System (ADS)
Newburgh, Laura B.; Addison, Graeme E.; Amiri, Mandana; Bandura, Kevin; Bond, J. Richard; Connor, Liam; Cliche, Jean-François; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Fong, Heather; Gibbs, Kenneth; Gilbert, Adam; Griffin, Elizabeth; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Klages, Peter; Landecker, Tom; Masui, Kiyoshi; Parra, Juan Mena; Pen, Ue-Li; Peterson, Jeff; Recnik, Andre; Shaw, J. Richard; Sigurdson, Kris; Sitwell, Micheal; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don
2014-07-01
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 { 800MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 { 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements.
Attaining the Photometric Precision Required by Future Dark Energy Projects
Stubbs, Christopher
2013-01-21
This report outlines our progress towards achieving the high-precision astronomical measurements needed to derive improved constraints on the nature of the Dark Energy. Our approach to obtaining higher precision flux measurements has two basic components: 1) determination of the optical transmission of the atmosphere, and 2) mapping out the instrumental photon sensitivity function vs. wavelength, calibrated by referencing the measurements to the known sensitivity curve of a high precision silicon photodiode, and 3) using the self-consistency of the spectrum of stars to achieve precise color calibrations.
Magnetic domain walls of relic fermions as Dark Energy
Yajnik, Urjit A.
2005-12-02
We show that relic fermions of the Big Bang can enter a ferromagnetic state if they possess a magnetic moment and satisfy the requirements of Stoner theory of itinerant ferromagnetism. The domain walls of this ferromagnetism can successfully simulate Dark Energy over the observable epoch spanning {approx} 10 billion years. We obtain conditions on the anomalous magnetic moment of such fermions and their masses. Known neutrinos fail to satisfy the requirements thus pointing to the possibility of a new ultralight sector in Particle Physics.
Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae
Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN
2005-08-08
The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be
Graphical user interfaces of the dark energy survey
NASA Astrophysics Data System (ADS)
Eiting, Jacob; Elliott, Ann; Honscheid, Klaus; Annis, Jim; Buckley-Geer, Elizabeth J.; Wester, William; Haney, Michael; Hanlon, William; Karliner, Inga; Thaler, Jon; Meyer, Mark; Bonati, Marco; Schumacher, German; Kuehn, Kyler W.; Kuhlmann, Stephen E.; Schalk, Terry; Marshall, Stuart; Roodman, Aaron J.
2010-07-01
The Dark Energy Survey (DES) is a 5000 square degree survey of the southern galactic cap set to take place on the Blanco 4-m telescope at Cerra Tololo Inter-American Observatory. A new 500 MP camera and control system are being developed for this survey. To facilitate the data acquisition and control, a new user interface is being designed that utilizes the massive improvements in web based technologies in the past year. The work being done on DES shows that these new technologies provide the functionality and performance required to provide a productive and enjoyable user experience in the browser.
Dark Energy: Anatomy of a Paradigm Shift in Cosmology
NASA Astrophysics Data System (ADS)
Hocutt, Hannah
2016-03-01
Science is defined by its ability to shift its paradigm on the basis of observation and data. Throughout history, the worldviews of the scientific community have been drastically changed to fit that which was scientifically determined to be fact. One of the latest paradigm shifts happened over the shape and fate of the universe. This research details the progression from the early paradigm of a decelerating expanding universe to the discovery of dark energy and the movement to the current paradigm of a universe that is not only expanding but is also accelerating. Advisor: Dr. Kristine Larsen.
Computing model independent perturbations in dark energy and modified gravity
Battye, Richard A.; Pearson, Jonathan A. E-mail: jonathan.pearson@durham.ac.uk
2014-03-01
We present a methodology for computing model independent perturbations in dark energy and modified gravity. This is done from the Lagrangian for perturbations, by showing how field content, symmetries, and physical principles are often sufficient ingredients for closing the set of perturbed fluid equations. The fluid equations close once ''equations of state for perturbations'' are identified: these are linear combinations of fluid and metric perturbations which construct gauge invariant entropy and anisotropic stress perturbations for broad classes of theories. Our main results are the proof of the equation of state for perturbations presented in a previous paper, and the development of the required calculational tools.
General Astrophysics with TPF: Not Just Dark Energy
NASA Technical Reports Server (NTRS)
Kuchner, Marc
2006-01-01
Besides searching for Earth-LIke Planets, TPF can study Jupiters, Neptunes, and all sorts of exotic planets. It can image debris-disks, YSO disks, AGN disks, maybe even AGB disks. And you are probably aware that a large optical space telescope like TPF-C or TPF-O can be a fantastic tool for studying the equation of state of the Dark Energy. I will review some of the future science of TPF-C, TPF-I and TPF-O, focusing on the applications of TPF to the study of objects in our Galaxy: especially circumstellar disks and planets other than exo-Earths.
DES exposure checker: Dark Energy Survey image quality control crowdsourcer
NASA Astrophysics Data System (ADS)
Melchior, Peter; Sheldon, Erin; Drlica-Wagner, Alex; Rykoff, Eli S.
2015-11-01
DES exposure checker renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes, thus allowing image quality control for the Dark Energy Survey to be crowdsourced through its web application. Users can also generate custom labels to help identify previously unknown problem classes; generated reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. These problem reports allow rapid correction of artifacts that otherwise may be too subtle or infrequent to be recognized.
The Dark Energy Survey: Prospects for resolved stellar populations
Rossetto, Bruno M.; Santiago, Basílio X.; Girardi, Léo; Camargo, Julio I. B.; Balbinot, Eduardo; da Costa, Luiz N.; Yanny, Brian; Maia, Marcio A. G.; Makler, Martin; Ogando, Ricardo L. C.; Pellegrini, Paulo S.; Ramos, Beatriz; de Simoni, Fernando; Armstrong, R.; Bertin, E.; Desai, S.; Kuropatkin, N.; Lin, H.; Mohr, J. J.; Tucker, D. L.
2011-05-06
Wide angle and deep surveys, regardless of their primary purpose, always sample a large number of stars in the Galaxy and in its satellite system. We here make a forecast of the expected stellar sample resulting from the Dark Energy Survey and the perspectives that it will open for studies of Galactic structure and resolved stellar populations in general. An estimated 1.2 x 10^{8} stars will be sampled in DES grizY filters in the southern equatorial hemisphere. This roughly corresponds to 20% of all DES sources. Most of these stars belong to the stellar thick disk and halo of the Galaxy.
NASA Astrophysics Data System (ADS)
Slatyer, Tracy R.
2016-01-01
Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.
Dark energy as a modification of the Friedmann equation
Dvali, Gia; Turner, Michael S.; /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Chicago U., EFI /Fermilab
2003-01-01
Dark energy could actually be the manifestation of a modification to the Friendmann equation arising from new physics (e.g., extra dimensions). Writing the correction as (1 - {Omega}{sub M})H{sup {alpha}}/H{sub 0}{sup {alpha}-2}, they explore the phenomenology and detectability of such. They show that: (1) {alpha} must be {approx}< 1; (2) such a correction behaves like dark energy with equation-of-state w{sub eff} = -1 + {alpha}/2 in the recent past (10{sup 4} > z >> 1) and w = -1 in the distant future and can mimic w < -1 without violating the weak-energy condition; (3) w{sub eff} changes, dz/dw|{sub z {approx} 0.5} {approx} {Omicron}(0.2), which is likely detectable; and (4) a future supernova experiment like SNAP that can determine w with precision {sigma}{sub w}, could determine {alpha} to precision {sigma}{sub {alpha}} {approx} 2{sigma}{sub w}.
Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.
Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan
2012-03-14
Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. PMID:22292470
Dark Energy due to Late Time Quantum Decay Process
NASA Astrophysics Data System (ADS)
de La Macorra, A.; Briscese, F.
2010-06-01
We show that the dark energy field can be dynamically obtained at a low scale, e.g. at E = O(eV), via a quantum transitions process. This is achieved if the φ field is coupled with a relativistic scalar field which we call J. The 2<-->2 coupling has a transition rate Γ~g2TJ and the fields are coupled at low energies when Γ/H ≡ Tgen/TJ~g2/TJ is larger than one, i.e. at T
Disordered locality as an explanation for the dark energy
Prescod-Weinstein, Chanda; Smolin, Lee
2009-09-15
We discuss a novel explanation of the dark energy as a manifestation of macroscopic nonlocality coming from quantum gravity, as proposed by Markopoulou [F. Markopoulou (private communication)]. It has been previously suggested that in a transition from an early quantum geometric phase of the Universe to a low temperature phase characterized by an emergent spacetime metric, locality might have been 'disordered'. This means that there is a mismatch of micro-locality, as determined by the microscopic quantum dynamics and macro-locality as determined by the classical metric that governs the emergent low energy physics. In this paper we discuss the consequences for cosmology by studying a simple extension of the standard cosmological models with disordered locality. We show that the consequences can include a naturally small vacuum energy.
Dark Energy and Dark Matter as Components of Cosmological Term Stand for Vorticity and Shear
NASA Astrophysics Data System (ADS)
Nurgaliev, Ildus S.
2015-01-01
This report brings attention to the ignored components of the kinetic energy related to vorticity and shear in the standard cosmological dynamics. It is concluded that averaged term of squared vorticity is term attributed as an accelerated expansion caused by negative energy of an enigmatic repulsive factor. Cosmological singularity has been a consequence of the unrealistically excessive cosmological principle (too detailed symmetry of flow) such as "Hubble law". Appropriate realistic one is suggested, which is also linear function of space coordinates (because of homogeneity principle) but has tensor character. Cosmological principle is applied to irregularities - they are homogeneous and isotropic in average to some extend within the corresponding Megagalactic scales. The "Big Bang" is nothing but the local bounce of the Meta-galaxy which is typical among myriads others. Exact solutions are presented (dynamic, steady and static) of the cosmologic dynamics. "Negative radiation" equation of state p =∈/3 with p≤0, ∈≤0 is generated by vorticity which is dynamic carrier of the dark energy. This fact dismisses the need in any other artificial cosmologic term, the need in any other modifications of the gravity theory or in an exotic matter as a cause for cosmological accelerated expansion. New conception of material point established. Social and educational aspects of the findings touched slightly.
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)
2001-01-01
The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.
Neutrino mass, dark energy, and the linear growth factor
NASA Astrophysics Data System (ADS)
Kiakotou, Angeliki; Elgarøy, Øystein; Lahav, Ofer
2008-03-01
We study the degeneracies between neutrino mass and dark energy as they manifest themselves in cosmological observations. In contradiction to a popular formula in the literature, the suppression of the matter power spectrum caused by massive neutrinos is not just a function of the ratio of neutrino to total mass densities fν=Ων/Ωm, but also each of the densities independently. We also present a fitting formula for the logarithmic growth factor of perturbations in a flat universe, f(z,k;fν,w,ΩDE)≈[1-A(k)ΩDEfν+B(k)fν2-C(k)fν3]Ωmα(z), where α depends on the dark energy equation of state parameter w. We then discuss cosmological probes where the f factor directly appears: peculiar velocities, redshift distortion, and the integrated Sachs-Wolfe effect. We also modify the approximation of Eisenstein and Hu [Astrophys. J.ASJOAB0004-637X 511, 5 (1999)10.1086/306640] for the power spectrum of fluctuations in the presence of massive neutrinos and provide a revised code [http://www.star.ucl.ac.uk/~lahav/nu_matter_power.f].
DESTINY: The dark energy space telescope [review article
NASA Astrophysics Data System (ADS)
Lauer, Tod R.
2005-11-01
The Dark Energy Space Telescope (DESTINY) is an all-grism NIR 1.8 m survey camera optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SN) over the redshift range 0.5 < z < 1.7, for determining cosmological distances, measuring the expansion rate of the universe as a function of time, and characterizing the nature of the so-called "dark energy" component of the universe. SN will be discovered by repeated imaging of a 7.5 square-degree area located at the north ecliptic poles. Grism spectra with resolving power λ/Δ λ = R ˜ 75 will provide broad-band spectrophotometry, redshifts, SN classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. This methodology features only a single mode of operation with no time-critical interactions, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared to SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of being able to observe a large field-of-view simultaneously over a full octave in wavelength makes this approach highly competitive.
Imaging Simulations for DESTINY, the Dark Energy Space Telescope
NASA Astrophysics Data System (ADS)
Lauer, T. R.; DESTINY Science Team
2004-12-01
We describe a mission concept for a 1.8-meter near-infrared (NIR) grism-mode space telescope optimized to return richly sampled Hubble diagrams of Type Ia and Type II supernovae (SNe) over the redshift range 0.5 < z < 1.7 for determining cosmological distances, measuring the expansion rate of the Universe as a function of time, and characterizing the nature of dark energy. The central concept for our proposed Dark Energy Space Telescope (DESTINY) is an all-grism NIR survey camera. SNe will be discovered by repeated imaging of an area located at the north ecliptic pole. Grism spectra with resolving power l/Dl = R * 100 will provide broad-band spectrophotometry, redshifts, SNe classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. Our approach features only a single mode of operation, a single detector technology, and a single instrument. Although grism spectroscopy is slow compared to SN detection in any single broad-band filter for photometry, or to conventional slit spectra for spectral diagnostics, the multiplex advantage of observing a large field-of-view over a full octave in wavelength simultaneously makes this approach highly competitive. In this poster we present exposure simulations to demonstrate the efficiency of the DESTINY approach.
The DESTINY concept for the Joint Dark Energy Mission (JDEM)
NASA Astrophysics Data System (ADS)
Morse, Jon A.; Lauer, Tod R.; Woodruff, Robert A.
2004-10-01
The Destiny space telescope is a candidate architecture for the NASA-DOE Joint Dark Energy Mission (JDEM). This paper describes some of the scientific and observational issues that will be explored as part of our mission concept study. The Destiny ~1.8-meter near-infrared (NIR) grism-mode space telescope would gather a census of type Ia and type II supernovae (SN) over the redshift range 0.5 < z < 1.7 for measuring the expansion rate of the Universe as a function of time and characterizing the nature of dark energy. The central concept is a wide-field, all-grism NIR survey camera. Grism spectra with 2-pixel resolving power R~70-100 will provide broad-band spectrophotometry, redshifts, SN classification, as well as valuable time-resolved diagnostic data for understanding the SN explosion physics. Spectra from all objects within the 1° x 0.25° FOV will be obtained on a large HgCdTe focal plane array. Our methodology requires only a single mode of operation, a single detector technology, and a single instrument.
Semi-dynamical perturbations of unified dark energy
Lombriser, Lucas; Taylor, Andy E-mail: ant@roe.ac.uk
2015-11-01
Linear cosmological perturbations of a large class of modified gravity and dark energy models can be unified in the effective field theory of cosmic acceleration, encompassing Horndeski scalar-tensor theories and beyond. The fully available model space inherent to this formalism cannot be constrained by measurements in the quasistatic small-scale regime alone. To facilitate the analysis of modifications from the concordance model beyond this limit, we introduce a semi-dynamical treatment extrapolated from the evolution of perturbations at a pivot scale of choice. At small scales, and for Horndeski theories, the resulting modifications recover a quasistatic approximation but account for corrections to it near the Hubble scale. For models beyond Horndeski gravity, we find that the velocity field and time derivative of the spatial metric potential can generally not be neglected, even in the small-scale limit. We test the semi-dynamical approximation against the linear perturbations of a range of dark energy and modified gravity models, finding good agreement between the two.
White Dwarfs for Calibrating the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Allyn Smith, J.; Wester, William; Tucker, Douglas Lee; Fix, Mees B.; Tremblay, Pier-Emmanuel; Gulledge, Deborah J.; McDonald, Christopher P.; Allam, Sahar S.; James, David
2016-01-01
The Dark Energy Survey (DES) is surveying some 5000 square degrees in the southern hemisphere in the grizY filter system using the new Dark Energy Camera. In order to verify meeting photometric calibration requirements, we are obtaining imaging of several hundred white dwarfs (confirmed and candidates) to select nearly 100 or more hydrogen atmosphere (DA) white dwarfs for spectroscopy in the DES footprint. The spectra that are obtained will be extracted and used to derive synthetic spectra that can be compared with DES measurements from imaging in each of the DES grizY filters. This comparison should be able to verify and help calibrate the survey to a level better than 2% photometrically and to better than 0.5% in colors. We will discuss the observational and modeling effort required to develop a well-characterized DAs sample and present some preliminary results. This set would form the basis of a larger set of southern hemisphere survey calibration stars, and additionally serve as a legacy calibration set in the upcoming era of the LSST survey and the giant segmented mirror observatories. These stars will be used to establish and monitor the color zero points for the DES photometric system and can be used to search for systematic errors in the color zero points over the DES footprint. These stars will also be used as some of the primary standards for the DES photometric system which will allow nightly atmospheric monitoring during DES operations.
Reconstruction of the dark energy equation of state
Vázquez, J. Alberto; Bridges, M.; Lasenby, A.N.; Hobson, M.P. E-mail: mb435@mrao.cam.ac.uk E-mail: a.n.lasenby@mrao.cam.ac.uk
2012-09-01
One of the main challenges of modern cosmology is to investigate the nature of dark energy in our Universe. The properties of such a component are normally summarised as a perfect fluid with a (potentially) time-dependent equation-of-state parameter w(z). We investigate the evolution of this parameter with redshift by performing a Bayesian analysis of current cosmological observations. We model the temporal evolution as piecewise linear in redshift between 'nodes', whose w-values and redshifts are allowed to vary. The optimal number of nodes is chosen by the Bayesian evidence. In this way, we can both determine the complexity supported by current data and locate any features present in w(z). We compare this node-based reconstruction with some previously well-studied parameterisations: the Chevallier-Polarski-Linder (CPL), the Jassal-Bagla-Padmanabhan (JBP) and the Felice-Nesseris-Tsujikawa (FNT). By comparing the Bayesian evidence for all of these models we find an indication towards possible time-dependence in the dark energy equation-of-state. It is also worth noting that the CPL and JBP models are strongly disfavoured, whilst the FNT is just significantly disfavoured, when compared to a simple cosmological constant w = −1. We find that our node-based reconstruction model is slightly disfavoured with respect to the ΛCDM model.
Supergravity, Dark Energy and the Fate of the Universe
Shmakova, Marina
2002-09-27
We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M-theory with non-compact internal spaces. Masses of ultra-light scalars in these models are quantized in units of the Hubble constant: m{sup 2} = nH{sup 2}. If dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N = 8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N = 1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t = O(10{sup 10}) years. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.
The Dark Energy Survey and Operations: Years 1 to 3
Diehl, H. T.
2016-01-01
The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1” (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation
Dark energy or modified gravity? An effective field theory approach
Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu
2013-08-01
We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.
Observational constraint on dynamical evolution of dark energy
Gong, Yungui; Cai, Rong-Gen; Chen, Yun; Zhu, Zong-Hong E-mail: cairg@itp.ac.cn E-mail: zhuzh@bnu.edu.cn
2010-01-01
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic oscillation data combined with the Constitution supernova data to the Chevallier-Polarski-Linder model. We find that the difference stems from the different values of Ω{sub m0}. We also fit the observational data to the model independent piecewise constant parametrization. Four redshift bins with boundaries at z = 0.22, 0.53, 0.85 and 1.8 were chosen for the piecewise constant parametrization of the equation of state parameter w(z) of dark energy. We find no significant evidence for evolving w(z). With the addition of the Hubble parameter, the constraint on the equation of state parameter at high redshift is improved by 70%. The marginalization of the nuisance parameter connected to the supernova distance modulus is discussed.
Avoiding Boltzmann Brain domination in holographic dark energy models
NASA Astrophysics Data System (ADS)
Horvat, R.
2015-11-01
In a spatially infinite and eternal universe approaching ultimately a de Sitter (or quasi-de Sitter) regime, structure can form by thermal fluctuations as such a space is thermal. The models of Dark Energy invoking holographic principle fit naturally into such a category, and spontaneous formation of isolated brains in otherwise empty space seems the most perplexing, creating the paradox of Boltzmann Brains (BB). It is thus appropriate to ask if such models can be made free from domination by Boltzmann Brains. Here we consider only the simplest model, but adopt both the local and the global viewpoint in the description of the Universe. In the former case, we find that if a dimensionless model parameter c, which modulates the Dark Energy density, lies outside the exponentially narrow strip around the most natural c = 1 line, the theory is rendered BB-safe. In the latter case, the bound on c is exponentially stronger, and seemingly at odds with those bounds on c obtained from various observational tests.
Is the effective field theory of dark energy effective?
NASA Astrophysics Data System (ADS)
Linder, Eric V.; Sengör, Gizem; Watson, Scott
2016-05-01
The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions—assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H(z) or dark energy equation of state w(z) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.
Plane Symmetric Dark Energy Models in the Form of Wet Dark Fluid in f ( R, T) Gravity
NASA Astrophysics Data System (ADS)
Chirde, V. R.; Shekh, S. H.
2016-06-01
In this paper, we have investigated the plane symmetric space-time with wet dark fluid (WDF), which is a candidate for dark energy, in the framework of f ( R, T) gravity Harko et al. 2011, Phys. Rev. D, 84, 024020), where R and T denote the Ricci scalar and the trace of the energy-momentum tensor respectively. We have used the equation of state in the form of WDF for the dark energy component of the Universe. It is modeled on the equation of state p = ω( ρ - ρ ∗). The exact solutions to the corresponding field equations are obtained for power-law and exponential volumetric expansion. The geometrical and physical parameters for both the models are studied. Also, we have discussed the well-known astrophysical phenomena, namely the look-back time, proper distance, the luminosity distance and angular diameter distance with red shift.
Role of Entropy-Corrected New Agegraphic Dark Energy in Hořava-Lifshitz Gravity
NASA Astrophysics Data System (ADS)
Bagchi Khatua, Piyali; Chakraborty, Shuvendu; Debnath, Ujjal
2013-02-01
In this work, we have considered the entropy-corrected new agegraphic dark energy (ECNADE) model in Hořava-Lifshitz gravity in FRW universe. We have discussed the correspondence between ECNADE and other dark energy models such as DBI-essence, Yang-Mills dark energy, Chameleon field, Non-linear electrodynamics field and hessence dark energy in the context of Hořava-Lifshitz gravity and reconstructed the potentials and the dynamics of the scalar field theory which describe the ECNADE.
Supernova constraints on multi-coupled dark energy
Piloyan, Arpine; Marra, Valerio; Amendola, Luca; Baldi, Marco E-mail: valerio.marra@me.com E-mail: l.amendola@thphys.uni-heidelberg.de
2013-07-01
The persisting consistency of ever more accurate observational data with the predictions of the standard ΛCDM cosmological model puts severe constraints on possible alternative scenarios, but still does not shed any light on the fundamental nature of the cosmic dark sector. As large deviations from a ΛCDM cosmology are ruled out by data, the path to detect possible features of alternative models goes necessarily through the definition of cosmological scenarios that leave almost unaffected the background and — to a lesser extent — the linear perturbations evolution of the universe. In this context, the Multi-coupled DE (McDE) model was proposed by Baldi [9] as a particular realization of an interacting Dark Energy field characterized by an effective screening mechanism capable of suppressing the effects of the coupling at the background and linear perturbation level. In the present paper, for the first time, we challenge the McDE scenario through a direct comparison with real data, in particular with the luminosity distance of Type Ia supernovae. By studying the existence and stability conditions of the critical points of the associated background dynamical system, we select only the cosmologically consistent solutions, and confront their background expansion history with data. Confirming previous qualitative results, the McDE scenario appears to be fully consistent with the adopted sample of Type Ia supernovae, even for coupling values corresponding to an associated scalar fifth-force about four orders of magnitude stronger than standard gravity. Our analysis demonstrates the effectiveness of the McDE background screening, and shows some new non-trivial asymptotic solutions for the future evolution of the universe. Clearly, linear perturbation data and, even more, nonlinear structure formation properties are expected to put much tighter constraints on the allowed coupling range. Nonetheless, our results show how the background expansion history might be
NASA Astrophysics Data System (ADS)
Bernal, José Luis; Verde, Licia; Cuesta, Antonio J.
2016-02-01
We perform an empirical consistency test of General Relativity/dark energy by disentangling expansion history and growth of structure constraints. We replace each late-universe parameter that describes the behavior of dark energy with two meta-parameters: one describing geometrical information in cosmological probes, and the other controlling the growth of structure. If the underlying model (a standard wCDM cosmology with General Relativity) is correct, that is under the null hypothesis, the two meta-parameters coincide. If they do not, it could indicate a failure of the model or systematics in the data. We present a global analysis using state-of-the-art cosmological data sets which points in the direction that cosmic structures prefer a weaker growth than that inferred by background probes. This result could signify inconsistencies of the model, the necessity of extensions to it or the presence of systematic errors in the data. We examine all these possibilities. The fact that the result is mostly driven by a specific sub-set of galaxy clusters abundance data, points to the need of a better understanding of this probe.
Unification of Dark Matter and Dark Energy in a Modified Entropic Force Model
NASA Astrophysics Data System (ADS)
Chang, Zhe; Li, Ming-Hua; Li, Xin
2011-07-01
In Verlinde's entropic force scenario of gravity, Newton's laws and Einstein equations can be obtained from the first principles and general assumptions. However, the equipartition law of energy is invalid at very low temperatures. We show clearly that the threshold of the equipartition law of energy is related with horizon of the universe. Thus, a one-dimensional Debye (ODD) model in the direction of radius of the modified entropic force (MEF) may be suitable in description of the accelerated expanding universe. We present a Friedmann cosmic dynamical model in the ODD-MEF framework. We examine carefully constraints on the ODD-MEF model from the Union2 compilation of the Supernova Cosmology Project (SCP) collaboration, the data from the observation of the large-scale structure (LSS) and the cosmic microwave background (CMB), i.e. SNe Ia+LSS+CMB. The combined numerical analysis gives the best-fit value of the model parameters ζ ≃ 10-9 and Ωm0 = 0.224, with χ2min = 591.156. The corresponding age of the universe agrees with the result of D. Spergel et al. [J.M. Bardeen, B. Carter, and S.W. Hawking, Commun. Math. Phys. 31 (1973) 161] at 95% confidence level. The numerical result also yields an accelerated expanding universe without invoking any kind of dark energy. Taking ζ(≡ 2πωD/H0) as a running parameter associated with the structure scale r, we obtain a possible unified scenario of the asymptotic flatness of the radial velocity dispersion of spiral galaxies, the accelerated expanding universe and the Pioneer 10/11 anomaly in the entropic force framework of Verlinde.
Radio Astronomers Develop New Technique for Studying Dark Energy
NASA Astrophysics Data System (ADS)
2010-07-01
Pioneering observations with the National Science Foundation's giant Robert C. Byrd Green Bank Telescope (GBT) have given astronomers a new tool for mapping large cosmic structures. The new tool promises to provide valuable clues about the nature of the mysterious "dark energy" believed to constitute nearly three-fourths of the mass and energy of the Universe. Dark energy is the label scientists have given to what is causing the Universe to expand at an accelerating rate. While the acceleration was discovered in 1998, its cause remains unknown. Physicists have advanced competing theories to explain the acceleration, and believe the best way to test those theories is to precisely measure large-scale cosmic structures. Sound waves in the matter-energy soup of the extremely early Universe are thought to have left detectable imprints on the large-scale distribution of galaxies in the Universe. The researchers developed a way to measure such imprints by observing the radio emission of hydrogen gas. Their technique, called intensity mapping, when applied to greater areas of the Universe, could reveal how such large-scale structure has changed over the last few billion years, giving insight into which theory of dark energy is the most accurate. "Our project mapped hydrogen gas to greater cosmic distances than ever before, and shows that the techniques we developed can be used to map huge volumes of the Universe in three dimensions and to test the competing theories of dark energy," said Tzu-Ching Chang, of the Academia Sinica in Taiwan and the University of Toronto. To get their results, the researchers used the GBT to study a region of sky that previously had been surveyed in detail in visible light by the Keck II telescope in Hawaii. This optical survey used spectroscopy to map the locations of thousands of galaxies in three dimensions. With the GBT, instead of looking for hydrogen gas in these individual, distant galaxies -- a daunting challenge beyond the technical
Free-Energy Minimization and the Dark-Room Problem
Friston, Karl; Thornton, Christopher; Clark, Andy
2012-01-01
Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the “free-energy minimization” formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b – see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the “Dark-Room Problem.” Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington’s Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark). PMID:22586414
Free-energy minimization and the dark-room problem.
Friston, Karl; Thornton, Christopher; Clark, Andy
2012-01-01
Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark). PMID:22586414
Galaxy Clustering in the Dark Energy Survey Science Verification Data
NASA Astrophysics Data System (ADS)
Ross, Ashley; Crocce, Martin; Dark Energy Survey Large Scale Structure Working Group Collaboration
2015-04-01
I present the results of a study of galaxy clustering in a flux-limited sample (iAB < 22 . 5) selected from the photometric Science Verification (SV) data of the Dark Energy Survey (DES), conducted by the DES large scale structure working group. The SV data provides science-quality images for more than 250 deg2 at the nominal DES depth (iAB ? 24). I will present the clustering analysis of this data, performed over five tomographic bins, with photometric redshifts, z, in the range 0.2 < z < 1.2. I will describe our work to identify and ameliorate systematics in the data set, which has allowed us to robustly measure the clustering amplitude of the galaxies in each tomographic bin. We test the relationship between the clustering of the galaxies and analytic predictions of the clustering of the dark matter, known as the bias relationship and determine the regime where it is described by a linear model I will present these results and compare them against a similar sample from the (previously) state-of-the-art CFHTLS, with which we find very good agreement. These results pave the way for exciting cosmological measurements to be made with future (larger) DES data sets and by combining the results with other probes such as CMB lensing and galaxy-galaxy lensing.
Free-energy minimization and the dark-room problem.
Friston, Karl; Thornton, Christopher; Clark, Andy
2012-01-01
Recent years have seen the emergence of an important new fundamental theory of brain function. This theory brings information-theoretic, Bayesian, neuroscientific, and machine learning approaches into a single framework whose overarching principle is the minimization of surprise (or, equivalently, the maximization of expectation). The most comprehensive such treatment is the "free-energy minimization" formulation due to Karl Friston (see e.g., Friston and Stephan, 2007; Friston, 2010a,b - see also Fiorillo, 2010; Thornton, 2010). A recurrent puzzle raised by critics of these models is that biological systems do not seem to avoid surprises. We do not simply seek a dark, unchanging chamber, and stay there. This is the "Dark-Room Problem." Here, we describe the problem and further unpack the issues to which it speaks. Using the same format as the prolog of Eddington's Space, Time, and Gravitation (Eddington, 1920) we present our discussion as a conversation between: an information theorist (Thornton), a physicist (Friston), and a philosopher (Clark).
Conformal invariance, dark energy, and CMB non-gaussianity
NASA Astrophysics Data System (ADS)
Antoniadis, Ignatios; Mazur, Pawel O.; Mottola, Emil
2012-09-01
In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial Bbb R3 sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the Bbb S2 horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space, and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models, which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation nS-1 = nT between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations, and distinguish between different dynamical models of cosmological vacuum dark energy.
Conformal invariance, dark energy, and CMB non-gaussianity
Antoniadis, Ignatios; Mazur, Pawel O.; Mottola, Emil E-mail: mazur@physics.sc.edu
2012-09-01
In addition to simple scale invariance, a universe dominated by dark energy naturally gives rise to correlation functions possessing full conformal invariance. This is due to the mathematical isomorphism between the conformal group of certain three dimensional slices of de Sitter space and the de Sitter isometry group SO(4,1). In the standard homogeneous, isotropic cosmological model in which primordial density perturbations are generated during a long vacuum energy dominated de Sitter phase, the embedding of flat spatial R{sup 3} sections in de Sitter space induces a conformal invariant perturbation spectrum and definite prediction for the shape of the non-Gaussian CMB bispectrum. In the case in which the density fluctuations are generated instead on the de Sitter horizon, conformal invariance of the S{sup 2} horizon embedding implies a different but also quite definite prediction for the angular correlations of CMB non-Gaussianity on the sky. Each of these forms for the bispectrum is intrinsic to the symmetries of de Sitter space, and in that sense, independent of specific model assumptions. Each is different from the predictions of single field slow roll inflation models, which rely on the breaking of de Sitter invariance. We propose a quantum origin for the CMB fluctuations in the scalar gravitational sector from the conformal anomaly that could give rise to these non-Gaussianities without a slow roll inflaton field, and argue that conformal invariance also leads to the expectation for the relation n{sub S}−1 = n{sub T} between the spectral indices of the scalar and tensor power spectrum. Confirmation of this prediction or detection of non-Gaussian correlations in the CMB of one of the bispectral shape functions predicted by conformal invariance can be used both to establish the physical origins of primordial density fluctuations, and distinguish between different dynamical models of cosmological vacuum dark energy.
Large-scale magnetic fields, dark energy, and QCD
Urban, Federico R.; Zhitnitsky, Ariel R.
2010-08-15
Cosmological magnetic fields are being observed with ever increasing correlation lengths, possibly reaching the size of superclusters, therefore disfavoring the conventional picture of generation through primordial seeds later amplified by galaxy-bound dynamo mechanisms. In this paper we put forward a fundamentally different approach that links such large-scale magnetic fields to the cosmological vacuum energy. In our scenario the dark energy is due to the Veneziano ghost (which solves the U(1){sub A} problem in QCD). The Veneziano ghost couples through the triangle anomaly to the electromagnetic field with a constant which is unambiguously fixed in the standard model. While this interaction does not produce any physical effects in Minkowski space, it triggers the generation of a magnetic field in an expanding universe at every epoch. The induced energy of the magnetic field is thus proportional to cosmological vacuum energy: {rho}{sub EM{approx_equal}}B{sup 2{approx_equal}}(({alpha}/4{pi})){sup 2{rho}}{sub DE}, {rho}{sub DE} hence acting as a source for the magnetic energy {rho}{sub EM}. The corresponding numerical estimate leads to a magnitude in the nG range. There are two unique and distinctive predictions of our proposal: an uninterrupted active generation of Hubble size correlated magnetic fields throughout the evolution of the Universe; the presence of parity violation on the enormous scales 1/H, which apparently has been already observed in CMB. These predictions are entirely rooted into the standard model of particle physics.
Cosmic slowing down of acceleration for several dark energy parametrizations
Magaña, Juan; Cárdenas, Víctor H.; Motta, Verónica E-mail: victor.cardenas@uv.cl
2014-10-01
We further investigate slowing down of acceleration of the universe scenario for five parametrizations of the equation of state of dark energy using four sets of Type Ia supernovae data. In a maximal probability analysis we also use the baryon acoustic oscillation and cosmic microwave background observations. We found the low redshift transition of the deceleration parameter appears, independently of the parametrization, using supernovae data alone except for the Union 2.1 sample. This feature disappears once we combine the Type Ia supernovae data with high redshift data. We conclude that the rapid variation of the deceleration parameter is independent of the parametrization. We also found more evidence for a tension among the supernovae samples, as well as for the low and high redshift data.
'Swiss-cheese' inhomogeneous cosmology and the dark energy problem
NASA Astrophysics Data System (ADS)
Biswas, Tirthabir; Notari, Alessio
2008-06-01
We study an exact Swiss-cheese model of the universe, where inhomogeneous LTB patches are embedded in a flat FLRW background, in order to see how observations of distant sources are affected. We focus mainly on the redshift, both perturbatively and non-perturbatively: the net effect given by one patch is suppressed by (L/RH)3 (where L is the size of one patch and RH is the Hubble radius). We disentangle this effect from the Doppler term (which is much larger and has been used recently (Biswas et al 2007 J. Cosmol. Astropart. Phys. JCAP12(2007)017 [astro-ph/0606703]) to try to fit the SN curve without dark energy) by making contact with cosmological perturbation theory. Then, the correction to the angular distance is discussed analytically and estimated to be larger, {\\cal O}(L/R_{\\mathrm {H}})^2 , perturbatively and non-perturbatively (although it should go to zero after angular averaging).
Modified gravity as an alternative to dark energy
NASA Astrophysics Data System (ADS)
Duvvuri, Vikram
We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the late-time evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models. We show that modifications of the form f ( R ) are ruled out by solar system tests of gravitation. In addition, we also review the Palatini method of variation for such theories and contrast it with the metric variation approach.
Radiative inflation and dark energy RIDEs again after BICEP2
Bari, Pasquale Di; King, Stephen F.; Merle, Alexander; Luhn, Christoph; Schmidt-May, Angnis E-mail: S.F.King@soton.ac.uk E-mail: A.Merle@soton.ac.uk
2014-08-01
Following the ground-breaking measurement of the tensor-to-scalar ratio r=0.20{sup +0.07}{sub -0.05} by the BICEP2 collaboration, we perform a statistical analysis of a model that combines Radiative Inflation with Dark Energy (RIDE) based on the M{sup 2}|Φ|{sup 2}ln(|Φ|{sup 2}/Λ{sup 2}) potential and compare its predictions to those based on the traditional chaotic inflation M{sup 2}|Φ|{sup 2} potential. We find a best-fit value in the RIDE model of r=0.18 as compared to r=0.17 in the chaotic model, with the spectral index being n{sub S}=0.96 in both models.
Reconstructing the dark energy equation of state with varying couplings
Avelino, P. P.; Martins, C. J. A. P.; Nunes, N. J.; Olive, K. A.
2006-10-15
We revisit the idea of using varying couplings to probe the nature of dark energy, in particular, by reconstructing its equation of state. We show that for the class of models studied this method can be far superior to the standard methods (using type Ia supernovae or weak lensing). We also show that the simultaneous use of measurements of the fine-structure constant {alpha} and the electron-to-proton mass ratio {mu} allows a direct probe of grand unification scenarios. We present forecasts for the sensitivity of this method, both for the near future and for the next generation of spectrographs--for the latter we focus on the planned CODEX instrument for ESO's Extremely Large Telescope (formerly known as OWL). A high-accuracy reconstruction of the equation of state may be possible all the way up to redshift z{approx}4.
Intrinsic uncertainty on the nature of dark energy
NASA Astrophysics Data System (ADS)
Valkenburg, Wessel; Kunz, Martin; Marra, Valerio
2013-12-01
We argue that there is an intrinsic noise on measurements of the equation of state parameter w = p/ρ from large-scale structure around us. The presence of the large-scale structure leads to an ambiguity in the definition of the background universe and thus there is a maximal precision with which we can determine the equation of state of dark energy. To study the uncertainty due to local structure, we model density perturbations stemming from a standard inflationary power spectrum by means of the exact Lemaître-Tolman-Bondi solution of Einstein’s equation, and show that the usual distribution of matter inhomogeneities in a ΛCDM cosmology causes a variation of w - as inferred from distance measures - of several percent. As we observe only one universe, or equivalently because of the cosmic variance, this uncertainty is systematic in nature.
Mega-masers, Dark Energy and the Hubble Constant
Lo, Fred K.Y.
2007-10-15
Powerful water maser emission (water mega-masers) can be found in accretion disks in the nuclei of some galaxies. Besides providing a measure of the mass at the nucleus, such mega-masers can be used to determine the distance to the host galaxy, based on a kinematic model. We will explain the importance of determining the Hubble Constant to high accuracy for constraining the equation of state of Dark Energy and describe the Mega-maser Cosmology Project that has the goal of determining the Hubble Constant to better than 3%. Time permitting, we will also present the scientific capabilities of the current and future NRAO facilities: ALMA, EVLA, VLBA and GBT, for addressing key astrophysical problems
Clouds at CTIO and the Dark Energy Survey
Neilsen, Jr., Eric
2015-08-01
An understanding of the weather patters at Cerro-Tololo Inter-American (CTIO) Observatory, the observing site for the Dark Energy Survey (DES), is important for assessing the efciency of DES operations in using observing time and for planning future operations. CTIO has maintained records of cloud-cover by quarters of nights since 1975. A comparison between these cloud records in the 2013-2014 DES observing season (DES year 1) and achieved observing efciency and exposure quality allows the DES collaboration to make better use of the historical records in survey planning. Plots and tables here relate human recorded cloud-cover to collection of good DES data, show the variation of typical cloud-cover by month, and evaluate the relationship between the El Niño weather pattern and cloud-cover at CTIO.
CMB lensing constraints on dark energy and modified gravity scenarios
Calabrese, Erminia; Cooray, Asantha; Martinelli, Matteo; Melchiorri, Alessandro; Pagano, Luca; Slosar, Anze; Smoot, George F.
2009-11-15
Weak gravitational lensing leaves a characteristic imprint on the cosmic microwave background temperature and polarization angular power spectra. Here, we investigate the possible constraints on the integrated lensing potential from future cosmic microwave background angular spectra measurements expected from Planck and EPIC. We find that Planck and EPIC will constrain the amplitude of the integrated projected potential responsible for lensing at 6% and 1% level, respectively, with very little sensitivity to the shape of the lensing potential. We discuss the implications of such a measurement in constraining dark energy and modified gravity scalar-tensor theories. We then discuss the impact of a wrong assumption on the weak lensing potential amplitude on cosmological parameter inference.
The electroweak axion, dark energy, inflation and baryonic matter
McLerran, L.
2015-03-15
In a previous paper [1], the standard model was generalized to include an electroweak axion which carries baryon plus lepton number, B + L. It was shown that such a model naturally gives the observed value of the dark energy, if the scale of explicit baryon number violation A was chosen to be of the order of the Planck mass. In this paper, we consider the effect of the modulus of the axion field. Such a field must condense in order to generate the standard Goldstone boson associated with the phase of the axion field. This condensation breaks baryon number. We argue that this modulus might be associated with inflation. If an additional B − L violating scalar is introduced with a mass similar to that of the modulus of the axion field, we argue that decays of particles associated with this field might generate an acceptable baryon asymmetry.
Constraining Dark Energy in Table-Top Quantum Experiments
NASA Astrophysics Data System (ADS)
Mueller, Holger
If dark energy is a light scalar field, it might interact with normal matter. The interactions, however, are suppressed in the leading models, which are thus compatible with current cosmological observations as well as solar-system and laboratory studies. Such suppression typically relies on the scalar's interaction with macroscopic amounts of ordinary matter but can be bypassed by studying the interaction with individual particles. Using an atom interferometer, we have placed tight constraints on so-called chameleon models, ruling out interaction parameters smaller than 2 . 3 ×10-5 , while M ~ 1 or larger would lead to conflict with macroscopic experiments. In order to close this gap, we have already increased the sensitivity hundredfold and are expecting a new constraint soon. Purpose-built experiments in the lab or on the international space station will completely close the gap and rule out chameleons and other theories such as symmetrons or f (R) gravity.
The South Pole Telescope: Unraveling the Mystery of Dark Energy
NASA Astrophysics Data System (ADS)
Reichardt, Christian L.; de Haan, Tijmen; Bleem, Lindsey E.
2016-07-01
The South Pole Telescope (SPT) is a 10-meter telescope designed to survey the millimeter-wave sky, taking advantage of the exceptional observing conditions at the Amundsen-Scott South Pole Station. The telescope and its ground-breaking 960-element bolometric camera finished surveying 2500 square degrees at 95. 150, and 220 GHz in November 2011. We have discovered hundreds of galaxy clusters in the SPT-SZ survey through the Sunyaev-Zel’dovich (SZ) effect. The formation of galaxy clusters the largest bound objects in the universe is highly sensitive to dark energy and the history of structure formation. I will discuss the cosmological constraints from the SPT-SZ galaxy cluster sample as well as future prospects with the soon to-be-installed SPT-3G camera.
Yang-Mills condensate as dark energy: A nonperturbative approach
NASA Astrophysics Data System (ADS)
Donà, Pietro; Marcianò, Antonino; Zhang, Yang; Antolini, Claudia
2016-02-01
Models based on the Yang-Mills condensate (YMC) have been advocated for in the literature and claimed as successful candidates for explaining dark energy. Several variations on this simple idea have been considered, the most promising of which are reviewed here. Nevertheless, the previously attained results relied heavily on the perturbative approach to the analysis of the effective Yang-Mills action, which is only adequate in the asymptotically free limit, and were extended into a regime, the infrared limit, in which confinement is expected. We show that if a minimum of the effective Lagrangian in θ =-Fμν aFa μ ν/2 exists, a YMC forms that drives the Universe toward an accelerated de Sitter phase. The details of the models depend weakly on the specific form of the effective Yang-Mills Lagrangian. Using nonperturbative techniques mutated from the functional renormalization-group procedure, we finally show that the minimum in θ of the effective Lagrangian exists. Thus, a YMC can actually take place. The nonperturbative model has properties similar to the ones in the perturbative model. In the early stage of the Universe, the YMC equation of state has an evolution that resembles the radiation component, i.e., wy→1 /3 . However, in the late stage, wy naturally runs to the critical state with wy=-1 , and the Universe transitions from a matter-dominated into a dark energy dominated stage only at latest time, at a redshift whose value depends on the initial conditions that are chosen while solving the dynamical system.
Pirogov, Yu. F.
2008-09-15
The minimal metagravity theory, explicitly violating the general covariance but preserving the unimodular one, is applied to study the evolution of the isotropic homogeneous Universe. The massive scalar graviton, contained in the theory in addition to the massless tensor one, is treated as a source of the dark matter and/or dark energy. The modified Friedmann equation for the scale factor of the Universe is derived. The question wether the minimal metagravity can emulate the LCDM concordance model, valid in General Relativity, is discussed.
Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)
Linder, Eric
2008-11-28
The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.
Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)
Linder, Eric
2016-07-12
The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.
Notes on an interacting holographic dark energy model in a closed universe
Mohseni Sadjadi, H; Vadood, N E-mail: mohsenisad@ut.ac.ir
2008-08-15
We consider an interacting holographic dark energy model in Friedmann-Robertson-Walker spacetime with positive spatial curvature and investigate the behavior of the geometric parameter and dark energy density in an accelerated expanding epoch. We also derive some conditions needed to cross the phantom dividing line in this model.
NASA Technical Reports Server (NTRS)
Guit, William J.
2015-01-01
This PowerPoint presentation will discuss EOS Aura mission and spacecraft subsystem summary, recent and planned activities, inclination adjust maneuvers, propellant usage lifetime estimate. Eric Moyer, ESMO Deputy Project Manager-Technical (code 428) has reviewed and approved the slides on April 30, 2015.
NASA Astrophysics Data System (ADS)
Spilhaus, Fred
2007-01-01
As you hold in your hands, or perhaps read on a screen, the first 2007 issue of Eos>, I would like to tell you a bit about how this, AGU's first publication, got to be what it is today. It is and has always been a publication for all the members.
Dark matter particle production in b-->s transitions with missing energy.
Bird, Chris; Jackson, Paul; Kowalewski, Robert; Pospelov, Maxim
2004-11-12
Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K(*)) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B-->KSS may exceed the decay width in the standard model channel, B-->Knunu , by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV.
The 1991 EOS reference handbook
NASA Technical Reports Server (NTRS)
Dokken, David (Editor)
1991-01-01
The following topics are covered: (1) The Global Change Research Program; (2) The Earth Observing System (EOS) goal and objectives; (3) primary EOS mission requirements; (4) EOS science; (5) EOS Data and Information System (EOSDIS) architecture; (6) data policy; (7) international cooperation; (8) plans and status; (9) the role of the National Oceanic and Atmospheric Administration; (10) The Global Fellowship Program; (11) management of EOS; (12) mission elements; (13) EOS instruments; (14) interdisciplinary science investigations; (15) points of contact; and (16) acronyms and abbreviations.
Energy of string loops and thermodynamics of dark energy
Jou, D.; Mongiovi, M. S.; Sciacca, M.
2011-02-15
We discuss the thermodynamic aspects of a simple model of cosmic string loops, whose energy is nonlinearly related to their lengths. We obtain in a direct way an equation of state having the form p=-(1+{alpha}){rho}/3, with {rho} the energy density and 1+{alpha} the exponent which relates the energy u{sub l} of a loop with its length l as u{sub l}{approx}l{sup 1+{alpha}}. In the linear situation ({alpha}=0) one has p=-{rho}/3, in the quadratic one ({alpha}=1) p=-2{rho}/3, and in the cubic case ({alpha}=2) p=-{rho}. For all values of {alpha} the entropy goes as S{approx}(2-{alpha})L{sup 3/2} (L being the string length density). The expression of S is useful to explore the behavior of such string loops under adiabatic expansion of the Universe. Thermodynamic stability suggests that the gas of string loops must coexist with several long strings, longer than the horizon radius.
ESTIMATING THE ''DARK'' ENERGY CONTENT OF THE SOLAR CORONA
McIntosh, Scott W.; De Pontieu, Bart
2012-12-20
The discovery of ubiquitous low-frequency (3-5 mHz) Alfvenic waves in the solar chromosphere (with Hinode/Solar Optical Telescope) and corona (with CoMP and SDO) has provided some insight into the non-thermal energy content of the outer solar atmosphere. However, many questions remain about the true magnitude of the energy flux carried by these waves. Here we explore the apparent discrepancy in the resolved coronal Alfvenic wave amplitude ({approx}0.5 km s{sup -1}) measured by the Coronal Multi-channel Polarimeter (CoMP) compared to those of the Hinode and the Solar Dynamics Observatory (SDO) near the limb ({approx}20 km s{sup -1}). We use a blend of observational data and a simple forward model of Alfvenic wave propagation to resolve this discrepancy and determine the Alfvenic wave energy content of the corona. Our results indicate that enormous line-of-sight superposition within the coarse spatio-temporal sampling of CoMP hides the strong wave flux observed by Hinode and SDO and leads to the large non-thermal line broadening observed. While this scenario has been assumed in the past, our observations with CoMP of a strong correlation between the non-thermal line broadening with the low-amplitude, low-frequency Alfvenic waves observed in the corona provide the first direct evidence of a wave-related non-thermal line broadening. By reconciling the diverse measurements of Alfvenic waves, we establish large coronal non-thermal line widths as direct signatures of the hidden, or ''dark'', energy content in the corona and provide preliminary constraints on the energy content of the wave motions observed.
Topics in cosmology: Structure formation, dark energy and recombination
NASA Astrophysics Data System (ADS)
Alizadeh, Esfandiar
The field of theoretical cosmology consists of numerous, inter-related branches, whose ambitious goal is to uncover the history of the universe from its beginning to its future. Achieving this, no doubt, requires a deep understanding of many areas of physics. In this thesis I touch upon a few of these areas in which I worked during my PhD studies. Chapter (2) describes our work in finding the accretion and merger history of dark matter halos. Dark matter halos are the collapsed dark matter structures in the late time evolution of the universe, whose existence is vital for the formation of galaxies in the Universe as they act as the potential wells where normal matter (collectively called Baryons) can accumulate, cool, and form stars. It is then no surprise that the properties of galaxies depends on the properties of the dark matter halo in which it resides, including its merger history, i.e. the number of times it merged with other halos. Even though these merger rates can be calculated theoretically for infinitesimal time steps, in order to find the merger history over an extended period of time one had to use either Monte-Carlo simulations to build up the total rates of merging and accreting from the infinitesimal rates or use N-body simulations. In chapter (2) we show how we used random walk formalism to write down an analytical (integral) equation for the merger history of halos. We have solved this equation numerically and find very good agreement with Monte-Carlo simulations. This work can be used in theories of galaxy formation and evolution. We then switch from the overdense regions of the Universe, halos, to the underdense ones, voids. These structures have not attracted as much attention from cosmologists as their overdense counterparts in probing the cosmological models. We show here that the shapes of voids as a probe can be of use for future surveys to pin down the equation of state of the dark energy, i.e. the ratio of its pressure to its energy
NASA Astrophysics Data System (ADS)
Khosravi, Shahram; Mollazadeh, Amir; Baghram, Shant
2016-09-01
Cross correlation of the Integrated Sachs-Wolfe signal (ISW) with the galaxy distribution in late time is a promising tool for constraining the dark energy properties. Here, we study the effect of dark energy clustering on the ISW-galaxy cross correlation and demonstrate the fact that the bias parameter between the distribution of the galaxies and the underlying dark matter introduces a degeneracy and complications. We argue that as the galaxy's host halo formation time is different from the observation time, we have to consider the evolution of the halo bias parameter. It will be shown that any deviation from ΛCDM model will change the evolution of the bias as well. Therefore, it is deduced that the halo bias depends strongly on the sub-sample of galaxies which is chosen for cross correlation and that the joint kernel of ISW effect and the galaxy distribution has a dominant effect on the observed signal. In this work, comparison is made specifically between the clustered dark energy models using two samples of galaxies. The first one is a sub-sample of galaxies from Sloan Digital Sky Survey, chosen with the r-band magnitude 18 < r < 21 and the dark matter halo host of mass M ~1012Msolar and formation redshift of zf~ 2.5. The second one is the sub-sample of Luminous Red galaxies with the dark matter halo hosts of mass M ~ 1013Msolar and formation redshift of 0zf~ 2.. Using the evolved bias we improve the χ2 for the ΛCDM which reconciles the ~1σ-2σ tension of the ISW-galaxy signal with ΛCDM prediction. Finally, we study the parameter estimation of a dark energy model with free parameters w0 and wa in the equation of state wde = w0 +waz/(1+z) with the constant bias parameter and also with an evolved bias model with free parameters of galaxy's host halo mass and the halo formation redshift.
Phantom energy: dark energy with w <--1 causes a cosmic doomsday.
Caldwell, Robert R; Kamionkowski, Marc; Weinberg, Nevin N
2003-08-15
We explore the consequences that follow if the dark energy is phantom energy, in which the sum of the pressure and energy density is negative. The positive phantom-energy density becomes infinite in finite time, overcoming all other forms of matter, such that the gravitational repulsion rapidly brings our brief epoch of cosmic structure to a close. The phantom energy rips apart the Milky Way, solar system, Earth, and ultimately the molecules, atoms, nuclei, and nucleons of which we are composed, before the death of the Universe in a "big rip."
Enabling Dark Energy and Beyond Science with Precise Absolute Photometry
NASA Astrophysics Data System (ADS)
Deustua, Susana E.; Hines, D. C.; Bohlin, R.; Gordon, K. D.
2014-01-01
We have obtain WFC3/IR observations of 15 carefully selected stars with the immediate objective of establishing their Absolute Physical Flux (ABF), and an ultimate goal of achieving the sub-1% absolute photometric accuracies required by Dark Energy science with JWST and other facilities. Even with the best data available, the current determination of ABFs is plagued by the reliance on the Vega photometric system, which is known to be problematic primarily due to the fact that Vega is a pole-on rapid rotator with an infrared excess from its circumstellar disk! which makes it difficult to model. Vega is also far too bright for large aperture telescopes. In an effort to remedy these difficulties, teams from the National Institute of Standards (NIST), the University of New Mexico, Johns Hopkins University and STScI have begun to develop a catalog of stars that have spectral energy distributions that are tied directly to NIST (diode) standards with very precisely determined physical characteristics. A key element in this pursuit has been the efforts at STScI to measure the spectra of many of these objects with STIS. We discuss our program to extend this effort into the near-IR which is crucial to reliably extend the SEDs to longer wavelengths, including the mid IR.
Probing interaction and spatial curvature in the holographic dark energy model
Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin E-mail: renzhe@mail.ustc.edu.cn E-mail: wangyi@hep.physics.mcgill.ca
2009-12-01
In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ{sub Λ}), matter (ρ{sub m}), and matter plus dark energy (ρ{sub m}+ρ{sub Λ}). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model.
2005-10-01
WebGasEOS provides quick, user-friendly access to real gas physical properties. Using the real gas properties modules of the TOUGH-Fx project, WebGasEOS allows any user, though a web- based application, to define a multicornponent system, specify temperature and pressure, select an equation of state, and compute volumetric, thermodynamic, and fluid properties. Additional functions allow the inclusion of gaseous or liquid water, with or without added salts. The user may choose the format of the results, performmore » repeat calculations or calculations over a range of temperature and pressure, or vary compositions by simply changing form parameters, The application is publicly available on the internet and can be used at any time by anyone with a standards-compliant web browser.« less
Acceleressence: Dark energy from a phase transition at the seesawscale
Chacko, Z.; Hall, Lawrence J.; Nomura, Yasunori
2004-10-05
Simple models are constructed for ''acceleressence'' dark energy: the latent heat of a phase transition occurring in a hidden sector governed by the seesaw mass scale v{sup 2}/M{sub Pl}, where v is the electroweak scale and M{sub Pl} the gravitational mass scale. In our models, the seesaw scale is stabilized by supersymmetry, implying that the LHC must discover superpartners with a spectrum that reflects a low scale of fundamental supersymmetry breaking. Newtonian gravity may be modified by effects arising from the exchange of fields in the acceleressence sector whose Compton wavelengths are typically of order the millimeter scale. There are two classes of models. In the first class the universe is presently in a metastable vacuum and will continue to inflate until tunneling processes eventually induce a first order transition. In the simplest such model, the range of the new force is bounded to be larger than 25 {micro}m in the absence of fine-tuning of parameters, and for couplings of order unity it is expected to be {approx} 100 {micro}m. In the second class of models thermal effects maintain the present vacuum energy of the universe, but on further cooling, the universe will ''soon'' smoothly relax to a matter dominated era. In this case, the range of the new force is also expected to be of order the millimeter scale or larger, although its strength is uncertain. A firm prediction of this class of models is the existence of additional energy density in radiation at the eV era, which can potentially be probed in precision measurements of the cosmic microwave background. An interesting possibility is that the transition towards a matter dominated era has occurred in the very recent past, with the consequence that the universe is currently decelerating.
NASA Astrophysics Data System (ADS)
Sindrilaru, Elvin-Alin; Peters, Andreas-Joachim; Duellmann, Dirk
2015-12-01
Archiving data to tape is a critical operation for any storage system, especially for the EOS system at CERN which holds production data for all major LHC experiments. Each collaboration has an allocated quota it can use at any given time therefore, a mechanism for archiving "stale" data is needed so that storage space is reclaimed for online analysis operations. The archiving tool that we propose for EOS aims to provide a robust client interface for moving data between EOS and CASTOR (tape backed storage system) while enforcing best practices when it comes to data integrity and verification. All data transfers are done using a third-party copy mechanism which ensures point-to- point communication between the source and destination, thus providing maximum aggregate throughput. Using ZMQ message-passing paradigm and a process-based approach enabled us to achieve optimal utilisation of the resources and a stateless architecture which can easily be tuned during operation. The modular design and the implementation done in a high-level language like Python, has enabled us to easily extended the code base to address new demands like offering full and incremental backup capabilities.
Ten scenarios from early radiation to late time acceleration with a minimally coupled dark energy
Fay, Stéphane
2013-09-01
We consider General Relativity with matter, radiation and a minimally coupled dark energy defined by an equation of state w. Using dynamical system method, we find the equilibrium points of such a theory assuming an expanding Universe and a positive dark energy density. Two of these points correspond to classical radiation and matter dominated epochs for the Universe. For the other points, dark energy mimics matter, radiation or accelerates Universe expansion. We then look for possible sequences of epochs describing a Universe starting with some radiation dominated epoch(s) (mimicked or not by dark energy), then matter dominated epoch(s) (mimicked or not by dark energy) and ending with an accelerated expansion. We find ten sequences able to follow this Universe history without singular behaviour of w at some saddle points. Most of them are new in dark energy literature. To get more than these ten sequences, w has to be singular at some specific saddle equilibrium points. This is an unusual mathematical property of the equation of state in dark energy literature, whose physical consequences tend to be discarded by observations. This thus distinguishes the ten above sequences from an infinity of ways to describe Universe expansion.
Early-matter-like dark energy and the cosmic microwave background
Aurich, R.; Lustig, S. E-mail: sven.lustig@uni-ulm.de
2016-01-01
Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenological UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c{sub eff} of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied.
AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY
Goldstein, D. A.; Nugent, P. E.; D’Andrea, C. B.; Nichol, R. C.; Papadopoulos, A.; Fischer, J. A.; Sako, M.; Wolf, R. C.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Thomas, R. C.; Smith, M.; Sullivan, M.; Wester, W.; Abdalla, F. B.; Benoit-Lévy, A.; Banerji, M.; Bertin, E.; and others
2015-09-15
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm’s performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at at http://portal.nersc.gov/project/dessn/autoscan.
White Dwarf Stars in the HET Dark Energy Experiment
NASA Astrophysics Data System (ADS)
Castanheira, Barbara; Winget, D.; Gebhardt, K.; Allende Prieto, C.; Shetrone, M.; Odewahn, S.; Montgomery, M. H.
2012-01-01
In this poster, we present the project that will survey all white dwarf stars observed in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Visible Integral-field Replicable Unit Spectrograph (VIRUS) observations in parallel mode. The final product will be a unique magnitude-limited catalog of as many as 10,000 stars. Since we will use data from an Integral-field Units, our survey will be free of the selection biases that plagued preceding surveys, e.g. the Sloan Digital Sky Survey (SDSS). The critical advantages of our program are our ability to produce a white dwarf luminosity function five magnitudes fainter than the one derived from the Palomar-Green survey and with a similar number of faint stars as the one from SDSS. Our project will help to derive a more precise age of the Galactic disk, and will provide fundamental information about the white dwarf population and the star formation history of the Milky Way, impacting the white dwarf field and many other fields of astronomy.
'Swiss-cheese' inhomogeneous cosmology and the dark energy problem
Biswas, Tirthabir; Notari, Alessio E-mail: notari@hep.physics.mcgill.ca
2008-06-15
We study an exact Swiss-cheese model of the universe, where inhomogeneous LTB patches are embedded in a flat FLRW background, in order to see how observations of distant sources are affected. We focus mainly on the redshift, both perturbatively and non-perturbatively: the net effect given by one patch is suppressed by (L/R{sub H}){sup 3} (where L is the size of one patch and R{sub H} is the Hubble radius). We disentangle this effect from the Doppler term (which is much larger and has been used recently (Biswas et al 2007 J. Cosmol. Astropart. Phys. JCAP12(2007)017 [astro-ph/0606703]) to try to fit the SN curve without dark energy) by making contact with cosmological perturbation theory. Then, the correction to the angular distance is discussed analytically and estimated to be larger, O(L/R{sub H}){sup 2}, perturbatively and non-perturbatively (although it should go to zero after angular averaging)
Modeling the Transfer Function for the Dark Energy Survey
Chang, C.
2015-03-04
We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg2 coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with themore » corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.« less
How to Measure Dark Energy with LSST's Strong Gravitational Lenses
NASA Astrophysics Data System (ADS)
Marshall, Philip J.; Treu, T.; Brunner, R. J.; Strong Lensing, LSST; Dark Energy Science Collaborations
2013-01-01
Strong gravitational lensing is sensitive to dark energy (DE) via the combinations of angular diameter distances that appear in model predictions of the lens strength. Lenses with variable sources offer the most promise: the corresponding time delay distance has recently been shown to be measurable to 5% precision. Large samples of lensed quasars and supernovae will allow internal degeneracy-breaking and so enable the most direct access to the DE parameters, while multiple source-plane, compound lens systems may provide an alternative, complementary, H0-free probe. Its wide field survey and high cadence will enable LSST to provide a sample of several thousand measured time delays, two orders of magnitude larger than the current sample, and allow an independent, competitive Stage IV DE parameter measurement to be made. However, practical problems to be solved include: lens detection (which may be very sensitive to image quality and deblender performance); image and lightcurve modelling (which could be both CPU and manual labor-intensive); obtaining and analyzing high resolution spectro-imaging follow-up data; and interpreting the whole sample of lenses in the context of the well-studied subset.
Automated transient identification in the Dark Energy Survey
Goldstein, D. A.
2015-08-20
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.
Automated transient identification in the Dark Energy Survey
Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nungent, P.; Papadopoulos, A.; Sako, M.; Smith, M.; Sullivan, M.; Thomas, R. C.; Wester, W.; Wolf, R. C.; Abdalla, F. B.; Banjeri, M.; Benoit-Levy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Castander, F. J.; da Costa, L. N.; Covarrubias, R.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Neto, A. Fausti; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; March, M.; Marshall, J. L.; Martini, P.; Merritt, K. W.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.
2015-09-01
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.
Automated transient identification in the Dark Energy Survey
Goldstein, D. A.; D'Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nungent, P.; Papadopoulos, A.; et al
2015-09-01
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factormore » of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Furthermore, we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.« less
Cosmic shear measurements with Dark Energy Survey Science Verification data
Becker, M. R.
2016-07-06
Here, we present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We use a large suite of simulationsmore » to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We also compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7σ. Cosmological constraints from the measurements in this work are presented in a companion paper.« less
Crowdsourcing quality control for Dark Energy Survey images
Melchior, P.
2016-07-01
We have developed a crowdsourcing web application for image quality controlemployed by the Dark Energy Survey. Dubbed the "DES exposure checker", itrenders science-grade images directly to a web browser and allows users to markproblematic features from a set of predefined classes. Users can also generatecustom labels and thus help identify previously unknown problem classes. Userreports are fed back to hardware and software experts to help mitigate andeliminate recognized issues. We report on the implementation of the applicationand our experience with its over 100 users, the majority of which areprofessional or prospective astronomers but not data management experts. Wediscuss aspects ofmore » user training and engagement, and demonstrate how problemreports have been pivotal to rapidly correct artifacts which would likely havebeen too subtle or infrequent to be recognized otherwise. We conclude with anumber of important lessons learned, suggest possible improvements, andrecommend this collective exploratory approach for future astronomical surveysor other extensive data sets with a sufficiently large user base. We alsorelease open-source code of the web application and host an online demo versionat http://des-exp-checker.pmelchior.net« less
Cosmic shear measurements with Dark Energy Survey Science Verification data
NASA Astrophysics Data System (ADS)
Becker, M. R.; Troxel, M. A.; MacCrann, N.; Krause, E.; Eifler, T. F.; Friedrich, O.; Nicola, A.; Refregier, A.; Amara, A.; Bacon, D.; Bernstein, G. M.; Bonnett, C.; Bridle, S. L.; Busha, M. T.; Chang, C.; Dodelson, S.; Erickson, B.; Evrard, A. E.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Hartley, W.; Jain, B.; Jarvis, M.; Kacprzak, T.; Kirk, D.; Kravtsov, A.; Leistedt, B.; Peiris, H. V.; Rykoff, E. S.; Sabiu, C.; Sánchez, C.; Seo, H.; Sheldon, E.; Wechsler, R. H.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Armstrong, R.; Banerji, M.; Bauer, A. H.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Fausti Neto, A.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Gerdes, D. W.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Maia, M. A. G.; March, M.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Vikram, V.; Walker, A. R.; Dark Energy Survey Collaboration
2016-07-01
We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7 σ . Cosmological constraints from the measurements in this work are presented in a companion paper [DES et al., Phys. Rev. D 94, 022001 (2016).].
Crowdsourcing quality control for Dark Energy Survey images
NASA Astrophysics Data System (ADS)
Melchior, P.; Sheldon, E.; Drlica-Wagner, A.; Rykoff, E. S.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Doel, P.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Honscheid, K.; James, D. J.; Jarvis, M.; Kuehn, K.; Li, T. S.; Maia, M. A. G.; March, M.; Marshall, J. L.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Vikram, V.; Walker, A. R.; Wester, W.; Zhang, Y.
2016-07-01
We have developed a crowdsourcing web application for image quality control employed by the Dark Energy Survey. Dubbed the "DES exposure checker", it renders science-grade images directly to a web browser and allows users to mark problematic features from a set of predefined classes. Users can also generate custom labels and thus help identify previously unknown problem classes. User reports are fed back to hardware and software experts to help mitigate and eliminate recognized issues. We report on the implementation of the application and our experience with its over 100 users, the majority of which are professional or prospective astronomers but not data management experts. We discuss aspects of user training and engagement, and demonstrate how problem reports have been pivotal to rapidly correct artifacts which would likely have been too subtle or infrequent to be recognized otherwise. We conclude with a number of important lessons learned, suggest possible improvements, and recommend this collective exploratory approach for future astronomical surveys or other extensive data sets with a sufficiently large user base. We also release open-source code of the web application and host an online demo version at http://des-exp-checker.pmelchior.net.
Difficulties distinguishing dark energy from modified gravity via redshift distortions
Simpson, Fergus; Peacock, John A.
2010-02-15
The bulk motion of galaxies induced by the growth of cosmic structure offers a rare opportunity to test the validity of general relativity across cosmological scales. However, modified gravity can be degenerate in its effect with the unknown values of cosmological parameters. More seriously, even the 'observed' value of the redshift-space distortions used to measure the fluctuation growth rate depends on the assumed cosmological parameters (the Alcock-Paczynski effect). We give a full analysis of these issues, showing how to combine redshift-space distortions with baryon acoustic oscillations and CMB data, in order to obtain joint constraints on deviations from general relativity and on the equation of state of dark energy while allowing for factors such as nonzero curvature. In particular we note that the evolution of {Omega}{sub m}(z), along with the Alcock-Paczynski effect, produces a degeneracy between the equation of state w and the modified growth parameter {gamma}. Typically, the total marginalized error on either of these parameters will be larger by a factor {approx_equal}2 compared to the conditional error where one or the other is held fixed. We argue that future missions should be judged by their figure of merit as defined in the w{sub p}-{gamma} plane, and note that the inclusion of spatial curvature can degrade this value by an order of magnitude.
Nonlinear growth in modified gravity theories of dark energy
Laszlo, Istvan; Bean, Rachel
2008-01-15
Theoretical differences in the growth of structure offer the possibility that we might distinguish between modified gravity theories of dark energy and {lambda}CDM. A significant impediment to applying current and prospective large scale galaxy and weak lensing surveys to this problem is that, while the mildly nonlinear regime is important, there is a lack of numerical simulations of nonlinear growth in modified gravity theories. A major question exists as to whether existing analytical fits, created using simulations of standard gravity, can be confidently applied. In this paper we address this, presenting results of N-body simulations of a variety of models where gravity is altered including the Dvali, Gabadadze, and Porrati model. We consider modifications that alter the Poisson equation and also consider the presence of anisotropic shear stress that alters how particles respond to the gravitational potential gradient. We establish how well analytical fits of the matter power spectrum by Peacock and Dodds and Smith et al. are able to predict the nonlinear growth found in the simulations from z=50 up to today, and also consider implications for the weak lensing convergence power spectrum. We find that the analytical fits provide good agreement with the simulations, being within 1{sigma} of the simulation results for cases with and without anisotropic stress and for scale-dependent and independent modifications of the Poisson equation. No strong preference for either analytical fit is found.
Automated Transient Identification in the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Goldstein, D. A.; D’Andrea, C. B.; Fischer, J. A.; Foley, R. J.; Gupta, R. R.; Kessler, R.; Kim, A. G.; Nichol, R. C.; Nugent, P. E.; Papadopoulos, A.; Sako, M.; Smith, M.; Sullivan, M.; Thomas, R. C.; Wester, W.; Wolf, R. C.; Abdalla, F. B.; Banerji, M.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Castander, F. J.; da Costa, L. N.; Covarrubias, R.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Doel, P.; Eifler, T. F.; Fausti Neto, A.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D.; Gruen, D.; Gruendl, R. A.; James, D.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; Makler, M.; March, M.; Marshall, J. L.; Martini, P.; Merritt, K. W.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Walker, A. R.
2015-09-01
We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0% of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm’s performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility. An implementation of the algorithm and the training data used in this paper are available at at http://portal.nersc.gov/project/dessn/autoscan.
Modeling the Transfer Function for the Dark Energy Survey
Chang, C.
2015-03-04
We present a forward-modeling simulation framework designed to model the data products from the Dark Energy Survey (DES). This forward-model process can be thought of as a transfer function—a mapping from cosmological/astronomical signals to the final data products used by the scientists. Using output from the cosmological simulations (the Blind Cosmology Challenge), we generate simulated images (the Ultra Fast Image Simulator) and catalogs representative of the DES data. In this work we demonstrate the framework by simulating the 244 deg^{2} coadd images and catalogs in five bands for the DES Science Verification data. The simulation output is compared with the corresponding data to show that major characteristics of the images and catalogs can be captured. We also point out several directions of future improvements. Two practical examples—star-galaxy classification and proximity effects on object detection—are then used to illustrate how one can use the simulations to address systematics issues in data analysis. With clear understanding of the simplifications in our model, we show that one can use the simulations side-by-side with data products to interpret the measurements. This forward modeling approach is generally applicable for other upcoming and future surveys. It provides a powerful tool for systematics studies that is sufficiently realistic and highly controllable.
Local dark energy: HST evidence from the vicinity of the M81/M82 galaxy group
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Karachentsev, I. D.; Kashibadze, O. G.; Makarov, D. I.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.
2007-10-01
The Hubble Space Telescope observations of the nearby galaxy group M81/M82 and its vicinity indicate that the dynamics of the expansion outflow around the group is dominated by the antigravity of the dark energy background. The local density of dark energy in the area is estimated to be near the global dark energy density or perhaps exactly equal to it. This conclusion agrees well with our previous results for the Local Group vicinity and the vicinity of the Cen A/M83 group.
On a phenomenology of the accelerated expansion with a varying ghost dark energy
NASA Astrophysics Data System (ADS)
Khurshudyan, M. Z.; Makarenko, A. N.
2016-06-01
Subject of our study it is the accelerated expansion of the large scale universe, where a varying ghost dark energy can take the role of the dark energy. The model of the varying ghost dark energy considered in this work it is a phenomenological modification of the ghost dark energy. Recently, three other phenomenological models of the varying ghost dark energy have been suggested and the model considered in this work will complete the logical chain of considered modifications. The best fit of the theoretical results to the luminosity distance, has been used to obtain preliminary constraints on the parameters of the models. This does help us to reduce the amount of discussion. On the other hand, detailed comparison of the theoretical results with observational data has been left as a subject of another discussion elsewhere. Moreover, a look to considered models via Om and statefinder hierarchy analysis are presented and discussed for different forms of interaction between the varying ghost dark energy and cold dark matter.
Impact of dark energy-dark matter interaction on Cosmic Microwave Background Radiation
NASA Astrophysics Data System (ADS)
Verma, Murli
It has been shown that an arc-like pattern found on the Cosmic Microwave Background Radiation (CMBR) may result from the decay of dark matter particles initiating near particle horizon in the Q-phase of the interacting cosmological constant (ICC) model. In the present work, an investigation is made into how the corresponding decay of such dark matter particles might influence these signatures, in view of the recent data from PLANCK on CMBR and the diffuse glow of the anomalous microwave radiation. We also discuss the constraints on such decay imposed by the interaction of the cosmological constant with the background. These predictions made in the ICC model can be verified in the concordance space of multiple observations.
[Comparison of the energy characteristics of Acetabularia membranes in light and darkness].
Ksenzhek, O S; Apostolova, R D
1975-01-01
Energetic parameters of the membrane of marine alga Acetabularia were compared at light and dark during the action potential (AP). Direct current resistance of the resting membrane at dark as well as at light is of the order 1000-5000 omega-cm2 without considerable difference. The maximum resistance of the excited Acetabularia membrane is somewhat increased at dark as compared to its value at light. The maximum power of the membrane system and that of its regulating mechanism along with the energy dissipating AP at light exceed the same values at dark. The dissipating energy and the work Acetabularia cell performs during the AP are also compared for light and dark conditions.
NASA Astrophysics Data System (ADS)
Christensen, Walter James
2015-08-01
During an interview at the Niels Bohr Institute David Bohm stated, "according to Einstein, particles should eventually emerge as singularities, or very strong regions of stable pulses of (the gravitational) field" [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass; and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.
NASA Technical Reports Server (NTRS)
Schoebert, Mark R.; Douglass, A. R.; Hilsenrath, E.; Bhartia, P. K.; Barnett, J.; Gille, J.; Beer, R.; Gunson, M.; Waters, J.; Levelt, P. F.
2004-01-01
The Earth Observing System (EOS) Aura satellite is scheduled to launch in the second quarter of 2004. The Aura mission is designed to attack three science questions: (1) Is the ozone layer recovering as expected? (2) What are the sources and processes that control tropospheric pollutants? (3) What is the quantitative impact of constituents on climate change? Aura will answer these questions by globally measuring a comprehensive set of trace gases and aerosols at high vertical and horizontal resolution. Fig. 1 shows the Aura spacecraft and its four instruments.
SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY
Bernstein, J. P.; Kuhlmann, S.; Biswas, R.; Kovacs, E.; Crane, I.; Hufford, T.; Kessler, R.; Frieman, J. A.; Aldering, G.; Kim, A. G.; Nugent, P.; D'Andrea, C. B.; Nichol, R. C.; Finley, D. A.; Marriner, J.; Reis, R. R. R.; Jarvis, M. J.; Mukherjee, P.; Parkinson, D.; Sako, M.; and others
2012-07-10
We present an analysis of supernova light curves simulated for the upcoming Dark Energy Survey (DES) supernova search. The simulations employ a code suite that generates and fits realistic light curves in order to obtain distance modulus/redshift pairs that are passed to a cosmology fitter. We investigated several different survey strategies including field selection, supernova selection biases, and photometric redshift measurements. Using the results of this study, we chose a 30 deg{sup 2} search area in the griz filter set. We forecast (1) that this survey will provide a homogeneous sample of up to 4000 Type Ia supernovae in the redshift range 0.05
A new perspective on dark energy modeling via genetic algorithms
NASA Astrophysics Data System (ADS)
Nesseris, Savvas; García-Bellido, Juan
2012-11-01
We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity dL(z) and the angular diameter distance dA(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density Ωm(a) in the growth rate data, fσ8(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function ΩM(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, η≡dL(z)/(1+z)2dA(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-σ deviation from one at redshifts z ~ 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.
Comparison of thawing and freezing dark energy parametrizations
NASA Astrophysics Data System (ADS)
Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.
2016-05-01
Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.
A new perspective on dark energy modeling via genetic algorithms
Nesseris, Savvas; García-Bellido, Juan E-mail: juan.garciabellido@uam.es
2012-11-01
We use Genetic Algorithms to extract information from several cosmological probes, such as the type Ia supernovae (SnIa), the Baryon Acoustic Oscillations (BAO) and the growth rate of matter perturbations. This is done by implementing a model independent and bias-free reconstruction of the various scales and distances that characterize the data, like the luminosity d{sub L}(z) and the angular diameter distance d{sub A}(z) in the SnIa and BAO data, respectively, or the dependence with redshift of the matter density Ω{sub m}(a) in the growth rate data, fσ{sub 8}(z). These quantities can then be used to reconstruct the expansion history of the Universe, and the resulting Dark Energy (DE) equation of state w(z) in the context of FRW models, or the mass radial function Ω{sub M}(r) in LTB models. In this way, the reconstruction is completely independent of our prior bias. Furthermore, we use this method to test the Etherington relation, ie the well-known relation between the luminosity and the angular diameter distance, η≡d{sub L}(z)/(1+z){sup 2}d{sub A}(z), which is equal to 1 in metric theories of gravity. We find that the present data seem to suggest a 3-σ deviation from one at redshifts z ∼ 0.5. Finally, we present a novel way, within the Genetic Algorithm paradigm, to analytically estimate the errors on the reconstructed quantities by calculating a Path Integral over all possible functions that may contribute to the likelihood. We show that this can be done regardless of the data being correlated or uncorrelated with each other and we also explicitly demonstrate that our approach is in good agreement with other error estimation techniques like the Fisher Matrix approach and the Bootstrap Monte Carlo.
Fitting and forecasting coupled dark energy in the non-linear regime
Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco E-mail: l.amendola@thphys.uni-heidelberg.de E-mail: v.pettorino@thphys.uni-heidelberg.de
2016-01-01
We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.
Cosmic voids in coupled dark energy cosmologies: the impact of halo bias
NASA Astrophysics Data System (ADS)
Pollina, Giorgia; Baldi, Marco; Marulli, Federico; Moscardini, Lauro
2016-01-01
In this work, we analyse the properties of cosmic voids in standard and coupled dark energy cosmologies. Using large numerical simulations, we investigate the effects produced by the dark energy coupling on three statistics: the filling factor, the size distribution and the stacked profiles of cosmic voids. We find that the bias of the tracers of the density field used to identify the voids strongly influences the properties of the void catalogues, and, consequently, the possibility of using the identified voids as a probe to distinguish coupled dark energy models from the standard Λ cold dark matter cosmology. In fact, on one hand coupled dark energy models are characterized by an excess of large voids in the cold dark matter distribution as compared to the reference standard cosmology, due to their higher normalization of linear perturbations at low redshifts. Specifically, these models present an excess of large voids with Reff > 20, 15, 12h-1 Mpc , at z = 0, 0.55, 1, respectively. On the other hand, we do not find any significant difference in the properties of the voids detected in the distribution of collapsed dark matter haloes. These results imply that the tracer bias has a significant impact on the possibility of using cosmic void catalogues to probe cosmology.
Non-flat pilgrim dark energy FRW models in modified gravity
NASA Astrophysics Data System (ADS)
Rani, Shamaila; Jawad, Abdul; Salako, Ines G.; Azhar, Nadeem
2016-09-01
We study the cosmic acceleration in dynamical Chern-Simons modified gravity in the frame-work of non-flat FRW universe. The pilgrim dark energy (with future event and apparent horizons) interacted with cold dark matter is being considered in this work. We investigate the cosmological parameters (equation of state, deceleration) and planes (state-finders, ω_{θ}-ω_{θ}^' }) in the present scenario. It is interesting to mention here that the obtained results of various cosmological parameters are consistent with various observational schemes. The validity of generalized second law of thermodynamics for present dark energy models is also being analyzed.
Constraining heavy decaying dark matter with the high energy gamma-ray limits
NASA Astrophysics Data System (ADS)
Kalashev, O. E.; Kuznetsov, M. Yu.
2016-09-01
We consider decaying dark matter with masses 1 07≲M ≲1 016 GeV as a source of ultrahigh energy (UHE) gamma rays. Using recent limits on UHE gamma-ray flux for energies Eγ>2 ×1 014 eV , provided by extensive air shower observatories, we put limits on masses and lifetimes of the dark matter. We also discuss possible dark matter decay origin of tentative 100 PeV photon flux detected with the EAS-MSU experiment.
Gravitational lensing: a unique probe of dark matter and dark energy
Ellis, Richard S.
2010-01-01
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects. PMID:20123743
Gravitational lensing: a unique probe of dark matter and dark energy.
Ellis, Richard S
2010-03-13
I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe-the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects.
Constraining dark energy evolution with gravitational lensing by large scale structures
Benabed, Karim; Waerbeke, Ludovic van
2004-12-15
We study the sensitivity of weak lensing by large scale structures as a probe of the evolution of dark energy. We explore a two-parameters model of dark energy evolution, inspired by tracking quintessence models. To this end, we compute the likelihood of a few fiducial models with varying and nonvarying equation of states. For the different models, we investigate the dark energy parameter degeneracies with the mass power spectrum shape {gamma}, normalization {sigma}{sub 8}, and with the matter mean density {omega}{sub M}. We find that degeneracies are such that weak lensing turns out to be a good probe of dark energy evolution, even with limited knowledge on {gamma}, {sigma}{sub 8}, and {omega}{sub M}. This result is a strong motivation for performing large scale structure simulations beyond the simple constant dark energy models, in order to calibrate the nonlinear regime accurately. Such calibration could then be used for any large scale structure tests of dark energy evolution. Prospective for the Canada France Hawaii Telescope Legacy Survey and Super-Novae Acceleration Probe are given. These results complement nicely the cosmic microwave background and supernovae constraints.
Dark energy and the structure of the Coma cluster of galaxies
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.
2013-05-01
Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.
Unbiased Estimate of Dark Energy Density from Type Ia Supernova Data
NASA Astrophysics Data System (ADS)
Wang, Yun; Lovelace, Geoffrey
2001-12-01
Type Ia supernovae (SNe Ia) are currently the best probes of the dark energy in the universe. To constrain the nature of dark energy, we assume a flat universe and that the weak energy condition is satisfied, and we allow the density of dark energy, ρX(z), to be an arbitrary function of redshift. Using simulated data from a space-based SN pencil-beam survey, we find that by optimizing the number of parameters used to parameterize the dimensionless dark energy density, f(z)=ρX(z)/ρX(z=0), we can obtain an unbiased estimate of both f(z) and the fractional matter density of the universe, Ωm. A plausible SN pencil-beam survey (with a square degree field of view and for an observational duration of 1 yr) can yield about 2000 SNe Ia with 0<=z<=2. Such a survey in space would yield SN peak luminosities with a combined intrinsic and observational dispersion of σ(mint)=0.16 mag. We find that for such an idealized survey, Ωm can be measured to 10% accuracy, and the dark energy density can be estimated to ~20% to z~1.5, and ~20%-40% to z~2, depending on the time dependence of the true dark energy density. Dark energy densities that vary more slowly can be more accurately measured. For the anticipated Supernova/Acceleration Probe (SNAP) mission, Ωm can be measured to 14% accuracy, and the dark energy density can be estimated to ~20% to z~1.2. Our results suggest that SNAP may gain much sensitivity to the time dependence of the dark energy density and Ωm by devoting more observational time to the central pencil-beam fields to obtain more SNe Ia at z>1.2. We use both a maximum likelihood analysis and a Monte Carlo analysis (when appropriate) to determine the errors of estimated parameters. We find that the Monte Carlo analysis gives a more accurate estimate of the dark energy density than the maximum likelihood analysis.
The random-motion theorem in a local cosmology with dark energy
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Dolgachev, V. P.; Domozhilova, L. M.; Teerikorpi, P.; Valtonen, M. Yu.
2010-03-01
It is shown that the random-motion theorem in cosmology proven in the early 1960s can be generalized to take into account the presence of a uniform dark-energy background. The role of the dark energy is substantial: its repulsive force exceeds the gravitational force due to darkmatter and baryons, both on the scale of the Universe as a whole and on local scales of about 1 Mpc. The generalized random-motion theorem has the form of a differential equation relating the kinetic energy of the random motion and the potential energy of the particles due to their own gravitational field and the repulsive dark-energy field. One consequence of the generalized theorem is a virial relation containing the potential energy in the repulsive field.
Planck 2015 results. XIV. Dark energy and modified gravity
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external
Constraints on dark energy with the LOSS SN Ia sample
NASA Astrophysics Data System (ADS)
Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.
2013-08-01
We present a cosmological analysis of the Lick Observatory Supernova Search (LOSS) Type Ia supernova (SN Ia) photometry sample introduced by Ganeshalingam et al. These supernovae (SNe) provide an effective anchor point to estimate cosmological parameters when combined with data sets at higher redshift. The data presented by Ganeshalingam et al. have been rereduced in the natural system of the Katzman Automatic Imaging Telescope (KAIT) and Nickel telescopes to minimize systematic uncertainties. We have run the light-curve-fitting software SALT2 on our natural-system light curves to measure light-curve parameters for LOSS light curves and available SN Ia data sets in the literature. We present a Hubble diagram of 586 SNe in the redshift range z = 0.01-1.4 with a residual scatter of 0.176 mag. Of the 226 low-z SNe Ia in our sample, 91 objects are from LOSS, including 45 without previously published distances. Assuming a flat Universe, we find that the best fit for the dark energy equation-of-state parameter w = -0.86^{+0.13}_{-0.16} (stat) ±0.11 (sys) from SNe alone, consistent with a cosmological constant. Our data prefer a Universe with an accelerating rate of expansion with 99.999 per cent confidence. When looking at Hubble residuals as a function of host-galaxy morphology, we do not see evidence for a significant trend, although we find a somewhat reduced scatter in Hubble residuals from SNe residing within a projected distance <10 kpc of the host-galaxy nucleus (σ = 0.156 mag). Similar to the results of Blondin, Mandel and Kirshner and Silverman et al., we find that Hubble residuals do not correlate with the expansion velocity of Si II λ6355 measured in optical spectra near maximum light. Our data are consistent with no presence of a local `Hubble bubble.' Improvements in cosmological analyses within low-z samples can be achieved by better constraining calibration uncertainties in the zero-points of photometric systems.
NASA Technical Reports Server (NTRS)
2006-01-01
11 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered rock outcrops in Eos Chaos, located near the east end of the Valles Marineris trough system. The outcrops occur in the form of a distinct, circular butte (upper half of image) and a high slope (lower half of image). The rocks might be sedimentary rocks, similar to those found elsewhere exposed in the Valles Marineris system and the chaotic terrain to the east of the region.
Location near: 12.9oS, 49.5oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer
Extraction of activation energies from temperature dependence of dark currents of SiPM
NASA Astrophysics Data System (ADS)
Engelmann, E.; Vinogradov, S.; Popova, E.; Wiest, F.; Iskra, P.; Gebauer, W.; Loebner, S.; Ganka, T.; Dietzinger, C.; Fojt, R.; Hansch, W.
2016-02-01
Despite several advantages of Silicon Photomultipliers (SiPM) over Photomultiplier Tubes (PMT) like the increased photon detection efficiency (PDE), the compact design and the insensitivity to magnetic fields, the dark count rate (DCR) of SiPM is still a large drawback. Decreasing of the SiPM dark count rate has become a modern task, which could lead to an enormous enhancement of the application range of this promising photo-detector. The main goal of this work is to gain initial information on the dark generation and identify the dominating contributions to dark currents. The chosen approach to fulfill this task is to extract characteristic activation energies of the contributing mechanisms from temperature dependent investigations of dark currents and DCR. Since conventional methods are not suited for a precise analysis of activation energies, a new method has to be developed. In this paper, first steps towards the development of a reliable method for the analysis of dark currents and dark events are presented.
NASA Astrophysics Data System (ADS)
Prasad, U.; Rahabi, A.
2001-05-01
The following utilities developed for HDF-EOS format data dump are of special use for Earth science data for NASA's Earth Observation System (EOS). This poster demonstrates their use and application. The first four tools take HDF-EOS data files as input. HDF-EOS Metadata Dumper - metadmp Metadata dumper extracts metadata from EOS data granules. It operates by simply copying blocks of metadata from the file to the standard output. It does not process the metadata in any way. Since all metadata in EOS granules is encoded in the Object Description Language (ODL), the output of metadmp will be in the form of complete ODL statements. EOS data granules may contain up to three different sets of metadata (Core, Archive, and Structural Metadata). HDF-EOS Contents Dumper - heosls Heosls dumper displays the contents of HDF-EOS files. This utility provides detailed information on the POINT, SWATH, and GRID data sets. in the files. For example: it will list, the Geo-location fields, Data fields and objects. HDF-EOS ASCII Dumper - asciidmp The ASCII dump utility extracts fields from EOS data granules into plain ASCII text. The output from asciidmp should be easily human readable. With minor editing, asciidmp's output can be made ingestible by any application with ASCII import capabilities. HDF-EOS Binary Dumper - bindmp The binary dumper utility dumps HDF-EOS objects in binary format. This is useful for feeding the output of it into existing program, which does not understand HDF, for example: custom software and COTS products. HDF-EOS User Friendly Metadata - UFM The UFM utility tool is useful for viewing ECS metadata. UFM takes an EOSDIS ODL metadata file and produces an HTML report of the metadata for display using a web browser. HDF-EOS METCHECK - METCHECK METCHECK can be invoked from either Unix or Dos environment with a set of command line options that a user might use to direct the tool inputs and output . METCHECK validates the inventory metadata in (.met file) using The
NASA Astrophysics Data System (ADS)
Reddy, D. R. K.; Anitha, S.; Umadevi, S.
2016-11-01
In this paper, we investigate five dimensional space-time filled with minimally interacting dark matter and holographic dark energy in Brans-Dicke (Phys. Rev. 124:925, 1961) scalar-tensor theory of gravitation. The exact solutions of the field equations are obtained using (i) special law of variation for Hubble's parameter that yields constant value of deceleration parameter and (ii) a relation between metric potentials. The physical and geometrical aspects of the model are also discussed.
Accretion of dark energy onto higher dimensional charged BTZ black hole
NASA Astrophysics Data System (ADS)
Debnath, Ujjal
2015-09-01
In this work, we have studied the accretion of the (n+2)-dimensional charged BTZ black hole (BH). The critical point and square speed of sound have been obtained. The mass of the BTZ BH has been calculated and we have observed that the mass of the BTZ BH is related with the square root of the energy density of the dark energy which accretes onto the BH in our accelerating FRW universe. We have assumed modified Chaplygin gas (MCG) as a candidate of dark energy which accretes onto the BH and we have found the expression of BTZ BH mass. Since in our solution of MCG, this model generates only quintessence dark energy (not phantom) and so BTZ BH mass increases during the whole evolution of the accelerating universe. Next we have assumed five kinds of parametrizations of well-known dark-energy models. These models generate both quintessence and phantom scenarios i.e., phantom crossing models. So if these dark energies accrete onto the BTZ BH, then in the quintessence stage, the BH mass increases up to a certain value (finite value) and then decreases to a certain finite value for the phantom stage during the whole evolution of the universe. We have shown these results graphically.
Experimental High Energy Physics Research: Direct Detection of Dark Matter
Witherell, Michael S.
2014-10-02
The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment, which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.
Cosmological effects of scalar-photon couplings: dark energy and varying-α Models
Avgoustidis, A.; Martins, C.J.A.P.; Monteiro, A.M.R.V.L.; Vielzeuf, P.E.; Luzzi, G. E-mail: Carlos.Martins@astro.up.pt E-mail: up110370652@alunos.fc.up.pt
2014-06-01
We study cosmological models involving scalar fields coupled to radiation and discuss their effect on the redshift evolution of the cosmic microwave background temperature, focusing on links with varying fundamental constants and dynamical dark energy. We quantify how allowing for the coupling of scalar fields to photons, and its important effect on luminosity distances, weakens current and future constraints on cosmological parameters. In particular, for evolving dark energy models, joint constraints on the dark energy equation of state combining BAO radial distance and SN luminosity distance determinations, will be strongly dominated by BAO. Thus, to fully exploit future SN data one must also independently constrain photon number non-conservation arising from the possible coupling of SN photons to the dark energy scalar field. We discuss how observational determinations of the background temperature at different redshifts can, in combination with distance measures data, set tight constraints on interactions between scalar fields and photons, thus breaking this degeneracy. We also discuss prospects for future improvements, particularly in the context of Euclid and the E-ELT and show that Euclid can, even on its own, provide useful dark energy constraints while allowing for photon number non-conservation.
Primordial non-Gaussianity and Dark Energy constraints from Cluster Surveys
Sefusatti, Emiliano; Vale, Chris; Kadota, Kenji; Frieman, Joshua; /Fermilab /KICP, Chicago /Chicago U., Astron. Astrophys. Ctr.
2006-09-01
Galaxy cluster surveys will be a powerful probe of dark energy. At the same time, cluster abundances is sensitive to any non-Gaussianity of the primordial density field. It is therefore possible that non-Gaussian initial conditions might be misinterpreted as a sign of dark energy or at least degrade the expected constraints on dark energy parameters. To address this issue, we perform a likelihood analysis of an ideal cluster survey similar in size and depth to the upcoming South Pole Telescope/Dark Energy Survey (SPT-DES).We analyze a model in which the strength of the non-Gaussianity is parameterized by the constant f{sub NL}; this model has been used extensively to derive Cosmic Microwave Background (CMB) anisotropy constraints on non-Gaussianity, allowing us to make contact with those works. We find that the constraining power of the cluster survey on dark energy observables is not significantly diminished by non-Gaussianity provided that cluster redshift information is included in the analysis. We also find that even an ideal cluster survey is unlikely to improve significantly current and future CMB constraints on non-Gaussianity. However, when all systematics are under control, it could constitute a valuable cross check to CMB observations.
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site]
This VIS image shows several landslides within Eos Chasma. Many very large landslides have occurred within different portions of Valles Marineris. Note where the northern wall has failed in a upside-down bowl shape, releasing the material that formed the landslide deposit.
Image information: VIS instrument. Latitude -8, Longitude 318.6 East (41.4 West). 19 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
High-energy neutrino signals from the Sun in dark matter scenarios with internal bremsstrahlung
Ibarra, Alejandro; Totzauer, Maximilian; Wild, Sebastian E-mail: maximilian.totzauer@mytum.de
2013-12-01
We investigate the prospects to observe a high energy neutrino signal from dark matter annihilations in the Sun in scenarios where the dark matter is a Majorana fermion that couples to a quark and a colored scalar via a Yukawa coupling. In this minimal scenario, the dark matter capture and annihilation in the Sun can be studied in a single framework. We find that, for small and moderate mass splitting between the dark matter and the colored scalar, the two-to-three annihilation q q-bar g plays a central role in the calculation of the number of captured dark matter particles. On the other hand, the two-to-three annihilation into q q-bar Z gives, despite its small branching fraction, the largest contribution to the neutrino flux at the Earth at the highest energies. We calculate the limits on the model parameters using IceCube observations of the Sun and we discuss their interplay with the requirement of equilibrium of captures and annihilations in the Sun and with the requirement of thermal dark matter production. We also compare the limits from IceCube to the limits from direct detection, antiproton measurements and collider searches.
Propagation of high-energy neutrinos in a background of ultralight scalar dark matter
NASA Astrophysics Data System (ADS)
Reynoso, Matías M.; Sampayo, Oscar A.
2016-09-01
If high-energy neutrinos propagate in a background of ultralight scalar field particles of dark matter (mφ ∼10-23 eV), neutrino-dark matter interactions can play a role and affect the neutrino flux. In this work we analyse this effect using transport equations that account for the neutrino regeneration as well as absorption, and we consider the neutrino flux propagation in the extragalactic medium and also through the galactic halo of dark matter. We show the results for the final flux to arrive on Earth for different cases of point and diffuse neutrino fluxes. We conclude that this type of neutrino interactions with ultralight scalar particles as dark matter can yield very different results in the neutrino flux and in the flavor ratios that can be measured in neutrino detectors such as IceCube.
Energy dependence of direct detection cross section for asymmetric mirror dark matter
An Haipeng; Chen Shaolong; Mohapatra, Rabindra N.; Nussinov, Shmuel; Zhang Yue
2010-07-15
In a recent paper, four of the present authors proposed a class of dark matter models where generalized parity symmetry leads to equality of dark matter abundance with baryon asymmetry of the Universe and predicts dark matter mass to be around 5 GeV. In this paper, we explore how this model can be tested in direct search experiments. In particular, we point out that if the dark matter happens to be the mirror neutron, the direct detection cross section has the unique feature that it increases at low recoil energy unlike the case of conventional weakly interacting massive particles. It is also interesting to note that the predicted spin-dependent scattering could make significant contribution to the total direct detection rate, especially for light nucleus. With this scenario, one could explain recent DAMA and CoGeNT results.
High Energy Electron Signals from Dark Matter Annihilation in the Sun
Schuster, Philip; Toro, Natalia; Weiner, Neal; Yavin, Itay; /New York U., CCPP
2012-04-09
In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.
NASA Astrophysics Data System (ADS)
Sarkar, Sanjay
2015-01-01
In this paper, we have considered the closed FRW universe filled with two interacting fluids; dark matter and holographic dark energy components. Under certain conditions, this dark energy model is characterised by a big rip type future singularity and therefore a finite life time of the universe (Cruz et al., 2008). As the universe passes through a significant time when the matter and the dark energy densities are roughly comparable between the matter and the dark energy dominated era. So, we calculated the fraction of total life time of the universe when the universe passes through the coincidental stage for this future singularity by considering 1/ro
Quantifying the impact of future Sandage-Loeb test data on dark energy constraints
Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn
2014-07-01
The Sandage-Loeb (SL) test is a unique method to probe dark energy in the ''redshift desert'' of 2∼
PreCam: A Step Towards the Photometric Calibration of the Dark Energy Survey
NASA Astrophysics Data System (ADS)
Allam, S. S.; Tucker, D. L.; PreCam Team; DES Collaboration
2016-05-01
The Dark Energy Survey (DES) will be taking the next step in probing the properties of Dark Energy and in understanding the physics of cosmic acceleration. A step towards the photometric calibration of DES is to have a quick, bright survey in the DES footprint (PreCam), using a pre-production set of the Dark Energy Camera (DECam) CCDs and a set of 100 mm×100 mm DES filters. The objective of the PreCam Survey is to create a network of calibrated DES grizY standard stars that will be used for DES nightly calibrations and to improve the DES global relative calibrations. Here, we describe the first year of PreCam observation, results, and photometric calibrations.
Probing dark energy with an atom interferometer in an optical cavity
NASA Astrophysics Data System (ADS)
Jaffe, Matthew; Haslinger, Philipp; Hamilton, Paul; Mueller, Holger; Khoury, Justin; Elder, Benjamin
2016-05-01
If dark energy -- which drives the accelerated expansion of the universe -- consists of a light scalar field, it might be detectable as a ``fifth force'' between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms can evade such tests by suppressing this force in regions of high density, such as the laboratory. Our experiments constrain these dark energy models using atoms in an ultrahigh-vacuum chamber as probes to expose the screened fields. Using a cesium matter wave interferometer in an optical cavity, we set stringent bounds on coupling screened theories to matter. A further 4 to 5 orders of magnitude would completely rule out chameleon and f(R) theories. I will describe this first tabletop dark energy search, and present the hundredfold boost in sensitivity we have since achieved.
Black hole formation from collapsing dust fluid in a background of dark energy
Cai Ronggen; Wang Anzhong
2006-03-15
The gravitational collapse of a spherically symmetric star, made of a dust fluid, {rho}{sub DM}, in a background of dark energy, p=w{rho} (w<-1/3) is studied. It is found that when only dark energy is present, black holes are never formed. When both of them are present, black holes can be formed, due to the condensation of the dust fluid. Initially the dust fluid may not play an important role, but, as time increases, it will dominate the collapse and finally lead to formation of black holes. This result remains true even when the interaction between the dust fluid and dark energy does not vanish. When w<-1 (phantoms), some models also can be interpreted as representing the death of a white hole that ejects both dust and phantoms. The ejected matter recollapses to form a black hole.
Testing for dynamical dark energy models with redshift-space distortions
Tsujikawa, Shinji; Felice, Antonio De; Alcaniz, Jailson E-mail: antoniod@nu.ac.th
2013-01-01
The red-shift space distortions in the galaxy power spectrum can be used to measure the growth rate of matter density perturbations δ{sub m}. For dynamical dark energy models in General Relativity we provide a convenient analytic formula of f(z)σ{sub 8}(z) written as a function of the redshift z, where f = dln δ{sub m}/dln a (a is the cosmological scale factor) and σ{sub 8} is the rms amplitude of over-density at the scale 8 h{sup −1} Mpc. Our formula can be applied to the models of imperfect fluids, quintessence, and k-essence, provided that the dark energy equation of state w does not vary significantly and that the sound speed is not much smaller than 1. We also place observational constraints on dark energy models of constant w and tracking quintessence from the recent data of red-shift space distortions.
Aspects of some new versions of pilgrim dark energy in DGP braneworld
NASA Astrophysics Data System (ADS)
Jawad, Abdul; Rani, Shamaila; Salako, Ines G.; Gulshan, Faiza
2016-07-01
The illustration of cosmic acceleration under two interacting dark energy models (pilgrim dark energy with Granda-Oliveros cutoff and its generalized ghost version) in the DGP braneworld framework is presented. In the current scenario, the equation of state parameter, deceleration parameter, ωD - ω^'D plane and statefinder diagnosis are investigated. The equation of state parameter behaves like the phantom era of the universe. The deceleration parameter shows the accelerated expansion of the universe in both models. The cosmological planes, like ωD - ω^'D, and the statefinder correspond to the Λ CDM limit. To conclude, we remark that our results support the phenomena of pilgrim dark energy and cosmic acceleration. Also, the results are consistent with observational data.
Spontaneous symmetry breaking in cosmos: the hybrid symmetron as a dark energy switching device
Bamba, K.; Nojiri, S.; Gannouji, R.; Kamijo, M.; Sami, M. E-mail: gannouji@rs.kagu.tus.ac.jp E-mail: nojiri@phys.nagoya-u.ac.jp
2013-07-01
We consider symmetron model in a generalized background with a hope to make it compatible with dark energy. We observe a ''no go'' theorem at least in case of a conformal coupling. Being convinced of symmetron incapability to be dark energy, we try to retain its role for spontaneous symmetry breaking and assign the role of dark energy either to standard quintessence or F(R) theory which are switched on by symmetron field in the symmetry broken phase. The scenario reduces to standard Einstein gravity in the high density region. After the phase transition generated by symmetron field, either the F(R) gravity or the standard quintessence are induced in the low density region. we demonstrate that local gravity constraints and other requirements are satisfied although the model could generate the late-time acceleration of Universe.
Dark energy as a Born-Infeld gauge interaction violating the equivalence principle.
Füzfa, A; Alimi, J-M
2006-08-11
We investigate the possibility that dark energy does not couple to gravitation in the same way as ordinary matter, yielding a violation of the weak and strong equivalence principles on cosmological scales. We build a transient mechanism in which gravitation is pushed away from general relativity by a Born-Infeld gauge interaction acting as an abnormally weighting (dark) energy. This mechanism accounts for the Hubble diagram of far-away supernovae by cosmic acceleration and time variation of the gravitational constant while accounting naturally for the present tests on general relativity. PMID:17026155
Cluster-Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void
NASA Astrophysics Data System (ADS)
Sahlén, Martin; Zubeldía, Íñigo; Silk, Joseph
2016-03-01
Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density {{{Ω }}}{{m}} and power-spectrum normalization {σ }8. For the first time for voids, we constrain {{{Ω }}}{{m}}=0.21+/- 0.10 and {σ }8=0.95+/- 0.21 for a flat Λ CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies are also complementary in scale, density, and nonlinearity, and are of particular interest for testing modified-gravity models.
Perceiving the equation of state of Dark Energy while living in a Cold Spot
Valkenburg, Wessel
2012-01-01
The Cold Spot could be an adiabatic perturbation on the surface of last scattering, in which case it is an over-density with comoving radius of the order of 1 Gpc. We assess the effect that living in a similar structure, without knowing it, has on our perception of the equation of state of Dark Energy. We find that structures of dimensions such that they could cause the Cold Spot on the CMB, affect the perceived equation of state of Dark Energy possibly up to ten percent.
NASA Astrophysics Data System (ADS)
Reddy, D. R. K.; Raju, P.; Sobhanbabu, K.
2016-04-01
Five dimensional spherically symmetric space-time filled with two minimally interacting fields; matter and holographic dark energy components is investigated in a scalar tensor theory of gravitation proposed by Brans and Dicke (Phys. Rev. 124:925, 1961). To obtain a determinate solution of the highly non-linear field equations we have used (i) a relation between metric potentials and (ii) an equation of state which represents disordered radiation in five dimensional universe. The solution obtained represents a minimally interacting and radiating holographic dark energy model in five dimensional universe. Some physical and Kinematical properties of the model are, also, studied.
Dark energy as a Born-Infeld gauge interaction violating the equivalence principle.
Füzfa, A; Alimi, J-M
2006-08-11
We investigate the possibility that dark energy does not couple to gravitation in the same way as ordinary matter, yielding a violation of the weak and strong equivalence principles on cosmological scales. We build a transient mechanism in which gravitation is pushed away from general relativity by a Born-Infeld gauge interaction acting as an abnormally weighting (dark) energy. This mechanism accounts for the Hubble diagram of far-away supernovae by cosmic acceleration and time variation of the gravitational constant while accounting naturally for the present tests on general relativity.
Front-End Electronics for the Dark Energy Survey Camera (DECam)
NASA Astrophysics Data System (ADS)
Shaw, Theresa M.; Huffman, D.; Kozlovsky, M.; Olsen, J.; Stuermer, W.; Barcelo, M.; Cardiel, L.; Castilla, J.; DeVicente, J.; Martinez, G.; Moore, P.; Schmidt, R.
2006-12-01
The front-end electronics design for the Dark Energy Survey Camera (DECam) is based on the MONSOON Image Acquisition System that was developed by the National Optical Astronomy Observatory (NOAO). MONSOON systems are currently being used to test and characterize CCDs. The Dark Energy Survey group both in the U.S. and Spain will produce custom versions of these systems for use in the production readout that will better match the requirements of a large focal plane of 70+ CCDs and the tight space constraints of a prime focus instrument. The customization of the MONSOON boards and the electronics path will be presented.
Light dark sector searches at low-energy high-luminosity e + e - colliders
NASA Astrophysics Data System (ADS)
Yin, Peng-Fei; Zhu, Shou-Hua
2016-10-01
Although the standard model (SM) is extremely successful, there are various motivations for considering the physics beyond the SM. For example, the SM includes neither dark energy nor dark matter, which has been confirmed through astrophysical observations. Examination of the dark sector, which contains new, light, weakly-coupled particles at the GeV scale or lower, is well motivated by both theory and dark-matter detection experiments. In this mini-review, we focus on one particular case in which these new particles can interact with SM particles through a kinematic mixing term between U(1) gauge bosons. The magnitude of the mixing can be parameterized by a parameter є. Following a brief overview of the relevant motivations and the constraints determined from numerous experiments, we focus on the light dark sector phenomenology at low-energy high-luminosity e + e - colliders. These colliders are ideal for probing the new light particles, because of their large production rates and capacity for precise resonance reconstruction. Depending on the details of a given model, the typical observed signatures may also contain multi lepton pairs, displaced vertices, and/or missing energy. Through the use of extremely large data samples from existing experiments, such as KLOE, CLEO, BABAR, Belle, and BESIII, the magnitude of the mixing can be parameterized by a parameter є < 10-4-10-3 constraint can be obtained. Obviously, future experiments with larger datasets will provide opportunities for the discovery of new particles in the dark sector, or for stricter upper limits on є. Once the light dark sector is confirmed, the particle physics landscape will be changed significantly.
Foundations of observing dark energy dynamics with the Wilkinson Microwave Anisotropy Probe
Corasaniti, P.S.; Kunz, M.; Parkinson, D.; Copeland, E.J.; Bassett, B.A.
2004-10-15
Detecting dark energy dynamics is the main quest of current dark energy research. Addressing the issue demands a fully consistent analysis of cosmic microwave background, large-scale structure and SN-Ia data with multiparameter freedom valid for all redshifts. Here we undertake a ten parameter analysis of general dark energy confronted with the first year Wilkinson Microwave Anisotropy Probe, 2dF galaxy survey and latest SN-Ia data. Despite the huge freedom in dark energy dynamics there are no new degeneracies with standard cosmic parameters apart from a mild degeneracy between reionization and the redshift of acceleration, both of which effectively suppress small scale power. Breaking this degeneracy will help significantly in detecting dynamics, if it exists. Our best-fit model to the data has significant late-time evolution at z<1.5. Phantom models are also considered and we find that the best-fit crosses w=-1 which, if confirmed, would be a clear signal for radically new physics. Treatment of such rapidly varying models requires careful integration of the dark energy density usually not implemented in standard codes, leading to crucial errors of up to 5%. Nevertheless cosmic variance means that standard {lambda} cold dark matter models are still a very good fit to the data and evidence for dynamics is currently very weak. Independent tests of reionization or the epoch of acceleration (e.g., integrated Sachs-Wolfe-large scale structure correlations) or reduction of cosmic variance at large scales (e.g., cluster polarization at high redshift) may prove key in the hunt for dynamics.
Menikoff, Ralph S
2009-10-08
PBX 9502 is an insensitive plastic-bonded explosive based on triamino-trinitrobenzene (TATB). A complete equation of state (EOS) is constructed for unreacted PBX 9502 suitable for reactive burn models, i.e., high pressure regime in which material strength is unimportant. The PBX EOS is composed of two parts: a complete EOS for TATB and a porosity model which allows for variations in the initial PBX density. The TATB EOS is based on a cold curve and a thermal model for lattice vibrations. The heat capacity, and hence thermal model, is determined by the vibrational spectrum from Raman scattering. The cold curve is calibrated to diamond anvil cell data for isothermal compression using a two-piece Keane fitting form. Hugoniot data for PBX 9502 is used as a consistency check.
Observational constraints on dark energy with a fast varying equation of state
NASA Astrophysics Data System (ADS)
De Felice, Antonio; Nesseris, Savvas; Tsujikawa, Shinji
2012-05-01
We place observational constraints on models with the late-time cosmic acceleration based on a number of parametrizations allowing fast transitions for the equation of state of dark energy. In addition to the model of Linder and Huterer where the dark energy equation of state w monotonically grows or decreases in time, we propose two new parametrizations in which w has an extremum. We carry out the likelihood analysis with the three parametrizations by using the observational data of supernovae type Ia, cosmic microwave background, and baryon acoustic oscillations. Although the transient cosmic acceleration models with fast transitions can give rise to the total chi square smaller than that in the Λ-Cold-Dark-Matter (ΛCDM) model, these models are not favored over ΛCDM when one uses the Akaike information criterion which penalizes the extra degrees of freedom present in the parametrizations.
NASA Astrophysics Data System (ADS)
Duorah, H. L.
2015-08-01
The bound on the cosmological constant energy density produced by big bang nucleosynthesis,0.786≤ΩΛ≤0.844 has been used to study the growth rate of large scale structure. The equation of state of dark energy is found to vary with a rate, △ω/△t≈10-14yr-1 since the time of decoupling and it levels off at about ω≈-0.996 for all the values of ΩΛ permitted by nucleosynthesis. This equation of state along with spectral index, n≈0.9 permitted by WMAP data yields growth rate which saturates at about z≈0.4 . The growth is suppressed below z≈0.4 . Observed growth data satisfies the trend of evolution. It strengthens the case for ΛCDM with nucleosynthesis bound on dark energy consistent with structure formation. The minute departure from scale invariance in presence of dark energy generates a mass scale M18=434.53-817.71 and a length scale λpeak=935.02-1283.94 Mpc. This elevation of structure mass and length may be a new feature of the ΛCDM model. The results may call for a serious look into the nature of dark energy and gravity itself.
Applications of the EOS SAR to monitoring global change
NASA Technical Reports Server (NTRS)
Schier, Marguerite; Way, Jobea; Holt, Benjamin
1991-01-01
The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.
Effects of time-varying in SNLS3 on constraining interacting dark energy models
NASA Astrophysics Data System (ADS)
Wang, Shuang; Wang, Yong-Zhen; Geng, Jia-Jia; Zhang, Xin
2014-11-01
It has been found that, for the Supernova Legacy Survey three-year (SNLS3) data, there is strong evidence for the redshift evolution of the color-luminosity parameter . In this paper, adopting the -cold-dark-matter (CDM) model and considering its interacting extensions (with three kinds of interaction between dark sectors), we explore the evolution of and its effects on parameter estimation. In addition to the SNLS3 data, we also use the latest Planck distance priors data, the galaxy clustering data extracted from sloan digital sky survey data release 7 and baryon oscillation spectroscopic survey, as well as the direct measurement of Hubble constant from the Hubble Space Telescope observation. We find that, for all the interacting dark energy (IDE) models, adding a parameter of can reduce by 34, indicating that a constant is ruled out at 5.8 confidence level. Furthermore, it is found that varying can significantly change the fitting results of various cosmological parameters: for all the dark energy models considered in this paper, varying yields a larger fractional CDM densities and a larger equation of state ; on the other side, varying yields a smaller reduced Hubble constant for the CDM model, but it has no impact on for the three IDE models. This implies that there is a degeneracy between and coupling parameter . Our work shows that the evolution of is insensitive to the interaction between dark sectors, and then highlights the importance of considering 's evolution in the cosmology fits.
Strange particle measurements from the EOS TPC
Justice, M.
1995-02-01
A high statistics sample of {Lambda}`s produced in 2 GeV/nucleon {sup 5}8Ni + {sup nat}Cu collisions has been obtained with the EOS Time Projection Chamber at the Bevalac. The coverage of the EOS TPC is essentially 100% for y > y{sub cm} and extends down to P{sub T} = 0 where interesting effects such as collective radial expansion may be important. In addition, the detection of a majority of the charged particles in the TPC, along with the presence of directed flow for protons and heavier fragments at this beam energy, allows for the correlation of A production with respect to the event reaction plane. Our preliminary analysis indicates the first observation of a sidewards flow signature for A`s. Comparisons with the cascade code ARC are made.
Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae
Wang Yun; Tegmark, Max
2005-05-15
We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter {omega}{sub m} can be accurately measured from other data, then the dark-energy density history X(z)={rho}{sub X}(z)/{rho}{sub X}(0) can trivially be derived from this expansion history H(z). In contrast to customary 'black box' parameter fitting, our method is transparent and easy to interpret: the measurement of H(z){sup -1} in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30%-40% accuracy.
Saurabh W. Jha
2012-10-03
The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.
Self-calibration of cluster dark energy studies: Observable-mass distribution
Lima, Marcos; Hu, Wayne
2005-08-15
The exponential sensitivity of cluster number counts to the properties of the dark energy implies a comparable sensitivity to not only the mean but also the actual distribution of an observable-mass proxy given the true cluster mass. For example a 25% scatter in mass can provide a {approx}50% change in the number counts at z{approx}2 for the upcoming SPT survey. Uncertainty in the scatter of this amount would degrade dark energy constraints to uninteresting levels. Given the shape of the actual mass function, the properties of the distribution may be internally monitored by the shape of the observable mass function. As a proof of principle, for a simple mass-independent Gaussian distribution the scatter may be self-calibrated to allow a measurement of the dark energy equation of state of {sigma}(w){approx}0.1. External constraints on the mass variance of the distribution that are more accurate than {delta}{sigma}{sub lnM}{sup 2}<0.01 at z{approx}1 can further improve constraints by up to a factor of 2. More generally, cluster counts and their sample variance measured as a function of the observable provide internal consistency checks on the assumed form of the observable-mass distribution that will protect against misinterpretation of the dark energy constraints.
Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae
NASA Astrophysics Data System (ADS)
Wang, Yun; Tegmark, Max
2005-05-01
We present a method for measuring the cosmic expansion history H(z) in uncorrelated redshift bins, and apply it to current and simulated type Ia supernova data assuming spatial flatness. If the matter density parameter Ωm can be accurately measured from other data, then the dark-energy density history X(z)=ρX(z)/ρX(0) can trivially be derived from this expansion history H(z). In contrast to customary “black box” parameter fitting, our method is transparent and easy to interpret: the measurement of H(z)-1 in a redshift bin is simply a linear combination of the measured comoving distances for supernovae in that bin, making it obvious how systematic errors propagate from input to output. We find the Riess et al. (2004) gold sample to be consistent with the vanilla concordance model where the dark energy is a cosmological constant. We compare two mission concepts for the NASA/DOE Joint Dark-Energy Mission (JDEM), the Joint Efficient Dark-energy Investigation (JEDI), and the Supernova Accelaration Probe (SNAP), using simulated data including the effect of weak lensing (based on numerical simulations) and a systematic bias from K corrections. Estimating H(z) in seven uncorrelated redshift bins, we find that both provide dramatic improvements over current data: JEDI can measure H(z) to about 10% accuracy and SNAP to 30% 40% accuracy.
High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?
NASA Technical Reports Server (NTRS)
Moiseev, Alexander
2011-01-01
This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,
Combining weak lensing tomography with halo clustering to probe dark energy
NASA Astrophysics Data System (ADS)
Shapiro, Charles; Dodelson, Scott
2007-10-01
Two methods of constraining the properties of dark energy are weak lensing tomography and cluster counting. Uncertainties in mass calibration of clusters can be reduced by using the properties of halo clustering (the clustering of clusters). However, within a single survey, weak lensing and halo clustering probe the same density fluctuations. We explore the question of whether this information can be used twice—once in weak lensing and then again in halo clustering to calibrate cluster masses—or whether the combined dark energy constraints are weaker than the sum of the individual constraints. For a survey like the Dark Energy Survey (DES), we find that the cosmic shearing of source galaxies at high redshifts is indeed highly correlated with halo clustering at lower redshifts. Surprisingly, this correlation does not degrade cosmological constraints for a DES-like survey, and in fact, constraints are marginally improved since the correlations themselves act as additional observables. This considerably simplifies the analysis for a DES-like survey: when weak lensing and halo clustering are treated as independent experiments, the combined dark energy constraints (cluster counts included) are accurate if not slightly conservative. Our findings mirror those of Takada and Bridle, who investigated correlations between the cosmic shear and cluster counts.
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes
NASA Astrophysics Data System (ADS)
Miranda, O. G.; Moura, C. A.; Parada, A.
2015-05-01
Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.