Science.gov

Sample records for dark field sdf

  1. Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging.

    PubMed

    van Elteren, H A; Ince, C; Tibboel, D; Reiss, I K M; de Jonge, R C J

    2015-10-01

    Incident dark field imaging (IDF) is a new generation handheld microscope for bedside visualization and quantification of microcirculatory alterations. IDF is the technical successor of sidestream dark field imaging (SDF), currently the most used device for microcirculatory measurements. In (pre)term neonates the reduced thickness of the skin allows non-invasive transcutaneous measurements. The goal of this study was to compare the existing device (SDF) and its technical successor (IDF) in preterm neonates. We hypothesized that IDF imaging produces higher quality images resulting in a higher vessel density. After written informed consent was given by the parents, skin microcirculation was consecutively measured on the inner upper arm with de SDF and IDF device. Images were exported and analyzed offline using existing software (AVA 3.0). Vessel density and perfusion were calculated using the total vessel density (TVD) proportion of perfused vessels (PPV) and perfused vessel density. The microcirculation images quality score was used to evaluate the quality of the video images. In a heterogeneous group of twenty preterm neonates (median GA 27.6 weeks, range 24-33.4) IDF imaging visualized 19.9% more vessels resulting in a significantly higher vessel density (TVD 16.9 vs. 14.1/mm, p value < 0.001). The perfusion of vessels could be determined more accurately in the IDF images, resulting in a significant lower PPV (88.7 vs. 93.9%, p value 0.002). The IDF video images scored optimal in a higher percentage compared to the SDF video images. IDF imaging of the cutaneous microcirculation in preterm neonates resulted in a higher vessel density and lower perfusion compared to the existing SDF device.

  2. [Study of a brain microcirculation in cranioencephalic trauma using the Side Stream Field (SDF) system].

    PubMed

    Pérez-Bárcena, Jon; Ibáñez, Javier; Brell, Marta; Llinás, Pedro; Abadal, Josep Maria; Llompart-Pou, Juan Antonio

    2009-01-01

    Posttraumatic tissular hypoxia can be due to multiple causes, including microcirculation disturbances, which can be studied with the SDF (Side Stream Dark Field) system. This system is based on a small hand-held microscope that eliminates directly reflected green polarised light from an organ surface using an orthogonal analyser. It offers clear images of red and white blood cells flow through microcirculation. Specific software is later used to determine the length and density of microvessels. We present a case of a TBI patient who required surgical evacuation of a brain contusion. Images of the microcirculatory bed were recorded with the SDF microscope and compared with a normal pattern obtained from another patient who was operated on for an unruptured cerebral aneurysm. Both imaging and quantitative analyses showed significant differences in the cerebral microcirculatory status in these patients. Total length and density of vessels were markedly reduced in the TBI patient. SDF imaging allows direct and non-invasive in vivo observation of cerebral microcirculation, and may allow us to deepen our knowledge of the pathophysiology of posttraumatic brain ischemia.

  3. A comparison of the quality of image acquisition between the incident dark field and sidestream dark field video-microscopes.

    PubMed

    Gilbert-Kawai, Edward; Coppel, Jonny; Bountziouka, Vassiliki; Ince, Can; Martin, Daniel

    2016-01-21

    The 'Cytocam' is a third generation video-microscope, which enables real time visualisation of the in vivo microcirculation. Based upon the principle of incident dark field (IDF) illumination, this hand held computer-controlled device was designed to address the technical limitations of its predecessors, orthogonal polarization spectroscopy and sidestream dark field (SDF) imaging. In this manuscript, we aimed to compare the quality of sublingual microcirculatory image acquisition between the IDF and SDF devices. Using the microcirculatory image quality scoring (MIQS) system, (six categories scored as either 0 = optimal, 1 = acceptable, or 10 = unacceptable), two independent raters compared 30 films acquired using the Cytocam IDF video-microscope, to an equal number obtained with an SDF device. Blinded to the origin of the films, the raters were therefore able to score between 0 and 60 for each film analysed. The scores' distributions between the two techniques were compared. The median MIQS (95% CI) given to the SDF camera was 7 (1.5-12), as compared to 1 (0.5-1.0) for the IDF device (p < 0.0001). Of the six categories assessed by the MIQS, nearly one fifth of the SDF videos were scored as unacceptable for pressure (20%), content (20%), and stability (17%), with focus scoring deficiently 13% of the time. High agreement between the two raters scoring values was evident, with an intra-class correlation coefficient (ICC) of 0.96 (95% CI: 0.94, 0.98). These results demonstrate that the quality of sublingual microcirculatory image acquisition is superior in the Cytocam IDF video-microscope, as compared to the SDF video-microscope.

  4. Visualization of oxygen transportation in microcirculation by sidestream dark-field oximetry

    NASA Astrophysics Data System (ADS)

    Kurata, Tomohiro; Takahashi, Minori; Oda, Shigeto; Kawahira, Hiroshi; Ohnishi, Takashi; Haneishi, Hideaki

    2017-02-01

    The sidestream dark-field (SDF) imaging allows direct visualization of red blood cells in microvessels near tissue surfaces. We have developed an image-based oximetry method using two-band images obtained by SDF imaging (SDF oximetry) and a trial SDF device with light-emitting diodes to obtain band images. In this study, we propose a technique of producing oxygen saturation (SO2) maps from SDF images and perform animal experiments in vivo. To produce SO2 maps, we use spectral analysis using two band images obtained with our SDF device. As an image processing, the combination of both the Hessian-based and pixel value-based techniques as blood vessel extraction from an SDF image is used. From the experiment with the surface of rat small intestines, we can produce SO2 maps and find that the map represents arterioles and venules those were determined based on the blood ow from SDF images. Moreover, we find the variation of SO2 along a blood vessel running direction.

  5. Dark-field competition

    NASA Astrophysics Data System (ADS)

    Baumbach, Christoph; mcissbc

    2014-04-01

    In reply to the physicsworld.com news story “Dark field illuminates X-ray imaging” (25 February, http://ow.ly/ulJnl), which concerns new research by Robert Cernik and colleagues (Proc. R. Soc. A 10.1098/rspa.2013.0629).

  6. The Cytocam video microscope. A new method for visualising the microcirculation using Incident Dark Field technology.

    PubMed

    Hutchings, Sam; Watts, Sarah; Kirkman, Emrys

    2016-01-01

    We report a new microcirculatory assessment device, the Braedius Cytocam, an Incident Dark Field (IDF) video microscope, and compare it with a precursor device utilising side stream dark field (SDF) imaging. Time matched measurements were made with both devices from the sublingual microcirculation of pigs subjected to traumatic injury and hemorrhagic shock at baseline and during a shock phase. Images were analysed for vessel density, microcirculatory flow and image quality. There were no differences in density or flow data recorded from the two devices at baseline [TVD IDF 14.2 ± 2.4/TVD SDF 13.2 ± 2.0, p 0.17] [MFI IDF 3 (2.8-3.0)/MFI SDF 3 (2.9-3.0), p 0.36] or during the shock state [TVD IDF 11.64 ± 3.3/TVD SDF 11.4 ± 4.0 p = 0.98] [MFI IDF 1.9 (0.6-2.7)/MFI SDF 1.7 (0.3-2.6) p 0.55]. Bland and Altman analysis showed no evidence of significant bias. Vessel contrast was significantly better with the IDF device for both capillaries [17.1 ± 3.9 (IDF) v 3.4 ± 3.6 (SDF), p = 0.0006] and venules [36.1 ± 11.4 (IDF) v 26.4 ± 7.1 (SDF) p 0.014] The Braedius Cytocam showed comparable vessel detection to a precursor device during both baseline and low flow (shock) states.

  7. Quantitative laser speckle flowmetry of the in vivo microcirculation using sidestream dark field microscopy

    PubMed Central

    Nadort, Annemarie; Woolthuis, Rutger G.; van Leeuwen, Ton G.; Faber, Dirk J.

    2013-01-01

    We present integrated Laser Speckle Contrast Imaging (LSCI) and Sidestream Dark Field (SDF) flowmetry to provide real-time, non-invasive and quantitative measurements of speckle decorrelation times related to microcirculatory flow. Using a multi exposure acquisition scheme, precise speckle decorrelation times were obtained. Applying SDF-LSCI in vitro and in vivo allows direct comparison between speckle contrast decorrelation and flow velocities, while imaging the phantom and microcirculation architecture. This resulted in a novel analysis approach that distinguishes decorrelation due to flow from other additive decorrelation sources. PMID:24298399

  8. Correction method for influence of tissue scattering for sidestream dark-field oximetry using multicolor LEDs

    NASA Astrophysics Data System (ADS)

    Kurata, Tomohiro; Oda, Shigeto; Kawahira, Hiroshi; Haneishi, Hideaki

    2016-12-01

    We have previously proposed an estimation method of intravascular oxygen saturation (SO_2) from the images obtained by sidestream dark-field (SDF) imaging (we call it SDF oximetry) and we investigated its fundamental characteristics by Monte Carlo simulation. In this paper, we propose a correction method for scattering by the tissue and performed experiments with turbid phantoms as well as Monte Carlo simulation experiments to investigate the influence of the tissue scattering in the SDF imaging. In the estimation method, we used modified extinction coefficients of hemoglobin called average extinction coefficients (AECs) to correct the influence from the bandwidth of the illumination sources, the imaging camera characteristics, and the tissue scattering. We estimate the scattering coefficient of the tissue from the maximum slope of pixel value profile along a line perpendicular to the blood vessel running direction in an SDF image and correct AECs using the scattering coefficient. To evaluate the proposed method, we developed a trial SDF probe to obtain three-band images by switching multicolor light-emitting diodes and obtained the image of turbid phantoms comprised of agar powder, fat emulsion, and bovine blood-filled glass tubes. As a result, we found that the increase of scattering by the phantom body brought about the decrease of the AECs. The experimental results showed that the use of suitable values for AECs led to more accurate SO_2 estimation. We also confirmed the validity of the proposed correction method to improve the accuracy of the SO_2 estimation.

  9. Field Flows of Dark Energy

    SciTech Connect

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  10. Io: Heat Flow from Dark Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Davies, A. G.; Johnson, T. V.

    2008-03-01

    We focus on the heat flow contribution from dark volcanic fields on Io. These are concentrated in the anti-Loki hemisphere. We use the areas and estimated effective temperatures of dark flucti to derive their total power.

  11. Description of dark energy and dark matter by vector fields

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris E.

    A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate tool for oscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the Universe. In particular, the singular "big bang" turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding unnecessary model assumptions.

  12. Halos of unified dark matter scalar field

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it

    2008-05-15

    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.

  13. Improvement of sidestream dark field imaging with an image acquisition stabilizer.

    PubMed

    Balestra, Gianmarco M; Bezemer, Rick; Boerma, E Christiaan; Yong, Ze-Yie; Sjauw, Krishan D; Engstrom, Annemarie E; Koopmans, Matty; Ince, Can

    2010-07-13

    In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging. The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared. Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 +/- 0.15 N without vs. 0.62 +/- 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 +/- 2 s without vs. 42 +/- 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 +/- 5 s without vs. 67 +/- 14 s with the IAS, p = 0.006). The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view

  14. Dark Matter in the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Diego, J. M.

    2015-05-01

    We present results on the dark matter distribution of the Hubble Frontier Fields (HFF). The HFF represents the best collection of strong lensing data in merging clusters. We study the first two clusters from the HFF program using a free-form method that makes no assumptions about the mass distribution to reconstruct the dark matter that best fits the strong lensing data. Our reconstructed dark matter distributions exhibit some interesting features including very shallow profiles and possible offsets between the baryonic and dark matter distribution. For the first time, we find evidence that suggests that the strong lensing data seems to be sensitive to the mass of the X-ray plasma. Also, by analyzing the strong lensing in one individual galaxy we are able to constrain the shape of the dark matter halo around that galaxy. Our results support the standard models of dark matter and disfavours alternative models like MOND.

  15. Io: Heat flow from dark volcanic fields

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.

    2009-11-01

    Dark flow fields on the jovian satellite Io are evidence of current or recent volcanic activity. We have examined the darkest volcanic fields and quantified their thermal emission in order to assess their contribution to Io's total heat flow. Loki Patera, the largest single source of heat flow on Io, is a convenient point of reference. We find that dark volcanic fields are more common in the hemisphere opposite Loki Patera and this large scale concentration is manifested as a maximum in the longitudinal distribution (near ˜200 °W), consistent with USGS global geologic mapping results. In spite of their relatively cool temperatures, dark volcanic fields contribute almost as much to Io's heat flow as Loki Patera itself because of their larger areal extent. As a group, dark volcanic fields provide an asymmetric component of ˜5% of Io's global heat flow or ˜5 × 10 12 W.

  16. DARK-FIELD ILLUMINATION SYSTEM

    DOEpatents

    Norgren, D.U.

    1962-07-24

    A means was developed for viewing objects against a dark background from a viewing point close to the light which illuminates the objects and under conditions where the back scattering of light by the objects is minimal. A broad light retro-directing member on the opposite side of the objects from the light returns direct light back towards the source while directing other light away from the viewing point. The viewing point is offset from the light and thus receives only light which is forwardly scattered by an object while returning towards the source. The object is seen, at its true location, against a dark background. The invention is particularly adapted for illuminating and viewing nuclear particle tracks in a liquid hydrogen bubble chamber through a single chamber window. (AEC)

  17. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography.

    PubMed

    Jansen, Sanne M; de Bruin, Daniel M; Faber, Dirk J; Dobbe, Iwan J G G; Heeg, Erik; Milstein, Dan M J; Strackee, Simon D; van Leeuwen, Ton G

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400  μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20  mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1  mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·min-1·g-1) remain challenging. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: a comparison of laser speckle contrast imaging, sidestream dark-field microscopy, and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jansen, Sanne M.; de Bruin, Daniel M.; Faber, Dirk J.; Dobbe, Iwan J. G. G.; Heeg, Erik; Milstein, Dan M. J.; Strackee, Simon D.; van Leeuwen, Ton G.

    2017-08-01

    Patient morbidity and mortality due to hemodynamic complications are a major problem in surgery. Optical techniques can image blood flow in real-time and high-resolution, thereby enabling perfusion monitoring intraoperatively. We tested the feasibility and validity of laser speckle contrast imaging (LSCI), optical coherence tomography (OCT), and sidestream dark-field microscopy (SDF) for perfusion diagnostics in a phantom model using whole blood. Microvessels with diameters of 50, 100, and 400 μm were constructed in a scattering phantom. Perfusion was simulated by pumping heparinized human whole blood at five velocities (0 to 20 mm/s). Vessel diameter and blood flow velocity were assessed with LSCI, OCT, and SDF. Quantification of vessel diameter was feasible with OCT and SDF. LSCI could only visualize the 400-μm vessel, perfusion units scaled nonlinearly with blood velocity. OCT could assess blood flow velocity in terms of inverse OCT speckle decorrelation time. SDF was not feasible to measure blood flow; however, for diluted blood the measurements were linear with the input velocity up to 1 mm/s. LSCI, OCT, and SDF were feasible to visualize blood flow. Validated blood flow velocity measurements intraoperatively in the desired parameter (mL·g-1) remain challenging.

  19. Dark Field Microscopy for Analytical Laboratory Courses

    ERIC Educational Resources Information Center

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  20. Dark Field Microscopy for Analytical Laboratory Courses

    ERIC Educational Resources Information Center

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  1. Dark-field third-harmonic imaging

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Lanin, A. A.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-08-01

    Coherent cancellation of third-harmonic generation (THG) in a tightly focused laser beam is shown to enable a label-free imaging of individual neurons in representative brain tissues. The intrinsic coherence of third-harmonic buildup and cancellation combined with the nonlinear nature of the process enhances the locality of the dark signal in THG, translating into a remarkable sharpness of dark-field THG images. Unique advantages of this technique for high-contrast subcellular-resolution neuroimaging are demonstrated by comparing THG images of hippocampus and somatosensory cortex in a mouse brain with images visualizing fluorescent protein biomarkers.

  2. In situ assessment of the renal microcirculation in mechanically ventilated rats using sidestream dark-field imaging.

    PubMed

    Astapenko, D; Jor, O; Lehmann, C; Cerny, V

    2015-02-01

    For microcirculation research there is a need for baseline data and feasibility protocols describing microcirculation of various organs. The aim of our study was to examine the reliability and reproducibility of sidestream dark-field (SDF) imaging within the renal cortical microcirculation in rats. Renal microcirculation was observed using SDF probe placed on the exposed renal surface via the upper midline laparotomy. Video sequences recorded intermittently in short apneic pauses were analyzed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, the Netherlands). Results are expressed as mean (SD) or median (25-75% percentiles). We obtained 60 clear sequences from all recorded analyzable videos from all the animals. The total small vessel and all vessel density (in mm.mm(-2) ) were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The perfused small and all vessel density were (28.79 ± 0.40) and (28.95 ± 0.40), respectively. The DeBacker Score was (19.14 ± 0.43), the proportion of perfused vessels was 100% (100-100%) and the microvascular flow index was 3.49 (3-3.75). We conclude SDF imaging provides a reliable method to examine the renal microvascular bed in vivo and thus can be used for the study of the renal cortical vascular network in various experimental diseases models and clinical settings.

  3. Dark Field Microscopy for Analytical Laboratory Courses

    SciTech Connect

    Augspurger, Ashley E; Stender, Anthony S; Marchuk, Kyle; Greenbowe, Thomas J; Fang, Ning

    2014-06-10

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also observe and measure individual crystal growth during a replacement reaction between copper and silver nitrate. The experiment allows for quantitative, qualitative, and image data analyses for undergraduate students.

  4. Structure formation with scalar field dark matter: the field approach

    SciTech Connect

    Magaña, Juan; Sánchez-Salcedo, F.J.; Matos, Tonatiuh; Suárez, Abril E-mail: tmatos@fis.cinvestav.mx E-mail: jsanchez@astro.unam.mx

    2012-10-01

    We study the formation of structure in the Universe assuming that dark matter can be described by a scalar field Φ-tilde with a potential V(Φ) = −m{sup 2}Φ-tilde {sup 2}/2+λΦ-tilde {sup 4}/4. We derive the evolution equations of the scalar field in the linear regime of perturbations. We investigate the symmetry breaking and possibly a phase transition of this scalar field in the early Universe. At low temperatures, the scalar perturbations have an oscillating growing mode and therefore, this kind of dark matter could lead to the formation of gravitational structures. In order to study the nonlinear regime, we use the spherical collapse model and show that, in the quadratic potential limit, this kind of dark matter can form virialized structures. The main difference with the traditional Cold Dark Matter paradigm is that the formation of structure in the scalar field model can occur at earlier times. Thus, if the dark matter behaves as a scalar field, large galaxies are expected to be formed already at high redshifts.

  5. Decaying Higgs Fields and Cosmological Dark Energy

    NASA Astrophysics Data System (ADS)

    Patla, B.; Nemiroff, R. J.

    2005-05-01

    The observed dark energy in the universe might give particles inertial mass. We investigate one realization of this idea, that the dark energy field might be a decayed scalar component of a scalar field in the early universe that creates inertial mass through spontaneous symmetry breaking, e.g. a Higgs field. To investigate this possibility, the cosmological Friedmann equation of energy balance is augmented in a standard way to incorporate a minimally coupled cosmological Higgs. For epochs where the expansion of the universe is driven by matter and radiation and not the scalar field, the observed hidden nature of the Higgs field can be codified into a single differential equation that we call the ``hidden higgs" condition. The resulting differential equation is solved for the time dependant scalar field and a simple and interesting solution is found analytically. Such a Higgs field decays from Planck scale energies rapidly and approximately exponentially from onset, leaving only the initially negligible constant term of the potential as a final cosmological constant. Such evolution replaces the hierarchy problem with the problem of explaining why such evolution is physically justified, leaving the coincidence problem still unresolved.

  6. Dark Field Imaging of Plasmonic Resonator Arrays

    NASA Astrophysics Data System (ADS)

    Aydinli, Atilla; Balci, Sinan; Karademir, Ertugrul; Kocabas, Coskun

    2012-02-01

    We present critical coupling of electromagnetic waves to plasmonic cavity arrays fabricated on Moir'e surfaces. The critical coupling condition depends on the superperiod of Moir'e surface, which also defines the coupling between the cavities. Complete transfer of the incident power can be achieved for traveling wave plasmonic resonators, which have relatively short superperiod. When the superperiod of the resonators increases, the coupled resonators become isolated standing wave resonators in which complete transfer of the incident power is not possible. Dark field plasmon microscopy imaging and polarization dependent spectroscopic reflection measurements reveal the critical coupling conditions of the cavities. We image the light scattered from SPPs in the plasmonic cavities excited by a tunable light source. Tuning the excitation wavelength, we measure the localization and dispersion of the plasmonic cavity mode. Dark field imaging has been achieved in the Kretschmann configuration using a supercontinuum white light laser equipped with an acoustooptic tunable filter. Polarization dependent spectroscopic reflection and dark field imaging measurements are correlated and found to be in agreement with FDTD simulations.

  7. Scalar field dark matter and the Higgs field

    NASA Astrophysics Data System (ADS)

    Bertolami, O.; Cosme, Catarina; Rosa, João G.

    2016-08-01

    We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10-6-10-4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  8. Perturbations of ultralight vector field dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Núñez Jareño, S. J.

    2017-02-01

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with {k}^2≪ Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with {k}^2≫ Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c s 2 ≃ k 2/ m 2 a 2. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order ( Φ - Ψ)/ Φ ˜ c s 2 . Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/ Φ ˜ c s 2 . This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  9. The effective field theory of dark energy

    SciTech Connect

    Gubitosi, Giulia; Vernizzi, Filippo; Piazza, Federico E-mail: fpiazza@apc.univ-paris7.fr

    2013-02-01

    We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.

  10. Cosmic Gauge-Field Dark Energy

    NASA Astrophysics Data System (ADS)

    Devulder, Christopher; Caldwell, Robert

    2017-01-01

    We present a cosmological model in which dark energy consists of a cosmic gauge field. At early times it behaves like radiation; at late times it drives cosmic acceleration. By varying the number of fields, their coupling strength and handedness, a wide range of behavior is shown to emerge. Joint constraints on the model from SNe, BAO and CMB data are presented. We discuss the possibility that the gauge field may seed a spectrum of primordial gravitational waves with a distinct imprint on the power spectrum, as well as act like a dissipative medium for high frequency gravitational waves. We show that this model could have an impact on the B-mode polarization pattern in the CMB, as well as future probes that use standard sirens to constrain the energy budget of the Universe.

  11. Self-interacting complex scalar field as dark matter

    SciTech Connect

    Briscese, F.

    2011-10-14

    We study the viability of a a complex scalar field {chi} with self-interacting potential V = m{sub 0}{sup {chi}/}2|{chi}|{sup 2}+h|{chi}|{sup 4} as dark matter. Due to the self interaction, the scalar field forms a Bose-Einstein condensate at early times that represents dark matter. The self interaction is also responsible of quantum corrections to the scalar field mass that naturally give the dark matter domination at late times without any fine tuning on the energy density of the scalar field at early times. Finally the properties of the spherically symmetric dark matter halos are also discussed.

  12. Triple unification of inflation, dark matter, and dark energy using a single field

    SciTech Connect

    Liddle, Andrew R.; Pahud, Cedric; Urena-Lopez, L. Arturo

    2008-06-15

    We construct an explicit scenario whereby the same material driving inflation in the early universe can comprise dark matter in the present universe, using a simple quadratic potential. Following inflation and preheating, the density of inflaton/dark matter particles is reduced to the observed level by a period of thermal inflation, of a duration already invoked in the literature for other reasons. Within the context of the string landscape, one can further argue for a nonzero vacuum energy of this field, thus unifying inflation, dark matter, and dark energy into a single fundamental field.

  13. Noninvasive assessment of the iridial microcirculation in rats using sidestream dark field imaging.

    PubMed

    Cerny, V; Zhou, J; Kelly, M; Alotibi, I; Turek, Z; Whynot, S; Saleh, I Abdo; Lehmann, C

    2013-02-01

    Sidestream dark field imaging represents a novel, noninvasive method to study the microcirculation in humans and animals. To-date, it has been used extensively in various peripheral tissues (e.g. sublingual area, intestinal mucosa), however no data for the ocular vasculature, including the iridial microcirculation, are currently available. Therefore, the aim of this study was to examine the reliability and reproducibility of sidestream dark field imaging within the iridial microcirculation in experimental animals. Male Lewis rats were anaesthetized and the iris microvasculature was observed using an sidestream dark field probe gently placed against a cover slip covering the right eye. All video sequences recorded were analysed off-line by using AVA 3.0 software (MicroVision Medical, Amsterdam, The Netherlands). Results are expressed as mean (±SE) or median (interquartile range). Clear images were recorded from each animal and the total number of analysable video sequences was 50. All raw data for selected vessel density parameters passed normality test. The total all and small vessel density (in mm mm(-2) ) were 22,6 (±0,58) and 19,6 (±0,68), respectively. The perfused all and small vessel density were 20,9 (±0,61) and 19,1 (±0,65), respectively. The mean values of all iris vessel density parameters are shown in Figure 4. The DeBacker Score (n/mm) was 15,2 (±0,45), the proportion of perfused vessel was 94,5% (89,8-99,1%), and the MFI was 3 points (3-3). Taken together, these results indicate that SDF imaging provides a reliable and noninvasive method to examine the iridial microvascular bed in vivo and, thus, may provide unique opportunities for the study of the iridial vascular network in various experimental and clinical settings and disease models.

  14. Terahertz dark-field imaging of biomedical tissue

    NASA Astrophysics Data System (ADS)

    Löffler, Torsten; Bauer, T.; Siebert, Karsten; Roskos, Hartmut G.; Fitzgerald, A.; Czasch, S.

    2001-12-01

    We investigate dark-field imaging in the terahertz (THz) fre-quency regime with the intention to enhance image contrast through the analysis of scattering and diffraction signatures. A gold-on-TPX test structure and an archived biomedical tissue sample are examined in conventional and dark-field transmission geometry. In particular, the capability of the technique for tumor detection is addressed.

  15. Interacting diffusive unified dark energy and dark matter from scalar fields

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2017-06-01

    Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the Λ CDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories.

  16. Dynamical dispersion relation for ELKO dark spinor fields

    NASA Astrophysics Data System (ADS)

    Bernardini, A. E.; da Rocha, Roldão

    2012-10-01

    An intrinsic mass generation mechanism for exotic ELKO dark matter fields is scrutinized, in the context of the very special relativity (VSR). Our results are reported on unraveling inequivalent spin structures that educe an additional term on the associated Dirac operator. Contrary to the spinor fields of mass dimension 3/2, this term is precluded to be absorbed as a shift of some gauge vector potential, regarding the equations for the dark spinor fields. It leads to some dynamical constraints that can be intrinsically converted into a dark spinor mass generation mechanism, with the encoded symmetries maintained by the VSR. The dynamical mass is embedded in the VSR framework through a natural coupling to the kink solution of a λϕ4 theory for a scalar field ϕ. Our results evince the possibility of novel effective scenarios, derived from exotic couplings among dark spinor fields and scalar field topological solutions.

  17. Dark-field illuminated reflectance fiber bundle endoscopic microscope

    NASA Astrophysics Data System (ADS)

    Liu, Xuan; Huang, Yong; Kang, Jin U.

    2011-04-01

    We propose a reflectance fiber bundle microscope using a dark-field illumination configuration for applications in endoscopic medical imaging and diagnostics. Our experiment results show that dark-field illumination can effectively suppress strong specular reflection from the proximal end of the fiber bundle. We realized a lateral resolution of 4.4 μm using the dark-field illuminated fiber bundle configuration. To demonstrate the feasibility of using the system to study cell morphology, we obtained still and video images of two thyroid cancer cell lines. Our results clearly allow differentiation of different cancer cell types.

  18. Turbulent Combustion in SDF Explosions

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  19. Vector field models of modified gravity and the dark sector

    SciTech Connect

    Zuntz, J.; Ferreira, P. G.; Zlosnik, T. G; Bourliot, F.; Starkman, G. D.

    2010-05-15

    We present a comprehensive investigation of cosmological constraints on the class of vector field formulations of modified gravity called generalized Einstein-aether models. Using linear perturbation theory we generate cosmic microwave background and large-scale structure spectra for general parameters of the theory, and then constrain them in various ways. We investigate two parameter regimes: a dark matter candidate where the vector field sources structure formation, and a dark energy candidate where it causes late-time acceleration. We find that the dark matter candidate does not fit the data, and identify five physical problems that can restrict this and other theories of dark matter. The dark energy candidate does fit the data, and we constrain its fundamental parameters; most notably we find that the theory's kinetic index parameter n{sub ae} can differ significantly from its {Lambda}CDM value.

  20. Simple Technique for Dark-Field Photography of Immunodiffusion Bands

    PubMed Central

    Jensh, Ronald P.; Brent, Robert L.

    1969-01-01

    A simple dark-field photographic technique was developed which enables laboratory personnel with minimal photographic training to easily record antigen-antibody patterns on immunodiffusion plates. Images PMID:4979944

  1. Study of Several Potentials as Scalar Field Dark Matter Candidates

    SciTech Connect

    Matos, Tonatiuh; Vazquez-Gonzalez, Alberto; Magan a, Juan

    2008-12-04

    In this work we study several scalar field potentials as a plausible candidate to be the dark matter in the universe. The main idea is the following; if the scalar field is an ultralight boson particle, it condensates like a Bose-Einstein system at very early times and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium configurations which oscillate in space-time (oscillatons). The cosmological behavior of the field equations are solved using the dynamical system formalism. We use the current cosmological parameters as constraints for the free parameters of the scalar field potentials. We are able to reproduce very well the cosmological predictions of the standard {lambda}CDM model with some scalar field potentials. Therefore, scalar field dark matter seems to be a good alternative to be the nature of the dark matter of the universe.

  2. Effective field theory of dark matter: a global analysis

    NASA Astrophysics Data System (ADS)

    Liem, Sebastian; Bertone, Gianfranco; Calore, Francesca; de Austri, Roberto Ruiz; Tait, Tim M. P.; Trotta, Roberto; Weniger, Christoph

    2016-09-01

    We present global fits of an effective field theory description of real, and complex scalar dark matter candidates. We simultaneously take into account all possible dimension 6 operators consisting of dark matter bilinears and gauge invariant combinations of quark and gluon fields. We derive constraints on the free model parameters for both the real (five parameters) and complex (seven) scalar dark matter models obtained by combining Planck data on the cosmic microwave background, direct detection limits from LUX, and indirect detection limits from the Fermi Large Area Telescope. We find that for real scalars indirect dark matter searches disfavour a dark matter particle mass below 100 GeV. For the complex scalar dark matter particle current data have a limited impact due to the presence of operators that lead to p-wave annihilation, and also do not contribute to the spin-independent scattering cross-section. Although current data are not informative enough to strongly constrain the theory parameter space, we demonstrate the power of our formalism to reconstruct the theoretical parameters compatible with an actual dark matter detection, by assuming that the excess of gamma rays observed by the Fermi Large Area Telescope towards the Galactic centre is entirely due to dark matter annihilations. Please note that the excess can very well be due to astrophysical sources such as millisecond pulsars. We find that scalar dark matter interacting via effective field theory operators can in principle explain the Galactic centre excess, but that such interpretation is in strong tension with the non-detection of gamma rays from dwarf galaxies in the real scalar case. In the complex scalar case there is enough freedom to relieve the tension.

  3. Heavy dark matter annihilation from effective field theory.

    PubMed

    Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W

    2015-05-29

    We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.

  4. Scalar field descriptions of two dark energy models

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigorios

    2017-07-01

    We give a scalar field description of two dark energy parametrizations, and we analyze in detail its cosmology both at the level of background evolution and at the level of linear perturbations. In particular, we compute the statefinder parameters and the growth index as functions of the redshift for both dark energy parametrizations, and the comparison with the Λ CDM model as well as with a few well-known geometrical dark energy models is shown. In addition, the combination parameter A =f σ8 of both models is compared against current data.

  5. Analyzing Microchips With Dark-Field Negative Photomicrography

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1985-01-01

    Inverse development process yields fine details. Photomicrographic technique produces images of integrated-circuit chips. Technique based on dark-field illumination: (chip lit with bright central spot of light and photographed by light scattered or diffracted from spot. Reveals more about microstructure patterns related to photoresist masking than more conventional bright-field method.

  6. Analyzing Microchips With Dark-Field Negative Photomicrography

    NASA Technical Reports Server (NTRS)

    Suszko, S. F.

    1985-01-01

    Inverse development process yields fine details. Photomicrographic technique produces images of integrated-circuit chips. Technique based on dark-field illumination: (chip lit with bright central spot of light and photographed by light scattered or diffracted from spot. Reveals more about microstructure patterns related to photoresist masking than more conventional bright-field method.

  7. Bose-Einstein condensates from scalar field dark matter

    SciTech Connect

    Urena-Lopez, L. Arturo

    2010-12-07

    We review the properties of astrophysical and cosmological relevance that may arise from the bosonic nature of scalar field dark matter models. The key property is the formation of Bose-Einstein condensates, but we also consider the presence of non-empty excited states that may be relevant for the description of scalar field galaxy halos and the properties of rotation curves.

  8. Hyperspectral dark-field microscopy of gold nanodisks.

    PubMed

    Grasseschi, Daniel; Lima, Filipe S; Nakamura, Marcelo; Toma, Henrique E

    2015-02-01

    The light scattering properties of hexagonal and triangular gold nanodisks were investigated by means of Cytoviva hyperspectral dark-field microscopy, exploring the huge enhancement of the scattered waves associated with the surface plasmon resonance (SPR) effect. Thanks to the high resolution capability of the dark-field microscope, the SPR effect turned it possible to probe the individual nanoparticles directly from their hyperspectral images, extrapolating the classical optical resolution limit, and providing their corresponding extinction spectra. Blue spectral shifts involving the in-plane dipolar modes were observed for the hexagonal gold nanodisks in relation to the triangular ones, allowing their spectroscopic differentiation in the dark-field images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  10. Dark energy cosmology with tachyon field in teleparallel gravity

    SciTech Connect

    Motavalli, H. Akbarieh, A. Rezaei; Nasiry, M.

    2016-07-15

    We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.

  11. Dark energy cosmology with tachyon field in teleparallel gravity

    NASA Astrophysics Data System (ADS)

    Motavalli, H.; Akbarieh, A. Rezaei; Nasiry, M.

    2016-07-01

    We construct a tachyon teleparallel dark energy model for a homogeneous and isotropic flat universe in which a tachyon as a non-canonical scalar field is non-minimally coupled to gravity in the framework of teleparallel gravity. The explicit form of potential and coupling functions are obtained under the assumption that the Lagrangian admits the Noether symmetry approach. The dynamical behavior of the basic cosmological observables is compared to recent observational data, which implies that the tachyon field may serve as a candidate for dark energy.

  12. Unified dark energy and dark matter from a scalar field different from quintessence

    SciTech Connect

    Gao Changjun; Kunz, Martin; Liddle, Andrew R.; Parkinson, David

    2010-02-15

    We explore unification of dark matter and dark energy in a theory containing a scalar field of non-Lagrangian type, obtained by direct insertion of a kinetic term into the energy-momentum tensor. This scalar is different from quintessence, having an equation of state between -1 and 0 and a zero sound speed in its rest frame. We solve the equations of motion for an exponential potential via a rewriting as an autonomous system, and demonstrate the observational viability of the scenario, for sufficiently small exponential potential parameter {lambda}, by comparison to a compilation of kinematical cosmological data.

  13. Quantum Dynamics of Dark and Dark-Bright Solitons beyond the Mean-Field Approximation

    NASA Astrophysics Data System (ADS)

    Krönke, Sven; Schmelcher, Peter

    2014-05-01

    Dark solitons are well-known excitations in one-dimensional repulsively interacting Bose-Einstein condensates, which feature a characteristical phase-jump across a density dip and form stability in the course of their dynamics. While these objects are stable within the celebrated Gross-Pitaevskii mean-field theory, the situation changes dramatically in the full many-body description: The condensate being initially in a dark soliton state dynamically depletes and the density notch fills up with depleted atoms. We analyze this process in detail with a particular focus on two-body correlations and the fate of grey solitons (dark solitons with finite density in the notch) and thereby complement the existing results in the literature. Moreover, we extend these studies to mixtures of two repulsively interacting bosonic species with a dark-bright soliton (dark soliton in one component filled with localized atoms of the other component) as the initial state. All these many-body quantum dynamics simulations are carried out with the recently developed multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB).

  14. Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter.

    PubMed

    Geraci, Andrew A; Derevianko, Andrei

    2016-12-23

    We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.

  15. Sensitivity of Atom Interferometry to Ultralight Scalar Field Dark Matter

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew A.; Derevianko, Andrei

    2016-12-01

    We discuss the use of atom interferometry as a tool to search for dark matter (DM) composed of virialized ultralight fields (VULFs). Previous work on VULF DM detection using accelerometers has considered the possibility of equivalence-principle-violating effects whereby gradients in the dark matter field can directly produce relative accelerations between media of differing composition. In atom interferometers, we find that time-varying phase signals induced by coherent oscillations of DM fields can also arise due to changes in the atom rest mass that can occur between light pulses throughout the interferometer sequence as well as changes in Earth's gravitational field. We estimate that several orders of magnitude of unexplored phase space for VULF DM couplings can be probed due to these new effects.

  16. Coincidence problem in YM field dark energy model

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Zhang, Yang

    2006-09-01

    The coincidence problem is studied in the effective Yang Mills condensate dark energy model. As the effective YM Lagrangian is completely determined by quantum field theory, there is no adjustable parameter in this model except the energy scale, and the cosmic evolution only depends on the initial conditions. For generic initial conditions with the YM condensate subdominant to the radiation and matter, the model always has a tracking solution, the Universe transits from matter-dominated into the dark energy dominated stage only recently z˜0.3, and evolve to the present state with Ω˜0.73 and Ω˜0.27.

  17. Search for Kilonovae in Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Doctor, Zoheyr; DES-GW Team; DES-SN Team

    2016-03-01

    The Dark Energy Camera on the Blanco 4-m Telescope is an ideal instrument for identifying rapid optical transients with its large field of view and four optical filters. We utilize two seasons of data from the Dark Energy Survey to search for kilonovae, an optical counterpart to gravitational waves from binary neutron star mergers. Kilonova lightcurves from Barnes and Kasen inform our analysis for removing background signals such as supernovae. We simulate DES observations of kilonovae with the SNANA software package to estimate our search efficiency and optimize cuts. Finally, we report rate limits for binary neutron star mergers and compare to existing rate estimates.

  18. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  19. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  20. Dark matter effective field theory scattering in direct detection experiments

    DOE PAGES

    Schneck, K.

    2015-05-01

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less

  1. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect

    Schneck, K.; Cabrera, B.; Cerdeño, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-18

    We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  2. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect

    Schneck, K.

    2015-05-01

    We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  3. A scalar field dark energy model: Noether symmetry approach

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-04-01

    Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.

  4. Effective field theory of dark matter from membrane inflationary paradigm

    NASA Astrophysics Data System (ADS)

    Choudhury, Sayantan; Dasgupta, Arnab

    2016-09-01

    In this article, we have studied the cosmological and particle physics constraints on dark matter relic abundance from effective field theory of inflation from tensor-to-scalar ratio (r), in case of Randall-Sundrum single membrane (RSII) paradigm. Using semi-analytical approach we establish a direct connection between the dark matter relic abundance (ΩDMh2) and primordial gravity waves (r), which establishes a precise connection between inflation and generation of dark matter within the framework of effective field theory in RSII membrane. Further assuming the UV completeness of the effective field theory perfectly holds good in the prescribed framework, we have explicitly shown that the membrane tension, σ ≤ O(10-9) Mp4, bulk mass scale M5 ≤ O(0.04 - 0.05) Mp, and cosmological constant Λ˜5 ≥ - O(10-15) Mp5, in RSII membrane plays the most significant role to establish the connection between dark matter and inflation, using which we have studied the features of various mediator mass scale suppressed effective field theory "relevant operators" induced from the localized s, t and u channel interactions in RSII membrane. Taking a completely model independent approach, we have studied an exhaustive list of tree-level Feynman diagrams for dark matter annihilation within the prescribed setup and to check the consistency of the obtained results, further we apply the constraints as obtained from recently observed Planck 2015 data and Planck + BICEP2 + Keck Array joint data sets. Using all of these derived results we have shown that to satisfy the bound on, ΩDMh2 = 0.1199 ± 0.0027, as from Planck 2015 data, it is possible to put further stringent constraint on r within, 0.01 ≤ r ≤ 0.12, for thermally averaged annihilation cross-section of dark matter, < σv > ≈ O(10-28 - 10-27) cm3 / s, which are very useful to constrain various membrane inflationary models.

  5. Quantitative annular dark field electron microscopy using single electron signals.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Pennycook, Stephen J

    2014-02-01

    One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms.

  6. Cosmology and Structure Formation with Scalar Field Dark Matter

    NASA Astrophysics Data System (ADS)

    Rindler-Daller, Tanja; Li, Bohua; Shapiro, Paul R.

    2013-04-01

    The exploration of the nature of the cosmological dark matter is an ongoing hot topic in modern cosmology and particle physics. Suggested candidates include ultra-light particles which are described by a real or complex scalar field. Previous literature has revealed the richness of this candidate in terms of its power to explain astrophysical and cosmological observations, from the background cosmological evolution to galactic rotation curves. However, a lot of research remains to be done to find out which parts of the parameter space of this kind of dark matter is able to explain observations on all scales consistently. In this talk, we will present our current and ongoing work on the study of complex scalar field dark matter (SFDM). We find that this SFDM underwent three distinctive states in the early Universe, a scalar-field dominated, a radiation-dominated and a matter-dominated phase. The timing and longevity of each phase places important first constraints on the parameters of the model. For this SFDM model, we revisit classical problems of structure formation theory, like the tophat collapse, the problem of virial shocks, and the cosmological infall problem for an isolated halo, in order to find viable model parameters which match the constraints from cosmology.

  7. Gravitational collapse of dark energy field configurations and supermassive black hole formation

    SciTech Connect

    Jhalani, V.; Kharkwal, H.; Singh, A.

    2016-11-15

    Dark energy is the dominant component of the total energy density of our Universe. The primary interaction of dark energy with the rest of the Universe is gravitational. It is therefore important to understand the gravitational dynamics of dark energy. Since dark energy is a low-energy phenomenon from the perspective of particle physics and field theory, a fundamental approach based on fields in curved space should be sufficient to understand the current dynamics of dark energy. Here, we take a field theory approach to dark energy. We discuss the evolution equations for a generic dark energy field in curved space-time and then discuss the gravitational collapse for dark energy field configurations. We describe the 3 + 1 BSSN formalism to study the gravitational collapse of fields for any general potential for the fields and apply this formalism to models of dark energy motivated by particle physics considerations. We solve the resulting equations for the time evolution of field configurations and the dynamics of space-time. Our results show that gravitational collapse of dark energy field configurations occurs and must be considered in any complete picture of our Universe. We also demonstrate the black hole formation as a result of the gravitational collapse of the dark energy field configurations. The black holes produced by the collapse of dark energy fields are in the supermassive black hole category with the masses of these black holes being comparable to the masses of black holes at the centers of galaxies.

  8. EUV Dark-Field Microscopy for Defect Inspection

    SciTech Connect

    Juschkin, L.; Maryasov, A.; Herbert, S.; Aretz, A.; Bergmann, K.; Lebert, R.

    2011-09-09

    An actinic EUV microscope for defect detection on mask blanks for operation in dark field using a table-top discharge-produced plasma source has been developed. Several test structures (pits and bumps) on multilayer mirrors were investigated by our Schwarzschild objective-based EUV microscope at 13.5-nm wavelength and then characterized with an atomic force microscope. Possible defect-detection limits with large field of view and moderate magnification are discussed in terms of required irradiation dose and system performance.

  9. Spherical collapse of dark matter haloes in tidal gravitational fields

    NASA Astrophysics Data System (ADS)

    Reischke, Robert; Pace, Francesco; Meyer, Sven; Schäfer, Björn Malte

    2016-11-01

    We study the spherical collapse model in the presence of external gravitational tidal shear fields for different dark energy scenarios and investigate the impact on the mass function and cluster number counts. While previous studies of the influence of shear and rotation on δc have been performed with heuristically motivated models, we try to avoid this model dependence and sample the external tidal shear values directly from the statistics of the underlying linearly evolved density field based on first-order Lagrangian perturbation theory. Within this self-consistent approach, in the sense that we restrict our treatment to scales where linear theory is still applicable, only fluctuations larger than the scale of the considered objects are included into the sampling process which naturally introduces a mass dependence of δc. We find that shear effects are predominant for smaller objects and at lower redshifts, i. e. the effect on δc is at or below the percent level for the ΛCDM model. For dark energy models we also find small but noticeable differences, similar to ΛCDM. The virial overdensity ΔV is nearly unaffected by the external shear. The now mass dependent δc is used to evaluate the mass function for different dark energy scenarios and afterwards to predict cluster number counts, which indicate that ignoring the shear contribution can lead to biases of the order of 1σ in the estimation of cosmological parameters like Ωm, σ8 or w.

  10. Axion Dark Matter Coupling to Resonant Photons via Magnetic Field.

    PubMed

    McAllister, Ben T; Parker, Stephen R; Tobar, Michael E

    2016-04-22

    We show that the magnetic component of the photon field produced by dark matter axions via the two-photon coupling mechanism in a Sikivie haloscope is an important parameter passed over in previous analysis and experiments. The interaction of the produced photons will be resonantly enhanced as long as they couple to the electric or magnetic mode structure of the haloscope cavity. For typical haloscope experiments the electric and magnetic couplings are equal, and this has implicitly been assumed in past sensitivity calculations. However, for future planned searches such as those at high frequency, which synchronize multiple cavities, the sensitivity will be altered due to different magnetic and electric couplings. We define the complete electromagnetic form factor and discuss its implications for current and future dark matter axion searches over a wide range of masses.

  11. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    NASA Astrophysics Data System (ADS)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  12. Scalar field dark matter in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bernal, Tula; Robles, Victor H.; Matos, Tonatiuh

    2017-07-01

    One alternative to the cold dark matter (CDM) paradigm is the scalar field dark matter (SFDM) model, which assumes dark matter is a spin-0 ultra-light scalar field (SF) with a typical mass m ˜ 10-22 eV/c2 and positive self-interactions. Due to the ultra-light boson mass, the SFDM could form Bose-Einstein condensates (BEC) in the very early Universe, which are interpreted as the dark matter haloes. Although cosmologically the model behaves as CDM, they differ at small scales: SFDM naturally predicts fewer satellite haloes, cores in dwarf galaxies and the formation of massive galaxies at high redshifts. The ground state (or BEC) solution at zero temperature suffices to describe low-mass galaxies but fails for larger systems. A possible solution is adding finite-temperature corrections to the SF potential which allows combinations of excited states. In this work, we test the finite-temperature multistate SFDM solution at galaxy cluster scales and compare our results with the Navarro-Frenk-White (NFW) and BEC profiles. We achieve this by fitting the mass distribution of 13 Chandra X-ray clusters of galaxies, excluding the region of the brightest cluster galaxy. We show that the SFDM model accurately describes the clusters' DM mass distributions offering an equivalent or better agreement than the NFW profile. The complete disagreement of the BEC model with the data is also shown. We conclude that the theoretically motivated multistate SFDM profile is an interesting alternative to empirical profiles and ad hoc fitting-functions that attempt to couple the asymptotic NFW decline with the inner core in SFDM.

  13. DARK ENERGY FROM THE LOG-TRANSFORMED CONVERGENCE FIELD

    SciTech Connect

    Seo, Hee-Jong; Sato, Masanori; Takada, Masahiro; Dodelson, Scott

    2012-03-20

    A logarithmic transform of the convergence field improves 'the information content', i.e., the overall precision associated with the measurement of the amplitude of the convergence power spectrum, by improving the covariance matrix properties. The translation of this improvement in the information content to that in cosmological parameters, such as those associated with dark energy, requires knowing the sensitivity of the log-transformed field to those cosmological parameters. In this paper, we use N-body simulations with ray tracing to generate convergence fields at multiple source redshifts as a function of cosmology. The gain in information associated with the log-transformed field does lead to tighter constraints on dark energy parameters, but only if shape noise is neglected. The presence of shape noise quickly diminishes the advantage of the log-mapping, more quickly than we would expect based on the information content. With or without shape noise, using a larger pixel size allows for a more efficient log-transformation.

  14. Quantitative evaluation of blood flow obstruction in microcirculation with sidestream dark-field images

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Kurata, T.; Ohnishi, T.; Haneishi, H.

    2017-02-01

    Septic shock induces organ dysfunction by microcirculatory disturbance. Observation and quantification of microcirculation are expected to be effective for the diagnosis of septic shock. Sidestream dark-filed (SDF) imaging is a suitable technique for observation of microcirculation. It can noninvasively visualize red blood cells (RBCs) of microcirculation. We are developing early diagnostic criteria for septic shock from microcirculation SDF images. As an initial study, we use the blood flow velocity estimated from the images as a diagnostic criteria. However, low contrast quality and subject's movement disturb the blood flow velocity estimation. In this paper, we present a procedure of image processing for a stable estimation of the blood flow velocity. In the procedure, we first perform a robust principal component analysis (RPCA) as a preprocessing. RPCA decomposes a motion picture into a low-rank (L) component and a sparse (S) component. The S component images clearly expresses RBCs flow and is used for the velocity estimation. The temporal change of the intensity profile along the vessel was analyzed by Hough transform to estimate the blood flow velocity is. The proposed procedure was examined with dorsal microcirculation of septic model rats and a sham rat. As a result, the decrease in blood flow velocity of the septic rats after 17 hours was greater than that of the sham. It was also suggested that blood flow velocity might be faster index of septic shock reaction earlier than lactic acid value. These results suggest that the velocity estimation is reasonable for diagnosis of septic shock.

  15. Effective field theory of dark energy: a dynamical analysis

    SciTech Connect

    Frusciante, Noemi; Raveri, Marco; Silvestri, Alessandra E-mail: mraveri@sissa.it

    2014-02-01

    The effective field theory (EFT) of dark energy relies on three functions of time to describe the dynamics of background cosmology. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism and the corresponding compatibility requirements for the EFT functions. The machinery that we set up serves different purposes. It offers a general scheme for performing dynamical analysis of dark energy and modified gravity models within the model independent framework of EFT; the general results, obtained with this technique, can be projected into specific models, as we show in one example. It also can be used to determine appropriate ansätze for the three EFT background functions when studying the dynamics of cosmological perturbations in the context of large scale structure tests of gravity.

  16. Time-dependent scalar fields as candidates for dark matter

    NASA Astrophysics Data System (ADS)

    Malakolkalami, B.; Mahmoodzadeh, A.

    2016-11-01

    In this paper, we study some properties of what is called the oscillaton, a spherically symmetric object made of a real time-dependent scalar field. Using an exponential scalar potential instead of a quadratic one discussed in previous works, as a new choice, we investigate the oscillaton properties with this potential. Solving the differential equation system resulting from the Einstein-Klein-Gordon equations reveals the importance of the oscillatons as candidates for dark matter. Meanwhile, a simplification called the stationary limit procedure is also carried out.

  17. Bose-Einstein condensation of relativistic Scalar Field Dark Matter

    SciTech Connect

    Urena-Lopez, L. Arturo

    2009-01-15

    Standard thermodynamical results of ideal Bose gases are used to study the possible formation of a cosmological Bose-Einstein condensate in Scalar Field Dark Matter models; the main hypothesis is that the boson particles were in thermal equilibrium in the early Universe. It is then shown that the only relevant case needs the presence of both particles and anti-particles, and that it corresponds to models in which the bosonic particle is very light. Contrary to common wisdom, the condensate should be a relativistic phenomenon. Some cosmological implications are discussed in turn.

  18. Dark-field circular depolarization optical coherence microscopy

    PubMed Central

    Mehta, Kalpesh; Zhang, Pengfei; Yeo, Eugenia Li Ling; Kah, James Chen Yong; Chen, Nanguang

    2013-01-01

    Optical coherence microscopy (OCM) is a widely used structural imaging modality. To extend its application in molecular imaging, gold nanorods are widely used as contrast agents for OCM. However, they very often offer limited sensitivity as a result of poor signal to background ratio. Here we experimentally demonstrate that a novel OCM implementation based on dark-field circular depolarization detection can efficiently detect circularly depolarized signal from gold nanorods and at the same time efficiently suppress the background signals. This results into a significant improvement in signal to background ratio. PMID:24049689

  19. MAGNETIC FIELDS IN HIGH-MASS INFRARED DARK CLOUDS

    SciTech Connect

    Pillai, T.; Kauffmann, J.; Tan, J. C.; Goldsmith, P. F.; Carey, S. J.; Menten, K. M.

    2015-01-20

    High-mass stars are cosmic engines known to dominate the energetics in the Milky Way and other galaxies. However, their formation is still not well understood. Massive, cold, dense clouds, often appearing as infrared dark clouds (IRDCs), are the nurseries of massive stars. No measurements of magnetic fields in IRDCs in a state prior to the onset of high-mass star formation (HMSF) have previously been available, and prevailing HMSF theories do not consider strong magnetic fields. Here, we report observations of magnetic fields in two of the most massive IRDCs in the Milky Way. We show that IRDCs G11.11–0.12 and G0.253+0.016 are strongly magnetized and that the strong magnetic field is as important as turbulence and gravity for HMSF. The main dense filament in G11.11–0.12 is perpendicular to the magnetic field, while the lower density filament merging onto the main filament is parallel to the magnetic field. The implied magnetic field is strong enough to suppress fragmentation sufficiently to allow HMSF. Other mechanisms reducing fragmentation, such as the entrapment of heating from young stars via high-mass surface densities, are not required to facilitate HMSF.

  20. Unified Dark Matter scalar field models with fast transition

    SciTech Connect

    Bertacca, Daniele; Bruni, Marco; Piattella, Oliver F.; Pietrobon, Davide E-mail: marco.bruni@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov

    2011-02-01

    We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.

  1. Spatially multiplexed dark-field microspectrophotometry for nanoplasmonics

    PubMed Central

    Pini, V.; Kosaka, P. M.; Ruz, J. J.; Malvar, O.; Encinar, M.; Tamayo, J.; Calleja, M.

    2016-01-01

    Monitoring the effect of the substrate on the local surface plasmon resonance (LSPR) of metallic nanoparticles is key for deepening our understanding of light-matter interactions at the nanoscale. This coupling gives rise to shifts of the LSPR as well as changes in the scattering pattern shape. The problem requires of high-throughput techniques that present both high spatial and spectral resolution. We present here a technique, referred to as Spatially Multiplexed Micro-Spectrophotometry (SMMS), able to perform polarization-resolved spectral and spatial analysis of the scattered light over large surface areas. The SMMS technique provides three orders of magnitude faster spectroscopic analysis than conventional dark-field microspectrophotometry, with the capability for mapping the spatial distribution of the scattered light intensity with lateral resolution of 40 nm over surface areas of 0.02 mm2. We show polarization-resolved dark-field spectral analysis of hundreds of gold nanoparticles deposited on a silicon surface. The technique allows determining the effect of the substrate on the LSPR of single nanoparticles and dimers and their scattering patterns. This is applied for rapid discrimination and counting of monomers and dimers of nanoparticles. In addition, the diameter of individual nanoparticles can be rapidly assessed with 1 nm accuracy. PMID:26953042

  2. Precision Higgs Physics, Effective Field Theory, and Dark Matter

    NASA Astrophysics Data System (ADS)

    Henning, Brian Quinn

    The recent discovery of the Higgs boson calls for detailed studies of its properties. As precision measurements are indirect probes of new physics, the appropriate theoretical framework is effective field theory. In the first part of this thesis, we present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on the UV model concerned. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. The covariant derivative expansion dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of renormalization group running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. With a detailed understanding of how to use the SM EFT, we then turn to applications and study in detail two well-motivated test cases. The first is singlet scalar field that enables the first-order electroweak phase transition for baryogenesis; the second example is due to scalar tops in the MSSM. We find both Higgs and electroweak measurements are sensitive probes of these cases. The second part of this thesis centers around dark matter, and consists of two studies. In the first, we examine the effects of relic dark matter annihilations on big bang nucleosynthesis (BBN). The magnitude of these effects scale simply with the dark matter mass and annihilation cross-section, which we derive. Estimates based on these scaling behaviors indicate that BBN severely constrains hadronic and radiative dark

  3. Dark Field Technology - A Practical Approach To Local Alignment

    NASA Astrophysics Data System (ADS)

    Beaulieu, David R.; Hellebrekers, Paul P.

    1987-01-01

    A fully automated direct reticle reference alignment system for use in step and repeat camera systems is described. The technique, first outlined by Janus S. Wilczynski, ("Optical Step and Repeat Camera with Dark Field Alignment", J. Vac. Technol., 16(6), Nov./Dec. 1979), has been implemented on GCA Corporation's DSW Wafer Stepper. Results from various process levels covering the typical CMOS process have shown that better than ±0.2μm alignment accuracy can be obtained with minimal process sensitivity. The technique employs fixed illumination and microscope optics to achieve excellent registration stability and maintenance-free operation. Latent image techniques can be exploited for intra-field, grid and focus characterization.

  4. Dynamical dark energy: Scalar fields and running vacuum

    NASA Astrophysics Data System (ADS)

    Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier

    2017-03-01

    Recent analyses in the literature suggest that the concordance ΛCDM model with rigid cosmological term, Λ = const. may not be the best description of the cosmic acceleration. The class of “running vacuum models”, in which Λ = Λ(H) evolves with the Hubble rate, has been shown to fit the string of SNIa + BAO + H(z) + LSS + CMB data significantly better than the ΛCDM. Here, we provide further evidence on the time-evolving nature of the dark energy (DE) by fitting the same cosmological data in terms of scalar fields. As a representative model, we use the original Peebles and Ratra potential, V ∝ ϕ‑α. We find clear signs of dynamical DE at ˜ 4σ c.l., thus reconfirming through a nontrivial scalar field approach the strong hints formerly found with other models and parametrizations.

  5. Annular dark field transmission electron microscopy for protein structure determination.

    PubMed

    Koeck, Philip J B

    2016-02-01

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these.

  6. Velocity fields in non-Gaussian cold dark matter models

    NASA Astrophysics Data System (ADS)

    Lucchin, F.; Matarrese, S.; Messina, A.; Moscardini, L.; Tormen, G.

    1995-02-01

    We analyse the large-scale velocity field obtained by N-body simulations of cold dark matter (CDM) models with non-Gaussian primordial density fluctuations, considering models with both positive and negative primordial skewness in the density fluctuation distribution. We study the velocity probability distribution and calculate the dependence of the bulk flow, one-point velocity dispersion and cosmic Mach number on the filtering size. We find that the sign of the primordial skewness of the density field provides poor discriminatory power on the evolved velocity field. All non-Gaussian models considered here tend to have lower velocity dispersion and bulk flow than the standard Gaussian CDM model, while the cosmic Mach number turns out to be a poor statistic in characterizing the models. We also compare the large-scale velocity field of a composite sample of optically selected galaxies as described by the Local Group properties, bulk flow, velocity correlation function and cosmic Mach number with the velocity field of mock catalogues extracted from the N-body simulations. The comparison does not clearly single out the best model: the standard Gaussian model is, however, marginally preferred by the maximum likelihood analysis.

  7. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  8. Dark energy or modified gravity? An effective field theory approach

    SciTech Connect

    Bloomfield, Jolyon; Flanagan, Éanna É.; Park, Minjoon; Watson, Scott E-mail: eef3@cornell.edu E-mail: gswatson@syr.edu

    2013-08-01

    We take an Effective Field Theory (EFT) approach to unifying existing proposals for the origin of cosmic acceleration and its connection to cosmological observations. Building on earlier work where EFT methods were used with observations to constrain the background evolution, we extend this program to the level of the EFT of the cosmological perturbations — following the example from the EFT of Inflation. Within this framework, we construct the general theory around an assumed background which will typically be chosen to mimic ΛCDM, and identify the parameters of interest for constraining dark energy and modified gravity models with observations. We discuss the similarities to the EFT of Inflation, but we also identify a number of subtleties including the relationship between the scalar perturbations and the Goldstone boson of the spontaneously broken time translations. We present formulae that relate the parameters of the fundamental Lagrangian to the speed of sound, anisotropic shear stress, effective Newtonian constant, and Caldwell's varpi parameter, emphasizing the connection to observations. It is anticipated that this framework will be of use in constraining individual models, as well as for placing model-independent constraints on dark energy and modified gravity model building.

  9. Is the effective field theory of dark energy effective?

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.; Sengör, Gizem; Watson, Scott

    2016-05-01

    The effective field theory of cosmic acceleration systematizes possible contributions to the action, accounting for both dark energy and modifications of gravity. Rather than making model dependent assumptions, it includes all terms, subject to the required symmetries, with four (seven) functions of time for the coefficients. These correspond respectively to the Horndeski and general beyond Horndeski class of theories. We address the question of whether this general systematization is actually effective, i.e. useful in revealing the nature of cosmic acceleration when compared with cosmological data. The answer is no and yes: there is no simple time dependence of the free functions—assumed forms in the literature are poor fits, but one can derive some general characteristics in early and late time limits. For example, we prove that the gravitational slip must restore to general relativity in the de Sitter limit of Horndeski theories, and why it doesn't more generally. We also clarify the relation between the tensor and scalar sectors, and its important relation to observations; in a real sense the expansion history H(z) or dark energy equation of state w(z) is 1/5 or less of the functional information! In addition we discuss the de Sitter, Horndeski, and decoupling limits of the theory utilizing Goldstone techniques.

  10. Interpretation of dark-field contrast and particle-size selectivity in grating interferometers

    PubMed Central

    Lynch, Susanna K.; Pai, Vinay; Auxier, Julie; Stein, Ashley F.; Bennett, Eric E.; Kemble, Camille K.; Xiao, Xianghui; Lee, Wah-Keat; Morgan, Nicole Y.; Wen, Han Harold

    2012-01-01

    In grating-based x-ray phase sensitive imaging, dark-field contrast refers to the extinction of the interference fringes due to small-angle scattering. For configurations where the sample is placed before the beamsplitter grating, the dark-field contrast has been quantified with theoretical wave propagation models. Yet when the grating is placed before the sample, the dark-field contrast has only been modeled in the geometric optics regime. Here we attempt to quantify the dark-field effect in the grating-before-sample geometry with first-principle wave calculations and understand the associated particle-size selectivity. We obtain an expression for the dark-field effect in terms of the sample material’s complex refractive index, which can be verified experimentally without fitting parameters. A dark-field computed tomography experiment shows that the particle-size selectivity can be used to differentiate materials of identical x-ray absorption. PMID:21833104

  11. Directional x-ray dark-field imaging of strongly ordered systems

    SciTech Connect

    Jensen, Torben Haugaard; Feidenhans'l, Robert; Bech, Martin; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Rutishauser, Simon; Deyhle, Hans; Reznikova, Elena; Mohr, Juergen

    2010-12-01

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  12. Development of hard X-ray dark-field microscope using full-field optics

    NASA Astrophysics Data System (ADS)

    Takano, Hidekazu; Azuma, Hiroaki; Shimomura, Sho; Tsuji, Takuya; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2016-10-01

    We develop a dark-field X-ray microscope using full-field optics based on a synchrotron beamline. Our setup consists of a condenser system and a microscope objective with an angular acceptance larger than that of the condenser. The condenser system is moved downstream from its regular position such that the focus of the condenser is behind the objective. The dark-field microscope optics are configured by excluding the converging beam from the condenser at the focal point. The image properties of the system are evaluated by observing and calculating a Siemens star test chart with 10 keV X-rays. Our setup allows easy switching to bright-field imaging.

  13. Some properties of dark matter field in the complex octonion space

    NASA Astrophysics Data System (ADS)

    Weng, Zi-Hua

    2015-12-01

    The paper aims to consider the electromagnetic adjoint-field in the complex octonion space as the dark matter field, describing some properties of the dark matter, especially the origin, particle category, existence region, force and so forth. Since Maxwell applied the algebra of quaternions to depict the electromagnetic theory, some scholars adopt the complex quaternion and octonion to study the physics property of electromagnetic and gravitational fields. In the paper, by means of the octonion operator, it is found that the gravitational field accompanies with one adjoint-field, whose property is partly similar to that of electromagnetic field. The electromagnetic field accompanies with another adjoint-field, whose feature is partly similar to that of gravitational field. As a result, the electromagnetic adjoint-field can be chosen as one candidate of the dark matter field. According to the electromagnetic adjoint-field, it is able to predict a few properties of the dark matter, for instance, the particle category, interaction intensity, interaction distance, existence region and so forth. The study reveals that the dark matter particle and the gravitational resource will be influenced by the gravitational strength and force. The dark matter field is capable of making a contribution to physics quantities of gravitational field, including the angular momentum, torque, energy, force and so on. Further, there may be comparatively more chances to discover the dark matter in some regions with the ultrastrong field strength, surrounding the neutral star, white dwarf, galactic nucleus, black hole, astrophysical jet and so on.

  14. Dark energy parametrization motivated by scalar field dynamics

    NASA Astrophysics Data System (ADS)

    de la Macorra, Axel

    2016-05-01

    We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.

  15. How the scalar field of unified dark matter models can cluster

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Diaferio, Antonaldo E-mail: nicola.bartolo@pd.infn.it E-mail: sabino.matarrese@pd.infn.it

    2008-10-15

    We use scalar field Lagrangians with a non-canonical kinetic term to obtain unified dark matter models where both the dark matter and the dark energy, the latter mimicking a cosmological constant, are described by the scalar field itself. In this framework, we propose a technique for reconstructing models where the effective speed of sound is small enough that the scalar field can cluster. These models avoid the strong time evolution of the gravitational potential and the large integrated Sachs-Wolfe effect which have been serious drawbacks of models considered previously. Moreover, these unified dark matter scalar field models can be easily generalized to behave as dark matter plus a dark energy component behaving like any type of quintessence fluid.

  16. Dark field imaging system for size characterization of magnetic micromarkers

    NASA Astrophysics Data System (ADS)

    Malec, A.; Haiden, C.; Kokkinis, G.; Keplinger, F.; Giouroudi, I.

    2017-05-01

    In this paper we demonstrate a dark field video imaging system for the detection and size characterization of individual magnetic micromarkers suspended in liquid and the detection of pathogens utilizing magnetically labelled E.coli. The system follows dynamic processes and interactions of moving micro/nano objects close to or below the optical resolution limit, and is especially suitable for small sample volumes ( 10 μl). The developed detection method can be used to obtain clinical information about liquid contents when an additional biological protocol is provided, i.e., binding of microorganisms (e.g. E.coli) to specific magnetic markers. Some of the major advantages of our method are the increased sizing precision in the micro- and nano-range as well as the setup's simplicity making it a perfect candidate for miniaturized devices. Measurements can thus be carried out in a quick, inexpensive, and compact manner. A minor limitation is that the concentration range of micromarkers in a liquid sample needs to be adjusted in such a manner that the number of individual particles in the microscope's field of view is sufficient.

  17. Dark sector impact on gravitational collapse of an electrically charged scalar field

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz

    2015-11-01

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  18. Extension of Standard Model in Multi-spinor Field Formalism - Visible and Dark Sectors

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.

    With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.

  19. Effects of tidal gravitational fields in clustering dark energy models

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Reischke, Robert; Meyer, Sven; Schäfer, Björn Malte

    2017-04-01

    We extend a previous work by Reischke et al. by studying the effects of tidal shear on clustering dark energy models within the framework of the extended spherical collapse model and using the Zel'dovich approximation. As in previous works on clustering dark energy, we assumed a vanishing effective sound speed describing the perturbations in dark energy models. To be self-consistent, our treatment is valid only on linear scales since we do not intend to introduce any heuristic models. This approach makes the linear overdensity δc mass dependent and similarly to the case of smooth dark energy, its effects are predominant at small masses and redshifts. Tidal shear has effects of the order of per cent or less, regardless of the model and preserves a well-known feature of clustering dark energy: When dark energy perturbations are included, the models resemble better the Lambda cold dark matter evolution of perturbations. We also showed that effects on the comoving number density of haloes are small and qualitatively and quantitatively in agreement with what were previously found for smooth dark energy models.

  20. Hard-X-ray directional dark-field imaging using the speckle scanning technique.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2015-03-13

    X-ray dark-field imaging can provide inaccessible and complementary information compared to conventional absorption contrast imaging. However, extraction of the dark-field signal is difficult, and sophisticated optics are often required. In this Letter, we report a novel approach to generate high-quality dark-field images using a simple membrane. The dark-field image is extracted from the maximum correlation coefficient by applying a cross-correlation algorithm to a stack of speckle images collected by scanning a membrane in a transverse direction to the incident x-ray beam. The new method can also provide directional dark-field information, which is extremely useful for the study of strongly ordered systems. The potential of the proposed technique for nondestructive x-ray imaging is demonstrated by imaging representative samples.

  1. Structured dark-field imaging for single nano-particles

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gao, Kun; Wang, Zhi-Li; Yun, Wen-Bing; Wu, Zi-Yu

    2015-08-01

    In this work, we extensively describe and demonstrate the structured dark-field imaging (SDFI). SDFI is a newly proposed x-ray microscopy designed for revealing the fine features below Rayleigh resolution, in which different orders of scattered x-ray photons are collected by changing the numerical aperture of the condenser. Here, the samples of single particles are discussed to extend the scope of the SDFI technique reported in a previous work (Chen J, Gao K, Ge X, et al. 2013 Opt. Lett. 38 2068). In addition, the details of the newly invented algorithm are explained, which is able to calculate the intensity of any pixel on the image plane rapidly and reliably. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the National Natural Science Foundation of China (Grant No. 11321503), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42), and the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, and 11305173).

  2. Hyperspectral Dark Field Optical Microscopy of Single Silver Nanospheres

    SciTech Connect

    El-Khoury, Patrick Z.; Joly, Alan G.; Hess, Wayne P.

    2016-04-07

    We record spectrally (400 nm ≤ λ ≤ 675 nm, Δλ < 4.69 nm) and spatially (diffraction-limited, sampled at 85 nm2/pixel) resolved dark field (DF) scattering from single silver nanospheres of 100 nm in diameter. Hyperspectral DF optical microscopy is achieved by coupling a hyperspectral detector to an optical microscope, whereby spectrally resolved diffraction-limited images of hundreds of silver nanoparticles can be recorded in ~30 seconds. We demonstrate how the centers and edges of individual particles can be localized in 2D to within a single pixel (85 nm2), using a statistical method for examining texture based on a co-occurrence matrix. Subsequently, spatial averaging of the spectral response in a 3x3 pixel area around the particle centers affords ample signal-to-noise to resolve the plasmon resonance of a single silver nanosphere. A close inspection of the scattering spectra of 31 different nanospheres reveals that each particle has its unique (i) relative scattering efficiency, and (ii) plasmon resonance maximum and dephasing time. These observations are suggestive of nanometric structural variations over length scales much finer than the spatial resolution attainable using the all-optical technique described herein.

  3. Target manifold formation using a quadratic SDF

    NASA Astrophysics Data System (ADS)

    Hester, Charles F.; Risko, Kelly K. D.

    2013-05-01

    Synthetic Discriminant Function (SDF) formulation of correlation filters provides constraints for forming target subspaces for a target set. In this paper we extend the SDF formulation to include quadratic constraints and use this solution to form nonlinear manifolds in the target space. The theory for forming these manifolds will be developed and demonstrated with data.

  4. Holographic Ricci dark energy: Current observational constraints, quintom feature, and the reconstruction of scalar-field dark energy

    SciTech Connect

    Zhang Xin

    2009-05-15

    In this work, we consider the cosmological constraints on the holographic Ricci dark energy proposed by Gao et al.[Phys. Rev. D 79, 043511 (2009)], by using the observational data currently available. The main characteristic of holographic Ricci dark energy is governed by a positive numerical parameter {alpha} in the model. When {alpha}<1/2, the holographic Ricci dark energy will exhibit a quintomlike behavior; i.e., its equation of state will evolve across the cosmological-constant boundary w=-1. The parameter {alpha} can be determined only by observations. Thus, in order to characterize the evolving feature of dark energy and to predict the fate of the Universe, it is of extraordinary importance to constrain the parameter {alpha} by using the observational data. In this paper, we derive constraints on the holographic Ricci dark energy model from the latest observational data including the Union sample of 307 type Ia supernovae, the shift parameter of the cosmic microwave background given by the five-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey. The joint analysis gives the best-fit results (with 1{sigma} uncertainty): {alpha}=0.359{sub -0.025}{sup +0.024} and {omega}{sub m0}=0.318{sub -0.024}{sup +0.026}. That is to say, according to the observations, the holographic Ricci dark energy takes on the quintom feature. Finally, in light of the results of the cosmological constraints, we discuss the issue of the scalar-field dark energy reconstruction, based on the scenario of the holographic Ricci vacuum energy.

  5. Radiation and energy release in a background field of axion-like dark matter

    NASA Astrophysics Data System (ADS)

    Liao, Wei

    2017-09-01

    We find that a fuzzy dark matter background and the mG scale magnetic field in the galactic center can give rise to a radiation with a very large energy release. The frequency of the radiation field is the same as the frequency of the oscillating axion-like background field. We show that there is an energy transfer between the fuzzy dark matter sector and the electromagnetic sector because of the presence of the generated radiation field and the galactic magnetic field. The energy release rate of radiation is found to be very slow in comparison with the energy of fuzzy dark matter but could be significant comparing with the energy of galactic magnetic field in the source region. Using this example, we show that the fuzzy dark matter together with a large scale magnetic field is possible to give rise to fruitful physics.

  6. Extended Standard Model in multi-spinor field formalism: Visible and dark sectors

    NASA Astrophysics Data System (ADS)

    Sogami, Ikuo S.

    2013-12-01

    To generalize the Standard Model so as to include dark matter, we formulate a theory of multi-spinor fields on the basis of an algebra that consists of triple-tensor products of elements of the Dirac algebra. Chiral combinations of multi-spinor fields form reducible representations of the Lorentz group possessing component fields with spin 1/2, which we interpret as expressing three ordinary families and an additional fourth family of quarks and leptons. Apart from the gauge and Higgs fields of the Standard Model interacting with the fermions of the three ordinary families, we assume the existence of additional gauge and Higgs fields interacting exclusively with the fermions of the fourth family. While the fields of the Standard Model organize the "visible sector" of our universe, the fields related with the fourth family are presumed to generate a "dark sector" that can contain dark matter. The two sectors possess a channel of communication through the bi-quadratic interaction between visible and dark Higgs fields. After experiencing a common inflationary phase, the two sectors follow a reheating period and weak-coupling paths of thermal histories. We propose scenarios for dark matter that have a tendency to take relatively broad interstellar distributions and examine methods for the detection of the main candidate particles of dark matter. The exchange of superposed fields of the visible and dark Higgs bosons induces weak reaction processes between the fields of the visible and dark sectors, which enables us to have a glimpse of the dark sector.

  7. Complex dark-field contrast in grating-based x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Tang, Xiangyang

    2015-03-01

    Without assuming that the sub-pixel microstructures of an object to be imaged distribute in space randomly, we investigate the influence of the object's microstructures on grating-based x-ray phase contrast imaging. Our theoretical analysis and 3D computer simulation study based on the paraxial Fresnel-Kirchhoff theory show that the existing dark-field contrast can be generalized into a complex dark-field contrast in a way such that its imaginary part quantifies the effect of the object's sub-pixel microstructures on the phase of intensity oscillations. A method based on the phase-attenuation duality that holds for soft tissues to be imaged at high x-ray energies is proposed to retrieve the imaginary part of the complex dark-field contrast for imaging. In comparison to the existing dark-field contrast, the imaginary part of complex dark-field contrast exhibits significantly stronger selectivity on the shape of the object's sub-pixel microstructures. Thus the x-ray imaging corresponding to the imaginary part of complex dark-field contrast can provide additional and complementary information to that corresponding to the attenuation contrast, phase contrast and the existing dark-field contrast.

  8. Electromagnetic Effects in SDF Explosions

    SciTech Connect

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise

  9. Bianchi type I Universe and interacting ghost scalar fields models of dark energy

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.

    2016-04-01

    We suggest a correspondence between interacting ghost dark energy model with the quintessence, tachyon and K-essence scalar field in a non-isotropic universe. This correspondence allows to reconstruct the potential and the dynamics for the scalar field of the interacting ghost dark energy model, which describe accelerated expansion of the universe. Our numerical result show the effects of the interaction and anisotropic on the evolutionary behavior the ghost scalar field models.

  10. Dark current measurements at field gradients above 1 GV/m

    SciTech Connect

    Srinivasan-Rao, T.; Smedley, J.; Schill, J.; Batchelor, K.; Farrell, J.P.

    1998-07-01

    In this paper, the authors report the results of dark current studies on copper cathodes and stainless steel anodes held at a field gradient > 1 GV/m. The field emission current is , 1 A for fields less than 1 GV/m. As the field is increased, the dark current increases rapidly to 150 A for applied fields of {approximately} 1.7 GV/m. Fowler-Nordheim plots in this range of applied fields indicate a field enhancement factor of 10--20 for a copper cathode with a work function of 4.6 eV.

  11. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    SciTech Connect

    Lora, V.; Magaña, Juan E-mail: juan.magana@uv.cl

    2014-09-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m{sub φ}<8) ×10{sup -22} eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m{sub φ}≈2×10{sup -21} eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero.

  12. Quantification of the sensitivity range in neutron dark-field imaging

    SciTech Connect

    Betz, B.; Harti, R. P.; Hovind, J.; Kaestner, A.; Lehmann, E.; Grünzweig, C.; Strobl, M.; Van Swygenhoven, H.

    2015-12-15

    In neutron grating interferometry, the dark-field image visualizes the scattering properties of samples in the small-angle and ultra-small-angle scattering range. These angles correspond to correlation lengths from several hundred nanometers up to several tens of micrometers. In this article, we present an experimental study that demonstrates the potential of quantitative neutron dark-field imaging. The dark-field signal for scattering from different particle sizes and concentrations of mono-dispersive polystyrene particles in aqueous solution is compared to theoretical predictions and the good agreement between measurements and calculations underlines the quantitative nature of the measured values and reliability of the technique with neutrons.

  13. Correspondence between Yang—Mills Condensate Dark Energy with Various Kinds of Scalar Field Models of Dark Energy

    NASA Astrophysics Data System (ADS)

    Saha, Pameli; Debnath, Ujjal

    2016-11-01

    In this work, we study a new kind of dark energy (DE), which is named as “Yang—Mills condensate” (YMC). We study the stability and wde — w'de analysis of YMC DE model. Then we correspond it with quintessence, k-essence, tachyon, phantom, dilaton, DBI-essence and hessence scalar field models of DE in FRW spacetime to reconstruct potentials as well as the dynamics for these scalar fields for describing the acceleration of the universe. We also analyze the models in graphically to interpret the nature of the scalar fields and corresponding potentials.

  14. Hyaluronic acid-laminin hydrogels increase neural stem cell transplant retention and migratory response to SDF-1α.

    PubMed

    Addington, C P; Dharmawaj, S; Heffernan, J M; Sirianni, R W; Stabenfeldt, S E

    2016-09-17

    The chemokine SDF-1α plays a critical role in mediating stem cell response to injury and disease and has specifically been shown to mobilize neural progenitor/stem cells (NPSCs) towards sites of neural injury. Current neural transplant paradigms within the brain suffer from low rates of retention and engraftment after injury. Therefore, increasing transplant sensitivity to injury-induced SDF-1α represents a method for increasing neural transplant efficacy. Previously, we have reported on a hyaluronic acid-laminin based hydrogel (HA-Lm gel) that increases NPSC expression of SDF-1α receptor, CXCR4, and subsequently, NPSC chemotactic migration towards a source of SDF-1α in vitro. The study presented here investigates the capacity of the HA-Lm gel to promote NPSC response to exogenous SDF-1α in vivo. We observed the HA-Lm gel to significantly increase NPSC transplant retention and migration in response to SDF-1α in a manner critically dependent on signaling via the SDF-1α-CXCR4 axis. This work lays the foundation for development of a more effective cell therapy for neural injury, but also has broader implications in the fields of tissue engineering and regenerative medicine given the essential roles of SDF-1α across injury and disease states.

  15. Dark matter effective field theory scattering in direct detection experiments

    SciTech Connect

    Schneck, K.; Cabrera, B.; Cerdeno, D. G.; Mandic, V.; Rogers, H. E.; Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Brandt, D.; Brink, P. L.; Bunker, R.; Caldwell, D. O.; Calkins, R.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, W.; Mahapatra, R.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Saab, T.; Sadoulet, B.; Sander, J.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-05-01

    We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

  16. Darkness

    NASA Image and Video Library

    2014-12-22

    Saturn's main rings, seen here on their "lit" face, appear much darker than normal. That's because they tend to scatter light back toward its source -- in this case, the Sun. Usually, when taking images of the rings in geometries like this, exposures times are increased to make the rings more visible. Here, the requirement to not over-expose Saturn's lit crescent reveals just how dark the rings actually become. Scientists are interested in images in this sunward-facing ("high phase") geometry because the way that the rings scatter sunlight can tell us much about the ring particles' physical make-up. This view looks toward the sunlit side of the rings from about 6 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Jan. 12, 2014. The view was acquired at a distance of approximately 1.4 million miles (2.3 million kilometers) from Saturn and at a Sun-Saturn-spacecraft, or phase, angle of 152 degrees. Image scale is 86 miles (138 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18294

  17. Reconstruction of scalar and vectorial components in X-ray dark-field tomography

    PubMed Central

    Bayer, Florian L.; Hu, Shiyang; Maier, Andreas; Weber, Thomas; Anton, Gisela; Michel, Thilo; Riess, Christian P.

    2014-01-01

    Grating-based X-ray dark-field imaging is a novel technique for obtaining image contrast for object structures at size scales below setup resolution. Such an approach appears particularly beneficial for medical imaging and nondestructive testing. It has already been shown that the dark-field signal depends on the direction of observation. However, up to now, algorithms for fully recovering the orientation dependence in a tomographic volume are still unexplored. In this publication, we propose a reconstruction method for grating-based X-ray dark-field tomography, which models the orientation-dependent signal as an additional observable from a standard tomographic scan. In detail, we extend the tomographic volume to a tensorial set of voxel data, containing the local orientation and contributions to dark-field scattering. In our experiments, we present the first results of several test specimens exhibiting a heterogeneous composition in microstructure, which demonstrates the diagnostic potential of the method. PMID:25136091

  18. Crosstalk between SDF-1/CXCR4 and SDF-1/CXCR7 in cardiac stem cell migration.

    PubMed

    Chen, Dong; Xia, Yanli; Zuo, Ke; Wang, Ying; Zhang, Shiying; Kuang, Dong; Duan, Yaqi; Zhao, Xia; Wang, Guoping

    2015-11-18

    Stromal cell-derived factor 1 (SDF-1) is a chemokine that can be expressed in injured cardiomyocytes after myocardial infarction (MI). By combining with its receptor CXCR4, SDF-1 induced stem and progenitor cells migration. CXCR7, a novel receptor for SDF-1, has been identified recently. We aimed to explore the roles of SDF-1/CXCR4 and SDF-1/CXCR7 pathway and their crosstalk in CSCs migration. In the present study, CXCR4 and CXCR7 expression were identified in CSCs. Transwell assay showed that SDF-1 caused CSCs migration in a dose- and time-dependent manner, which could be significantly suppressed by CXCR4 or CXCR7 siRNA. Phospho-ERK, phospho-Akt and Raf-1 significantly elevated in CSCs with SDF-1 stimulation. Knockdown of CXCR4 or CXCR7 significantly decreased phospho-ERK or phospho-Akt, respectively, and eventually resulted in the inhibition of CSCs migration. Moreover, western blot showed that MK2206 (Akt inhibitor) increased the expression of phospho-ERK and Raf-1, whereas PD98059 (ERK inhibitor) had no effect on phospho-Akt and Raf-1. GW5074 (Raf-1 inhibitor) upregulated the expression of phospho-ERK, but had no effect on phospho-Akt. The present study indicated that SDF-1/CXCR7/Akt and SDF-1/CXCR4/ERK pathway played important roles in CSCs migration. Akt phosphorylation inhibited Raf-1 activity, which in turn dephosphorylated ERK and negatively regulated CSCs migration.

  19. Dynamics of scalar field dark matter with a cosh-like potential

    SciTech Connect

    Matos, Tonatiuh; Vazquez, Jose Alberto; Luevano, Jose-Ruben; Quiros, Israel; Urena-Lopez, L. Arturo

    2009-12-15

    The dynamics of a cosmological model of dark matter and dark energy represented by a scalar field endowed with a cosh-like potential plus a cosmological constant is investigated in detail. By studying the appropriate phase space of the equations of motion, it is shown that a standard evolution of the Universe is recovered for appropriate values of the free parameters, and that the only late-time attractor is always the de Sitter solution. We also discuss the appearance of scalar field oscillations corresponding to dark matter behavior.

  20. Observing the setting and hardening of cementitious materials by X-ray dark-field radiography

    SciTech Connect

    Prade, F.; Chabior, M.; Malm, F.; Grosse, C.U.; Pfeiffer, F.

    2015-08-15

    Novel X-ray imaging methods expand conventional attenuation-based X-ray radiography by the phase- and the dark-field contrasts. While weakly absorbing structures in the specimen can be better visualized in phase contrast, the dark-field contrast provides information about morphological sub-pixel microstructures. Here we report an application of dark-field X-ray radiography for imaging the time-resolved setting process in fresh cement. Our results demonstrate that the microstructural changes within the cement result in a decreasing dark-field signal. We quantify this imaging signal with a time-dependent dark-field scatter coefficient and show its good correlation with the compressional wave velocity. We further present images based on a pixel-wise analysis of the scattering signal and a corresponding logistic fit. These images emphasize the benefit of dark-field imaging of cementitious materials as it provides two dimensional spatial information on the processes within the sample while other established testing techniques only provide information on the bulk average.

  1. Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    SciTech Connect

    Jassal, H. K.

    2010-04-15

    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modeled by either a scalar field or by a barotropic fluid. The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models. The dark energy equation of state evolves differently in these classes. In freezing models, the equation of state deviates from that of a cosmological constant at early times. For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times. Since the dark energy equation of state evolves differently in these classes, the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model. In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the integrated Sachs-Wolfe effect.

  2. Four-wave dark-field electron holography for imaging strain fields

    NASA Astrophysics Data System (ADS)

    Denneulin, T.; Hÿtch, M.

    2016-06-01

    Strain characterization by transmission electron microscopy is an active area of research especially for microelectronics applications. Two-wave dark-field electron holography (DFEH) was previously introduced as a reliable strain mapping technique. Here, DFEH with four electron waves was investigated in order to image equi-displacement lines as amplitude modulations of the holographic fringes. Two perpendicular electrostatic biprisms are used to interfere three reference waves diffracted by a substrate and one object wave diffracted by an epitaxially strained region. This technique provides a different way to represent the displacement field. It might be helpful to obtain information about the strain state during in situ experiments. A dummy p-MOSFET device with embedded SiGe source and drain is used for experimental demonstration.

  3. Multi-Dimensional Effective Field Theory Analysis for Direct Detection of Dark Matter

    NASA Astrophysics Data System (ADS)

    Rogers, Hannah; SuperCDMS Collaboration

    2016-03-01

    Experiments like the Cryogenic Dark Matter Search (CDMS) attempt to find dark matter (non-luminous matter that makes up approximately 80% of the matter in the universe) through direct detection of interactions between dark matter and a target material. The Effective Field Theory (EFT) approach increases the number of considered interactions between dark matter and the normal, target matter from two (spin independent and spin dependent interactions) to eleven operators with four possible interference terms. These additional operators allow for a more complete analysis of complimentary direct dark matter searches; however, the higher dimensional likelihoods necessary to span an increase in operators requires a clever computational tool such as MultiNest. I present here analyses of published and projected data from CDMS (Si and Ge targets) and LUX (liquid Xe target) assuming operator parameter spaces ranging from 3 - 5 dimensions and folding in information on energy-dependent backgrounds when possible.

  4. In Vivo Dark-Field Radiography for Early Diagnosis and Staging of Pulmonary Emphysema.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Meinel, Felix G; Yildirim, Ali Ö; Conlon, Thomas M; Bech, Martin; Mueller, Mark; Velroyen, Astrid; Notohamiprodjo, Mike; Bamberg, Fabian; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-07-01

    The aim of this study was to evaluate the suitability of in vivo x-ray dark-field radiography for early-stage diagnosis of pulmonary emphysema in mice. Furthermore, we aimed to analyze how the dark-field signal correlates with morphological changes of lung architecture at distinct stages of emphysema. Female 8- to 10-week-old C57Bl/6N mice were used throughout all experiments. Pulmonary emphysema was induced by orotracheal injection of porcine pancreatic elastase (80-U/kg body weight) (n = 30). Control mice (n = 11) received orotracheal injection of phosphate-buffered saline. To monitor the temporal patterns of emphysema development over time, the mice were imaged 7, 14, or 21 days after the application of elastase or phosphate-buffered saline. X-ray transmission and dark-field images were acquired with a prototype grating-based small-animal scanner. In vivo pulmonary function tests were performed before killing the animals. In addition, lungs were obtained for detailed histopathological analysis, including mean cord length (MCL) quantification as a parameter for the assessment of emphysema. Three blinded readers, all of them experienced radiologists and familiar with dark-field imaging, were asked to grade the severity of emphysema for both dark-field and transmission images. Histopathology and MCL quantification confirmed the introduction of different stages of emphysema, which could be clearly visualized and differentiated on the dark-field radiograms, whereas early stages were not detected on transmission images. The correlation between MCL and dark-field signal intensities (r = 0.85) was significantly higher than the correlation between MCL and transmission signal intensities (r = 0.37). The readers' visual ratings for dark-field images correlated significantly better with MCL (r = 0.85) than visual ratings for transmission images (r = 0.36). Interreader agreement and the diagnostic accuracy of both quantitative and visual assessment were significantly higher

  5. Facilitated Diagnosis of Pneumothoraces in Newborn Mice Using X-ray Dark-Field Radiography.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Pritzke, Tina; Baumann, Alena; Hesse, Nina; Auweter, Sigrid; Reiser, Maximilian F; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne; Meinel, Felix G

    2016-10-01

    The aim of this study was to evaluate the diagnostic value of x-ray dark-field imaging in projection radiography-based depiction of pneumothoraces in the neonatal murine lung, a potentially life-threatening medical condition that requires a timely and correct diagnosis. By the use of a unique preclinical model, 7-day-old C57Bl/6N mice received mechanical ventilation for 2 or 8 hours with oxygen-rich gas (FIO2 = 0.4; n = 24). Unventilated mice either spontaneously breathed oxygen-rich gas (FIO2 = 0.4) for 2 or 8 hours or room air (n = 22). At the end of the experiment, lungs were inflated with a standardized volume of air after a lethal dose of pentobarbital was administered to the pups. All lungs were imaged with a prototype grating-based small-animal scanner to acquire x-ray transmission and dark-field radiographs. Image contrast between the air-filled pleural space and lung tissue was quantified for both transmission and dark-field radiograms. After the independent expert's assessment, 2 blinded readers evaluated all dark-field and transmission images for the presence or absence of pneumothoraces. Contrast ratios, diagnostic accuracy, as well as reader's confidence and interreader agreement were recorded for both imaging modalities. Evaluation of both x-ray transmission and dark-field radiographs by independent experts revealed the development of a total of 10 pneumothoraces in 8 mice. Here, the contrast ratio between the air-filled pleural space of the pneumothoraces and the lung tissue was significantly higher in the dark field (8.4 ± 3.5) when compared with the transmission images (5.1 ± 2.8; P < 0.05). Accordingly, the readers' diagnostic confidence for the diagnosis of pneumothoraces was significantly higher for dark-field compared with transmission images (P = 0.001). Interreader agreement improved from moderate for the analysis of transmission images alone (κ = 0.41) to very good when analyzing dark-field images alone (κ = 0.90) or in combination with

  6. Improved diagnosis of pulmonary emphysema using in vivo dark-field radiography.

    PubMed

    Meinel, Felix G; Yaroshenko, Andre; Hellbach, Katharina; Bech, Martin; Müller, Mark; Velroyen, Astrid; Bamberg, Fabian; Eickelberg, Oliver; Nikolaou, Konstantin; Reiser, Maximilian F; Pfeiffer, Franz; Yildirim, Ali Ö

    2014-10-01

    The purpose of this study was to assess whether the recently developed method of grating-based x-ray dark-field radiography can improve the diagnosis of pulmonary emphysema in vivo. Pulmonary emphysema was induced in female C57BL/6N mice using endotracheal instillation of porcine pancreatic elastase and confirmed by in vivo pulmonary function tests, histopathology, and quantitative morphometry. The mice were anesthetized but breathing freely during imaging. Experiments were performed using a prototype small-animal x-ray dark-field scanner that was operated at 35 kilovolt (peak) with an exposure time of 5 seconds for each of the 10 grating steps. Images were compared visually. For quantitative comparison of signal characteristics, regions of interest were placed in the upper, middle, and lower zones of each lung. Receiver-operating-characteristic statistics were performed to compare the effectiveness of transmission and dark-field signal intensities and the combined parameter "normalized scatter" to differentiate between healthy and emphysematous lungs. A clear visual difference between healthy and emphysematous mice was found for the dark-field images. Quantitative measurements of x-ray dark-field signal and normalized scatter were significantly different between the mice with pulmonary emphysema and the control mice and showed good agreement with pulmonary function tests and quantitative histology. The normalized scatter showed a significantly higher discriminatory power (area under the receiver-operating-characteristic curve [AUC], 0.99) than dark-field (AUC, 0.90; P = 0.01) or transmission signal (AUC, 0.69; P < 0.001) alone did, allowing for an excellent discrimination of healthy and emphysematous lung regions. In a murine model, x-ray dark-field radiography is technically feasible in vivo and represents a substantial improvement over conventional transmission-based x-ray imaging for the diagnosis of pulmonary emphysema.

  7. Dark excitons in a quantum-dot-cavity system under a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Jiménez-Orjuela, C. A.; Vinck-Posada, H.; Villas-Bôas, José M.

    2017-09-01

    We report on dark-exciton dynamics in a single quantum dot embedded in a bimodal cavity under the effect of an external magnetic field and laser excitation. By means of a fast laser pulse in resonance with the cavity modes and a varying intensity magnetic field in different tilted angles, we are able to identify the optimal condition where dark-exciton states can be efficiently populated. Using the set of parameters, we focus on the steady regime for the system that is continuously excited. Our results show that the presence of dark-exciton states strongly modifies the cavity modes' occupation and, for a specific set of parameters, only dark states are present in the cavity.

  8. The effective field theory of dark matter direct detection

    SciTech Connect

    Fitzpatrick, A. Liam; Haxton, Wick; Katz, Emanuel; Lubbers, Nicholas; Xu, Yiming

    2013-02-01

    We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets — F, Na, Ge, I, and Xe — using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.

  9. Signal-to-noise ratio in x ray dark-field imaging using a grating interferometer

    SciTech Connect

    Chabior, Michael; Schuster, Manfred; Donath, Tilman; David, Christian; Schroer, Christian; Pfeiffer, Franz

    2011-09-01

    In this work, we report an analytical and experimental investigation of the signal-to-noise ratio for a recently developed method called x ray dark-field imaging. Our approach is based on the propagation of signal and noise through the reconstruction algorithm. We find that the statistical nature of the dark-field images can be understood by a Rician distribution. The analysis shows that, for high flux, the noise in the dark-field images is proportional to the noise in the raw data. In the limit of low flux and, thus, low signal-to-noise ratio, the dark-field signal exhibits a breakdown of the signal transmission, which can be described by an asymptotic behavior of the underlying noise distribution. In this limit, the dark-field signal is no longer connected to the coherence degradation, but rather to the attenuation in the sample. The model is verified in exemplary test measurements using a compact laboratory setup with a polychromatic source and a photon counting detector.

  10. Classification of the micromorphology of breast calcifications in x-ray dark-field mammography

    NASA Astrophysics Data System (ADS)

    Willer, Konstantin; Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Aniko; Hellerhof, Karin; Reiser, Maximilian; Pfeiffer, Franz; Herzen, Julia

    2017-03-01

    The distant goal of this investigation is to reduce the number of invasive procedures associated with breast micro calcification biopsies, by improving and refining conventional BIRADS micro calcification assessments with x-ray dark-field mammography. The study was institutional review board (IRB) approved. A dedicated grating-based radiography setup (Mo-target, 40 keV, 70 mA) was used to investigate one breast mastectomy and 31 biopsies with dark-field mammography. Comparing the absorption and scattering properties of micro calcifications clusters enables accessing information on the interior morphology on the micron-scale retrieved in a non-invasive manner. Insights underlying the micro morphological nature of breast calcifications were verified by comprehensive high-resolution micro-CT measurements. It was found that Dark-field mammography allows a micro-structural classification of breast micro calcification as ultra-fine, fine, pleomorphic and coarse textured using conventional detectors. Dark-field mammography is thereby highly sensitive to minor structural deviations. Finally, the determined micro-texture of the investigated micro calcifications was correlated with findings obtained from histopathological work up. The presented results demonstrate that dark-field mammography yields the potential to enhance diagnostic validity of current micro calcification analysis - which is yet limited to the exterior appearance of micro calcification clusters - and thereby reduce the number of invasive procedures.

  11. Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Dent, James B.; Dutta, Bhaskar; Newstead, Jayden L.; Strigari, Louis E.

    2016-04-01

    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within nonrelativistic effective field theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare them to the nuclear recoil energy spectra that are predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate-size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction. In addition we calculate up-to-date exclusion limits in the EFT model space using data from the LUX experiment.

  12. Variable multimodal light microscopy with interference contrast and phase contrast; dark or bright field.

    PubMed

    Piper, T; Piper, J

    2014-07-01

    Using the optical methods described, specimens can be observed with modified multimodal light microscopes based on interference contrast combined with phase contrast, dark- or bright-field illumination. Thus, the particular visual information associated with interference and phase contrast, dark- and bright-field illumination is joined in real-time composite images appearing in enhanced clarity and purified from typical artefacts, which are apparent in standard phase contrast and dark-field illumination. In particular, haloing and shade-off are absent or significantly reduced as well as marginal blooming and scattering. The background brightness and thus the range of contrast can be continuously modulated and variable transitions can be achieved between interference contrast and complementary illumination techniques. The methods reported should be of general interest for all disciplines using phase and interference contrast microscopy, especially in biology and medicine, and also in material sciences when implemented in vertical illuminators. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  13. Diurnal and seasonal variation in light and dark respiration in field-grown Eucalyptus pauciflora.

    PubMed

    Way, Danielle A; Holly, Chris; Bruhn, Dan; Ball, Marilyn C; Atkin, Owen K

    2015-08-01

    Respiration from vegetation is a substantial part of the global carbon cycle and the responses of plant respiration to daily and seasonal fluctuations in temperature and light must be incorporated in models of terrestrial respiration to accurately predict these CO2 fluxes. We investigated how leaf respiration (R) responded to changes in leaf temperature (T(leaf)) and irradiance in field-grown saplings of an evergreen tree (Eucalyptus pauciflora Sieb. ex Spreng). Seasonal shifts in the thermal sensitivity of leaf R in the dark (R(dark)) and in the light (R(light)) were assessed by allowing T(leaf) to vary over the day in field-grown leaves over a year. The Q10 of R (i.e., the relative increase in R for a 10 °C increase in T(leaf)) was similar for R(light) and R(dark) and had a value of ∼ 2.5; there was little seasonal change in the Q10 of either R(light) or R(dark), indicating that we may be able to use similar functions to model short-term temperature responses of R in the dark and in the light. Overall, rates of R(light) were lower than those of R(dark), and the ratio of R(light)/R(dark) tended to increase with rising T(leaf), such that light suppression of R was reduced at high T(leaf) values, in contrast to earlier work with this species. Our results suggest we cannot assume that R(light)/R(dark) decreases with increasing T(leaf) on daily timescales, and highlights the need for a better mechanistic understanding of what regulates light suppression of R in leaves.

  14. Small-animal dark-field radiography for pulmonary emphysema evaluation

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Meinel, Felix G.; Hellbach, Katharina; Bech, Martin; Velroyen, Astrid; Müller, Mark; Bamberg, Fabian; Nikolaou, Konstantin; Reiser, Maximilian F.; Yildirim, Ali Ã.-.; Eickelberg, Oliver; Pfeiffer, Franz

    2014-03-01

    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide and emphysema is one of its main components. The disorder is characterized by irreversible destruction of the alveolar walls and enlargement of distal airspaces. Despite the severe changes in the lung tissue morphology, conventional chest radiographs have only a limited sensitivity for the detection of mild to moderate emphysema. X-ray dark-field is an imaging modality that can significantly increase the visibility of lung tissue on radiographic images. The dark-field signal is generated by coherent, small-angle scattering of x-rays on the air-tissue interfaces in the lung. Therefore, morphological changes in the lung can be clearly visualized on dark-field images. This is demonstrated by a preclinical study with a small-animal emphysema model. To generate a murine model of pulmonary emphysema, a female C57BL/6N mouse was treated with a single orotracheal application of porcine pancreatic elastase (80 U/kg body weight) dissolved in phosphate-buffered saline (PBS). Control mouse received PBS. The mice were imaged using a small-animal dark-field scanner. While conventional x-ray transmission radiography images revealed only subtle indirect signs of the pulmonary disorder, the difference between healthy and emphysematous lungs could be clearly directly visualized on the dark-field images. The dose applied to the animals is compatible with longitudinal studies. The imaging results correlate well with histology. The results of this study reveal the high potential of dark-field radiography for clinical lung imaging.

  15. Enzyme catalysis enhanced dark-field imaging as a novel immunohistochemical method

    NASA Astrophysics Data System (ADS)

    Fan, Lin; Tian, Yanyan; Yin, Rong; Lou, Doudou; Zhang, Xizhi; Wang, Meng; Ma, Ming; Luo, Shouhua; Li, Suyi; Gu, Ning; Zhang, Yu

    2016-04-01

    Conventional immunohistochemistry is limited to subjective judgment based on human experience and thus it is clinically required to develop a quantitative immunohistochemical detection. 3,3'-Diaminobenzidin (DAB) aggregates, a type of staining product formed by conventional immunohistochemistry, were found to have a special optical property of dark-field imaging for the first time, and the mechanism was explored. On this basis, a novel immunohistochemical method based on dark-field imaging for detecting HER2 overexpressed in breast cancer was established, and the quantitative analysis standard and relevant software for measuring the scattering intensity was developed. In order to achieve a more sensitive detection, the HRP (horseradish peroxidase)-labeled secondary antibodies conjugated gold nanoparticles were constructed as nanoprobes to load more HRP enzymes, resulting in an enhanced DAB deposition as a dark-field label. Simultaneously, gold nanoparticles also act as a synergistically enhanced agent due to their mimicry of enzyme catalysis and dark-field scattering properties.Conventional immunohistochemistry is limited to subjective judgment based on human experience and thus it is clinically required to develop a quantitative immunohistochemical detection. 3,3'-Diaminobenzidin (DAB) aggregates, a type of staining product formed by conventional immunohistochemistry, were found to have a special optical property of dark-field imaging for the first time, and the mechanism was explored. On this basis, a novel immunohistochemical method based on dark-field imaging for detecting HER2 overexpressed in breast cancer was established, and the quantitative analysis standard and relevant software for measuring the scattering intensity was developed. In order to achieve a more sensitive detection, the HRP (horseradish peroxidase)-labeled secondary antibodies conjugated gold nanoparticles were constructed as nanoprobes to load more HRP enzymes, resulting in an enhanced DAB

  16. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  17. Recombination era magnetic fields from axion dark matter

    NASA Astrophysics Data System (ADS)

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-01

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ˜10 kpc and have a magnitude of the order of B ˜1 0-23G today. The field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  18. Recombination era magnetic fields from axion dark matter

    SciTech Connect

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  19. Recombination era magnetic fields from axion dark matter

    DOE PAGES

    Banik, Nilanjan; Christopherson, Adam J.

    2016-02-04

    We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnetic fields generated are on galactic scales ~10 kpc and have a magnitude of the order of B~10–23G today. Lastly, the field has a greater magnitude than those generated from other mechanisms relying on second-order perturbation theory, and is sufficient to provide a seed for battery mechanisms.

  20. THE DARK ADAPTATION OF RETINAL FIELDS OF DIFFERENT SIZE AND LOCATION.

    PubMed

    Hecht, S; Haig, C; Wald, G

    1935-11-20

    The decrease in threshold shown by the eye during dark adaptation proceeds in two steps. The first is rapid, short in duration, and small in extent. The second is slow, prolonged, and large. The first is probably due to cone function; the second to rod function. In centrally located fields the two parts of adaptation change differently with area. With small, foveal fields the first part dominates and only traces of the second part appear. As the area increases the first part changes a little, while the second part covers an increasing range of intensities and appears sooner in time. Measurements with an annulus field covering only the circumference of a 20 degrees circle show most of the characteristics of a 20 degrees whole field centrally located. Similarly a 2 degrees field located at different distances from the center shows dark adaptation characteristics essentially like those of large centrally located fields whose edges correspond to the position of the central field. Evidently the behavior in dark adaptation of centrally located fields of different size is determined in the main not by area as area, but by the fact that the retina gradually changes in sensitivity from center to periphery, and therefore the larger the field the farther it reaches into peripheral regions of permanently greater sensibility.

  1. THE DARK ADAPTATION OF RETINAL FIELDS OF DIFFERENT SIZE AND LOCATION

    PubMed Central

    Hecht, Selig; Haig, Charles; Wald, George

    1935-01-01

    The decrease in threshold shown by the eye during dark adaptation proceeds in two steps. The first is rapid, short in duration, and small in extent. The second is slow, prolonged, and large. The first is probably due to cone function; the second to rod function. In centrally located fields the two parts of adaptation change differently with area. With small, foveal fields the first part dominates and only traces of the second part appear. As the area increases the first part changes a little, while the second part covers an increasing range of intensities and appears sooner in time. Measurements with an annulus field covering only the circumference of a 20° circle show most of the characteristics of a 20° whole field centrally located. Similarly a 2° field located at different distances from the center shows dark adaptation characteristics essentially like those of large centrally located fields whose edges correspond to the position of the central field. Evidently the behavior in dark adaptation of centrally located fields of different size is determined in the main not by area as area, but by the fact that the retina gradually changes in sensitivity from center to periphery, and therefore the larger the field the farther it reaches into peripheral regions of permanently greater sensibility. PMID:19872930

  2. Accreting Scalar-Field Models of Dark Energy Onto Morris-Thorne Wormhole

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Surajit; Pasqua, Antonio; Radinschi, Irina

    2016-10-01

    The present paper reports a study on accreting tachyon, Dirac-Born-Infeld essence and h-essence scalar field models of dark energy onto Morris-Thorne wormhole. Using three different parameterisation schemes and taking H = {H_0} + {{{H_1}} over t}, we have derived the mass of the wormhole for all of the three parameterisation schemes that are able to get hold of both quintessence and phantom behaviour. With suitable choice of parameters, we observed that accreting scalar field dark energy models are increasing the mass of the wormhole in the phantom phase and the mass is decreasing in the quintessence phase. Finally, we have considered accretion with power law form of scale factor and without any parameterisation scheme for the equation of state parameter and observed the fact that phantom-type dark energy supports the existence of wormholes.

  3. Slow-roll suppression of adiabatic instabilities in coupled scalar field-dark matter models

    SciTech Connect

    Corasaniti, Pier Stefano

    2008-10-15

    We study the evolution of linear density perturbations in the context of interacting scalar field-dark matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway behavior of the scalar self-interaction potential as in the case of the chameleon model. We show that, in the 'adiabatic' background regime of the system, the rise of unstable growing modes of the perturbations is suppressed by the slow-roll dynamics of the field. Furthermore, the coupled system behaves as an inhomogeneous adiabatic fluid. In contrast, instabilities may develop for large values of the coupling constant, or along nonadiabatic solutions, characterized by a period of high-frequency dumped oscillations of the scalar field. In the latter case, the dynamical instabilities of the field fluctuations, which are typical of oscillatory scalar field regimes, are amplified and transmitted by the coupling to dark matter perturbations.

  4. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    NASA Astrophysics Data System (ADS)

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-10-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector.

  5. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Zhou, You; Scuri, Giovanni; Wild, Dominik S.; High, Alexander A.; Dibos, Alan; Jauregui, Luis A.; Shu, Chi; de Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y.; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D.; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  6. Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons.

    PubMed

    Zhou, You; Scuri, Giovanni; Wild, Dominik S; High, Alexander A; Dibos, Alan; Jauregui, Luis A; Shu, Chi; De Greve, Kristiaan; Pistunova, Kateryna; Joe, Andrew Y; Taniguchi, Takashi; Watanabe, Kenji; Kim, Philip; Lukin, Mikhail D; Park, Hongkun

    2017-09-01

    Transition metal dichalcogenide (TMD) monolayers with a direct bandgap feature tightly bound excitons, strong spin-orbit coupling and spin-valley degrees of freedom. Depending on the spin configuration of the electron-hole pairs, intra-valley excitons of TMD monolayers can be either optically bright or dark. Dark excitons involve nominally spin-forbidden optical transitions with a zero in-plane transition dipole moment, making their detection with conventional far-field optical techniques challenging. Here, we introduce a method for probing the optical properties of two-dimensional materials via near-field coupling to surface plasmon polaritons (SPPs). This coupling selectively enhances optical transitions with dipole moments normal to the two-dimensional plane, enabling direct detection of dark excitons in TMD monolayers. When a WSe2 monolayer is placed on top of a single-crystal silver film, its emission into near-field-coupled SPPs displays new spectral features whose energies and dipole orientations are consistent with dark neutral and charged excitons. The SPP-based near-field spectroscopy significantly improves experimental capabilities for probing and manipulating exciton dynamics of atomically thin materials, thus opening up new avenues for realizing active metasurfaces and robust optoelectronic systems, with potential applications in information processing and communication.

  7. A generalized quantitative interpretation of dark-field contrast for highly concentrated microsphere suspensions

    PubMed Central

    Gkoumas, Spyridon; Villanueva-Perez, Pablo; Wang, Zhentian; Romano, Lucia; Abis, Matteo; Stampanoni, Marco

    2016-01-01

    In X-ray grating interferometry, dark-field contrast arises due to partial extinction of the detected interference fringes. This is also called visibility reduction and is attributed to small-angle scattering from unresolved structures in the imaged object. In recent years, analytical quantitative frameworks of dark-field contrast have been developed for highly diluted monodisperse microsphere suspensions with maximum 6% volume fraction. These frameworks assume that scattering particles are separated by large enough distances, which make any interparticle scattering interference negligible. In this paper, we start from the small-angle scattering intensity equation and, by linking Fourier and real-space, we introduce the structure factor and thus extend the analytical and experimental quantitative interpretation of dark-field contrast, for a range of suspensions with volume fractions reaching 40%. The structure factor accounts for interparticle scattering interference. Without introducing any additional fitting parameters, we successfully predict the experimental values measured at the TOMCAT beamline, Swiss Light Source. Finally, we apply this theoretical framework to an experiment probing a range of system correlation lengths by acquiring dark-field images at different energies. This proposed method has the potential to be applied in single-shot-mode using a polychromatic X-ray tube setup and a single-photon-counting energy-resolving detector. PMID:27734931

  8. Coherent superposition in grating-based directional dark-field imaging.

    PubMed

    Malecki, Andreas; Potdevin, Guillaume; Biernath, Thomas; Eggl, Elena; Grande Garcia, Eduardo; Baum, Thomas; Noël, Peter B; Bauer, Jan S; Pfeiffer, Franz

    2013-01-01

    X-ray dark-field scatter imaging allows to gain information on the average local direction and anisotropy of micro-structural features in a sample well below the actual detector resolution. For thin samples the morphological interpretation of the signal is straight forward, provided that only one average orientation of sub-pixel features is present in the specimen. For thick samples, however, where the x-ray beam may pass structures of many different orientations and dimensions, this simple assumption in general does not hold and a quantitative description of the resulting directional dark-field signal is required to draw deductions on the morphology. Here we present a description of the signal formation for thick samples with many overlying structures and show its validity in experiment. In contrast to existing experimental work this description follows from theoretical predictions of a numerical study using a Fourier optics approach. One can easily extend this description and perform a quantitative structural analysis of clinical or materials science samples with directional dark-field imaging or even direction-dependent dark-field CT.

  9. Non-invasive differentiation of kidney stone types using X-ray dark-field radiography.

    PubMed

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J; Noël, Peter B; Pfeiffer, Franz

    2015-04-15

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection.

  10. Are black holes a serious threat to scalar field dark matter models?

    SciTech Connect

    Barranco, Juan; Degollado, Juan Carlos; Bernal, Argelia; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Nunez, Dario; Sarbach, Olivier

    2011-10-15

    Classical scalar fields have been proposed as possible candidates for the dark matter component of the universe. Given the fact that supermassive black holes seem to exist at the center of most galaxies, in order to be a viable candidate for the dark matter halo a scalar field configuration should be stable in the presence of a central black hole, or at least be able to survive for cosmological time scales. In the present work we consider a scalar field as a test field on a Schwarzschild background, and study under which conditions one can obtain long-lived configurations. We present a detailed study of the Klein-Gordon equation in the Schwarzschild space-time, both from an analytical and numerical point of view, and show that indeed there exist quasistationary solutions that can remain surrounding a black hole for large time scales.

  11. Simplified models vs. effective field theory approaches in dark matter searches

    NASA Astrophysics Data System (ADS)

    De Simone, Andrea; Jacques, Thomas

    2016-07-01

    In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner.

  12. Cosmological constraints on a unified dark matter-energy scalar field model with fast transition

    NASA Astrophysics Data System (ADS)

    Leanizbarrutia, Iker; Rozas-Fernández, Alberto; Tereno, Ismael

    2017-07-01

    We test the viability of a single fluid cosmological model containing a transition from a dark-matter-like regime to a dark-energy-like regime. The fluid is a k-essence scalar field with a well-defined Lagrangian. We constrain its model parameters with a combination of geometric probes and conclude that the evidence for this model is similar to the evidence for Λ CDM . In addition, we find a lower bound for the rapidity of the transition, implying that fast transitions are favored with respect to slow ones even at background level.

  13. Anatomical background noise power spectrum in differential phase contrast and dark field contrast mammograms.

    PubMed

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2014-12-01

    In x-ray absorption mammography, it has been found that the anatomical background noise can be characterized by a power law dependence on the spatial frequency, NPSa(f) ≈ αf(-β). In this letter, the authors present the first experimental results of the corresponding exponents, β, for differential phase contrast (βDPC) and dark field contrast (βDF) mammography. A grating-based x-ray multicontrast imaging acquisition benchtop system was used to simultaneously acquire mammograms with three different contrast mechanisms from 15 cadaver breasts under the same x-ray data acquisition conditions. The cadaver breasts were imaged in the coronal plane. The authors' experimental implementation of the well documented method [Burgess, Jacobson, and Judy, Med. Phys. 28, 419-437 (2001)] to extract the exponent β was first validated using anonymized clinical mammograms. Experiments were then used to determine β for the three types of mammograms for each cadaver breast acquired with our multicontrast imaging system: absorption contrast mammogram (βAbs.), differential phase contrast mammogram (βDPC), and dark-field contrast mammogram (βDF). The measured β values, acquired in the coronal plane with the benchtop multicontrast imaging system are βAbs. = 3.61 ± 0.49, βDPC = 2.54 ± 0.75, and βDF = 1.44 ± 0.49 for absorption, differential phase, and dark field mammogram, respectively. The β values for differential phase contrast and dark field mammography are significantly lower than the measured value of β for the corresponding absorption contrast mammograms. The greatly reduced β value of the anatomical background noise in differential phase contrast and dark field mammograms may suggest potentially improved diagnostic performance for certain types of breast cancer imaging tasks.

  14. Preclinical x-ray dark-field imaging: foreign body detection

    NASA Astrophysics Data System (ADS)

    Braig, Eva-Maria; Muenzel, Daniela; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Pfeiffer, Franz; Noel, Peter

    2017-03-01

    The purpose of this study was to evaluate the performance of X-ray dark-field imaging for detection of retained foreign bodies in ex-vivo hands and feet. X-ray dark-field imaging, acquired with a three-grating Talbot-Lau interferometer, has proven to provide access to sub-resolution structures due to small-angle scattering. The study was institutional review board (IRB) approved. Foreign body parts included pieces of wood and metal which were placed in a formalin fixated human ex-vivo hand. The samples were imaged with a grating-based interferometer consisting of a standard microfocus X-ray tube (60 kVp, 100 W) and a Varian 2520-DX detector (pixel size: 127 μm). The attenuation and the dark-field signals provide complementary diagnostic information for this clinical task. With regard to detecting of wooden objects, which are clinically the most relevant, only the dark-field image revealed the locations. The signal is especially strong for dry wood which in comparison is poorly to non-visible in computed tomography. The detection of high atomic-number or dense material and wood-like or porous materials in a single X-ray scan is enabled by the simultaneous acquisition of the conventional attenuation and dark-field signal. Our results reveal that with this approach one can reach a significantly improved sensitivity for detection of foreign bodies, while an easy implementation into the clinical arena is becoming feasible.

  15. X-ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Conlon, Thomas M; Braunagel, Margarita B; Auweter, Sigrid; Yildirim, Ali Ö; Eickelberg, Oliver; Pfeiffer, Franz; Reiser, Maximilian F; Meinel, Felix G

    2017-03-23

    The aim of this study was to evaluate whether diagnosing pulmonary fibrosis with projection radiography can be improved by using X-ray dark-field radiograms. Pulmonary X-ray transmission and dark-field images of C57Bl/6N mice, either treated with bleomycin to induce pulmonary fibrosis or PBS to serve as controls, were acquired with a prototype grating-based small-animal scanner. Two blinded readers, both experienced radiologists and familiar with dark-field imaging, had to assess dark-field and transmission images for the absence or presence of fibrosis. Furthermore readers were asked to grade their stage of diagnostic confidence. Histological evaluation of the lungs served as the standard of reference in this study. Both readers showed a notably higher diagnostic confidence when analyzing the dark-field radiographs (p < 0.001). Diagnostic accuracy improved significantly when evaluating the lungs in dark-field images alone (p = 0.02) or in combination with transmission images (p = 0.01) compared to sole analysis of absorption images. Interreader agreement improved from good when assessing only transmission images to excellent when analyzing dark-field images alone or in combination with transmission images. Adding dark-field images to conventional transmission images in a murine model of pulmonary fibrosis leads to an improved diagnosis of this disease on chest radiographs.

  16. Can LIGO Directly Detect the Scalar Field Dark Energy of 5D Gravity?

    NASA Astrophysics Data System (ADS)

    Zhang, Tianxi

    2017-06-01

    The observed acceleration of the present universe is commonly attributed to the existence of dark energy as a dominant component throughout the universe. A direct detection of dark energy has become one of the most important issues in the modern astrophysics and cosmology. Two widely accepted candidates of the dark energy are the cosmological constant Λ and the quintessence. Unlike the cosmological constant, the quintessence is a scalar field Φ that varies throughout spacetime, and has been modelled in various ways such as the four-dimensional (4D) Brans-Dicke scalar-tensor theory of gravitation and the five-dimensional (5D) Kaluza-Klein scalar-vector-tensor theory of gravitation. The scalar field of 5D gravity was shown to be capable of polarizing the space or vacuum and thus can extend the optical length of the path of a laser beam that passes through the polarized space or vacuum. Recently, the author, in terms of his 5D fully covariant Kaluza-Klein scalar-vector-tensor theory of gravitation, has quantitatively related the dielectric constant of the polarized vacuum (and thus the optical length of the path in the polarized vacuum) to the charge-mass ratio of a charged object. This study further demonstrates that the vacuum polarization by the scalar field dark energy of 5D gravity, when the object is highly charged, can be significant enough for the extremely accurate LIGO, which has recently detected first ever the gravitational waves from the binary black hole merger, to directly detect. It is shown that a some-thousand-kilogram sphere electrically charged to tens of kilovolts can polarize the vacuum by its scalar field dark energy and thus extend the optical path length of a laser beam that travels through one LIGO arm with some hundred reflections by approximately 10-18 m, which is one-order higher than that to be detected by the LIGO detectors. Therefore, being added a highly charged sphere into the experimental setup, LIGO may directly discover the

  17. Dark-field hyperspectral X-ray imaging

    PubMed Central

    Egan, Christopher K.; Jacques, Simon D. M.; Connolley, Thomas; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Cernik, Robert J.

    2014-01-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753

  18. Properties and uncertainties of scalar field models of dark energy with barotropic equation of state

    SciTech Connect

    Novosyadlyj, Bohdan; Sergijenko, Olga; Apunevych, Stepan; Pelykh, Volodymyr

    2010-11-15

    The dynamics of expansion and large scale structure formation in the multicomponent Universe with dark energy modeled by the minimally coupled scalar field with generalized linear barotropic equation of state are analyzed. It is shown that the past dynamics of expansion and future of the Universe - eternal accelerated expansion or turnaround and collapse - are completely defined by the current energy density of a scalar field and relation between its current and early equation of state parameters. The clustering properties of such models of dark energy and their imprints in the power spectrum of matter density perturbations depend on the same relation and, additionally, on the 'effective sound speed' of a scalar field, defined by its Lagrangian. It is concluded that such scalar fields with different values of these parameters are distinguishable in principle. This gives the possibility to constrain them by confronting the theoretical predictions with the corresponding observational data. For that we have used the 7-year Wilkinson Microwave Anisotropy Probe data on cosmic microwave background anisotropies, the Union2 data set on Supernovae Ia and the seventh data release of the Sloan Digital Sky Survey data on luminous red galaxies space distribution. Using the Markov Chain Monte Carlo technique the marginalized posterior and mean likelihood distributions are computed for the scalar fields with two different Lagrangians: Klein-Gordon and Dirac-Born-Infeld ones. The properties of such scalar field models of dark energy with best fitting parameters and uncertainties of their determination are also analyzed in the paper.

  19. Re-Calibration of SDF/SXDS Photometric Catalogs of Suprime-Cam with SDSS Data Release 8

    NASA Astrophysics Data System (ADS)

    Yagi, Masafumi: Suzuki, Nao; Yamanoi, Hitomi; Furusawa, Hisanori; Nakata, Fumiaki; Komiyama, Yutaka

    2013-02-01

    We present photometric recalibrations of the Subaru Deep Field (SDF) and Subaru/XMM-Newton Deep Survey (SXDS). Recently, Yamanoi et al. (2012, AJ, 144, 40) suggested the existence of a discrepancy between the SDF and SXDS catalogs. We have used the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8) catalog and compared stars in common between SDF/SXDS and SDSS. We confirmed that there exists a 0.12 mag offset in the B-band between the SDF and SXDS catalogs. Moreover, we found that significant zero-point offsets in the i-band (˜0.10 mag) and the z-band (˜0.14 mag) need to be introduced to the SDF/SXDS catalogs to make it consistent with the SDSS catalog. We report the measured zero point offsets of five filter bands of SDF/SXDS catalogs. We studied the potential cause of these offsets, but the origins are yet to be understood.

  20. Grain Alignment and the Magnetic Field Geometry in the Filamentary Dark Cloud GF 9

    NASA Astrophysics Data System (ADS)

    Jones, Terry Jay

    2003-06-01

    We present measurements of the interstellar polarization at 1.65 μm of stars shining through the filamentary dark cloud GF 9. Unlike many dark clouds, the interstellar polarization through GF 9 increases significantly with increasing extinction through the cloud. We find the magnetic field geometry in GF 9-core is very smooth, in agreement with results from far-infrared polarimetry by Clemens, Kraemer, & Ciardi (published in 1999). Our much more limited results for GF 9-filament are consistent with a disordered field, also in agreement with the far-infrared polarimetry. Comparison of the near-infrared and far-infrared position angles suggests that there is a moderate rotation in the projected magnetic field direction from the exterior to the interior of GF 9-core.

  1. The effect of tidal fields on the shapes and kinematics of dark halos

    NASA Technical Reports Server (NTRS)

    Dubinski, John

    1993-01-01

    We have carried out a series of N-body simulations to investigate the effect of tidal shear on the structure and kinematics of dark halos. We simulate the collapse of density perturbations using a tree code as described in Dubinski & Carlberg (1991). Density peaks are selected from a random realization of a CDM density field and used as the initial conditions for N-body simulations. We use an experimental approach to examine the effects of tidal shear on collapse. The cosmological tidal field is treated as an external time dependent potential whose strength and orientation can be varied freely. We examine the effects of the tidal field with two experiments. In the first experiment, we simulate a sample of 14 dark halos from the collapse of density peaks in the presence of a 1(sigma) tidal field. In the second experiment, we use the same initial conditions though the tidal field is turned off allowing an experimental control for comparison to highlight the influence of tidal shear on the development of the structure and kinematics of the dark halos.

  2. Dark-bright soliton dynamics beyond the mean-field approximation

    NASA Astrophysics Data System (ADS)

    Katsimiga, G. C.; Koutentakis, G. M.; Mistakidis, S. I.; Kevrekidis, P. G.; Schmelcher, P.

    2017-07-01

    The dynamics of dark-bright (DB) solitons beyond the mean-field approximation is investigated. We first examine the case of a single DB soliton and its oscillations within a parabolic trap. Subsequently, we move to the setting of collisions, comparing the mean-field approximation to that involving multiple orbitals in both the dark and the bright component. Fragmentation is present and significantly affects the dynamics, especially in the case of slower solitons and in that of lower atom numbers. It is shown that the presence of fragmentation allows for bipartite entanglement between the distinguishable species. Most importantly the interplay between fragmentation and entanglement leads to the splitting of each of the parent mean-field DB solitons, placed off-center within the parabolic trap, into a fast and a slow daughter solitary wave. The latter process is in direct contrast to the predictions of the mean-field approximation. A variety of excitations including DB solitons in multiple (concurrently populated) orbitals is observed. Dark-antidark states and domain-wall-bright soliton complexes can also be observed to arise spontaneously in the beyond mean-field dynamics.

  3. Advanced contrast modalities for X-ray radiology: Phase-contrast and dark-field imaging using a grating interferometer.

    PubMed

    Bech, Martin; Jensen, Torben H; Bunk, Oliver; Donath, Tilman; David, Christian; Weitkamp, Timm; Le Duc, Geraldine; Bravin, Alberto; Cloetens, Peter; Pfeiffer, Franz

    2010-01-01

    Here we review our recent progress in the field of X-ray dark-field and phase-contrast imaging using a grating interferometer. We describe the basic imaging principles of grating-based phase-contrast and dark-field radiography and present some exemplary results obtained for simple test objects and biological specimens. Furthermore, we discuss how phase-contrast and dark-field radiography can be combined with the concept of computed tomography, and yield highly detailed three-dimensional insights into biomedical sample. Exemplary results obtained with standard X-ray tube sources and highly brilliant synchrotron sources are presented.

  4. Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter

    NASA Astrophysics Data System (ADS)

    Ureña-López, L. Arturo; Gonzalez-Morales, Alma X.

    2016-07-01

    As we are entering the era of precision cosmology, it is necessary to count on accurate cosmological predictions from any proposed model of dark matter. In this paper we present a novel approach to the cosmological evolution of scalar fields that eases their analytic and numerical analysis at the background and at the linear order of perturbations. The new method makes use of appropriate angular variables that simplify the writing of the equations of motion, and which also show that the usual field variables play a secondary role in the cosmological dynamics. We apply the method to a scalar field endowed with a quadratic potential and revisit its properties as dark matter. Some of the results known in the literature are recovered, and a better understanding of the physical properties of the model is provided. It is confirmed that there exists a Jeans wavenumber kJ, directly related to the suppression of linear perturbations at wavenumbers k > kJ, and which is verified to be kJ = a √mH. We also discuss some semi-analytical results that are well satisfied by the full numerical solutions obtained from an amended version of the CMB code CLASS. Finally we draw some of the implications that this new treatment of the equations of motion may have in the prediction of cosmological observables from scalar field dark matter models.

  5. Spatiotemporal presentation of exogenous SDF-1 with PLGA nanoparticles modulates SDF-1/CXCR4 signaling axis in the rodent cortex.

    PubMed

    Dutta, D; Hickey, K; Salifu, M; Fauer, C; Willingham, C; Stabenfeldt, S E

    2017-07-25

    Stromal cell-derived factor-1 (SDF-1) and its key receptor CXCR4 have been implicated in directing cellular recruitment for several pathological/disease conditions thus also gained considerable attention for regenerative medicine. One regenerative approach includes sustained release of SDF-1 to stimulate prolonged stem cell recruitment. However, the impact of SDF-1 sustained release on the endogenous SDF-1/CXCR4 signaling axis is largely unknown as auto-regulatory mechanisms typically dictate cytokine/receptor signaling. We hypothesize that spatiotemporal presentation of exogenous SDF-1 is a key factor in achieving long-term manipulation of endogenous SDF-1/CXCR4 signaling. Here in the present study, we sought to probe our hypothesis using a transgenic mouse model to contrast the spatial activation of endogenous SDF-1 and CXCR4 in response to exogenous SDF-1 injected in bolus or controlled release (PLGA nanoparticles) form in the adult rodent cortex. Our data suggests that the manner of SDF-1 presentation significantly affected initial CXCR4 cellular activation/recruitment despite having similar protein payloads over the first 24 h (∼30 ng for both bolus and sustained release groups). Yet, one week post-injection, this response was negligible. Therefore, the transient nature CXCR4 recruitment/activation in response to bolus or controlled release SDF-1 indicated that cytokine/receptor auto-regulatory mechanisms may demand more complex release profiles (i.e. delayed and/or pulsed release) to achieve sustained cellular response.

  6. Dark-field spectroscopy of plasmon resonance in metal nanoislands: effect of shape and light polarization

    NASA Astrophysics Data System (ADS)

    Babich, E. S.; Scherbak, S. A.; Heisler, F.; Chervinskii, S. D.; Samusev, A. K.; Lipovskii, A. A.

    2016-11-01

    We present the experimental dark-field scattering studies and the simulation of plasmonic properties of isolated silver nanoislands. The nanoislands were fabricated on a soda- lime glass substrate using silver-sodium ion exchange, subsequent thermal poling and annealing of the processed glass substrate in hydrogen. The morphology of the nanoislands was characterized with atomic force microscopy and scanning electron microscopy; the dimensions were 100-180 nm in base and 80-160 nm in height. We measured and modeled dark-field scattering spectra of the silver hemiellipsoidal nanoparticles differing in size and shape. The SPR position varied from 450 nm to 730 nm depending on the particle shape and dimensions. Both experiments and simulation showed a red shift of the SPR for bigger nanoislands of the same shape. Losing the axial symmetry in nanoislands resulted in the resonance splitting, while their elongation led to an increase in the scattering of p-polarized light.

  7. Sub-pixel porosity revealed by x-ray scatter dark field imaging

    SciTech Connect

    Revol, V.; Jerjen, I.; Schuetz, P.; Luethi, T.; Sennhauser, U.; Kottler, C.; Kaufmann, R.; Urban, C.; Straumann, U.

    2011-08-15

    X-ray scatter dark field imaging based on the Talbot-Lau interferometer allows for the measurement of ultra-small angle x-ray scattering. The latter is related to the variations in the electron density in the sample at the sub- and micron-scale. Therefore, information on features of the object below the detector resolution can be revealed.In this article, it is demonstrated that scatter dark field imaging is particularly adapted to the study of a material's porosity. An interferometer, optimized for x-ray energies around 50 keV, enables the investigation of aluminum welding with conventional laboratory x-ray tubes. The results show an unprecedented contrast between the pool and the aluminum workpiece. Our conclusions are confirmed due to micro-tomographic three-dimensional reconstructions of the same object with a microscopic resolution.

  8. Dark-field X-ray imaging of unsaturated water transport in porous materials

    SciTech Connect

    Yang, F. E-mail: michele.griffa@empa.ch; Di Bella, C.; Lura, P.; Prade, F.; Herzen, J.; Sarapata, A.; Pfeiffer, F.; Griffa, M. E-mail: michele.griffa@empa.ch; Jerjen, I.

    2014-10-13

    We introduce in this Letter an approach to X-ray imaging of unsaturated water transport in porous materials based upon the intrinsic X-ray scattering produced by the material microstructural heterogeneity at a length scale below the imaging system spatial resolution. The basic principle for image contrast creation consists in a reduction of such scattering by permeation of the porosity by water. The implementation of the approach is based upon X-ray dark-field imaging via Talbot-Lau interferometry. The proof-of-concept is provided by performing laboratory-scale dark-field X-ray radiography of mortar samples during a water capillary uptake experiment. The results suggest that the proposed approach to visualizing unsaturated water transport in porous materials is complementary to neutron and magnetic resonance imaging and alternative to standard X-ray imaging, the latter requiring the use of contrast agents because based upon X-ray attenuation only.

  9. Dark-field Spectroscopy of Plasmonic Nanodevices with Nanometer Scale Features

    NASA Astrophysics Data System (ADS)

    French, David; Bauman, Stephen; Debu, Desalegn; Saylor, Cameron; Herzog, Joseph

    2015-03-01

    Plasmonic nanodevices are metallic structures that exhibit plasmonic effects when exposed to light, causing scattering and enhancement of that light. These plasmons makes it possible for light to be focused below the diffraction limit. Dark-field spectroscopy has been used to capture scattering spectra of these structures in order to examine the scattering and resonant frequencies of the plasmons provided by the devices. Dark-field spectroscopy is particularly well suited to this task because it is inexpensive to set up and it functions well with low signals. This paper examines the relation between the geometries of the devices and the spectral intensity of the scattered light. We study geometric parameters including device thickness and adhesion layer effects. Additionally we plan to investigate nanostructures fabricated with novel fabrication technique with device dimensions that are below 10 nm, both gap width and structure width. These devices are modeled computationally as well as manufactured and characterized experimentally.

  10. Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields

    SciTech Connect

    Steffen, J. H.; Baumbaugh, A.; Chou, A. S.; Mazur, P. O.; Tomlin, R.; Wester, W.; Upadhye, A.; Weltman, A.

    2010-12-31

    We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  11. Laboratory constraints on chameleon dark energy and power-law fields.

    PubMed

    Steffen, J H; Upadhye, A; Baumbaugh, A; Chou, A S; Mazur, P O; Tomlin, R; Weltman, A; Wester, W

    2010-12-31

    We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  12. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2017-10-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n( α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one (r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  13. Holographic Dark Energy in Brans-Dicke Theory with Logarithmic Form of Scalar Field

    NASA Astrophysics Data System (ADS)

    Singh, C. P.; Kumar, Pankaj

    2017-08-01

    In this paper, an interacting holographic dark energy model with Hubble horizon as an infra-red cut-off is considered in the framework of Brans-Dicke theory. We assume the Brans-Dicke scalar field as a logarithmic form ϕ = ϕ 0 l n(α + β a), where a is the scale factor, α and β are arbitrary constants, to interpret the physical phenomena of the Universe. The equation of state parameter w h and deceleration parameter q are obtained to discuss the dynamics of the evolution of the Universe. We present a unified model of holographic dark energy which explains the early time acceleration (inflation), medieval time deceleration and late time acceleration. It is also observed that w h may cross the phantom divide line in the late time evolution. We also discuss the cosmic coincidence problem. We obtain a time-varying density ratio of holographic dark energy to dark matter which is a constant of order one ( r˜ O(1)) during early and late time evolution, and may evolve sufficiently slow at present time. Thus, the model successfully resolves the cosmic coincidence problem.

  14. On Detailed Contrast of Biomedical Object in X-ray Dark-Field Imaging

    SciTech Connect

    Shimao, Daisuke; Mori, Koichi; Sugiyama, Hiroshi; Kunisada, Toshiyuki; Hyodo, Kazuyuki; Ando, Masami

    2007-01-19

    Over the past 10 years, refraction-based X-ray imaging has been studied together with a perspective view to clinical application. X-ray Dark-Field Imaging that utilizes a Laue geometry analyzer has recently been proposed and has the proven ability to depict articular cartilage in an intact human finger. In the current study, we researched detailed image contrast using X-ray Dark-Field Imaging by observing the edge contrast of an acrylic rod as a simple case, and found differences in image contrast between the right and left edges of the rod. This effect could cause undesirable contrast in the thin articular cartilage on the head of the phalanx. To avoid overlapping with this contrast at the articular cartilage, which would lead to a wrong diagnosis, we suggest that a joint surface on which articular cartilage is located should be aligned in the same sense as the scattering vector of the Laue case analyzer crystal. Defects of articular cartilage were successfully detected under this condition. When utilized under appropriate imaging conditions, X-ray Dark-Field Imaging will be a powerful tool for the diagnosis of arthropathy, as minute changes in articular cartilage may be early-stage features of this disease.

  15. Evolution of Mass and Velocity Field in the Cosmic Web: Comparison between Baryonic and Dark Matter

    NASA Astrophysics Data System (ADS)

    Zhu, Weishan; Feng, Long-Long

    2017-03-01

    We investigate the evolution of the cosmic web since z = 5 in grid-based cosmological hydrodynamical simulations, focusing on the mass and velocity fields of both baryonic and cold dark matter. The tidal tensor of density is used as the main method for web identification, with λ th = 0.2-1.2. The evolution trends in baryonic and dark matter are similar, although moderate differences are observed. Sheets appear early, and their large-scale pattern may have been set up by z = 3. In terms of mass, filaments supersede sheets as the primary collapsing structures from z ˜ 2-3. Tenuous filaments assembled with each other to form prominent ones at z < 2. In accordance with the construction of the frame of the sheets, the cosmic divergence velocity, v div, was already well-developed above 2-3 Mpc by z = 3. Afterwards, the curl velocity, v curl, grew dramatically along with the rising of filaments, becoming comparable to v div, for <2-3 Mpc at z = 0. The scaling of v curl can be described by the hierarchical turbulence model. The alignment between the vorticity and the eigenvectors of the shear tensor in the baryonic matter field resembles that in the dark matter field, and is even moderately stronger between {\\boldsymbol{ω }} and {{\\boldsymbol{e}}}1, and ω and {{\\boldsymbol{e}}}3. Compared with dark matter, there is slightly less baryonic matter found residing in filaments and clusters, and its vorticity developed more significantly below 2-3 Mpc. These differences may be underestimated because of the limited resolution and lack of star formation in our simulation. The impact of the change of dominant structures in overdense regions at z ˜ 2-3 on galaxy formation and evolution is shortly discussed.

  16. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    SciTech Connect

    Keresztes, Zoltán; Gergely, László Á. E-mail: gergely@physx.u-szeged.hu

    2014-11-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.

  17. The effect of dark matter and dark energy interactions on the peculiar velocity field and the kinetic Sunyaev-Zel'dovich effect

    SciTech Connect

    Xu, Xiao-Dong; Wang, Bin; Zhang, Pengjie; Atrio-Barandela, Fernando E-mail: wang_b@sjtu.edu.cn E-mail: atrio@usal.es

    2013-12-01

    The interaction between Dark Matter and Dark Energy has been proposed as a mechanism to alleviate the coincidence problem. We analyze its effects on the evolution of the gravitational and the peculiar velocity fields. We find that for different model parameters peculiar velocities vary from a factor five times smaller to two times larger than in the ΛCDM cosmological model at the same scales. We propose two new observables sensitive to such interactions based on their effect on the velocity field. We compare the effects on peculiar velocities with those on the Integrated Sachs-Wolfe effect demonstrating that velocities are more sensitive to the interaction. We show that the current upper limits on the amplitude of the kinetic Sunyaev-Zel'dovich power spectrum of temperature anisotropies provide constraints on the coupling within the dark sectors that are consistent with those obtained previously from the Cosmic Microwave Background and galaxy clusters. In particular, we show that Atacama Cosmology Telescope and South Pole Telescope data favor the decay of Dark Energy into Dark Matter, as required to solve the coincidence problem.

  18. Non-minimal derivative coupling scalar field and bulk viscous dark energy

    NASA Astrophysics Data System (ADS)

    Mostaghel, Behrang; Moshafi, Hossein; Movahed, S. M. S.

    2017-08-01

    Inspired by thermodynamical dissipative phenomena, we consider bulk viscosity for dark fluid in a spatially flat two-component Universe. Our viscous dark energy model represents phantom-crossing which avoids big-rip singularity. We propose a non-minimal derivative coupling scalar field with zero potential leading to accelerated expansion of the Universe in the framework of bulk viscous dark energy model. In this approach, the coupling constant, κ , is related to viscosity coefficient, γ , and the present dark energy density, \\varOmega _DE^0. This coupling is bounded as κ \\in [-1/9H_0^2(1-\\varOmega _DE^0), 0]. We implement recent observational data sets including a joint light-curve analysis (JLA) for SNIa, gamma ray bursts (GRBs) for most luminous astrophysical objects at high redshifts, baryon acoustic oscillations (BAO) from different surveys, Hubble parameter from HST project, Planck CMB power spectrum and lensing to constrain model free parameters. The joint analysis of JLA + GRBs + BAO + HST shows that \\varOmega _DE^0=0.696± 0.010, γ =0.1404± 0.0014 and H_0=68.1± 1.3. Planck TT observation provides γ =0.32^{+0.31}_{-0.26} in the 68% confidence limit for the viscosity coefficient. The cosmographic distance ratio indicates that current observed data prefer to increase bulk viscosity. The competition between phantom and quintessence behavior of the viscous dark energy model can accommodate cosmological old objects reported as a sign of age crisis in the \\varLambda CDM model. Finally, tension in the Hubble parameter is alleviated in this model.

  19. Seesaw mechanism for scalar fields as possible basis for dark energy.

    PubMed

    Enqvist, Kari; Hannestad, Steen; Sloth, Martin S

    2007-07-20

    We propose a novel mechanism for dark energy, based on an extended seesaw for scalar fields, which does not require any new physics at energies below the TeV scale. A very light quintessence mass is usually considered to be technically unnatural, unless it is protected by some symmetry broken at the new very light scale. We propose that one can use an extended seesaw mechanism to construct technically natural models for very light fields, protected by supersymmetry softly broken above a TeV.

  20. Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

    2012-05-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  1. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Unlisted

    2010-09-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  2. Einstein's Gravitational Field Approach to Dark Matter and Dark Energy-Geometric Particle Decay into the Vacuum Energy Generating Higgs Boson and Heavy Quark Mass

    NASA Astrophysics Data System (ADS)

    Christensen, Walter James

    2015-08-01

    During an interview at the Niels Bohr Institute David Bohm stated, "according to Einstein, particles should eventually emerge as singularities, or very strong regions of stable pulses of (the gravitational) field" [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass; and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.

  3. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  4. DARK MATTER, MAGNETIC FIELDS, AND THE ROTATION CURVE OF THE MILKY WAY

    SciTech Connect

    Ruiz-Granados, B.; Battaner, E.; Florido, E.; Calvo, J.; Rubino-Martin, J. A.

    2012-08-20

    The study of the disk rotation curve of our Galaxy at large distances provides an interesting scenario for us to test whether magnetic fields should be considered as a non-negligible dynamical ingredient. By assuming a bulge, an exponential disk for the stellar and gaseous distributions, and a dark halo and disk magnetic fields, we fit the rotation velocity of the Milky Way. In general, when the magnetic contribution is added to the dynamics, a better description of the rotation curve is obtained. Our main conclusion is that magnetic fields should be taken into account for the Milky Way dynamics. Azimuthal magnetic field strengths of B{sub {phi}} {approx} 2 {mu}G at distances of {approx}2 R{sub 0}(16 kpc) are able to explain the rise-up for the rotation curve in the outer disk.

  5. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    SciTech Connect

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-23

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  6. Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning

    NASA Astrophysics Data System (ADS)

    Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram

    2014-06-01

    High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.

  7. SDF-1/CXCL12 and CXCR4 gene variants, and elevated serum SDF-1 levels are associated with preeclampsia.

    PubMed

    Karakus, Savas; Bagci, Binnur; Bagci, Gokhan; Sancakdar, Enver; Yildiz, Caglar; Akkar, Ozlem; Cetin, Ali

    2017-05-01

    We aimed to compare the frequencies of stromal cell-derived factor-1 (SDF-1) 3'A and CXCR4 single-nucleotide polymorphisms (SNPs) and serum SDF-1 levels in patients with preeclampsia (PE). In total, 89 women with PE and 89 control women were included in the study. Genotyping was done by polymerase chain reaction-restriction fragment length polymorphism method. Enzyme-linked immunosorbent assay method was used to measure serum SDF-1 level. For SDF-1 3'A SNP, the frequency of GA genotype, total number of GA and AA genotypes, and the A allele frequency was higher in PE patients than controls (p = 0.04, 0.023, and 0.029, respectively). For CXCR4 SNP, the frequency of CT genotype, total number of CT and TT genotypes, and the T allele frequency were higher in PE patients than controls (p = 0.04, 0.006, and 0.005, respectively). SDF-1 serum level was detected higher in preeclamptic women compared with controls (p = 0.001). In PE patients, there was no significant association between serum SDF-1 levels and genotypes of SDF-1 3'A SNP. SDF-1 level was significantly higher in patients bearing CXCR4 CT genotype than CC genotype (p = 0.001). Furthermore, SDF-1 levels in patients bearing CT+TT genotype were found higher than that of patients with CC genotypes (p = 0.001). Results of our study suggest that SDF-1 3'A and CXCR4 polymorphisms and elevated serum SDF-1 levels may have a role in the development of PE.

  8. The Viability of Phantom Dark Energy as a Quantum Field in 1st-Order FLRW Space

    NASA Astrophysics Data System (ADS)

    Ludwick, Kevin

    2017-01-01

    In the standard cosmological framework of the 0th-order FLRW metric and the use of perfect fluids in the stress-energy tensor, dark energy with an equation-of-state parameter w < - 1 (known as phantom dark energy) implies negative kinetic energy and vacuum instability when modeled as a scalar field. However, the accepted values for present-day w from Planck and WMAP9 include a significant range of values less than - 1 . We consider a more accurate description of the universe through the 1st-order perturbing of the isotropic and homogeneous FLRW metric and the components of the stress-energy tensor and investigate whether a field with an apparent w < - 1 may still have positive kinetic energy. Treating dark energy as a classical scalar field in this metric, we find that it is not as obvious as one might think that phantom dark energy has negative kinetic energy categorically. Analogously, we find that field models of quintessence dark energy (w > - 1) do not necessarily have positive kinetic energy categorically. We then investigate the same question treating dark energy as a quantum field in 1st-order FLRW space-time and examining the expectation value of the stress-energy tensor for w < - 1 using adiabatic expansion.

  9. Targeting SDF-1 in multiple myeloma tumor microenvironment.

    PubMed

    Bouyssou, Juliette M C; Ghobrial, Irene M; Roccaro, Aldo M

    2016-09-28

    Multiple myeloma (MM) is a type of B-cell malignancy that remains incurable to date. The bone marrow (BM) microenvironment plays a crucial role in MM progression. The chemokine SDF-1 (CXCL12) is an important actor of the BM microenvironment that has the ability to regulate numerous processes related to its malignant transformation during MM development. The activity of SDF-1 is mainly mediated by its specific receptor CXCR4, which is expressed at the surface of MM cells and various other BM cell types. Current treatments available for MM patients mainly target tumor cells but have limited effects on the BM microenvironment. In this context, SDF-1 and CXCR4 represent ideal targets for the normalization of the MM-supportive BM microenvironment. The present review focuses on the activity of SDF-1 in the MM BM microenvironment and the current efforts carried out to target the SDF-1/CXCR4 axis for treatment of MM.

  10. A noise reduction method for quantifying nanoparticle light scattering in low magnification dark-field microscope far-field images

    PubMed Central

    Sun, Dali

    2016-01-01

    Nanoparticles have become a powerful tool for cell imaging, biomolecule and cell and protein interaction studies, but are difficult to rapidly and accurately measure in most assays. Dark-field microscope (DFM) image analysis approaches used to quantify nanoparticles require high-magnification near-field (HN) images that are labor intensive due to a requirement for manual image selection and focal adjustments needed when identifying and capturing new regions of interest. Low-magnification far-field (LF) DFM imagery is technically simpler to perform but cannot be used as an alternate to HN-DFM quantification, since it is highly sensitive to surface artifacts and debris that can easily mask nanoparticle signal. We now describe a new noise reduction approach that markedly reduces LF-DFM image artifacts to allow sensitive and accurate nanoparticle signal quantification from LF-DFM images. We have used this approach to develop a “Dark Scatter Master” (DSM) algorithm for the popular NIH image analysis program ImageJ, which can be readily adapted for use with automated high-throughput assay analyses. This method demonstrated robust performance quantifying nanoparticles in different assay formats, including a novel method that quantified extracellular vesicles in patient blood sample to detect pancreatic cancer cases. Based on these results, we believe our LF-DFM quantification method can markedly decrease the analysis time of most nanoparticle-based assays to impact both basic research and clinical analyses. PMID:28177210

  11. Laboratory constraints on chameleon dark energy and power-law fields

    SciTech Connect

    Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William; /Fermilab

    2010-10-01

    We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  12. Icosahedral stereographic projections in three dimensions for use in dark field TEM.

    PubMed

    Bourdillon, Antony J

    2013-08-01

    Thermodynamics require that rapidly cooled crystals and quasicrystals are relatively defective. Yet, without convenient 3-dimensional indexation both at crystal poles and in diffraction planes, or Kikuchi maps, it is difficult to identify the defects by dark field transmission electron microscopy. For two phase Al6Mn, these maps are derived. They relate i-Al6Mn to the standard face centered cubic, matrix crystals. An example of their usefulness in determining interfacial characteristics is described. Indices are integral powers on an irrational number.

  13. Atomic bonding effects in annular dark field scanning transmission electron microscopy. II. Experiments

    SciTech Connect

    Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre

    2016-07-15

    Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reported here.

  14. Tissue Visualization Using X-Ray Dark-Field Imaging towards Pathological Goal

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Chikaura, Yoshinori; Endo, Tokiko; Gupta, Rajiv; Huo, Qingkai; Hyodo, Kazuyuki; Ichihara, Shu; Mori, Kensaku; Nakao, Yuki; Ohura, Norihiko; Sunaguchi, Naoki; Sugiyama, Hiroshi; Suzuki, Yoshifumi; Wu, Yanlin; Yuasa, Tetsuya; Xiaowei, Zhang

    2013-03-01

    In XDFI (x-ray dark-field imaging) LAA (Laue-case angle analyzer) simultaneously provides two x-ray images; one corresponds to a FD forward diffracted beam and a separate D diffracted beam. When this is applied to biomedical specimens x-ray images are very high contrast and very high spatial resolution. We constructed XDFI system at the vertical wiggler beamline BL-14C in KEK Photon Factory and performed imaging experiment of breast tissues and an excised human femoral artery. In this paper, we discuss a tissue visualization and pathological goal using 2D, 3D-CT and 2.5D image (tomosynthesis) with XDFI.

  15. Quantitative Neutron Dark-field Imaging through Spin-Echo Interferometry

    PubMed Central

    Strobl, Markus; Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Kaestner, Anders; Pappas, Catherine; Habicht, Klaus

    2015-01-01

    Neutron dark-field imaging constitutes a seminal progress in the field of neutron imaging as it combines real space resolution capability with information provided by one of the most significant neutron scattering techniques, namely small angle scattering. The success of structural characterizations bridging the gap between macroscopic and microscopic features has been enabled by the introduction of grating interferometers so far. The induced interference pattern, a spatial beam modulation, allows for mapping of small-angle scattering signals and hence addressing microstructures beyond direct spatial resolution of the imaging system with high efficiency. However, to date the quantification in the small angle scattering regime is severely limited by the monochromatic approach. To overcome such drawback we here introduce an alternative and more flexible method of interferometric beam modulation utilizing a spin-echo technique. This novel method facilitates straightforward quantitative dark-field neutron imaging, i.e. the required quantitative microstructural characterization combined with real space image resolution. For the first time quantitative microstructural reciprocal space information from small angle neutron scattering becomes available together with macroscopic image information creating the potential to quantify several orders of magnitude in structure sizes simultaneously. PMID:26560644

  16. Dark energy, non-minimal couplings and the origin of cosmic magnetic fields

    SciTech Connect

    Jiménez, Jose Beltrán; Maroto, Antonio L. E-mail: maroto@fis.ucm.es

    2010-12-01

    In this work we consider the most general electromagnetic theory in curved space-time leading to linear second order differential equations, including non-minimal couplings to the space-time curvature. We assume the presence of a temporal electromagnetic background whose energy density plays the role of dark energy, as has been recently suggested. Imposing the consistency of the theory in the weak-field limit, we show that it reduces to standard electromagnetism in the presence of an effective electromagnetic current which is generated by the momentum density of the matter/energy distribution, even for neutral sources. This implies that in the presence of dark energy, the motion of large-scale structures generates magnetic fields. Estimates of the present amplitude of the generated seed fields for typical spiral galaxies could reach 10{sup −9} G without any amplification. In the case of compact rotating objects, the theory predicts their magnetic moments to be related to their angular momenta in the way suggested by the so called Schuster-Blackett conjecture.

  17. Dark field imaging of biological macromolecules with the scanning transmission electron microscope

    PubMed Central

    Ohtsuki, Mitsuo; Isaacson, Michael S.; Crewe, A. V.

    1979-01-01

    A scanning transmission electron microscope (STEM) equipped with a field emission gun has been employed for the examination of biological macromolecules at high resolution. The quality of micrographs obtained with the STEM is dependent upon the quality of the substrate used to support biological objects because the image contrast in dark field is proportional to the mass density of the specimen. In order to reduce deleterious effects of the substrates on the image quality, we have developed a method of fabricating substrates consisting of very thin, very clean carbon films supported on very clean fenestrated plastic films. These films are approximately 15 Å thick. Well-known biological macromolecules such as glutamine synthetase and tobacco mosaic virus (both stained) and low-density lipoprotein and ferritin (both unstained were placed on these substrates and examined with the STEM by using various modes of contrast. The micrographs obtained by using the dark field mode of contrast employing an annular detector were free from phase contrast, as expected. Using this contrast mode, we have been able to directly observe (in-focus) 2.5- to 4.4-Å lattice spacings in the ferritin core. The effect of electron radiation damage on the helical structure of tobacco mosaic virus was also examined. Micrographs as well as corresponding optical diffraction patterns obtained with moderately low doses showed very clear helical structure from both sides of the virus. In addition, the (11.5 Å)-1 layer lines indicated the effective resolution attained on these particles. Images PMID:35788

  18. THE INFRARED ARRAY CAMERA DARK FIELD: FAR-INFRARED TO X-RAY DATA

    SciTech Connect

    Krick, J. E.; Surace, J. A.; Yan, L.; Lacy, M.; Thompson, D.; Ashby, M. L. N.; Hora, J.; Gorjian, V.; Frayer, D. T.; Egami, E.

    2009-11-01

    We present 20 band photometry from the far-IR to X-ray in the Spitzer Infrared Array Camera (IRAC) dark field. The bias for the near-IR camera on Spitzer is calibrated by observing a {approx}20' diameter 'dark' field near the north ecliptic pole roughly every two-to-three weeks throughout the mission duration of Spitzer. The field is unique for its extreme depth, low background, high quality imaging, time-series information, and accompanying photometry including data taken with Akari, Palomar, MMT, KPNO, Hubble, and Chandra. This serendipitous survey contains the deepest mid-IR data taken to date. This data set is well suited for studies of intermediate-redshift galaxy clusters, high-redshift galaxies, the first generation of stars, and the lowest mass brown dwarfs, among others. This paper provides a summary of the data characteristics and catalog generation from all bands collected to date as well as a discussion of photometric redshifts and initial and expected science results and goals. To illustrate the scientific potential of this unique data set, we also present here IRAC color-color diagrams.

  19. General solution for quantitative dark-field contrast imaging with grating interferometers

    NASA Astrophysics Data System (ADS)

    Strobl, M.

    2014-11-01

    Grating interferometer based imaging with X-rays and neutrons has proven to hold huge potential for applications in key research fields conveying biology and medicine as well as engineering and magnetism, respectively. The thereby amenable dark-field imaging modality implied the promise to access structural information beyond reach of direct spatial resolution. However, only here a yet missing approach is reported that finally allows exploiting this outstanding potential for non-destructive materials characterizations. It enables to obtain quantitative structural small angle scattering information combined with up to 3-dimensional spatial image resolution even at lab based x-ray or at neutron sources. The implied two orders of magnitude efficiency gain as compared to currently available techniques in this regime paves the way for unprecedented structural investigations of complex sample systems of interest for material science in a vast range of fields.

  20. On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography

    NASA Astrophysics Data System (ADS)

    Michel, Thilo; Rieger, Jens; Anton, Gisela; Bayer, Florian; Beckmann, Matthias W.; Durst, Jürgen; Fasching, Peter A.; Haas, Wilhelm; Hartmann, Arndt; Pelzer, Georg; Radicke, Marcus; Rauh, Claudia; Ritter, André; Sievers, Peter; Schulz-Wendtland, Rüdiger; Uder, Michael; Wachter, David L.; Weber, Thomas; Wenkel, Evelyn; Zang, Andrea

    2013-04-01

    We show that a distribution of micrometer-sized calcifications in the human breast which are not visible in clinical x-ray mammography at diagnostic dose levels can produce a significant dark-field signal in a grating-based x-ray phase-contrast imaging setup with a tungsten anode x-ray tube operated at 40 kVp. A breast specimen with invasive ductal carcinoma was investigated immediately after surgery by Talbot-Lau x-ray interferometry with a design energy of 25 keV. The sample contained two tumors which were visible in ultrasound and contrast-agent enhanced MRI but invisible in clinical x-ray mammography, in specimen radiography and in the attenuation images obtained with the Talbot-Lau interferometer. One of the tumors produced significant dark-field contrast with an exposure of 0.85 mGy air-kerma. Staining of histological slices revealed sparsely distributed grains of calcium phosphate with sizes varying between 1 and 40 μm in the region of this tumor. By combining the histological investigations with an x-ray wave-field simulation we demonstrate that a corresponding distribution of grains of calcium phosphate in the form of hydroxylapatite has the ability to produce a dark-field signal which would—to a substantial degree—explain the measured dark-field image. Thus we have found the appearance of new information (compared to attenuation and differential phase images) in the dark-field image. The second tumor in the same sample did not contain a significant fraction of these very fine calcification grains and was invisible in the dark-field image. We conclude that some tumors which are invisible in x-ray absorption mammography might be detected in the x-ray dark-field image at tolerable dose levels.

  1. On a dark-field signal generated by micrometer-sized calcifications in phase-contrast mammography.

    PubMed

    Michel, Thilo; Rieger, Jens; Anton, Gisela; Bayer, Florian; Beckmann, Matthias W; Durst, Jürgen; Fasching, Peter A; Haas, Wilhelm; Hartmann, Arndt; Pelzer, Georg; Radicke, Marcus; Rauh, Claudia; Ritter, André; Sievers, Peter; Schulz-Wendtland, Rüdiger; Uder, Michael; Wachter, David L; Weber, Thomas; Wenkel, Evelyn; Zang, Andrea

    2013-04-21

    We show that a distribution of micrometer-sized calcifications in the human breast which are not visible in clinical x-ray mammography at diagnostic dose levels can produce a significant dark-field signal in a grating-based x-ray phase-contrast imaging setup with a tungsten anode x-ray tube operated at 40 kVp. A breast specimen with invasive ductal carcinoma was investigated immediately after surgery by Talbot-Lau x-ray interferometry with a design energy of 25 keV. The sample contained two tumors which were visible in ultrasound and contrast-agent enhanced MRI but invisible in clinical x-ray mammography, in specimen radiography and in the attenuation images obtained with the Talbot-Lau interferometer. One of the tumors produced significant dark-field contrast with an exposure of 0.85 mGy air-kerma. Staining of histological slices revealed sparsely distributed grains of calcium phosphate with sizes varying between 1 and 40 μm in the region of this tumor. By combining the histological investigations with an x-ray wave-field simulation we demonstrate that a corresponding distribution of grains of calcium phosphate in the form of hydroxylapatite has the ability to produce a dark-field signal which would-to a substantial degree-explain the measured dark-field image. Thus we have found the appearance of new information (compared to attenuation and differential phase images) in the dark-field image. The second tumor in the same sample did not contain a significant fraction of these very fine calcification grains and was invisible in the dark-field image. We conclude that some tumors which are invisible in x-ray absorption mammography might be detected in the x-ray dark-field image at tolerable dose levels.

  2. Cone of Darkness: Finding Blank-sky Positions for Multi-object Wide-field Observations

    NASA Astrophysics Data System (ADS)

    Lorente, N. P. F.

    2014-05-01

    We present the Cone of Darkness, an application to automatically configure blank-sky positions for a series of stacked, wide-field observations, such as those carried out by the SAMI instrument on the Anglo-Australian Telescope (AAT). The Sydney-AAO Multi-object Integral field spectrograph (SAMI) uses a plug-plate to mount its 13×61 core imaging fibre bundles (hexabundles) in the optical plane at the telescope's prime focus. To make the most efficient use of each plug-plate, several observing fields are typically stacked to produce a single plate. When choosing blank-sky positions for the observations it is most effective to select these such that one set of 26 holes gives valid sky positions for all fields on the plate. However, when carried out manually this selection process is tedious and includes a significant risk of error. The Cone of Darkness software aims to provide uniform blank-sky position coverage over the field of observation, within the limits set by the distribution of target positions and the chosen input catalogs. This will then facilitate the production of the best representative median sky spectrum for use in sky subtraction. The application, written in C++, is configurable, making it usable for a range of instruments. Given the plate characteristics and the positions of target holes, the software segments the unallocated space on the plate and determines the position which best fits the uniform distribution requirement. This position is checked, for each field, against the selected catalog using a TAP ADQL search. The process is then repeated until the desired number of sky positions is attained.

  3. Cosmological constraints on Bose-Einstein-condensed scalar field dark matter

    NASA Astrophysics Data System (ADS)

    Li, Bohua; Rindler-Daller, Tanja; Shapiro, Paul R.

    2014-04-01

    Despite the great successes of the cold dark matter (CDM) model in explaining a wide range of observations of the global evolution and the formation of galaxies and large-scale structure in the Universe, the origin and microscopic nature of dark matter is still unknown. The most common form of CDM considered to date is that of weakly interacting massive particles (WIMPs), but, so far, attempts to detect WIMPs directly or indirectly have not yet succeeded, and the allowed range of particle parameters has been significantly restricted. Some of the cosmological predictions for this kind of CDM are even in apparent conflict with observations (e.g., cuspy-cored halos and an overabundance of satellite dwarf galaxies). For these reasons, it is important to consider the consequences of different forms of CDM. We focus here on the hypothesis that the dark matter is comprised, instead, of ultralight bosons that form a Bose-Einstein condensate, described by a complex scalar field, for which particle number per unit comoving volume is conserved. We start from the Klein-Gordon and Einstein field equations to describe the evolution of the Friedmann-Robertson-Walker universe in the presence of this kind of dark matter. We find that, in addition to the radiation-, matter-, and Λ-dominated phases familiar from the standard CDM model, there is an earlier phase of scalar-field domination, which is special to this model. In addition, while WIMP CDM is nonrelativistic at all times after it decouples, the equation of state of Bose-Einstein condensed scalar field dark matter (SFDM) is found to be relativistic at early times, evolving from stiff (p ¯=ρ ¯) to radiationlike (p ¯=ρ ¯/3), before it becomes nonrelativistic and CDM-like at late times (p ¯=0). The timing of the transitions between these phases and regimes is shown to yield fundamental constraints on the SFDM model parameters, particle mass m, and self-interaction coupling strength λ. We show that SFDM is compatible with

  4. Effect of anisotropy on the generalized Chaplygin gas scalar field and its interaction with other dark energy models

    NASA Astrophysics Data System (ADS)

    Fayaz, V.; Hossienkhani, H.; Jafari, A.

    2017-04-01

    In this work, we establish a correspondence between the interacting holographic, new agegraphic dark energy and generalized Chaplygin gas model in Bianchi type I universe. Then, we reconstruct the potential of the scalar field which describes the generalized Chaplygin cosmology. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of the anisotropy and dominates over the potential energy of the field. We investigate observational constraints on the generalized Chaplygin gas, holographic and new agegraphic dark energy models as the unification of dark matter and dark energy, by using the latest observational data. To do this we focus on observational determinations of the expansion history H( z) . It is shown that the HDE model is better than the NADE and generalized Chaplygin gas models in an anisotropic universe. Then, we calculate the evolution of density perturbations in the linear regime for three models of dark energy and compare with the results of the Λ CDM model. Finally, the analysis shows that the increase in anisotropy leads to more correspondence between the dark energy scalar field model and observational data.

  5. Evolution of a Dwarf Satellite Galaxy Embedded in a Scalar Field Dark Matter Halo

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Lora, V.; Matos, T.; Sánchez-Salcedo, F. J.

    2015-09-01

    The cold dark matter (CDM) model has two unsolved issues: simulations overpredict the satellite abundance around the Milky Way (MW) and it disagrees with observations of the central densities of dwarf galaxies which prefer constant density (core) profiles. One alternative explanation known as the scalar field dark matter (SFDM) model, assumes that dark matter is a scalar field of mass (˜10-22 eV/c2); this model can reduce the overabundance issue due to the lack of halo formation below a mass scale of ˜108M⊙ and successfully fits the density distribution in dwarfs. One of the attractive features of the model is predicting core profiles in halos, although the determination of the core sizes is set by fitting the observational data. We perform N-body simulations to explore the influence of tidal forces over a stellar distribution embedded in an SFDM halo orbiting a MW-like SFDM host halo with a disk. Our simulations intend to test the viability of SFDM as an alternative model by comparing the tidal effects that result in this paradigm with those obtained in the CDM for similar mass halos. We found that galaxies in subhalos with core profiles and high central densities survive for 10 Gyr. The same occurs for galaxies in low density subhalos located far from the host disk influence, whereas satellites in low density DM halos and in tight orbits can eventually be stripped of stars. We conclude that SFDM shows consistency with results from the CDM for dwarf galaxies, but naturally offer a possibility to solve the missing satellite problem.

  6. EVOLUTION OF A DWARF SATELLITE GALAXY EMBEDDED IN A SCALAR FIELD DARK MATTER HALO

    SciTech Connect

    Robles, Victor H.; Matos, T.; Lora, V.; Sánchez-Salcedo, F. J. E-mail: vlora@ari.uni-heidelberg.de

    2015-09-10

    The cold dark matter (CDM) model has two unsolved issues: simulations overpredict the satellite abundance around the Milky Way (MW) and it disagrees with observations of the central densities of dwarf galaxies which prefer constant density (core) profiles. One alternative explanation known as the scalar field dark matter (SFDM) model, assumes that dark matter is a scalar field of mass (∼10{sup −22} eV/c{sup 2}); this model can reduce the overabundance issue due to the lack of halo formation below a mass scale of ∼10{sup 8}M{sub ⊙} and successfully fits the density distribution in dwarfs. One of the attractive features of the model is predicting core profiles in halos, although the determination of the core sizes is set by fitting the observational data. We perform N-body simulations to explore the influence of tidal forces over a stellar distribution embedded in an SFDM halo orbiting a MW-like SFDM host halo with a disk. Our simulations intend to test the viability of SFDM as an alternative model by comparing the tidal effects that result in this paradigm with those obtained in the CDM for similar mass halos. We found that galaxies in subhalos with core profiles and high central densities survive for 10 Gyr. The same occurs for galaxies in low density subhalos located far from the host disk influence, whereas satellites in low density DM halos and in tight orbits can eventually be stripped of stars. We conclude that SFDM shows consistency with results from the CDM for dwarf galaxies, but naturally offer a possibility to solve the missing satellite problem.

  7. First experiences with in-vivo x-ray dark-field imaging of lung cancer in mice

    NASA Astrophysics Data System (ADS)

    Gromann, Lukas B.; Scherer, Kai; Yaroshenko, Andre; Bölükbas, Deniz A.; Hellbach, Katharina; Meinel, Felix G.; Braunagel, Margarita; Eickelberg, Oliver; Reiser, Maximilian F.; Pfeiffer, Franz; Meiners, Silke; Herzen, Julia

    2017-03-01

    Purpose: The purpose of the present study was to evaluate if x-ray dark-field imaging can help to visualize lung cancer in mice. Materials and Methods: The experiments were performed using mutant mice with high-grade adenocarcinomas. Eight animals with pulmonary carcinoma and eight control animals were imaged in radiography mode using a prototype small-animal x-ray dark-field scanner and three of the cancerous ones additionally in CT mode. After imaging, the lungs were harvested for histological analysis. To determine their diagnostic value, x-ray dark-field and conventional attenuation images were analyzed by three experienced readers in a blind assessment. Results radiographic imaging: The lung nodules were much clearer visualized on the dark-field radiographs compared to conventional radiographs. The loss of air-tissue interfaces in the tumor leads to a significant loss of x-ray scattering, reflected in a strong dark-field signal change. The difference between tumor and healthy tissue in terms of x-ray attenuation is significantly less pronounced. Furthermore, the signal from the overlaying structures on conventional radiographs complicates the detection of pulmonary carcinoma. Results CT imaging: The very first in-vivo CT-imaging results are quite promising as smaller tumors are often better visible in the dark-field images. However the imaging quality is still quite low, especially in the attenuation images due to un-optimized scanning parameters. Conclusion: We found a superior diagnostic performance of dark-field imaging compared to conventional attenuation based imaging, especially when it comes to the detection of small lung nodules. These results support the motivation to further develop this technique and translate it towards a clinical environment.

  8. Dark-field X-ray microscopy for multiscale structural characterization

    PubMed Central

    Simons, H.; King, A.; Ludwig, W.; Detlefs, C.; Pantleon, W.; Schmidt, S.; Snigireva, I.; Snigirev, A.; Poulsen, H. F.

    2015-01-01

    Many physical and mechanical properties of crystalline materials depend strongly on their internal structure, which is typically organized into grains and domains on several length scales. Here we present dark-field X-ray microscopy; a non-destructive microscopy technique for the three-dimensional mapping of orientations and stresses on lengths scales from 100 nm to 1 mm within embedded sampling volumes. The technique, which allows ‘zooming’ in and out in both direct and angular space, is demonstrated by an annealing study of plastically deformed aluminium. Facilitating the direct study of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements (for example, positioned at interfaces) is crucial to the performance and lifetime of macro-scale devices and components thereof. PMID:25586429

  9. Cosmological acceleration from a scalar field and classical and quantum gravitational waves (Inflation and dark energy)

    NASA Astrophysics Data System (ADS)

    Marochnik, Leonid

    2017-07-01

    We show that on the average, homogeneous and isotropic scalar field and on the average homogeneous and isotropic ensembles of classical and quantum gravitational waves generate the de Sitter expansion of the empty (with no matter) space-time. At the start and by the end of its cosmological evolution the Universe is empty. The contemporary Universe is about 70% empty, so the effect of cosmological acceleration should be very noticeable. One can assume that it manifests itself as dark energy. At the start of the cosmological evolution, before the first matter was born, the Universe is also empty. The cosmological acceleration of such an empty space-time can manifests itself as inflation. To get the de Sitter accelerated expansion of the empty space-time under influence of scalar fields and classical and quantum gravitational waves, one needs to make a mandatory Wick rotation, i.e. one needs to make a transition to the Euclidean space of imaginary time. One can assume that the very existence of inflation and dark energy could be considered as a possible observable evidence of the fact that time by its nature could be a complex value which manifests itself precisely at the start and by the end of the evolution of the Universe, i.e. in those periods when the Universe is empty (or nearly empty).

  10. Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing

    NASA Astrophysics Data System (ADS)

    Yim, Sang-Youp; Park, Jin-Ho; Kim, Min-Gon

    2015-07-01

    Localized surface plasmon resonance (LSPR) of metal nanoparticles makes red-shift of extinction wavelength with an increase in the refractive index at the surface of the metal nanoparticles. Since biomolecules bound to the metal nanoparticle's surface induce refractive index change, biosensing based on LSPR effect can be possible by monitoring scattering or absorption spectrum changes. Generally, however, conventional method detects ensemble averaged LSPR signal of a huge number of metal nanoparticles. Here, we have constructed a dark-field spectral imaging microscope in order to monitor the scattering spectra of individual metal nanoparticles, simultaneously. Gold nanorod (GNR) and aptamer are employed to detect ochratoxin A (OTA) related to a carcinogenic illness. An aptamer-target binding mechanism promotes wavelength shift of extinction spectra due to refractive index change within sensing volume of GNR by structural change of aptamer. A number of GNRs can be identified in a dark-field LSPR image, simultaneously. A typical spectrum of a GNR exhibits red-shift after target binding of molecules and OTA detection is extended to the very low concentration of 1 pM level.

  11. Grating-based X-ray Dark-field Computed Tomography of Living Mice

    PubMed Central

    Velroyen, A.; Yaroshenko, A.; Hahn, D.; Fehringer, A.; Tapfer, A.; Müller, M.; Noël, P.B.; Pauwels, B.; Sasov, A.; Yildirim, A.Ö.; Eickelberg, O.; Hellbach, K.; Auweter, S.D.; Meinel, F.G.; Reiser, M.F.; Bech, M.; Pfeiffer, F.

    2015-01-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural – and thus indirectly functional – changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue. PMID:26629545

  12. New agegraphic dark energy model in Brans-Dicke theory with logarithmic form of scalar field

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Singh, C. P.

    2017-03-01

    In this paper, the cosmological evolution of new agegraphic dark energy (NADE) model is analyzed in Brans-Dicke theory within the framework of Friedmann-Robertson-Walker Universe. The power-law assumption on Brans-Dicke scalar field is reconsidered by assuming the logarithmic form. We derive the equation of state parameter wD and deceleration parameter q of NADE model. It is observed that wD→ -1 when a→ ∞, i.e., the NADE mimics cosmological constant in the late time evolution. Indeed, due to the assumption of logarithmic form of Brans-Dicke scalar field the NADE in Brans-Dicke theory behaves like NADE in general relativity in the late time evolution. The NADE model shows a phase transition from matter dominated phase in early time to accelerated phase in late time. We further extend NADE model by including the interaction between dark matter and NADE. In this case, wD definitely crosses the phantom divide line (wD=-1) in the late time evolution. The phase transition from matter dominated to NADE dominated phase may be achieved at early stage in interacting model. Further, we show that the interacting NADE model resolves the cosmic coincidence problem as the energy density ratio may evolve sufficiently slow at present.

  13. Valence EELS below the limit of inelastic delocalization using conical dark field EFTEM or Bessel beams.

    PubMed

    Stöger-Pollach, Michael; Schachinger, Thomas; Biedermann, Kati; Beyer, Volkhard

    2017-02-01

    In this experimental work we present novel methods to increase the spatial resolution of valence electron energy loss spectrometry (VEELS) investigations below the limit given by the inelastic delocalization. For this purpose we analyse a layer stack consisting of silicon/silicon-oxide/silicon-nitride/silicon-oxide/silicon (SONOS) with varying layer thickness down to the 2nm level. Using a combination of a conical illumination and energy filtered transmission electron microscopy we are able to identify the layers by using low energy losses. Employing Bessel beams we demonstrate that VEELS can be performed in dark-field conditions while simultaneously the Bessel beam increases the spatial resolution of the elastic image due to less sensitivity to the spherical aberration of the condenser lens system. The dark-field conditions also guarantee that only electrons are collected that have neither undergone an energy loss being due to the Cˇerenkov effect, nor due to the excitation of transition radiation or light guiding modes. We consequently are able to measure the optical properties of a 2.5nm thin oxide being sandwiched by the silicon substrate and a silicon-nitride layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Complex Scalar Field Dark Matter and Cosmological B-Modes from Inflation

    NASA Astrophysics Data System (ADS)

    Li, Bohua; Rindler-Daller, Tanja; Shapiro, Paul

    2015-04-01

    As an alternative to the WIMP CDM model, we consider dark matter comprised of ultralight bosons, described by a classical complex scalar field, for which particle number per unit comoving volume is conserved. When the homogeneous background universe evolves in the presence of this type of scalar field dark matter (SFDM), the equation of state of SFDM is relativistic at early times, evolving from stiff (p = ρ) to radiationlike (p = ρ / 3), before it becomes nonrelativistic and CDM-like at late times (p = 0). Thus, before the familiar radiation-dominated phase, there is an earlier phase of stiff-matter-domination. The timing of the transition between these phases determined by SFDM model parameters, particle mass m and self-interaction coupling strength λ, is constrained by cosmological observables, particularly Neff, the effective number of neutrino species during BBN, and cosmological tensor fluctuations from inflation, which leave an imprint on CMB B-modes. Primordial tensor modes that reenter the horizon during the stiff phase contribute significantly to the total energy density of the universe as gravitational waves, increasing the expansion rate of the early universe. This effect yields constraints on SFDM model parameters.

  15. Experimental quantification of annular dark-field images in scanning transmission electron microscopy.

    PubMed

    Lebeau, James M; Stemmer, Susanne

    2008-11-01

    This paper reports on a method to obtain atomic resolution Z-contrast (high-angle annular dark-field) images with intensities normalized to the incident beam. The procedure bypasses the built-in signal processing hardware of the microscope to obtain the large dynamic range necessary for consecutive measurements of the incident beam and the intensities in the Z-contrast image. The method is also used to characterize the response of the annular dark-field detector output, including conditions that avoid saturation and result in a linear relationship between the electron flux reaching the detector and its output. We also characterize the uniformity of the detector response across its entire area and determine its size and shape, which are needed as input for image simulations. We present normalized intensity images of a SrTiO(3) single crystal as a function of thickness. Averaged, normalized atom column intensities and the background intensity are extracted from these images. The results from the approach developed here can be used for direct, quantitative comparisons with image simulations without any need for scaling.

  16. Interaction of Gravitational field and Brans-Dicke field in R/W universe containing Dark Energy like fluid

    NASA Astrophysics Data System (ADS)

    Priyokumar Singh, Kangujam; Manihar Singh, Koijam; Dewri, Mukunda

    2016-04-01

    On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.

  17. Search for Chameleon Scalar Fields with the Axion Dark Matter Experiment

    SciTech Connect

    Rybka, G.; Hotz, M.; Rosenberg, L. J; Asztalos, S. J.; Carosi, G.; Hagmann, C.; Kinion, D.; van Bibber, K.; Hoskins, J.; Martin, C.; Sikivie, P.; Tanner, D. B.; Bradley, R.; Clarke, J.

    2010-07-30

    Scalar fields with a 'chameleon' property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling {beta}{sub {gamma}}excluding values between 2x10{sup 9} and 5x10{sup 14} for effective chameleon masses between 1.9510 and 1.9525 {mu}eV.

  18. Strain measurement in ferromagnetic crystals using dark-field electron holography

    NASA Astrophysics Data System (ADS)

    Murakami, Yasukazu; Niitsu, Kodai; Kaneko, Syuhei; Tanigaki, Toshiaki; Sasaki, Taisuke; Akase, Zentaro; Shindo, Daisuke; Ohkubo, Tadakatsu; Hono, Kazuhiro

    2016-11-01

    This study proposes a method to separate the geometric phase shift due to lattice strain from the undesired phase information, resulting from magnetic fields that are superposed in the dark-field electron holography (DFEH) observations. Choosing a distinct wave vector for the Bragg reflection reversed the sense of the geometric phase shift, while the sense of the magnetic information remained unchanged. In the case of an Nd-Fe-B permanent magnet, once the unwanted signal was removed by data processing, the residual phase image revealed a strain map. Even though the applications of DFEH have thus far been limited to non-magnetic systems, the method proposed in this work is also applicable to strain measurements in various ferromagnetic systems.

  19. Observation of new trans-Neptunian Objects in the Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Jennings, Ross; Zhang, Zhilu; Gerdes, David W.; Dark Energy Survey Collaboration

    2015-01-01

    The Dark Energy Survey (DES) is a five-year optical imaging survey intended to measure the growth of structure and expansion history of the universe over a wide span of cosmic time. As part of this effort, the survey images ten separate 3 sq. deg. fields approximately weekly to search for Type Ia supernovae. These fields generate a rich time series of data that can be used to search for other interesting objects, such as moving transients. Among these are trans-Neptunian objects, including classical Kuiper Belt objects as well as scattered and detached disk objects. We have searched the data collected during DES's two and a half seasons for such objects. Our analysis revealed sixteen previously unknown outer solar system objects, including one Neptune trojan, several objects in mean motion resonances with Neptune, and a distant scattered disk object whose 1200-year orbital period is among the 50 longest known.

  20. Annular dark-field scanning transmission electron microscopy (ADF-STEM) tomography of polymer systems.

    PubMed

    Lu, Kangbo; Sourty, Erwan; Loos, Joachim

    2010-08-01

    We have utilized bright-field conventional transmission electron microscopy tomography and annular dark-field scanning transmission electron microscopy (ADF-STEM) tomography to characterize a well-defined carbon black (CB)-filled polymer nanocomposite with known CB volume concentration. For both imaging methods, contrast can be generated between the CB and the surrounding polymer matrix. The involved contrast mechanisms, in particular for ADF-STEM, will be discussed in detail. The obtained volume reconstructions were analysed and the CB volume concentrations were carefully determined from the reconstructed data. For both imaging modes, the measured CB volume concentrations are substantially different and only quantification based on the ADF-STEM data revealed about the same value as the known CB loading. Moreover, when applying low-convergence angles for imaging ADF-STEM tomography, data can be obtained of micrometre-thick samples.

  1. A dark-field scanning spectroscopy platform for localized scatter and fluorescence imaging of tissue

    NASA Astrophysics Data System (ADS)

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.

    2011-03-01

    Tissue ultra-structure and molecular composition provide native contrast mechanisms for discriminating across pathologically distinct tissue-types. Multi-modality optical probe designs combined with spatially confined sampling techniques have been shown to be sensitive to this type of contrast but their extension to imaging has only been realized recently. A modular scanning spectroscopy platform has been developed to allow imaging localized morphology and molecular contrast measures in breast cancer surgical specimens. A custom designed dark-field telecentric scanning spectroscopy system forms the core of this imaging platform. The system allows imaging localized elastic scatter and fluorescence measures over fields of up to 15 mm x 15 mm at 100 microns resolution in tissue. Results from intralipid and blood phantom measurements demonstrate the ability of the system to quantify localized scatter parameters despite significant changes in local absorption. A co-registered fluorescence spectroscopy mode is also demonstrated in a protophorphyrin-IX phantom.

  2. A Dark-field Scanning In Situ Spectroscopy Platform for Broadband Imaging of Resected Tissue

    PubMed Central

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.

    2012-01-01

    A dark-field geometry spectral imaging system is presented to raster-scan thick tissue samples in situ in 1.5cm square sections, recovering full spectra from each 100 microns diameter pixel. This spot size provides adequate resolution for wide field scanning, while also facilitating scatter imaging without requiring sophisticated light-tissue transport modeling. The system is demonstrated showing accurate estimation of localized scatter parameters and the potential to recover absorption-based contrast from broadband reflectance data measured from 480nm up to 750nm in tissue phantoms. Results obtained from xenograft pancreas tumors show the ability to quantitatively image changes in localized scatter response in this fast imaging geometry. The polychromatic raster scan design allows the rapid scanning necessary for use in surgical/clinical applications where timely decisions are required about tissue pathology. PMID:21593932

  3. Fgf and Sdf-1 pathways interact during zebrafish fin regeneration.

    PubMed

    Bouzaffour, Mohamed; Dufourcq, Pascale; Lecaudey, Virginie; Haas, Petra; Vriz, Sophie

    2009-06-08

    The chemokine stromal cell-derived factor-1 (SDF1) was originally identified as a pre-B cell stimulatory factor but has been recently implicated in several other key steps in differentiation and morphogenesis. In addition, SDF1 as well as FGF signalling pathways have recently been shown to be involved in the control of epimorphic regeneration. In this report, we address the question of a possible interaction between the two signalling pathways during adult fin regeneration in zebrafish. Using a combination of pharmaceutical and genetic tools, we show that during epimorphic regeneration, expression of sdf1, as well as of its cognate receptors, cxcr4a, cxcr4b and cxcr7 are controlled by FGF signalling. We further show that, Sdf1a negatively regulates the expression of fgf20a. Together, these results lead us to propose that: 1) the function of Fgf in blastema formation is, at least in part, relayed by the chemokine Sdf1a, and that 2) Sdf1 exerts negative feedback on the Fgf pathway, which contributes to a transient expression of Fgf20a downstream genes at the beginning of regeneration. However this feedback control can be bypassed since the Sdf1 null mutants regenerate their fin, though slower. Very few mutants for the regeneration process were isolated so far, illustrating the difficulty in identifying genes that are indispensable for regeneration. This observation supports the idea that the regeneration process involves a delicate balance between multiple pathways.

  4. SDF-1 Expression is Associated with Poor Prognosis in Osteosarcoma.

    PubMed

    Yu, Dangen; Lv, Fei; Zhang, Jianhe; Li, Hongjie

    2016-09-01

    Stromal cell-derived factor-1 (SDF-1) expression has been reported to be a predictor of poor clinical symptoms in certain types of cancer. Vascular endothelial growth factor (VEGF) is a well-known factor that mediates the micro-angiogenesis of solid tumors, and SDF-1 mediated expression of VEGF may promote tumor growth and metastasis, resulting in poor clinical outcome. Therefore, we explored the expression levels of SDF-1 and VEGF in patients with osteosarcoma in order to determine the association between their expression levels and unfavorable outcomes. A total of 54 patients with osteosarcoma were included in the current study. The protein expression levels of SDF-1 and VEGF were evaluated on immunohistochemical and immunofluorescence staining. The correlation between the expression levels of SDF-1 and VEGF and their association with clinical parameters were analyzed using the Pearson chi-square test and the Spearman-rho test. Univariate and multivariate Cox regression analyses were used to identify potential prognostic factors. The Kaplan-Meier method was employed to analyze overall survival. Low SDF-1 and VEGF expression levels were detected in 20.4% (11 of 54) and 22.2% (12 of 54) of the patients with osteosarcoma, respectively; moderate expression was detected in 35.2% (19 of 54) and 37.0% (20 of 54) of the patients, respectively; and high expression was detected in 44.4% (24 of 54) and 40.7% (22 of 54) of the patients, respectively. Protein levels of both SDF-1 and VEGF were significantly associated with the histologic grade (p=0.004 and p=0.042 respectively), the presence of metastasis (p=0.009 and p=0.028 respectively), and Enneking staging (p<0.001 and p=0.003 respectively). The association between expression levels of SDF-1and VEGF had a significantly positive correlation (p<0.001and r=0.618). The expression levels of both SDF-1 and VEGF were significantly associated with shorter overall survival on univariate analysis; however, the association was

  5. Projection angle dependence in grating-based X-ray dark-field imaging of ordered structures.

    PubMed

    Bayer, Florian; Zabler, Simon; Brendel, Christian; Pelzer, Georg; Rieger, Jens; Ritter, André; Weber, Thomas; Michel, Thilo; Anton, Gisela

    2013-08-26

    Over the recent years X-ray differential phase-contrast imaging was developed for the hard X-ray regime as produced from laboratory X-ray sources. The technique uses a grating-based Talbot-Lau interferometer and was shown to yield image contrast gain, which makes it very interesting to the fields of medical imaging and non-destructive testing, respectively. In addition to X-ray attenuation contrast, the differential phase-contrast and dark-field images provide different structural information about a specimen. For the dark-field even at length scales much smaller than the spatial resolution of the imaging system. Physical interpretation of the dark-field information as present in radiographic and tomographic (CT) images requires a detailed look onto the geometric orientation between specimen and the setup. During phase-stepping the drop in intensity modulation, due to local scattering effects within the specimen is reproduced in the dark-field signal. This signal shows strong dependencies on micro-porosity and micro-fibers if these are numerous enough in the object. Since a grating-interferometer using a common unidirectional line grating is sensitive to X-ray scattering in one plane only, the dark-field image is influenced by the fiber orientations with respect to the grating bars, which can be exploited to obtain anisotropic structural information. With this contribution, we attempt to extend existing models for 2D projections to 3D data by analyzing dark-field contrast tomography of anisotropically structured materials such as carbon fiber reinforced carbon (CFRC).

  6. Effect of particle-size selectivity on quantitative X-ray dark-field computed tomography using a grating interferometer

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Shao, Qigang; Hu, Renfang; Wang, Shengxiang; Gao, Kun; Wang, Yan; Tian, Yangchao; Zhu, Peiping

    2017-08-01

    According to the conclusion of Khelashvili et al. [Phys. Med. Biol. 51, 221 (2006)], the minus logarithm of the visibility ratio fulfills the line integral condition; consequently the scattering information can be reconstructed quantitatively by conventional computed tomography (CT) algorithms. Based on Fresnel diffraction theory, we analyzed the influence of particle-size selectivity on the performance of an X-ray grating interferometer (GI) applied for dark-field CT. The results state the signal-to-noise ratio (SNR) of dark-field imaging is sensitive to the particle size, which demonstrate that the X-ray dark-field CT using a GI can efficiently differentiate materials of identical X-ray absorption and help to choose optimal X-ray energy for known particle size, thus extending the application range of grating interferometer.

  7. Design of Acquisition Schemes and Setup Geometry for Anisotropic X-ray Dark-Field Tomography (AXDT).

    PubMed

    Sharma, Y; Schaff, F; Wieczorek, M; Pfeiffer, F; Lasser, T

    2017-06-09

    Anisotropic X-ray Dark-field Tomography (AXDT) is a new imaging technique for reconstructing the three-dimensional scattering profile within a sample using the dark-field signal measured in an X-ray grating interferometry setup. As in any tomographic measurement, the acquisition geometry plays a key role in the accurate reconstruction of the scattering information. More- over, the anisotropic nature of the dark-field signal poses additional challenges for designing the acquisition protocols. In this work, we present an efficient approach to measure scattering orientations spread over the unit sphere and prove its efficacy using the knowledge from conventional tomography. In addition, we conclude (using analytical and experimental results) that placing the gratings such that the grating bars make an angle of 45 degrees with respect to the vertical direction is the optimal setup configuration for AXDT.

  8. Magnetic fields in the Perseus Spiral Arm and in Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Hoq, Sadia

    2017-04-01

    The magnetic (B) field is ubiquitous throughout the Milky Way. Several fundamental questions about the B-field in the cool, star-forming interstellar medium (ISM) remain unanswered. In this dissertation, near-infrared (NIR) polarimetric observations are used to study the large-scale Galactic B-field in the cool ISM in a spiral arm and to determine the role of B-fields in the formation of Infrared Dark Clouds (IRDCs). NIR polarimetry of 31 star clusters, located in and around the Perseus spiral arm, were obtained to determine the orientation of the plane-of-sky B-field in the outer Galaxy, and whether the presence of a spiral arm influenced B-field properties. Cluster distances, which provide upper limits to the B-field probed by observations, were estimated by developing a maximum likelihood method to fit theoretical stellar isochrones to stars in cluster color-magnitude diagrams (CMDs). Using the distance estimates, the cluster locations relative to the Perseus arm were found. The cluster polarization percentages and orientations were compared between clusters foreground to the arm and clusters inside or behind the arm. The cluster polarization orientations are predominantly parallel to the Galactic plane. Clusters inside and behind the arm have larger polarization percentages, likely a result of more polarizing material along the line of sight. The cluster polarization data were also compared to optical, inner Galaxy NIR, and Planck submm polarimetry data, and showed agreement with all three data sets. The polarimetric properties of one IRDC, G28.23, were determined using deep NIR observations. The polarization orientations relative to the cloud major axis were found to change directions with distance from the cloud axis. The B-field strength was estimated to be 10 to 100microG. Despite these large inferred B-field strengths, the B-field was found not to be the dominant force in the formation of the IRDC, though the B-field morphology was influenced by the cloud

  9. High-contrast multilayer imaging of biological organisms through dark-field digital refocusing

    NASA Astrophysics Data System (ADS)

    Faridian, Ahmad; Pedrini, Giancarlo; Osten, Wolfgang

    2013-08-01

    We have developed an imaging system to extract high contrast images from different layers of biological organisms. Utilizing a digital holographic approach, the system works without scanning through layers of the specimen. In dark-field illumination, scattered light has the main contribution in image formation, but in the case of coherent illumination, this creates a strong speckle noise that reduces the image quality. To remove this restriction, the specimen has been illuminated with various speckle-fields and a hologram has been recorded for each speckle-field. Each hologram has been analyzed separately and the corresponding intensity image has been reconstructed. The final image has been derived by averaging over the reconstructed images. A correlation approach has been utilized to determine the number of speckle-fields required to achieve a desired contrast and image quality. The reconstructed intensity images in different object layers are shown for different sea urchin larvae. Two multimedia files are attached to illustrate the process of digital focusing.

  10. X-ray refraction-contrast computed tomography images using dark-field imaging optics

    SciTech Connect

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    2010-10-11

    If an x-ray beam containing internal information derived from sample soft tissue is incident upon a Laue-case analyzer, the beam will subsequently split into a forwardly diffracted beam and a separate diffracted beam. Using these beams acquired simultaneously, a refraction-contrast computed tomography (CT) imaging system for biomedical use with lower radiation dose can be easily realized, and has a high depicting capability on the soft tissues compared with conventional x-ray CT based on absorption contrast principles. In this paper, we propose an imaging system using dark-field imaging for CT measurement based on a tandem system of Bragg- and Laue-case crystals with two two-dimensional detectors, along with a data-processing method to extract information on refraction from the measured entangled intensities by use of rocking curve fitting with polynomial functions. Reconstructed images of soft tissues are presented and described.

  11. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    van den Bos, Karel H. W.; De Backer, Annick; Martinez, Gerardo T.; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D.; Van Aert, Sandra

    2016-06-01

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

  12. Peccei-Quinn field for inflation, baryogenesis, dark matter, and much more

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Park, Wan-Il

    2016-05-01

    We propose a scenario of brane cosmology in which the Peccei-Quinn field plays the role of the inflaton and solves simultaneously many cosmological and phenomenological issues such as the generation of a heavy Majorana mass for the right-handed neutrinos needed for seesaw mechanism, MSSM μ-parameter, the right amount of baryon number asymmetry and dark matter relic density at the present universe, together with an axion solution to the strong CP problem without the domain wall obstacle. Interestingly, the scales of the soft SUSY-breaking mass parameter and those of the breaking of U(1)PQ symmetry are lower bounded at O (10) TeV and O (1011) GeV, respectively.

  13. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    SciTech Connect

    Odlyzko, Michael L.; Mkhoyan, K. Andre; Himmetoglu, Burak; Cococcioni, Matteo

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen in crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.

  14. Orientation-selective X-ray dark field imaging of ordered systems

    NASA Astrophysics Data System (ADS)

    Revol, V.; Kottler, C.; Kaufmann, R.; Neels, A.; Dommann, A.

    2012-12-01

    X-ray scatter dark field imaging with a grating interferometer is becoming a standard tool for the characterization of microscopic texture of samples. Recently, it was shown that directional information could also be recovered when the sample displays an anisotropic ordering such as, for instance, a bundle of microscopic fibers. Here, we demonstrate that previously suggested approaches are ambiguous when multiple anisotropic orientations coexist in the sample. Therefore, we developed a new orientation-selective approach which allows for separating the contributions of individual orientations provided that these orientations are known a-priori. The method, demonstrated experimentally using a well-defined wood sample, is envisioned to be of high interest for the non-destructive inspection of composite materials.

  15. X-ray refraction-contrast computed tomography images using dark-field imaging optics

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    2010-10-01

    If an x-ray beam containing internal information derived from sample soft tissue is incident upon a Laue-case analyzer, the beam will subsequently split into a forwardly diffracted beam and a separate diffracted beam. Using these beams acquired simultaneously, a refraction-contrast computed tomography (CT) imaging system for biomedical use with lower radiation dose can be easily realized, and has a high depicting capability on the soft tissues compared with conventional x-ray CT based on absorption contrast principles. In this paper, we propose an imaging system using dark-field imaging for CT measurement based on a tandem system of Bragg- and Laue-case crystals with two two-dimensional detectors, along with a data-processing method to extract information on refraction from the measured entangled intensities by use of rocking curve fitting with polynomial functions. Reconstructed images of soft tissues are presented and described.

  16. A New Optics for Dark-Field Imaging in X-Ray Region ‘Owl’

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Sugiyama, Hiroshi; Maksimenko, Anton; Pattanasiriwisawa, Wanwisa; Hyodo, Kazuyuki; Zhang, Xiaowei

    2001-08-01

    An X-ray optics for X-ray dark-field imaging named ‘Owl’ is proposed. It involves an asymmetric monochromator and a monolithic X-ray optics comprising a collimator C and an analyzer A@. The C and A have 4,4,0 diffraction and thickness of 1.08 mm± 10 μm. The X-ray energy used was 35 keV@. These diffractions have an angular width of approximately 0.3 μrad. The analyzer A accepts only the refracted component from a sample S which is located between C and A, while eliminating the straight component without reacting with it. Two samples, one Al matrix containing boron fibers of 300 μm diameter and the other a wax block containing a nylon fiber simulating breast cancer, show very clear fiber imaging usually not visible by the conventional X-ray technique.

  17. Dark field microscopic analysis of discrete Au nanostructures: Understanding the correlation of scattering with stoichiometry

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Bu, Tong; Zako, Tamotsu; Watanabe-Tamaki, Ryoko; Tanaka, Takuo; Maeda, Mizuo

    2017-09-01

    Due to the potential of gold nanoparticle (AuNP)-based trace analysis, the discrimination of small AuNP clusters with different assembling stoichiometry is a subject of fundamental and technological importance. Here we prepare oligomerized AuNPs with controlled stoichiometry through DNA-directed assembly, and demonstrate that AuNP monomers, dimers and trimers can be clearly distinguished using dark field microscopy (DFM). The scattering intensity for of AuNP structures with stoichiometry ranging from 1 to 3 agrees well with our theoretical calculations. This study demonstrates the potential of utilizing the DFM approach in ultra-sensitive detection as well as the use of DNA-directed assembly for plasmonic nano-architectures.

  18. Beyond the dark matter effective field theory and a simplified model approach at colliders

    NASA Astrophysics Data System (ADS)

    Baek, Seungwon; Ko, P.; Park, Myeonghun; Park, Wan-Il; Yu, Chaehyun

    2016-05-01

    Direct detection of and LHC search for the singlet fermion dark matter (SFDM) model with Higgs portal interaction are considered in a renormalizable model where the full Standard Model (SM) gauge symmetry is imposed by introducing a singlet scalar messenger. In this model, direct detection is described by an effective operator mq q bar q χ bar χ as usual, but the full amplitude for monojet + E̸T involves two intermediate scalar propagators, which cannot be seen within the effective field theory (EFT) or in the simplified model without the full SM gauge symmetry. We derive the collider bounds from the ATLAS monojet + E̸T as well as the CMS t t bar +E̸T data, finding out that the bounds and the interpretation of the results are completely different from those obtained within the EFT or simplified models. It is pointed out that it is important to respect unitarity, renormalizability and local gauge invariance of the SM.

  19. Coherent total internal reflection dark-field microscopy: label-free imaging beyond the diffraction limit.

    PubMed

    von Olshausen, Philipp; Rohrbach, Alexander

    2013-10-15

    Coherent imaging is barely applicable in life-science microscopy due to multiple interference artifacts. Here, we show how these interferences can be used to improve image resolution and contrast. We present a dark-field microscopy technique with evanescent illumination via total internal reflection that delivers high-contrast images of coherently scattering samples. By incoherent averaging of multiple coherent images illuminated from different directions we can resolve image structures that remain unresolved by conventional (incoherent) fluorescence microscopy. We provide images of 190 nm beads revealing resolution beyond the diffraction limit and slightly increased object distances. An analytical model is introduced that accounts for the observed effects and which is confirmed by numerical simulations. Our approach may be a route to fast, label-free, super-resolution imaging in live-cell microscopy.

  20. Refraction-contrast tomosynthesis imaging using dark-field imaging optics

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    2011-09-01

    A soft tissue tomosynthesis imaging system using Laue-case analyzer for dark-field imaging (DFI) optics is described. Two images from which refraction component is deduced are obtained in a single exposure of DFI, while two exposures are required in diffraction enhanced imaging (DEI). The measurement time and radiation dose are thus reduced to half those from DEI. Additionally, the proposed reconstruction algorithm, using only one tenth the number of projections required in computed tomography (CT) imaging, produced images in no way inferior to refraction-contrast CT images. We ex vivo imaged an excised human lung tissue using the system constructed at the KEK vertical wiggler beamline PF-BL14C to demonstrate the proposed imaging protocol efficacy.

  1. Attempt at Visualizing Breast Cancer with X-ray Dark Field Imaging

    NASA Astrophysics Data System (ADS)

    Ando, Masami; Yamasaki, Katsuhito; Toyofuku, Fukai; Sugiyama, Hiroshi; Ohbayashi, Chiho; Li, Gang; Pan, Lin; Jiang, Xiaoming; Pattanasiriwisawa, Wanwisa; Shimao, Daisuke; Hashimoto, Eiko; Kimura, Tatsuro; Tsuneyoshi, Masazumi; Ueno, Ei; Tokumori, Kenji; Maksimenko, Anton; Higashida, Yoshiharu; Hirano, Masatsugu

    2005-04-01

    X-ray dark-field imaging (DFI) can clearly visualize breast cancer phantoms and cancer cell nests, stroma, fat tissue, ductus lactiferi, muscle, collagen fibers at stroma and calcification in a 2.8-mm-thick breast cancer pathological specimen. The system comprises a Bragg asymmetric-cut monochro-collimator and a 2.124-mm-thick Si 440 Laue diffraction analyzer at 35 keV. Both optical elements are Floating Zone made silicon crystals. The view size of 33 mm (H) × 19.5 mm (V) and the spatial resolution of 10 μm or better are obtainable at the vertical wiggler beamline BL14B at the Photon Factory.

  2. On the visibility of "heavy" atoms in dark-field STEM

    NASA Astrophysics Data System (ADS)

    Shannon, M. D.; Nellist, P. D.; Nicolosi, V.; Shannon, G. B.; Shmeliov, A.

    2012-07-01

    One of the most useful and apparently straightforward attributes of annular dark-field (ADF) STEM imaging is the ability to image heavy atoms on relatively light substrates using Z-contrast (High-Angle ADF) imaging. From multislice calculations, however, some isolated heavy atoms, e.g. Re, can go undetected in a thin Co matrix in standard aberration-corrected HAADF-STEM imaging of catalyst nanoparticles oriented accurately on a zone-axis [2]. More recently simultaneous Medium-Angle and High-Angle ADF imaging of a few layers of BN has shown experimentally that some adatoms are invisible in MAADF whilst exhibiting very strong contrast in HAADF. Simulations confirm that this can occur for atoms such as sodium. In both situations HOLZ ring imaging can be used to extract additional information.

  3. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    We report a method of boosting the imaging contrast of microsphere-assisted super-resolution visualization by utilizing dark-field illumination (DFI). We conducted experiments on both 10-µm-diameter silica (SiO2) microspheres with refractive index n ∼ 1.46 under no and partial immersion in ethyl alcohol (n ∼ 1.36) and 20-µm-diameter barium titanate glass (BTG, n ∼ 1.9) microspheres with full immersion to show the super-resolution capability. We experimentally demonstrated that the imaging contrast and uniformity were extraordinarily improved in the DFI mode. The intensity profiles in the visualization also numerically confirm the enhanced sharpness for a better imaging quality when applying DFI.

  4. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  5. Quantification of the neutron dark-field imaging signal in grating interferometry

    NASA Astrophysics Data System (ADS)

    Grünzweig, C.; Kopecek, J.; Betz, B.; Kaestner, A.; Jefimovs, K.; Kohlbrecher, J.; Gasser, U.; Bunk, O.; David, C.; Lehmann, E.; Donath, T.; Pfeiffer, F.

    2013-09-01

    Here we report on a mathematical description for the neutron dark-field image (DFI) contrast based on the influence of the thickness-dependent beam broadening caused by scattering interactions and multiple refraction in the sample. We conduct radiography experiments to verify that the DFI signal exponentially decays as a function of thickness for both magnetic and nonmagnetic materials. Here we introduce a material-dependent parameter, the so-called linear diffusion coefficient Ω. This allows us to perform a quantitative DFI-computed tomography. Additionally, we conduct correlative small-angle neutron-scattering experiments and validate the mathematical assumption that the angular broadening of the direct beam is proportional to the square root of the number of discrete layers.

  6. Dark-field microspectroscopic analysis of gold nanorods in spiral Ganglion neurons

    NASA Astrophysics Data System (ADS)

    Yong, J.; Brown, W. G. A.; Needham, K.; Nayagam, B. A.; Yu, A.; McArthur, S. L.; Stoddart, P. R.

    2013-12-01

    Heterogeneous samples of spiral ganglion neuron primary cells were incubated with gold nanorods in order to investigate the photothermal processes induced by exposure to 780 nm laser light. Dark-field microspectroscopy was used to analyze the distribution and spectrum of nanorods in the neurons. The scattering data showed a typical gold nanorod spectrum, while a shift in the peak position suggested changes in the refractive index of the nanorod environment. The relationship between gold nanorods distribution and local temperature has also been examined with an open pipette microelectrode placed in the surrounding bath of the neurons. These temperature measurements confirm that the gold nanorods provide efficient localized heating under 780 nm laser exposure.

  7. Unscrambling Mixed Elements using High Angle Annular Dark Field Scanning Transmission Electron Microscopy.

    PubMed

    van den Bos, Karel H W; De Backer, Annick; Martinez, Gerardo T; Winckelmans, Naomi; Bals, Sara; Nellist, Peter D; Van Aert, Sandra

    2016-06-17

    The development of new nanocrystals with outstanding physicochemical properties requires a full three-dimensional (3D) characterization at the atomic scale. For homogeneous nanocrystals, counting the number of atoms in each atomic column from high angle annular dark field scanning transmission electron microscopy images has been shown to be a successful technique to get access to this 3D information. However, technologically important nanostructures often consist of more than one chemical element. In order to extend atom counting to heterogeneous materials, a new atomic lensing model is presented. This model takes dynamical electron diffraction into account and opens up new possibilities for unraveling the 3D composition at the atomic scale. Here, the method is applied to determine the 3D structure of Au@Ag core-shell nanorods, but it is applicable to a wide range of heterogeneous complex nanostructures.

  8. An Effective Field Theory Analysis of the First LUX Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Larsen, Nicole A.

    A wealth of astrophysical research supports the existence of dark matter in the universe, yet the exact identity and nature of this unknown particle remain elusive. The Weakly Interacting Massive Particle (WIMP), one of the most promising dark matter candidates, is thought to interact with Standard Model particles only through the gravitational and weak nuclear forces. The Large Underground Xenon (LUX) experiment is one of a large number of experiments that seek to detect WIMPs through their rare but discernible scatters off of target nuclei. Specifically, LUX is a 370-kg dual-phase xenon-based time projection chamber (TPC) that operates by detecting light and ionization signals from particles incident upon a xenon target. The first part of this dissertation details the design of the LUX experiment and describes several novel hardware subsystems that allow LUX to detect extremely rare events with high precision. With the 2013 release of the world's first sub-zeptobarn spin-independent WIMP-nucleon cross section limit, the LUX (Large Underground Xenon) experiment has emerged as a frontrunner in the field of dark matter direct detection. However, tension between experiments and the absence of a definitive positive detection suggest it would be prudent to search for answers outside the standard spin-independent/spin-dependent analyses. hi particular, the standard analyses neglect momentum- and velocity-dependent interactions on the grounds that WIMP-nucleus collisions are nonrelativistic. At the parton level, this is not always the case, and moreover, models exist in which the standard spin-independent and spin-dependent interactions are subdominant to new kinds of interactions. Recent theoretical work has identified a complete set of 14 possible independent WIMP-nucleon interactions using basic symmetries and an effective field theory formulation. These interactions produce not only spin-independent and spin-dependent nuclear responses but also novel nuclear

  9. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene

    SciTech Connect

    Shirozu, Michio; Takano, Toru; Tada, Hideaki; Honjo, Tasuku

    1995-08-10

    Stromal cell-derived factors 1{alpha} and 1{beta} are small cytokines belonging to the intercrine CXC subfamily and originally isolated from a murine bone-marrow stroma cell line by the signal sequence trap method. cDNA and genomic clones of human SDF1{alpha} and SDF1{beta} (SDF1A and SDF1B) were isolated and characterized. cDNAs of SDF1{alpha} and SDF1{beta} encode proteins of 89 and 93 amino acids, respectively. SDF1{alpha} and SDF1{beta} sequences are more than 92% identical to those of the human counterparts. The genomic structure of the SDF1 gene revealed that human SDF1{alpha} and SDF1{beta} are encoded by a single gene and arise by alternative splicing. SDF1{alpha} and SDF1{beta} are encoded by 3 and 4 exons, respectively. Ubiquitous expression of the SDF1 gene, except in blood cells, was consistent with the presence of the GC-rich sequence in the 5{prime}-flanking region of the SDF1 gene, as is often the case in the {open_quotes}housekeeping{close_quotes} genes. Although genes encoding other members of the intercrine family are localized on chromosome 4q or 17q, the human SDF1 gene was mapped to chromosome 10q by fluorescence in situ hybridization. Strong evolutionary conservation and unique chromosomal localization of the SDF1 gene suggest that SDF1{alpha} and SDF1{beta} may have important functions distinct from those of other members of the intercrine family. 37 refs., 5 figs.

  10. Dark-Adapted Chromatic Perimetry for Measuring Rod Visual Fields in Patients with Retinitis Pigmentosa.

    PubMed

    Bennett, Lea D; Klein, Martin; Locke, Kirsten G; Kiser, Kelly; Birch, David G

    2017-07-01

    Although rod photoreceptors are initially affected in retinitis pigmentosa (RP), the full-field of rod vision is not routinely characterized due to the unavailability of commercial devices detecting rod sensitivity. The purpose of this study was to quantify rod-mediated vision in the peripheral field from patients with RP using a new commercially available perimeter. Participants had one eye dilated and dark-adapted for 45 minutes. A dark-adapted chromatic (DAC) perimeter tested 80 loci 144° horizontally and 72° vertically with cyan stimuli. The number of rod-mediated loci (RML) were analyzed based on normal cone sensitivity (method 1) and associated with full-field electroretinography (ERG) responses by Pearson's r correlation and linear regression. In a second cohort of patients with RP, RML were identified by two-color perimetry (cyan and red; method 2). The two methods for ascribing rod function were compared by Bland-Altman analysis. Method 1 RML were correlated with responses to the 0.01 cd.s/m(2) flash (P < 0.001), while total sensitivity to the cyan stimulus showed correlation with responses to the 3.0 cd.s/m(2) flash (P < 0.0001). Method 2 detected a mean of 10 additional RML compared to method 1. Scotopic fields measured with the DAC detected rod sensitivity across the full visual field, even in some patients who had nondetectable rod ERGs. Two-color perimetry is warranted when sensitivity to the cyan stimulus is reduced to ≤20 dB to get a true estimation of rod function. Many genetic forms of retinitis pigmentosa (RP) are caused by mutations in rod-specific genes. However, treatment trials for patients with RP have relied primarily on photopic (cone-mediated) tests as outcome measures because there are a limited number of available testing methods designed to evaluate rod function. Thus, efficient methods for quantifying rod-mediated vision are needed for the rapidly increasing numbers of clinical trials.

  11. Monomeric structure of the cardioprotective chemokine SDF-1/CXCL12

    PubMed Central

    Veldkamp, Christopher T; Ziarek, Joshua J; Su, Jidong; Basnet, Harihar; Lennertz, Richard; Weiner, Joshua J; Peterson, Francis C; Baker, John E; Volkman, Brian F

    2009-01-01

    The chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) directs leukocyte migration, stem cell homing, and cancer metastasis through activation of CXCR4, which is also a coreceptor for T-tropic HIV-1. Recently, SDF-1 was shown to play a protective role after myocardial infarction, and the protein is a candidate for development of new anti-ischemic compounds. SDF-1 is monomeric at nanomolar concentrations but binding partners promote self-association at higher concentrations to form a typical CXC chemokine homodimer. Two NMR structures have been reported for the SDF-1 monomer, but only one matches the conformation observed in a series of dimeric crystal structures. In the other model, the C-terminal helix is tilted at an angle incompatible with SDF-1 dimerization. Using a rat heart explant model for ischemia/reperfusion injury, we found that dimeric SDF-1 exerts no cardioprotective effect, suggesting that the active species is monomeric. To resolve the discrepancy between existing models, we solved the NMR structure of the SDF-1 monomer in different solution conditions. Irrespective of pH and buffer composition, the C-terminal helix remains tilted at an angle with no evidence for the perpendicular arrangement. Furthermore, we find that phospholipid bicelles promote dimerization that necessarily shifts the helix to the perpendicular orientation, yielding dipolar couplings that are incompatible with the NOE distance constraints. We conclude that interactions with the alignment medium biased the previous structure, masking flexibility in the helix position that may be essential for the distinct functional properties of the SDF-1 monomer. PMID:19551879

  12. Quadractic Model of Thermodynamic States in SDF Explosions

    SciTech Connect

    Kuhl, A L; Khasainov, B

    2007-05-04

    We study the thermodynamic states encountered during Shock-Dispersed-Fuel (SDF) explosions. Such explosions contain up to six components: three fuels (PETN, TNT and Aluminum) and their products corresponding to stoichiometric combustion with air. We establish the loci in thermodynamic state space that correctly describes the behavior of the components. Results are fit with quadratic functions that serve as fast equations of state suitable for 3D numerical simulations of SDF explosions.

  13. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  14. Unifying inflation and dark matter with the Peccei-Quinn field: Observable axions and observable tensors

    NASA Astrophysics Data System (ADS)

    Fairbairn, Malcolm; Hogan, Robert; Marsh, David J. E.

    2015-01-01

    A model of high scale inflation is presented where the radial part of the Peccei-Quinn (PQ) field with a non-minimal coupling to gravity plays the role of the inflaton, and the QCD axion is the dark matter. A quantum fluctuation of O (H /2 π ) in the axion field will result in a smaller angular fluctuation if the PQ field is sitting at a larger radius during inflation than in the vacuum. This changes the effective axion decay constant, fa, during inflation and dramatically reduces the production of isocurvature modes. This mechanism opens up a new window in parameter space where an axion decay constant in the range 1 012 GeV ≲fa≲1 015 GeV is compatible with observably large r . The exact range allowed for fa depends on the efficiency of reheating. This model also predicts a minimum possible value of r =1 0-3. The new window can be explored by a measurement of r possible with SPIDER and the proposed CASPEr experiment search for high fa axions.

  15. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  16. Effect of light-dark changes on the locomotor activity in open field in adult rats and opossums.

    PubMed

    Klejbor, I; Ludkiewicz, B; Turlejski, K

    2013-11-01

    There have been no reports on how the light-dark changes determine the locomotor activity of animals in the group of high reactivity (HR) and low reactivity (LR). In the present study we have compared selected parameters of the locomotor activity of the HR and the LR groups of the laboratory opossums and Wistar rats during consecutive, light and dark phases in the open field test. Sixty male Wistar adult rats, at an average weight of 350 g each, and 24 adult Monodelphis opossums of both sexes at an average weight of 120 g each were used. The animals' activity for 2 h daily between the hours of 17:30 and 19:30, in line with the natural light-dark cycle were recorded and then analysed using VideoTrack ver.2.0 (Vievpoint France). According to our results, we noted that a change of the experimental conditions from light to dark involves an increase in the locomotor activity in rats and opossums of the HR group, while there is no effect on the activity of the rats and opossums in the LR group. Locomotor activity in the HR rats, both in the light and dark conditions is characterised by a consistent pattern of change - higher activity in the first stage of the recording and a slowdown (habituation) in the second phase of the observation. The locomotor activity of the opossum, during both light and dark conditions, was observed to be at a consistently high level compared to the rats.

  17. Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases.

    PubMed

    Liepelt, Anke; Tacke, Frank

    2016-08-01

    The chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is constitutively expressed in healthy liver. However, its expression increases following acute or chronic liver injury. Liver sinusoidal endothelial cells (LSEC), hepatic stellate cells (HSC), and malignant hepatocytes are important sources of SDF-1/CXCL12 in liver diseases. CXCL12 is able to activate two chemokine receptors with different downstream signaling pathways, CXCR4 and CXCR7. CXCR7 expression is relevant on LSEC, while HSC, mesenchymal stem cells, and tumor cells mainly respond via CXCR4. Here, we summarize recent developments in the field of liver diseases involving this chemokine and its receptors. SDF-1-dependent signaling contributes to modulating acute liver injury and subsequent tissue regeneration. By activating HSC and recruiting mesenchymal cells from bone marrow, CXCL12 can promote liver fibrosis progression, while CXCL12-CXCR7 interactions endorse proregenerative responses in chronic injury. Moreover, the SDF-1 pathway is linked to development of hepatocellular carcinoma (HCC) by promoting tumor growth, angiogenesis, and HCC metastasis. High hepatic CXCR4 expression has been suggested as a biomarker indicating poor prognosis of HCC patients. Tumor-infiltrating myeloid-derived suppressor cells (MDSC) also express CXCR4 and migrate toward CXCL12. Thus CXCL12 inhibition might not only directly block HCC growth but also modulate the tumor microenvironment (angiogenesis, MDSC), thereby sensitizing HCC patients to conventional or emerging novel cancer therapies (e.g., sorafenib, regorafenib, nivolumab, pembrolizumab). We herein summarize the current knowledge on the complex interplay between CXCL12 and CXCR4/CXCR7 in liver diseases and discuss approaches on the therapeutic targeting of these axes in hepatitis, fibrosis, and liver cancer. Copyright © 2016 the American Physiological Society.

  18. New Trans-Neptunian Objects in the Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Gerdes, David W.

    2015-05-01

    The Dark Energy Survey (DES) observes ten separate 3 sq. deg. fields approximately weekly for six months each year. Although intended primarily to detect Type Ia supernovae, this data set provides a rich time series that is well suited for the detection of objects in the outer solar system, which move slowly enough that they can remain in the same field of view for weeks, months, or even across multiple DES observing seasons. Because the supernova fields have ecliptic latitudes ranging from -15 to -45 degrees, DES is particularly sensitive to the dynamically hot population of Kuiper Belt objects, as well as detached/inner Oort cloud objects. Here I report the results of a search for new trans-Neptunian objects in the first two seasons of DES data, to limiting magnitudes of r~23.8 in the eight shallow fields and ~24.5 in the two deep fields. The 22 objects discovered to date include two new Neptune trojans, a number of objects in mean motion resonances with Neptune, two objects with orbital inclinations above 45 degrees, a Uranian resonator, and several distant scattered disk objects including one with an orbital period of nearly 6000 years. This latter object is among the half-dozen longest-period trans-Neptunian objects known, and like the other such objects has an argument of perihelion near zero degrees. I will discuss the properties and orbital dynamics of objects discovered to date, and will also discuss prospects for extending the search to the full 5000 sq. deg. DES wide survey.

  19. The gravity of dark vortices: effective field theory for branes and strings carrying localized flux

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Diener, R.; Williams, M.

    2015-11-01

    A Nielsen-Olesen vortex usually sits in an environment that expels the flux that is confined to the vortex, so flux is not present both inside and outside. We construct vortices for which this is not true, where the flux carried by the vortex also permeates the `bulk' far from the vortex. The idea is to mix the vortex's internal gauge flux with an external flux using off-diagonal kinetic mixing. Such `dark' vortices could play a phenomenological role in models with both cosmic strings and a dark gauge sector. When coupled to gravity they also provide explicit ultra-violet completions for codimension-two brane-localized flux, which arises in extra-dimensional models when the same flux that stabilizes extra-dimensional size is also localized on space-filling branes situated around the extra dimensions. We derive simple formulae for observables such as defect angle, tension, localized flux and on-vortex curvature when coupled to gravity, and show how all of these are insensitive to much of the microscopic details of the solutions, and are instead largely dictated by low-energy quantities. We derive the required effective description in terms of a world-sheet brane action, and derive the matching conditions for its couplings. We consider the case where the dimensions transverse to the bulk compactify, and determine how the on- and off-vortex curvatures and other bulk features depend on the vortex properties. We find that the brane-localized flux does not gravitate, but just renormalizes the tension in a magnetic-field independent way. The existence of an explicit UV completion puts the effective description of these models on a more precise footing, verifying that brane-localized flux can be consistent with sensible UV physics and resolving some apparent paradoxes that can arise with a naive (but commonly used) delta-function treatment of the brane's localization within the bulk.

  20. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis.

    PubMed

    Kowalski, Kamil; Kołodziejczyk, Aleksandra; Sikorska, Maria; Płaczkiewicz, Jagoda; Cichosz, Paulina; Kowalewska, Magdalena; Stremińska, Władysława; Jańczyk-Ilach, Katarzyna; Koblowska, Marta; Fogtman, Anna; Iwanicka-Nowicka, Roksana; Ciemerych, Maria A; Brzoska, Edyta

    2016-10-13

    The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor -1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle.

  1. Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample.

    PubMed

    Prade, Friedrich; Fischer, Kai; Heinz, Detlef; Meyer, Pascal; Mohr, Jürgen; Pfeiffer, Franz

    2016-06-30

    Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases.

  2. Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging

    NASA Astrophysics Data System (ADS)

    Velroyen, A.; Bech, M.; Malecki, A.; Tapfer, A.; Yaroshenko, A.; Ingrisch, M.; Cyran, C. C.; Auweter, S. D.; Nikolaou, K.; Reiser, M.; Pfeiffer, F.

    2013-02-01

    In clinically established—absorption-based—biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which unlike iodine-based contrast agents can also be administered to patients with renal impairment and thyroid dysfunction, for application with a recently developed novel x-ray dark-field imaging modality. To produce contrast from these microbubble-based contrast agents, our method exploits ultra-small-angle coherent x-ray scattering. Such scattering dark-field x-ray images can be obtained with a grating-based x-ray imaging setup, together with refraction-based differential phase-contrast and the conventional attenuation contrast images. In this work we specifically show that ultrasound contrast agents based on microbubbles can be used to produce strongly enhanced dark-field contrast, with superior contrast-to-noise ratio compared to the attenuation signal. We also demonstrate that this method works well with an x-ray tube-based setup and that the relative contrast gain even increases when the pixel size is increased from tenths of microns to clinically compatible detector resolutions about up to a millimetre.

  3. Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography

    PubMed Central

    Yaroshenko, Andre; Pritzke, Tina; Koschlig, Markus; Kamgari, Nona; Willer, Konstantin; Gromann, Lukas; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne

    2016-01-01

    Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis and staging of early lung injury induced by MV and hyperoxia in neonatal mice. The imaging method is based on the Talbot-Lau x-ray grating interferometry that makes it possible to quantify the x-ray small-angle scattering on the air-tissue interfaces. This so-called dark-field signal revealed increasing loss of x-ray small-angle scattering when comparing images of neonatal mice undergoing hyperoxia and MV-O2 with animals kept at room air. The changes in the dark field correlated well with histologic findings and provided superior differentiation than conventional x-ray imaging and lung function testing. The results suggest that x-ray dark-field radiography is a sensitive tool for assessing structural changes in the developing lung. In the future, with further technical developments x-ray dark-field imaging could be an important tool for earlier diagnosis and sensitive monitoring of lung injury in neonates requiring postnatal oxygen or ventilator therapy. PMID:27072871

  4. Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample

    NASA Astrophysics Data System (ADS)

    Prade, Friedrich; Fischer, Kai; Heinz, Detlef; Meyer, Pascal; Mohr, Jürgen; Pfeiffer, Franz

    2016-06-01

    Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases.

  5. Microbubbles as a scattering contrast agent for grating-based x-ray dark-field imaging.

    PubMed

    Velroyen, A; Bech, M; Malecki, A; Tapfer, A; Yaroshenko, A; Ingrisch, M; Cyran, C C; Auweter, S D; Nikolaou, K; Reiser, M; Pfeiffer, F

    2013-02-21

    In clinically established-absorption-based-biomedical x-ray imaging, contrast agents with high atomic numbers (e.g. iodine) are commonly used for contrast enhancement. The development of novel x-ray contrast modalities such as phase contrast and dark-field contrast opens up the possible use of alternative contrast media in x-ray imaging. We investigate using ultrasound contrast agents, which unlike iodine-based contrast agents can also be administered to patients with renal impairment and thyroid dysfunction, for application with a recently developed novel x-ray dark-field imaging modality. To produce contrast from these microbubble-based contrast agents, our method exploits ultra-small-angle coherent x-ray scattering. Such scattering dark-field x-ray images can be obtained with a grating-based x-ray imaging setup, together with refraction-based differential phase-contrast and the conventional attenuation contrast images. In this work we specifically show that ultrasound contrast agents based on microbubbles can be used to produce strongly enhanced dark-field contrast, with superior contrast-to-noise ratio compared to the attenuation signal. We also demonstrate that this method works well with an x-ray tube-based setup and that the relative contrast gain even increases when the pixel size is increased from tenths of microns to clinically compatible detector resolutions about up to a millimetre.

  6. Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample

    PubMed Central

    Prade, Friedrich; Fischer, Kai; Heinz, Detlef; Meyer, Pascal; Mohr, Jürgen; Pfeiffer, Franz

    2016-01-01

    Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases. PMID:27357449

  7. Visualization of neonatal lung injury associated with mechanical ventilation using x-ray dark-field radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Pritzke, Tina; Koschlig, Markus; Kamgari, Nona; Willer, Konstantin; Gromann, Lukas; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne

    2016-04-01

    Mechanical ventilation (MV) and supplementation of oxygen-enriched gas, often needed in postnatal resuscitation procedures, are known to be main risk factors for impaired pulmonary development in the preterm and term neonates. Unfortunately, current imaging modalities lack in sensitivity for the detection of early stage lung injury. The present study reports a new imaging approach for diagnosis and staging of early lung injury induced by MV and hyperoxia in neonatal mice. The imaging method is based on the Talbot-Lau x-ray grating interferometry that makes it possible to quantify the x-ray small-angle scattering on the air-tissue interfaces. This so-called dark-field signal revealed increasing loss of x-ray small-angle scattering when comparing images of neonatal mice undergoing hyperoxia and MV-O2 with animals kept at room air. The changes in the dark field correlated well with histologic findings and provided superior differentiation than conventional x-ray imaging and lung function testing. The results suggest that x-ray dark-field radiography is a sensitive tool for assessing structural changes in the developing lung. In the future, with further technical developments x-ray dark-field imaging could be an important tool for earlier diagnosis and sensitive monitoring of lung injury in neonates requiring postnatal oxygen or ventilator therapy.

  8. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  9. Cosmological dynamics of D-BIonic and DBI scalar field and coincidence problem of dark energy

    NASA Astrophysics Data System (ADS)

    Panpanich, Sirachak; Maeda, Kei-ichi; Mizuno, Shuntaro

    2017-05-01

    We study the cosmological dynamics of a D-BIonic and Dirac-Born-Infeld scalar field, which is coupled to matter fluid. For the exponential potential and the exponential couplings, we find a new analytic scaling solution yielding the accelerated expansion of the Universe. Since it is shown to be an attractor for some range of the coupling parameters, the density parameter of matter fluid can be the observed value, as in the coupled quintessence with a canonical scalar field. Contrary to the usual coupled quintessence, where the value of the matter coupling giving the observed density parameter is too large to satisfy the observational constraint from the cosmic microwave background, we show that the D-BIonic theory can give a similar solution with a much smaller value of matter coupling. As a result, together with the fact that the D-BIonic theory has a screening mechanism, the D-BIonic theory can solve the so-called coincidence problem as well as the dark energy problem.

  10. CellViCAM--Cell viability classification for animal cell cultures using dark field micrographs.

    PubMed

    Burgemeister, S; Nattkemper, T W; Noll, T; Hoffrogge, R; Flaschel, E

    2010-09-15

    Online monitoring of cell density and cell viability is a challenging but essential task to control and optimize biotechnical processes and is of particular interest for the growing field of animal cell cultures. For this purpose, we introduce an optical approach for automated cell detection and viability classification of suspended mammalian cells. Our proposed system CellViCAM is capable of evaluating dark field micrographs by means of several image processing and supervised machine learning techniques without the use of any dyes or fluorescent labeling. Using a human cell line as the reference culture, an efficient cell detection procedure has been established also enabling a cell density estimation. Furthermore, a comprehensive but reagent-free viability analysis, based on a semi-automatic training data generation, has been developed. By means of an extensive validation dataset we can show that the CellViCAM approach can be considered as an equivalent to staining-based methods and moreover, how it provides a technical platform for a more differentiated cell state classification into living, necrotic, early and late apoptosis.

  11. Refraction-based X-ray Computed Tomography for Biomedical Purpose Using Dark Field Imaging Method

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    We have proposed a tomographic x-ray imaging system using DFI (dark field imaging) optics along with a data-processing method to extract information on refraction from the measured intensities, and a reconstruction algorithm to reconstruct a refractive-index field from the projections generated from the extracted refraction information. The DFI imaging system consists of a tandem optical system of Bragg- and Laue-case crystals, a positioning device system for a sample, and two CCD (charge coupled device) cameras. Then, we developed a software code to simulate the data-acquisition, data-processing, and reconstruction methods to investigate the feasibility of the proposed methods. Finally, in order to demonstrate its efficacy, we imaged a sample with DCIS (ductal carcinoma in situ) excised from a breast cancer patient using a system constructed at the vertical wiggler beamline BL-14C in KEK-PF. Its CT images depicted a variety of fine histological structures, such as milk ducts, duct walls, secretions, adipose and fibrous tissue. They correlate well with histological sections.

  12. New trans-Neptunian Objects in the Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Gerdes, David; Dark Energy Survey Collaboration

    2015-04-01

    The Dark Energy Survey (DES) observes ten separate 3 sq. deg. fields approximately weekly for six months each year. Although intended primarily to detect Type Ia supernovae, this data set provides a rich time series that is well suited for the detection of objects in the outer solar system, which move slowly enough that they can remain in the same field of view for weeks, months, or even across multiple DES observing seasons. With ecliptic latitudes ranging from -15 to -45 degrees, DES is particularly sensitive to the dynamically hot population of Kuiper Belt object, as well as detached/inner Oort cloud objects. Here I report the results of a search for new trans-Neptunian objects in the first two seasons of DES data. The objects discovered to date include a new Neptune trojan, a number of objects in mean motion resonances with Neptune, an object with an orbital inclination of 48 degrees, and several distant scattered disk objects including one with an orbital period of nearly 1200 years. I will also discuss prospects for extending the search to the full 5000 sq. deg. DES wide survey.

  13. Application of an electric field for pretreatment of a seeding source for dark fermentative hydrogen production.

    PubMed

    Jeong, Da-Young; Cho, Si-Kyung; Shin, Hang-Sik; Jung, Kyung-Won

    2013-07-01

    In present study, an electric field was newly adopted as a pretreatment method for inoculum preparation in dark fermentative hydrogen production. Various voltages (5-20 V for 10 min) were applied, and the feasibility and efficiency of this method were compared with those of heat pretreatment (90°C for 20 min). Both the highest H2 yield, 1.43 mol H2/mol hexoseadded, and the highest production rate, 101.4 mL H2/L/h, were observed at 10 V. While RNA concentration of above 100mg/L was maintained up to 10 V, it was decreased at an applied voltage of 20 V, where the worst performance was observed. Microbial analysis results confirmed that only H2 producing bacteria were detected with electric pretreatment, while non-H2 producing bacteria coexist with heat and electric (5 V) pretreatment. The results suggested that application of an electric field has reasonable potential as an alternative method for preparing inoculums for hydrogen production.

  14. Frequency-Induced Bulk Magnetic Domain-Wall Freezing Visualized by Neutron Dark-Field Imaging

    NASA Astrophysics Data System (ADS)

    Betz, B.; Rauscher, P.; Harti, R. P.; Schäfer, R.; Van Swygenhoven, H.; Kaestner, A.; Hovind, J.; Lehmann, E.; Grünzweig, C.

    2016-08-01

    We use neutron dark-field imaging to visualize and interpret the response of bulk magnetic domain walls to static and dynamic magnetic excitations in (110)-Goss textured iron silicon high-permeability steel alloy. We investigate the domain-wall motion under the influence of an external alternating sinusoidal magnetic field. In particular, we perform scans combining varying levels of dcoffset (0 - 30 A /m ) , oscillation amplitude Aac (0 - 1500 A /m ) , and frequency fac ((0 - 200 Hz ) . By increasing amplitude Aac while maintaining constant values of dcoffset and fac , we record the transition from a frozen domain-wall structure to a mobile one. Vice versa, increasing fac while keeping Aac and dcoffset constant led to the reverse transition from a mobile domain-wall structure into a frozen one. We show that varying both Aac and fac shifts the position of the transition region. Furthermore, we demonstrate that higher frequencies require higher oscillation amplitudes to overcome the freezing phenomena. The fundamental determination and understanding of the frequency-induced freezing process in high-permeability steel alloys is of high interest to the further development of descriptive models for bulk macromagnetic phenomena. Likewise, the efficiency of transformers can be improved based on our results, since these alloys are used as transformer core material.

  15. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    SciTech Connect

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-07-20

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 {mu}m detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 {mu}m imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L{sub IR} > 10{sup 11} L{sub sun} (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  16. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1α

    PubMed Central

    Gallagher, Katherine A.; Liu, Zhao-Jun; Xiao, Min; Chen, Haiying; Goldstein, Lee J.; Buerk, Donald G.; Nedeau, April; Thom, Stephen R.; Velazquez, Omaida C.

    2007-01-01

    Endothelial progenitor cells (EPCs) are essential in vasculogenesis and wound healing, but their circulating and wound level numbers are decreased in diabetes. This study aimed to determine mechanisms responsible for the diabetic defect in circulating and wound EPCs. Since mobilization of BM EPCs occurs via eNOS activation, we hypothesized that eNOS activation is impaired in diabetes, which results in reduced EPC mobilization. Since hyperoxia activates NOS in other tissues, we investigated whether hyperoxia restores EPC mobilization in diabetic mice through BM NOS activation. Additionally, we studied the hypothesis that impaired EPC homing in diabetes is due to decreased wound level stromal cell–derived factor–1α (SDF-1α), a chemokine that mediates EPC recruitment in ischemia. Diabetic mice showed impaired phosphorylation of BM eNOS, decreased circulating EPCs, and diminished SDF-1α expression in cutaneous wounds. Hyperoxia increased BM NO and circulating EPCs, effects inhibited by the NOS inhibitor N-nitro- l-arginine-methyl ester. Administration of SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, and wound healing. Thus, hyperoxia reversed the diabetic defect in EPC mobilization, and SDF-1α reversed the diabetic defect in EPC homing. The targets identified, which we believe to be novel, can significantly advance the field of diabetic wound healing. PMID:17476357

  17. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  18. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    NASA Astrophysics Data System (ADS)

    Baumbach, S.; Kanngießer, B.; Malzer, W.; Stiel, H.; Wilhein, T.

    2015-08-01

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  19. Determination of Bulk Magnetic Volume Properties by Neutron Dark-Field Imaging

    NASA Astrophysics Data System (ADS)

    Grünzweig, Christian; Siebert, René; Betz, Benedikt; Rauscher, Peter; Schäfer, Rudolf; Lehmann, Eberhard

    For the production of high-class electrical steel grades a deeper understanding of the magnetic domain interaction with induced mechanical stresses is strongly required. This holds for non-oriented (NO) as well as grain-oriented (GO) steels. In the case of non-oriented steels the magnetic property degeneration after punching or laser cutting is essential for selecting correct obstructing material grades and designing efficient electrical machines. Until now these effects stay undiscovered due to the lack of adequate investigation methods that reveal local bulk information on processed laminations. Here we show how the use of a non-destructive testing method based on a neutron grating interferometry providing the dark-field image contrast delivers spatially-resolved transmission information about the local bulk domain arrangement and domain wall density. With the help of this technique it is possible to visualize magnetization processes within the NO laminations. Different representative manufacturing techniques are compared in terms of magnetic flux density deterioration such as punching, mechanically cutting by guillotine as well as laser fusion cutting using industrial high power laser beam sources. For GO steel laminations the method is applicable on the one hand to visualize the internal domain structure without being hindered by the coating layer. On the other hand, we can show the influence of the coating layer onto the underlying domain structure.

  20. CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Raccanelli, Alvise; Piattella, Oliver F.; Pietrobon, Davide; Giannantonio, Tommaso E-mail: alvise.raccanelli@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov E-mail: sabino.matarrese@pd.infn.it

    2011-03-01

    We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for a range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.

  1. Automated layout and phase assignment techniques for dark-field alternating PSM

    NASA Astrophysics Data System (ADS)

    Kahng, Andrew B.; Wang, Huijuan; Zelikovsky, Alexander

    1998-12-01

    We describe new, efficient algorithms for layout modification and phase assignment for dark field alternating-type phase- shifting masks in the single-exposure regime. We make the following contributions. First, we give optimal and fast algorithms to minimize the number of phase conflicts that must be removed to ensure 2-colorability of the conflict graph. These methods can potentially reduce runtime and/or improve solution quality, compared to previous approaches of Moniwa et al. and Ooi et al. Second, we suggest a new iterative 2- coloring and compaction approach that simultaneously optimizes layout and phase assignment. The approach iteratively performs the following steps: (1) compact the layout and find the conflict graph; (2) find the minimum set of edges whose deletion makes the conflict graph bipartite; and (3) add a new compaction constraint for each edge in this minimum set, such that the corresponding pair of features will no longer conflict. Third, we describe additional approaches to co- optimization of layout and phase assignment for alternating PSM. Preliminary computational experience appears promising.

  2. Bino variations: Effective field theory methods for dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Robertson, Denis S.; Solon, Mikhail P.; Zurek, Kathryn M.

    2016-05-01

    We apply effective field theory methods to compute bino-nucleon scattering, in the case where tree-level interactions are suppressed and the leading contribution is at loop order via heavy flavor squarks or sleptons. We find that leading log corrections to fixed-order calculations can increase the bino mass reach of direct detection experiments by a factor of 2 in some models. These effects are particularly large for the bino-sbottom coannihilation region, where bino dark matter as heavy as 5-10 TeV may be detected by near future experiments. For the case of stop- and selectron-loop mediated scattering, an experiment reaching the neutrino background will probe thermal binos as heavy as 500 and 300 GeV, respectively. We present three key examples that illustrate in detail the framework for determining weak scale coefficients, and for mapping onto a low-energy theory at hadronic scales, through a sequence of effective theories and renormalization group evolution. For the case of a squark degenerate with the bino, we extend the framework to include a squark degree of freedom at low energies using heavy particle effective theory, thus accounting for large logarithms through a "heavy-light current." Benchmark predictions for scattering cross sections are evaluated, including complete leading order matching onto quark and gluon operators, and a systematic treatment of perturbative and hadronic uncertainties.

  3. High energy X-ray phase and dark-field imaging using a random absorption mask

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  4. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Van Aert, S; Verbeeck, J; Erni, R; Bals, S; Luysberg, M; Van Dyck, D; Van Tendeloo, G

    2009-09-01

    A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.

  5. Exploring combined dark and bright field illumination to improve the detection of defects on specular surfaces

    NASA Astrophysics Data System (ADS)

    Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.

    2017-01-01

    An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.

  6. Dark field optical imaging reveals vascular changes in an inducible hamster cheek pouch model during carcinogenesis

    PubMed Central

    Hu, Fangyao; Morhard, Robert; Murphy, Helen A.; Zhu, Caigang; Ramanujam, Nimmi

    2016-01-01

    In this study, we propose a low-cost cross-polarized dark field microscopy system for in vivo vascular imaging to detect head and neck cancer. A simple-to-use Gabor-filter-based image processing technique was developed to objectively and automatically quantify several important vascular features, including tortuosity, length, diameter and area fraction, from vascular images. Simulations were performed to evaluate the accuracies of vessel segmentation and feature extraction for our algorithm. Sensitivity and specificity for vessel segmentation of the Gabor masks both remained above 80% at all contrast levels when compared to gold-standard masks. Errors for vascular feature extraction were under 5%. Moreover, vascular contrast and vessel diameter were identified to be the two primary factors which affected the segmentation accuracies. After our algorithm was validated, we monitored the blood vessels in an inducible hamster cheek pouch carcinogen model over 17 weeks and quantified vascular features during carcinogenesis. A significant increase in vascular tortuosity and a significant decrease in vessel length were observed during carcinogenesis. PMID:27699096

  7. Influence of spatial and temporal coherences on atomic resolution high angle annular dark field imaging.

    PubMed

    Beyer, Andreas; Belz, Jürgen; Knaub, Nikolai; Jandieri, Kakhaber; Volz, Kerstin

    2016-10-01

    Aberration-corrected (scanning) transmission electron microscopy ((S)TEM) has become a widely used technique when information on the chemical composition is sought on an atomic scale. To extract the desired information, complementary simulations of the scattering process are inevitable. Often the partial spatial and temporal coherences are neglected in the simulations, although they can have a huge influence on the high resolution images. With the example of binary gallium phosphide (GaP) we elucidate the influence of the source size and shape as well as the chromatic aberration on the high angle annular dark field (HAADF) intensity. We achieve a very good quantitative agreement between the frozen phonon simulation and experiment for different sample thicknesses when a Lorentzian source distribution is assumed and the effect of the chromatic aberration is considered. Additionally the influence of amorphous layers introduced by the preparation of the TEM samples is discussed. Taking into account these parameters, the intensity in the whole unit cell of GaP, i.e. at the positions of the different atomic columns and in the region between them, is described correctly. With the knowledge of the decisive parameters, the determination of the chemical composition of more complex, multinary materials becomes feasible.

  8. Complex Scalar Field Dark Matter and its Imprint on the Gravitational Wave Background from Inflation

    NASA Astrophysics Data System (ADS)

    Li, Bohua; Shapiro, Paul; Rindler-Daller, Tanja

    2016-03-01

    We consider an alternative CDM to WIMP dark matter, ultralight bosons (m > ~10-22 eV) of a complex scalar field (SFDM), whose number per unit comoving volume is conserved after particle production during standard reheating (w=0). In a ΛSFDM universe, SFDM starts relativistic, evolving from stiff (w=1) to radiationlike (w=1/3), before becoming nonrelativistic and CDM-like at late times (w=0). Thus, before the familiar radiation-dominated phase, there is an earlier phase of stiff-matter-domination. The transitions between these phases, determined by SFDM particle mass and self-interaction coupling strength, are constrained by cosmological observables, particularly Neff, the effective number of neutrino species during BBN, the redshift of matter-radiation equality, and tensor fluctuations from inflation, which imprint CMB B-modes. Tensor modes that reenter the horizon during or before the stiff phase contribute an energy density as gravitational waves which is amplified by the stiff phase, increasing the expansion rate of the radiation-dominated era. These effects yield constraints on SFDM parameters and make detection of these GWs today possible at high frequencies by laser interferometry, for currently allowed tensor-to-scalar ratio r and reheat temperature.

  9. Refractive-index based tomosynthesis using dark-field imaging optics

    NASA Astrophysics Data System (ADS)

    Sunaguchi, N.; Yuasa, T.; Ichihara, S.; Huo, Q.; Sakai, M.; Wu, Y.; Shimao, D.; Ando, M.

    2013-03-01

    Tomosynthesis (TS) is a pseudo-3-dimensional image reconstruction method to recover depth-resolved information using restricted number of projections. In this research, refraction index based TS imaging using dark-field imaging (DFI) optics is proposed and biomedical soft tissues were imaged in low dose exposure. By a single exposure of an object, two projected images are obtained from a Laue-case analyzer of DFI. Calculating the both images refraction component is deduced, while two exposures are needed in DEI (diffraction enhanced imaging). Thus the measurement time and the radiation dose in DFI are half of DEI. In addition, the proposed reconstruction algorithm, derived from the quantitative relationship in measurement process, allows high contrast tomographic imaging in spite of one order smaller number of projections for CT (computed tomography). To demonstrate the proposed imaging protocol efficacy, an ex-vivo excised tissue of human lung were imaged using a system constructed at the vertical wiggler beamline at PF-BL14C at KEK. TS image is successfully delineated high quality soft tissue structures comparable to CT.

  10. Effective field theory of cosmic acceleration: Constraining dark energy with CMB data

    NASA Astrophysics Data System (ADS)

    Raveri, Marco; Hu, Bin; Frusciante, Noemi; Silvestri, Alessandra

    2014-08-01

    We introduce EFTCAMB/EFTCosmoMC as publicly available patches to the commonly used camb/CosmoMC codes. We briefly describe the structure of the codes, their applicability and main features. To illustrate the use of these patches, we obtain constraints on parametrized pure effective field theory and designer f(R) models, both on ΛCDM and wCDM background expansion histories, using data from Planck temperature and lensing potential spectra, WMAP low-ℓ polarization spectra (WP), and baryon acoustic oscillations (BAO). Upon inspecting the theoretical stability of the models on the given background, we find nontrivial parameter spaces that we translate into viability priors. We use different combinations of data sets to show their individual effects on cosmological and model parameters. Our data analysis results show that, depending on the adopted data sets, in the wCDM background case these viability priors could dominate the marginalized posterior distributions. Interestingly, with Planck +WP+BAO+lensing data, in f(R) gravity models, we get very strong constraints on the constant dark energy equation of state, w0∈(-1,-0.9997) (95% C.L.).

  11. Setting limits on Effective Field Theories: the case of Dark Matter

    NASA Astrophysics Data System (ADS)

    Pobbe, Federico; Wulzer, Andrea; Zanetti, Marco

    2017-08-01

    The usage of Effective Field Theories (EFT) for LHC new physics searches is receiving increasing attention. It is thus important to clarify all the aspects related with the applicability of the EFT formalism in the LHC environment, where the large available energy can produce reactions that overcome the maximal range of validity, i.e. the cutoff, of the theory. We show that this does not forbid to set rigorous limits on the EFT parameter space through a modified version of the ordinary binned likelihood hypothesis test, which we design and validate. Our limit-setting strategy can be carried on in its full-fledged form by the LHC experimental collaborations, or performed externally to the collaborations, through the Simplified Likelihood approach, by relying on certain approximations. We apply it to the recent CMS mono-jet analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a case study because the limited reach on the DM production EFT Wilson coefficient and the structure of the theory suggests that the cutoff might be dangerously low, well within the LHC reach. However our strategy can also be applied, if needed, to EFT's parametrising the indirect effects of heavy new physics in the Electroweak and Higgs sectors.

  12. Three-dimensional characteristics of alveolar macrophages in vitro observed by dark field microscopy

    NASA Astrophysics Data System (ADS)

    Swarat, Dominic; Wiemann, Martin; Lipinski, Hans-Gerd

    2014-05-01

    Alveolar macrophages (AM) are cells from immune defense inside the lung. They engulf particles in vacuoles from the outer membrane. Volume and surface are important parameters to characterize the particle uptake. AM change their shape within a few seconds, therefore it is hard to obtain by confocal laser scanning microscopy, which is commonly used to generate 3D-images. So we used an intensified dark field microscopy (DFM) as an alternative method to generate contrast rich AM gray tone image slices used for 3D-reconstructions of AM cells by VTK software applications. From these 3D-reconstructions approximate volume and surface data of the AM were obtained and compared to values found in the literature. Finally, simple geometrical 3D-models of the AM were created and compared to real data. Averaged volume and surface data from the DFM images are close to values found in the literature. Furthermore, calculation of volume and surface data from DFM images could be done faster if simplified geometrical 3D-models of the cells were used.

  13. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.

    PubMed

    Kucia, Magda; Jankowski, Kacper; Reca, Ryan; Wysoczynski, Marcin; Bandura, Laura; Allendorf, Daniel J; Zhang, Jin; Ratajczak, Janina; Ratajczak, Mariusz Z

    2004-03-01

    Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential

  14. SDF-1α peptide tethered polyester facilitates tissue repair by endogenous cell mobilization and recruitment.

    PubMed

    Shafiq, Muhammad; Kong, Deling; Kim, Soo Hyun

    2017-10-01

    The design of bioactive scaffolds that can invoke host's own regenerative capabilities and facilitate endogenous tissue repair hold great promise. This study aims to evaluate the potential of stromal cell-derived factor 1 alpha (SDF-1α)-derived peptide and heparin tethered poly(L-lactide-co-ε-caprolactone) (PLCL) copolymers for blood vessel regeneration applications. Amino acid analysis and toluidine blue assays confirm successful conjugation of SDF-1α peptide and heparin with the PLCL copolymers. Assessment of biocompatibility after subcutaneous implantation in rats discloses higher cell infiltration in SDF-1α peptide (SDF-1 group) or SDF-1 peptide and heparin (SDF-1/heparin group) than the control group. SDF-1 and SDF-1/heparin grafts also show more numbers of laminin(+) blood vessels, CD90(+) stem cells, and alpha smooth muscle actin(+) cells than the control group. However, SDF-1 and SDF-1/heparin groups did not significantly differ in terms of blood vessel regeneration and stem cell recruitment. Evaluation of the inflammatory response reveal less numbers of CD68(+) macrophages in SDF-1 and SDF-1/heparin groups compared with the control group; whereas three groups show similar numbers of CD206(+) macrophages. These results indicate that completely synthetic, cell-free grafts can attract endogenous cells and enhance tissue repair. Bioactive polyesters can be fabricated into different shapes and structures for various tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomater Res Part A: 105A: 2670-2684, 2017. © 2017 Wiley Periodicals, Inc.

  15. Injection of SDF-1 loaded nanoparticles following traumatic brain injury stimulates neural stem cell recruitment.

    PubMed

    Zamproni, Laura N; Mundim, Mayara V; Porcionatto, Marimelia A; des Rieux, Anne

    2017-03-15

    Recruiting neural stem cell (NSC) at the lesion site is essential for central nervous system repair. This process could be triggered by the local delivery of the chemokine SDF-1. We compared two PLGA formulations for local brain SDF-1 delivery: SDF-1 loaded microspheres (MS) and SDF-1 loaded nanoparticles (NP). Both formulations were able to encapsulate more than 80% of SDF-1 but presented different release profiles, with 100% of SDF-1 released after 6days for the MS and with 25% of SDF-1 released after 2 weeks for NP. SDF-1 bioactivity was demonstrated by a chemotactic assay. When injected in mouse brain after traumatic brain injury, only SDF-1 nanoparticles induced NSC migration to the damage area. More neuroblasts (DCX+ cells) could be visualized around the lesions treated with NP SDF-1 compared to the other conditions. Rostral migratory stream destabilization with massive migration of DCX+ cell toward the perilesional area was observed 2 weeks after NP SDF-1 injection. Local injection of SDF-1-loaded nanoparticles induces recruitment of NSC and could be promising for brain injury lesion.

  16. Unimodular bimode gravity and the coherent scalar-graviton field as galaxy dark matter

    NASA Astrophysics Data System (ADS)

    Pirogov, Yu. F.

    2012-06-01

    An explicit violation of the general gauge invariance/relativity is adopted as the origin of dark matter and dark energy in the context of gravitation. The violation of the local scale invariance alone, with the residual unimodular one, is considered. Besides the four-volume preserving deformation mode—the transverse-tensor graviton—the metric comprises a compression mode—the scalar graviton, or the systolon. A unimodular invariant and general covariant metric theory of the bimode/scalar-tensor gravity is consistently worked out. To reduce the primordial ambiguity of the theory a dynamical global symmetry is imposed, with its subsequent spontaneous breaking revealed. The static spherically symmetric case in empty space, except possibly for the origin, is studied. A three-parameter solution describing a new static space structure—the dark lacuna—is constructed. It enjoys the property of gravitational confinement, with the logarithmic potential of gravitational attraction at the periphery, and results in asymptotically flat rotation curves. Comprising a super-massive dark fracture (a scalar-modified black hole) at the origin surrounded by a cored dark halo, the dark lacunas are proposed as a prototype model of galaxies, implying an ultimate account for the distributed non-gravitational matter and putative asphericity or rotation.

  17. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Martini, P.; Mudd, D.; Ostrovski, F.; Reed, S. L.; Lidman, C.; Kochanek, C.; Davis, T. M.; Sharp, R.; Uddin, S.; King, A.; Wester, W.; Tucker, B. E.; Tucker, D. L.; Buckley-Geer, E.; Carollo, D.; Childress, M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Macaulay, E.; O'Neill, C. R.; Abbott, T. M. C.; Abdalla, F. B.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; Marshall, J. L.; Menanteau, F.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration

    2017-03-01

    We present a study of quasar selection using the supernova fields of the Dark Energy Survey (DES). We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. In all cases, we considered only objects that appear as point sources in the DES images. We examine color selection methods based on the Wide-field Infrared Survey Explorer (WISE) mid-IR W1-W2 color, a mixture of WISE and DES colors (g - i and i-W1), and a mixture of Vista Hemisphere Survey and DES colors (g - i and i - K). For probabilistic quasar selection, we used XDQSO, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band χ 2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i < 19.8 mag and i < 22 mag. For the subset of sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1263 spectroscopically confirmed quasars from three years of OzDES observation in the 30 deg2 of the DES supernova fields. The catalog includes quasars with redshifts up

  18. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons.

    PubMed

    Hees, A; Guéna, J; Abgrall, M; Bize, S; Wolf, P

    2016-08-05

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  19. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement.

    PubMed

    Noda, Naoki; Kamimura, Shinji

    2008-02-01

    With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10 kHz. Over most of this bandwidth, the observed noise level was as small as 0.1 nm/radicalHz.

  20. Mapping of valence energy losses via energy-filtered annular dark-field scanning transmission electron microscopy.

    PubMed

    Gu, Lin; Sigle, Wilfried; Koch, Christoph T; Nelayah, Jaysen; Srot, Vesna; van Aken, Peter A

    2009-08-01

    The advent of electron monochromators has opened new perspectives on electron energy-loss spectroscopy at low energy losses, including phenomena such as surface plasmon resonances or electron transitions from the valence to the conduction band. In this paper, we report first results making use of the combination of an energy filter and a post-filter annular dark-field detector. This instrumental design allows us to obtain energy-filtered (i.e. inelastic) annular dark-field images in scanning transmission electron microscopy of the 2-dimensional semiconductor band-gap distribution of a GaN/Al(45)Ga(55)N structure and of surface plasmon resonances of silver nanoprisms. In comparison to other approaches, the technique is less prone to inelastic delocalization and relativistic artefacts. The mixed contribution of elastic and inelastic contrast is discussed.

  1. Searching for an Oscillating Massive Scalar Field as a Dark Matter Candidate Using Atomic Hyperfine Frequency Comparisons

    NASA Astrophysics Data System (ADS)

    Hees, A.; Guéna, J.; Abgrall, M.; Bize, S.; Wolf, P.

    2016-08-01

    We use 6 yrs of accurate hyperfine frequency comparison data of the dual rubidium and caesium cold atom fountain FO2 at LNE-SYRTE to search for a massive scalar dark matter candidate. Such a scalar field can induce harmonic variations of the fine structure constant, of the mass of fermions, and of the quantum chromodynamic mass scale, which will directly impact the rubidium/caesium hyperfine transition frequency ratio. We find no signal consistent with a scalar dark matter candidate but provide improved constraints on the coupling of the putative scalar field to standard matter. Our limits are complementary to previous results that were only sensitive to the fine structure constant and improve them by more than an order of magnitude when only a coupling to electromagnetism is assumed.

  2. Inflation, dark matter, and dark energy in the string landscape.

    PubMed

    Liddle, Andrew R; Ureña-López, L Arturo

    2006-10-20

    We consider the conditions needed to unify the description of dark matter, dark energy, and inflation in the context of the string landscape. We find that incomplete decay of the inflaton field gives the possibility that a single field is responsible for all three phenomena. By contrast, unifying dark matter and dark energy into a single field, separate from the inflaton, appears rather difficult.

  3. Testing the velocity field in non-scale-invariant cold dark matter models

    NASA Astrophysics Data System (ADS)

    Moscardini, Lauro; Tormen, Giuseppe; Matarrese, Sabino; Lucchin, Francesco

    1995-04-01

    We analyze the cosmic peculiar velocity field as traced by a sample of 1184 spiral, elliptical and SO galaxies, grouped in 704 objects. We perform a statistical analysis, by calculating the bulk flow, cosmic Mach number and velocity correlation function for this sample and for mock catalogs extracted from a set of N-body simulations. We run four cold dark matter (CDM) simulations: two tilted models (with spectral index n = 0.6 and n = 0.8), the standard model (n = 1) and a 'blue' one (n = 1.2), with different values of the linear bias parameter b. By means of a maximum-likelihood analysis we estimate the ability of our models to fit the observations, as measured by the above statistics, and to reproduce the Local group properties. On the basis of this analysis we conclude that the best model is the unbiased standard model (n, b) = (1, 1), even though the overall flatness of the joint likelihood function implies that one cannot strongly discriminate models in the range 0.8 less than or = n less than or equal to 1, and 1 less than or = b less than or = 1.5. Models with b greater than or = 2.5 are rejected at the 95% confidence level. For n = 0.8 the values of b preferred by the present analysis, together with the Cosmic Background Explorer (COBE) data, require a negligible contribution to Delta T/T by gravitational waves. Finally, the blue model, normalized to COBE, does not provide a good fit to the velocity data.

  4. Evolution of dark state of an open atomic system in constant intensity laser field

    SciTech Connect

    Krmpot, A. J.; Radonjic, M.; Cuk, S. M.; Nikolic, S. N.; Grujic, Z. D.; Jelenkovic, B. M.

    2011-10-15

    We studied experimentally and theoretically the evolution of open atomic systems in the constant intensity laser field. The study is performed by analyzing the line shapes of Hanle electromagnetically induced transparency (EIT) obtained in different segments of a laser beam cross section of constant intensity, i.e., a {Pi}-shaped laser beam. Such Hanle EIT resonances were measured using a small movable aperture placed just in front of the photodetector, i.e., after the entire laser beam had passed through the vacuum Rb cell. The laser was locked to the open transition F{sub g}=2{yields}F{sub e}=1 at the D{sub 1} line of {sup 87}Rb with laser intensities between 0.5 and 4 mW/cm{sup 2}. This study shows that the profile of the laser beam determines the processes governing the development of atomic states during the interaction. The resonances obtained near the beam center are narrower than those obtained near the beam edge, but the significant changes of the linewidths occur only near the beam edge, i.e., right after the atom enters the beam. The Hanle EIT resonances obtained near the beam center exhibit two pronounced minima next to the central maximum. The theoretical model reveals that the occurrence of these transmission minima is a joint effect of the preparation of atoms into the dark state and the optical pumping into the uncoupled ground level F{sub g}=1. The appearance of the transmission minima, although similar to that observed in the wings of a Gaussian beam [A. J. Krmpot et al., Opt. Express 17, 22491 (2009)], is of an entirely different nature for the {Pi}-shaped laser beam.

  5. The persistence length of double stranded DNA determined using dark field tethered particle motion.

    PubMed

    Brinkers, Sanneke; Dietrich, Heidelinde R C; de Groote, Frederik H; Young, Ian T; Rieger, Bernd

    2009-06-07

    The wormlike chain model describes the micromechanics of semiflexible polymers by introducing the persistence length. We propose a method of measuring the persistence length of DNA in a controllable near-native environment. Using a dark field microscope, the projected positions of a gold nanoparticle undergoing constrained Brownian motion are captured. The nanoparticle is tethered to a substrate using a single double stranded DNA (dsDNA) molecule and immersed in buffer. No force is exerted on the DNA. We carried out Monte Carlo simulations of the experiment, which give insight into the micromechanics of the DNA and can be used to interpret the motion of the nanoparticle. Our simulations and experiments demonstrate that, unlike other similar experiments, the use of nanometer instead of micrometer sized particles causes particle-substrate and particle-DNA interactions to be of negligible effect on the position distribution of the particle. We also show that the persistence length of the tethering DNA can be estimated with a statistical error of 2 nm, by comparing the statistics of the projected position distribution of the nanoparticle to the Monte Carlo simulations. The persistence lengths of 45 single molecules of four different lengths of dsDNA were measured under the same environmental conditions at high salt concentration. The persistence lengths we found had a mean value of 35 nm (standard error of 2.8 nm), which compares well to previously found values using similar salt concentrations. Our method can be used to directly study the effect of the environmental conditions (e.g., buffer and temperature) on the persistence length.

  6. Assessment of microcirculatory changes by use of sidestream dark field microscopy during hemorrhagic shock in dogs.

    PubMed

    Peruski, Ann M; Cooper, Edward S

    2011-04-01

    To directly assess microcirculatory changes associated with induced hemorrhagic shock by use of sidestream dark field microscopy (SDM) and correlate those values with concurrently measured macrovascular and blood gas variables in healthy anesthetized dogs. 12 adult dogs. Dogs were anesthetized and splenectomized. Instrumentation and catheterization were performed for determination of macrohemodynamic and blood gas variables. Hemorrhagic shock was induced via controlled hemorrhage to a mean arterial blood pressure (MAP) of 40 mm Hg. Dogs were maintained in the shock state (MAP, 35 to 45 mm Hg) for 60 minutes. An SDM device was used to image microcirculation of buccal mucosa, and vascular analysis software was used to determine microcirculatory variables. These values were compared with other cardiovascular and blood gas variables to determine correlations. Following hemorrhage, there was a significant decrease in microvascular variables (mean ± SD), including proportion of perfused vessels (82.77 ± 8.32% vs 57.21 ± 28.83%), perfused vessel density (14.86 ± 2.64 mm/m(2) vs 6.66 ± 4.75 mm/m(2)), and microvascular flow index (2.54 ± 0.52 vs 1.59 ± 0.85). Perfused vessel density individually correlated well with macrovascular variables, with heart rate (zero order, partial correlation, and part correlation coefficients = -0.762, -0.884, and -0.793, respectively) and oxygen extraction ratio (-0.734, -0.832, and -0.746, respectively) being the most important predictors. SDM allowed real-time imaging of the microvasculature and has potential as an effective tool in experimental and clinical applications for monitoring microcirculatory changes associated with hemorrhagic shock and resuscitation in dogs.

  7. Pulmonary emphysema diagnosis with a preclinical small-animal X-ray dark-field scatter-contrast scanner.

    PubMed

    Yaroshenko, Andre; Meinel, Felix G; Bech, Martin; Tapfer, Arne; Velroyen, Astrid; Schleede, Simone; Auweter, Sigrid; Bohla, Alexander; Yildirim, Ali Ö; Nikolaou, Konstantin; Bamberg, Fabian; Eickelberg, Oliver; Reiser, Maximilian F; Pfeiffer, Franz

    2013-11-01

    To test the hypothesis that the joint distribution of x-ray transmission and dark-field signals obtained with a compact cone-beam preclinical scanner with a polychromatic source can be used to diagnose pulmonary emphysema in ex vivo murine lungs. The animal care committee approved this study. Three excised murine lungs with pulmonary emphysema and three excised murine control lungs were imaged ex vivo by using a grating-based micro-computed tomographic (CT) scanner. To evaluate the diagnostic value, the natural logarithm of relative transmission and the natural logarithm of dark-field scatter signal were plotted on a per-pixel basis on a scatterplot. Probability density function was fit to the joint distribution by using principle component analysis. An emphysema map was calculated based on the fitted probability density function. The two-dimensional scatterplot showed a characteristic difference between control and emphysematous lungs. Control lungs had lower average median logarithmic transmission (-0.29 vs -0.18, P = .1) and lower average dark-field signal (-0.54 vs -0.37, P = .1) than emphysematous lungs. The angle to the vertical axis of the fitted regions also varied significantly (7.8° for control lungs vs 15.9° for emphysematous lungs). The calculated emphysema distribution map showed good agreement with histologic findings. X-ray dark-field scatter images of murine lungs obtained with a preclinical scanner can be used in the diagnosis of pulmonary emphysema. http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.13122413/-/DC1. RSNA, 2013

  8. Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis

    PubMed Central

    Kowalski, Kamil; Kołodziejczyk, Aleksandra; Sikorska, Maria; Płaczkiewicz, Jagoda; Cichosz, Paulina; Kowalewska, Magdalena; Stremińska, Władysława; Jańczyk-Ilach, Katarzyna; Koblowska, Marta; Fogtman, Anna; Iwanicka-Nowicka, Roksana; Ciemerych, Maria A.; Brzoska, Edyta

    2017-01-01

    ABSTRACT The skeletal muscle regeneration occurs due to the presence of tissue specific stem cells - satellite cells. These cells, localized between sarcolemma and basal lamina, are bound to muscle fibers and remain quiescent until their activation upon muscle injury. Due to pathological conditions, such as extensive injury or dystrophy, skeletal muscle regeneration is diminished. Among the therapies aiming to ameliorate skeletal muscle diseases are transplantations of the stem cells. In our previous studies we showed that Sdf-1 (stromal derived factor −1) increased migration of stem cells and their fusion with myoblasts in vitro. Importantly, we identified that Sdf-1 caused an increase in the expression of tetraspanin CD9 - adhesion protein involved in myoblasts fusion. In the current study we aimed to uncover the details of molecular mechanism of Sdf-1 action. We focused at the Sdf-1 receptors - Cxcr4 and Cxcr7, as well as signaling pathways induced by these molecules in primary myoblasts, as well as various stem cells - mesenchymal stem cells and embryonic stem cells, i.e. the cells of different migration and myogenic potential. We showed that Sdf-1 altered actin organization via FAK (focal adhesion kinase), Cdc42 (cell division control protein 42), and Rac-1 (Ras-Related C3 Botulinum Toxin Substrate 1). Moreover, we showed that Sdf-1 modified the transcription profile of genes encoding factors engaged in cells adhesion and migration. As the result, cells such as primary myoblasts or embryonic stem cells, became characterized by more effective migration when transplanted into regenerating muscle. PMID:27736296

  9. Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.

    PubMed

    Woehl, Taylor J; White, Ryan M; Keller, Robert R

    2016-06-01

    A microchannel plate was used as an ion sensitive detector in a commercial helium ion microscope (HIM) for dark-field transmission imaging of nanomaterials, i.e. scanning transmission ion microscopy (STIM). In contrast to previous transmission HIM approaches that used secondary electron conversion holders, our new approach detects forward-scattered helium ions on a dedicated annular shaped ion sensitive detector. Minimum collection angles between 125 mrad and 325 mrad were obtained by varying the distance of the sample from the microchannel plate detector during imaging. Monte Carlo simulations were used to predict detector angular ranges at which dark-field images with atomic number contrast could be obtained. We demonstrate atomic number contrast imaging via scanning transmission ion imaging of silica-coated gold nanoparticles and magnetite nanoparticles. Although the resolution of STIM is known to be degraded by beam broadening in the substrate, we imaged magnetite nanoparticles with high contrast on a relatively thick silicon nitride substrate. We expect this new approach to annular dark-field STIM will open avenues for more quantitative ion imaging techniques and advance fundamental understanding of underlying ion scattering mechanisms leading to image formation.

  10. Simulation of dark-field imaging of micro-calcifications in human breast tissue with X-ray Talbot-Lau interferometry

    NASA Astrophysics Data System (ADS)

    Ritter, A.; Anton, G.; Bayer, F.; Gödel, K.; Pelzer, G.; Rieger, J.; Weber, T.; Zang, A.; Michel, T.

    2014-05-01

    A simulation of dark-field imaging of sub-resolution structures with X-ray Talbot-Lau interferometry is presented. Data obtained from the simulation shows good agreement to a signal found in the dark-field image of a surgically removed sample of human breast tissue containing micro calcifications. A measure for the type of micro calcifications is introduced which can be calculated from dark-field signals. In a further analysis of the simulated data, it can be shown that the measure can be used to discriminate between different calcifications types.

  11. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data

    NASA Astrophysics Data System (ADS)

    Chang, C.; Vikram, V.; Jain, B.; Bacon, D.; Amara, A.; Becker, M. R.; Bernstein, G.; Bonnett, C.; Bridle, S.; Brout, D.; Busha, M.; Frieman, J.; Gaztanaga, E.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Kovács, A.; Lahav, O.; Lin, H.; Melchior, P.; Peiris, H.; Rozo, E.; Rykoff, E.; Sánchez, C.; Sheldon, E.; Troxel, M. A.; Wechsler, R.; Zuntz, J.; Abbott, T.; Abdalla, F. B.; Allam, S.; Annis, J.; Bauer, A. H.; Benoit-Lévy, A.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Castander, F. J.; Crocce, M.; D'Andrea, C. B.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D.; Kent, S.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Martini, P.; Merritt, K. W.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sako, M.; Sanchez, E.; Sevilla, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thaler, J.; Thomas, D.; Tucker, D.; Walker, A. R.

    2015-07-01

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8 σ level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N -body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. We summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.

  12. Speckle-Based X-Ray Phase-Contrast and Dark-Field Imaging with a Laboratory Source

    NASA Astrophysics Data System (ADS)

    Zanette, I.; Zhou, T.; Burvall, A.; Lundström, U.; Larsson, D. H.; Zdora, M.; Thibault, P.; Pfeiffer, F.; Hertz, H. M.

    2014-06-01

    We report on the observation and application of near-field speckles with a laboratory x-ray source. The detection of speckles is possible thanks to the enhanced brilliance properties of the used liquid-metal-jet source, and opens the way to a range of new applications in laboratory-based coherent x-ray imaging. Here, we use the speckle pattern for multimodal imaging of demonstrator objects. Moreover, we introduce algorithms for phase and dark-field imaging using speckle tracking, and we show that they yield superior results with respect to existing methods.

  13. The role of SDF-1 and CXCR4 on odontoblastic differentiation in human dental pulp cells.

    PubMed

    Kim, D S; Kim, Y S; Bae, W J; Lee, H J; Chang, S W; Kim, W S; Kim, E C

    2014-06-01

    To examine the role of stromal cell-derived factor 1 (SDF-1) signalling during odontogenic differentiation in human dental pulp cells (HDPCs). Human dental pulp cells were treated with differentiation medium, recombinant human SDF-1, neutralizing antibody for SDF-1 or CXCR4, pertussis toxin (PTX) and AMD3100. The expression of SDF-1 and its receptor chemokine receptor type 4 (CXCR4) was measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Odontoblastic differentiation was determined using alkaline phosphatase (ALP) activity assay, mineralized nodule formation and marker mRNAs by RT-PCR. Marked upregulation of SDF-1 and CXCR4 mRNA and protein was observed in cells grown 7 days in osteogenic induction medium. The addition of recombinant human SDF-1 to HDPCs significantly (P < 0.05) increased ALP activity, mineralized nodule formation and odontoblast marker mRNAs in a dose-dependent manner. Blocking SDF-1 signalling using antibodies against SDF-1 or CXCR4, or the G-protein-coupled receptor inhibitor PTX, and CXCR4 inhibitor AMD3100, strongly suppressed induction of odontogenic differentiation in HDPCs. Odontoblastic differentiation was stimulated by SDF-1 activation and repressed by SDF-1/CXCR4 inhibition. Thus, SDF-1/CXCR4 signalling may be a new therapeutic target and strategy to promote repair and regeneration in endodontics. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury.

    PubMed

    Stokman, Geurt; Stroo, Ingrid; Claessen, Nike; Teske, Gwendoline J D; Florquin, Sandrine; Leemans, Jaklien C

    2010-12-01

    The chemokine stromal cell-derived factor-1 (SDF-1) is thought to be involved in mediating tissue repair by promoting migration of bone marrow stem or progenitor cells to the site of injury. Increased levels of renal SDF-1 are found after kidney injury. However, recently, we showed that SDF-1 does not play an important role in the migration of haematopoietic stem cells to the post-ischaemic kidney. The function of increased post-ischaemic renal SDF-1 expression in modulating renal ischaemia/reperfusion injury remains, therefore, unknown. We studied the role of SDF-1 in renal ischaemia/reperfusion injury by locally decreasing SDF-1 expression and subsequent SDF-1 signalling in the corticomedullary region of the kidney using antisense oligonucleotide treatment in mice. Renal SDF-1 protein increased significantly in the early phase of ischaemia/reperfusion injury. Antisense treatment resulted in a reduction of corticomedullary SDF-1 expression which was accompanied by severely increased tubular injury and decreased renal function. We did not observe any difference in mobilization or retention of CXCR4-positive haematopoietic stem or progenitor cells after induction of renal ischaemia. Rather, antisense-treated animals showed markedly increased apoptosis of the tubular epithelium accompanied by an increased renal inflammatory response. Conclusions. These data indicate a new role for SDF-1 in renal pathogenesis by mediating tubular epithelial protection against ischaemic injury and suggest that SDF-1 by itself is not crucial for the influx of haematopoietic stem or progenitor cells towards the ischaemic injured kidney.

  15. Wide-Field Infrared Survey Explorer Observations of Young Stellar Objects in the Lynds 1509 Dark Cloud in Auriga

    NASA Technical Reports Server (NTRS)

    Liu, Wilson M.; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Leisawitz, David

    2015-01-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4, 4.6, 12, and 22 microns, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  16. Wide-field infrared survey explorer observations of young stellar objects in the Lynds 1509 dark cloud in Auriga

    SciTech Connect

    Liu, Wilson M.; McCollum, Bruce; Fajardo-Acosta, Sergio; Padgett, Deborah L.; Terebey, Susan; Angione, John; Rebull, Luisa M.; Leisawitz, David

    2014-06-01

    The Wide-Field Infrared Survey Explorer (WISE) has uncovered a striking cluster of young stellar object (YSO) candidates associated with the L1509 dark cloud in Auriga. The WISE observations, at 3.4 μm, 4.6 μm, 12 μm, and 22 μm, show a number of objects with colors consistent with YSOs, and their spectral energy distributions suggest the presence of circumstellar dust emission, including numerous Class I, flat spectrum, and Class II objects. In general, the YSOs in L1509 are much more tightly clustered than YSOs in other dark clouds in the Taurus-Auriga star forming region, with Class I and flat spectrum objects confined to the densest aggregates, and Class II objects more sparsely distributed. We estimate a most probable distance of 485-700 pc, and possibly as far as the previously estimated distance of 2 kpc.

  17. Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Menci, N.; Merle, A.; Totzauer, M.; Schneider, A.; Grazian, A.; Castellano, M.; Sanchez, N. G.

    2017-02-01

    We show that the measured abundance of ultra-faint lensed galaxies at z≈ 6 in the Hubble Frontier Fields (HFF) provides stringent constraints on the parameter space of (i) dark matter models based on keV sterile neutrinos; (ii) “fuzzy” wavelike dark matter models, based on Bose–Einstein condensates of ultra-light particles. For the case of sterile neutrinos, we consider two production mechanisms: resonant production through mixing with active neutrinos and the decay of scalar particles. For the former model, we derive constraints for the combination of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) which provide the tightest lower bounds on the mixing angle (and hence on the lepton asymmetry) derived so far by methods independent of baryonic physics. For the latter we compute the allowed combinations of the scalar mass, its coupling to the Higgs field, and the Yukawa coupling of scalar to sterile neutrinos. We compare our results to independent existing astrophysical bounds on sterile neutrinos in the same mass range. For the case of “fuzzy” dark matter, we show that the observed number density ≈ 1/{{Mpc}}3 of high-redshift galaxies in the HFF sets a lower limit {m}\\psi ≥slant 8\\cdot {10}-22 eV (at the 3-σ confidence level) on the particle mass, a result that strongly disfavors wavelike bosonic dark matter as a viable model for structure formation. We discuss the impact on our results of uncertainties due to systematics in the selection of highly magnified, faint galaxies at high redshift.

  18. Ontogeny and adolescent alcohol exposure in Wistar rats: open field conflict, light/dark box and forced swim test.

    PubMed

    Desikan, Anita; Wills, Derek N; Ehlers, Cindy L

    2014-07-01

    Epidemiological studies have demonstrated that heavy drinking and alcohol abuse and dependence peak during the transition between late adolescence and early adulthood. Studies in animal models have demonstrated that alcohol exposure during adolescence can cause a modification in some aspects of behavioral development, causing the "adolescent phenotype" to be retained into adulthood. However, the "adolescent phenotype" has not been studied for a number of behavioral tests. The objective of the present study was to investigate the ontogeny of behaviors over adolescence/young adulthood in the light/dark box, open field conflict and forced swim test in male Wistar rats. These data were compared to previously published data from rats that received intermittent alcohol vapor exposure during adolescence (AIE) to test whether they retained the "adolescent phenotype" in these behavioral tests. Three age groups of rats were tested (post-natal day (PD) 34-42; PD55-63; PD69-77). In the light/dark box test, younger rats escaped the light box faster than older adults, whereas AIE rats returned to the light box faster and exhibited more rears in the light than controls. In the open field conflict test, both younger and AIE rats had shorter times to first enter the center, spent more time in the center of the field, were closer to the food, and consumed more food than controls. In the forced swim test no clear developmental pattern emerged. The results of the light/dark box and the forced swim test do not support the hypothesis that adolescent ethanol vapor exposure can "lock-in" all adolescent phenotypes. However, data from the open field conflict test suggest that the adolescent and the AIE rats both engaged in more "disinhibited" and food motivated behaviors. These data suggest that, in some behavioral tests, AIE may result in a similar form of behavioral disinhibition to what is seen in adolescence.

  19. Observing the very low surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on dark matter scenarios

    NASA Astrophysics Data System (ADS)

    Menci, N.; Giallongo, E.; Grazian, A.; Paris, D.; Fontana, A.; Pentericci, L.

    2017-08-01

    We report the discovery of 11 very faint (r ≲ 23), low surface brightness (μr ≲ 27 mag/arcsec2) dwarf galaxies in one deep field in the Virgo cluster, obtained by the prime focus cameras (LBC) at the Large Binocular Telescope (LBT). These extend our previous sample to reach a total number of 27 galaxies in a field of just 0.17 deg2 located at a median distance of 390 kpc from the cluster centre. The association of such galaxies with the Virgo cluster is supported by their separate position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. For a significant fraction (26%) of the sample, the association to the cluster is confirmed by spectroscopic follow-up. We show that the mere abundance of satellite galaxies corresponding to our observed number in the target field provides extremely tight constraints on dark matter models with suppressed power spectrum compared to the cold dark matter case, independently of the galaxy luminosity distribution. In particular, the requirement that the observed number of satellite galaxies not exceed the predicted abundance of dark matter sub-halos yields a limit of mX ≥ 3 keV at 1-σ and mX ≥ 2.3 keV at 2-σ confidence level for the mass of thermal warm dark matter particles. Such a limit is competitive with other limits set by the abundance of ultra-faint satellite galaxies in the Milky Way, is completely independent of baryon physics involved in galaxy formation, and has the potentiality for appreciable improvements with future observations. We extend our analysis to dark matter models based on sterile neutrinos, showing that our observations set tight constraints on the combination of sterile neutrino mass mν and mixing parameter sin2(2θ). We discuss the robustness of our results with respect to systematics. Based on observations made at the Large Binocular Telescope (LBT) at Mt. Graham (Arizona, USA).

  20. Ex Vivo Perfusion-Simulation Measurements of Microbubbles as a Scattering Contrast Agent for Grating-Based X-Ray Dark-Field Imaging.

    PubMed

    Velroyen, Astrid; Bech, Martin; Tapfer, Arne; Yaroshenko, Andre; Müller, Mark; Paprottka, Philipp; Ingrisch, Michael; Cyran, Clemens C; Auweter, Sigrid D; Nikolaou, Konstantin; Reiser, Maximilian F; Pfeiffer, Franz

    2015-01-01

    The investigation of dedicated contrast agents for x-ray dark-field imaging, which exploits small-angle scattering at microstructures for contrast generation, is of strong interest in analogy to the common clinical use of high-atomic number contrast media in conventional attenuation-based imaging, since dark-field imaging has proven to provide complementary information. Therefore, agents consisting of gas bubbles, as used in ultrasound imaging for example, are of particular interest. In this work, we investigate an experimental contrast agent based on microbubbles consisting of a polyvinyl-alcohol shell with an iron oxide coating, which was originally developed for multimodal imaging and drug delivery. Its performance as a possible contrast medium for small-animal angiography was examined using a mouse carcass to realistically consider attenuating and scattering background signal. Subtraction images of dark field, phase contrast and attenuation were acquired for a concentration series of 100%, 10% and 1.3% to mimic different stages of dilution in the contrast agent in the blood vessel system. The images were compared to the gold-standard iodine-based contrast agent Solutrast, showing a good contrast improvement by microbubbles in dark-field imaging. This study proves the feasibility of microbubble-based dark-field contrast-enhancement in presence of scattering and attenuating mouse body structures like bone and fur. Therefore, it suggests a strong potential of the use of polymer-based microbubbles for small-animal dark-field angiography.

  1. Dark Areas

    NASA Image and Video Library

    2015-09-10

    This 220-mile (350-kilometer) wide view of Pluto from NASA's New Horizons spacecraft illustrates the incredible diversity of surface reflectivities and geological landforms on the dwarf planet. The image includes dark, ancient heavily cratered terrain; bright, smooth geologically young terrain; assembled masses of mountains; and an enigmatic field of dark, aligned ridges that resemble dunes; its origin is under debate. The smallest visible features are 0.5 miles (0.8 kilometers) in size. This image was taken as New Horizons flew past Pluto on July 14, 2015, from a distance of 50,000 miles (80,000 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19933

  2. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    SciTech Connect

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-term dynamical stability and physical properties.

  3. Observation of two new L4 Neptune Trojans in the Dark Energy Survey supernova fields

    DOE PAGES

    Gerdes, D. W.

    2016-01-28

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune's leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-meter Blanco telescope at Cerro Tololo Inter- American Observatory. Both are in high-inclination orbits (18.8° and 19.4° respectively). Furthermore, with an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the eleven known stable Neptune Trojans. We describe the search procedure and investigate the objects' long-termmore » dynamical stability and physical properties.« less

  4. Observation of Two New L4 Neptune Trojans in the Dark Energy Survey Supernova Fields

    NASA Astrophysics Data System (ADS)

    Gerdes, D. W.; Jennings, R. J.; Bernstein, G. M.; Sako, M.; Adams, F.; Goldstein, D.; Kessler, R.; Hamilton, S.; Abbott, T.; Abdalla, F. B.; Allam, S.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gaztanaga, E.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Maia, M. A. G.; March, M.; Martini, P.; Miller, C. J.; Miquel, R.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Sanchez, E.; Santiago, B.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarlé, G.; Thaler, J.; Walker, A. R.; Wester, W.; Zhang, Y.; DES Collaboration

    2016-02-01

    We report the discovery of the eighth and ninth known Trojans in stable orbits around Neptune’s leading Lagrange point, L4. The objects 2014 QO441 and 2014 QP441 were detected in data obtained during the 2013-14 and 2014-15 observing seasons by the Dark Energy Survey, using the Dark Energy Camera (DECam) on the 4-m Blanco telescope at Cerro Tololo Inter-American Observatory. Both are in high-inclination orbits (18.°8 and 19.°4, respectively). With an eccentricity of 0.104, 2014 QO441 has the most eccentric orbit of the 11 known stable Neptune Trojans. Here we describe the search procedure and investigate the objects’ long-term dynamical stability and physical properties.

  5. Stromal cell derived factor-1 (SDF-1) targeting reperfusion reduces myocardial infarction in isolated rat hearts.

    PubMed

    Jang, Young-Ho; Kim, June-Hong; Ban, Changill; Ahn, Kyohan; Cheong, Jae-Hun; Kim, Hyung-Hoi; Kim, Jung-Soo; Park, Yong-Hyun; Kim, Jun; Chun, Kook-Jin; Lee, Gyeong-Ho; Kim, Miju; Kim, Cheolmin; Xu, Zhelong

    2012-10-01

    Recent studies have shown that stromal cell derived factor-1 (SDF-1), first known as a cytokine involved in recruiting stem cells into injured organs, confers myocardial protection in myocardial infarction, which is not dependent on stem cell recruitment but related with modulation of ischemia-reperfusion (I/R) injury. However, the effect of SDF has been studied only in a preischemic exposure model, which is not clinically relevant if SDF is to be used as a therapeutic agent. Our study was aimed at evaluating whether or not SDF-1 confers cardioprotection during the reperfusion period. Hearts from SD rats were isolated and perfused with the Langendorff system. Proximal left coronary artery ligation, reperfusion, and SDF perfusion in KH buffer was done according to study protocol. Area of necrosis (AN) relative to area at risk (AR) was the primary endpoint of the study. Significant reduction of AN/AR by SDF in an almost dose-dependent manner was noted during both the preischemic exposure and reperfusion periods. In particular, infusion of a high concentration of SDF (25 nM/L) resulted in a dramatic reduction of infarct size, which was greater than that achieved with ischemic pre- or postconditioning. SDF perfusion during reperfusion was associated with a similar significant reduction of infarct size as preischemic SDF exposure. Further studies are warranted to assess the potential of SDF as a therapeutic agent for reducing I/R injury in clinical practice.

  6. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data

    SciTech Connect

    Chang, C.

    2015-07-29

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.

  7. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data.

    PubMed

    Chang, C; Vikram, V; Jain, B; Bacon, D; Amara, A; Becker, M R; Bernstein, G; Bonnett, C; Bridle, S; Brout, D; Busha, M; Frieman, J; Gaztanaga, E; Hartley, W; Jarvis, M; Kacprzak, T; Kovács, A; Lahav, O; Lin, H; Melchior, P; Peiris, H; Rozo, E; Rykoff, E; Sánchez, C; Sheldon, E; Troxel, M A; Wechsler, R; Zuntz, J; Abbott, T; Abdalla, F B; Allam, S; Annis, J; Bauer, A H; Benoit-Lévy, A; Brooks, D; Buckley-Geer, E; Burke, D L; Capozzi, D; Carnero Rosell, A; Carrasco Kind, M; Castander, F J; Crocce, M; D'Andrea, C B; Desai, S; Diehl, H T; Dietrich, J P; Doel, P; Eifler, T F; Evrard, A E; Fausti Neto, A; Flaugher, B; Fosalba, P; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D; Kent, S; Kuehn, K; Kuropatkin, N; Maia, M A G; March, M; Martini, P; Merritt, K W; Miller, C J; Miquel, R; Neilsen, E; Nichol, R C; Ogando, R; Plazas, A A; Romer, A K; Roodman, A; Sako, M; Sanchez, E; Sevilla, I; Smith, R C; Soares-Santos, M; Sobreira, F; Suchyta, E; Tarle, G; Thaler, J; Thomas, D; Tucker, D; Walker, A R

    2015-07-31

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139  deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. We summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.

  8. Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data

    DOE PAGES

    Chang, C.

    2015-07-29

    We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We also find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. Thesemore » measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. Finally, we summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.« less

  9. SDF-1 accelerates Cartilage Defect Repairing by Recruiting BMSCs and Promoting Chondrolgenic Differentiation.

    PubMed

    Wang, Yuze; Sun, Xiaojuan; Lv, Jia; Zeng, Lingyuan; Wei, Xiaochun; Wei, Lei

    2017-05-06

    Chemokine stromal cell-derived factor-1 (SDF-1) is a powerful chemoattractant for the localization of CXCR4 positive bone marrow stem cell (BMSC) into the bone marrow. We studied the effects of SDF-1 on the cartilage defect repair by recruiting BMSCs and promoting its chondrolgenic differentiation in vitro and in vivo. Chemotaxis analysis with Transwell plate showed that SDF-1 could recruit BMSCs through SDF-1/CXCR4 axis. RT-PCR, ELISA, and western blot results suggested that the levels of type II collagen and GAG were increased after incubation the BMSCs with SDF-1 compared with without SDF-1 group. More positive Brdu-labeled BMSCs were detected at the cartilage defect region in the SDF-1+PLGA scaffold group (SP) in which those animals showed a smooth and transparent cartilage tissue with a strong staining of Toluidine blue and type II collagen compared with the no-SDF-1 groups. ICRS score suggested that the repair effect in the SDF-1+PLGA treated animals was improved compared with PLGA scaffold group alone at 4 and 8 weeks after surgery; the repair effect from the SDF+PLGA treated animals was significantly improved compared with the PLGA alone at 12 weeks after surgery. Our in vitro and in vivo results indicated: (1) SDF-1 could recruit the BMSCs into cartilage defect area. (2) SDF-1 induces BMSCs expressing type II collagen and GAG, which may accelerate the BMSCs transforming into chondrocytes under the cartilage microenvironment in vivo. (3) PLGA scaffold attached with SDF-1 remarkably promoted the cartilage defect repairing. The defected cartilage was filled with transparent cartilage 12 weeks after the surgery, which shared the similar structure with the adjacent normal cartilage. Taken together, this research provides a new strategy for cartilage defect repairing.

  10. Real-time scattered light dark-field microscopic imaging of the dynamic degradation process of sodium dimethyldithiocarbamate

    NASA Astrophysics Data System (ADS)

    Lei, Gang; Gao, Peng Fei; Liu, Hui; Huang, Cheng Zhi

    2015-12-01

    Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of NaDDC under neutral and alkaline conditions was proposed, and the inhibition effects of metal ions including Zn(ii) and Cu(ii) were investigated in order to understand the decomposition process in different environments. It was found that Cu(ii) forms the most stable complex with NaDDC with a stoichiometric ratio of 1 : 2, which greatly reduces the toxicity.Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of Na

  11. Detection of large thermal vibration for Cu atoms in tetrahedrite by high-angle annular dark-field imaging

    NASA Astrophysics Data System (ADS)

    Prasad Mishra, Tara; Koyano, Mikio; Oshima, Yoshifumi

    2017-04-01

    Tetrahedrite (Cu12Sb4S13) is a new type of thermoelectric material with an extremely low thermal conductivity attributed to the anomalous large thermal vibration of specific Cu sites. The tetrahedrite crystal was observed from the [111] direction by high-angle annular dark-field (HAADF) imaging and the image intensity was found to be 64% lower at specific sites. This could be explained by the blurring of the intensity distribution owing to a large atomic displacement, suggesting that anomalous large thermal vibrations at specific sites in the crystal can be distinguished in HAADF images.

  12. Direct imaging of light elements by annular dark-field aberration-corrected scanning transmission electron microscopy

    SciTech Connect

    Lotnyk, Andriy Poppitz, David; Gerlach, Jürgen W.; Rauschenbach, Bernd

    2014-02-17

    In this report, we show that an annular dark-field detector in an aberration-corrected scanning transmission electron microscope allows the direct observation of light element columns in crystalline lattices. At specific imaging conditions, an enhancement of the intensities of light element columns in the presence of heavy element columns is observed. Experimental results are presented for imaging the nitrogen and carbon atomic columns at the GaN-SiC interface and within the GaN and SiC compounds. The crystal polarity of GaN at the interface is identified. The obtained findings are discussed and are well supported by image simulations.

  13. Inhomogeneous dark energy

    SciTech Connect

    Chamseddine, Ali H.; Mukhanov, Viatcheslav E-mail: viatcheslav.Mukhanov@lmu.de

    2016-02-01

    We modify Einstein General Relativity by adding non-dynamical scalar fields to account simultaneously for both dark matter and dark energy. The dark energy in this case can be distributed in-homogeneously even within horizon scales. Its inhomogeneities can contribute to the late time integrated Sachs-Wolfe effect, possibly removing some of the low multipole anomalies in the temperature fluctuations of the CMB spectrum. The presence of the inhomogeneous dark matter also influences structure formation in the universe.

  14. Improved visualization of breast cancer features in multifocal carcinoma using phase-contrast and dark-field mammography: an ex vivo study.

    PubMed

    Grandl, Susanne; Scherer, Kai; Sztrókay-Gaul, Anikó; Birnbacher, Lorenz; Willer, Konstantin; Chabior, Michael; Herzen, Julia; Mayr, Doris; Auweter, Sigrid D; Pfeiffer, Franz; Bamberg, Fabian; Hellerhoff, Karin

    2015-12-01

    Conventional X-ray attenuation-based contrast is inherently low for the soft-tissue components of the female breast. To overcome this limitation, we investigate the diagnostic merits arising from dark-field mammography by means of certain tumour structures enclosed within freshly dissected mastectomy samples. We performed grating-based absorption, absolute phase and dark-field mammography of three freshly dissected mastectomy samples containing bi- and multifocal carcinoma using a compact, laboratory Talbot-Lau interferometer. Preoperative in vivo imaging (digital mammography, ultrasound, MRI), postoperative histopathological analysis and ex vivo digital mammograms of all samples were acquired for the diagnostic verification of our results. In the diagnosis of multifocal tumour growth, dark-field mammography seems superior to standard breast imaging modalities, providing a better resolution of small, calcified tumour nodules, demarcation of tumour boundaries with desmoplastic stromal response and spiculated soft-tissue strands extending from an invasive ductal breast cancer. On the basis of selected cases, we demonstrate that dark-field mammography is capable of outperforming conventional mammographic imaging of tumour features in both calcified and non-calcified tumours. Presuming dose optimization, our results encourage further studies on larger patient cohorts to identify those patients that will benefit the most from this promising additional imaging modality. • X-ray dark-field mammography provides significantly improved visualization of tumour features • X-ray dark-field mammography is capable of outperforming conventional mammographic imaging • X-ray dark-field mammography provides imaging sensitivity towards highly dispersed calcium grains.

  15. Comparison of Magnetic Field Structures on Different Scales in and around the Filamentary Dark Cloud GF 9

    NASA Astrophysics Data System (ADS)

    Poidevin, F.; Bastien, P.

    2006-10-01

    New visible polarization data combined with existing IR and FIR polarization data are used to study how the magnetic field threading the filamentary molecular cloud GF 9 connects to larger structures in its general environment. When visible and NIR polarization data are combined, no evidence is found for a plateau in the polarization above extinction AV~1.3, as seen in dark clouds in Taurus. This lack of saturation effect suggests that even in the denser parts of GF 9 magnetic fields can be probed. The visible polarization is smooth and has a well-defined orientation. In the core region, the IR and FIR data are also well defined, but each with a different direction. A multiscale analysis of the magnetic field shows that on the scale of a few times the mean radial dimension of the molecular cloud, it is as if the magnetic field were ``blind'' to the spatial distribution of the filaments, while on smaller scales in the core region, multiwavelength polarimetry shows a rotation of the magnetic field lines in these denser phases. Finally, the Chandrasekhar and Fermi method is used to evaluate the magnetic field strength, indicating that the core region is approximately magnetically critical. A global interpretation suggests that in the core region an original poloidal field could have been twisted by a rotating elongated (core+envelope) structure. There is no evidence for turbulence, and ambipolar diffusion does not seem to be effective at the present time.

  16. Myocardial Ischemia Induces SDF-1α Release in Cardiac Surgery Patients.

    PubMed

    Kim, Bong-Sung; Jacobs, Denise; Emontzpohl, Christoph; Goetzenich, Andreas; Soppert, Josefin; Jarchow, Mareike; Schindler, Lisa; Averdunk, Luisa; Kraemer, Sandra; Marx, Gernot; Bernhagen, Jürgen; Pallua, Norbert; Schlemmer, Heinz-Peter; Simons, David; Stoppe, Christian

    2016-06-01

    In the present observational study, we measured serum levels of the chemokine stromal cell-derived factor-1α (SDF-1α) in 100 patients undergoing cardiac surgery with cardiopulmonary bypass at seven distinct time points including preoperative values, myocardial ischemia, reperfusion, and the postoperative course. Myocardial ischemia triggered a marked increase of SDF-1α serum levels whereas cardiac reperfusion had no significant influence. Perioperative SDF-1α serum levels were influenced by patients' characteristics (e.g., age, gender, aspirin intake). In an explorative analysis, we observed an inverse association between SDF-1α serum levels and the incidence of organ dysfunction. In conclusion, time of myocardial ischemia was identified as the key stimulus for a significant upregulation of SDF-1α, indicating its role as a marker of myocardial injury. The inverse association between SDF-1α levels and organ dysfunction association encourages further studies to evaluate its organoprotective properties in cardiac surgery patients.

  17. Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Herzen, Julia; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz

    2016-11-01

    Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures.

  18. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes.

    PubMed

    Qian, Wei; Huang, Xiaohua; Kang, Bin; El-Sayed, Mostafa A

    2010-01-01

    Novel methods and technologies that could extend and complement the capabilities of the prevailing fluorescence microscope in following the cell cycle under different perturbations are highly desirable in the area of biological and biomedical imaging. We report a newly designed instrument for long-term light scattering live cell imaging based on integrating a homebuilt environmental cell incubation minichamber and an angled dark-field illumination system into a conventional inverted light microscope. Peptide-conjugated gold nanoparticles that are selectively delivered to either the cytoplasmic or nuclear region of the cell are used as light scattering contrast agents. The new system enables us to carry out continuous and intermittence-free dark-field live cell imaging over several tens of hours. A variety of applications of this imaging system are demonstrated, such as monitoring the nuclear uptake of peptide-conjugated gold nanoparticles, tracking the full cycle of cancer cells from birth to division, following the chromosome dynamics during cell mitosis, and observing the intracellular distribution of gold nanoparticles after cell division. We also discuss the overall effect of nuclear targeting gold nanoparticles on the cell viability of parent and daughter cells.

  19. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes

    NASA Astrophysics Data System (ADS)

    Qian, Wei; Huang, Xiaohua; Kang, Bin; El-Sayed, Mostafa A.

    2010-07-01

    Novel methods and technologies that could extend and complement the capabilities of the prevailing fluorescence microscope in following the cell cycle under different perturbations are highly desirable in the area of biological and biomedical imaging. We report a newly designed instrument for long-term light scattering live cell imaging based on integrating a homebuilt environmental cell incubation minichamber and an angled dark-field illumination system into a conventional inverted light microscope. Peptide-conjugated gold nanoparticles that are selectively delivered to either the cytoplasmic or nuclear region of the cell are used as light scattering contrast agents. The new system enables us to carry out continuous and intermittence-free dark-field live cell imaging over several tens of hours. A variety of applications of this imaging system are demonstrated, such as monitoring the nuclear uptake of peptide-conjugated gold nanoparticles, tracking the full cycle of cancer cells from birth to division, following the chromosome dynamics during cell mitosis, and observing the intracellular distribution of gold nanoparticles after cell division. We also discuss the overall effect of nuclear targeting gold nanoparticles on the cell viability of parent and daughter cells.

  20. Comparative morphology analysis of live blood platelets using scanning ion conductance and robotic dark-field microscopy.

    PubMed

    Kraus, Max-Joseph; Seifert, Jan; Strasser, Erwin F; Gawaz, Meinrad; Schäffer, Tilman E; Rheinlaender, Johannes

    2016-09-01

    Many conventional microscopy techniques for investigating platelet morphology such as electron or fluorescence microscopy require highly invasive treatment of the platelets such as fixation, drying and metal coating or staining. Here, we present two unique but entirely different microscopy techniques for direct morphology analysis of live, unstained platelets: scanning ion conductance microscopy (SICM) and robotic dark-field microscopy (RDM). We demonstrate that both techniques allow for a quantitative evaluation of the morphological features of live adherent platelets. We show that their morphology can be quantified by both techniques using the same geometric parameters and therefore can be directly compared. By imaging the same identical platelets subsequently with SICM and RDM, we found that area, perimeter and circularity of the platelets are directly correlated between SICM and dark-field microscopy (DM), while the fractal dimension (FD) differed between the two microscopy techniques. We show that SICM and RDM are both valuable tools for the ex vivo investigation of the morphology of live platelets, which might contribute to new insights into the physiological and pathophysiological role of platelet spreading.

  1. Improved Diagnostics by Assessing the Micromorphology of Breast Calcifications via X-Ray Dark-Field Radiography

    PubMed Central

    Scherer, Kai; Braig, Eva; Ehn, Sebastian; Schock, Jonathan; Wolf, Johannes; Birnbacher, Lorenz; Chabior, Michael; Herzen, Julia; Mayr, Doris; Grandl, Susanne; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz

    2016-01-01

    Breast microcalcifications play an essential role in the detection and evaluation of early breast cancer in clinical diagnostics. However, in digital mammography, microcalcifications are merely graded with respect to their global appearance within the mammogram, while their interior microstructure remains spatially unresolved and therefore not considered in cancer risk stratification. In this article, we exploit the sub-pixel resolution sensitivity of X-ray dark-field contrast for clinical microcalcification assessment. We demonstrate that the micromorphology, rather than chemical composition of microcalcification clusters (as hypothesised by recent literature), determines their absorption and small-angle scattering characteristics. We show that a quantitative classification of the inherent microstructure as ultra-fine, fine, pleomorphic and coarse textured is possible. Insights underlying the micromorphological nature of breast calcifications are verified by comprehensive high-resolution micro-CT measurements. We test the determined microtexture of microcalcifications as an indicator for malignancy and demonstrate its potential to improve breast cancer diagnosis, by providing a non-invasive tool for sub-resolution microcalcification assessment. Our results indicate that dark-field imaging of microcalcifications may enhance the diagnostic validity of current microcalcification analysis and reduce the number of invasive procedures. PMID:27841341

  2. The Magnetic Field of the L1544 Starless Dark Cloud, Traced Using Near-Infrared Background Starlight

    NASA Astrophysics Data System (ADS)

    Clemens, Dan P.; Goldsmith, Paul; Tassis, Konstantinos

    2016-06-01

    What roles do interstellar magnetic fields play in star formation processes? We have studied the B-field of L1544, a dark cloud with a starless dense core showing active gas infall, and located only 140 pc away in Taurus, via deep near-infrared (NIR) imaging polarimetry with the Mimir instrument. We find the B-field orientations in the plane of the sky change significantly at L1544, mimicking its shape and extent. The elongated spine of L1544 is also where the dispersion of NIR linear polarization position angles is smallest, suggesting strengthening of the B-field. Archival WISE, SCUPOL, Herschel, and Planck data were analyzed to characterize dust extinction and emission across L1544 and the field around it. Three-dimensional modeling, constrained through matching two-dimensional integrated model properties to observed dust distributions, led us to develop maps of effective gas mass densities and non-thermal gas velocity dispersions. These were combined with the NIR polarimetry, under the Chandrasekhar & Fermi (1953) approach, to yield a map of B-field strength across the entire 400 sq-arcmin region surveyed. The trends of B-field strength with gas volume density, mass-to-flux ratio with radius, and plane-of-sky B-field strengths with Zeeman-traced line-of-sight B-field strengths were found and compared to previous published work to establish the role of B-fields in L1544. We find field strengths in the 3 - 30 uG range, quite similar to the OH Zeeman values found by Crutcher et al. (2009) for L1544.This work was partially supported by grants to Boston University from NSF (AST-0907790, 1412269) and NASA (NNX15AE51G).

  3. Stem cell attraction via SDF-1α expressing fat tissue grafts.

    PubMed

    Zwingenberger, Stefan; Yao, Zhenyu; Jacobi, Angela; Vater, Corina; Valladares, Roberto D; Li, Chenguang; Nich, Christophe; Rao, Allison J; Christman, Jane E; Antonios, Joseph K; Gibon, Emmanuel; Schambach, Axel; Mätzig, Tobias; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2013-07-01

    Mesenchymal stromal cell (MSCs) are key cellular components for site-specific tissue regeneration. The chemokine stromal derived factor 1 alpha (SDF-1α) is known to attract stem cells via the C-X-C chemokine receptor-4 (CXCR4) receptor. The aim of the study was to develop a model for stem cell attraction using SDF-1α overexpressing fat tissue grafts. Murine MSCs were lentiviral transduced to express the genes for enhanced green fluorescent protein, firefly luciferace, and human CXCR4 (hCXCR4). Murine fat tissue was adenoviral transduced to express SDF-1α and red fluorescent protein transgenes. MSCs were cultured on transwells with SDF-1α containing supernatants from transduced fat tissue. The numbers of migrated MSCs in four groups (with hCXCR4 positive (+) or hCXCR4 negative (-) MSCs with or without SDF-1α containing supernatant) were investigated. After 36 h of culture, 9025 ± 925 cells migrated through the membrane of the transwells in group 1 (CXCR4+/SDF-1α+), 4817 ± 940 cells in group 2 (CXCR4-/SDF-1α+), 2050 ± 766 cells in group 3 (CXCR4+/SDF-1α-), and 2108 ± 426 cells in group 4 (CXCR4-/SDF-1α-). Both, the presence of SDF-1α and the expression of hCXCR4 significantly increased the migration rates (p < 0.0001). MSCs overexpressing the CXCR4 receptor by lentiviral transduction are highly attracted by medium from SDF-1α expressing fat tissue in vitro. Thus, SDF-1α activated tissue grafts may be a strategy to enhance site-specific musculoskeletal tissue regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  4. Stem cell attraction via SDF-1α expressing fat tissue grafts

    PubMed Central

    Zwingenberger, Stefan; Yao, Zhenyu; Jacobi, Angela; Vater, Corina; Valladares, Roberto D.; Li, Chenguang; Nich, Christophe; Rao, Allison J.; Christman, Jane E.; Antonios, Joseph K.; Gibon, Emmanuel; Schambach, Axel; Mätzig, Tobias; Günther, Klaus-Peter; Goodman, Stuart B.; Stiehler, Maik

    2014-01-01

    Mesenchymal stromal cell (MSCs) are key cellular components for site-specific tissue regeneration. The chemokine stromal derived factor 1 alpha (SDF-1α) is known to attract stem cells via the C-X-C chemokine receptor-4 (CXCR4) receptor. The aim of the study was to develop a model for stem cell attraction using SDF-1α overexpressing fat tissue grafts. Murine MSCs were lentiviral transduced to express the genes for enhanced green fluorescent protein, firefly luciferace, and human CXCR4 (hCXCR4). Murine fat tissue was adenoviral transduced to express SDF-1α and red fluorescent protein transgenes. MSCs were cultured on transwells with SDF-1α containing supernatants from transduced fat tissue. The numbers of migrated MSCs in four groups (with hCXCR4 positive (+) or hCXCR4 negative (−) MSCs with or without SDF-1α containing supernatant) were investigated. After 36 h of culture, 9025 ± 925 cells migrated through the membrane of the transwells in group 1 (CXCR4+/SDF-1α+), 4817 ± 940 cells in group 2 (CXCR4-/SDF-1α+), 2050 ± 766 cells in group 3 (CXCR4+/SDF-1α−), and 2108 ± 426 cells in group 4 (CXCR4-/SDF-1α-). Both, the presence of SDF-1α and the expression of hCXCR4 significantly increased the migration rates (p < 0.0001). MSCs overexpressing the CXCR4 receptor by lentiviral transduction are highly attracted by medium from SDF-1α expressing fat tissue in vitro. Thus, SDF-1α activated tissue grafts may be a strategy to enhance site-specific musculoskeletal tissue regeneration. PMID:23281045

  5. SDF-1 controls the muscle and blood vessel formation of the somite.

    PubMed

    Abduelmula, Aisha; Huang, Ruijin; Pu, Qin; Tamamura, Hirokazu; Morosan-Puopolo, Gabriela; Brand-Saberi, Beate

    2016-01-01

    Stromal-cell-derived factor-1 (SDF-1), the only ligand of the chemokine receptor CXCR4, is involved in skeletal muscle development. However, its role in the proliferation, differentiation and migration of somite cells is not well understood. Here, we investigated its function during somite development in chicken embryos by using gain-of-function and loss-of-function experiments. Overexpression of SDF-1 was performed by electroporating SDF-1 constructs into the ventrolateral part of the somite, or by injecting SDF-1-expressing cells into the somites of stages HH14-16 chicken embryos. We found that enhanced SDF-1 signaling induced cell proliferation in the somite. This resulted in an increase in number of both myotomal and endothelial cells. In contrast, inhibition of SDF-1/CXCR4 signaling led to a reduction of myotomal cells. Injection of SDF-1 producing cells into the somite induced ectopic localization of myotomal cells in the sclerotome. Although many SDF-1-expressing somite cells colonized the limb, only a few of them developed into muscle cells. This resulted in a reduction of the limb muscle mass. This means that most myogenic progenitors were stopped on their migration towards the limb due to the high concentration of the SDF-1 signal in the somite. Most of the SDF-1-expressing somite cells found in the limb were of endothelial cell fate and they contributed to the increase in limb blood vessels. These results reveal that SDF-1 promotes the proliferation of both myogenic and angiogenic progenitor cells of the somite and controls myotome formation. Furthermore, SDF-1 controls muscle and blood vessel formation in the limb in different ways.

  6. Compositionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs

    DTIC Science & Technology

    2009-10-20

    the Ptolemy II framework [3]. The problem we solve in this paper is modular code generation for hierarchical SDF models. Modular means that code is...We want to do the same for SDF models. Moreover, in the context of a system like Ptolemy II, in addition to the benefits mentioned above, modular code...modular code generation described above in the Ptolemy II framework [3]. The implementation uses a specialized class to describe composite SDF actors

  7. High-angle annular dark field scanning transmission electron microscopy on carbon-based functional polymer systems.

    PubMed

    Sourty, Erwan; van Bavel, Svetlana; Lu, Kangbo; Guerra, Ralph; Bar, Georg; Loos, Joachim

    2009-06-01

    Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.

  8. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    NASA Astrophysics Data System (ADS)

    Zdora, Marie-Christine; Thibault, Pierre; Pfeiffer, Franz; Zanette, Irene

    2015-09-01

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  9. Dark-field X-ray ptychography: Towards high-resolution imaging of thick and unstained biological specimens

    PubMed Central

    Suzuki, Akihiro; Shimomura, Kei; Hirose, Makoto; Burdet, Nicolas; Takahashi, Yukio

    2016-01-01

    The phase shift of light or electrons in objects is now necessary for probing weak-phase objects such as unstained biological specimens. Optical microscopy (OM) and transmission electron microscopy (TEM) have been used to observe weak-phase objects. However, conventional OM has low spatial resolution and TEM is limited to thin specimens. Here, we report on the development of dark-field X-ray ptychography, which combines X-ray ptychography and X-ray in-line holography, to observe weak-phase objects with a phase resolution better than 0.01 rad, a spatial resolution better than 15 nm, and a field of view larger than 5 μm. We apply this method to the observation of both the outline and magnetosomes of the magnetotactic bacteria MO-1. Observation of thick samples with high resolution is expected to find broad applications in not only biology but also materials science. PMID:27734961

  10. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    SciTech Connect

    Zdora, Marie-Christine; Thibault, Pierre; Pfeiffer, Franz; Zanette, Irene

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  11. Real-time optical detection of single human and bacterial viruses based on dark-field interferometry.

    PubMed

    Mitra, Anirban; Ignatovich, Filipp; Novotny, Lukas

    2012-01-15

    The rapid and sensitive detection and characterization of human viruses and bacteriophage is extremely important in a variety of fields, such as medical diagnostics, immunology and vaccine research, and environmental contamination and quality control. We introduce an optical detection scheme for real-time and label-free detection of human viruses and bacteriophage as small as ~24 nm in radius. Combining the advantages of heterodyne interferometry and dark-field microscopy, this label-free method enables us to detect and characterize various biological nanoparticles with unsurpassed sensitivity and selectivity. We demonstrate the high sensitivity and precision of the method by analyzing a mixture containing HIV virus and bacteriophage. The method also resolves the distribution of small nano-impurities (~20-30 nm) in clinically relevant virus samples.

  12. Dark-field X-ray ptychography: Towards high-resolution imaging of thick and unstained biological specimens

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Shimomura, Kei; Hirose, Makoto; Burdet, Nicolas; Takahashi, Yukio

    2016-10-01

    The phase shift of light or electrons in objects is now necessary for probing weak-phase objects such as unstained biological specimens. Optical microscopy (OM) and transmission electron microscopy (TEM) have been used to observe weak-phase objects. However, conventional OM has low spatial resolution and TEM is limited to thin specimens. Here, we report on the development of dark-field X-ray ptychography, which combines X-ray ptychography and X-ray in-line holography, to observe weak-phase objects with a phase resolution better than 0.01 rad, a spatial resolution better than 15 nm, and a field of view larger than 5 μm. We apply this method to the observation of both the outline and magnetosomes of the magnetotactic bacteria MO-1. Observation of thick samples with high resolution is expected to find broad applications in not only biology but also materials science.

  13. Nanomagnetic behavior of fullerene thin films in Earth magnetic field in dark and under polarization light influences.

    PubMed

    Koruga, Djuro; Nikolić, Aleksandra; Mihajlović, Spomenko; Matija, Lidija

    2005-10-01

    In this paper magnetic fields intensity of C60 thin films of 60 nm and 100 nm thickness under the influence of polarization lights are presented. Two proton magnetometers were used for measurements. Significant change of magnetic field intensity in range from 2.5 nT to 12.3 nT is identified as a difference of dark and polarization lights of 60 nm and 100 nm thin films thickness, respectively. Specific power density of polarization light was 40 mW/cm2. Based on 200 measurement data average value of difference between magnetic intensity of C60 thin films, with 60 nm and 100 nm thickness, after influence of polarization light, were 3.9 nT and 9.9 nT respectively.

  14. Field-dependent effective temperature and variable range hopping: Application to dark dc conductivity in doped a-Si:H

    NASA Astrophysics Data System (ADS)

    Arkhipov, V. I.; Emelianova, E. V.; Adriaenssens, G. J.

    2003-05-01

    Field and temperature dependencies of the dark dc hopping conductivity are calculated for an algebraic energy distribution of localized states near the Fermi level. These dependencies are shown to merge in a universal dependence on a field-dependent effective temperature Teff. An analytical expression for Teff is derived. The analytic results agree quantitatively with experimental data obtained by Nebel et al. [Phys. Rev. B 46, 6803 (1992)] for boron- and phosphorous-doped a-Si:H. Although the effective temperature does depend upon a particular choice of the density-of-states (DOS) distribution this dependence is not very strong for DOS functions that are not too steep near the Fermi level.

  15. Effects of SDF-1/CXCR4 on Acute Lung Injury Induced by Cardiopulmonary Bypass.

    PubMed

    Shi, Hai; Lu, Rujian; Wang, Shuo; Chen, Honglin; Wang, Fei; Liu, Kun

    2017-03-11

    Acute lung injury (ALI) is one of the most important complications after cardiopulmonary bypass (CPB) and the complex pathophysiology remains to be resolved incomplete. SDF-1/CXCR4 chemokine axis can chemotactically accumulate inflammatory cell to local tissue and regulate the release of inflammatory factors, and SDF-1 has a strong chemotaxis effect on neutrophils with CXCR4. Since CPB animal model was difficult to establish, there was still no report about the effect of SDF-1/CXCR4 on neutrophil chemotaxis in ALI after CPB. Here, a stable CPB rat model was constructed to clarify the role of SDF-1/CXCR4 axis in the CPB-induced ALI. Real-time quantitative PCR (RT-qPCR), Western blot analysis, and enzyme-linked immunosorbent assay (ELISA) were used to detect the changes of SDF-1 and CXCR4 in lung tissues, blood, bronchoalveolar lavage (BALF), and/or isolated neutrophils. SDF-1/CXCR4 was increased after CPB, both of that were increased in blood; CXCR4 was increased in neutrophils; SDF-1/CXCR4 was also increased in BALF of CPB model. Results indicated that SDF-1/CXCR4 axis played a key role in the process of early ALI after CPB, also showed that lung injury was significantly reduce after blocking SDF-1/CXCR4 axis, suggest that CXCR4 might be a new target for ALI treatment.

  16. SDF-1α in Glycan Nanoparticles Exhibits Full Activity and Reduces Pulmonary Hypertension in Rats

    PubMed Central

    Yin, Tao; Bader, Andrew R.; Hou, Tim K.; Maron, Bradley A.; Kao, Derrick D.; Qian, Ray; Kohane, Daniel S.; Handy, Diane E.; Loscalzo, Joseph; Zhang, Ying-Yi

    2013-01-01

    In order to establish a homing signal in the lung to recruit circulating stem cells for tissue repair, we formulated a nanoparticle, SDF-1α NP, by complexing SDF-1α with dextran sulfate and chitosan. The data show that SDF-1α was barely released from the nanoparticles over an extended period of time in vitro (3% in 7 days at 37°C); however, incorporated SDF-1α exhibited full chemotactic activity and receptor activation compared to its free form. The nanoparticles were not endocytosed after incubation with Jurkat cells. When aerosolized into the lungs of rats, SDF-1α NP displayed a greater retention time compared to free SDF-1α (64% vs. 2% remaining at 16 hr). In a rat model of monocrotaline-induced lung injury, SDF-1α NP, but not free form SDF-1α, was found to reduce pulmonary hypertension. These data suggest that the nanoparticle formulation protected SDF-1α from rapid clearance in the lung and sustained its biological function in vivo. PMID:24059347

  17. The role of SDF-1/CXCR4 in the vasculogenesis and remodeling of cerebral arteriovenous malformation.

    PubMed

    Wang, Lingyan; Guo, Shaolei; Zhang, Nu; Tao, Yuqian; Zhang, Heng; Qi, Tiewei; Liang, Feng; Huang, Zhengsong

    2015-01-01

    Cerebral arteriovenous malformation (AVM) involves the vasculogenesis of cerebral blood vessels and can cause severe intracranial hemorrhage. Stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, are believed to exert multiple physiological functions including angiogenesis. Thus, we investigated the role of SDF-1/CXCR4 in the vasculogenesis of cerebral AVM. Brain AVM lesions from surgical resections were analyzed for the expression of SDF-1, CXCR4, VEGF-A, and HIF-1 by using immunohistochemical staining. Flow cytometry was used to quantify the level of circulating endothelial progenitor cells (EPCs). Further, in an animal study, chronic cerebral hypoperfusion model rats were analyzed for the expression of SDF-1 and HIF-1. CXCR4 antagonist, AMD3100, was also used to detect its effects on cerebral vasculogenesis and SDF-1 expression. Large amounts of CXCR4-positive CD45(+) cells were found in brain AVM lesion blood vessel walls, which also have higher SDF-1 expression. Cerebral AVM patients also had higher level of EPCs and SDF-1. In chronic cerebral hypoperfusion rats, SDF-1, HIF-1, and CD45 expressions were elevated. The application of AMD3100 effectively suppressed angiogenesis and infiltration of CXCR4-positive CD45(+) cells in hypoperfusion rats compared to controls. The SDF-1/CXCR4 axis plays an important role in the vasculogenesis and migration of inflammatory cells in cerebral AVM lesions, possibly via the recruitment of bone marrow EPCs.

  18. On the origin and nature of the grating interferometric dark-field contrast obtained with low-brilliance x-ray sources

    NASA Astrophysics Data System (ADS)

    Koenig, Thomas; Zuber, Marcus; Trimborn, Barbara; Farago, Tomas; Meyer, Pascal; Kunka, Danays; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Fiederle, Michael; Baumbach, Tilo

    2016-05-01

    The x-ray dark-field contrast accessible via grating interferometry is sensitive to features at length scales well below what is resolvable by a detector system. It is commonly explained as arising from small-angle x-ray scattering (SAXS), and can be implemented both at synchrotron beamlines and with low-brilliance sources such as x-ray tubes. Here, we demonstrate that for tube based setups the underlying process of image formation can be fundamentally different. For focal spots or detector pixels that comprise multiple grating periods, we show that dark-field images contain a strong artificial and system-specific component not arising from SAXS. Based on experiments carried out with a nanofocus x-ray tube and the example of an excised rat lung, we demonstrate that the dark-field contrast observed for porous media transforms into a differential phase contrast for large geometric magnifications. Using a photon counting detector with an adjustable point spread function, we confirm that a dark-field image can indeed be formed by an intra-pixel differential phase contrast that cannot be resolved as such due to a dephasing between the periodicities of the absorption grating and the Talbot carpet. Our findings are further corroborated by a link between the strength of this pseudo-dark-field contrast and our x-ray tube’s focal spot size in a three-grating setup. These results must not be ignored when measurements are intended to be reproducible across systems.

  19. Mass function and assembly of dark haloes: an approach to inventory isolated overdense regions in random fields

    NASA Astrophysics Data System (ADS)

    Firmani, C.; Avila-Reese, V.

    2013-07-01

    In order to attain a statistical description of the evolution of cosmic density fluctuations in agreement with results from the numerical simulations, we introduce a probability conditional formalism (CF) based on a complete inventory of isolated overdense regions in a density random field. This formalism is a useful tool for describing at the same time the mass function (MF) of virialized dark haloes, their mass aggregation histories (MAHs) and merging rates (MRs). The CF focuses on virialized regions in a self-consistent way rather than in mass elements, and it offers an economical description for a variety of random fields. Within the framework of the CF, we confirm that, for a Gaussian field, it is not possible to reproduce at the same time the MF, MAH and MR of haloes, for both a constant and moving barrier. Then, we develop an inductive method for constraining the cumulative conditional probability from a given halo MF description, and thus, using the CF, we calculate the halo MAHs and MRs. By applying this method to the MF measured in numerical simulations by Tinker et al., we find that a reasonable solution, justified by a mass conservation argument, is obtained if a rescaling - increment by ˜30 per cent - of the virial mass defined in simulations is introduced, and a (slight) deviation from Gaussianity is taken into account. Thus, both the MAH and MR obtained by a Monte Carlo merger tree agree now with the predictions of numerical simulations. We discuss the necessity of rescaling the virial mass in simulations when comparing with analytical approaches on the ground of the matter not accounted as part of the haloes and the halo mass limit due to numerical resolutions in the simulations. Our analysis supports the presence of a diffuse dark matter component that is not taken into account in the measured halo MFs inasmuch as it is not part of the collapsed structures.

  20. Snake instability of dark solitons across the BEC-BCS crossover: An effective-field-theory perspective

    NASA Astrophysics Data System (ADS)

    Lombardi, G.; Van Alphen, W.; Klimin, S. N.; Tempere, J.

    2017-09-01

    In the present article the snake instability mechanism for dark solitons in superfluid Fermi gases is studied in the context of a recently developed effective field theory [S. N. Klimin et al., Eur. Phys. J. B 88, 122 (2015), 10.1140/epjb/e2015-60213-4]. This theoretical treatment has proven to be suitable to study stable dark solitons in quasi-one-dimensional setups across the BEC-BCS crossover. In this paper the nodal plane of the stable soliton solution is perturbed by adding a transverse modulation. The numerical solution of the system of coupled nonlinear differential equations describing the amplitude of the perturbation leads to an estimate of the growth rate and characteristic length scale of the instability, which are calculated for a wide range of interaction regimes and compared to other theoretical predictions. The behavior of the maximum transverse size that the atomic cloud can have in order to preserve the stability is described across the BEC-BCS crossover. The analysis of the effects of spin imbalance on this critical length reveals a stabilization of the soliton with increasing imbalance and therefore provides the experimental community with a method to achieve the realization of stable solitons in real three-dimensional configurations, without reducing the system dimensionality.

  1. Complex scalar field dark matter and its impact on detectability of the stochastic gravitational wave background from inflation

    NASA Astrophysics Data System (ADS)

    Rindler-Daller, Tanja; Li, Bohua; Shapiro, Paul

    2017-01-01

    We consider an alternative dark matter candidate to WIMP-CDM, ultralight bosonic dark matter (m >=10-22 eV) described by a complex scalar field (SFDM). In a ΛSFDM universe, SFDM starts relativistic, evolving from a maximal stiff equation of state to radiation-like, before becoming nonrelativistic at late times. The SFDM particle parameters, mass and selfinteraction coupling strength, are therefore constrained by cosmological observables, esp. Neff, the effective number of neutrino species during BBN, and the redshift of matter-radiation equality. Furthermore, since the energy density contributed by the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff phase, this makes possible the detection of this SGWB at high frequencies by current experiments, e.g. aLIGO/Virgo and eLISA. We show that, for SFDM particle parameters that satisfy those cosmological constraints, the amplified SGWB is detectable by aLIGO, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements, for a broad range of possible reheat temperatures. A nondetection by aLIGO O1 would provide a new kind of cosmological constraint on SFDM. Also, a wider range of parameters and reheat temperatures will be probed by aLIGO O5.

  2. After-pulsing, cross-talk, dark-count, and gain of MPPC under 7-T static magnetic field.

    PubMed

    Hirano, Yoshiyuki; Nishikido, Fumihiko; Kokuryo, Daisuke; Yamaya, Taiga

    2016-07-01

    Multi-pixel photon counters (MPPCs) have been used instead of photomultiplier tubes for positron emission tomography combined with magnetic resonance (PET-MR). However, the effects of the magnetic field (MF) on the intrinsic properties-gain, cross-talk, after-pulsing, and dark-count-have not been sufficiently investigated. Therefore, we measured these properties for two types of MPPCs-S10931-50P and S12572-50P-in a static 7-T MF. These properties were measured with a pulse-shape analysis using pulse data acquired by a digital oscilloscope in the presence of the MF (w/MF) and the absence of the MF (w/o MF) by changing the supplied over-voltages (from 0.95 to 2.1 V for S10931 and from 2.1 to 3.3 V for S12572). No significant differences between the w/MF and w/o MF cases were observed for either MPPC, suggesting that the gain, cross-talk, after-pulsing, and dark-count are insensitive to a 7-T MF. The present work shows that constant MPPC performance is expected under a strong MF and demonstrates positive results for PET-MR.

  3. Dark Energy in the Dark Ages

    SciTech Connect

    Linder, Eric V.

    2006-04-11

    Non-negligible dark energy density at high redshifts would indicate dark energy physics distinct from a cosmological constant or"reasonable'" canonical scalar fields. Such dark energy can be constrained tightly through investigation of the growth of structure, with limits of<~;;2percent of total energy density at z>> 1 for many models. Intermediate dark energy can have effects distinct from its energy density; the dark ages acceleration can be constrained to last less than 5percent of a Hubble e-fold time, exacerbating the coincidence problem. Both the total linear growth, or equivalently sigma 8, and the shape and evolution of the nonlinear mass power spectrum for z<2 (using the Linder-White nonlinear mapping prescription) provide important windows. Probes of growth, such as weak gravitational lensing, can interact with supernovae and CMB distance measurements to scan dark energy behavior over the entire range z=0-1100.

  4. Inhibition of SDF-1/CXCR4-induced epithelial-mesenchymal transition by kisspeptin-10.

    PubMed

    Gründker, Carsten; Bauerschmitz, Gerd; Knapp, Juliane; Schmidt, Elena; Olbrich, Theresa; Emons, Günter

    2015-07-01

    Recently we have shown that breast cancer cell invasion was dramatically increased when co-cultured with MG63 cells. In addition we have generated mesenchymal transformed MCF-7 breast cancer cells (MCF-7-EMT), showing significantly increased invasion in contrast to wild type MCF-7 cells (MCF-7 WT). In this study we have analyzed whether stromal derived factor-1 (SDF-1) is responsible for MCF-7 and T-47-D breast cancer cell invasion and epithelial-mesenchymal-transition (EMT). In addition we have analyzed whether kisspeptin-10 (KP-10) treatment affects SDF-1-induced invasion and EMT. Invasion was quantified by assessment of MCF-7 and T-47-D breast cancer cell migration rate through an artificial basement membrane in a modified Boyden chamber during co-culture with MG63 cells or after treatment with SDF-1α, SDF-1β or the combination of both isoforms. Induction of EMT was verified by analysis of protein expression of epithelial marker E-cadherin (CDH1) and mesenchymal markers N-cadherin (CDH2) and Vimentin (VIM). The role of SDF-1 for invasion and induction of EMT in breast cancer cells was analyzed by blocking SDF-1 secretion during co-culture with MG63 cells. In addition effects of KP-10 treatment on SDF-1-induced invasion and EMT were analyzed. Breast cancer cell invasion was significantly increased when co-cultured with MG63 cells. During co-culture SDF-1 protein expression of MG63 cells was significantly induced. The increased breast cancer cell invasion could be blocked by anti-SDF-1 antibodies. Treatment of breast cancer cells in monoculture (without MG63) with SDF-1α, SDF-1β or the combination of both isoforms resulted in a significant escalation of breast cancer cell invasion and induction of EMT. Protein expression of mesenchymal markers CDH2 and VIM was clearly elevated, whereas protein expression of epithelial marker CDH1 was clearly decreased. The SDF-1-induced increase of cell invasion was significantly reduced after treatment with KP-10. In addition

  5. On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the t-channel

    NASA Astrophysics Data System (ADS)

    Busoni, Giorgio; De Simone, Andrea; Jacques, Thomas; Morgante, Enrico; Riotto, Antonio

    2014-09-01

    We extend our recent analysis of the limitations of the effective field theory approach to studying dark matter at the LHC, by investigating the case in which Dirac dark matter couples to standard model quarks via t-channel exchange of a heavy scalar mediator. We provide analytical results for the validity of the effective field theory description, for both √s = 8 TeV and 14 TeV. We make use of a MonteCarlo event generator to assess the validity of our analytical conclusions. We also point out the general trend that in the regions where the effective field theory is valid, the dark matter relic abundance is typically large.

  6. The role of SDF-1 in homing of human adipose-derived stem cells.

    PubMed

    Stuermer, Ewa K; Lipenksy, Alexandra; Thamm, Oliver; Neugebauer, Edmund; Schaefer, Nadine; Fuchs, Paul; Bouillon, Bertil; Koenen, Paola

    2015-01-01

    One of the putative pathophysiological mechanisms of chronic wounds is a disturbed homing of stem cells. In this project, the stromal cell-derived factor 1 (SDF-1)/C-X-C chemokine receptor (CXCR) 4 and SDF-1/CXCR7 pathway were focused in human adipose-derived stem cells (ASCs). ASCs were incubated with acute (AWF) or chronic wound fluid (CWF) to analyze their effects by quantitative real-time polymerase chain reaction (SDF-1, CXCR4, CXCR7, TIMP3), enzyme-linked immunosorbent assay (SDF-1 in WFs and supernatant), and transwell migration assay with/without antagonization. Whereas SDF-1 amounted 73.5 pg/mL in AWF, it could not be detected in CWF. Incubation with AWF led to a significant enhancement (129.7 pg/mL vs. 95.5 pg/mL), whereas CWF resulted in a significant reduction (30 pg/mL vs. 95.5 pg/mL) of SDF-1 in ASC supernatant. The SDF-1 receptor CXCR7 was detected on ASCs. AWF but not CWF significantly induced ASC migration, which was inhibited by CXCR4 and CXCR7 antagonists. Expressions of SDF-1, CXCR4, and CXCR7 were significantly stimulated by AWF while TIMP3 expression was reduced. In conclusion, an uncontrolled inflammation in the chronic wound environment, indicated by a reduced SDF-1 expression, resulted in a decreased ASC migration. A disturbed SDF-1/CXCR4 as well as SDF-1/CXCR7 pathway seems to play an important role in the impaired healing of chronic wounds.

  7. SDF-1α is a novel autocrine activator of platelets operating through its receptor CXCR4.

    PubMed

    Walsh, Tony G; Harper, Matthew T; Poole, Alastair W

    2015-01-01

    Platelets store and secrete the chemokine stromal cell-derived factor (SDF)-1α upon platelet activation, but the ability of platelet-derived SDF-1α to signal in an autocrine/paracrine manner mediating functional platelet responses relevant to thrombosis and haemostasis is unknown. We sought to explore the role of platelet-derived SDF-1α and its receptors, CXCR4 and CXCR7 in facilitating platelet activation and determine the mechanism facilitating SDF-1α-mediated regulation of platelet function. Using human washed platelets, CXCR4 inhibition, but not CXCR7 blockade significantly abrogated collagen-mediated platelet aggregation, dense granule secretion and thromboxane (Tx) A2 production. Time-dependent release of SDF-1α from collagen-activated platelets supports a functional role for SDF-1α in this regard. Using an in vitro whole blood perfusion assay, collagen-induced thrombus formation was substantially reduced with CXCR4 inhibition. In washed platelets, recombinant SDF-1α in the range of 20-100 ng/mL(-1) could significantly enhance platelet aggregation responses to a threshold concentration of collagen. These enhancements were completely dependent on CXCR4, but not CXCR7, which triggered TxA2 production and dense granule secretion. Rises in cAMP were significantly blunted by SDF-1α, which could also enhance collagen-mediated Ca2+ mobilisation, both of which were mediated by CXCR4. This potentiating effect of SDF-1α primarily required TxA2 signalling acting upstream of dense granule secretion, whereas blockade of ADP signalling could only partially attenuate SDF-1α-induced platelet activation. Therefore, this study supports a potentially novel autocrine/paracrine role for platelet-derived SDF-1α during thrombosis and haemostasis, through a predominantly TxA2-dependent and ADP-independent pathway.

  8. Endomyocardial expression of SDF-1 predicts mortality in patients with suspected myocarditis.

    PubMed

    Zuern, Christine S; Walker, Britta; Sauter, Martina; Schaub, Malte; Chatterjee, Madhumita; Mueller, Karin; Rath, Dominik; Vogel, Sebastian; Tegtmeyer, Roland; Seizer, Peter; Geisler, Tobias; Kandolf, Reinhard; Lang, Florian; Klingel, Karin; Gawaz, Meinrad; Borst, Oliver

    2015-12-01

    Risk stratification in patients with suspected myocarditis is pivotal for optimizing therapy. Stromal cell-derived factor 1 (SDF-1) is an inflammatory chemokine expressed in the inflamed and failing myocardium. Therefore, we aimed to investigate whether endomyocardial expression of SDF-1 identifies high-risk patients with suspected myocarditis. We prospectively enrolled 174 patients with non-ischemic HF who underwent endomyocardial biopsy for suspected myocarditis. Biopsies were analyzed using established histopathological and immunohistological criteria together with SDF-1 staining. SDF-1 was significantly enhanced in patients with inflammatory cardiomyopathy (65.4 % positive biopsies) as compared to patients with non-inflammatory cardiomyopathy (19.1 %, p < 0.001). SDF-1 expression levels correlated significantly with the degree of myocardial fibrosis (correlation coefficient r = 0.196; p = 0.010) since patients with severe myocardial fibrosis displayed high myocardial SDF-1 expression. During a mean follow-up of 27.5 months, 20 patients (11.5 %) died. The 4-year mortality rate was 26.0 % among the 92 SDF-1-positive patients vs. 9.5 % among the 82 SDF-1-negative patients (p = 0.001). On multivariable analysis which considered clinical (NYHA functional class, left ventricular ejection fraction), laboratory (brain natriuretic peptide, troponin I) and biopsy staining, SDF-1 was the strongest independent predictor of mortality (hazard ratio 6.1; 95 % confidence interval 1.4-27.5; p = 0.018). Subgroup analysis revealed SDF-1 as a predictor of mortality in both patients with inflammatory and non-inflammatory cardiomyopathy. Endomyocardial expression of SDF-1 is enhanced in inflammatory cardiomyopathy, positively correlates with myocardial fibrosis and identifies high-risk patients with suspected myocarditis.

  9. Between Fan Pilgrimage and Dark Tourism: Competing Agendas in Overseas Field Learning

    ERIC Educational Resources Information Center

    McMorran, Chris

    2015-01-01

    An overseas field learning itinerary can be a powerful pedagogical tool for both directing student attention and complicating preexisting spatial narratives. However, one must beware of using the itinerary to replace one narrative with another. This paper examines the itinerary negotiation for a 15-day overseas field module conducted three…

  10. Between Fan Pilgrimage and Dark Tourism: Competing Agendas in Overseas Field Learning

    ERIC Educational Resources Information Center

    McMorran, Chris

    2015-01-01

    An overseas field learning itinerary can be a powerful pedagogical tool for both directing student attention and complicating preexisting spatial narratives. However, one must beware of using the itinerary to replace one narrative with another. This paper examines the itinerary negotiation for a 15-day overseas field module conducted three…

  11. Convolution reconstruction algorithm for refraction-contrast computed tomography using a Laue-case analyzer for dark-field imaging.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ando, Masami

    2011-02-01

    We derive a reconstruction algorithm for refraction-contrast computed tomography (CT) using dark-field imaging (DFI) optics, which can extract refraction information by a single shot, from the ray equation in geometrical optics. The proposed algorithm is similar to the convolution reconstruction technique widely used in conventional CT. Thus, this algorithm can be implemented simply while also being fast and stable. To demonstrate its validity, we constructed the imaging system based on DFI optics composed of a transmission Laue-type angular analyzer at the vertical wiggler beamline BL-14C in KEK and performed a preliminary imaging experiment using a physical phantom to successfully obtain the DFI-CT image using the proposed algorithm.

  12. Quantitative Chemical Mapping of InGaN Quantum Wells from Calibrated High-Angle Annular Dark Field Micrographs.

    PubMed

    Carvalho, Daniel; Morales, Francisco M; Ben, Teresa; García, Rafael; Redondo-Cubero, Andrés; Alves, Eduardo; Lorenz, Katharina; Edwards, Paul R; O'Donnell, Kevin P; Wetzel, Christian

    2015-08-01

    We present a simple and robust method to acquire quantitative maps of compositional fluctuations in nanostructures from low magnification high-angle annular dark field (HAADF) micrographs calibrated by energy-dispersive X-ray (EDX) spectroscopy in scanning transmission electron microscopy (STEM) mode. We show that a nonuniform background in HAADF-STEM micrographs can be eliminated, to a first approximation, by use of a suitable analytic function. The uncertainty in probe position when collecting an EDX spectrum renders the calibration of HAADF-STEM micrographs indirect, and a statistical approach has been developed to determine the position with confidence. Our analysis procedure, presented in a flowchart to facilitate the successful implementation of the method by users, was applied to discontinuous InGaN/GaN quantum wells in order to obtain quantitative determinations of compositional fluctuations on the nanoscale.

  13. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Analysis of dark albedo features on a southern polar dune field of Mars.

    PubMed

    Horváth, András; Kereszturi, Akos; Bérczi, Szaniszló; Sik, András; Pócs, Tamás; Gánti, Tibor; Szathmáry, Eörs

    2009-01-01

    We observed 20-200 m sized low-albedo seepage-like streaks and their annual change on defrosting polar dunes in the southern hemisphere of Mars, based on the Mars Orbiter Camera (MOC), High Resolution Stereo Camera (HRSC), and High Resolution Imaging Science Experiment (HiRISE) images. The structures originate from dark spots and can be described as elongated or flowlike and, at places, branching streaks. They frequently have another spotlike structure at their end. Their overall appearance and the correlation between their morphometric parameters suggest that some material is transported downward from the spots and accumulates at the bottom of the dune's slopes. Here, we present possible scenarios for the origin of such streaks, including dry avalanche, liquid CO(2), liquid H(2)O, and gas-phase CO(2). Based on their morphology and the currently known surface conditions of Mars, no model interprets the streaks satisfactorily. The best interpretation of only the morphology and morphometric characteristics is only given by the model that implies some liquid water. The latest HiRISE images are also promising and suggest liquid flow. We suggest, with better knowledge of sub-ice temperatures that result from extended polar solar insolation and the heat insulator capacity of water vapor and water ice, future models and measurements may show that ephemeral water could appear and flow under the surface ice layer on the dunes today.

  15. A divergence-free parametrization of deceleration parameter for scalar field dark energy

    NASA Astrophysics Data System (ADS)

    Al Mamon, Abdulla; Das, Sudipta

    2016-01-01

    In this paper, we have considered a spatially flat FRW universe filled with pressureless matter and dark energy (DE). We have considered a phenomenological parametrization of the deceleration parameter q(z) and from this, we have reconstructed the equation-of-state (EoS) for DE ωϕ(z). This divergence-free parametrization of the deceleration parameter is inspired from one of the most popular parametrization of the DE EoS given by Barboza and Alcaniz [see E. M. Barboza and J. S. Alcaniz, Phys. Lett. B 666 (2008) 415]. Using the combination of datasets (Type Ia Supernova (SN Ia) + Hubble + baryonic acoustic oscillations/cosmic microwave background (BAO/CMB)), we have constrained the transition redshift zt (at which the universe switches from a decelerating to an accelerating phase) and have found the best fit value of zt. We have also compared the reconstructed results of q(z) and ωϕ(z) and have found that the results are compatible with a ΛCDM universe if we consider SN Ia + Hubble data, but inclusion of BAO/CMB data makes q(z) and ωϕ(z) incompatible with ΛCDM model. The potential term for the present toy model is found to be functionally similar to a Higgs potential.

  16. Monitoring adsorption of gold nanoparticles on gold nanodisk array using dark-field hyperspectral microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zenasni, Oussama; Li, Jingting; Shih, Wei-Chuan

    2017-02-01

    Localized surface plasmon resonance (LSPR) arises from the interaction of light with noble metal nanoparticles, which induces a collective oscillation in the free electrons. The size and shape of the metallic nanostructure significantly impact LSPR frequency and strength. Nanoplasmonic sensor has become a recent research focus due to its significant signal enhancement and robust signal transduction measured by extinction spectroscopy, fluorescence, Raman scattering, and absorption spectroscopy. Dark-field microscopy, in contrast, reports the scattered photons after light-matter interactions. In this case, the nanoparticles can be understood as dipole radiators whose free electrons oscillate in concert. Coupled with spectroscopy, this platform allows the collection of plasmonically scattered spectra from gold nanoparticles. Plasmonic coupling between electron-beam lithography patterned gold nanodisks (AuND) and colloidal gold nanoparticles (AuNP) can change the plasmonic resonance of the original entities, and can be effectively studied by dark-field hyperspectral microscopy. Typically, a pronounced redshift can be observed when plasmonic coupling occurs. When these nano-entities are functionalized with interactive surface moieties, biochemistry and molecular processes can be studied. In this paper, we will present the capability of assessing the process of immobilizing streptavidin-functionalized AuNPs on an array of biotin-terminated AuNDs. By monitoring changes in the LSPR band of AuNDs, we are able to evaluate similar processes in other molecular systems. In addition, plasmon coupling induced scattering intensity variations can be measured by an electron-multiplied charge-coupled device camera for rapid in situ monitoring. This method can potentially be useful in studying dynamic biophysical and biochemical processes in situ.

  17. AMR Code Simulations of Turbulent Combustion in Confined and Unconfined SDF Explosions

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V

    2009-05-29

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a vented two-room structure and in an unconfined height-of-burst explosion. Computed pressure histories are in reasonable (but not perfect) agreement with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  18. SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury.

    PubMed

    Niswander, Lisa M; Fegan, Katherine H; Kingsley, Paul D; McGrath, Kathleen E; Palis, James

    2014-07-10

    Megakaryocyte (MK) development in the bone marrow progresses spatially from the endosteal niche, which promotes MK progenitor proliferation, to the sinusoidal vascular niche, the site of terminal maturation and thrombopoiesis. The chemokine stromal cell-derived factor-1 (SDF-1), signaling through CXCR4, is implicated in the maturational chemotaxis of MKs toward sinusoidal vessels. Here, we demonstrate that both IV administration of SDF-1 and stabilization of endogenous SDF-1 acutely increase MK-vasculature association and thrombopoiesis with no change in MK number. In the setting of radiation injury, we find dynamic fluctuations in marrow SDF-1 distribution that spatially and temporally correlate with variations in MK niche occupancy. Stabilization of altered SDF-1 gradients directly affects MK location. Importantly, these SDF-1-mediated changes have functional consequences for platelet production, as the movement of MKs away from the vasculature decreases circulating platelets, while MK association with the vasculature increases circulating platelets. Finally, we demonstrate that manipulation of SDF-1 gradients can improve radiation-induced thrombocytopenia in a manner additive with earlier TPO treatment. Taken together, our data support the concept that SDF-1 regulates the spatial distribution of MKs in the marrow and consequently circulating platelet numbers. This knowledge of the microenvironmental regulation of the MK lineage could lead to improved therapeutic strategies for thrombocytopenia.

  19. The Role of Sdf-1α signaling in Xenopus laevis somite morphogenesis.

    PubMed

    Leal, Marisa A; Fickel, Sarah R; Sabillo, Armbien; Ramirez, Julio; Vergara, Hernando Martínez; Nave, Ceazar; Saw, Daniel; Domingo, Carmen R

    2014-04-01

    Stromal derived factor-1α (sdf-1α), a chemoattractant chemokine, plays a major role in tumor growth, angiogenesis, metastasis, and in embryogenesis. The sdf-1α signaling pathway has also been shown to be important for somite rotation in zebrafish (Hollway et al., 2007). Given the known similarities and differences between zebrafish and Xenopus laevis somitogenesis, we sought to determine whether the role of sdf-1α is conserved in Xenopus laevis. Using a morpholino approach, we demonstrate that knockdown of sdf-1α or its receptor, cxcr4, leads to a significant disruption in somite rotation and myotome alignment. We further show that depletion of sdf-1α or cxcr4 leads to the near absence of β-dystroglycan and laminin expression at the intersomitic boundaries. Finally, knockdown of sdf-1α decreases the level of activated RhoA, a small GTPase known to regulate cell shape and movement. Our results show that sdf-1α signaling regulates somite cell migration, rotation, and myotome alignment by directly or indirectly regulating dystroglycan expression and RhoA activation. These findings support the conservation of sdf-1α signaling in vertebrate somite morphogenesis; however, the precise mechanism by which this signaling pathway influences somite morphogenesis is different between the fish and the frog. Copyright © 2013 Wiley Periodicals, Inc.

  20. The role of Sdf-1α signaling in Xenopus laevis somite morphogenesis

    PubMed Central

    Leal, Marisa A.; Fickel, Sarah R.; Sabillo, Armbien; Ramirez, Julio; Vergara, Hernando Martínez; Nave, Ceazar; Saw, Daniel; Domingo, Carmen R.

    2014-01-01

    Background Stromal derived factor-1α (sdf-1α), a chemoattractant chemokine, plays a major role in tumor growth, angiogenesis, metastasis and in embryogenesis. The sdf-1α signaling pathway has also been shown to be important for somite rotation in zebrafish (Hollway, et al 2007). Given the known similarities and differences between zebrafish and Xenopus laevis somitogenesis, we sought to determine whether the role of sdf-1α is conserved in Xenopus laevis. Results Using a morpholino approach, we demonstrate that knockdown of sdf-1α or its receptor, cxcr4, leads to a significant disruption in somite rotation and myotome alignment. We further show that depletion of sdf-1α or cxcr4 leads to the near absence of β-dystroglycan and laminin expression at the intersomitic boundaries. Finally, knockdown of sdf-1α decreases the level of activated RhoA, a small GTPase known to regulate cell shape and movement. Conclusion Our results show that sdf-1α signaling regulates somite cell migration, rotation and myotome alignment by directly or indirectly regulating dystroglycan expression and RhoA activation. These findings support the conservation of sdf-1α signaling in vertebrate somite morphogenesis; however, the precise mechanism by which this signaling pathway influences somite morphogenesis is different between the fish and the frog. PMID:24357195

  1. SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury

    PubMed Central

    Niswander, Lisa M.; Fegan, Katherine H.; Kingsley, Paul D.; McGrath, Kathleen E.

    2014-01-01

    Megakaryocyte (MK) development in the bone marrow progresses spatially from the endosteal niche, which promotes MK progenitor proliferation, to the sinusoidal vascular niche, the site of terminal maturation and thrombopoiesis. The chemokine stromal cell-derived factor-1 (SDF-1), signaling through CXCR4, is implicated in the maturational chemotaxis of MKs toward sinusoidal vessels. Here, we demonstrate that both IV administration of SDF-1 and stabilization of endogenous SDF-1 acutely increase MK-vasculature association and thrombopoiesis with no change in MK number. In the setting of radiation injury, we find dynamic fluctuations in marrow SDF-1 distribution that spatially and temporally correlate with variations in MK niche occupancy. Stabilization of altered SDF-1 gradients directly affects MK location. Importantly, these SDF-1-mediated changes have functional consequences for platelet production, as the movement of MKs away from the vasculature decreases circulating platelets, while MK association with the vasculature increases circulating platelets. Finally, we demonstrate that manipulation of SDF-1 gradients can improve radiation-induced thrombocytopenia in a manner additive with earlier TPO treatment. Taken together, our data support the concept that SDF-1 regulates the spatial distribution of MKs in the marrow and consequently circulating platelet numbers. This knowledge of the microenvironmental regulation of the MK lineage could lead to improved therapeutic strategies for thrombocytopenia. PMID:24735964

  2. Thermodynamic Model of Aluminum Combustion in SDF Explosions

    SciTech Connect

    Kuhl, . L

    2006-06-19

    Thermodynamic states encountered during combustion of Aluminum powder in Shock-Dispersed-Fuel (SDF) explosions were analyzed with the Cheetah code. Results are displayed in the Le Chatelier diagram: the locus of states of specific internal energy versus temperature. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f(T) suitable for specifying the thermodynamic properties required for gas-dynamic models of combustion in explosions.

  3. Comparing the Evolution of the Galaxy Disk Sizes with Cold Dark Matter Models: The Hubble Deep Field.

    PubMed

    Giallongo; Menci; Poli; D'Odorico; Fontana

    2000-02-20

    The intrinsic sizes of the field galaxies with IFields are shown as a function of their redshifts and absolute magnitudes using photometric redshifts derived from the multicolor catalogs and are compared with the cold dark matter (CDM) predictions. Extending to the lower luminosities and to the higher z that our previous analysis performed on the NTT field alone, we find the distribution of the galaxy disk sizes at different cosmic epochs is within the range predicted by typical CDM models. However, the observed size distribution of faint (MB>-19) galaxies is skewed with respect to the CDM predictions, and an excess of small-size disks (Rd<2 kpc) is already present at z approximately 0.5. The excess persists up to z approximately 3 and involves brighter galaxies. Such an excess may be reduced if luminosity-dependent effects, like starburst activity in interacting galaxies, are included in the physical mechanisms governing the star formation history in CDM models.

  4. A study of the starless dark cloud LDN 1570: Distance, dust properties, and magnetic field geometry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, C.; Maheswar, G.; Pandey, A. K.; Jose, J.; Ramaprakash, A. N.; Bhatt, H. C.

    2013-08-01

    Aims: We aim to map the magnetic field geometry and to study the dust properties of the starless cloud, L1570, using multi-wavelength optical polarimetry and photometry of the stars projected on the cloud. Methods: The direction of the magnetic field component parallel to the plane of the sky of a cloud can be obtained using polarimetry of the stars projected on and located behind the cloud. It is believed that the unpolarized light from the stars background to the cloud undergoes selective extinction while passing through non-spherical dust grains that are aligned with their minor axes parallel to the cloud magnetic field. The emerging light becomes partially plane polarized. The observed polarization vectors trace the direction of the projected magnetic field of the cloud. We made R-band imaging polarimetry of the stars projected on a cloud, L1570, to trace the magnetic field orientation. We also made multi-wavelength polarimetric and photometric observations to constrain the properties of dust in L1570. Results: We estimated a distance of 394 ± 70 pc to the cloud using 2MASS JHKs colors. Using the values of the Serkowski parameters, σ1, overlineɛ, λmax, and the position of the stars on the near-infrared color-color diagram, we identified 13 stars that could possibly have intrinsic polarization and/or rotation in their polarization angles. One star, 2MASS J06075075+1934177, which is a B4Ve spectral type, shows diffuse interstellar bands in the spectrum in addition to the Hα line in emission. There is an indication for slightly bigger dust grains toward L1570 on the basis of the dust grain size-indicators such as λmax and RV values. The magnetic field lines are found to be parallel to the cloud structures seen in the 250 μm images (also in the 8 μm and 12 μm shadow images) of L1570. Based on the magnetic field geometry, the cloud structure, and the complex velocity structure, we conclude that L1570 is in the process of formation due to the converging flow

  5. Dark-to-arc transition in field emission dominated atmospheric microdischarges

    SciTech Connect

    Tholeti, Siva Sashank; Semnani, Abbas; Peroulis, Dimitrios; Alexeenko, Alina A.

    2015-08-15

    We study the voltage-current characteristics of gas discharges driven by field emission of electrons at the microscale. Particle-in-cell with Monte Carlo collision calculations are first verified by comparison with breakdown voltage measurements and then used to investigate atmospheric discharges in nitrogen at gaps from 1 to 10 μm. The results indicate the absence of the classical glow discharge regime because field electron emission replaces secondary electron emission as the discharge sustaining mechanism. Additionally, the onset of arcing is significantly delayed due to rarefied effects in electron transport. While field emission reduces the breakdown voltage, the power required to sustain an arc of the same density in microgaps is as much as 30% higher than at macroscale.

  6. Effect of dual treatment with SDF-1 and BMP-2 on ectopic and orthotopic bone formation.

    PubMed

    Lee, Chang-Hwan; Jin, Myoung Uk; Jung, Hong-Moon; Lee, Jung-Tae; Kwon, Tae-Geon

    2015-01-01

    The potent stem cell homing factor stromal cell-derived factor-1 (SDF-1) actively recruits mesenchymal stem cells from circulation and from local bone marrow. It is well established that bone morphogenetic protein-2 (BMP-2) induces ectopic and orthotopic bone formation. However, the exact synergistic effects of BMP-2 and SDF-1 in ectopic and orthotopic bone regeneration models have not been fully investigated. The purpose of this study was to evaluate the potential effects of simultaneous SDF-1 and BMP-2 treatment on bone formation. Various doses of SDF-1 were loaded onto collagen sponges with or without BMP-2.These sponges were implanted into subcutaneous pockets and critical-size calvarial defects in C57BL/6 mice. The specimens were harvested 4 weeks post-surgery and the degree of bone formation in specimens was evaluated by histomorphometric and radiographic density analyses. Osteogenic potential and migration capacity of mesenchymal cells and capillary tube formation of endothelial cells following dual treatment with SDF-1 and BMP-2 were evaluated with in vitro assays. SDF-1-only-treated implants did not yield significant in vivo bone formation and SDF-1 treatment did not enhance BMP-2-induced ectopic and orthotopic bone regeneration. In vitro experiments showed that concomitant use of BMP-2 and SDF-1 had no additive effect on osteoblastic differentiation, cell migration or angiogenesis compared to BMP-2 or SDF-1 treatment alone. These findings imply that sequence-controlled application of SDF-1 and BMP-2 must be further investigated for the enhancement of robust osteogenesis in bone defects.

  7. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration.

    PubMed

    Brzoska, Edyta; Kowalski, Kamil; Markowska-Zagrajek, Agnieszka; Kowalewska, Magdalena; Archacki, Rafał; Plaskota, Izabela; Stremińska, Władysława; Jańczyk-Ilach, Katarzyna; Ciemerych, Maria A

    2015-03-24

    Understanding the mechanism of stem cell mobilization into injured skeletal muscles is a prerequisite step for the development of muscle disease therapies. Many of the currently studied stem cell types present myogenic potential; however, when introduced either into the blood stream or directly into the tissue, they are not able to efficiently engraft injured muscle. For this reason their use in therapy is still limited. Previously, we have shown that stromal-derived factor-1 (Sdf-1) caused the mobilization of endogenous (not transplanted) stem cells into injured skeletal muscle improving regeneration. Here, we demonstrate that the beneficial effect of Sdf-1 relies on the upregulation of the tetraspanin CD9 expression in stem cells. The expression pattern of adhesion proteins, including CD9, was analysed after Sdf-1 treatment during regeneration of rat skeletal muscles and mouse Pax7-/- skeletal muscles, that are characterized by the decreased number of satellite cells. Next, we examined the changes in CD9 level in satellite cells-derived myoblasts, bone marrow-derived mesenchymal stem cells, and embryonic stem cells after Sdf-1 treatment or silencing expression of CXCR4 and CXCR7. Finally, we examined the potential of stem cells to fuse with myoblasts after Sdf-1 treatment. In vivo analyses of Pax7-/- mice strongly suggest that Sdf-1-mediates increase in CD9 levels also in mobilized stem cells. In the absence of CXCR4 receptor the effect of Sdf-1 on CD9 expression is blocked. Next, in vitro studies show that Sdf-1 increases the level of CD9 not only in satellite cell-derived myoblasts but also in bone marrow derived mesenchymal stem cells, as well as embryonic stem cells. Importantly, the Sdf-1 treated cells migrate and fuse with myoblasts more effectively. We suggest that Sdf-1 binding CXCR4 receptor improves skeletal muscle regeneration by upregulating expression of CD9 and thus, impacting at stem cells mobilization to the injured muscles.

  8. Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats.

    PubMed

    Shao, Shuai; Cai, Wenwei; Sheng, Jing; Yin, Lingni

    2015-01-01

    To investigate the effects of stromal cell-derived factor-1 (SDF-1) and Wnt signaling pathway on the bioactivities of myofibroblasts (MFs) and the expressions of SDF-1 and components of Wnt signaling pathway in the myocardium of spontaneously hypertensive rats (SHR). BMSCs were induced to differentiate into MFs in vitro, and SDF-1 and Wnt signaling pathway were independently or simultaneously blocked. Then, the migration of MFs and the secretion of Col I and α-SMA were determined in MFs. Heart function, progression of myocardial fibrosis and structure of the heart were evaluated. The expression of SDF-1 and components of Wnt signaling pathway in SHR was detected. TGF-β could induce the differentiation of BMSCs into B-MFs; Blocking SDF-1/CXCR4 axis and/or Wnt signaling pathway was able to inhibit the MFs migration and Col I secretion; Blocking Wnt signaling pathway inhibited the differentiation of BMSCs into MFs; Serum SDF-1 increased with the increase in blood pressure, and serum β-catenin elevated with the fluctuation of blood pressure; Protein and mRNA expressions of SDF-1 in the myocardium increased, and those of DKK-1 (an inhibitor of Wnt signaling pathway) and GSK-3 reduced in SHR. SDF-1 and Wnt signaling pathway are involved in the differentiation of BMSCs into MFs, as well as the migration and collagen secretion of MFs; Hypertension affects the expressions of SDF-1 and components of Wnt signaling pathway. In the myocardium of SHR, SDF-1 expression increases, but the expression of inhibitor of Wnt signaling pathway reduces.

  9. Effect of Dual Treatment with SDF-1 and BMP-2 on Ectopic and Orthotopic Bone Formation

    PubMed Central

    Jung, Hong-Moon; Lee, Jung-Tae; Kwon, Tae-Geon

    2015-01-01

    Purposes The potent stem cell homing factor stromal cell-derived factor-1 (SDF-1) actively recruits mesenchymal stem cells from circulation and from local bone marrow. It is well established that bone morphogenetic protein-2 (BMP-2) induces ectopic and orthotopic bone formation. However, the exact synergistic effects of BMP-2 and SDF-1 in ectopic and orthotopic bone regeneration models have not been fully investigated. The purpose of this study was to evaluate the potential effects of simultaneous SDF-1 and BMP-2 treatment on bone formation. Materials and Methods Various doses of SDF-1 were loaded onto collagen sponges with or without BMP-2.These sponges were implanted into subcutaneous pockets and critical-size calvarial defects in C57BL/6 mice. The specimens were harvested 4 weeks post-surgery and the degree of bone formation in specimens was evaluated by histomorphometric and radiographic density analyses. Osteogenic potential and migration capacity of mesenchymal cells and capillary tube formation of endothelial cells following dual treatment with SDF-1 and BMP-2 were evaluated with in vitro assays. Results SDF-1-only-treated implants did not yield significant in vivo bone formation and SDF-1 treatment did not enhance BMP-2-induced ectopic and orthotopic bone regeneration. In vitro experiments showed that concomitant use of BMP-2 and SDF-1 had no additive effect on osteoblastic differentiation, cell migration or angiogenesis compared to BMP-2 or SDF-1 treatment alone. Conclusions These findings imply that sequence-controlled application of SDF-1 and BMP-2 must be further investigated for the enhancement of robust osteogenesis in bone defects. PMID:25781922

  10. Zero-Range Effective Field Theory for Resonant Wino Dark Matter

    NASA Astrophysics Data System (ADS)

    Johnson, Evan; Braaten, Eric; Zhang, Hong

    2017-01-01

    The most dramatic ``Sommerfeld enhancements'' of neutral-wino-pair annihilation occur when the wino mass is tuned to near critical values where there is a zero-energy S-wave resonance at the neutral-wino-pair threshold. If the wino mass is larger than the critical value, the resonance is a wino-pair bound state. If the wino mass is near a critical value, low-energy winos can be described by a zero-range effective field theory in which the winos interact nonperturbatively through a contact interaction. The parameters of the zero-range effective field theory can be determined by matching wino scattering amplitudes calculated by solving the Schrödinger equation for a nonrelativistic effective field theory in which the winos interact nonperturbatively through a potential due to the exchange of weak gauge bosons. The power of the zero-range effective field theory is illustrated by calculating the rate for formation of the bound state in the collision of two neutral winos through the emission of two soft photons. Supported in part by DOE grant DE-FG02-05ER15715.

  11. On the reach of perturbative methods for dark matter density fields

    SciTech Connect

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel E-mail: eschaan@astro.princeton.edu

    2016-03-01

    We study the mapping from Lagrangian to Eulerian space in the context of the Effective Field Theory (EFT) of Large Scale Structure. We compute Lagrangian displacements with Lagrangian Perturbation Theory (LPT) and perform the full non-perturbative transformation from displacement to density. When expanded up to a given order, this transformation reproduces the standard Eulerian Perturbation Theory (SPT) at the same order. However, the full transformation from displacement to density also includes higher order terms. These terms explicitly resum long wavelength motions, thus making the resulting density field better correlated with the true non-linear density field. As a result, the regime of validity of this approach is expected to extend that of the Eulerian EFT, and match that of the IR-resummed Eulerian EFT. This approach thus effectively enables a test of the IR-resummed EFT at the field level. We estimate the size of stochastic, non-perturbative contributions to the matter density power spectrum. We find that in our highest order calculation, at redshift z = 0 the power spectrum of the density field is reproduced with an accuracy of 1% (10%) up to k = 0.25 hMpc{sup −1} (k = 0.46 hMpc{sup −1}). We believe that the dominant source of the remaining error is the stochastic contribution. Unfortunately, on these scales the stochastic term does not yet scale as k{sup 4} as it does in the very low k regime. Thus, modeling this contribution might be challenging.

  12. Dark Matter 2013

    NASA Astrophysics Data System (ADS)

    Schumann, Marc

    2014-10-01

    This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at the International Cosmic Ray Conference (ICRC) 2013 in Rio de Janeiro. It focuses on the three main avenues to detect weakly interacting massive particle (WIMP) dark matter: direct detection, indirect detection, and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

  13. [A simple light and dark field set-up for documentation purposes in brain research].

    PubMed

    Fröhlich, J; Rummelfänger, H

    1982-01-01

    An illumination method adopted from metallography was improved to give bilateral oblique epiillumination that can be used on any standard transmitted-light microscope. Series evaluation and documentation possible for autoradiograms exceeding 0,5 cm2 in area are the advantages over the known photographic documentation procedures that are highly time and material consuming. Combination with transmitted-light bright-field illumination permits the simultaneous representation of silver grain distribution and its precise topographic coordination into stained tissue structures (negative enlargement 2:1 to 200:1). When the combination illumination technique is used, neurons impregnated according to Golgi's method are represented with improved "subjective" depth of focus compared to the brightfield transmitted-light procedure, while appearing more graphic. Moreover, dendritic spines are visible that are not seen in the bright-field transmitted-light mode.

  14. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    NASA Astrophysics Data System (ADS)

    Friis-Christensen, E.; Finlay, C. C.; Hesse, M.; Laundal, K. M.

    2017-02-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagnetic main field. Observations from the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine the distribution of scalar measurements of the magnetic field intensity minus predictions from a geomagnetic field model. These `residuals' fall into two main categories. One category is consistently distributed according to the well-known ionospheric plasma convection and its associated Birkeland currents. The other category represent contributions caused by geomagnetic activity related to the substorm current wedge around local magnetic midnight. A new observation is a strong IMF By control of the residuals in the midnight sector indicating larger ionospheric currents in the substorm current wedge in the northern polar region for By > 0 and correspondingly in the southern hemisphere for By < 0.

  15. Magnetic Field Perturbations from Currents in the Dark Polar Regions During Quiet Geomagnetic Conditions

    NASA Astrophysics Data System (ADS)

    Friis-Christensen, E.; Finlay, C. C.; Hesse, M.; Laundal, K. M.

    2017-03-01

    In the day-side sunlit polar ionosphere the varying and IMF dependent convection creates strong ionospheric currents even during quiet geomagnetic conditions. Observations during such times are often excluded when using satellite data to model the internal geomagnetic main field. Observations from the night-side or local winter during quiet conditions are, however, also influenced by variations in the IMF. In this paper we briefly review the large scale features of the ionospheric currents in the polar regions with emphasis on the current distribution during undisturbed conditions. We examine the distribution of scalar measurements of the magnetic field intensity minus predictions from a geomagnetic field model. These `residuals' fall into two main categories. One category is consistently distributed according to the well-known ionospheric plasma convection and its associated Birkeland currents. The other category represent contributions caused by geomagnetic activity related to the substorm current wedge around local magnetic midnight. A new observation is a strong IMF By control of the residuals in the midnight sector indicating larger ionospheric currents in the substorm current wedge in the northern polar region for By > 0 and correspondingly in the southern hemisphere for By < 0.

  16. Expression of SDF-1 and CXCR4 transcript variants and CXCR7 in epithelial ovarian cancer.

    PubMed

    Jaszczynska-Nowinka, Karolina; Rucinski, Marcin; Ziolkowska, Agnieszka; Markowska, Anna; Malendowicz, Ludwik K

    2014-05-01

    Chemokine stromal cell-derived factor-1 (SDF-1) and its receptors, CXCR4 and CXCR7, have been implicated in epithelial ovarian cancer progression and metastasis. However, limited data are available on the expression levels of SDF-1 and CXCR4 variants and CXCR7 in human epithelial ovarian cancer. The present study aimed to characterize the expression pattern and levels of SDF-1, CXCR4 and CXCR7 in normal human ovaries and epithelial ovarian cancer. The expression of SDF-1 and CXCR4 transcript variants and CXCR7 was determined by quantitative polymerase chain reaction (qPCR). Plasma SDF-1α levels were determined by commercially available EIA kits and cancer antigen 125 (CA 125) levels were quantified by automated microparticle enzyme immunosorbent assay. High expression levels of SDF-1 transcript variant 1 were identified in ovarian cancer and control ovaries. By contrast, in both groups the expression levels of SDF-1 transcript variants 3 and 4 were extremely low. Furthermore, SDF-1 variant 1 levels were notably higher in epithelial ovarian cancer than in control ovaries, while data for the remaining transcripts were similar in both groups. CXCR4 transcript variant 2 and CXCR7 expression levels in normal and neoplastic ovaries were similar. In both groups, CXCR4 transcript variant 2 was not detected. Plasma SDF-1α levels were notably higher in females with epithelial ovarian cancer than in the control ovaries. Elevated levels of blood SDF-1α were found prior to surgery, 6 days after surgery and following completion of the first chemotherapy course. These increases were independent of the type of epithelial ovarian cancer. Our results suggest that the expression of SDF-1 and the genes controlling alternative splicing are elevated in epithelial ovarian cancer, leading to an increased formation of SDF-1 variant 1. Elevated plasma SDF-1α levels in epithelial ovarian cancer patients are not associated with the presence of tumors and/or metastases, however reflect a

  17. On the reach of perturbative descriptions for dark matter displacement fields

    SciTech Connect

    Baldauf, Tobias; Zaldarriaga, Matias; Schaan, Emmanuel E-mail: eschaan@astro.princeton.edu

    2016-03-01

    We study Lagrangian Perturbation Theory (LPT) and its regularization in the Effective Field Theory (EFT) approach. We evaluate the LPT displacement with the same phases as a corresponding N-body simulation, which allows us to compare perturbation theory to the non-linear simulation with significantly reduced cosmic variance, and provides a more stringent test than simply comparing power spectra. We reliably detect a non-vanishing leading order EFT coefficient and a stochastic displacement term, uncorrelated with the LPT terms. This stochastic term is expected in the EFT framework, and, to the best of our understanding, is not an artifact of numerical errors or transients in our simulations. This term constitutes a limit to the accuracy of perturbative descriptions of the displacement field and its phases, corresponding to a 1% error on the non-linear power spectrum at k = 0.2 h{sup −1}Mpc at z = 0. Predicting the displacement power spectrum to higher accuracy or larger wavenumbers thus requires a model for the stochastic displacement.

  18. Controlled Release of Collagen-Binding SDF-1α Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells.

    PubMed

    Sun, Jie; Zhao, Yannan; Li, Qingguo; Chen, Bing; Hou, Xianglin; Xiao, Zhifeng; Dai, Jianwu

    2016-05-26

    Stromal cell-derived factor-1α (SDF-1α) is a well-characterized chemokine that mobilizes stem cells homing to the ischemic heart, which is beneficial for cardiac regeneration. However, clinically administered native SDF-1α diffuses quickly, thus decreasing its local concentration, and results in side effects. Thus, a controlled release system for SDF-1α is required to produce an effective local concentration in the ischemic heart. In this study, we developed a recombinant chemokine, consisting of SDF-1α and a collagen-binding domain, which retains both the SDF-1α and collagen-binding activity (CBD-SDF-1α). In an in vitro assay, CBD-SDF-1α could specifically bind to a collagen gel and achieve sustained release. An intramyocardial injection of CBD-SDF-1α after acute myocardial infarction demonstrated that the protein was largely tethered in the ischemic area and that controlled release had been achieved. Furthermore, CBD-SDF-1α enhanced the recruitment of c-kit positive (c-kit(+)) stem cells, increased capillary density and improved cardiac function, whereas NAT-SDF-1α had no such beneficial effects. Our findings demonstrate that CBD-SDF-1α can specifically bind to collagen and achieve controlled release both in vitro and in vivo. Local delivery of this protein could mobilize endogenous stem cells homing to the ischemic heart and improve cardiac function after myocardial infarction.

  19. Electrospun Collagen Fibers with Spatial Patterning of SDF1α for the Guidance of Neural Stem Cells.

    PubMed

    Li, Xiaoran; Liang, Hui; Sun, Jie; Zhuang, Yan; Xu, Bai; Dai, Jianwu

    2015-08-26

    Producing gradients of biological cues into nerve conduits is crucial for nerve guidance and regeneration. Herein, the fabrication of gradients of stromal cell-derived factor-1α (SDF1α) on electrospun collagen mats is reported using an electrohydrodynamic jet printing technique. The fabrication of various SDF1α gradated patterns on collagen fibrous mats is successfully demonstrated including shallow continuous gradient, steep continuous gradient, and step gradient by controlling the processing parameters. The SDF1α graded collagen scaffolds show a long-term stable gradient, as SDF1α is fused with a unique peptide of collagen binding domain (CBD), and CBD-SDF1α can specifically bind to the collagen mat. Such graded scaffolds exhibit sustained release of SDF1α. Further examination of neural stem cell (NSC) response to the CBD-SDF1α gradients with various patterns show that the NSCs can sense the CBD-SDF1α gradients, display a polarized morphology, and tend to migrate toward the region with a higher CBD-SDF1α content. The collagen mats with CBD-SDF1α gradients guide gradual distribution of NSCs, and NSC-differentiated neurons and astrocytes after seeding for 1 and 7 d. This new class of CBD-SDF1α gradient scaffolds can potentially be employed for guided nerve regeneration.

  20. Controlled Release of Collagen-Binding SDF-1α Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells

    PubMed Central

    Sun, Jie; Zhao, Yannan; Li, Qingguo; Chen, Bing; Hou, Xianglin; Xiao, Zhifeng; Dai, Jianwu

    2016-01-01

    Stromal cell-derived factor-1α (SDF-1α) is a well-characterized chemokine that mobilizes stem cells homing to the ischemic heart, which is beneficial for cardiac regeneration. However, clinically administered native SDF-1α diffuses quickly, thus decreasing its local concentration, and results in side effects. Thus, a controlled release system for SDF-1α is required to produce an effective local concentration in the ischemic heart. In this study, we developed a recombinant chemokine, consisting of SDF-1α and a collagen-binding domain, which retains both the SDF-1α and collagen-binding activity (CBD-SDF-1α). In an in vitro assay, CBD-SDF-1α could specifically bind to a collagen gel and achieve sustained release. An intramyocardial injection of CBD-SDF-1α after acute myocardial infarction demonstrated that the protein was largely tethered in the ischemic area and that controlled release had been achieved. Furthermore, CBD-SDF-1α enhanced the recruitment of c-kit positive (c-kit+) stem cells, increased capillary density and improved cardiac function, whereas NAT-SDF-1α had no such beneficial effects. Our findings demonstrate that CBD-SDF-1α can specifically bind to collagen and achieve controlled release both in vitro and in vivo. Local delivery of this protein could mobilize endogenous stem cells homing to the ischemic heart and improve cardiac function after myocardial infarction. PMID:27226084

  1. SDF-1/CXCR4 Signaling Maintains Stemness Signature in Mouse Neural Stem/Progenitor Cells

    PubMed Central

    Ling, Thai-Yen; Lin, Hsing-Yu; Liou, Jeffrey Tsai-Jui; Liu, Fei-Chih; Chen, I-Chun; Lee, Sue-Wei; Hsu, Yu

    2017-01-01

    SDF-1 and its primary receptor, CXCR4, are highly expressed in the embryonic central nervous system (CNS) and play a crucial role in brain architecture. Loss of SDF-1/CXCR4 signaling causes abnormal development of neural stem/progenitor cells (NSCs/NPCs) in the cerebellum, hippocampus, and cortex. However, the mechanism of SDF-1/CXCR4 axis in NSCs/NPCs regulation remains unknown. In this study, we found that elimination of SDF-1/CXCR4 transduction caused NSCs/NPCs to lose their stemness characteristics and to encounter neurogenic differentiation. Moreover, Notch and RE1 silencing transcription factor (REST) both play an essential role in NSCs/NPCs maintenance and neuronal differentiation and were dramatically downregulated following SDF-1/CXCR4 cascade inhibition. Finally, we demonstrated that the expression of achaete-scute homolog 1 (Ascl1), a proneural gene, and p27, an antiproliferative gene, were significantly increased after genetic elimination of SDF-1 alleles. Our results support that the loss of functional SDF-1/CXCR4 signaling pathway in NSCs/NPCs induces exit of cell cycle and promotes premature neural differentiation. PMID:28408934

  2. Low-dose radiation augments vasculogenesis signaling through HIF-1-dependent and -independent SDF-1 induction.

    PubMed

    Lerman, Oren Z; Greives, Matthew R; Singh, Sunil P; Thanik, Vishal D; Chang, Christopher C; Seiser, Natalie; Brown, Daniel J; Knobel, Denis; Schneider, Robert J; Formenti, Silvia C; Saadeh, Pierre B; Levine, Jamie P

    2010-11-04

    The inflammatory response to ionizing radiation (IR) includes a proangiogenic effect that could be counterproductive in cancer but can be exploited for treating impaired wound healing. We demonstrate for the first time that IR stimulates hypoxia-inducible factor-1α (HIF-1α) up-regulation in endothelial cells (ECs), a HIF-1α-independent up-regulation of stromal cell-derived factor-1 (SDF-1), as well as endothelial migration, all of which are essential for angiogenesis. 5 Gray IR-induced EC HIF-1α and SDF-1 expression was greater when combined with hypoxia suggesting an additive effect. While small interfering RNA silencing of HIF-1α mRNA and abolition of HIF-1α protein induction down-regulated SDF-1 induction by hypoxia alone, it had little effect on SDF-1 induction by IR, demonstrating an independent pathway. SDF-1-mediated EC migration in hypoxic and/or radiation-treated media showed IR induced strong SDF-1-dependent migration of ECs, augmented by hypoxia. IR activates a novel pathway stimulating EC migration directly through the expression of SDF-1 independent of HIF-1α induction. These observations might be exploited for stimulation of wound healing or controlling tumor angiogenesis.

  3. The CXCR4/SDF1 Axis Improves Muscle Regeneration Through MMP-10 Activity

    PubMed Central

    Bobadilla, Miriam; Sainz, Neira; Abizanda, Gloria; Orbe, Josune; Rodriguez, José Antonio; Páramo, José Antonio; Prósper, Felipe

    2014-01-01

    The CXCR4/SDF1 axis participates in various cellular processes, including cell migration, which is essential for skeletal muscle repair. Although increasing evidence has confirmed the role of CXCR4/SDF1 in embryonic muscle development, the function of this pathway during adult myogenesis remains to be fully elucidated. In addition, a role for CXCR4 signaling in muscle maintenance and repair has only recently emerged. Here, we have demonstrated that CXCR4 and stromal cell-derived factor-1 (SDF1) are up-regulated in injured muscle, suggesting their involvement in the repair process. In addition, we found that notexin-damaged muscles showed delayed muscle regeneration on treatment with CXCR4 agonist (AMD3100). Accordingly, small-interfering RNA-mediated silencing of SDF1 or CXCR4 in injured muscles impaired muscle regeneration, whereas the addition of SDF1 ligand accelerated repair. Furthermore, we identified that CXCR4/SDF1-regulated muscle repair was dependent on matrix metalloproteinase-10 (MMP-10) activity. Thus, our findings support a model in which MMP-10 activity modulates CXCR4/SDF1 signaling, which is essential for efficient skeletal muscle regeneration. PMID:24548137

  4. The CXCR4/SDF1 axis improves muscle regeneration through MMP-10 activity.

    PubMed

    Bobadilla, Miriam; Sainz, Neira; Abizanda, Gloria; Orbe, Josune; Rodriguez, José Antonio; Páramo, José Antonio; Prósper, Felipe; Pérez-Ruiz, Ana

    2014-06-15

    The CXCR4/SDF1 axis participates in various cellular processes, including cell migration, which is essential for skeletal muscle repair. Although increasing evidence has confirmed the role of CXCR4/SDF1 in embryonic muscle development, the function of this pathway during adult myogenesis remains to be fully elucidated. In addition, a role for CXCR4 signaling in muscle maintenance and repair has only recently emerged. Here, we have demonstrated that CXCR4 and stromal cell-derived factor-1 (SDF1) are up-regulated in injured muscle, suggesting their involvement in the repair process. In addition, we found that notexin-damaged muscles showed delayed muscle regeneration on treatment with CXCR4 agonist (AMD3100). Accordingly, small-interfering RNA-mediated silencing of SDF1 or CXCR4 in injured muscles impaired muscle regeneration, whereas the addition of SDF1 ligand accelerated repair. Furthermore, we identified that CXCR4/SDF1-regulated muscle repair was dependent on matrix metalloproteinase-10 (MMP-10) activity. Thus, our findings support a model in which MMP-10 activity modulates CXCR4/SDF1 signaling, which is essential for efficient skeletal muscle regeneration.

  5. Effect of SDF-1/Cxcr4 Signaling Antagonist AMD3100 on Bone Mineralization in Distraction Osteogenesis.

    PubMed

    Xu, Jia; Chen, Yuanfeng; Liu, Yang; Zhang, Jinfang; Kang, Qinglin; Ho, Kiwai; Chai, Yimin; Li, Gang

    2017-03-16

    Distraction osteogenesis (DO) is a widely applied technique in orthopedics surgery, which involves rapid stem cell migration, homing, and differentiation. Interactions between the chemokine receptor Cxcr4 and its ligand, stromal derived factor-1 (SDF-1), regulate hematopoietic stem cell trafficking to the ischemic area and induce their subsequent differentiation. Here, we examined SDF-1 expression and further investigated the role of SDF-1/Cxcr4 signaling antagonist AMD3100 during bone regeneration in rat DO model. The results showed that expression levels of SDF-1 and osteogenic genes were higher in DO zones than in the fracture zones, and SDF-1 expression level was the highest at the termination of the distraction phase. Radiological, mechanical, and histological analyses demonstrated that the local administration of AMD3100 (400 μM) to DO rats significantly inhibited new bone formation. In the rat bone marrow mesenchymal stem cells culture, comparing to the group treated with osteogenic induction medium, AMD3100 supplement led to a considerable decrease in the expression of alkaline phosphatase and early osteogenic marker genes. However, the amount of calcium deposits in rat MSCs did not differ between the groups. Therefore, our study demonstrated that the DO process induced higher expression of SDF-1, which collated to rapid induction of callus formation. Local application of SDF-1/Cxcr4 signaling antagonist AMD3100 significantly inhibited bone mineralization and osteogenesis in DO, which may represent a potential therapeutic approach to the enhancement of bone consolidation in patients undergoing DO.

  6. Role of SDF-1 and CXCR4 in the proliferation, migration and invasion of cervical cancer.

    PubMed

    Wang, Chen; Cheng, Hailing; Li, Yanyun

    2016-11-01

    This study was to investigate the role of stromal cell-derived factor 1 (SDF-1) and its corresponding receptor CXCR4 in the proliferation, migration and invasion of cervical cancer HeLa cells. CXCR4 expression in HeLa cells was measured by flow cytometry and Western Blot. Role of SDF-1 and CXCR4 in the HeLa cells proliferation was measured by MTT. Role of SDF-1 and CXCR4 in the migration and invasion of HeLa cell was measured by Boyden chamber. High expression of CXCR4 was observed on the surface of HeLa cells. Proliferation ability of HeLa cells was significantly increased after SDF-1 stimulation, which showed dose-dependent manner. After knock-down of CXCR4 expression by RNAi, SDF-1-stimulated HeLa cells proliferation was significantly blocked (P<0.05). SDF-1 can induce migration and invasion of Hela cells, SDF-1-stimulated HeLa cells migration and invasion was significantly blocked (P<0.05) after knock-down of CXCR4 expression by RNAi. High expression of surface CXCR4 plays an important role in the proliferation, migration and invasion of HeLa cells.

  7. SDF-1/CXCR4 Signaling Maintains Stemness Signature in Mouse Neural Stem/Progenitor Cells.

    PubMed

    Ho, Shih-Yin; Ling, Thai-Yen; Lin, Hsing-Yu; Liou, Jeffrey Tsai-Jui; Liu, Fei-Chih; Chen, I-Chun; Lee, Sue-Wei; Hsu, Yu; Lai, Dar-Ming; Liou, Horng-Huei

    2017-01-01

    SDF-1 and its primary receptor, CXCR4, are highly expressed in the embryonic central nervous system (CNS) and play a crucial role in brain architecture. Loss of SDF-1/CXCR4 signaling causes abnormal development of neural stem/progenitor cells (NSCs/NPCs) in the cerebellum, hippocampus, and cortex. However, the mechanism of SDF-1/CXCR4 axis in NSCs/NPCs regulation remains unknown. In this study, we found that elimination of SDF-1/CXCR4 transduction caused NSCs/NPCs to lose their stemness characteristics and to encounter neurogenic differentiation. Moreover, Notch and RE1 silencing transcription factor (REST) both play an essential role in NSCs/NPCs maintenance and neuronal differentiation and were dramatically downregulated following SDF-1/CXCR4 cascade inhibition. Finally, we demonstrated that the expression of achaete-scute homolog 1 (Ascl1), a proneural gene, and p27, an antiproliferative gene, were significantly increased after genetic elimination of SDF-1 alleles. Our results support that the loss of functional SDF-1/CXCR4 signaling pathway in NSCs/NPCs induces exit of cell cycle and promotes premature neural differentiation.

  8. SDF-1 enhances wound healing of critical-sized calvarial defects beyond self-repair capacity.

    PubMed

    Jin, Qiming; Giannobile, William V

    2014-01-01

    Host blood circulating stem cells are an important cell source that participates in the repair of damaged tissues. The clinical challenge is how to improve the recruitment of circulating stem cells into the local wound area and enhance tissue regeneration. Stromal-derived factor-1 (SDF-1) has been shown to be a potent chemoattractant of blood circulating stem cells into the local wound microenvironment. In order to investigate effects of SDF-1 on bone development and the repair of a large bone defect beyond host self-repair capacity, the BMP-induced subcutaneous ectopic bone formation and calvarial critical-sized defect murine models were used in this preclinical study. A dose escalation of SDF-1 were loaded into collagen scaffolds containing BMP, VEGF, or PDGF, and implanted into subcutaneous sites at mouse dorsa or calvarial critical-sized bone defects for 2 and 4 weeks. The harvested biopsies were examined by microCT and histology. The results demonstrated that while SDF-1 had no effect in the ectopic bone model in promoting de novo osteogenesis, however, in the orthotopic bone model of the critical-sized defects, SDF-1 enhanced calvarial critical-sized bone defect healing similar to VEGF, and PDGF. These results suggest that SDF-1 plays a role in the repair of large critical-sized defect where more cells are needed while not impacting de novo bone formation, which may be associated with the functions of SDF-1 on circulating stem cell recruitment and angiogenesis.

  9. Role of the SDF-1/CXCR4 axis in the pathogenesis of lung injury and fibrosis.

    PubMed

    Xu, Jianguo; Mora, Ana; Shim, Hyunsuk; Stecenko, Arlene; Brigham, Kenneth L; Rojas, Mauricio

    2007-09-01

    Stromal cell-derived factor-1 (SDF-1) participates in mobilizing bone marrow-derived stem cells, via its receptor CXCR4. We studied the role of the SDF-1/CXCR4 axis in a rodent model of bleomycin-induced lung injury in C57BL/6 wild-type and matrix metalloproteinase (MMP)-9 knockout mice. After intratracheal instillation of bleomycin, SDF-1 levels in serum and bronchial alveolar lavage fluid increased. These changes were accompanied by increased numbers of CXCR4(+) cells in the lung and a decrease in a population of CXCR4(+) cells in the bone marrow that did not occur in MMP-9(-)/(-) mice. Both SDF-1 and lung lysates from bleomycin-treated mice induced migration of bone marrow-derived stem cells in vitro that was blocked by a CXCR4 antagonist, TN14003. Treatment of mice with TN14003 with bleomycin-induced lung injury significantly attenuated lung fibrosis. Lung tissue from patients with idiopathic pulmonary fibrosis had higher numbers of cells expressing both SDF-1 and CXCR4 than did normal lungs. Our data suggest that the SDF-1/CXCR4 axis is important in the complex sequence of events triggered by bleomycin exposure that eventuates in lung repair. SDF-1 participates in mobilizing bone marrow-derived stem cells, via its receptor CXCR4.

  10. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.

    PubMed

    Woehl, Taylor; Keller, Robert

    2016-12-01

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150mrad) and on thick substrates (>50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses.

  11. Mifepristone inhibits ovarian cancer metastasis by intervening in SDF-1/CXCR4 chemokine axis.

    PubMed

    Zheng, Ning; Chen, Jiahang; Liu, Weiqun; Liu, Jian; Li, Tao; Chen, Hongning; Wang, Jichuang; Jia, Lee

    2017-08-29

    SDF-1/CXCR4 signaling axis determines the proliferative potential and site-specific cancer metastasis. Recent studies suggest involvement of the axis and steroidal hormone in ovarian cancer metastasis. Here we hypothesize that mifepristone (RU486), a well-known progesterone-based abortifacient, might interfere this axis and inhibit ovarian cancer metastasis. Mifepristone at concentrations < IC50 inhibited expression of CXCR4 on cell surface of ovarian cancer SKOV-3 and IGROV-1, and reduced expression of the intracellular CXCR4 protein and its related mRNA activated by SDF-1. SDF-1 significantly stimulated proliferation of SKOV-3 and IGROV-1 cells with concomitant increases in intracellular phosphorylation of Akt and ERK. SDF-1 activated cell chemotatic migration and actin polymerization, and up-regulated expression of MMP-2, MMP-9, COX-2, VEGF without influencing the adhesion molecules ICAM-1 and integrins β1, α1, α3, α5, and α6. The above-mentioned effects of SDF-1 could be antagonized by mifepristone concentration-dependently, and CXCR4 antagonist AMD3100. Mifepristone suppressed the SDF-1-induced migration, invasion and adhesion of the cancer cells to extracellular matrixes. Three-day pretreatment of nude mice with mifepristone (5 and 20 mg/kg/day) followed by a single intraperitoneal IGROV-1 inoculation, along with repeated SDF-1 and mifepristone administrations in turn every other day for 36 days significantly reduced ascitic fluid, metastatic foci, tumor weight and immunoreactivity of CXCR4 in comparison with the SDF-1-treated control. Our results suggest that mifepristone inhibit SDF-1/CXCR4 signaling axis, may have preventive and therapeutic effects on ovarian cancer metastasis.

  12. Mifepristone inhibits ovarian cancer metastasis by intervening in SDF-1/CXCR4 chemokine axis

    PubMed Central

    Zheng, Ning; Chen, Jiahang; Liu, Weiqun; Liu, Jian; Li, Tao; Chen, Hongning; Wang, Jichuang; Jia, Lee

    2017-01-01

    SDF-1/CXCR4 signaling axis determines the proliferative potential and site-specific cancer metastasis. Recent studies suggest involvement of the axis and steroidal hormone in ovarian cancer metastasis. Here we hypothesize that mifepristone (RU486), a well-known progesterone-based abortifacient, might interfere this axis and inhibit ovarian cancer metastasis. Mifepristone at concentrations < IC50 inhibited expression of CXCR4 on cell surface of ovarian cancer SKOV-3 and IGROV-1, and reduced expression of the intracellular CXCR4 protein and its related mRNA activated by SDF-1. SDF-1 significantly stimulated proliferation of SKOV-3 and IGROV-1 cells with concomitant increases in intracellular phosphorylation of Akt and ERK. SDF-1 activated cell chemotatic migration and actin polymerization, and up-regulated expression of MMP-2, MMP-9, COX-2, VEGF without influencing the adhesion molecules ICAM-1 and integrins β1, α1, α3, α5, and α6. The above-mentioned effects of SDF-1 could be antagonized by mifepristone concentration-dependently, and CXCR4 antagonist AMD3100. Mifepristone suppressed the SDF-1-induced migration, invasion and adhesion of the cancer cells to extracellular matrixes. Three-day pretreatment of nude mice with mifepristone (5 and 20 mg/kg/day) followed by a single intraperitoneal IGROV-1 inoculation, along with repeated SDF-1 and mifepristone administrations in turn every other day for 36 days significantly reduced ascitic fluid, metastatic foci, tumor weight and immunoreactivity of CXCR4 in comparison with the SDF-1-treated control. Our results suggest that mifepristone inhibit SDF-1/CXCR4 signaling axis, may have preventive and therapeutic effects on ovarian cancer metastasis. PMID:28938623

  13. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects.

    PubMed

    Hwang, Hee-Don; Lee, Jung-Tae; Koh, Jeong-Tae; Jung, Hong-Moon; Lee, Heon-Jin; Kwon, Tae-Geon

    2015-07-01

    Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways

  14. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    PubMed Central

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4–5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies. PMID:26619958

  15. Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae.

    PubMed

    Weinkauf, Heidi; Brehm-Stecher, Byron F

    2009-06-01

    We surveyed a panel of 13 metal nanoparticle (NP) catalysts for their antifungal activities against Candida albicans ATCC 90028. Initial characterization using scanning electron microscopy (SEM) suggested that our ability to detect NP binding to Candida surfaces with this method was impeded by preparation artifacts. As an alternative method for visualizing NP binding, we used an enhanced dark field illumination system (CytoViva) attached to a standard light microscope. When viewed using this system, all NP produced intense optical signals due to resonant light scattering. To assay binding, NP were allowed to interact with C. albicans hyphae and cells in spent RPMI broth for 15 min with gentle inversion, followed by viewing with the CytoViva system. The antifungal efficacy of NP preparations was determined separately using a 24-h broth microdilution test. For single-metal NP, observations of binding at 15 min made via CytoViva corresponded to antifungal efficacy at 24 h, with the most antifungal NP yielding complete coverage of hyphal surfaces. Our work suggests the utility of visual screening using the CytoViva system for rapid, simple and artifact-free viewing of NP-cell interactions in support of antimicrobial screening efforts. This approach provides a quick and accessible alternative to SEM for imaging of NP-cell interactions.

  16. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    PubMed

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis.

  17. Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system

    PubMed Central

    Chandel, Shubham; Soni, Jalpa; Ray, Subir kumar; Das, Anwesh; Ghosh, Anirudha; Raj, Satyabrata; Ghosh, Nirmalya

    2016-01-01

    Information on the polarization properties of scattered light from plasmonic systems are of paramount importance due to fundamental interest and potential applications. However, such studies are severely compromised due to the experimental difficulties in recording full polarization response of plasmonic nanostructures. Here, we report on a novel Mueller matrix spectroscopic system capable of acquiring complete polarization information from single isolated plasmonic nanoparticle/nanostructure. The outstanding issues pertaining to reliable measurements of full 4 × 4 spectroscopic scattering Mueller matrices from single nanoparticle/nanostructures are overcome by integrating an efficient Mueller matrix measurement scheme and a robust eigenvalue calibration method with a dark-field microscopic spectroscopy arrangement. Feasibility of quantitative Mueller matrix polarimetry and its potential utility is illustrated on a simple plasmonic system, that of gold nanorods. The demonstrated ability to record full polarization information over a broad wavelength range and to quantify the intrinsic plasmon polarimetry characteristics via Mueller matrix inverse analysis should lead to a novel route towards quantitative understanding, analysis/interpretation of a number of intricate plasmonic effects and may also prove useful towards development of polarization-controlled novel sensing schemes. PMID:27212687

  18. A first investigation of accuracy, precision and sensitivity of phase-based x-ray dark-field imaging

    NASA Astrophysics Data System (ADS)

    Astolfo, Alberto; Endrizzi, Marco; Kallon, Gibril; Millard, Thomas P.; Vittoria, Fabio A.; Olivo, Alessandro

    2016-12-01

    In the last two decades, x-ray phase contrast imaging (XPCI) has attracted attention as a potentially significant improvement over widespread and established x-ray imaging. The key is its capability to access a new physical quantity (the ‘phase shift’), which can be complementary to x-ray absorption. One additional advantage of XPCI is its sensitivity to micro structural details through the refraction induced dark-field (DF). While DF is extensively mentioned and used for several applications, predicting the capability of an XPCI system to retrieve DF quantitatively is not straightforward. In this article, we evaluate the impact of different design options and algorithms on DF retrieval for the edge-illumination (EI) XPCI technique. Monte Carlo simulations, supported by experimental data, are used to measure the accuracy, precision and sensitivity of DF retrieval performed with several EI systems based on conventional x-ray sources. The introduced tools are easy to implement, and general enough to assess the DF performance of systems based on alternative (i.e. non-EI) XPCI approaches.

  19. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    SciTech Connect

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; Fang, Ning; Ho Kang, Seong

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending on the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.

  20. Super-resolution of fluorescence-free plasmonic nanoparticles using enhanced dark-field illumination based on wavelength-modulation

    DOE PAGES

    Zhang, Peng; Lee, Seungah; Yu, Hyunung; ...

    2015-06-15

    Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the corresponding localization precisions, super-resolution images were reconstructed. Depending onmore » the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions was resolved and provided more elaborate localization information. This novel fluorescence-free super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable subdiffraction limit images.« less

  1. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  2. Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy

    PubMed Central

    Pennycook, Timothy J.; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D.

    2014-01-01

    Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions. PMID:25532123

  3. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    NASA Astrophysics Data System (ADS)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  4. Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy.

    PubMed

    Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D

    2014-12-22

    Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.

  5. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  6. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  7. Quantitative annular dark-field imaging of single-layer graphene-II: atomic-resolution image contrast.

    PubMed

    Yamashita, Shunsuke; Koshiya, Shogo; Nagai, Takuro; Kikkawa, Jun; Ishizuka, Kazuo; Kimoto, Koji

    2015-12-01

    We have investigated how accurately atomic-resolution annular dark-field (ADF) images match between experiments and simulations to conduct more reliable crystal structure analyses. Quantitative ADF imaging, in which the ADF intensity at each pixel represents the fraction of the incident probe current, allows us to perform direct comparisons with simulations without the use of fitting parameters. Although the conventional comparison suffers from experimental uncertainties such as an amorphous surface layer and specimen thickness, in this study we eliminated such uncertainties by using a single-layer graphene as a specimen. Furthermore, to reduce image distortion and shot noises in experimental images, multiple acquisitions with drift correction were performed, and the atomic ADF contrast was quantitatively acquired. To reproduce the experimental ADF contrast, we used three distribution functions as the effective source distribution in simulations. The optimum distribution function and its full-width at half-maximum were evaluated by measuring the residuals between the experimental and simulated images. It was found that the experimental images could be explained well by a linear combination of a Gaussian function and a Lorentzian function with a longer tail than the Gaussian function.

  8. An inexpensive approach for bright-field and dark-field imaging by scanning transmission electron microscopy in scanning electron microscopy.

    PubMed

    Patel, Binay; Watanabe, Masashi

    2014-02-01

    Scanning transmission electron microscopy in scanning electron microscopy (STEM-in-SEM) is a convenient technique for soft materials characterization. Various specimen-holder geometries and detector arrangements have been used for bright-field (BF) STEM-in-SEM imaging. In this study, to further the characterization potential of STEM-IN-SEM, a new specimen holder has been developed to facilitate direct detection of BF signals and indirect detection of dark-field (DF) signals without the need for substantial instrument modification. DF imaging is conducted with the use of a gold (Au)-coated copper (Cu) plate attached to the specimen holder which directs highly scattered transmitted electrons to an off-axis yttrium-aluminum-garnet (YAG) detector. A hole in the copper plate allows for BF imaging with a transmission electron (TE) detector. The inclusion of an Au-coated Cu plate enhanced DF signal intensity. Experiments validating the acquisition of true DF signals revealed that atomic number (Z) contrast may be achieved for materials with large lattice spacing. However, materials with small lattice spacing still exhibit diffraction contrast effects in this approach. The calculated theoretical fine probe size is 1.8 nm. At 30 kV, in this indirect approach, DF spatial resolution is limited to 3.2 nm as confirmed experimentally.

  9. LyMAS: Predicting large-scale Lyα forest statistics from the dark matter density field

    SciTech Connect

    Peirani, Sébastien; Colombi, Stéphane; Dubois, Yohan; Pichon, Christophe; Weinberg, David H.; Blaizot, Jérémy

    2014-03-20

    We describe Lyα Mass Association Scheme (LyMAS), a method of predicting clustering statistics in the Lyα forest on large scales from moderate-resolution simulations of the dark matter (DM) distribution, with calibration from high-resolution hydrodynamic simulations of smaller volumes. We use the 'Horizon-MareNostrum' simulation, a 50 h {sup –1} Mpc comoving volume evolved with the adaptive mesh hydrodynamic code RAMSES, to compute the conditional probability distribution P(F{sub s} |δ {sub s}) of the transmitted flux F{sub s} , smoothed (one-dimensionally, 1D) over the spectral resolution scale, on the DM density contrast δ {sub s}, smoothed (three-dimensionally, 3D) over a similar scale. In this study we adopt the spectral resolution of the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at z = 2.5, and we find optimal results for a DM smoothing length σ = 0.3 h {sup –1} Mpc (comoving). In its simplest form, LyMAS draws randomly from the hydro-calibrated P(F{sub s} |δ {sub s}) to convert DM skewers into Lyα forest pseudo-spectra, which are then used to compute cross-sightline flux statistics. In extended form, LyMAS exactly reproduces both the 1D power spectrum and one-point flux distribution of the hydro simulation spectra. Applied to the MareNostrum DM field, LyMAS accurately predicts the two-point conditional flux distribution and flux correlation function of the full hydro simulation for transverse sightline separations as small as 1 h {sup –1} Mpc, including redshift-space distortion effects. It is substantially more accurate than a deterministic density-flux mapping ({sup F}luctuating Gunn-Peterson Approximation{sup )}, often used for large-volume simulations of the forest. With the MareNostrum calibration, we apply LyMAS to 1024{sup 3} N-body simulations of a 300 h {sup –1} Mpc and 1.0 h {sup –1} Gpc cube to produce large, publicly available catalogs of mock BOSS spectra that probe a large comoving volume. LyMAS will be a powerful

  10. Complex Scalar Field Dark Matter and the Stochastic Gravitational Wave Background from Inflation: New Cosmological Constraints and Detectability

    NASA Astrophysics Data System (ADS)

    Li, Bohua; Shapiro, Paul R.; Rindler-Daller, Tanja

    2017-01-01

    We consider an alternative to WIMP cold dark matter (CDM), ultralight bosonic dark matter (m≥10-22 eV) described by a complex scalar field (SFDM), of which the comoving particle number density is conserved after particle production during standard reheating (w=p/ρ=0). In a ΛSFDM universe, SFDM starts relativistic, evolving from stiff (w=1) to radiation-like (w=1/3), before becoming nonrelativistic at late times (w=0). Thus, before the familiar radiation-dominated phase, there is an even earlier phase of stiff-SFDM-domination, during which the expansion rate is higher than in ΛCDM. The transitions between these phases, determined by SFDM particle mass m, and coupling strength λ, of a quartic self-interaction, are therefore constrained by cosmological observables, particularly Neff, the effective number of neutrino species during BBN, and zeq, the redshift of matter-radiation equality. Furthermore, since the homogeneous energy density contributed by the stochastic gravitational wave background (SGWB) from inflation is amplified during the stiff phase, relative to the other components, the SGWB can contribute a radiation-like component large enough to affect these observables. This same amplification makes possible detection of this SGWB at high frequencies by current laser interferometer experiments, e.g., aLIGO/Virgo, eLISA. For SFDM particle parameters that satisfy these cosmological constraints, the amplified SGWB is detectable by aLIGO, for values of tensor-to-scalar ratio r currently allowed by CMB polarization measurements, for a broad range of possible reheat temperatures Tre. For a given r, if SFDM parameters marginally satisfy cosmological constraints (maximizing total SGWB energy density), the SGWB is maximally detectable when modes that reenter the horizon when reheating ends have frequencies in the 10-50 Hz aLIGO band today. For example, if r=0.01, the maximally detectable model for (λ/(mc2)2, m)=(10-18 eV-1cm3, 8×10-20 eV) has Tre=104 GeV, for

  11. A Study of Quasar Selection in the Dark Energy Survey Supernova fields

    SciTech Connect

    Tie, S.S.; et al.

    2016-11-16

    We present a study of quasar selection using the DES supernova fields. We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. We only considered objects that appear as point sources in the DES images. We examine color selection methods based on the WISE mid-IR W1-W2 color, a mixture of WISE and DES colors (g-i and i-W1) and a mixture of VHS and DES colors (g-i and i-K). For probabilistic quasar selection, we used XDQSOz, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band chi2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i<19.8 mag and i<22 mag. For sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1,263 spectroscopically-confirmed quasars taken by the OzDES survey. The catalog includes quasars with redshifts up to z~4 and brighter than i=22 mag, although the catalog is not complete up this magnitude limit.

  12. A Study of Quasar Selection in the Supernova Fields of the Dark Energy Survey

    DOE PAGES

    Tie, S. S.; Martini, P.; Mudd, D.; ...

    2017-02-14

    We present a study of quasar selection using the DES supernova fields. We used a quasar catalog from an overlapping portion of the SDSS Stripe 82 region to quantify the completeness and efficiency of selection methods involving color, probabilistic modeling, variability, and combinations of color/probabilistic modeling with variability. We only considered objects that appear as point sources in the DES images. We examine color selection methods based on the WISE mid-IR W1-W2 color, a mixture of WISE and DES colors (g-i and i-W1) and a mixture of VHS and DES colors (g-i and i-K). For probabilistic quasar selection, we usedmore » XDQSOz, an algorithm that employs an empirical multi-wavelength flux model of quasars to assign quasar probabilities. Our variability selection uses the multi-band chi2-probability that sources are constant in the DES Year 1 griz-band light curves. The completeness and efficiency are calculated relative to an underlying sample of point sources that are detected in the required selection bands and pass our data quality and photometric error cuts. We conduct our analyses at two magnitude limits, i<19.8 mag and i<22 mag. For sources with W1 and W2 detections, the W1-W2 color or XDQSOz method combined with variability gives the highest completenesses of >85% for both i-band magnitude limits and efficiencies of >80% to the bright limit and >60% to the faint limit; however, the giW1 and giW1+variability methods give the highest quasar surface densities. The XDQSOz method and combinations of W1W2/giW1/XDQSOz with variability are among the better selection methods when both high completeness and high efficiency are desired. We also present the OzDES Quasar Catalog of 1,263 spectroscopically-confirmed quasars taken by the OzDES survey. The catalog includes quasars with redshifts up to z~4 and brighter than i=22 mag, although the catalog is not complete up this magnitude limit.« less

  13. Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging

    PubMed Central

    Meinel, Felix G.; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö.; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F.; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    Purpose To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion In a murine model, the complementary information provided by X

  14. Diagnosing and mapping pulmonary emphysema on X-ray projection images: incremental value of grating-based X-ray dark-field imaging.

    PubMed

    Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental

  15. SDF technology in location and navigation procedures: a survey of applications

    NASA Astrophysics Data System (ADS)

    Kelner, Jan M.; Ziółkowski, Cezary

    2017-04-01

    The basis for development the Doppler location method, also called the signal Doppler frequency (SDF) method or technology is the analytical solution of the wave equation for a mobile source. This paper presents an overview of the simulations, numerical analysis and empirical studies of the possibilities and the range of SDF method applications. In the paper, the various applications from numerous publications are collected and described. They mainly focus on the use of SDF method in: emitter positioning, electronic warfare, crisis management, search and rescue, navigation. The developed method is characterized by an innovative, unique property among other location methods, because it allows the simultaneous location of the many radio emitters. Moreover, this is the first method based on the Doppler effect, which allows positioning of transmitters, using a single mobile platform. In the paper, the results of the using SDF method by the other teams are also presented.

  16. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

    PubMed

    Zhu, Chang; Yao, Wen-Long; Tan, Wei; Zhang, Chuan-Han

    2017-02-15

    Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

  17. [Expression and distribution of SDF-1 in the soft tissue healing of tooth extraction].

    PubMed

    Li, Lei; Cui, Jun; Huo, Yuan-yuan; Rong, Zhi-cheng; Zhang, Qiang; Li, Zhao-yuan

    2015-06-01

    To observe the expression and distribution of stromal cell derived factor -l (SDF-1) in the soft tissues after tooth extraction, in order to provide new ideas to promote wound healing of tooth extraction. Thirty male Wistar rats were randomly divided into 10 groups. After extracting the first molar of left mandibular respectively, immunohistochemistry and RT-PCR technique were used to evaluate the distribution and expression of SDF-1 1, 2, 4, 7 and 10 days after extraction. Data processing was performed using SPSS 12.0 software package. Immunohistochemical staining showed the SDF-1 protein was strongly expressed at the gingival tissues around tooth extraction wound at early stage, mainly in the cytoplasm and intercellular substance of the stratum spinosum and stratum basale, and stained more obviously closer to the stratum basale. Four days after tooth extraction, the expression of SDF-1 in the stratum basale became more evident, and it is also positive inside endothelial cells of granulation tissues. Seven days after tooth extraction, the staining became uniform in the gingival epithelium, and a few positive staining of vascular endothelial cells could be found in lamina propria; Ten days after tooth extraction, the staining characteristics were similar to the normal gingiva. RT-PCR results showed that SDF-1mRNA underwent a biphasic expression change during gingival wound healing. SDF-1 mRNA level reached peak at day 1 after tooth extraction (P<0.01) but decreased by day 2. However, the SDF-1 mRNA level increased again to a peak at day 4 and then returned to a normal level by day 10 (P>0.05). SDF-1 is involved in the early soft tissue healing process, and may play a role as a promoter in tooth extraction healing. Supported by Young Scientists Award Fund of Shangdong Province(BS2013YY056) and Sci-tech Development Planning Program of Jinan City (2013-60).

  18. Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling.

    PubMed

    Chen, Y; Lin, S; Sun, Y; Guo, J; Lu, Y; Suen, C W; Zhang, J; Zha, Z; Ho, K W; Pan, X; Li, G

    2017-06-01

    Current conservative treatments for osteoarthritis (OA) are largely symptoms control therapies. Further understanding on the pathological mechanisms of OA is crucial for new pharmacological intervention. In this study, we investigated the role of Stromal cell-derived factor-1(SDF-1) in regulating subchondral bone changes during the progression of OA. Clinical samples of different stages of OA severity were analyzed by histology staining, micro-CT, enzyme-linked immunosorbent assay (ELISA) and western blotting, to compare SDF-1 level in subchondral bone. The effects of SDF-1 on human mesenchymal stem cells (MSCs) osteogenic differentiation were evaluated. In vivo assessment was performed in an anterior cruciate ligament transaction plus medial meniscus resection in the SD rats. The OA rats received continuous infusion of AMD3100 (SDF-1 receptor blocker) in osmotic mini-pump implanted subcutaneously for 6 weeks. These rats were then terminated and subjected to the same in vitro assessments as human OA samples. SDF-1 level was significantly elevated in the subchondral bone of human OA samples. In the cell studies, the results showed SDF-1 plays an important role in osteogenic differentiation of MSCs. In the OA animal studies, there were less cartilage damage in the AMD3100-treated group; microCT results showed that the subchondral bone formation was significantly reduced and so did the number of positive Nestin or Osterix cells in the subchondral bone region. Higher level of SDF-1 may induce the subchondral bone abnormal changes in OA and inhibition of SDF-1 signaling could be a potential therapeutic approach for OA. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Electric-field-induced switchable dark conglomerate phases in a bent-core liquid crystal exhibiting reverse columnar phases

    NASA Astrophysics Data System (ADS)

    Deepa, G. B.; Radhika, S.; Sadashiva, B. K.; Pratibha, R.

    2013-06-01

    Electric-field-induced transitions into switchable dark conglomerate (DC) phases from two types of reverse columnar mesophases have been observed in the bent-core (BC) compound 2,7-naphthylene bis[4-(3-methyl-4-n-tetradecyloxybenzoyloxy)] benzoate. Optical and x-ray studies show that the higher temperature columnar phase corresponds to the orthogonal B1rev phase, whereas the lower temperature columnar phase is a variant of the B1revtilt phase. As the layer fragments in this phase are modulated in order to relieve the steric hindrance caused by an anticlinic tilting in adjacent blocks, it has been named B1revtiltM. The shape of the chiral domains are different in the DC phases viz. DC-B1rev and DC-B1revtiltM obtained by applying the electric field in the B1rev and B1revtiltM phases, respectively. While the chiral domains in the DC-B1rev phase appear similar to those observed in other DC phases, the shape of the domains in the DC-B1revtiltM phase appear to have some similarity to the domains in the banana leaf texture in the B1revtiltM phase implying that the detailed structure in this DC phase may be different. Optical observations, electro-optics, and dielectric studies show that the DC-B1rev and DC-B1revtiltM phases are both switchable and possess a local SmCSPF type of structure. As the temperature is decreased the switching behavior changes from ferroelectric to antiferroelectric. The temperature at which this changeover starts occurring coincides with the temperature at which the layer modulation occurs to overcome anticlinic tilt and the B1rev to B1revtiltM phase transition takes place without the application of the electric field. The change in switching behavior is attributed to a transformation into flat layers with the SmCAPA type of structure as also evidenced by the nucleation of bright regions alongside the chiral domains.

  20. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy

    PubMed Central

    Johnston-Peck, Aaron C.; Winterstein, Jonathan P.; Roberts, Alan D.; DuChene, Joseph S.; Qian, Kun; Sweeny, Brendan C.; Wei, Wei David; Sharma, Renu; Stach, Eric A.; Herzing, Andrew A.

    2016-01-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce3+ influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce3+ ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. PMID:26744830

  1. The effect of Sb-surfactant on GaInP CuPtB type ordering: assessment through dark field TEM and aberration corrected HAADF imaging.

    PubMed

    Coll, C; Barrigón, E; López-Conesa, L; Rebled, J; Barrutia, L; Rey-Stolle, I; Estradé, S; Algora, C; Peiró, F

    2017-04-03

    We report on the effect of Sb on the microstructure of GaInP layers grown by metal organic vapor phase epitaxy (MOVPE). These layers exhibit a CuPtB single variant ordering due to the intentional misorientation of the substrate (Ge(001) substrates with 6° misorientation towards the nearest [111] axis). The use of Sb as a surfactant during the GaInP growth does not modify the type of ordering, but it is found that the order parameter (η) decreases with increasing Sb flux. Dark field microscopy reveals a variation of the angle of the antiphase boundaries (APBs) with Sb amount. The microstructure is assessed through high angle annular dark field (HAADF) experiments and image simulation revealing Z-contrast loss in APBs due to the superposition of ordered domains.

  2. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.

  3. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure.

    PubMed

    Kulesskaya, Natalia; Voikar, Vootele

    2014-06-22

    Light-dark box and open field are conventional tests for assessment of anxiety-like behavior in the laboratory mice, based on approach-avoidance conflict. However, except the basic principles, variations in the equipment and procedures are very common. Therefore, contribution of certain methodological issues in different settings was investigated. Three inbred strains (C57BL/6, 129/Sv, DBA/2) and one outbred stock (ICR) of mice were used in the experiments. An effect of initial placement of mice either in the light or dark compartment was studied in the light-dark test. Moreover, two tracking systems were applied - position of the animals was detected either by infrared sensors in square box (1/2 dark) or by videotracking in rectangular box (1/3 dark). Both approaches revealed robust and consistent strain differences in the exploratory behavior. In general, C57BL/6 and ICR mice showed reduced anxiety-like behavior as compared to 129/Sv and DBA/2 strains. However, the latter two strains differed markedly in their behavior. DBA/2 mice displayed high avoidance of the light compartment accompanied by thigmotaxis, whereas the hypoactive 129 mice spent a significant proportion of time in risk-assessment behavior at the opening between two compartments. Starting from the light side increased the time spent in the light compartment and reduced the latency to the first transition. In the open field arena, black floor promoted exploratory behavior - increased time and distance in the center and increased rearing compared to white floor. In conclusion, modifications of the apparatus and procedure had significant effects on approach-avoidance behavior in general whereas the strain rankings remained unaffected.

  4. Simultaneous description of low-lying positive and negative parity states in spd, sdf and spdf interacting boson model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Majarshin, A. Jalili; Fouladi, N.

    2016-11-01

    In order to investigate negative parity states, it is necessary to consider negative parity-bosons additionally to the usual s- and d-bosons. The dipole and octupole degrees of freedom are essential to describe the observed low-lying collective states with negative parity. An extended interacting boson model (IBM) that describes pairing interactions among s, p, d and f-boson based on affine SU(1, 1) Lie algebra in the quantum phase transition (QPT) field, such as spd-IBM, sdf-IBM and spdf-IBM, is composed based on algebraic structure. In this paper, a solvable extended transitional Hamiltonian based on affine SU(1, 1) Lie algebra is proposed to describe low-lying positive and negative parity states between the spherical and deformed gamma-unstable shape. Three model of new algebraic solution for even-even nuclei are introduced. Numerical extraction to low-lying energy levels and transition rates within the control parameters of this evaluated Hamiltonian are presented for various N values. We reproduced the positive and negative parity states and our calculations suggest that the results of spdf-IBM are better than spd-IBM and sdf-IBM in this literature. By reproducing the experimental results, the method based on signature of the phase transition such as level crossing in the lowest excited states is used to provide a better description of Ru isotopes in this transitional region.

  5. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration.

    PubMed

    Yang, Jing-Wen; Zhang, Yu-Feng; Wan, Chun-Yan; Sun, Zhe-Yi; Nie, Shuai; Jian, Shu-Juan; Zhang, Lu; Song, Guang-Tai; Chen, Zhi

    2015-03-01

    Critical morphological requirements for pulp regeneration are tissues replete with vascularisation, neuron formation, and dentin deposition. Autophagy was recently shown to be related to angiogenesis, neural differentiation, and osteogenesis. The present study aimed to investigate the involvement of autophagy in stromal cell-derived factor-1α (SDF-1α)-mediated dental pulp stem cell (DPSC) migration and pulp regeneration, and identify its presence during pulp revascularisation of pulpectomised dog teeth with complete apical closure. In vitro studies showed that SDF-1α enhanced DPSCs migration and optimised focal adhesion formation and stress fibre assembly, which were accompanied by autophagy. Moreover, autophagy inhibitors significantly suppressed, whereas autophagy activator substantially augmented SDF-1α-stimulated DPSCs migration. Furthermore, after ectopic transplantation of tooth fragment/silk fibroin scaffold with DPSCs into nude mice, pulp-like tissues with vascularity, well-organised fibrous matrix formation, and new dentin deposition along the dentinal wall were generated in SDF-1α-loaded samples accompanied by autophagy. More importantly, in a pulp revascularisation model in situ, SDF-1α-loaded silk fibroin scaffolds improved the de novo ingrowth of pulp-like tissues in pulpectomised mature dog teeth, which correlated with the punctuated LC3 and Atg5 expressions, indicating autophagy. Our findings provide novel insights into the pulp regeneration mechanism, and SDF-1α shows promise for future clinical application in pulp revascularisation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    PubMed Central

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  7. SDF1 reduces interneuron leading process branching through dual regulation of actin and microtubules.

    PubMed

    Lysko, Daniel E; Putt, Mary; Golden, Jeffrey A

    2014-04-02

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process.

  8. Human Progenitor Cell Recruitment via SDF-1α Coacervate-laden PGS Vascular Grafts

    PubMed Central

    Lee, Kee-Won; Johnson, Noah R.; Gao, Jin; Wang, Yadong

    2013-01-01

    Host cell recruitment is crucial for vascular graft remodeling and integration into the native blood vessel; it is especially important for cell-free strategies which rely on host remodeling. Controlled release of growth factors from vascular grafts may enhance host cell recruitment. Stromal cell-derived factor (SDF)-1α has been shown to induce host progenitor cell migration and recruitment; however, its potential in regenerative therapies is often limited due to its short half-life in vivo. This report describes a coacervate drug delivery system for enhancing progenitor cell recruitment into an elastomeric vascular graft by conferring protection of SDF-1α. Heparin and a synthetic polycation are used to form a coacervate, which is incorporated into poly(glycerol sebacate) (PGS) scaffolds. In addition to protecting SDF-1α, the coacervate facilitates uniform scaffold coating. Coacervate-laden scaffolds have high SDF-1α loading efficiency and provide sustained release under static and physiologically-relevant flow conditions with minimal initial burst release. In vitro assays showed that coacervate-laden scaffolds enhance migration and infiltration of human endothelial and mesenchymal progenitor cells by maintaining a stable SDF-1α gradient. These results suggest that SDF-1α coacervate-laden scaffolds show great promise for in situ vascular regeneration. PMID:24060423

  9. Effect of Silver Diamine Fluoride (SDF) Application on Microtensile Bonding Strength of Dentin in Primary Teeth.

    PubMed

    Wu, Di I; Velamakanni, Saalini; Denisson, Joseph; Yaman, Peter; Boynton, James R; Papagerakis, Petros

    2016-01-01

    The purpose of this study was to investigate the effect of silver diamine fluoride (SDF) on the microtensile bonding strength of resin composite to the dentin of primary molars. Twelve primary molars were randomly assigned to either the control or the SDF groups, and microtensile bonding strength (mTBS) was measured. The surface morphology was evaluated by visual inspection and scanning electron microscopy (SEM) imaging. The mean±(SD) value of mTBS in the control and SDF group was 162.09±81.08 and 139.85±88.53, respectively (P=0.402). SEM images showed that, in the control group, the majority of the fractures occurred at the adhesive-dentin conjunction, while in the SDF group failure mostly occurred within the adhesives. Pretreating dentin with 38 percent silver diamine fluoride does not affect the bonding strength of composite resin to dentin. The fracture patterns observed suggest that bonding strength might be stronger between the adhesive and the SDF-applied dentin. Our data suggest that SDF can be used as a dentin pretreatment prior to resin restoration potentially contributing to secondary caries prevention in primary teeth.

  10. Nanoscale strain distributions in embedded SiGe semiconductor devices revealed by precession electron diffraction and dual lens dark field electron holography

    SciTech Connect

    Wang, Y. Y.; Cooper, D.; Bernier, N.; Rouviere, J.; Murray, C. E.; Bruley, J.

    2015-01-26

    The detailed strain distributions produced by embedded SiGe stressor structures are measured at high spatial resolution with high precision, with dual lens dark field electron holography and precession electron diffraction. Shear strain and lattice rotation within the crystalline lattice are observed at the boundaries between the SiGe and Si regions. The experimental results are compared to micromechanical modeling simulations to understand the mechanisms of elastic relaxation on all the modes of deformation at a sub-micron length scale.

  11. Grain size determination in nano-scale polycrystalline aggregates by precession illumination-hollow cone dark field imaging in the transmission electron microscope

    SciTech Connect

    Kulovits, A.K. Facco, G.; Wiezorek, J.M.K.

    2012-01-15

    Precession illumination hollow cone dark field (PI-HCDF) transmission electron microscopy (TEM) provides high contrast multi-beam dark field images, which are suitable for effective and robust grain size measurements in nano-scale polycrystalline aggregates. Precession illumination with slightly converged electron beam probes and precession angles up to 3 Degree-Sign has been produced using a computer-controlled system using a JEOL JEM 2000FX TEM instrument. Theoretical and practical aspects of the experimental technique are discussed using example precession illumination hollow cone diffraction patterns from single crystalline NiAl and the importance of selecting the appropriate precession angle for PI-HCDF image formation and interpretation is described. Results obtained for precession illumination are compared with those of conventional parallel beam illumination experiments. Nanocrystalline Al has been used to evaluate the influence of the precession angle on PI-HCDF image contrast with a focus on grain size analysis. PI-HCDF imaging has been applied for grain size measurements in regions of a nanocrystalline Al thin film adjacent to the edge of a pulsed laser melted and rapidly solidified region and determined the dimensions of a heat-affected zone. - Highlights: Black-Right-Pointing-Pointer New TEM method for grain size measurements combines TEM resolution with obtainability of statistically significant data sets. Black-Right-Pointing-Pointer We use precession illumination to produce time precession illumination hollow cone diffraction patterns PI-HCDP. Black-Right-Pointing-Pointer Contrast in dark field images (PI-HCDF) formed from PI-HCDP is easy to interpret as dynamical effects are reduced. Black-Right-Pointing-Pointer PI-HCDFs use several time-averaged g-rings simultaneously and contain more information than conventional DF-images. Black-Right-Pointing-Pointer Easy contrast interpretation and less dark field images required, allows fast, robust and

  12. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  13. Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors

    SciTech Connect

    Schneck, Kristiana

    2015-01-01

    The area of dark matter is one of the most interesting and exciting topics in physics today. Existing at the intersection of particle physics and astrophysics, the existence of a new dark matter particle can be used to explain many astrophysical and cosmological observations, as well as to reconcile outstanding issues in the standard model of particle physics. Experiments such as SuperCDMS are built to detect dark matter in the lab by looking for low-energy nuclear recoils produced by collisions between dark matter particles and atoms in terrestrial detectors. SuperCDMS Soudan is particularly well-suited to follow up on possible hints of low-mass dark matter seen by other recent experiments because of its low thresholds and excellent background discrimination. Analyzing SuperCDMS Soudan data to look for low-mass dark matter comes with particular challenges because of the low signal-to-noise very near threshold. However, with a detailed background model developed by scaling high-energy events down into the low-energy signal region, SuperCDMS Soudan produced worldleading limits on the existence of low-mass dark matter. In addition, a few SuperCDMS Soudan detectors experienced cold hardware problems that can affect the data collected. Of particular interest is one detector considered for the low-mass WIMP search that has one of its charge electrodes shorted to chassis ground. Three events were observed in this detector upon unblinding the SuperCDMS Soudan low-energy data, even though <1 event was expected based on pre-unblinding calulations. However, the data collected by the shorted detector may have been compromised since an electrode shorted to ground will modify the electric field in the detector. The SuperCDMS Detector Monte Carlo (DMC) provides an excellent way to model the effects of the modified electric field, so a new model of the expected backgrounds in the low-mass WIMP search is developed using the DMC to try to explain how the short may have affected the

  14. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    PubMed Central

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-01-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process. PMID:27910922

  15. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging.

    PubMed

    Rauscher, P; Betz, B; Hauptmann, J; Wetzig, A; Beyer, E; Grünzweig, C

    2016-12-02

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  16. The influence of laser scribing on magnetic domain formation in grain oriented electrical steel visualized by directional neutron dark-field imaging

    NASA Astrophysics Data System (ADS)

    Rauscher, P.; Betz, B.; Hauptmann, J.; Wetzig, A.; Beyer, E.; Grünzweig, C.

    2016-12-01

    The performance and degree of efficiency of transformers are directly determined by the bulk magnetic properties of grain oriented electrical steel laminations. The core losses can be improved by post manufacturing methods, so-called domain refinement techniques. All these methods induce mechanical or thermal stress that refines the domain structure. The most commonly used technique is laser scribing due to the no-contact nature and the ease of integration in existing production systems. Here we show how directional neutron dark-field imaging allows visualizing the impact of laser scribing on the bulk and supplementary domain structure. In particular, we investigate the domain formation during magnetization of samples depending on laser treatment parameters such as laser energy and line distances. The directional dark-field imaging findings were quantitatively interpreted in the context with global magnetic hysteresis measurements. Especially we exploit the orientation sensitivity in the dark-field images to distinguish between different domain structures alignment and their relation to the laser scribing process.

  17. New interactions in the dark sector mediated by dark energy

    SciTech Connect

    Brookfield, Anthony W.; Bruck, Carsten van de; Hall, Lisa M. H.

    2008-02-15

    Cosmological observations have revealed the existence of a dark matter sector, which is commonly assumed to be made up of one particle species only. However, this sector might be more complicated than we currently believe: there might be more than one dark matter species (for example, two components of cold dark matter or a mixture of hot and cold dark matter) and there may be new interactions between these particles. In this paper we study the possibility of multiple dark matter species and interactions mediated by a dark energy field. We study both the background and the perturbation evolution in these scenarios. We find that the background evolution of a system of multiple dark matter particles (with constant couplings) mimics a single fluid with a time-varying coupling parameter. However, this is no longer true on the perturbative level. We study the case of attractive and repulsive forces as well as a mixture of cold and hot dark matter particles.

  18. The Polyketide MPBD Initiates the SDF-1 Signaling Cascade That Coordinates Terminal Differentiation in Dictyostelium ▿ †

    PubMed Central

    Anjard, Christophe; Su, Yongxuan; Loomis, William F.

    2011-01-01

    Dictyostelium uses a wide array of chemical signals to coordinate differentiation as it switches from a unicellular to a multicellular organism. MPBD, the product of the polyketide synthase encoded by stlA, regulates stalk and spore differentiation by rapidly stimulating the release of the phosphopeptide SDF-1. By analyzing specific mutants affected in MPBD or SDF-1 production, we delineated a signal transduction cascade through the membrane receptor CrlA coupled to Gα1, leading to the inhibition of GskA so that the precursor of SDF-1 is released. It is then processed by the extracellular protease of TagB on prestalk cells. SDF-1 apparently acts through the adenylyl cyclase ACG to activate the cyclic AMP (cAMP)-dependent protein kinase A (PKA) and trigger the production of more SDF-1. This signaling cascade shows similarities to the SDF-2 signaling pathway, which acts later to induce rapid spore encapsulation. PMID:21602484

  19. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis.

    PubMed

    Asri, Amir; Sabour, Javid; Atashi, Amir; Soleimani, Masoud

    2016-01-01

    Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation.

  20. Homing in hematopoietic stem cells: focus on regulatory role of CXCR7 on SDF1a/CXCR4 axis

    PubMed Central

    Asri, Amir; Sabour, Javid; Atashi, Amir; Soleimani, Masoud

    2016-01-01

    Hematopoietic stem cells (HSCs) form a rare population of multipotent stem cells, which give rise to all hematopoietic lineages. HSCs home to bone marrow niches and circulate between blood and bone marrow. Many factors, especially SDF1a, affect the circulation of HSCs, but these have not been fully recognized. SDF1a has been shown to bind CXCR7 in addition to CXCR4 and can also function as SDF1a/CXCR4 modulator. CXCR7 plays a role in HSCs homing via SDF1a gradient and is a mediator of CXCR4/SDF1a axis. This review describes the current concepts and questions concerning CXCR7/CXCR4/SDF1a axis as an important key in hematopoietic stem cells homing with particular emphasis on CXCR7 receptor. Homing of HSCs is an essential step for successful hematopoietic stem cell transplantation. PMID:27092040

  1. Fingerprinting dark energy

    SciTech Connect

    Sapone, Domenico; Kunz, Martin

    2009-10-15

    Dark energy perturbations are normally either neglected or else included in a purely numerical way, obscuring their dependence on underlying parameters like the equation of state or the sound speed. However, while many different explanations for the dark energy can have the same equation of state, they usually differ in their perturbations so that these provide a fingerprint for distinguishing between different models with the same equation of state. In this paper we derive simple yet accurate approximations that are able to characterize a specific class of models (encompassing most scalar-field models) which is often generically called 'dark energy'. We then use the approximate solutions to look at the impact of the dark energy perturbations on the dark matter power spectrum and on the integrated Sachs-Wolfe effect in the cosmic microwave background radiation.

  2. Warm dark matter

    SciTech Connect

    Horiuchi, Shunsaku

    2016-06-21

    The cold dark matter paradigm has been extremely successful in explaining the large-scale structure of the Universe. However, it continues to face issues when confronted by observations on sub-Galactic scales. A major caveat, now being addressed, has been the incomplete treatment of baryon physics. We first summarize the small-scale issues surrounding cold dark matter and discuss the solutions explored by modern state-of-the-art numerical simulations including treatment of baryonic physics. We identify the too big to fail in field galaxies as among the best targets to study modifications to dark matter, and discuss the particular connection with sterile neutrino warm dark matter. We also discuss how the recently detected anomalous 3.55 keV X-ray lines, when interpreted as sterile neutrino dark matter decay, provide a very good description of small-scale observations of the Local Group.

  3. NADPH oxidase- generated ROS are required for SDF-1α-stimulated angiogenesis Short title: NOX is an angiogenic regulator

    PubMed Central

    Pi, Xinchun; Xie, Liang; Portbury, Andrea L.; Kumar, Sarayu; Lockyer, Pamela; Li, Xi; Patterson, Cam

    2014-01-01

    Objective Reactive oxygen species (ROS) act as signaling molecules during angiogenesis, however, the mechanisms used for such signaling events remain unclear. Stromal cell-derived factor-1α (SDF-1α) is one of the most potent angiogenic chemokines. Here we examined the role of ROS in the regulation of SDF-1α-dependent angiogenesis. Approach and results Bovine aortic endothelial cells (BAECs) were treated with SDF-1α and intracellular ROS generation was monitored. SDF-1α treatment induced BAEC migration and ROS generation, with the majority of ROS generated by BAECs at the leading edge of the migratory cells. Antioxidants and NADPH oxidase (NOX) inhibitors blocked SDF-1α-induced endothelial migration. Furthermore, knockdown of either NOX5 or p22phox (a requisite subunit for NOX1/2/4 activation) significantly impaired endothelial motility and tube formation, suggesting that multiple NOXs regulate SDF-1α-dependent angiogenesis. Our previous study demonstrated that JNK3 activity is essential for SDF-1α-dependent angiogenesis. Here, we identified that NOX5 is the dominant NOX required for SDF-1α-induced JNK3 activation and that NOX5 and MKP7 (the JNK3 phosphatase) associate with one another but decrease this interaction upon SDF-1α treatment. Furthermore, MKP7 activity was inhibited by SDF-1α and this inhibition was relieved by NOX5 knockdown, indicating that NOX5 promotes JNK3 activation by blocking MKP7 activity. Conclusions We conclude that NOX is required for SDF-1α signaling and that intracellular redox balance is critical for SDF-1α-induced endothelial migration and angiogenesis. PMID:24990230

  4. Interacting dark energy: The role of microscopic feedback in the dark sector

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.

    2015-04-01

    We investigate the impact on the classical dynamics of dark matter particles and dark energy of a nonminimal coupling in the dark sector, assuming that the mass of the dark matter particles is coupled to a dark energy scalar field. We show that standard results can be recovered only if the space-time variation of the dark energy scalar field is sufficiently smooth on the characteristic length scale of the dark matter particles, and we determine the associated constraint dependent on both the mass and radius of the dark matter particles and the coupling to the dark energy scalar field. We further show, using field theory numerical simulations, that a violation of such constraint results in a microscopic feedback effect strongly affecting the dynamics of dark matter particles, with a potential impact on structure formation and on the space-time evolution of the dark energy equation of state.

  5. Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Burch, Benjamin P.

    The precise phase-space distribution and properties of Galactic dark matter necessary for its direct and indirect detection are currently unknown. Since the distributions of normal and dark matter in the Milky Way are coupled to each other as they both move in the same gravitational potential, constraints on the distribution and properties of dark matter can be derived by studying the distribution of visible matter in the Galaxy and making some general assumptions regarding the phase-space distribution of the dark matter. In this study, the visible components of the Galaxy have been comprehensively reviewed to create an axisymmetric model of the Galaxy that is consistent with the available observations, and the dark matter phase-space distribution is assumed to follow a lowered-isothermal form. Poisson's equations are then solved self-consistently to construct models of the spatial and velocity distribution of Galactic dark matter. The total gravitational potential from normal and dark matter are calculated and compared to the current observations of the rotation curve and to the radial velocity distributions of blue horizontal-branch and blue straggler stars. It is found that this analysis allows for a wide range of parameters for the dark matter. The implications for direct and indirect detection of dark matter are discussed in detail. In the appendices, two additional projects are presented. In Appendix A, the recent observations of the positron fraction and the total electron spectrum in cosmic rays are addressed by considering a nested leaky-box model for the propagation of cosmic rays in the Galaxy. This is found to obviate the need for exotic processes such as the annihilation or decay of dark matter to explain the recent observations. In Appendix B, we discuss a novel dark matter detector involving triggered cavitation in acoustic fields. The theory behind the detector is presented in detail, and we discuss the work than has been done to create a prototype

  6. Beam tracking approach for single–shot retrieval of absorption, refraction, and dark-field signals with laboratory  x-ray sources

    SciTech Connect

    Vittoria, Fabio A. Diemoz, Paul C.; Olivo, Alessandro; Kallon, Gibril K. N.; Basta, Dario; Endrizzi, Marco; Robinson, Ian K.

    2015-06-01

    We present the translation of the beam tracking approach for x-ray phase-contrast and dark-field imaging, recently demonstrated using synchrotron radiation, to a laboratory setup. A single absorbing mask is used before the sample, and a local Gaussian interpolation of the beam at the detector is used to extract absorption, refraction, and dark–field signals from a single exposure of the sample. Multiple exposures can be acquired when high resolution is needed, as shown here. A theoretical analysis of the effect of polychromaticity on the retrieved signals, and of the artifacts this might cause when existing retrieval methods are used, is also discussed.

  7. Platelet surface expression of SDF-1 is associated with clinical outcomes in the patients with cardiovascular disease.

    PubMed

    Rath, Dominik; Chatterjee, Madhumita; Bongartz, Angela; Müller, Karin; Droppa, Michal; Stimpfle, Fabian; Borst, Oliver; Zuern, Christine; Vogel, Sebastian; Gawaz, Meinrad; Geisler, Tobias

    2017-01-01

    Platelet surface expression levels of stromal cell derived factor 1 (SDF-1) are elevated in acute coronary syndrome and associated with LVEF% improvement after myocardial infarction (MI). Platelet SDF-1 might facilitate thrombus formation and endomyocardial expression of SDF-1 is enhanced in inflammatory cardiomyopathy and positively correlates with myocardial fibrosis. The influence of platelet SDF-1 on outcome in the patients with symptomatic coronary artery disease (CAD) is to the best of our knowledge unknown. Blood samples of 608 consecutive CAD patients were collected during the percutaneous coronary intervention and analyzed for surface expression of SDF-1 by flow cytometry. The primary combined endpoint was defined as the composite of either MI, or ischemic stroke, or all-cause death. Secondary endpoints were defined as the aforementioned single events. The patients with baseline platelet SDF-1 levels above the third quartile showed a significantly worse cumulative event-free survival when compared to the patients with lower baseline SDF-1 levels (first to third quartile) (log rank 0.009 for primary combined endpoint and log rank 0.016 for secondary endpoint all-cause death). Multivariate Cox regression analysis showed that SDF-1 levels above the third quartile were independently associated with the primary combined endpoint and the secondary endpoint all-cause death. We provide first clinical evidence that high platelet expression levels of SDF-1 influence clinical outcomes in CAD patients in a negative way.

  8. SDF-1/CXCR7 axis enhances ovarian cancer cell invasion by MMP-9 expression through p38 MAPK pathway.

    PubMed

    Yu, Yuecheng; Li, Hongmei; Xue, Baoyao; Jiang, Xia; Huang, Kan; Ge, Junli; Zhang, Hongju; Chen, Biliang

    2014-08-01

    Ovarian cancer is an aggressive gynecological malignancy with high metastatic potential. Recently, the CXC receptor (CXCR7) has been identified as a new receptor for stromal-derived factor-1 (SDF-1), and exerts important roles in cancer development. However, its effect on ovarian cancer and the underlying mechanism remain unknown. In this study, we detected abundant CXCR7 expression in ovarian cancer tissues and cells. Moreover, SDF-1 induced dramatically upregulation of CXCR7 mRNA and protein levels, indicating that the SDF-1/CXCR7 axis existed in ovarian cancer. Further analysis confirmed that SDF-1 enhanced cell adhesion and subsequent invasion, which were significantly attenuated when pretreated with CXCR7 small interference RNA (siRNA), indicating the critical function of SDF-1/CXCR7 in cell invasion. Further mechanistic analysis indicated that SDF-1/CXCR7 enhanced cell invasion by matrix metalloproteinase (MMP)-9, as pretreatment with MMP-9 siRNA significantly abrogated a number of invading cells. Additionally, SDF-1/CXCR7 induced phosphorylation of the p38 MAPK pathway, which was accounted for MMP-9 expression as preconditioning with the p38 MAPK inhibitor SB203580 obviously decreased MMP-9 expression. Together, our data implied that SDF-1/CXCR7 enhanced ovarian cancer cell invasion by MMP-9 expression through the p38 MAPK pathway. Thus, these findings confirmed the critical role of SDF-1/CXCR7 during the pathological processes of ovarian cancer and supported its potential targets for further development of antiovarian cancer therapy.

  9. Analysis of the expression of SDF-1 splicing variants in human colorectal cancer and normal mucosa tissues.

    PubMed

    Allami, Risala Hussain; Graf, Claudine; Martchenko, Ksenia; Voss, Beatrice; Becker, Marc; Berger, Martin R; Galle, Peter R; Theobald, Matthias; Wehler, Thomas C; Schimanski, Carl C

    2016-03-01

    C-X-C motif chemokine ligand 12 (CXCL12), also termed stromal cell-derived factor-1 (SDF-1) is a small protein 8-14 kDa in length that is expressed as six isoforms, consisting of SDF-1α, SDF-1β, SDF-1γ, SDF-1δ, SDF-1ε and SDF-1θ. All six isoforms are encoded by the single CXCL12 gene on chromosome 10. This gene regulates leukocyte trafficking and is variably expressed in a number of normal and cancer tissues. The potential role of the novel CXCL12 splice variants as components of the CXCR4 axis in cancer development is not fully understood. The present study aimed to analyze the expression profile of the various SDF-1 isoforms and SDF-1 polymorphisms, and the association with the clinicopathological features and overall survival of patients with colorectal cancer (CRC). SDF-1 polymorphism analysis was performed using restriction fragment length polymorphism (RFLP) analysis in 73 histologically confirmed human CRC tissue samples at various stages of disease. The expression pattern of the SDF-1 isoforms was analyzed by reverse transcription-polymerase chain reaction in 40 histologically confirmed human CRC tissue samples obtained at various stages of disease, as well as in matched adjacent normal mucosa samples. The presence of the CXCL12 gene polymorphism rs1801157 demonstrated an association with local progression of the primary tumor, as indicated by the T stage. The frequency of the GG genotype was slightly increased in patients with stage 3 and 4 tumors (78.0%) compared with the incidence of the GA/AA genotype (69.5%; P=0.067). The expression of SDF-1β was associated with the presence of metastases (P=0.0656) and the expression of SDF-1γ was significantly associated with tumor size (P=0.0423). The present study is the first to analyze the association between the expression profile of the chemokine CXCL12 splice variants in human CRC tissues and their clinical relevance. The present results reveal that the CXCL12 G801A polymorphism is a low

  10. Stromal cell-derived factor 1α (SDF-1α): A marker of disease burden in patients with atrial fibrillation.

    PubMed

    Li, Dana; Bjørnager, Louise; Langkilde, Anne; Andersen, Ove; Jøns, Christian; Agner, Bue F R; Dixen, Ulrik; Landex, Nadia L

    2016-01-01

    Stromal cell-derived factor 1a (SDF-1α), is a chemokine and is able to home hematopoietic progenitor cells to injured areas of heart tissue for structural repair. Previous studies have found increased levels of SDF-1α in several cardiac diseases, but only few studies have investigated SDF-1α in patients with atrial fibrillation (AF). We aimed to test SDF-1α in a large cohort of patients with AF and its role as a prognostic marker. Between January 1st 2008 to December 1st 2012, 290 patients with ECG documented AF were enrolled from the in- and outpatient clinics at the Department of Cardiology, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark. Plasma levels of SDF-1α were measured using ELISA technique. Clinical data were registered and patient follow-up was conducted. Patients with permanent AF had significantly higher SDF-1α levels (2199.5 pg/ml) than the patients with paroxysmal AF (1982.0 pg/ml) and persistent AF (1906.0 pg/ml), p < 0.0005. Higher SDF-1α level was associated with longer time spent in the hospital per readmission, p < 0.05. In AF patients, a higher SDF-1α level was found in patients with a more progressive state of arrhythmia and was associated with longer hospitalizations. These findings suggest that SDF-1α could prove valuable in risk stratification and evaluating the disease burden in AF patients.

  11. SDF-1 promotes ox-LDL induced vascular smooth muscle cell proliferation.

    PubMed

    Li, Ling-Xing; Zhang, Xian-Feng; Bai, Xue; Tong, Qian

    2013-09-01

    The mechanism of the regulatory roles of stromal cell derived factor-1 (SDF-1)/C-X-C motif receptor 4 (CXCR4) on cell proliferation and apoptosis in vascular smooth muscle cells (VSMCs) via the protein kinase C (PKC) and nuclear factor-kappa B (NF-κB) signalling pathways have been investigated. Rat aortic VSMCs were treated with control or an oxidised low-density lipoprotein (ox-LDL) atherosclerosis (AS) model. Cells exposed to the AS model were treated with SDF-1 plus inhibitors specific for PKC (Ro31-8220), CXCR4 (12G5) or NF-κB (pyrrolidine dithiocarbamate, PDTC). Cell proliferation was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis by flow cytometry. NF-κB protein expression was analysed using Western blotting. The proliferation rate in the AS model group was significantly higher than the control group, but lower than the SDF-1 group (P < 0.05). Apoptosis in the AS model group (ox-LDL) was significantly higher than the normal control group (P < 0.05). In addition, the apoptosis rate in the SDF-1 group was significantly lower than the normal control group (P < 0.05); however, there was no difference from the Ro31-8220 group. NF-κB protein expression in the SDF-1 group was significantly higher than the AS model (ox-LDL) group (P < 0.05). In conclusion, SDF-1 can promote the proliferation of VSMCs induced by ox-LDL and inhibit cell apoptosis, via the SDF-1/CXCR4 axis.

  12. Hypoxia and laser enhance expression of SDF-1 in muscles cells.

    PubMed

    Mirahmadi, M; Ahmadiankia, N; Naderi-Meshkin, H; Heirani-Tabasi, A; Bidkhori, H R; Afsharian, P; Bahrami, A R

    2016-04-30

    Targeted homing of transplanted mesenchymal stem cells (MSCs) is a decades old discussion in regenerative medicine. It has been proved that stromal cell-derived factor-1 (SDF-1α) is a potent chemoattractant of MSCs. Therefore, different strategies have been used to increase secretion of SDF-1α in damaged tissues to elevate targeted homing of MSCs. Previous studies have revealed that increased SDF-1α expression in hypoxic necrotic tissues and also low-level laser exposure enhanced angiogenesis in injured tissues. Herein, human skeletal and cardiac muscle cells (HSKM and HCM) were treated with hypoxia and low level laser to see their effects on expression of SDF-1α and on MSCs migration towards these treated cells. The optimal treatment conditions were determined by investigating the cellular viability after treatment. Real-Time PCR and Western blot analysis were done to study the expression of SDF-1α in treated cells. Migration potential of MSCs toward hypoxic and laser treated cells was investigated via migration assay. MTT assay revealed that laser and hypoxia treatment had no effect on the viability of HCM, HSKM compared with Glioblastoma cells. Real-Time PCR showed 16- and 90-fold elevation in mRNA of SDF-1α in HSKM and HCM cells, respectively, in laser treated with 12 J/cm2 intensity. In these two groups, selected as optimal conditions, HIF-1α expression showed maximum fold changes that might be partly because of response to treatments help to SDF-1α expression. It can be concluded that hypoxia and laser treatments may recruit MSCs and applied as a useful strategy for the further targeted stem cell homing.

  13. Altered expression of SDF-1 and CXCR4 during fracture healing in diabetes mellitus.

    PubMed

    Arakura, Michio; Lee, Sang Yang; Takahara, Shunsuke; Okumachi, Etsuko; Iwakura, Takashi; Fukui, Tomoaki; Nishida, Kotaro; Kurosaka, Masahiro; Kuroda, Ryosuke; Niikura, Takahiro

    2017-06-01

    Diabetes mellitus (DM) is known to impair fracture healing. The purpose of this study was to elucidate and compare the gene expression patterns and localization of stromal cell-derived factor 1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) during fracture healing of the femur in rats with and without DM. Closed transverse fractures were created in the femurs of rats equally divided into a DM group and control group; DM was induced by streptozotocin. At post-fracture days five, seven, 11, 14, 21 and 28, total RNA was extracted from the fracture callus and mRNA expression levels of SDF-1 and CXCR4 were measured by real-time polymerase chain reaction. Localization of SDF-1 and CXCR4 proteins at the fracture site was determined by immunohistochemistry at days 21 and 28. SDF-1 expression was significantly lower in the DM group than in the healthy group on days 21 and 28, and showed a significant difference between days 14 and 21 in the healthy group. There was no significant difference in CXCR4 expression levels between the healthy and DM groups at any time point. On day 21 immunoreactivity of SDF-1 and CXCR4 was detected at the fracture site of the healthy group but no immunoreactivity was observed in the DM group. On day 28, immunoreactivity of SDF-1 and CXCR4 was detected at the fracture site in both groups. Gene expression and localization of SDF-1 and CXCR4 was altered during fracture healing, which may contribute to the impaired fracture healing in DM.

  14. The role of SDF-1α-ECM crosstalk in determining neural stem cell fate.

    PubMed

    Addington, Caroline P; Pauken, Christine M; Caplan, Michael R; Stabenfeldt, Sarah E

    2014-03-01

    The consequences of central nervous system injury are far-reaching and debilitating and, while an endogenous repair response to neural injury has been observed in recent years, the mechanisms behind this response remain unclear. Neural progenitor/stem cell (NPSC) migration to the site of injury from the neural stem cell niches (e.g. subventricular zone and hippocampus) has been observed to be vasophilic in nature. While the chemotactic stimuli directing NPSC homing to injury is not well established, it is thought to be due in part to an increasing gradient of chemotactic cytokines, such as stromal cell-derived factor 1α (SDF-1α). Based on these recent findings, we hypothesize that critical crosstalk between SDF-1α and the extracellular matrix (ECM) drives injury-induced NPSC behavior. In this study, we investigated the effect of SDF-1α and ECM substrates (Matrigel, laminin, and vitronectin) on the migration, differentiation, and proliferation of NPSCs in vitro using standard assays. The results demonstrated that SDF-1α and laminin-based ECM (Matrigel and laminin) significantly and synergistically enhanced NPSC migration and acute neuronal differentiation. These effects were significantly attenuated with the addition of AMD3100 (an antagonist against the SDF-1α receptor, CXCR4). SDF-1α alone significantly increased NPSC proliferation regardless of ECM substrate, however no synergy was observed between SDF-1α and the ECM. These results serve to elucidate the relationship between adhesive and soluble signaling factors of interest and their effect on NPSC behavior following neural injury. Furthermore, these results better inform the next generation of biomaterials aimed at stimulating endogenous neural regeneration for neural injury and neurodegenerative diseases.

  15. Altered SDF-1-mediated differentiation of bone marrow-derived endothelial progenitor cells in diabetes mellitus

    PubMed Central

    De Falco, Elena; Avitabile, Daniele; Totta, Pierangela; Straino, Stefania; Spallotta, Francesco; Cencioni, Chiara; Torella, Anna Rita; Rizzi, Roberto; Porcelli, Daniele; Zacheo, Antonella; Vito, Luca Di; Pompilio, Giulio; Napolitano, Monica; Melillo, Guido; Capogrossi, Maurizio C; Pesce, Maurizio

    2009-01-01

    In diabetic patients and animal models of diabetes mellitus (DM), circulating endothelial progenitor cell (EPC) number is lower than in normoglycaemic conditions and EPC angiogenic properties are inhibited. Stromal cell derived factor-1 (SDF-1) plays a key role in bone marrow (BM) c-kit+ stem cell mobilization into peripheral blood (PB), recruitment from PB into ischemic tissues and differentiation into endothelial cells. The aim of the present study was to examine the effect of DM in vivo and in vitro, on murine BM-derived c-kit+ cells and on their response to SDF-1. Acute hindlimb ischemia was induced in streptozotocin-treated DM and control mice; circulating c-kit+ cells exhibited a rapid increase followed by a return to control levels which was significantly faster in DM than in control mice. CXCR4 expression by BM c-kit+ cells as well as SDF-1 protein levels in the plasma and in the skeletal muscle, both before and after the induction of ischemia, were similar between normoglycaemic and DM mice. However, BM-derived c-kit+ cells from DM mice exhibited an impaired differentiation towards the endothelial phenotype in response to SDF-1; this effect was associated with diminished protein kinase phosphorylation. Interestingly, SDF-1 ability to induce differentiation of c-kit+ cells from DM mice was restored when cells were cultured under normoglycaemic conditions whereas c-kit+ cells from normoglycaemic mice failed to differentiate in response to SDF-1 when they were cultured in hyperglycaemic conditions. These results show that DM diminishes circulating c-kit+ cell number following hindlimb ischemia and inhibits SDF-1-mediated AKT phosphorylation and differentiation towards the endothelial phenotype of BM-derived c-kit+ cells. PMID:20196780

  16. SDF-1/CXCR4 signaling preserves microvascular integrity and renal function in chronic kidney disease.

    PubMed

    Chen, Li-Hao; Advani, Suzanne L; Thai, Kerri; Kabir, M Golam; Sood, Manish M; Gibson, Ian W; Yuen, Darren A; Connelly, Kim A; Marsden, Philip A; Kelly, Darren J; Gilbert, Richard E; Advani, Andrew

    2014-01-01

    The progressive decline of renal function in chronic kidney disease (CKD) is characterized by both disruption of the microvascular architecture and the accumulation of fibrotic matrix. One angiogenic pathway recently identified as playing an essential role in renal vascular development is the stromal cell-derived factor-1α (SDF-1)/CXCR4 pathway. Because similar developmental processes may be recapitulated in the disease setting, we hypothesized that the SDF-1/CXCR4 system would regulate microvascular health in CKD. Expression of CXCR4 was observed to be increased in the kidneys of subtotally nephrectomized (SNx) rats and in biopsies from patients with secondary focal segmental glomerulosclerosis (FSGS), a rodent model and human correlate both characterized by aberration of the renal microvessels. A reno-protective role for local SDF-1/CXCR4 signaling was indicated by i) CXCR4-dependent glomerular eNOS activation following acute SDF-1 administration; and ii) acceleration of renal function decline, capillary loss and fibrosis in SNx rats treated with chronic CXCR4 blockade. In contrast to the upregulation of CXCR4, SDF-1 transcript levels were decreased in SNx rat kidneys as well as in renal fibroblasts exposed to the pro-fibrotic cytokine transforming growth factor β (TGF-β), the latter effect being attenuated by histone deacetylase inhibition. Increased renal SDF-1 expression was, however, observed following the treatment of SNx rats with the ACE inhibitor, perindopril. Collectively, these observations indicate that local SDF-1/CXCR4 signaling functions to preserve microvascular integrity and prevent renal fibrosis. Augmentation of this pathway, either purposefully or serendipitously with either novel or existing therapies, may attenuate renal decline in CKD.

  17. The vacuum's dark particles behave like dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Haller, John

    2015-04-01

    Building on the governing hypothesis that self-information is equal to action, I solve for the time step of the vacuum. The resulting equations (both quantum diffusion and Friedmann's equations) argue that a dark particle, or special black hole, exists at hbar or twice the reduced Planck mass where the Hawking temperature breaks down. It is hypothesized that if neutral hydrogen is nearby the dark particles are able to couple with the background field and thus have a density that looks like dark matter. If hydrogen is not around, the dark particles become frozen leading to a constant density of black body radiation similar to dark energy. If the Universe's dark particles (away from neutral hydrogen) became frozen during the re-ionization of the Universe's history, its BBR density is well within confidence ranges for the cosmological constant. This hypothesis can also explain the recent observations that dark matter decays into dark energy.

  18. Layers and Dark Dunes

    NASA Image and Video Library

    2015-04-08

    The target of this observation as seen by ASA Mars Reconnaissance Orbiter is a circular depression in a dark-toned unit associated with a field of cones to the northeast. At the image scale of a Context Camera image, the depression appears to expose layers especially on the sides or walls of the depression, which are overlain by dark sands presumably associated with the dark-toned unit. HiRISE resolution, which is far higher than that of the Context Camera and its larger footprint, can help identify possible layers. http://photojournal.jpl.nasa.gov/catalog/PIA19358

  19. Simulations: The dark side

    NASA Astrophysics Data System (ADS)

    Frenkel, D.

    2013-01-01

    This paper discusses the Monte Carlo and Molecular Dynamics methods. Both methods are, in principle, simple. However, simple does not mean risk-free. In the literature, many of the pitfalls in the field are mentioned, but usually as a footnote --and these footnotes are scattered over many papers. The present paper focuses on the "dark side" of simulation: it is one big footnote. I should stress that "dark", in this context, has no negative moral implication. It just means: under-exposed.

  20. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  1. Dark strings

    SciTech Connect

    Vachaspati, Tanmay

    2009-09-15

    Recent astrophysical observations have motivated novel theoretical models of the dark matter sector. A class of such models predicts the existence of GeV scale cosmic strings that communicate with the standard model sector by Aharonov-Bohm interactions with electrically charged particles. We discuss the cosmology of these 'dark strings' and investigate possible observational signatures. More elaborate dark sector models are argued to contain hybrid topological defects that may also have observational signatures.

  2. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  3. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  4. Cathepsin K cleavage of SDF-1α inhibits its chemotactic activity towards glioblastoma stem-like cells.

    PubMed

    Hira, Vashendriya V V; Verbovšek, Urška; Breznik, Barbara; Srdič, Matic; Novinec, Marko; Kakar, Hala; Wormer, Jill; der Swaan, Britt Van; Lenarčič, Brigita; Juliano, Luiz; Mehta, Shwetal; Van Noorden, Cornelis J F; Lah, Tamara T

    2017-03-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor with poor patient survival that is at least partly caused by malignant and therapy-resistant glioma stem-like cells (GSLCs) that are protected in GSLC niches. Previously, we have shown that the chemo-attractant stromal-derived factor-1α (SDF-1α), its C-X-C receptor type 4 (CXCR4) and the cysteine protease cathepsin K (CatK) are localized in GSLC niches in glioblastoma. Here, we investigated whether SDF-1α is a niche factor that through its interactions with CXCR4 and/or its second receptor CXCR7 on GSLCs facilitates their homing to niches. Furthermore, we aimed to prove that SDF-1α cleavage by CatK inactivates SDF-1α and inhibits the invasion of GSLCs. We performed mass spectrometric analysis of cleavage products of SDF-1α after proteolysis by CatK. We demonstrated that CatK cleaves SDF-1α at 3 sites in the N-terminus, which is the region of SDF-1α that binds to its receptors. Confocal imaging of human GBM tissue sections confirmed co-localization of SDF-1α and CatK in GSLC niches. In accordance, 2D and 3D invasion experiments using CXCR4/CXCR7-expressing GSLCs and GBM cells showed that SDF-1α had chemotactic activity whereas CatK cleavage products of SDF-1α did not. Besides, CXCR4 inhibitor plerixafor inhibited invasion of CXCR4/CXCR7-expressing GSLCs. In conclusion, CatK can cleave and inactivate SDF-1α. This implies that CatK activity facilitates migration of GSLCs out of niches. We propose that activation of CatK may be a promising strategy to prevent homing of GSLCs in niches and thus render these cells sensitive to chemotherapy and radiation.

  5. HIV-1-Infected and/or Immune Activated Macrophages Regulate Astrocyte SDF-1 Production Through IL-1β

    PubMed Central

    PENG, HUI; ERDMANN, NATHAN; WHITNEY, NICHOLAS; DOU, HUANGYU; GORANTLA, SANTHI; GENDELMAN, HOWARD E.; GHORPADE, ANUJA; ZHENG, JIALIN

    2007-01-01

    Stromal cell-derived factor 1 alpha (SDF-1α) and its receptor CXCR4 play important roles in the pathogenesis of human immunodeficiency virus type one (HIV-1)-associated dementia (HAD) by serving as a HIV-1 co-receptor and affecting cell migration, virus-mediated neurotoxicity, and neurodegeneration. However, the underlying mechanisms regulating SDF-1 production during disease are not completely understood. In this report we investigated the role of HIV-1 infected and immune competent macrophage, the principal target cell and mediator of neuronal injury and death in HAD, in regulating SDF-1 production by astrocytes. Our data demonstrated that astrocytes are the primary cell type expressing SDF-1 in the brain. Immune-activated or HTV-1-infected human monocyte-derived-macrophage (MDM) conditioned media (MCM) induced a substantial increase in SDF-1 production by human astrocytes. This SDF-1 production was directly dependent on MDM IL-1β following both viral and immune activation. The MCM-induced production of SDF-1 was prevented by IL-1β receptor antagonist (IL-1Ra) and IL-1β siRNA treatment of human MDM. These laboratory observations were confirmed in severe combined immunodeficient (SCID) mice with HIV-1 encephalitis (HIVE). In these HIVE mice, reactive astrocytes showed a significant increase in SDF-1 expression, as observed by immunocytochemical staining. Similarly, SDF-1 mRNA levels were increased in the encephalitic region as measured by real time RT-PCR, and correlated with IL-1β mRNA expression. These observations provide direct evidence that IL-1β, produced from HIV-1-infected and/or immune competent macrophage, induces production of SDF-1 by astrocytes, and as such contribute to ongoing SDF-1 mediated CNS regulation during HAD. PMID:16944452

  6. SDF-1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF-κB pathway

    PubMed Central

    LIU, ZONGCHAO; MA, CHUAN; SHEN, JIELIANG; WANG, DAWU; HAO, JIE; HU, ZHENMING

    2016-01-01

    Intervertebral disc degeneration (IVDD) is a major cause of lower back pain, and increased cell apoptosis is a key characteristic of IVDD. The present study aimed to investigate the effects and mechanism of the stromal cell-derived factor-1 (SDF-1)/C-X-C motif chemokine receptor 4 (CXCR4) axis on apoptosis in human degenerative nucleus pulposus cells (NPCs). The expression levels of SDF-1 and CXCR4 in human intervertebral discs (IVD) were determined using immunohistochemistry and western blot analysis. Apoptosis of primary cultured NPCs was quantified by Annexin V/propidium iodide staining following stimulation with SDF-1 and knockdown of CXCR4 using small interfering RNA (siRNA). The association with the nuclear factor-κB (NF-κB) signaling pathway was investigated using CXCR4-siRNA and NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), treatment. The results demonstrated that SDF-1 and its receptor, CXCR4, were upregulated in degenerative IVD samples compared with normal samples. Stimulation with SDF-1 increased the level of apoptosis in cultured NPCs, and conversely, the apoptosis level was suppressed post-transfection with CXCR4 siRNA compared with SDF-1 stimulation alone. Furthermore, SDF-1 treatment increased the level of phosphorylated NF-κB subunit P65, which was downregulated following CXCR4 siRNA and PDTC treatment. In addition, CXCR4 siRNA and PDTC inhibited the nuclear translocation of P65, which was induced by SDF-1. Taken together, SDF-1-mediated apoptosis was suppressed by NF-κB inhibition using PDTC. In conclusion, the SDF-1/CXCR4 axis promoted cell apoptosis in human degenerative NPCs via the NF-κB pathway, thus suggesting that SDF-1/CXCR signaling may be a therapeutic target for the treatment of degenerative IVD diseases. PMID:27220474

  7. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration

    SciTech Connect

    Kuhlmann, Christoph Ruediger Wolfram . E-mail: Chr_Kuhlmann@web.de; Schaefer, Christian Alexander; Reinhold, Lars; Tillmanns, Harald; Erdogan, Ali

    2005-10-07

    The aim of our study was to investigate the effect of stromal-derived factor-1-{alpha} (SDF-1-{alpha}) on endothelial angiogenic effects. SDF-1-{alpha} (50 ng/ml) increased the number of cultured endothelial cells from 33,653 {+-} 1183 to 55,398 {+-} 2741, which significantly reduced by adding the BK{sub Ca}-inhibitor iberiotoxin, or the endothelial nitric oxide synthase-blocker, L-NMMA (n = 24, p < 0.05). Using the 'Fences'-assay a significant increase of HUVEC migration induced by SDF-1-{alpha} was reported, which was blocked by the addition of iberiotoxin or L-NMMA (n = 12, p < 0.05). BK{sub Ca} open-state probability (NPo) was analysed using the patch-clamp technique and NPo was increased from 0.003 (control) to 0.052 (SDF-1-{alpha}; n = 10, p < 0.05). NO synthesis was measured using a cGMP-radioimmunoassay. A significant increase of cGMP levels from 0.952 pmol/mg protein to 2.179 pmol/mg protein was observed, that was abolished by L-NMMA and significantly reduced by iberiotoxin (n = 15, p < 0.05). SDF-1-{alpha} increases endothelial proliferation and migration involving the activation of BK{sub Ca} and an increased production of NO.

  8. Local delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and resultant recovery from ischemia.

    PubMed

    Anderson, Erin M; Kwee, Brian J; Lewin, Sarah A; Raimondo, Theresa; Mehta, Manav; Mooney, David J

    2015-04-01

    Biomaterials may improve outcomes of endothelial progenitor-based therapies for the treatment of ischemic cardiovascular disease, due to their ability to direct cell behavior. We hypothesized that local, sustained delivery of exogenous vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF) from alginate hydrogels could increase recruitment of systemically infused endothelial progenitors to ischemic tissue, and subsequent neovascularization. VEGF and SDF were found to enhance in vitro adhesion and migration of outgrowth endothelial cells (OECs) and circulating angiogenic cells (CACs), two populations of endothelial progenitors, by twofold to sixfold, and nearly doubled recruitment to both ischemic and nonischemic muscle tissue in vivo. Local delivery of VEGF and SDF to ischemic hind-limbs in combination with systemic CAC delivery significantly improved functional perfusion recovery over OEC delivery, or either treatment alone. Compared with OECs, CACs were more responsive to VEGF and SDF treatment, promoted in vitro endothelial sprout formation in a paracrine manner more potently, and demonstrated greater influence on infiltrating inflammatory cells in vivo. These studies demonstrate that accumulation of infused endothelial progenitors can be enriched using biomaterial-based delivery of VEGF and SDF, and emphasize the therapeutic benefit of using CACs for the treatment of ischemia.

  9. SDF and GABA interact to regulate axophilic migration of GnRH neurons

    PubMed Central

    Casoni, Filippo; Ian Hutchins, B.; Donohue, Duncan; Fornaro, Michele; Condie, Brian G.; Wray, Susan

    2012-01-01

    Summary Stromal derived growth factor (SDF-1) and gamma-aminobutyric acid (GABA) are two extracellular cues that regulate the rate of neuronal migration during development and may act synergistically. The molecular mechanisms of this interaction are still unclear. Gonadotropin releasing hormone-1 (GnRH) neurons are essential for vertebrate reproduction. During development, these neurons emerge from the nasal placode and migrate through the cribriform plate into the brain. Both SDF-1 and GABA have been shown to regulate the rate of GnRH neuronal migration by accelerating and slowing migration, respectively. As such, this system was used to explore the mechanism by which these molecules act to produce coordinated cell movement during development. In the present study, GABA and SDF-1 are shown to exert opposite effects on the speed of cell movement by activating depolarizing or hyperpolarizing signaling pathways, GABA via changes in chloride and SDF-1 via changes in potassium. GABA and SDF-1 were also found to act synergistically to promote linear rather than random movement. The simultaneous activation of these signaling pathways, therefore, results in tight control of cellular speed and improved directionality along the migratory pathway of GnRH neurons. PMID:22976302

  10. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α.