Science.gov

Sample records for dark matter cusps

  1. Axion dark matter, solitons and the cusp-core problem

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Pop, Ana-Roxana

    2015-08-01

    Self-gravitating bosonic fields can support stable and localized (solitonic) field configurations. Such solitons should be ubiquitous in models of axion dark matter, with their characteristic mass and size depending on some inverse power of the axion mass, ma. Using a scaling symmetry and the uncertainty principle, the soliton core size can be related to the central density and axion mass in a universal way. Solitons have a constant central density due to pressure support, unlike the cuspy profile of cold dark matter (CDM). Consequently, solitons composed of ultralight axions (ULAs) may resolve the `cusp-core' problem of CDM. In dark matter (DM) haloes, thermodynamics will lead to a CDM-like Navarro-Frenk-White (NFW) profile at large radii, with a central soliton core at small radii. Using Monte Carlo techniques to explore the possible density profiles of this form, a fit to stellar kinematical data of dwarf spheroidal galaxies is performed. The data favour cores, and show no preference concerning the NFW part of the halo. In order for ULAs to resolve the cusp-core problem (without recourse to baryon feedback, or other astrophysical effects) the axion mass must satisfy ma < 1.1 × 10-22 eV at 95 per cent C.L. However, ULAs with ma ≲ 1 × 10-22 eV are in some tension with cosmological structure formation. An axion solution to the cusp-core problem thus makes novel predictions for future measurements of the epoch of reionization. On the other hand, improved measurements of structure formation could soon impose a Catch 22 on axion/scalar field DM, similar to the case of warm DM.

  2. How supernova feedback turns dark matter cusps into cores

    NASA Astrophysics Data System (ADS)

    Pontzen, Andrew; Governato, Fabio

    2012-04-01

    We propose and successfully test against new cosmological simulations a novel analytical description of the physical processes associated with the origin of cored dark matter density profiles. In the simulations, the potential in the central kiloparsec changes on sub-dynamical time-scales over the redshift interval 4 > z > 2, as repeated, energetic feedback generates large underdense bubbles of expanding gas from centrally concentrated bursts of star formation. The model demonstrates how fluctuations in the central potential irreversibly transfer energy into collisionless particles, thus generating a dark matter core. A supply of gas undergoing collapse and rapid expansion is therefore the essential ingredient. The framework, based on a novel impulsive approximation, breaks with the reliance on adiabatic approximations which are inappropriate in the rapidly changing limit. It shows that both outflows and galactic fountains can give rise to cusp flattening, even when only a few per cent of the baryons form stars. Dwarf galaxies maintain their core to the present time. The model suggests that constant density dark matter cores will be generated in systems of a wide mass range if central starbursts or active galactic nucleus phases are sufficiently frequent and energetic.

  3. Distinguishing dark matter stabilization symmetries using multiple kinematic edges and cusps

    SciTech Connect

    Agashe, Kaustubh; Kim, Doojin; Toharia, Manuel; Walker, Devin G. E.

    2010-07-01

    We emphasize that the stabilizing symmetry for dark matter (DM) particles does not have to be the commonly used parity (Z{sub 2}) symmetry. We therefore examine the potential of the colliders to distinguish models with parity stabilized DM from models in which the DM is stabilized by other symmetries. We often take the latter to be a Z{sub 3} symmetry for illustration. We focus on signatures where a single particle, charged under the DM stabilization symmetry decays into the DM and standard model (SM) particles. Such a Z{sub 3}-charged mother particle can decay into one or two DM particles along with the same SM particles. This can be contrasted with the decay of a Z{sub 2}-charged mother particle, where only one DM particle appears. Thus, if the intermediate particles in these decay chains are off-shell, then the reconstructed invariant mass of the SM particles exhibits two kinematic edges for the Z{sub 3} case but only one for the Z{sub 2} case. For the case of on-shell intermediate particles, distinguishing the two symmetries requires more than the kinematic edges. In this case, we note that certain decay chain topologies of the mother particle which are present for the Z{sub 3} case (but absent for the Z{sub 2} case) generate a cusp in the invariant mass distribution of the SM particles. We demonstrate that this cusp is generally invariant of the various spin configurations. We further apply these techniques within the context of explicit models.

  4. Dark Matters

    ScienceCinema

    Joseph Silk

    2016-07-12

    One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

  5. Dark Matter

    SciTech Connect

    Bashir, A.; Cotti, U.; De Leon, C. L.; Raya, A; Villasenor, L.

    2008-07-02

    One of the biggest scientific mysteries of our time resides in the identification of the particles that constitute a large fraction of the mass of our Universe, generically known as dark matter. We review the observations and the experimental data that imply the existence of dark matter. We briefly discuss the properties of the two best dark-matter candidate particles and the experimental techniques presently used to try to discover them. Finally, we mention a proposed project that has recently emerged within the Mexican community to look for dark matter.

  6. Dark matter

    PubMed Central

    Peebles, P. James E.

    2015-01-01

    The evidence for the dark matter (DM) of the hot big bang cosmology is about as good as it gets in natural science. The exploration of its nature is now led by direct and indirect detection experiments, to be complemented by advances in the full range of cosmological tests, including judicious consideration of the rich phenomenology of galaxies. The results may confirm ideas about DM already under discussion. If we are lucky, we also will be surprised once again. PMID:24794526

  7. Cold dark matter heats up.

    PubMed

    Pontzen, Andrew; Governato, Fabio

    2014-02-13

    A principal discovery in modern cosmology is that standard model particles comprise only 5 per cent of the mass-energy budget of the Universe. In the ΛCDM paradigm, the remaining 95 per cent consists of dark energy (Λ) and cold dark matter. ΛCDM is being challenged by its apparent inability to explain the low-density 'cores' of dark matter measured at the centre of galaxies, where centrally concentrated high-density 'cusps' were predicted. But before drawing conclusions, it is necessary to include the effect of gas and stars, historically seen as passive components of galaxies. We now understand that these can inject heat energy into the cold dark matter through a coupling based on rapid gravitational potential fluctuations, explaining the observed low central densities.

  8. Dark Matter

    ERIC Educational Resources Information Center

    Lincoln, Don

    2013-01-01

    It's a dark, dark universe out there, and I don't mean because the night sky is black. After all, once you leave the shadow of the Earth and get out into space, you're surrounded by countless lights glittering everywhere you look. But for all of Sagan's billions and billions of stars and galaxies, it's a jaw-dropping fact that the ordinary kind of…

  9. Dark matter and dark radiation

    SciTech Connect

    Ackerman, Lotty; Buckley, Matthew R.; Carroll, Sean M.; Kamionkowski, Marc

    2009-01-15

    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ('dark electromagnetism') that couples only to dark matter, not to the standard model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark-matter mass is sufficiently high and the dark fine-structure constant {alpha}-circumflex is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on {alpha}-circumflex comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies {alpha}-circumflex < or approx. 10{sup -3} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark-matter dynamics, which remain to be explored.

  10. Impeded Dark Matter

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-12-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario "Impeded Dark Matter". We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  11. Secretly asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  12. Asymmetric dark matter

    SciTech Connect

    Kumar, Jason

    2014-06-24

    We review the theoretical framework underlying models of asymmetric dark matter, describe astrophysical constraints which arise from observations of neutron stars, and discuss the prospects for detecting asymmetric dark matter.

  13. Nonthermal Supermassive Dark Matter

    NASA Technical Reports Server (NTRS)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  14. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  15. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  16. Neutrinos and dark matter

    SciTech Connect

    Ibarra, Alejandro

    2015-07-15

    Neutrinos could be key particles to unravel the nature of the dark matter of the Universe. On the one hand, sterile neutrinos in minimal extensions of the Standard Model are excellent dark matter candidates, producing potentially observable signals in the form of a line in the X-ray sky. On the other hand, the annihilation or the decay of dark matter particles produces, in many plausible dark matter scenarios, a neutrino flux that could be detected at neutrino telescopes, thus providing non-gravitational evidence for dark matter. More conservatively, the non-observation of a significant excess in the neutrino fluxes with respect to the expected astrophysical backgrounds can be used to constrain dark matter properties, such as the self-annihilation cross section, the scattering cross section with nucleons and the lifetime.

  17. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  18. Dark Matter 2013

    NASA Astrophysics Data System (ADS)

    Schumann, Marc

    2014-10-01

    This article reviews the status of the exciting and fastly evolving field of dark matter research as of summer 2013, when it was discussed at the International Cosmic Ray Conference (ICRC) 2013 in Rio de Janeiro. It focuses on the three main avenues to detect weakly interacting massive particle (WIMP) dark matter: direct detection, indirect detection, and collider searches. The article is based on the dark matter rapporteur talk summarizing the presentations given at the conference, filling some gaps for completeness.

  19. Lorentz-violating dark matter

    NASA Astrophysics Data System (ADS)

    Mondragon, Antonio R.

    Observations from the 1930s until the present have established the existence of dark matter with an abundance that is much larger than that of luminous matter. Because none of the known particles of nature have the correct properties to be identified as the dark matter, various exotic candidates have been proposed. The neutralino of supersymmetric theories is the most promising example. Such cold dark matter candidates, however, lead to a conflict between the standard simulations of the evolution of cosmic structure and observations. Simulations predict excessive structure formation on small scales, including density cusps at the centers of galaxies, that is not observed. This conflict still persists in early 2007, and it has not yet been convincingly resolved by attempted explanations that invoke astrophysical phenomena, which would destroy or broaden all small scale structure. We have investigated another candidate that is perhaps more exotic: Lorentz-violating dark matter, which was originally motivated by an unconventional fundamental theory, but which in this dissertation is defined as matter which has a nonzero minimum velocity. Furthermore, the present investigation evolved into the broader goal of exploring the properties of Lorentz-violating matter and the astrophysical consequences-a subject which to our knowledge has not been previously studied. Our preliminary investigations indicated that this form of matter might have less tendency to form small-scale structure. These preliminary calculations certainly established that Lorentz-violating matter which always moves at an appreciable fraction of the speed of light will bind less strongly. However, the much more thorough set of studies reported here lead to the conclusion that, although the binding energy is reduced, the small-scale structure problem is not solved by Lorentz-violating dark matter. On the other hand, when we compare the predictions of Lorentz-violating dynamics with those of classical

  20. Galactic Dark Matter

    NASA Astrophysics Data System (ADS)

    Burch, Benjamin P.

    The precise phase-space distribution and properties of Galactic dark matter necessary for its direct and indirect detection are currently unknown. Since the distributions of normal and dark matter in the Milky Way are coupled to each other as they both move in the same gravitational potential, constraints on the distribution and properties of dark matter can be derived by studying the distribution of visible matter in the Galaxy and making some general assumptions regarding the phase-space distribution of the dark matter. In this study, the visible components of the Galaxy have been comprehensively reviewed to create an axisymmetric model of the Galaxy that is consistent with the available observations, and the dark matter phase-space distribution is assumed to follow a lowered-isothermal form. Poisson's equations are then solved self-consistently to construct models of the spatial and velocity distribution of Galactic dark matter. The total gravitational potential from normal and dark matter are calculated and compared to the current observations of the rotation curve and to the radial velocity distributions of blue horizontal-branch and blue straggler stars. It is found that this analysis allows for a wide range of parameters for the dark matter. The implications for direct and indirect detection of dark matter are discussed in detail. In the appendices, two additional projects are presented. In Appendix A, the recent observations of the positron fraction and the total electron spectrum in cosmic rays are addressed by considering a nested leaky-box model for the propagation of cosmic rays in the Galaxy. This is found to obviate the need for exotic processes such as the annihilation or decay of dark matter to explain the recent observations. In Appendix B, we discuss a novel dark matter detector involving triggered cavitation in acoustic fields. The theory behind the detector is presented in detail, and we discuss the work than has been done to create a prototype

  1. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  2. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  3. Condensate dark matter stars

    SciTech Connect

    Li, X.Y.; Harko, T.; Cheng, K.S. E-mail: harko@hkucc.hku.hk

    2012-06-01

    We investigate the structure and stability properties of compact astrophysical objects that may be formed from the Bose-Einstein condensation of dark matter. Once the critical temperature of a boson gas is less than the critical temperature, a Bose-Einstein Condensation process can always take place during the cosmic history of the universe. Therefore we model the dark matter inside the star as a Bose-Einstein condensate. In the condensate dark matter star model, the dark matter equation of state can be described by a polytropic equation of state, with polytropic index equal to one. We derive the basic general relativistic equations describing the equilibrium structure of the condensate dark matter star with spherically symmetric static geometry. The structure equations of the condensate dark matter stars are studied numerically. The critical mass and radius of the dark matter star are given by M{sub crit} ≈ 2(l{sub a}/1fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2}M{sub s}un and R{sub crit} ≈ 1.1 × 10{sup 6}(l{sub a}/1 fm){sup 1/2}(m{sub χ}/1 GeV){sup −3/2} cm respectively, where l{sub a} and m{sub χ} are the scattering length and the mass of dark matter particle, respectively.

  4. Ghost dark matter

    SciTech Connect

    Furukawa, Tomonori; Yokoyama, Shuichiro; Ichiki, Kiyotomo; Sugiyama, Naoshi; Mukohyama, Shinji E-mail: shu@a.phys.nagoya-u.ac.jp E-mail: naoshi@a.phys.nagoya-u.ac.jp

    2010-05-01

    We revisit ghost dark matter, the possibility that ghost condensation may serve as an alternative to dark matter. In particular, we investigate the Friedmann-Robertson-Walker (FRW) background evolution and the large-scale structure (LSS) in the ΛGDM universe, i.e. a late-time universe dominated by a cosmological constant and ghost dark matter. The FRW background of the ΛGDM universe is indistinguishable from that of the standard ΛCDM universe if M∼>1eV, where M is the scale of spontaneous Lorentz breaking. From the LSS we find a stronger bound: M∼>10eV. For smaller M, ghost dark matter would have non-negligible sound speed after the matter-radiation equality, and thus the matter power spectrum would significantly differ from observation. These bounds are compatible with the phenomenological upper bound M∼<100GeV known in the literature.

  5. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  6. Big Questions: Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

  7. Dark matter in voids

    NASA Astrophysics Data System (ADS)

    Fong, Richard; Doroshkevich, Andrei G.; Turchaninov, Victor I.

    1995-07-01

    The theory of the formation of large-scale structure in the universe through the action of gravitational instability imply the existence of substantial amounts of baryonic dark matter, of the order of 50% of the total baryon content in the universe, in the ``voids'' or under-dense regions seen in the large-scale distribution of galaxies. We discuss also the large-scale structure of dark matter expected in voids and the present and future possibilities for the observation of this baryonic dark matter in ``voids.''

  8. Dark matter universe.

    PubMed

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  9. Dark matter universe

    NASA Astrophysics Data System (ADS)

    Bahcall, Neta A.

    2015-10-01

    Most of the mass in the universe is in the form of dark matter-a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations-from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology-a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)-fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  10. Pseudoscalar portal dark matter

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Gori, Stefania; Lin, Tongyan; Wang, Lian-Tao

    2015-07-01

    A fermion dark matter candidate with a relic abundance set by annihilation through a pseudoscalar can evade constraints from direct detection experiments. We present simplified models that realize this fact by coupling a fermion dark sector to a two-Higgs doublet model. These models are generalizations of mixed bino-Higgsino dark matter in the minimal supersymmetric standard model, with more freedom in the couplings and scalar spectra. Annihilation near a pseudoscalar resonance allows a significant amount of parameter space for thermal relic dark matter compared to singlet-doublet dark matter, in which the fermions couple only to the standard model (SM) Higgs doublet. In a general two-Higgs doublet model, there is also freedom for the pseudoscalar to be relatively light and it is possible to obtain thermal relic dark matter candidates even below 100 GeV. In particular, we find ample room to obtain dark matter with mass around 50 GeV and fitting the Galactic center excess in gamma-rays. This region of parameter space can be probed by LHC searches for heavy pseudoscalars or electroweakinos, and possibly by other new collider signals.

  11. Dark matter universe

    PubMed Central

    Bahcall, Neta A.

    2015-01-01

    Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091

  12. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  13. Inflatable Dark Matter

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-01

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ˜MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  14. Elastically Decoupling Dark Matter.

    PubMed

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  15. Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Kamionkowski, Marc; Sigurdson, Kris

    This chapter is intended to provide a brief pedagogical review of dark matter for the newcomer to the subject. We begin with a discussion of the astrophysical evidence for dark matter. The standard weakly interacting massive particle (WIMP) scenario—the motivation, particle models, and detection techniques—is then reviewed. We provide a brief sampling of some recent variations to the standard WIMP scenario, as well as some alternatives (axions and sterile neutrinos). Exercises are provided for the reader.

  16. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  17. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. Fermi National Accelerator Lab., Batavia, IL )

    1993-06-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the [open quotes]standard model[close quotes] of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for [open quotes]new physics.[close quotes] The compelling candidates are a very light axion (10[sup [minus]6]--10[sup [minus]4] eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs.

  18. Dark matter: theoretical perspectives.

    PubMed Central

    Turner, M S

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. PMID:11607395

  19. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. |

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  20. Dark matter: Theoretical perspectives

    SciTech Connect

    Turner, M.S. . Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL )

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  1. Flooded Dark Matter and S level rise

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2016-03-01

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as "Maximum Baroqueness". We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant non

  2. Central Dark Matter Distribution In Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Se-Heon; Brook, C.; Governato, F.; Brinks, E.; Mayer, L.; de Blok, E.; Brooks, A.; Walter, F.

    2012-01-01

    Central dark matter distribution in dwarf galaxies Se-Heon Oh, Chris Brook, Fabio Governato, Elias Brinks, Lucio Mayer, W.J.G. de Blok, Alyson Brooks and Fabian Walter We present high-resolution mass models of 7 nearby dwarf galaxies from "The HI Nearby Galaxy Survey” (THINGS) and compare these with those from hydrodynamic simulations of dwarf galaxies assuming a ΛCDM cosmology. The simulations include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating and most importantly, physically motivated gas outflows driven by supernovae (SNe). For the THINGS dwarf galaxies, we derive the mass models for the dark matter component by subtracting the contribution from baryons, derived from our HI observations and using the "Spitzer Infrared Nearby Galaxies Survey” (SINGS) 3.6μm data, from the total kinematics, leaving only the contribution by the Dark Matter halo. In parallel, we perform dark matter mass modeling of the simulated dwarf galaxies in exactly the same way as the observed THINGS dwarf galaxies. From a direct comparison between the observations and simulations, we find that the dark matter rotation curves of the simulated dwarf galaxies rise less steeply in the inner regions than those of dark-matter-only simulations based on the ΛCDM paradigm, and are more consistent with those of the THINGS dwarf galaxies. In addition, the mean value of the logarithmic inner dark matter density slopes, α, of the simulated galaxies is approximately -0.4 ± 0.1, which is in good agreement with α = -0.29 ± -0.07 of the THINGS dwarf galaxies. This shows that the baryonic feedback processes in the simulations are efficient in flattening the initial cusps with α = -1.0 to -1.5 predicted from dark-matter-only simulations, and render the dark matter halo mass distribution more similar to that observed in nearby dwarf galaxies.

  3. Complex Dark Matter

    ScienceCinema

    Lincoln, Don

    2016-07-12

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  4. Tunguska dark matter ball

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-04-01

    It is suggested that the Tunguska event in June 1908 was due to a cm-large ball of a condensate of bound states of 6 top and 6 antitop quarks containing highly compressed ordinary matter. Such balls are supposed to make up the dark matter as we earlier proposed. The expected rate of impact of this kind of dark matter ball with the earth seems to crudely match a time scale of 200 years between the impacts. The main explosion of the Tunguska event is explained in our picture as material coming out from deep within the earth, where it has been heated and compressed by the ball penetrating to a depth of several thousand km. Thus the effect has some similarity with volcanic activity as suggested by Kundt. We discuss the possible identification of kimberlite pipes with earlier Tunguska-like events. A discussion of how the dark matter balls may have formed in the early universe is also given.

  5. Complex Dark Matter

    SciTech Connect

    Lincoln, Don

    2015-04-16

    After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matter’s existence is very strong, but scientists know only a little about its nature. In today’s video, Fermilab’s Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.

  6. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-09

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  7. Dark matter searches

    NASA Astrophysics Data System (ADS)

    Bettini, Alessandro

    These lectures begin with a brief survey of the astrophysical and cosmological evidence for dark matter. We then consider the three principal theoretically motivated types of dark matter, sterile neutrinos, axions and SUSY WIMPs. In chapter 4 we discuss the motivations for the so-called neutrino minimal standard model, nuMSM, an extension of the SM with three sterile neutrinos with masses similar to the charged fermions. In chapter 5 we briefly recall the strong CP problem of the SM and the solution proposed by Peccei and Quinn leading to the prediction of axions and of their characteristics. We then discuss the experimental status and perspectives. In chapter 6 we assume that the reader to be acquainted with the theoretical motivations for SUSY and move directly to the direct search for dark matter and the description of the principal detector techniques: scintillators, noble fluids and bolometers. We conclude with an outlook on the future perspectives.

  8. Axion dark matter searches

    DOE PAGES

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axionsmore » at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.« less

  9. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.; Collaboration: ADMX Collaboration; ADMX-HF Collaboration

    2014-06-24

    Nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  10. Axion dark matter searches

    SciTech Connect

    Stern, Ian P.

    2014-01-01

    We report nearly all astrophysical and cosmological data point convincingly to a large component of cold dark matter in the Universe. The axion particle, first theorized as a solution to the strong charge-parity problem of quantum chromodynamics, has been established as a prominent CDM candidate. Cosmic observation and particle physics experiments have bracketed the unknown mass of the axion between approximately a μeV and a meV. The Axion Dark Matter eXperiement (ADMX) has successfully completed searches between 1.9 and 3.7 μeV down to the KSVZ photon-coupling limit. ADMX and the Axion Dark Matter eXperiement High-Frequency (ADMX-HF) will search for axions at weaker coupling and/or higher frequencies within the next few years. Status of the experiments, current research and development, and projected mass-coupling exclusion limits are presented.

  11. Does Dark Matter Exist?

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.; Kosowsky, A.

    The success of the ΛCDM model on large scales does not extend down to galaxy scales. We list a dozen problems of the dark matter hypothesis, some of which arise in specific models for the formation of structure in the universe, while others are generic and require fine tuning in any dark matter theory. Modifications to the theory, such as adding properties to the DM particles beyond gravitational interactions, or simply a better understanding of the physics of galaxy formation, may resolve some problems, but a number of conspiracies and correlations are unlikely to yield to this approach. The alternative is that mass discrepancies result from of a non-Newtonian law of gravity, a hypothesis which avoids many of the more intractable problems of dark matter. A modified law of gravity is not without formidable difficulties of its own, but it is no longer obvious that they are any more daunting than those facing DM.

  12. Dark matter candidates

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1989-01-01

    The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.

  13. Asymmetric twin Dark Matter

    SciTech Connect

    Farina, Marco

    2015-11-01

    We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of the cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.

  14. Gravitational lenses and dark matter - Theory

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III

    1987-01-01

    Theoretical models are presented for guiding the application of gravitational lenses to probe the characteristics of dark matter in the universe. Analytical techniques are defined for quantifying the mass associated with lensing galaxies (in terms of the image separation), determining the quantity of dark mass of the lensing bodies, and estimating the mass density of the lenses. The possibility that heavy halos are made of low mass stars is considered, along with the swallowing of central images of black holes or cusps in galactic nuclei and the effects produced on a lensed quasar image by nonbaryonic halos. The observable effects of dense groups and clusters and the characteristics of dark matter strings are discussed, and various types of images which are possible due to lensing phenomena and position are described.

  15. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  16. Asymmetric condensed dark matter

    SciTech Connect

    Aguirre, Anthony; Diez-Tejedor, Alberto E-mail: alberto.diez@fisica.ugto.mx

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  17. Dark matter cores all the way down

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Agertz, O.; Collins, M. L. M.

    2016-07-01

    We use high-resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformations at the edge of galaxy formation: M200 = 107-109 M⊙. We work at a resolution (˜4 pc minimum cell size; ˜250 M⊙ per particle) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical `sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the stellar half-mass radius r1/2 always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyr for the M200 = 108 M⊙ and ˜14 Gyr for the 109 M⊙ dwarf. We provide a convenient two parameter `CORENFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected stellar half-mass radius. Our results have several implications: (i) we make a strong prediction that if Λcold dark matter is correct, then `pristine' dark matter cusps will be found either in systems that have truncated star formation and/or at radii r > r1/2; (ii) complete core formation lowers the projected velocity dispersion at r1/2 by a factor of ˜2, which is sufficient to fully explain the `too-big-to-fail problem'; and (iii) cored dwarfs will be much more susceptible to tides, leading to a dramatic scouring of the sub-halo mass function inside galaxies and groups.

  18. Dark matter detection

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2016-08-01

    More than 80 years after its first postulation in modern form, the existence and distribution of dark matter in our Universe is well established. Dark matter is the gravitational glue that holds together galaxies, galaxy clusters and structures on the largest cosmological scales, and an essential component to explain the observed fluctuations in the cosmic microwave background. Yet its existence is inferred indirectly, through its gravitational influence on luminous matter, and its nature is not known. A viable hypothesis is that dark matter is made of new, elementary particles, with allowed masses and interaction strengths spanning a wide range. Two well-motivated classes of candidates are axions and weakly interacting massive particles (WIMPs), and experimental efforts have now reached sensitivities that allow them to test this hypothesis. Axions, produced non-thermally in the early Universe, can be detected by exploiting their predicted couplings to photons and electrons. WIMPs can be detected directly by looking for their collisions with atomic nuclei ultra-low background detectors, or indirectly, through the observation of their annihilation products such as neutrinos, gamma rays, positrons and antiprotons over the astrophysical background. A complementary method is the production of dark matter particles at colliders such as the Large Hadron Collider, where they could be observed indirectly via missing transverse energy, or via associated particle production. I will review the main experimental efforts to search for dark matter particles, and the existing constraints on the interaction cross sections. I will also discuss future experiments, their complementarity and their ability to measure the properties of these particles.

  19. Dark matter on top

    SciTech Connect

    Gómez, M.A.; Jackson, C.B.; Shaughnessy, G. E-mail: chris@uta.edu

    2014-12-01

    We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investigate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. We find several kinematic variables that allow for a clean signal extraction and we show that the parameter space of this model will be well probed during LHC Run-II. Finally, we investigate the possibility of detecting this type of dark matter via its annihilations into gamma rays. We compute the continuum and the line emission (which includes a possible ''Higgs in Space!'' line) and its possible discovery by future gamma-ray telescopes. We find that the annihilation spectrum has distinctive features which may distinguish it from other models.

  20. Particle Dark Matter

    NASA Astrophysics Data System (ADS)

    Bertone, Gianfranco

    2013-11-01

    Part I. DM in Cosmology: 1. Particle dark matter G. Bertone and J. Silk; 2. Simulations of CDM haloes B. Moore and J. Diemand; 3. MW substructures J. Bullock, M. Kaplinghat and L. Strigari; 4. Gravitational lensing and dark matter Y. Mellier; 5. Dark matter at the centers of galaxies D. Merritt; 6. Modified gravity as an alternative to DM J. Bekenstein; Part II. Candidates: 7. DM production mechanisms G. Gelmini and P. Gondolo; 8. Supersymmetric DM candidates J. Ellis and K. Olive; 9. DM at the EW scale: non-SUSY candidates G. Servant; 10. Non-WIMP candidates J. L. Feng; 11. Axions P. Sikivie; 12. Sterile neutrinos M. Shaposhnikov; Part III. Colliders Searches: 13. SUSY searches at the LHC T. Plehn and G. Polesello; 14. SUSY DM at colliders M. Battaglia and M. E. Peskin; 15. Extra dimensions at the LHC K. Kong, K. Matchev and G. Servant; 16. SUSY tools F. Boudjema, J. Edsjö and P. Gondolo; Part IV. Direct Detection: 17. Direct detection of WIMPs D. G. Cerdeño and A. Green; 18. Annual modulation with NaI(Tl) R. Bernabei and P. Belli; 19. Particle DM and DAMA N. Fornengo; 20. Cryogenic detectors G. Gerbier and J. Gascon; 21. Liquid noble gases E. Aprile and L. Baudis; 22. Directional detectors N. Spooner; 23. Axion searches S. Asztalos; Part V. Indirect Detection and Astrophysical Constraints: 24. Gamma-rays L. Bergström and G. Bertone; 25. Neutrinos F. Halzen and D. Hooper; 26. Antimatter P. Salati, F. Donato and N. Fornengo; 27. Multi-wavelength S. Profumo and P. Ullio; 28. Dark matter and BBN K. Jedamzik and M. Pospelov; 29. Dark matter and stars G. Bertone; Appendix; References; Index.

  1. The Search for Dark Matter

    ScienceCinema

    Orrell, John

    2016-07-12

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  2. The Search for Dark Matter

    SciTech Connect

    Orrell, John

    2013-11-20

    More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

  3. Constraining inflationary dark matter in the luminogenesis model

    SciTech Connect

    Hung, Pham Q.; Ludwick, Kevin J.

    2015-09-09

    Using renormalization-group flow and cosmological constraints on inflation models, we exploit a unique connection between cosmological inflation and the dynamical mass of dark matter particles in the luminogenesis model, a unification model with the gauge group SU(3){sub C}×SU(6)×U(1){sub Y}, which breaks to the Standard Model with an extra gauge group for dark matter when the inflaton rolls into the true vacuum. In this model, inflaton decay gives rise to dark matter, which in turn decays to luminous matter in the right proportion that agrees with cosmological data. Some attractive features of this model include self-interacting dark matter, which may resolve the problems of dwarf galaxy structures and dark matter cusps at the centers of galaxies.

  4. Constraining inflationary dark matter in the luminogenesis model

    SciTech Connect

    Hung, Pham Q.; Ludwick, Kevin J. E-mail: kludwick@virginia.edu

    2015-09-01

    Using renormalization-group flow and cosmological constraints on inflation models, we exploit a unique connection between cosmological inflation and the dynamical mass of dark matter particles in the luminogenesis model, a unification model with the gauge group SU(3){sub C} × SU(6) × U(1){sub Y}, which breaks to the Standard Model with an extra gauge group for dark matter when the inflaton rolls into the true vacuum. In this model, inflaton decay gives rise to dark matter, which in turn decays to luminous matter in the right proportion that agrees with cosmological data. Some attractive features of this model include self-interacting dark matter, which may resolve the problems of dwarf galaxy structures and dark matter cusps at the centers of galaxies.

  5. Levitating dark matter

    NASA Astrophysics Data System (ADS)

    Kaloper, Nemanja; Padilla, Antonio

    2009-10-01

    A sizable fraction of the total energy density of the universe may be in heavy particles with a net dark U(1)' charge comparable to its mass. When the charges have the same sign the cancellation between their gravitational and gauge forces may lead to a mismatch between different measures of masses in the universe. Measuring galactic masses by orbits of normal matter, such as galaxy rotation curves or lensing, will give the total mass, while the flows of dark matter agglomerates may yield smaller values if the gauge repulsion is not accounted for. If distant galaxies which house light beacons like SNe Ia contain such dark particles, the observations of their cosmic recession may mistake the weaker forces for an extra `antigravity', and infer an effective dark energy equation of state smaller than the real one. In some cases, including that of a cosmological constant, these effects can mimic w < -1. They can also lead to a local variation of galaxy-galaxy forces, yielding a larger `Hubble Flow' in those regions of space that could be taken for a dynamical dark energy, or superhorizon effects.

  6. Inflatable Dark Matter

    SciTech Connect

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUT or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.

  7. Inflatable Dark Matter

    DOE PAGES

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D.

    2016-01-22

    We describe a general scenario, dubbed “Inflatable Dark Matter”, in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early universe. The overproduction of dark matter that is predicted within many otherwise well-motivated models of new physics can be elegantly remedied within this context, without the need to tune underlying parameters or to appeal to anthropic considerations. Thermal relics that would otherwise be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the non-thermal abundance of GUTmore » or Planck scale axions can be brought to acceptable levels, without invoking anthropic tuning of initial conditions. Additionally, a period of late-time inflation could have occurred over a wide range of scales from ~ MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the Standard Model.« less

  8. Ultralight repulsive dark matter and BEC

    NASA Astrophysics Data System (ADS)

    Fan, JiJi

    2016-12-01

    Ultralight scalar dark matter with mass at or below the eV scale and pressure from repulsive self-interaction could form a Bose-Einstein condensate in the early Universe and maybe in galaxies as well. It has been suggested to be a possible solution to the cusp/core problem or even to explain MOND phenomenology. In this paper, I initiate a study of possible self-interactions of ultralight scalar dark matter from the particle physics point of view. To protect its mass, the scalar dark matter is identified as a pseudo Nambu-Goldstone boson (pNGB). Quite a few pNGB models with different potentials such as the QCD axion and the dilaton lead to attractive self-interactions. Yet if an axion is a remnant of a 5D gauged U(1) symmetry, its self-interactions could be repulsive provided the masses and charges of the 5D matter contributing to its potential satisfy certain constraints. Collective symmetry breaking could also lead to a repulsive self-interaction yet with too large a strength that is ruled out by Bullet Cluster constraints. I also discuss cosmological and astrophysical constraints on ultralight repulsive dark matter in terms of a parametrization motivated by particle physics considerations.

  9. Dark matter candidates

    SciTech Connect

    Turner, M.S.

    1989-01-01

    One of the simplest, yet most profound, questions we can ask about the Universe is, how much stuff is in it, and further what is that stuff composed of. Needless to say, the answer to this question has very important implications for the evolution of the Universe, determining both the ultimate fate and the course of structure formation. Remarkably, at this late date in the history of the Universe we still do not have a definitive answer to this simplest of questions---although we have some very intriguing clues. It is known with certainty that most of the material in the Universe is dark, and we have the strong suspicion that the dominant component of material in the Cosmos is not baryons, but rather is exotic relic elementary particles left over from the earliest, very hot epoch of the Universe. If true, the Dark Matter question is a most fundamental one facing both particle physics and cosmology. The leading particle dark matter candidates are: the axion, the neutralino, and a light neutrino species. All three candidates are accessible to experimental tests, and experiments are now in progress. In addition, there are several dark horse, long shot, candidates, including the superheavy magnetic monopole and soliton stars. 13 refs.

  10. Self-interacting dark matter with naturally light mediator

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2017-02-01

    A promising proposal for resolving the cusp-core anomaly in the density profile of dwarf galaxies is to allow dark matter to interact with itself through a light mediator of mass much less than a GeV. The theoretical challenge is to have a complete renormalizable theory where this happens naturally even though dark matter itself may be of the electroweak scale, i.e. 100 GeV to 1 TeV. I propose here such a model with just two neutral complex scalar singlets under a softly broken dark global U(1) symmetry.

  11. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  12. Imperfect Dark Matter

    SciTech Connect

    Mirzagholi, Leila; Vikman, Alexander E-mail: alexander.vikman@lmu.de

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  13. Multi-Component Dark Matter

    SciTech Connect

    Zurek, Kathryn M.

    2008-11-01

    We explore multi-component dark matter models where the dark sector consists of multiple stable states with different mass scales, and dark forces coupling these states further enrich the dynamics. The multi-component nature of the dark matter naturally arises in supersymmetric models, where both R parity and an additional symmetry, such as a Z{sub 2}, is preserved. We focus on a particular model where the heavier component of dark matter carries lepton number and annihilates mostly to leptons. The heavier component, which is essentially a sterile neutrino, naturally explains the PAMELA, ATIC and synchrotron signals, without an excess in antiprotons which typically mars other models of weak scale dark matter. The lighter component, which may have a mass from a GeV to a TeV, may explain the DAMA signal, and may be visible in low threshold runs of CDMS and XENON, which search for light dark matter.

  14. Dark Forces and Light Dark Matter

    SciTech Connect

    Hooper, Dan; Weiner, Neal; Xue, Wei

    2012-09-01

    We consider a simple class of models in which the dark matter, X, is coupled to a new gauge boson, phi, with a relatively low mass (m_phi \\sim 100 MeV-3 GeV). Neither the dark matter nor the new gauge boson have tree-level couplings to the Standard Model. The dark matter in this model annihilates to phi pairs, and for a coupling of g_X \\sim 0.06 (m_X/10 GeV)^1/2 yields a thermal relic abundance consistent with the cosmological density of dark matter. The phi's produced in such annihilations decay through a small degree of kinetic mixing with the photon to combinations of Standard Model leptons and mesons. For dark matter with a mass of \\sim10 GeV, the shape of the resulting gamma-ray spectrum provides a good fit to that observed from the Galactic Center, and can also provide the very hard electron spectrum required to account for the observed synchrotron emission from the Milky Way's radio filaments. For kinetic mixing near the level naively expected from loop-suppressed operators (epsilon \\sim 10^{-4}), the dark matter is predicted to scatter elastically with protons with a cross section consistent with that required to accommodate the signals reported by DAMA/LIBRA, CoGeNT and CRESST-II.

  15. (Mainly) axion dark matter

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2016-06-01

    The strong CP problem of QCD is at heart a problem of naturalness: why is the FF ˜ term highly suppressed in the QCD Lagrangian when it seems necessary to explain why there are three and not four light pions? The most elegant solution posits a spontaneously broken Peccei-Quinn (PQ) symmetry which requires the existence of the axion field a. The axion field settles to the minimum of its potential thus removing the offensive term but giving rise to the physical axion whose coherent oscillations can make up the cold dark matter. Only now are experiments such as ADMX beginning to explore QCD axion parameter space. Since a bonafide scalar particle- the Higgs boson- has been discovered, one might expect its mass to reside at the axion scale fa ˜ 1011 GeV. The Higgs mass is elegantly stabilized by supersymmetry: in this case the axion is accompanied by its axino and saxion superpartners. Requiring naturalness also in the electroweak sector implies higgsino-like WIMPs so then we expect mixed axion-WIMP dark matter. Ultimately we would expect detection of both an axion and a WIMP while signals for light higgsinos may show up at LHC and must show up at ILC.

  16. Monodromy Dark Matter

    NASA Astrophysics Data System (ADS)

    Jaeckel, Joerg; Mehta, Viraf M.; Witkowski, Lukas T.

    2017-01-01

    Light pseudo-Nambu-Goldstone bosons (pNGBs) such as, e.g. axion-like particles, that are non-thermally produced via the misalignment mechanism are promising dark matter candidates. An important feature of pNGBs is their periodic potential, whose scale of periodicity controls their couplings. As a consequence of the periodicity the maximal potential energy is limited and, hence, producing the observed dark matter density poses significant constraints on the allowed masses and couplings. In the presence of a monodromy, the field range as well as the range of the potential can be significantly extended. As we argue in this paper this has important phenomenological consequences. The constraints on the masses and couplings are ameliorated and couplings to Standard Model particles could be significantly stronger, thereby opening up considerable experimental opportunities. Yet, monodromy models can also give rise to new and qualitatively different features. As a remnant of the periodicity the potential can feature pronounced ``wiggles''. When the field is passing through them quantum fluctuations are enhanced and particles with non-vanishing momentum are produced. Here, we perform a first analysis of this effect and delineate under which circumstances this becomes important. We briefly discuss some possible cosmological consequences.

  17. DarkSide search for dark matter

    SciTech Connect

    Alexander, T.; Alton, D.; Arisaka, K.; Back, H. O.; Beltrame, P.; Benziger, J.; Bonfini, G.; Brigatti, A.; Brodsky, J.; Bussino, S.; Cadonati, L.; Calaprice, F.; Candela, A.; Cao, H.; Cavalcante, P.; Chepurnov, A.; Chidzik, S.; Cocco, A. G.; Condon, C.; D'Angelo, D.; Davini, S.; Vincenzi, M. De; Haas, E. De; Derbin, A.; Pietro, G. Di; Dratchnev, I.; Durben, D.; Empl, A.; Etenko, A.; Fan, A.; Fiorillo, G.; Franco, D.; Fomenko, K.; Forster, G.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M.; Guo, C.; Guray, G.; Hungerford, E. V.; Ianni, Al; Ianni, An; Joliet, C.; Kayunov, A.; Keeter, K.; Kendziora, C.; Kidner, S.; Klemmer, R.; Kobychev, V.; Koh, G.; Komor, M.; Korablev, D.; Korga, G.; Li, P.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Lukyanchenko, L.; Lund, A.; Lung, K.; Ma, Y.; Machulin, I.; Mari, S.; Maricic, J.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P.; Mohayai, T.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Nelson, A.; Nemtzow, A.; Nurakhov, N.; Orsini, M.; Ortica, F.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Parsells, R.; Pelliccia, N.; Perasso, L.; Perasso, S.; Perfetto, F.; Pinsky, L.; Pocar, A.; Pordes, S.; Randle, K.; Ranucci, G.; Razeto, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Saggese, P.; Saldanha, R.; Salvo, C.; Sands, W.; Seigar, M.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvarov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Thompson, J.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wang, H.; Westerdale, S.; Wojcik, M.; Wright, A.; Xu, J.; Yang, C.; Zavatarelli, S.; Zehfus, M.; Zhong, W.; Zuzel, G.

    2013-11-22

    The DarkSide staged program utilizes a two-phase time projection chamber (TPC) with liquid argon as the target material for the scattering of dark matter particles. Efficient background reduction is achieved using low radioactivity underground argon as well as several experimental handles such as pulse shape, ratio of ionization over scintillation signal, 3D event reconstruction, and active neutron and muon vetos. The DarkSide-10 prototype detector has proven high scintillation light yield, which is a particularly important parameter as it sets the energy threshold for the pulse shape discrimination technique. The DarkSide-50 detector system, currently in commissioning phase at the Gran Sasso Underground Laboratory, will reach a sensitivity to dark matter spin-independent scattering cross section of 10-45 cm2 within 3 years of operation.

  18. Dark matter and cosmological nucleosynthesis

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1986-01-01

    Existing dark matter problems, i.e., dynamics, galaxy formation and inflation, are considered, along with a model which proposes dark baryons as the bulk of missing matter in a fractal universe. It is shown that no combination of dark, nonbaryonic matter can either provide a cosmological density parameter value near unity or, as in the case of high energy neutrinos, allow formation of condensed matter at epochs when quasars already existed. The possibility that correlations among galactic clusters are scale-free is discussed. Such a distribution of matter would yield a fractal of 1.2, close to a one-dimensional universe. Biasing, cosmic superstrings, and percolated explosions and hot dark matter are theoretical approaches that would satisfy the D = 1.2 fractal model of the large-scale structure of the universe and which would also allow sufficient dark matter in halos to close the universe.

  19. Dark Matter, Waves, and Identification

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin

    2011-10-01

    In 1994 I wrote article for Physics Essays (Waves in Dark Matter) showing how the solar system is organized and stabilized by dark matter standing waves from the dark matter oscillating sun. Wave velocity is apparently inversely proportional to the square root of the dark matter density. At the sun's surface the wave velocity is near 1.25 m/s. More recently I have found local dark matter waves that appear to travel near 25 m/s near April 1 and appear to organize plants. They travel between plants and artificial transmitters and receivers, and penetrate my local hill. From my measurements the local dark matter density is a function of the time of year. The data indicate that dark matter interacts much more than just with gravity as others have surmised. I present experimental proofs and a local dark matter density equation in terms of the measured velocity. The waves and the earth's location may be very important for nature's organization. The observed behavior appears to go a long way towards dark matter identification. These waves also may explain the rings of the gaseous planets in terms of oscillating layers. See the ring article on the web site Darkmatterwaves.com.

  20. The Logotropic Dark Fluid as a unification of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2016-07-01

    We propose a heuristic unification of dark matter and dark energy in terms of a single ;dark fluid; with a logotropic equation of state P = Aln ⁡ (ρ /ρP), where ρ is the rest-mass density, ρP = 5.16 ×1099gm-3 is the Planck density, and A is the logotropic temperature. The energy density ɛ is the sum of a rest-mass energy term ρc2 ∝a-3 mimicking dark matter and an internal energy term u (ρ) = - P (ρ) - A = 3 Aln ⁡ a + C mimicking dark energy (a is the scale factor). The logotropic temperature is approximately given by A ≃ρΛc2 / ln ⁡ (ρP /ρΛ) ≃ρΛc2 / [ 123 ln ⁡ (10) ], where ρΛ = 6.72 ×10-24gm-3 is the cosmological density and 123 is the famous number appearing in the ratio ρP /ρΛ ∼10123 between the Planck density and the cosmological density. More precisely, we obtain A = 2.13 ×10-9gm-1s-2 that we interpret as a fundamental constant. At the cosmological scale, our model fulfills the same observational constraints as the ΛCDM model (they will differ in about 25 Gyrs when the logotropic universe becomes phantom). However, the logotropic dark fluid has a nonzero speed of sound and a nonzero Jeans length which, at the beginning of the matter era, is about λJ = 40.4pc, in agreement with the minimum size of the dark matter halos observed in the universe. The existence of a nonzero Jeans length may solve the missing satellite problem. At the galactic scale, the logotropic pressure balances the gravitational attraction, providing halo cores instead of cusps. This may solve the cusp problem. The logotropic equation of state generates a universal rotation curve that agrees with the empirical Burkert profile of dark matter halos up to the halo radius. In addition, it implies that all the dark matter halos have the same surface density Σ0 =ρ0rh = 141M⊙ /pc2 and that the mass of dwarf galaxies enclosed within a sphere of fixed radius ru = 300pc has the same value M300 = 1.93 ×107M⊙, in remarkable agreement with the observations

  1. Neutrino signals from dark matter

    NASA Astrophysics Data System (ADS)

    Erkoca, Arif Emre

    Large-scale neutrino telescopes will be powerful tools to observe multitude of mysterious phenomena happening in the Universe. The dark matter puzzle is listed as one of them. In this study, indirect detection of dark matter via neutrino signals is presented. The upward muon, the contained muon and the hadronic shower fluxes are calculated, assuming annihilation/decay of the dark matter in the core of the astrophysical objects and in the Galactic center. Direct neutrino production and secondary neutrino production from the decay of Standard Model particles produced in the annihilation/decay of dark matter are studied. The results are contrasted to the ones previously obtained in the literature, illustrating the importance of properly treating muon propagation and energy loss for the upward muon flux. The dependence of the dark matter signals on the density profile, the dark matter mass and the detector threshold are discussed. Different dark matter models (gravitino, Kaluza-Klein and leptophilic) which can account for recent observations of some indirect searches are analyzed regarding their detection in the kilometer size neutrino detectors in the near future. Muon and shower rates and the minimum observation times in order to reach 2sigma detection significance are evaluated, with the result suggesting that the optimum cone half angles chosen about the Galactic center are about 10° (50°) for the muon (shower) events. A detailed analysis shows that for the annihilating dark matter models such as the leptophilic and Kaluza-Klein models, upward and contained muon as well as showers yield promising signals for dark matter detection in just a few years of observation, whereas for decaying dark matter models, the same observation times can only be reached with showers. The analytical results for the final fluxes are also obtained as well as parametric forms for the muon and shower fluxes for the dark matter models considered in this study.

  2. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  3. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  4. Inflationary imprints on dark matter

    NASA Astrophysics Data System (ADS)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z2 symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ†Φ s2. Dark matter relic density is generated non-thermally for λ lesssim 10-7. We show that the dark matter yield crucially depends on the inflationary scale. For H~ 1010 GeV we find that the singlet self-coupling and mass should lie in the regime λsgtrsim 10-9 and mslesssim 50 GeV to avoid dark matter overproduction.

  5. The search for dark matter

    NASA Astrophysics Data System (ADS)

    Cline, David B.

    2016-03-01

    We discuss the search for dark matter. We first review the data from LUX that excludes the low-mass WIMP region and slightly lowers the XENON100 limits. We provide a brief review of the problems with the claimed low-mass signals. We discuss the current expectations for SUSY-WIMP dark matter and show why very massive detectors like Darwin may be required. We discuss some theoretical predictions from the meeting. There was compelling evidence from events observed in the Galactic Center by Fermi-LAT of WIMP dark matter at the UCLA meeting. We recount the Richard Arnowitt Lectures at UCLA dark matter symposiums and his role in the development of the strategy to detect SUGRA dark matter. In Honor of Richard Arnowitt.

  6. Solving the Dark Matter Problem

    ScienceCinema

    Baltz, Ted

    2016-07-12

    Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.

  7. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  8. Dark Matter Searches With GLAST

    SciTech Connect

    Wai, Lawrence; Nuss, E.

    2007-02-05

    Indirect detection of particle dark matter relies upon pair annihilation of Weakly Interaction Massive Particles (WIMPs), which is complementary to the well known techniques of direct detection (WIMP-nucleus scattering) and collider production (WIMP pair production). Pair annihilation of WIMPs results in the production of gamma-rays, neutrinos, and anti-matter. Of the various experiments sensitive to indirect detection of dark matter, the Gamma-ray Large Area Space Telescope (GLAST) may play the most crucial role in the next few years. After launch in late 2007, The GLAST Large Area Telescope (LAT) will survey the gamma-ray sky in the energy range of 20MeV-300GeV. By eliminating charged particle background above 100 MeV, GLAST may be sensitive to as yet to be observed Milky Way dark matter subhalos, as well as WIMP pair annihilation spectral lines from the Milky Way halo. Discovery of gamma-ray signals from dark matter in the Milky Way would not only demonstrate the particle nature of dark matter; it would also open a new observational window on galactic dark matter substructure. Location of new dark matter sources by GLAST would dramatically alter the experimental landscape; ground based gamma ray telescopes could follow up on the new GLAST sources with precision measurements of the WIMP pair annihilation spectrum.

  9. Plasma dark matter direct detection

    SciTech Connect

    Clarke, J.D.; Foot, R. E-mail: rfoot@unimelb.edu.au

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless 'dark photon' (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  10. Asymmetric Dark Matter and Dark Radiation

    SciTech Connect

    Blennow, Mattias; Martinez, Enrique Fernandez; Mena, Olga; Redondo, Javier; Serra, Paolo E-mail: enfmarti@cern.ch E-mail: redondo@mppmu.mpg.de

    2012-07-01

    Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry, similar to the one observed in the Baryon sector, to account for the Dark Matter (DM) abundance. Both asymmetries are usually generated by the same mechanism and generally related, thus predicting DM masses around 5 GeV in order to obtain the correct density. The main challenge for successful models is to ensure efficient annihilation of the thermally produced symmetric component of such a light DM candidate without violating constraints from collider or direct searches. A common way to overcome this involves a light mediator, into which DM can efficiently annihilate and which subsequently decays into Standard Model particles. Here we explore the scenario where the light mediator decays instead into lighter degrees of freedom in the dark sector that act as radiation in the early Universe. While this assumption makes indirect DM searches challenging, it leads to signals of extra radiation at BBN and CMB. Under certain conditions, precise measurements of the number of relativistic species, such as those expected from the Planck satellite, can provide information on the structure of the dark sector. We also discuss the constraints of the interactions between DM and Dark Radiation from their imprint in the matter power spectrum.

  11. Astrophysical Probes of Dark Matter

    NASA Astrophysics Data System (ADS)

    Profumo, S.

    2013-08-01

    What is the connection between how the dark matter was produced in the early universe and how we can detect it today? Where does the WIMP miracle come from, and is it really a "WIMP" miracle? What brackets the mass range for thermal relics? Where does <συ> come from, and what does it mean? What is the difference between chemical and kinetic decoupling? Why do some people think that dark matter cannot be lighter than 40 GeV? Why is bbar b such a popular annihilation final state? Why is antimatter a good way to look for dark matter? Why should the cosmic-ray positron fraction decline with energy? How do you calculate the flux of neutrinos from dark matter annihilation in a celestial body, and when is it independent of the dark matter pair-annihilation rate? How does dark matter produce photons? -- Read these lecture notes, do the suggested 10 exercises, and you will find answers to all of these questions (and to many more on what You Always Wanted to Know About Dark Matter But Were Afraid to Ask).

  12. Phases of cannibal dark matter

    NASA Astrophysics Data System (ADS)

    Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-12-01

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  13. Stability of BEC galactic dark matter halos

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.; González-Avilés, J. J.; Rivera-Paleo, F. J.

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  14. Reconciling MOND and dark matter?

    NASA Astrophysics Data System (ADS)

    Bruneton, Jean-Philippe; Liberati, Stefano; Sindoni, Lorenzo; Famaey, Benoit

    2009-03-01

    Observations of galaxies suggest a one-to-one analytic relation between the inferred gravity of dark matter at any radius and the enclosed baryonic mass, a relation summarized by Milgrom's law of modified Newtonian dynamics (MOND). However, present-day covariant versions of MOND usually require some additional fields contributing to the geometry, as well as an additional hot dark matter component to explain cluster dynamics and cosmology. Here, we envisage a slightly more mundane explanation, suggesting that dark matter does exist but is the source of MOND-like phenomenology in galaxies. We assume a canonical action for dark matter, but also add an interaction term between baryonic matter, gravity, and dark matter, such that standard matter effectively obeys the MOND field equation in galaxies. We show that even the simplest realization of the framework leads to a model which reproduces some phenomenological predictions of cold dark matter (CDM) and MOND at those scales where these are most successful. We also devise a more general form of the interaction term, introducing the medium density as a new order parameter. This allows for new physical effects which should be amenable to observational tests in the near future. Hence, this very general framework, which can be furthermore related to a generalized scalar-tensor theory, opens the way to a possible unification of the successes of CDM and MOND at different scales.

  15. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales.

  16. Probing gravitational dark matter

    SciTech Connect

    Ren, Jing; He, Hong-Jian

    2015-03-27

    So far all evidences of dark matter (DM) come from astrophysical and cosmological observations, due to the gravitational interactions of DM. It is possible that the true DM particle in the universe joins gravitational interactions only, but nothing else. Such a Gravitational DM (GDM) may act as a weakly interacting massive particle (WIMP), which is conceptually simple and attractive. In this work, we explore this direction by constructing the simplest scalar GDM particle χ{sub s}. It is a ℤ{sub 2} odd singlet under the standard model (SM) gauge group, and naturally joins the unique dimension-4 interaction with Ricci curvature, ξ{sub s}χ{sub s}{sup 2}R, where ξ{sub s} is the dimensionless nonminimal coupling. We demonstrate that this gravitational interaction ξ{sub s}χ{sub s}{sup 2}R, together with Higgs-curvature nonminimal coupling term ξ{sub h}H{sup †}HR, induces effective couplings between χ{sub s}{sup 2} and SM fields, and can account for the observed DM thermal relic abundance. We analyze the annihilation cross sections of GDM particles and derive the viable parameter space for realizing the DM thermal relic density. We further study the direct/indirect detections and the collider signatures of such a scalar GDM. These turn out to be highly predictive and testable.

  17. Oscillating asymmetric dark matter

    SciTech Connect

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M. E-mail: haiboyu@umich.edu

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations 'interpolate' between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle 'flavor' effects, depending on the interaction type, analogous to neutrino oscillations in a medium. 'Flavor-sensitive' DM interactions include scattering or annihilation through a new vector boson, while 'flavor-blind' interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  18. Oscillating asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Tulin, Sean; Yu, Hai-Bo; Zurek, Kathryn M.

    2012-05-01

    We study the dynamics of dark matter (DM) particle-antiparticle oscillations within the context of asymmetric DM. Oscillations arise due to small DM number-violating Majorana-type mass terms, and can lead to recoupling of annihilation after freeze-out and washout of the DM density. Asymmetric DM oscillations "interpolate" between symmetric and asymmetric DM freeze-out scenarios, and allow for a larger DM model-building parameter space. We derive the density matrix equations for DM oscillations and freeze-out from first principles using nonequilibrium field theory, and our results are qualitatively different than in previous studies. DM dynamics exhibits particle-vs-antiparticle "flavor" effects, depending on the interaction type, analogous to neutrino oscillations in a medium. "Flavor-sensitive" DM interactions include scattering or annihilation through a new vector boson, while "flavor-blind" interactions include scattering or s-channel annihilation through a new scalar boson. In particular, we find that flavor-sensitive annihilation does not recouple when coherent oscillations begin, and that flavor-blind scattering does not lead to decoherence.

  19. Capturing prokaryotic dark matter genomes.

    PubMed

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.

  20. Detection of cosmic dark matter

    SciTech Connect

    Primack, J.R.; Seckel, D.; Sadoulet, B.

    1988-01-01

    This is a mid-1988 status report on attempts to detect particle dark matter. We have some prejudice in limiting ourselves to dark matter candidates that we feel are especially motivated: weakly interacting massive particles (WIMPs), axions, and light neutrinos. Much of our review centers on the possibility of detecting WIMPs. This is partly because there exist several methods by which WIMPs may be detected in the next decade, whereas for axions the prospects are more uncertain and for light neutrinos essentially nonexistent. In addition, we feel that WIMPs provide a natural way for a critical density of dark matter to occur within the context of plausible particle theories. (AIP)

  1. Mixed dark matter from technicolor

    SciTech Connect

    Belyaev, Alexander; Frandsen, Mads T.; Sarkar, Subir; Sannino, Francesco

    2011-01-01

    We study natural composite cold dark matter candidates which are pseudo-Nambu-Goldstone bosons (pNGB) in models of dynamical electroweak symmetry breaking. Some of these can have a significant thermal relic abundance, while others must be mainly asymmetric dark matter. By considering the thermal abundance alone we find a lower bound of m{sub W} on the pNGB mass when the (composite) Higgs is heavier than 115 GeV. Being pNGBs, the dark matter candidates are in general light enough to be produced at the LHC.

  2. Cosmology of fermionic dark matter

    SciTech Connect

    Boeckel, Tillmann; Schaffner-Bielich, Juergen

    2007-11-15

    We explore a model for a fermionic dark matter particle family which decouples from the rest of the particles when at least all standard model particles are in equilibrium. We calculate the allowed ranges for mass and chemical potential to be compatible with big bang nucleosynthesis (BBN) calculations and WMAP data for a flat universe with dark energy ({omega}{sub {lambda}}{sup 0}=0.72, {omega}{sub M}{sup 0}=0.27, h=0.7). Futhermore we estimate the free streaming length for fermions and antifermions to allow comparison to large scale structure data (LSS). We find that for dark matter decoupling when all standard model particles are present even the least restrictive combined BBN calculation and WMAP results allow us to constrain the initial dark matter chemical potential to a highest value of 6.3 times the dark matter temperature. In this case, the resulting mass range is at most 1.8 eV{<=}m{<=}53 eV, where the upper bound scales linearly with g{sub eff}{sup s}(T{sub Dec}). From LSS we find that, similar to ordinary warm dark matter models, the particle mass has to be larger than {approx}500 eV [meaning g{sub eff}{sup s}(T{sub Dec})>10{sup 3}] to be compatible with observations of the Ly {alpha} forest at high redshift, but still the dark matter chemical potential over temperature ratio can exceed unity.

  3. Skew-flavored dark matter

    SciTech Connect

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; Kilic, Can

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in which dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.

  4. Skew-flavored dark matter

    DOE PAGES

    Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...

    2016-05-10

    We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less

  5. The Dark Matter of Biology.

    PubMed

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology.

  6. Dwarf Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Colín, P.; Klypin, A.; Valenzuela, O.; Gottlöber, Stefan

    2004-09-01

    We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses of 107-109 h-1 Msolar. We find that the density profiles of relaxed dwarf halos are well fitted by the Navarro, Frenk, & White (NFW) profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model, while the latter is well fitted by a lognormal distribution with λ0=0.042 and σλ=0.63. We estimate the distribution of concentrations for halos in a mass range that covers 6 orders of magnitude, from 107 to 1013 h-1 Msolar, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z=0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6×109 to 1013 h-1 Msolar and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just downscaled versions of the large halos. They are cuspy and, as expected, more concentrated. They have the same spin parameter distribution and follow the same mass function that was measured for large halos.

  7. A History of Dark Matter

    SciTech Connect

    Bertone, Gianfranco; Hooper, Dan

    2016-05-16

    Although dark matter is a central element of modern cosmology, the history of how it became accepted as part of the dominant paradigm is often ignored or condensed into a brief anecdotical account focused around the work of a few pioneering scientists. The aim of this review is to provide the reader with a broader historical perspective on the observational discoveries and the theoretical arguments that led the scientific community to adopt dark matter as an essential part of the standard cosmological model.

  8. Did LIGO Detect Dark Matter?

    NASA Astrophysics Data System (ADS)

    Bird, Simeon; Cholis, Ilias; Munoz, Julian; Ali-Haimoud, Yacine; Kamionkowski, Marc; Kovetz, Ely; Raccanelli, Alvise; Riess, Adam

    2017-01-01

    There is a possibility that the recent LIGO detection of gravitational waves originated from the merger of two primordial black holes, making up the dark matter. Thirty solar mass black holes, as detected by LIGO, lie within an allowed mass window for primordial black hole dark matter. Interestingly, our best estimates of the number of observable mergers fall within the range implied by current LIGO data. I will explain these estimates and discuss the (considerable!) theoretical uncertainties.

  9. Dark matter triggers of supernovae

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Rajendran, Surjeet; Varela, Jaime

    2015-09-01

    The transit of primordial black holes through a white dwarf causes localized heating around the trajectory of the black hole through dynamical friction. For sufficiently massive black holes, this heat can initiate runaway thermonuclear fusion causing the white dwarf to explode as a supernova. The shape of the observed distribution of white dwarfs with masses up to 1.25 M⊙ rules out primordial black holes with masses ˜1019- 1020 gm as a dominant constituent of the local dark matter density. Black holes with masses as large as 1024 gm will be excluded if recent observations by the NuStar Collaboration of a population of white dwarfs near the galactic center are confirmed. Black holes in the mass range 1020- 1022 gm are also constrained by the observed supernova rate, though these bounds are subject to astrophysical uncertainties. These bounds can be further strengthened through measurements of white dwarf binaries in gravitational wave observatories. The mechanism proposed in this paper can constrain a variety of other dark matter scenarios such as Q balls, annihilation/collision of large composite states of dark matter and models of dark matter where the accretion of dark matter leads to the formation of compact cores within the star. White dwarfs, with their astronomical lifetimes and sizes, can thus act as large spacetime volume detectors enabling a unique probe of the properties of dark matter, especially of dark matter candidates that have low number density. This mechanism also raises the intriguing possibility that a class of supernova may be triggered through rare events induced by dark matter rather than the conventional mechanism of accreting white dwarfs that explode upon reaching the Chandrasekhar mass.

  10. Dark matter beams at LBNF

    SciTech Connect

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; Harnik, Roni

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Z$^{'}$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$^{'}$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.

  11. Dark matter beams at LBNF

    DOE PAGES

    Coloma, Pilar; Dobrescu, Bogdan A.; Frugiuele, Claudia; ...

    2016-04-08

    High-intensity neutrino beam facilities may produce a beam of light dark matter when protons strike the target. Searches for such a dark matter beam using its scattering in a nearby detector must overcome the large neutrino background. We characterize the spatial and energy distributions of the dark matter and neutrino beams, focusing on their differences to enhance the sensitivity to dark matter. We find that a dark matter beam produced by a Zmore » $$^{'}$$ boson in the GeV mass range is both broader and more energetic than the neutrino beam. The reach for dark matter is maximized for a detector sensitive to hard neutral-current scatterings, placed at a sizable angle off the neutrino beam axis. In the case of the Long-Baseline Neutrino Facility (LBNF), a detector placed at roughly 6 degrees off axis and at a distance of about 200 m from the target would be sensitive to Z$$^{'}$$ couplings as low as 0.05. This search can proceed symbiotically with neutrino measurements. We also show that the MiniBooNE and MicroBooNE detectors, which are on Fermilab’s Booster beamline, happen to be at an optimal angle from the NuMI beam and could perform searches with existing data. As a result, this illustrates potential synergies between LBNF and the short-baseline neutrino program if the detectors are positioned appropriately.« less

  12. Dark matter and global symmetries

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  13. Dark matter in modified gravity?

    NASA Astrophysics Data System (ADS)

    Katsuragawa, Taishi; Matsuzaki, Shinya

    2017-02-01

    We explore a new horizon of modified gravity from the viewpoint of particle physics. As a concrete example, we take the F (R ) gravity to raise a question: can a scalar particle ("scalaron") derived from the F (R ) gravity be a dark matter candidate? We place the limit on the parameter in a class of F (R ) gravity model from the constraint on the scalaron as a dark matter. The role of the screening mechanism and compatibility with the dark energy problem are addressed.

  14. Self Interacting Dark Matter and Baryons

    NASA Astrophysics Data System (ADS)

    Fry, Alexander B.; Governato, Fabio; Pontzen, Andrew; Quinn, Thomas R.

    2015-01-01

    Self Interacting Dark Matter (SIDM) is a cosmologically consistent alternative theory to Cold Dark Matter (CDM). SIDM is motivated as a solution to solve problems of the CDM model on small scales including the core/cusp problem, the missing satellites, and halo triaxiality. Each of these problems has secular astrophysical solutions, however taken together and along with suggestions from dark matter (DM) particle physics it is interesting to place constraints on how strong a self interaction would have to be for us to observe it and conversely the null hypothesis of whether we can rule out SIDM. We use high resolution cosmological simulations to compare evolution of stellar populations and (DM) components of dwarf galaxies. Our advanced smooth particle hydrodynamics N-body simulations combine SIDM with baryon physics including star formation, feedback recipes, metal line cooling, UV background, and thermal diffusion that eliminates artificial surface gas tension. We find for a constant SIDM cross section of 2 cm2 g-1 that DM interactions alone are not significant enough to create cores in dwarf galaxies and for low mass (Vpeak= 25 km s-1) galaxies the introduction of SIDM fails to decrease the DM central density. Our simulations with star formation feedback are in good agreement with observational estimates of Local Group dwarfs. The lower mass (below 108 M⊙) halos have inefficient SF, late formation time, and less DM interactions thus small field halos in CDM and SIDM remain cuspy. We conclude that constant cross section SIDM of 2 cm2 g-1 would be close to unobservable in dwarf galaxies and yet at the same time this cross section is already larger than some observational constraints found in larger (higher velocity) systems. We conclude that to differentiate between SIDM and CDM in an observationally detectable and astrophysically consistent manner a velocity dependent cross section that peaks for halos with small peak velocities will be necessary.

  15. The distribution of the dark matter in galaxies as the imprint of its Nature

    NASA Astrophysics Data System (ADS)

    Frigerio Martins, Christiane

    2009-03-01

    The standard framework within which cosmological measurements are confronted and interpreted nowadays, called Lambda Cold Dark Matter, presents a Universe dominated by unknown forms of energy and matter. My Thesis is devoted to investigate the distribution of dark matter in galaxies and addresses the fact that the local universe-the small objects that orbit galaxies and the galaxy cores-turns out to be a marvelous laboratory for examining the nature of dark matter and the fundamental physics involved in structure formation and evolution. I develop tests, based on mass modeling of rotation curves, for the validation of dark matter models on galactic scales. These tests have been applied in analyzing the phenomenology of the cusp vs core controversy, and the phenomenon of non-Keplerian rotation curves as modification of the laws of gravity. I further investigate the properties and scaling laws of dark matter halos. My conclusion is that galactic observations provide strong imprints on the nature of dark matter.

  16. Cryogenic Dark Matter Search (CDMS): The Hunt for Dark Matter

    SciTech Connect

    Sadoulet, Bernard

    2006-03-06

    Deciphering the nature of dark matter has great scientific importance. A leading hypothesis is that dark matter is made of Weakly Interactive Massive Particles (WIMPs), which may result from supersymmetry or additional spatial dimensions. The underground search for elastic scattering of WIMPs on suitable targets (the so-called 'direct detection') is currently led by the Cryogenic Dark Matter Search II (CDMS II) experiment. Its sensitivity is ten times better than any other experiment and we hope to obtain another factor ten in the coming two years. After a brief recall of our recent results, I will describe the complementarity between direct detection experiments, the LHC and the ILC and I will outline the role that SLAC could play in this SuperCDMS program.

  17. Lectures on Dark Matter Physics

    NASA Astrophysics Data System (ADS)

    Lisanti, Mariangela

    Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.

  18. Inflationary imprints on dark matter

    SciTech Connect

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo E-mail: tommi.tenkanen@helsinki.fi

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  19. How dark matter came to matter

    NASA Astrophysics Data System (ADS)

    de Swart, J. G.; Bertone, G.; van Dongen, J.

    2017-03-01

    The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of 'missing matter' was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.

  20. Dark Energy and The Dark Matter Relic Abundance

    SciTech Connect

    Rosati, Francesca

    2004-11-17

    Two mechanisms by which the quintessence scalar could enhance the relic abundance of dark matter particles are discussed. These effects can have an impact on supersymmetric candidates for dark matter.

  1. Scalar graviton as dark matter

    NASA Astrophysics Data System (ADS)

    Pirogov, Yu. F.

    2015-06-01

    The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.

  2. Scalar graviton as dark matter

    SciTech Connect

    Pirogov, Yu. F.

    2015-06-15

    The basics of the theory of unimodular bimode gravity built on the principles of unimodular gauge invariance/relativity and general covariance are exposed. Besides the massless tensor graviton of General Relativity, the theory includes an (almost) massless scalar graviton treated as the gravitational dark matter. A spherically symmetric vacuum solution describing the coherent scalar-graviton field for the soft-core dark halos, with the asymptotically flat rotation curves, is demonstrated as an example.

  3. Dark matter in 3D

    DOE PAGES

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our methodmore » using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.« less

  4. Dark matter in 3D

    SciTech Connect

    Alves, Daniele S. M.; El Hedri, Sonia; Wacker, Jay G.

    2016-03-21

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. Furthermore, we conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  5. The DAMIC Dark Matter Experiment

    SciTech Connect

    de Mello Neto, J. R.T.

    2015-10-07

    The DAMIC (DArk Matter In CCDs) experiment uses high-resistivity, scientific-grade CCDs to search for dark matter. The CCD’s low electronic noise allows an unprecedently low energy threshold of a few tens of eV; this characteristic makes it possible to detect silicon recoils resulting from interactions of low-mass WIMPs. In addition, the CCD’s high spatial resolution and the excellent energy response results in very effective background identification techniques. The experiment has a unique sensitivity to dark matter particles with masses below 10 GeV/c2. Previous results have motivated the construction of DAMIC100, a 100 grams silicon target detector currently being installed at SNOLAB. The mode of operation and unique imaging capabilities of the CCDs, and how they may be exploited to characterize and suppress backgrounds are discussed, as well as physics results after one year of data taking.

  6. Dark Matter in 3D

    SciTech Connect

    Alves, Daniele S.M.; Hedri, Sonia El; Wacker, Jay G.

    2012-04-01

    We discuss the relevance of directional detection experiments in the post-discovery era and propose a method to extract the local dark matter phase space distribution from directional data. The first feature of this method is a parameterization of the dark matter distribution function in terms of integrals of motion, which can be analytically extended to infer properties of the global distribution if certain equilibrium conditions hold. The second feature of our method is a decomposition of the distribution function in moments of a model independent basis, with minimal reliance on the ansatz for its functional form. We illustrate our method using the Via Lactea II N-body simulation as well as an analytical model for the dark matter halo. We conclude that O(1000) events are necessary to measure deviations from the Standard Halo Model and constrain or measure the presence of anisotropies.

  7. Dark matter via massive bigravity

    NASA Astrophysics Data System (ADS)

    Blanchet, Luc; Heisenberg, Lavinia

    2015-05-01

    In this work we investigate the existence of relativistic models for dark matter in the context of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic scales. For this purpose we consider two different species of dark matter particles that separately couple to the two metrics of bigravity. These two sectors are linked together via an internal U (1 ) vector field, and some effective composite metric built out of the two metrics. Among possible models only certain classes of kinetic and interaction terms are allowed without invoking ghost degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory and point out the presence of ghosts in a previous model. Finally, we propose a promising class of ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while reproducing the standard cold dark matter model at cosmological scales.

  8. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois E-mail: yann.mambrini@th.u-psud.fr

    2015-03-01

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ} ∼> 200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV . The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sup SD}{sub χn} ≅ 10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  9. Z-portal dark matter

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-01

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit mχ gtrsim 200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV . The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σSDχn simeq 10-40 cm2, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  10. Z-portal dark matter

    SciTech Connect

    Arcadi, Giorgio; Mambrini, Yann; Richard, Francois

    2015-03-11

    We propose to generalize the extensions of the Standard Model where the Z boson serves as a mediator between the Standard Model sector and the dark sector χ. We show that, like in the Higgs portal case, the combined constraints from the recent direct searches restrict severely the nature of the coupling of the dark matter to the Z boson and set a limit m{sub χ}≳200 GeV (except in a very narrow region around the Z-pole region). Using complementarity between spin dependent, spin independent and FERMI limits, we predict the nature of this coupling, more specifically the axial/vectorial ratio that respects a thermal dark matter coupled through a Z-portal while not being excluded by the current observations. We also show that the next generation of experiments of the type LZ or XENON1T will test Z-portal scenario for dark matter mass up to 2 TeV. The condition of a thermal dark matter naturally predicts the spin-dependent scattering cross section on the neutron to be σ{sub χn}{sup SD}≃10{sup −40} cm{sup 2}, which then becomes a clear prediction of the model and a signature testable in the near future experiments.

  11. Dark matter: Observational manifestation and experimental searches

    NASA Astrophysics Data System (ADS)

    Vavilova, I. B.; Bolotin, Yu. L.; Boyarsky, A. M.; Danevich, F. A.; Kobychev, V. V.; Tretyak, V. I.; Babyk, Iu. V.; Iakubovskyi, D. A.; Hnatyk, B. I.; Sergeev, S. G

    2015-08-01

    This monograph is the third issue of a three volume edition under the general title "Dark Energy and Dark Matter in the Universe". The authors discuss the astrophysical direct and indirect manifestation and properties of dark matter in galaxies, galaxy clusters and groups; the different mechanisms of energy exchange between dark energy and dark matter that expand the capabilities of the Standard Cosmological Model; the experimental search for dark matter particle candidates (including the sterile neutrinos, solar axions,weakly-interacting massive particles, and superheavy dark matter particles) using space, ground-based, and underground observatories.

  12. Did LIGO Detect Dark Matter?

    PubMed

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  13. Dark matter detectors as dark photon helioscopes.

    PubMed

    An, Haipeng; Pospelov, Maxim; Pradler, Josef

    2013-07-26

    Light new particles with masses below 10 keV, often considered as a plausible extension of the standard model, will be emitted from the solar interior and can be detected on Earth with a variety of experimental tools. Here, we analyze the new "dark" vector state V, a massive vector boson mixed with the photon via an angle κ, that in the limit of the small mass mV has its emission spectrum strongly peaked at low energies. Thus, we utilize the constraints on the atomic ionization rate imposed by the results of the XENON10 experiment to set the limit on the parameters of this model: κ×mV<3×10(-12)  eV. This makes low-threshold dark matter experiments the most sensitive dark vector helioscopes, as our result not only improves current experimental bounds from other searches by several orders of magnitude but also surpasses even the most stringent astrophysical and cosmological limits in a seven-decade-wide interval of mV. We generalize this approach to other light exotic particles and set the most stringent direct constraints on "minicharged" particles.

  14. Dark matter and dark energy: The critical questions

    SciTech Connect

    Michael S. Turner

    2002-11-19

    Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% {+-} 1% baryons; 29% {+-} 4% cold dark matter; and 66% {+-} 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.

  15. Non-Abelian dark matter and dark radiation

    NASA Astrophysics Data System (ADS)

    Buen-Abad, Manuel A.; Marques-Tavares, Gustavo; Schmaltz, Martin

    2015-07-01

    We propose a new class of dark matter models with unusual phenomenology. What is ordinary about our models is that dark matter particles are weakly interacting massive particles; they are weakly coupled to the standard model and have weak scale masses. What is unusual is that they come in multiplets of a new dark non-Abelian gauge group with milliweak coupling. The massless dark gluons of this dark gauge group contribute to the energy density of the Universe as a form of weakly self-interacting dark radiation. In this paper we explore the consequences of having (i) dark matter in multiplets, (ii) self-interacting dark radiation, and (iii) dark matter which is weakly coupled to dark radiation. We find that (i) dark matter cross sections are modified by multiplicity factors which have significant consequences for collider searches and indirect detection, and (ii) dark gluons have thermal abundances which affect the cosmic microwave background (CMB) as dark radiation. Unlike additional massless neutrino species the dark gluons are interacting and have vanishing viscosity and (iii) the coupling of dark radiation to dark matter represents a new mechanism for damping the large scale structure power spectrum. A combination of additional radiation and slightly damped structure is interesting because it can remove tensions between global Λ CDM fits from the CMB and direct measurements of the Hubble expansion rate (H0) and large scale structure (σ8).

  16. Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2006-01-01

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  17. Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  18. Voyage of Time: Dark Matter

    SciTech Connect

    2016-10-10

    This scene of “Voyage of Time,” contributed by KIPAC’s Ralf Kaehler and Tom Abel, shows how dark matter evolved in the universe to form large-scale structures such as galaxies and galaxy clusters. (SLAC National Accelerator Laboratory)

  19. MSSM Dark Matter Without Prejudice

    SciTech Connect

    Gainer, James S.; /SLAC

    2009-12-11

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  20. MSSM Dark Matter Without Prejudice

    SciTech Connect

    Gainer, James S.

    2010-02-10

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  1. MSSM Dark Matter Without Prejudice

    NASA Astrophysics Data System (ADS)

    Gainer, James S.

    2010-02-01

    Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches.

  2. Dark matter in NGC 4472

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael

    1992-01-01

    An attempt is made to constrain the total mass distribution of the giant elliptical galaxy NGC 4472 by constructing simultaneous equilibrium models for the gas and stars. Emphasis is given to reconciling the value of the emission-weighted average value of kT derived from the Ginga spectrum with the amount of dark matter needed to account for velocity dispersion observations.

  3. Diphoton resonance confronts dark matter

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Min; Kang, Yoo-Jin; Lee, Hyun Min

    2016-07-01

    As an interpretation of the 750 GeV diphoton excesses recently reported by both ATLAS and CMS collaborations, we consider a simple extension of the Standard Model with a Dirac fermion dark matter where a singlet complex scalar field mediates between dark matter and SM particles via effective couplings to SM gauge bosons and/or Higgs-portal. In this model, we can accommodate the diphoton events through the direct and/or cascade decays of pseudo-scalar and real scalar partners of the complex scalar field. We show that mono-jet searches and gamma-ray observations are complementary in constraining the region where the width of the diphoton resonance can be enhanced due to the couplings of the resonance to dark matter and the correct relic density is obtained. In the case of cascade decay of the resonance, the effective couplings of singlet scalars can be smaller, but the model is still testable by the future discrimination between single photon and photon-jet at the LHC as well as the gamma-ray searches for the cascade annihilation of dark matter.

  4. Dark matter signals in space

    NASA Astrophysics Data System (ADS)

    Salati, Pierre

    2010-01-01

    The confirmation by the PAMELA collaboration of a positron excess above 10 GeV has triggered a lot of excitement in the field of particle astrophysics. This excess could be the first long waited hint of the presence of massive and weakly interacting species in the halo of the Milky Way. If so, the nature of the astronomical dark matter is about to be unveiled after more than seventy years of unsuccessful searches. This review summarizes the state of the art, a year of bubbling activity after the PAMELA announcement. The dark matter candidates which can potentially lead to a positron excess have quite special properties. They are severely constrained by radio and gamma observations unless they are tightly packed inside unprobable or bizarre dark matter clumps. These species could also be unstable with abnormally long lifetimes. Although the positron excess could be generated by annihilating and/or decaying dark matter particles, William of Ockham would warn us that a more natural explanation is to be found in pulsars for instance, and that entia non sunt multiplicanda praeter necessitatem.

  5. Wino dark matter under siege

    SciTech Connect

    Cohen, Timothy; Lisanti, Mariangela; Pierce, Aaron; Slatyer, Tracy R. E-mail: mlisanti@princeton.edu E-mail: tslatyer@mit.edu

    2013-10-01

    A fermion triplet of SU(2){sub L} — a wino — is a well-motivated dark matter candidate. This work shows that present-day wino annihilations are constrained by indirect detection experiments, with the strongest limits coming from H.E.S.S. and Fermi. The bounds on wino dark matter are presented as a function of mass for two scenarios: thermal (winos constitute a subdominant component of the dark matter for masses less than 3.1 TeV) and non-thermal (winos comprise all the dark matter). Assuming the NFW halo model, the H.E.S.S. search for gamma-ray lines excludes the 3.1 TeV thermal wino; the combined H.E.S.S. and Fermi results completely exclude the non-thermal scenario. Uncertainties in the exclusions are explored. Indirect detection may provide the only probe for models of anomaly plus gravity mediation where the wino is the lightest superpartner and scalars reside at the 100 TeV scale.

  6. Naturality, unification, and dark matter

    SciTech Connect

    Kainulainen, Kimmo; Virkajaervi, Jussi; Tuominen, Kimmo

    2010-08-15

    We consider a model where electroweak symmetry breaking is driven by technicolor dynamics with minimal particle content required for walking coupling and saturation of global anomalies. Furthermore, the model features three additional Weyl fermions singlet under technicolor interactions, two of which provide for a one-loop unification of the standard model gauge couplings. Among these extra matter fields exists a possible candidate for weakly interacting dark matter. We evaluate the relic densities and find that they are sufficient to explain the cosmological observations and avoid the experimental limits from earth-based searches. Hence, we establish a nonsupersymmetric framework where hierarchy and naturality problems are solved, coupling constant unification is achieved, and a plausible dark matter candidate exists.

  7. Dark matter in a bouncing universe

    SciTech Connect

    Cheung, Yeuk-Kwan E.; Kang, Jin U; Li, Changhong E-mail: jin.u.kang2@gmail.com

    2014-11-01

    We investigate a new scenario of dark matter production in a bouncing universe, in which dark matter was produced completely out of equilibrium in the contracting as well as expanding phase. We explore possibilities of using dark matter as a probe of the bouncing universe, focusing on the relationship between a critical temperature of the bouncing universe and the present relic abundance of dark matter.

  8. New Frontiers in Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Thaler, Jesse

    2017-01-01

    Dark matter, detected thus far only through its couplings to gravity, remains an enigma. It is therefore essential to pursue a broad portfolio of search strategies to test for non-gravitational interactions between dark matter and visible matter. In this talk, I give an overview of recent progress in detecting dark matter and related particles, ranging from ultralight axion-like particles to hidden sector dark forces.

  9. Dark matter in elliptical galaxies

    NASA Technical Reports Server (NTRS)

    Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.

    1995-01-01

    We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.

  10. Nonthermal dark matter in mirage mediation

    SciTech Connect

    Nagai, Minoru; Nakayama, Kazunori

    2007-12-15

    In mirage-mediation models there exists a modulus field whose mass is O(1000) TeV and its late decay may significantly change the standard thermal relic scenario of the dark matter. We study nonthermal production of the dark matter directly from the modulus decay, and find that for some parameter regions nonthermally produced neutralinos can become the dark matter.

  11. The LZ Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Bernard, Ethan; LZ Collaboration

    2013-10-01

    Astrophysical and cosmological observations show that dark matter is concentrated in halos around galaxies and is approximately five times more abundant than baryonic matter. Dark matter has evaded direct detection despite a series of increasingly sensitive experiments. The LZ (LUX-ZEPLIN) experiment will use a two-phase liquid-xenon time projection chamber to search for elastic scattering of xenon nuclei by WIMP (weakly interactive massive particle) dark matter. The detector will contain seven tons of liquid xenon shielded by an active organic scintillator veto and a water tank within the Sanford Underground Research Facility (SURF) in Lead, South Dakota. The LZ detector scales up the demonstrated light-sensing, cryogenic, radiopurity and shielding technologies of the LUX experiment. Active shielding, position fiducialization, radiopurity control and signal discrimination will reduce backgrounds to levels subdominant to solar neutrino scattering. This experiment will reach a sensitivity to the WIMP-nucleon spin-independent cross section approaching ~ 2 .10-48 cm2 for a 50 GeV WIMP mass, which is about three orders of magnitude smaller than current limits.

  12. Alternative to particle dark matter

    NASA Astrophysics Data System (ADS)

    Khoury, Justin

    2015-01-01

    We propose an alternative to particle dark matter that borrows ingredients of modified Newtonian dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on nonlinear scales. Instead, the missing mass problem on nonlinear scales is addressed by a modification of the gravitational force law. The force law approximates MOND at large and intermediate accelerations, and therefore reproduces the empirical success of MOND at fitting galactic rotation curves. At ultralow accelerations, the force law reverts to an inverse-square law, albeit with a larger Newton's constant. This latter regime is important in galaxy clusters and is consistent with their observed isothermal profiles, provided the characteristic acceleration scale of MOND is mildly varying with scale or mass, such that it is 12 times higher in clusters than in galaxies. We present an explicit relativistic theory in terms of two scalar fields. The first scalar field is governed by a Dirac-Born-Infeld action and behaves as a dark matter fluid on large scales. The second scalar field also has single-derivative interactions and mediates a fifth force that modifies gravity on nonlinear scales. Both scalars are coupled to matter via an effective metric that depends locally on the fields. The form of this effective metric implies the equality of the two scalar gravitational potentials, which ensures that lensing and dynamical mass estimates agree. Further work is needed in order to make both the acceleration scale of MOND and the fraction at which gravity reverts to an inverse-square law explicitly dynamical quantities, varying with scale or mass.

  13. Dark Matter Annihilation at the Galactic Center

    SciTech Connect

    Linden, Timothy Ryan

    2013-06-01

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately ve times as much dark matter as baryonic matter. However, e orts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the rst multiwavelength analysis of the GC, with suitable e ective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing e orts which have successfully detected an excess in -ray emission from the region immediately surrounding the GC, which is di cult to describe in terms of standard di use emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the

  14. The local dark matter density

    NASA Astrophysics Data System (ADS)

    Read, J. I.

    2014-06-01

    I review current efforts to measure the mean density of dark matter near the Sun. This encodes valuable dynamical information about our Galaxy and is also of great importance for ‘direct detection’ dark matter experiments. I discuss theoretical expectations in our current cosmology; the theory behind mass modelling of the Galaxy; and I show how combining local and global measures probes the shape of the Milky Way dark matter halo and the possible presence of a ‘dark disc’. I stress the strengths and weaknesses of different methodologies and highlight the continuing need for detailed tests on mock data—particularly in the light of recently discovered evidence for disequilibria in the Milky Way disc. I collate the latest measurements of ρdm and show that, once the baryonic surface density contribution Σb is normalized across different groups, there is remarkably good agreement. Compiling data from the literature, I estimate Σb = 54.2 ± 4.9 M⊙pc-2, where the dominant source of uncertainty is in the H i gas contribution. Assuming this contribution from the baryons, I highlight several recent measurements of ρdm in order of increasing data complexity and prior, and, correspondingly, decreasing formal error bars. Comparing these measurements with spherical extrapolations from the Milky Way’s rotation curve, I show that the Milky Way is consistent with having a spherical dark matter halo at R0 ˜ 8 kpc. The very latest measures of ρdm based on ˜10 000 stars from the Sloan Digital Sky Survey appear to favour little halo flattening at R0, suggesting that the Galaxy has a rather weak dark matter disc, with a correspondingly quiescent merger history. I caution, however, that this result hinges on there being no large systematics that remain to be uncovered in the SDSS data, and on the local baryonic surface density being Σb ˜ 55 M⊙pc-2. I conclude by discussing how the new Gaia satellite will be transformative. We will obtain much tighter

  15. Dark matter in axion landscape

    NASA Astrophysics Data System (ADS)

    Daido, Ryuji; Kobayashi, Takeshi; Takahashi, Fuminobu

    2017-02-01

    If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.

  16. Superconducting Detectors for Superlight Dark Matter.

    PubMed

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  17. Large Extra Dimension and Dark Matter Detection

    NASA Astrophysics Data System (ADS)

    Qin, Bo; Starkman, Glenn D.; Silk, Joseph

    2008-01-01

    If our space has the large extra dimensions as proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD), then gravity would start to deviate from Newtonian gravity and be greatly enhanced in sub-millimeter scales. Here we show that in the ADD scenario, gravity could play an important role (compared to the weak interaction) in the interactions between dark matter particles and the electron. We find that for typical WIMP dark matter, such dark matter-electron ``gravitational'' scattering cross section may be much larger than the dark matter-nucleon cross section constrained by current dark matter experiments.

  18. Dark energy and dark matter from primordial QGP

    SciTech Connect

    Vaidya, Vaishali Upadhyaya, G. K.

    2015-07-31

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  19. Dark energy and dark matter from primordial QGP

    NASA Astrophysics Data System (ADS)

    Vaidya, Vaishali; Upadhyaya, G. K.

    2015-07-01

    Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.

  20. Heavy spin-2 Dark Matter

    SciTech Connect

    Babichev, Eugeny; Marzola, Luca; Raidal, Martti; Schmidt-May, Angnis; Urban, Federico; Veermäe, Hardi; Strauss, Mikael von

    2016-09-12

    We provide further details on a recent proposal addressing the nature of the dark sectors in cosmology and demonstrate that all current observations related to Dark Matter can be explained by the presence of a heavy spin-2 particle. Massive spin-2 fields and their gravitational interactions are uniquely described by ghost-free bimetric theory, which is a minimal and natural extension of General Relativity. In this setup, the largeness of the physical Planck mass is naturally related to extremely weak couplings of the heavy spin-2 field to baryonic matter and therefore explains the absence of signals in experiments dedicated to Dark Matter searches. It also ensures the phenomenological viability of our model as we confirm by comparing it with cosmological and local tests of gravity. At the same time, the spin-2 field possesses standard gravitational interactions and it decays universally into all Standard Model fields but not into massless gravitons. Matching the measured DM abundance together with the requirement of stability constrains the spin-2 mass to be in the 1 to 100 TeV range.

  1. Isocurvature cold dark matter fluctuations

    NASA Technical Reports Server (NTRS)

    Efstathiou, G.; Bond, J. R.

    1986-01-01

    According to Preskill et al. (1983), the axion field represents a particularly attractive candidate for the dark matter in the universe. In many respects it behaves like other forms of cold dark matter, such as massive gravitinos, photinos, and monopoles. It is, however, a pseudo-Goldstone boson of very low mass, and it is only because of rapid coherent oscillations of the field that it can dominate the mass density of the universe. In the present paper it is assumed that the isocurvature mode is dominant. The linear evolution calculations conducted do not depend upon specific details of particle physics. For this reason, the conducted discussion is applicable to any cold dark matter model with isocurvature perturbations. The results of the study lead to the conclusion that scale-invariant isocurvature perturbations do not seem an attractive possibility for the origin of large-scale structure. The findings strengthen the review that primordial adiabatic perturbations were the dominant fluctuations in the early stages of the Big Bang.

  2. Dark energy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Strigari, Louis E.; Zentner, Andrew R.; Bullock, James S.; Primack, Joel R.

    2005-02-01

    We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>=-1 and w < -1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. accurately predicts the median concentrations of haloes over the range of w, halo masses and redshifts that we are capable of probing. We find that the Bullock et al. model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed σ8), w > -1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. For example, models with w~=- 0.5 seem disfavoured by the data, which can be matched only by allowing extremely low normalizations, σ8<~ 0.6. Meanwhile w < -1 models help to reduce the apparent discrepancy. We confirm that the halo mass function of Jenkins et al. provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w < -1.

  3. Dark matter in the Universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1991-03-01

    What is the quantity and composition of material in the universe This is one of the most fundamental questions we can ask about the universe, and its answer bears on a number of important issues including the formation of structure in the universe, and the ultimate fate and the earliest history of the universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: most of the material in the universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments -- structure formation, the temporal Copernican principle, and inflation -- and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 71 refs., 6 figs.

  4. Dark matter in the universe

    SciTech Connect

    Turner, M.S. Chicago Univ., IL . Enrico Fermi Inst.)

    1990-11-01

    What is the quantity and composition of material in the Universe This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand: Most of the material in the Universe does not give off detectable radiation, i.e., is dark;'' the dark matter associated with bright galaxies contributes somewhere between 10% and 30% of the critical density (by comparison luminous matter contributes less than 1%); baryonic matter contributes between 1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model is supported by three compelling theoretical arguments--structure formation, the temporal Copernican principle, and inflation--and by some observational data. If {Omega} is indeed unity--or even just significantly greater than 0.1--then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark-matter candidates: an axion of mass 10{sup {minus}6} eV to 10{sup {minus}4} eV; a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either being planned or are underway. 63 refs.

  5. Flavored dark matter beyond Minimal Flavor Violation

    DOE PAGES

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less

  6. Flavored dark matter beyond Minimal Flavor Violation

    SciTech Connect

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.

  7. Dark Energy Coupled with Dark Matter in the Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2004-06-01

    To model the observed Universe containing both dark energy and dark matter, we study the effective Yang Mills condensate model of dark energy and add a non-relativistic matter component as the dark matter, which is generated out of the decaying dark energy at a constant rate Gamma, a parameter of our model. For the Universe driven by these two components, the dynamic evolution still has asymptotic behaviour: the expansion of the Universe is accelerating with an asymptotically constant rate H, and the densities of both components approach to finite constant values. Moreover, OmegaLambdasimeq0.7 for dark energy and Omegamsimeq0.3 for dark matter are achieved if the decay rate Gamma is chosen such that Gamma/H~1.

  8. Theoretical Comparison Between Candidates for Dark Matter

    NASA Astrophysics Data System (ADS)

    McKeough, James; Hira, Ajit; Valdez, Alexandra

    2017-01-01

    Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.

  9. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1993-01-01

    A survey is presented of the current understanding of dark matter invoked by astrophysical theory and cosmology. Einstein's equivalence principle asserts that local measurements cannot distinguish a system at rest in a gravitational field from one that is in uniform acceleration in empty space. Recent test-methods for the equivalence principle are presently discussed as bases for testing of dark matter scenarios involving the long-range forces between either baryonic or nonbaryonic dark matter and ordinary matter.

  10. Dark matter in the universe

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1991-01-01

    What is the quantity and composition of material in the Universe? This is one of the most fundamental questions we can ask about the Universe, and its answer bears on a number of important issues including the formation of structure in the Universe, and the ultimate fate and the earliest history of the Universe. Moreover, answering this question could lead to the discovery of new particles, as well as shedding light on the nature of the fundamental interactions. At present, only a partial answer is at hand. Most of the radiation in the Universe does not give off detectable radiation; it is dark. The dark matter associated with bright galaxies contributes somewhere between 10 and 30 percent of the critical density; baryonic matter contributes between 1.1 and 12 percent of the critical. The case for the spatially flat, Einstein-de Sitter model is supported by three compelling theoretical arguments - structure formation, the temporal Copernican principle, and inflation - and by some observational data. If Omega is indeed unity, or even just significantly greater than 0.1, then there is a strong case for a Universe comprised of nonbaryonic matter. There are three well motivated particle dark matter candidates: an axion of mass 10 (exp -6) eV to 10 (exp -4) eV; a neutrino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV. All three possibilities can be tested by experiments that are either planned or are underway.

  11. The Dark Matter Problem: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2010-04-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  12. Superheavy thermal dark matter and primordial asymmetries

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Unwin, James

    2017-02-01

    The early universe could feature multiple reheating events, leading to jumps in the visible sector entropy density that dilute both particle asymmetries and the number density of frozen-out states. In fact, late time entropy jumps are usually required in models of Affleck-Dine baryogenesis, which typically produces an initial particle-antiparticle asymmetry that is much too large. An important consequence of late time dilution, is that a smaller dark matter annihilation cross section is needed to obtain the observed dark matter relic density. For cosmologies with high scale baryogenesis, followed by radiation-dominated dark matter freeze-out, we show that the perturbative unitarity mass bound on thermal relic dark matter is relaxed to 1010 GeV. We proceed to study superheavy asym-metric dark matter models, made possible by a sizable entropy injection after dark matter freeze-out, and identify how the Affleck-Dine mechanism would generate the baryon and dark asymmetries.

  13. Twin Higgs Asymmetric Dark Matter.

    PubMed

    García García, Isabel; Lasenby, Robert; March-Russell, John

    2015-09-18

    We study asymmetric dark matter (ADM) in the context of the minimal (fraternal) twin Higgs solution to the little hierarchy problem, with a twin sector with gauged SU(3)^{'}×SU(2)^{'}, a twin Higgs doublet, and only third-generation twin fermions. Naturalness requires the QCD^{'} scale Λ_{QCD}^{'}≃0.5-20  GeV, and that t^{'} is heavy. We focus on the light b^{'} quark regime, m_{b^{'}}≲Λ_{QCD}^{'}, where QCD^{'} is characterized by a single scale Λ_{QCD}^{'} with no light pions. A twin baryon number asymmetry leads to a successful dark matter (DM) candidate: the spin-3/2 twin baryon, Δ^{'}∼b^{'}b^{'}b^{'}, with a dynamically determined mass (∼5Λ_{QCD}^{'}) in the preferred range for the DM-to-baryon ratio Ω_{DM}/Ω_{baryon}≃5. Gauging the U(1)^{'} group leads to twin atoms (Δ^{'}-τ^{'}[over ¯] bound states) that are successful ADM candidates in significant regions of parameter space, sometimes with observable changes to DM halo properties. Direct detection signatures satisfy current bounds, at times modified by dark form factors.

  14. Dissipative dark matter explains rotation curves

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2015-06-01

    Dissipative dark matter, where dark matter particles interact with a massless (or very light) boson, is studied. Such dark matter can arise in simple hidden sector gauge models, including those featuring an unbroken U (1 )' gauge symmetry, leading to a dark photon. Previous work has shown that such models can not only explain the large scale structure and cosmic microwave background, but potentially also dark matter phenomena on small scales, such as the inferred cored structure of dark matter halos. In this picture, dark matter halos of disk galaxies not only cool via dissipative interactions but are also heated via ordinary supernovae (facilitated by an assumed photon-dark photon kinetic mixing interaction). This interaction between the dark matter halo and ordinary baryons, a very special feature of these types of models, plays a critical role in governing the physical properties of the dark matter halo. Here, we further study the implications of this type of dissipative dark matter for disk galaxies. Building on earlier work, we develop a simple formalism which aims to describe the effects of dissipative dark matter in a fairly model independent way. This formalism is then applied to generic disk galaxies. We also consider specific examples, including NGC 1560 and a sample of dwarf galaxies from the LITTLE THINGS survey. We find that dissipative dark matter, as developed here, does a fairly good job accounting for the rotation curves of the galaxies considered. Not only does dissipative dark matter explain the linear rise of the rotational velocity of dwarf galaxies at small radii, but it can also explain the observed wiggles in rotation curves which are known to be correlated with corresponding features in the disk gas distribution.

  15. Is Cold Dark Matter a Vacuum Effect?

    NASA Astrophysics Data System (ADS)

    Houlden, Michael A.

    Current theories about the Universe based on an FLRW model conclude that it is composed of ~4% normal matter, ~28 % dark matter and ~68% Dark Energy which is responsible for the well-established accelerated expansion: this model works extremely well. As the Universe expands the density of normal and dark matter decreases while the proportion of Dark Energy increases. This model assumes that the amount of dark matter, whose nature at present is totally unknown, has remained constant. This is a natural assumption if dark matter is a particle of some kind - WIMP, sterile neutrino, lightest supersysmmetric particle or axion, etc. - that must have emerged from the early high temperature phase of the Big Bang. This paper proposes that dark matter is not a particle such as these but a vacuum effect, and that the proportion of dark matter in the Universe is actually increasing with time. The idea that led to this suggestion was that a quantum process (possibly the Higgs mechanism) might operate in the nilpotent vacuum that Rowlands postulates is a dual space to the real space where Standard Model fundamental fermions (and we) reside. This could produce a vacuum quantum state that has mass, which interacts gravitationally, and such states would be `dark matter'. It is proposed that the rate of production of dark matter by this process might depend on local circumstances, such as the density of dark matter and/or normal matter. This proposal makes the testable prediction that the ratio of baryonic to dark matter varies with redshift and offers an explanation, within the framework of Rowlands' ideas, of the coincidence problem - why has cosmic acceleration started in the recent epoch at redshift z ~0.55 when the Dark Energy density first became equal to the matter density?. This process also offers a potential solution to the `missing baryon' problem.

  16. New astrophysical probes of dark matter

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu

    In my thesis, I present four studies to explore astrophysical methods for understanding dark matter properties. To understand the nature of dark matter, I explore a few unstable dark matter models that are invoked as ways to address apparent discrepancies between the predictions of standard cold dark matter and observations of small-scale galactic structure. My studies are aimed at developing independent large-scale constraints on these models. One of the model is a decaying dark matter model such that one dark matter particle decays into two relativistic non-interacting particles. In the second model, a dark matter particle decays into a less massive, stable dark matter particle with a recoil kick velocity Vk and a relativistic non-interacting particle. I consider two types of experiments: one is weak lensing cosmic shear with future or forthcoming surveys like Dark Energy Survey (DES) and Large Synoptic Survey Telescope (LSST); the other one is Lyman-alpha forest spectrum, which has contemporary data from Sloan Digital Sky Survey (SDSS) and other observations. I found that large-scale structure growth is sensitive to the change of dark matter properties due to these decay processes, and they can provide competitive constraints comparing to other existing limits. On small scale, the gravitational interplay of baryon and dark matter can affect the clustering of dark matter. I examine adiabatic contraction (AC) models what are traditionally used to parametrize the dark matter response to the cooling of baryons by investigating a suite of numerical simulations. We found that the errors in AC reconstructions are correlated with baryonic physics and certain halo properties. Our results indicate that existing AC models need significant calibration in order to predicting realistic matter distribution.

  17. Stealth dark matter: Dark scalar baryons through the Higgs portal

    NASA Astrophysics Data System (ADS)

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X.-Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.; Lattice Strong Dynamics LSD Collaboration

    2015-10-01

    We present a new model of stealth dark matter: a composite baryonic scalar of an S U (ND) strongly coupled theory with even ND≥4 . All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to S U (4 ), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB≳300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  18. Theory and Motivations of Dark Sector Dark Matter and Forces

    NASA Astrophysics Data System (ADS)

    Schuster, Philip

    2017-01-01

    We present the theory and motivations underlying ``dark'' or ``hidden'' sector dark matter and new force scenarios. Dark sector scenarios with sub-GeV mass scales have attracted particular attention in the past several years, motivated in part by findings from direct detection, satellite, and LHC experiments, as well as precision measurements. Moreover, these scenarios offer some of the simplest and least explored possibilities for dark matter. As such, sub-GeV dark sector scenarios have become the focus of a broad and growing international program of experiments.

  19. Dynamics of dark energy with a coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Caldera-Cabral, Gabriela; Maartens, Roy; Lazkoz, Ruth

    2008-07-15

    Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modeled as exponential quintessence and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.

  20. Dark Forces and Dark Matter in a Hidden Sector

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah

    2012-01-01

    Hidden sectors in connection with GeV-scale dark forces and dark matter are not only a common feature of physics beyond the Standard Model such as string theory and SUSY but are also phenomenologically of great interest regarding recent astrophysical observations. The hidden photon in particular is also searched for and constrained by laboratory experiments, the current status of which will be presented here. Furthermore, several models of hidden sectors containing in addition a dark matter particle will be examined regarding their consistency with the dark matter relic abundance and direct detection experiments.

  1. The CRESST Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Majorovits, B.; Cozzini, C.; Henry, S.; Kraus, H.; Mikhailik, V.; Tolhurst, A. J. B.; Wahl, D.; Ramachers, Y.; Angloher, G.; Christ, P.; Hauff, D.; Ninkovic, J.; Petricca, F.; Pröbst, F.; Seidel, W.; Stodolsky, L.; Feilitzsch, F. V.; Jagemann, T.; Potzel, W.; Razeti, M.; Rau, W.; Stark, M.; Westphal, W.; Wulandari, H.; Jochum, J.; Bucci, C.

    2005-04-01

    We present first competitive results on WIMP dark matter using the phonon-light-detection technique. A particularly strong limit for WIMPs with coherent scattering results from selecting a region of the phonon-light plane corresponding to tungsten recoils. The observed count rate in the neutron band is compatible with the rate expected from neutron background. CRESST is presently being upgraded with a 66 channel SQUID readout system, a neutron shield and a muon veto system. This results in a significant improvement in sensitivity.

  2. The ORPHEUS dark matter experiment

    NASA Astrophysics Data System (ADS)

    Abplanalp, M.; Czapek, G.; Diggelmann, U.; Furlan, M.; Huber, D.; Janos, S.; Moser, U.; Pozzi, R.; Pretzl, K.; Schmiemann, K.; van den Brandt, B.; Konter, J. A.; Mango, S.; Perret-Gallix, D.; Kainer, K. U.; Knoop, K.-M.

    1996-02-01

    A progress report of the ORPHEUS dark matter experiment in the Bern Underground Laboratory is presented. A description of the ORPHEUS detector and its sensitivity to WIMPs is given. The detector will consist of 1 to 2 kg Sn granules operating in a magnetic field of approximately 320 G and at a temperature of 50 mK. In the first phase, the detector will be read out by conventional pickup coils, followed by a second phase with SQUID loops. Preliminary results on background and radioactivity measurements are shown.

  3. Self-interacting dark matter

    SciTech Connect

    Tulin, Sean

    2014-06-24

    The particle physics nature of dark matter (DM) can leave an imprint on the structure of Universe. If DM has a sizable cross section for self-interactions (much larger than the typical weak scale cross section), this can affect the density profiles of DM halos. Moreover, there exist long-standing discrepancies on small scales between astrophysical observations and predictions from N-body simulations of collisionless DM, which suggests that DM may be self-interacting. Here, we review these discrepancies, we discuss the particle physics implications of self-interacting DM, and we show that DM self-interactions have interesting implications for direct and indirect detection searches.

  4. Dark Matter in the MSSM

    SciTech Connect

    Cotta, R.C.; Gainer, J.S.; Hewett, J.L.; Rizzo, T.G.; /SLAC

    2009-04-07

    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.

  5. A model for halo formation with axion mixed dark matter

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Silk, Joseph

    2014-01-01

    There are several issues to do with dwarf galaxy predictions in the standard Λ cold dark matter (ΛCDM) cosmology that have suscitated much recent debate about the possible modification of the nature of dark matter as providing a solution. We explore a novel solution involving ultralight axions that can potentially resolve the missing satellites problem, the cusp-core problem and the `too big to fail' problem. We discuss approximations to non-linear structure formation in dark matter models containing a component of ultralight axions across four orders of magnitude in mass, 10-24 ≲ ma ≲ 10-20 eV, a range too heavy to be well constrained by linear cosmological probes such as the cosmic microwave background and matter power spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches. We find that an axion of mass ma ≈ 10-21 eV contributing approximately 85 per cent of the total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale, while still allowing such galaxies to form in significant number. Therefore, ultralight axions do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the small-scale problems of CDM. Our model simultaneously allows formation of enough high-redshift galaxies to allow reconciliation with observational constraints, and also reduces the maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites.

  6. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  7. Dark Matter in the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Diego, J. M.

    2015-05-01

    We present results on the dark matter distribution of the Hubble Frontier Fields (HFF). The HFF represents the best collection of strong lensing data in merging clusters. We study the first two clusters from the HFF program using a free-form method that makes no assumptions about the mass distribution to reconstruct the dark matter that best fits the strong lensing data. Our reconstructed dark matter distributions exhibit some interesting features including very shallow profiles and possible offsets between the baryonic and dark matter distribution. For the first time, we find evidence that suggests that the strong lensing data seems to be sensitive to the mass of the X-ray plasma. Also, by analyzing the strong lensing in one individual galaxy we are able to constrain the shape of the dark matter halo around that galaxy. Our results support the standard models of dark matter and disfavours alternative models like MOND.

  8. Asymmetric dark matter models in SO(10)

    NASA Astrophysics Data System (ADS)

    Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming

    2017-02-01

    We systematically study the possibilities for asymmetric dark matter in the context of non-supersymmetric SO(10) models of grand unification. Dark matter stability in SO(10) is guaranteed by a remnant Z2 symmetry which is preserved when the intermediate scale gauge subgroup of SO(10) is broken by a {126} dimensional representation. The asymmetry in the dark matter states is directly generated through the out-of-equilibrium decay of particles around the intermediate scale, or transferred from the baryon/lepton asymmetry generated in the Standard Model sector by leptogenesis. We systematically classify possible asymmetric dark matter candidates in terms of their quantum numbers, and derive the conditions for each case that the observed dark matter density is (mostly) explained by the asymmetry of dark matter particles.

  9. Axion dark matter detection using atomic transitions.

    PubMed

    Sikivie, P

    2014-11-14

    Dark matter axions may cause transitions between atomic states that differ in energy by an amount equal to the axion mass. Such energy differences are conveniently tuned using the Zeeman effect. It is proposed to search for dark matter axions by cooling a kilogram-sized sample to millikelvin temperatures and count axion induced transitions using laser techniques. This appears to be an appropriate approach to axion dark matter detection in the 10^{-4}  eV mass range.

  10. Improved constraints on inelastic dark matter

    SciTech Connect

    Schmidt-Hoberg, Kai; Winkler, Martin Wolfgang E-mail: mwinkler@ph.tum.de

    2009-09-01

    We perform an extensive study of the DAMA annual modulation data in the context of inelastic dark matter. We find that inelastic dark matter with mass m{sub χ}∼>15 GeV is excluded at the 95% confidence level by the combination of DAMA spectral information and results from other direct detection experiments. However, at smaller m{sub χ}, inelastic dark matter constitutes a possible solution to the DAMA puzzle.

  11. Dark Matter Jets at the LHC

    SciTech Connect

    Bai, Yang; Rajaraman, Arvind; /UC, Irvine

    2012-03-28

    We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

  12. Asymmetric dark matter bound state

    NASA Astrophysics Data System (ADS)

    Bi, Xiao-Jun; Kang, Zhaofeng; Ko, P.; Li, Jinmian; Li, Tianjun

    2017-02-01

    We propose an interesting framework for asymmetric scalar dark matter (ADM), which has novel collider phenomenology in terms of an unstable ADM bound state (ADMonium) produced via Higgs portals. ADMonium is a natural consequence of the basic features of ADM: the (complex scalar) ADM is charged under a dark local U (1 )d symmetry which is broken at a low scale and provides a light gauge boson X . The dark gauge coupling is strong and then ADM can annihilate away into X -pair effectively. Therefore, the ADM can form a bound state due to its large self-interaction via X mediation. To explore the collider signature of ADMonium, we propose that ADM has a two-Higgs doublet portal. The ADMonium can have a sizable mixing with the heavier Higgs boson, which admits a large cross section of ADMonium production associated with b b ¯. The resulting signature at the LHC depends on the decays of X . In this paper we consider a case of particular interest: p p →b b ¯ +ADMonium followed by ADMonium→2 X →2 e+e- where the electrons are identified as (un)converted photons. It may provide a competitive explanation to heavy di-photon resonance searches at the LHC.

  13. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia E-mail: laviniah@kth.se

    2015-12-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  14. Dipolar dark matter with massive bigravity

    SciTech Connect

    Blanchet, Luc; Heisenberg, Lavinia

    2015-12-14

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alternative to dark matter called dipolar dark matter (DDM) in which two different species of dark matter are separately coupled to the two metrics of bigravity and are linked together by an internal vector field. We show that this model successfully reproduces the phenomenology of dark matter at galactic scales (i.e. MOND) as a result of a mechanism of gravitational polarisation. The model is safe in the gravitational sector, but because of the particular couplings of the matter fields and vector field to the metrics, a ghost in the decoupling limit is present in the dark matter sector. However, it might be possible to push the mass of the ghost beyond the strong coupling scale by an appropriate choice of the parameters of the model. Crucial questions to address in future work are the exact mass of the ghost, and the cosmological implications of the model.

  15. The US Dark Matter Direct Detection Program

    NASA Astrophysics Data System (ADS)

    Baer, Howard

    2007-11-01

    Recently, the joint HEPAP/AAAS DMSAG (Dark matter Scientific Assessment Group) outlined a strategy for the future of dark matter direct detection. I will discuss the motivations for dark matter detection, possible DM candidates from theory, and the variety of techniques proposed to push the search forward into the most interesting regimes of parameter space. These techniques include cryogenic detection, detection via noble liquids, and directional detection. Coupled with results from LHC in the next few years, we may be on our way to revealing the identity of the mysterious dark matter particle.

  16. DAMIC: a novel dark matter experiment

    SciTech Connect

    Tiffenberg, Javier; Bertou, Xavier; Butner, Melissa J.; Cancelo, Gustavo; Chavarria, Alvaro; D'Olivo, Juan Carlos; Estrada Vigil, Juan Cruz; Moroni, Guillermo Fernandez; Izraelevitch, Federico; Kilminster, Ben; Lawson, Ian T.; Marsal, Fernando; Molina, Jorge; Privitera, Paolo; Schwarz, Tom; Sofo haro, Miguel; Tiffenberg, Javier; Trillaud, Frederic; Zhou, Jing

    2013-10-24

    DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold below 0.5 keV nuclear recoil energy, making the search for dark matter particles with low masses possible. We report on early results and experience gained from a detector that has been running at SNOLAB from Dec 2012. We also discuss the measured and expected backgrounds and present the plan for future detectors to be installed in 2014.

  17. Regenerating a symmetry in asymmetric dark matter.

    PubMed

    Buckley, Matthew R; Profumo, Stefano

    2012-01-06

    Asymmetric dark matter theories generically allow for mass terms that lead to particle-antiparticle mixing. Over the age of the Universe, dark matter can thus oscillate from a purely asymmetric configuration into a symmetric mix of particles and antiparticles, allowing for pair-annihilation processes. Additionally, requiring efficient depletion of the primordial thermal (symmetric) component generically entails large annihilation rates. We show that unless some symmetry completely forbids dark matter particle-antiparticle mixing, asymmetric dark matter is effectively ruled out for a large range of masses, for almost any oscillation time scale shorter than the age of the Universe.

  18. Unified dark energy-dark matter model with inverse quintessence

    SciTech Connect

    Ansoldi, Stefano; Guendelman, Eduardo I. E-mail: guendel@bgu.ac.il

    2013-05-01

    We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.

  19. Mechanism for thermal relic dark matter of strongly interacting massive particles.

    PubMed

    Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G

    2014-10-24

    We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.

  20. Dark Matter Detection with DM-Ice

    NASA Astrophysics Data System (ADS)

    Broerman, Benjamin

    2011-10-01

    There is strong evidence for the existence of dark matter, theoretically favored to be a weakly interacting and gravitationally influential form of non-baryonic matter. The λCDM model delineates 23% of the mass-energy of the Universe to be dark matter, 73% dark energy, and the remaining 4% baryonic matter. However, conclusive evidence as to the direct detection of dark matter has yet to be produced. In December 2010, a new project, named DM-Ice, deployed two prototype NaI detectors in the South Pole ice, testing the feasibility for a future, larger-scale direct detection experiment. The goal is to search for the annual modulation signal expected from interactions between the target nuclei and the weakly interacting massive particle (WIMP), a candidate dark matter particle. I will report on my contributions to data readout and analysis, as well as preparations for the future experiment.

  1. Dark matter near the sun

    NASA Technical Reports Server (NTRS)

    Bahcall, J. N.

    1986-01-01

    The amount of dark matter in the disk of the Galaxy at the solar position is determined by comparing the observed distributions of tracer stars with the predictions obtained from different assumptions of how the unseen matter is distributed. The major uncertainties, observational and theoretical, are estimated. For all the observed samples, typical models imply that about half of the mass in the solar vicinity must be in the form of unobserved matter. The volume density of unobserved material near the sun is about 0.1 solar mass/cu pc; the corresponding column density is about 30 solar masses/cu pc. This, so far unseen, material must be in a disk with an exponential scale height of less than 0.7 kpc. All the existing observations are consistent with the unseen disk material being in the form of stars not massive enough to burn hydrogen. It is suggested that the unseen material that is required to hold up the rotation curves of galaxies and to satisfy the virial theorem for clusters of galaxies might also be in the form of low-mass stars.

  2. Detection of supersymmetric dark matter.

    NASA Astrophysics Data System (ADS)

    Xinrui, Hou; Li, Xueqian; Xinhe, Meng; Zhijian, Tao

    1997-10-01

    A re-analysis of a heavy charged particle production event observed at the cloudy chamber of the Yunnan Cosmic Ray Station (YCRS) in 1972 indicates that the mysterious heavy particle may be identified as a supersymmetric (SUSY) particle produced by bombarding a neutral SUSY cosmic ray particle on a proton. Based on the assumption, following literature studies that the neutral SUSY particle which constitutes the main fraction of the cold dark matter is a scalar neutrino (sneutrino) or neutralino (photino), the authors evaluate the flux of such SUSY particles which gain sufficient energies via elastic scattering with charged cosmic particles on the way to an Earth detector and the capture rates in both the sneutrino and photino cases respectively. The errors appearing in the study are briefly discussed and this work may provide a basis of designing cosmic ray detectors to search for SUSY particles.

  3. Dark Matter Tested with Satellites

    NASA Astrophysics Data System (ADS)

    Combes, F.; Tiret, O.

    2010-06-01

    Recently, the distribution of velocity dispersion as far as 400 kpc around red isolated galaxies was derived from statistical studies of satellites in the SDSS [1]. This could help to constrain dark matter models at intermediate scales. We compare the predictions of different DM distributions, ΛCDM with NFW or cored profiles, and also modified gravity models, with observations. It is shown how the freedom in the various parameters (radial distribution of satellites, velocity anisotropy, external field effect), prevents to disentangle the models, which all can give pretty good fits to the data. In all cases, realistic radial variations of velocity anisotropy are used for the satellites, and a constant stellar-mass to light ratio for the host galaxies.

  4. The PICASSO Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Wichoski, Ubi

    2011-12-01

    The PICASSO experiment searches for cold dark matter through the direct detection of weakly interacting massive particles (WIMPs) via their spin-dependent interactions with fluorine at SNOLAB, Sudbury—ON, Canada since 2002. The detection principle is based on the superheated droplet technique; the detectors consist of a gel matrix with millions of liquid droplets of superheated fluorocarbon (C4F10) dispersed in it. Recently, a new setup has been built and installed in the Ladder Lab area at SNOLAB. In the present phase of the experiment the Collaboration is running 4.5-litre detector modules with approximately 85 g of active mass per module. Here, we give an overview of the experiment and discuss the progress in background mitigation, in particular background discrimination in the PICASSO detectors.

  5. Singlet-Doublet Dark Matter

    SciTech Connect

    Cohen, Timothy; Kearney, John; Pierce, Aaron; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  6. CP violating scalar Dark Matter

    NASA Astrophysics Data System (ADS)

    Cordero-Cid, A.; Hernández-Sánchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokołowska, D.

    2016-12-01

    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z 2 symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.

  7. The Cryogenic Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Sander, Joel

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) is an experiment to search for Weakly Interacting Massive Particles (WIMPs). The experiment initially was deployed at a shallow underground site, and is currently deployed at a deep underground site at the Soudan Mine in Minnesota. The detectors operate at cryogenic temperature, and are capable of distinguishing nuclear recoils from WIMP interactions from various backgrounds. The detectors are shielded from background by both active and passive elements. We will describe the components of the overall experiment, and focus on the novel data acquisition system that has been develop to control and monitor the experiment via the World Wide Web. Preliminary signals from the operation at Soudan will be discussed.

  8. Unbound particles in dark matter halos

    SciTech Connect

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  9. ℤ{sub 2} SIMP dark matter

    SciTech Connect

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-05

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N{sup ′} processes, where N dark matter particles annihilate to N{sup ′} of them. In the most common scenarios, where dark matter stability is guaranteed by a ℤ{sub 2} symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  10. Z{sub 2} SIMP dark matter

    SciTech Connect

    Bernal, Nicolás; Chu, Xiaoyong E-mail: xchu@ictp.it

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z{sub 2} symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model.

  11. Dark Matter Density from Heavy Neutrino Decays

    NASA Astrophysics Data System (ADS)

    Saadat, Hassan; Rostampour, Malihe

    2012-10-01

    As we know the heavy neutrino decays is a successful model for describing dark matter and also is origin of the universe entropy. In this paper we use heavy neutrino decays to calculate time-dependent dark matter density. In that case we use observational data to fixing our solutions.

  12. Shedding Light on Dark Matter at Colliders

    NASA Astrophysics Data System (ADS)

    Mitsou, Vasiliki A.

    2013-12-01

    Dark matter remains one of the most puzzling mysteries in Fundamental Physics of our times. Experiments at high-energy physics colliders are expected to shed light to its nature and determine its properties. This review focuses on recent searches for dark matter signatures at the Large Hadron Collider, also discussing related prospects in future e+e- colliders.

  13. The status of neutralino dark matter

    SciTech Connect

    Shakya, Bibhushan

    2014-06-24

    The lightest neutralino in supersymmetry is the most studied dark matter candidate. This writeup reviews the status of neutralino dark matter in minimal and nonminimal supersymmetric models in light of recent null results at the XENON100 experiment and the observation of a 130 GeV gamma ray signal from the Galactic Center by the Fermi LAT.

  14. Natural implementation of neutralino dark matter

    NASA Astrophysics Data System (ADS)

    King, Steve F.; Roberts, Jonathan P.

    2006-09-01

    The prediction of neutralino dark matter is generally regarded as one of the successes of the Minimal Supersymmetric Standard Model (MSSM). However the successful regions of parameter space allowed by WMAP and collider constraints are quite restricted. We discuss fine-tuning with respect to both dark matter and Electroweak Symmetry Breaking (EWSB) and explore regions of MSSM parameter space with non-universal gaugino and third family scalar masses in which neutralino dark matter may be implemented naturally. In particular allowing non-universal gauginos opens up the bulk region that allows Bino annihilation via t-channel slepton exchange, leading to ``supernatural dark matter'' corresponding to no fine-tuning at all with respect to dark matter. By contrast we find that the recently proposed ``well tempered neutralino'' regions involve substantial fine-tuning of MSSM parameters in order to satisfy the dark matter constraints, although the fine tuning may be ameliorated if several annihilation channels act simultaneously. Although we have identified regions of ``supernatural dark matter'' in which there is no fine tuning to achieve successful dark matter, the usual MSSM fine tuning to achieve EWSB always remains.

  15. Collision of Bose Condensate Dark Matter structures

    SciTech Connect

    Guzman, F. S.

    2008-12-04

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  16. Origins and challenges of viral dark matter.

    PubMed

    Krishnamurthy, Siddharth R; Wang, David

    2017-02-09

    The accurate classification of viral dark matter - metagenomic sequences that originate from viruses but do not align to any reference virus sequences - is one of the major obstacles in comprehensively defining the virome. Depending on the sample, viral dark matter can make up from anywhere between 40 and 90% of sequences. This review focuses on the specific nature of dark matter as it relates to viral sequences. We identify three factors that contribute to the existence of viral dark matter: the divergence and length of virus sequences, the limitations of alignment based classification, and limited representation of viruses in reference sequence databases. We then discuss current methods that have been developed to at least partially circumvent these limitations and thereby reduce the extent of viral dark matter.

  17. Cosmological simulations of multicomponent cold dark matter.

    PubMed

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  18. Vector dark matter annihilation with internal bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; Nayak, Alekha C.; Tomar, Gaurav

    2017-03-01

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum is the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.

  19. Dark matter direct-detection experiments

    NASA Astrophysics Data System (ADS)

    Marrodán Undagoitia, Teresa; Rauch, Ludwig

    2016-01-01

    In recent decades, several detector technologies have been developed with the quest to directly detect dark matter interactions and to test one of the most important unsolved questions in modern physics. The sensitivity of these experiments has improved with a tremendous speed due to a constant development of the detectors and analysis methods, proving uniquely suited devices to solve the dark matter puzzle, as all other discovery strategies can only indirectly infer its existence. Despite the overwhelming evidence for dark matter from cosmological indications at small and large scales, clear evidence for a particle explaining these observations remains absent. This review summarises the status of direct dark matter searches, focusing on the detector technologies used to directly detect a dark matter particle producing recoil energies in the keV energy scale. The phenomenological signal expectations, main background sources, statistical treatment of data and calibration strategies are discussed.

  20. Dark matter and the habitability of planets

    SciTech Connect

    Hooper, Dan; Steffen, Jason H. E-mail: jsteffen@fnal.gov

    2012-07-01

    In many models, dark matter particles can elastically scatter with nuclei in planets, causing those particles to become gravitationally bound. While the energy expected to be released through the subsequent annihilations of dark matter particles in the interior of the Earth is negligibly small (a few megawatts in the most optimistic models), larger planets that reside in regions with higher densities of slow moving dark matter could plausibly capture and annihilate dark matter at a rate high enough to maintain liquid water on their surfaces, even in the absence of additional energy from starlight or other sources. On these rare planets, it may be dark matter rather than light from a host star that makes it possible for life to emerge, evolve, and survive.

  1. How baryonic feedback processes can affect dark matter halos: a stochastic model

    NASA Astrophysics Data System (ADS)

    Freundlich, J.; El-Zant, A.; Combes, F.

    2016-12-01

    Feedback processes from stars and active galactic nuclei result in gas density fluctuations which can contribute to `heating' dark matter haloes, decrease their density at the center and hence form more realistic `cores' than the steep `cusps' predicted by cold dark matter (CDM) simulations. We present a theoretical model deriving this effect from first principles: stochastic density variations in the gas distribution perturb the gravitational potential and hence affect the halo particles. We analytically derive the velocity dispersion imparted to the CDM particles and the corresponding relaxation time, and further perform numerical simulations to show that the assumed process can indeed lead to the formation of a core in an initially cuspy halo within a timescale comparable to the derived relaxation time. This suggests that feedback-induced cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrized in relatively simple terms.

  2. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    SciTech Connect

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; Fleming, G. T.; Jin, X. -Y.; Kiskis, J.; Kribs, G. D.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Syritsyn, S.; Vranas, P.; Weinberg, E.; Witzel, O.

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements, basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.

  3. Stealth Dark Matter: Dark scalar baryons through the Higgs portal

    DOE PAGES

    Appelquist, T.; Brower, R. C.; Buchoff, M. I.; ...

    2015-10-23

    We present a new model of "Stealth Dark Matter": a composite baryonic scalar of an SU(ND) strongly coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark matter stability is automatic without imposing an additional discrete or global symmetry. Constituent fermions transform in vectorlike representations of the electroweak group that permit both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision measurements,more » basic collider limits, and spin-independent direct detection scattering through Higgs exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection, excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the dark baryon mass mB ≳ 300 GeV is obtained from the indirect requirement that the lightest dark meson not be observable at LEP II. Furthermore, we briefly survey some intriguing properties of stealth dark matter that are worthy of future study, including collider studies of dark meson production and decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed study of which will appear in a companion paper.« less

  4. Bouncing Cosmologies with Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Marcianò, Antonino; Wang, Dong-Gang; Wilson-Ewing, Edward

    2017-01-01

    We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  5. Ratcheting Up The Search for Dark Matter

    SciTech Connect

    McDermott, Samuel Dylan

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and decay of

  6. Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe

    NASA Astrophysics Data System (ADS)

    Zhang, Yang

    2003-10-01

    Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective Yang-Mills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities OmegaLambda~0.7 for dark energy and Omegam~0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.

  7. The dark matter of galaxy voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  8. Condensation of galactic cold dark matter

    SciTech Connect

    Visinelli, Luca

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  9. Dark matter decay through gravity portals

    NASA Astrophysics Data System (ADS)

    Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian

    2017-02-01

    Motivated by the fact that, so far, the whole body of evidence for dark matter is of gravitational origin, we study the decays of dark matter into Standard Model particles mediated by gravity portals, i.e., through nonminimal gravitational interactions of dark matter. We investigate the decays in several widely studied frameworks of scalar and fermionic dark matter where the dark matter is stabilized in flat spacetime via global symmetries. We find that the constraints on the scalar singlet dark matter candidate are remarkably strong and exclude large regions of the parameter space, suggesting that an additional stabilizing symmetry should be in place. In contrast, the scalar doublet and the fermionic singlet candidates are naturally protected against too-fast decays by gauge and Lorentz symmetry, respectively. For a nonminimal coupling parameter ξ ˜O (1 ), decays through the gravity portal are consistent with observations if the dark matter mass is smaller than ˜105 GeV , for the scalar doublet, and ˜1 06 GeV , for the fermionic singlet.

  10. Results from the DarkSide-50 Dark Matter Experiment

    SciTech Connect

    Fan, Alden

    2016-01-01

    While there is tremendous astrophysical and cosmological evidence for dark matter, its precise nature is one of the most significant open questions in modern physics. Weakly interacting massive particles (WIMPs) are a particularly compelling class of dark matter candidates with masses of the order 100 GeV and couplings to ordinary matter at the weak scale. Direct detection experiments are aiming to observe the low energy (<100 keV) scattering of dark matter off normal matter. With the liquid noble technology leading the way in WIMP sensitivity, no conclusive signals have been observed yet. The DarkSide experiment is looking for WIMP dark matter using a liquid argon target in a dual-phase time projection chamber located deep underground at Gran Sasso National Laboratory (LNGS) in Italy. Currently filled with argon obtained from underground sources, which is greatly reduced in radioactive 39Ar, DarkSide-50 recently made the most sensitive measurement of the 39Ar activity in underground argon and used it to set the strongest WIMP dark matter limit using liquid argon to date. This work describes the full chain of analysis used to produce the recent dark matter limit, from reconstruction of raw data to evaluation of the final exclusion curve. The DarkSide- 50 apparatus is described in detail, followed by discussion of the low level reconstruction algorithms. The algorithms are then used to arrive at three broad analysis results: The electroluminescence signals in DarkSide-50 are used to perform a precision measurement of ii longitudinal electron diffusion in liquid argon. A search is performed on the underground argon data to identify the delayed coincidence signature of 85Kr decays to the 85mRb state, a crucial ingredient in the measurement of the 39Ar activity in the underground argon. Finally, a full description of the WIMP search is given, including development of cuts, efficiencies, energy scale, and exclusion

  11. The XENON dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Xenon Collaboration

    The XENON experiment aims at the direct detection of dark matter in the form of WIMPs (Weakly Interacting Massive Particles) via their elastic scattering off Xenon nuclei. With a fiducial mass of 1000 kg of liquid xenon, a sufficiently low threshold of 16 keV recoil energy and an un-rejected background rate of 10 events per year, XENON would be sensitive to a WIMP-nucleon interaction cross section of ~10-46cm2, for WIMPs with masses above 50 GeV. The 1 tonne scale experiment (XENON1T) will be realized with an array of ten identical 100 kg detector modules (XENON100). The detectors are time projection chambers operated in dual (liquid/gas) phase, to detect simultaneously the ionization, through secondary scintillation in the gas, and primary scintillation in the liquid produced by low energy recoils. The distinct ratio of primary to secondary scintillation for nuclear recoils from WIMPs (or neutrons), and for electron recoils from background, is key to the event-by-event discrimination capability of XENON. A 3kg dual phase detector with light readout provided by an array of 7 photomultipliers is currently being tested, along with other prototypes dedicated to various measurements relevant to the XENON program. We present some of the results obtained to-date and briefly discuss the next step in the phased approach to the XENON experiment, i.e. the development and underground deployment of a 10 kg detector (XENON10) during 2005.

  12. Very Degenerate Higgsino Dark Matter

    NASA Astrophysics Data System (ADS)

    Chun, Eung Jin; Jung, Sunghoon; Park, Jong-Chul

    2017-01-01

    We present a study of the Very Degenerate Higgsino Dark Matter (DM), whose mass splitting between the lightest neutral and charged components is O(1) MeV, much smaller than radiative splitting of 355 MeV. The scenario is realized in the minimal supersymmetric standard model by small gaugino mixings. In contrast to the pure Higgsino DM with the radiative splitting only, various observable signatures with distinct features are induced. First of all, the very small mass splitting makes (a) sizable Sommerfeld enhancement and Ramsauer-Townsend (RT) suppression relevant to ˜1 TeV Higgsino DM, and (b) Sommerfeld-Ramsauer-Townsend effect saturate at lower velocities v/c ≲ 10-3. As a result, annihilation signals can be large enough to be observed from the galactic center and/or dwarf galaxies, while the relative signal sizes can vary depending on the locations of Sommerfeld peaks and RT dips. In addition, at collider experiments, stable chargino signatures can be searched for to probe the model in the future. DM direct detection signals, however, depend on the Wino mass; even no detectable signals can be induced if the Wino is heavier than about 10 TeV.

  13. Updated galactic radio constraints on Dark Matter

    SciTech Connect

    Cirelli, Marco; Taoso, Marco

    2016-07-25

    We perform a detailed analysis of the synchrotron signals produced by dark matter annihilations and decays. We consider different set-ups for the propagation of electrons and positrons, the galactic magnetic field and dark matter properties. We then confront these signals with radio and microwave maps, including PLANCK measurements, from a frequency of 22 MHz up to 70 GHz. We derive two sets of constraints: conservative and progressive, the latter based on a modeling of the astrophysical emission. Radio and microwave constraints are complementary to those obtained with other indirect detection methods, especially for dark matter annihilating into leptonic channels.

  14. Constraints on hadronically decaying dark matter

    SciTech Connect

    Garny, Mathias; Ibarra, Alejandro; Tran, David E-mail: alejandro.ibarra@ph.tum.de

    2012-08-01

    We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons. We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.

  15. Hidden photons in connection to dark matter

    NASA Astrophysics Data System (ADS)

    Andreas, Sarah; Goodsell, Mark D.; Ringwald, Andreas

    2013-11-01

    Light extra U(1) gauge bosons, so called hidden photons, which reside in a hidden sector have attracted much attention since they are a well motivated feature of many scenarios beyond the Standard Model and furthermore could mediate the interaction with hidden sector dark matter. We review limits on hidden photons from past electron beam dump experiments including two new limits from such experiments at KEK and Orsay. In addition, we study the possibility of having dark matter in the hidden sector. A simple toy model and different supersymmetric realisations are shown to provide viable dark matter candidates in the hidden sector that are in agreement with recent direct detection limits.

  16. The Status of Sterile Neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Horiuchi, Shunsaku

    2017-01-01

    The sterile neutrino is a particle dark matter candidate with a host of observable signatures that is close to being fully tested. I will first review the implications for structure formation, comparing predictions of sterile neutrino cosmologies against observations. I will then review analyses of X-rays from dark matter concentrations in search of mono-energetic photons predicted from sterile neutrino dark matter decays. Structure formation and X-rays offer important complementary probes, and I will highlight the recent rapid progress in testing the sterile neutrino parameter space. I will also discuss implications of analyses leading to the detection of X-ray lines from clusters of galaxies and Andromeda.

  17. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  18. Quintessence with quadratic coupling to dark matter

    SciTech Connect

    Boehmer, Christian G.; Chan, Nyein; Caldera-Cabral, Gabriela; Lazkoz, Ruth; Maartens, Roy

    2010-04-15

    We introduce a new form of coupling between dark energy and dark matter that is quadratic in their energy densities. Then we investigate the background dynamics when dark energy is in the form of exponential quintessence. The three types of quadratic coupling all admit late-time accelerating critical points, but these are not scaling solutions. We also show that two types of coupling allow for a suitable matter era at early times and acceleration at late times, while the third type of coupling does not admit a suitable matter era.

  19. A Comparison of Future Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Hutchinson, Jeffrey; Farnsworth, Kara; Deseno, James; Grippo, Anthony; Masse, Shane

    2017-01-01

    We analyze the projected limits from current and upcoming direct detection, indirect detection and future collider searches in the context of minimal extensions to the standard model with thermal relic dark matter. These models contain a singlet dark matter particle with cubic renormalizable couplings between quarks and ``partner'' particles with the same gauge quantum numbers as quarks. Within this framework, we consider six models where the dark matter is a scalar boson, fermion, or vector boson, and may or may not be its own antiparticle.

  20. Are leptogenesis and dark matter related?

    NASA Astrophysics Data System (ADS)

    Cosme, Nicolas; Lopez Honorez, Laura; Tytgat, Michel H.

    2005-08-01

    We investigate the possibility that dark matter and the baryon asymmetry of the Universe are generated by the same mechanism, following an idea initially proposed by Kuzmin and recently discussed by Kitano and Low. In our model, based on a left-right extension of the standard model, the baryon asymmetry is generated through leptogenesis and dark matter is made of relic stable right-handed neutrinos with mass ˜few GeV. Constraints on the model imply that this form of dark matter would unfortunately escape detection.

  1. Models of Supersymmetry for Dark Matter

    NASA Astrophysics Data System (ADS)

    Muñoz, Carlos

    2017-03-01

    A brief review of supersymmetric models and their candidates for dark matter is carried out. The neutralino is a WIMP candidate in the MSSM where R-parity is conserved, but this model has the μ problem. There are natural solutions to this problem that necessarily introduce new structure beyond the MSSM, including new candidates for dark matter. In particular, in an extension of the NMSSM, the right-handed sneutrino can be used for this job. In R-parity violating models such as the μvSSM, the gravitino can be the dark matter, and could be detected by its decay products in gamma-ray experiments.

  2. Asymmetric dark matter in braneworld cosmology

    SciTech Connect

    Meehan, Michael T.; Whittingham, Ian B. E-mail: Ian.Whittingham@jcu.edu.au

    2014-06-01

    We investigate the effect of a braneworld expansion era on the relic density of asymmetric dark matter. We find that the enhanced expansion rate in the early universe predicted by the Randall-Sundrum II (RSII) model leads to earlier particle freeze-out and an enhanced relic density. This effect has been observed previously by Okada and Seto (2004) for symmetric dark matter models and here we extend their results to the case of asymmetric dark matter. We also discuss the enhanced asymmetric annihilation rate in the braneworld scenario and its implications for indirect detection experiments.

  3. Light and dark matter in the universe

    SciTech Connect

    2010-01-01

    This simulation follows the growth of density perturbations in both gas and dark matter components in a volume 1 billion light years on a side beginning shortly after the Big Bang and evolved to half the present age of the universe. It calculates the gravitational clumping of intergalactic gas and dark matter modeled using a computational grid of 64 billion cells and 64 billion dark matter particles. The simulation uses a computational grid of 4096^3 cells and took over 4,000,000 CPU hours to complete. Read more: http://www.anl.gov/Media_Center/News/2010/news100104.html

  4. New Efforts to Identify Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Could the dark matter in our universe be warm instead of cold? Recent observations have placed new constraints on the warm dark matter model.Whats the Deal with Cold/Warm/Hot Dark Matter?An example of cold dark matter: MACHOs, massive objects like black holes that are hiding in the halo of our galaxy. [Alain r]Nobody knows what dark matter is made of, but we have a few theories. The objects or particles that could make up dark matter fall into three broad categories cold, warm, and hot dark matter based on something called their free streaming length, or how far they moved due to random motions in the early universe.Neutrinos are an example of hot dark matter: very light particles with free streaming lengths much longer than the size of a typical galaxy. Cold dark matter could consist of objects like black holes or brown dwarfs, or particles like WIMPs all of which are very heavy and therefore have free streaming lengths much shorter than the size of a galaxy.Warm dark matter is whats in between: middle-mass particles with free streaming lengths roughly the size of a galaxy. There arent any known particles that fit this description, but there are theorized particles such as sterile neutrinos or gravitinos that do.Cumulative mass functions at z = 6 for different values of the warm dark matter particle mass mX. The shaded boxs on the left correspond to the observed number density of faint galaxies within different confidence levels. [Menci et al. 2016]Smoothing Out the UniverseThe widely favored model is lambda-CDM, in which cold dark matter makes up the missing matter in our universe. This model nicely explains much of what we observe, but it still has a few problems. The biggest issue with lambda-CDM is that it predicts that there should be many more small, dwarf galaxies than we observe.While this could just mean that we havent yet managed to see all the existing, faint dwarf galaxies, we should also consider alternative models the warm dark matter model chief

  5. Absorption of light dark matter in semiconductors

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2017-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multiphonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We derive the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in germanium and silicon, and show that existing direct detection results already probe new parameter space. With only a moderate exposure, low-threshold semiconductor target experiments can exceed current astrophysical and terrestrial constraints on sub-keV bosonic dark matter.

  6. Hidden SU(N) glueball dark matter

    DOE PAGES

    Soni, Amarjit; Zhang, Yue

    2016-06-21

    Here we investigate the possibility that the dark matter candidate is from a pure non-abelian gauge theory of the hidden sector, motivated in large part by its elegance and simplicity. The dark matter is the lightest bound state made of the confined gauge fields, the hidden glueball. We point out this simple setup is capable of providing rich and novel phenomena in the dark sector, especially in the parameter space of large N. They include self-interacting and warm dark matter scenarios, Bose-Einstein condensation leading to massive dark stars possibly millions of times heavier than our sun giving rise to gravitationalmore » lensing effects, and indirect detections through higher dimensional operators as well as interesting collider signatures.« less

  7. Dark-matter QCD-axion searches.

    PubMed

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  8. Dark-matter QCD-axion searches

    PubMed Central

    Rosenberg, Leslie J

    2015-01-01

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and

  9. Supernova cooling in a dark matter smog

    SciTech Connect

    Zhang, Yue

    2014-11-27

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter “smog” inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  10. Initial conditions for imperfect dark matter

    SciTech Connect

    Ramazanov, Sabir

    2015-12-01

    We discuss initial conditions for the recently proposed Imperfect Dark Matter (Modified Dust). We show that they are adiabatic under fairly moderate assumptions about the cosmological evolution of the Universe at the relevant times.

  11. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  12. Disentangling Dark Matter Dynamics with Directional Detection

    SciTech Connect

    Lisanti, Mariangela; Wacker, Jay G.; /SLAC

    2009-12-16

    Inelastic dark matter reconciles the DAMA anomaly with other null direct detection experiments and points to a non-minimal structure in the dark matter sector. In addition to the dominant inelastic interaction, dark matter scattering may have a subdominant elastic component. If these elastic interactions are suppressed at low momentum transfer, they will have similar nuclear recoil spectra to inelastic scattering events. While upcoming direct detection experiments will see strong signals from such models, they may not be able to unambiguously determine the presence of the subdominant elastic scattering from the recoil spectra alone. We show that directional detection experiments can separate elastic and inelastic scattering events and discover the underlying dynamics of dark matter models.

  13. Axino LSP baryogenesis and dark matter

    NASA Astrophysics Data System (ADS)

    Monteux, Angelo; Shin, Chang Sub

    2015-05-01

    We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitino can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.

  14. Astroparticle physics: Dark matter remains elusive

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong

    2017-02-01

    WIMPs, or weakly interacting massive particles, are the leading candidates for dark matter, the 'missing' mass in the Universe. An experiment has obtained no evidence for such particles, despite an impressive increase in sensitivity.

  15. Supernova cooling in a dark matter smog

    SciTech Connect

    Zhang, Yue

    2014-11-01

    A light hidden gauge boson with kinetic mixing with the usual photon is a popular setup in theories of dark matter. The supernova cooling via radiating the hidden boson is known to put an important constraint on the mixing. I consider the possible role dark matter, which under reasonable assumptions naturally exists inside supernova, can play in the cooling picture. Because the interaction between the hidden gauge boson and DM is likely unsuppressed, even a small number of dark matter compared to protons inside the supernova could dramatically shorten the free streaming length of the hidden boson. A picture of a dark matter ''smog'' inside the supernova, which substantially relaxes the cooling constraint, is discussed in detail.

  16. Dark Matter Candidates: A Status Report

    SciTech Connect

    Bergstroem, Lars

    2010-06-23

    A brief review is given of various dark matter candidates. In particular, some of the most studied candidates like axions, inert Higgs doublet, sterile neutrinos, supersymmetric particles and Kaluza-Klein particles are discussed. In particular, indirect detection methods are reviewed, with gamma-ray detection being a particularly important method. The situation also for indirect detection through antimatter cosmic rays has recently become quite interesting with new results having dark matter as one of the possible explanations. Problems of this explanation and possible solutions are discussed, and the importance of new measurements is emphasized. If the explanation is indeed dark matter, some unusual and unexpected properties would be needed. One should always keep the possible 'conventional' astrophysical explanations, like electron and positron radiation from pulsars in mind. To get a conclusive case for dark matter, detection in other channels will likely be needed, such as direct detection or detection of angular and spectral signatures in gamma-rays.

  17. Monochromatic neutrino lines from sneutrino dark matter

    NASA Astrophysics Data System (ADS)

    Arina, Chiara; Kulkarni, Suchita; Silk, Joseph

    2015-10-01

    We investigate the possibility of observing monochromatic neutrino lines originating from annihilation of dark matter. We analyze several astrophysical sources with overdensities of dark matter that can amplify the signal. As a case study, we consider mixed left- and right-handed sneutrino dark matter. We demonstrate that in the physically viable region of the model, one can obtain a prominent monochromatic neutrino line. We propose a search strategy to observe these neutrino lines in future generations of neutrino telescopes that is especially sensitive to dwarf spheroidal galaxies. We demonstrate that the presence of massive black holes in the cores of dwarfs as well as of more massive galaxies substantially boosts any putative signal. In particular, dark matter in dwarf galaxies spiked by an intermediate massive black hole provides a powerful means of probing low-annihilation cross sections well below 10-26 cm3 s-1 that are otherwise inaccessible by any future direct detection or collider experiment.

  18. Dark matter direct detection with accelerometers

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Mardon, Jeremy; Rajendran, Surjeet; Terrano, William A.

    2016-04-01

    The mass of the dark matter particle is unknown, and may be as low as ˜1 0-22 eV . The lighter part of this range, below ˜eV , is relatively unexplored both theoretically and experimentally but contains an array of natural dark matter candidates. An example is the relaxion, a light boson predicted by cosmological solutions to the hierarchy problem. One of the few generic signals such light dark matter can produce is a time-oscillating, equivalence-principle-violating force. We propose searches for this using accelerometers, and consider in detail the examples of torsion balances, atom interferometry, and pulsar timing. These approaches have the potential to probe large parts of unexplored parameter space in the next several years. Thus such accelerometers provide radically new avenues for the direct detection of dark matter.

  19. Status of the LUX Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fiorucci, S.; Akerib, D. S.; Bedikian, S.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; Carr, D.; Chapman, J.; Clark, K.; Classen, T.; Curioni, A.; Dahl, E.; Dazeley, S.; de Viveiros, L.; Druszkiewicz, E.; Gaitskell, R.; Hall, C.; Hernandez Faham, C.; Holbrook, B.; Kastens, L.; Kazkaz, K.; Lander, R.; Lesko, K.; Malling, D.; Mannino, R.; McKinsey, D.; Mei, D.; Mock, J.; Nikkel, J.; Phelps, P.; Schroeder, U.; Shutt, T.; Skulski, W.; Sorensen, P.; Spaans, J.; Stiegler, T.; Svoboda, R.; Sweany, M.; Thomson, J.; Toke, J.; Tripathi, M.; Walsh, N.; Webb, R.; White, J.; Wolfs, F.; Woods, M.; Zhang, C.

    2010-02-01

    The Large Underground Xenon (LUX) dark matter search experiment is currently being deployed at the Homestake Laboratory in South Dakota. We will highlight the main elements of design which make the experiment a very strong competitor in the field of direct detection, as well as an easily scalable concept. We will also present its potential reach for supersymmetric dark matter detection, within various timeframes ranging from 1 year to 5 years or more.

  20. Relativistic Dark Matter at the Galactic Center

    SciTech Connect

    Amin, Mustafa A.; Wizansky, Tommer; /SLAC

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  1. Dark Matter and the Galactic Center

    NASA Astrophysics Data System (ADS)

    Bergstrom, Lars

    2017-01-01

    The question of the identity of dark matter is one of the most outstanding enigmas of contemporary cosmology and particle astrophysics. An overview is given of the subject, a brief history, some proposed particle candidates, and the several methods now available for finally solving this difficult problem. The galactic center is one of the most interesting places for the dark matter search using γ-rays, but also one that has challenging, maybe confusing, other sources of GeV-scale radiation.

  2. A two measure model of dark energy and dark matter

    SciTech Connect

    Guendelman, Eduardo; Singleton, Douglas; Yongram, N. E-mail: dougs@csufresno.edu

    2012-11-01

    In this work we construct a unified model of dark energy and dark matter. This is done with the following three elements: a gravitating scalar field, φ with a non-conventional kinetic term, as in the string theory tachyon; an arbitrary potential, V(φ); two measures — a metric measure ((−g){sup 1/2}) and a non-metric measure (Φ). The model has two interesting features: (i) For potentials which are unstable and would give rise to tachyonic scalar field, this model can stabilize the scalar field. (ii) The form of the dark energy and dark matter that results from this model is fairly insensitive to the exact form of the scalar field potential.

  3. Identifying dark matter interactions in monojet searches

    DOE PAGES

    Agrawal, Prateek; Rentala, Vikram

    2014-05-22

    We study the discrimination of quark-initiated jets from gluon-initiated jets in monojet searches for dark matter using the technique of averaged jet energy profiles. We demonstrate our results in the context of effective field theories of dark matter interactions with quarks and gluons, but our methods apply more generally to a wide class of models. Different effective theories of dark matter and the standard model backgrounds each have a characteristic quark/gluon fraction for the leading jet. When used in conjunction with the traditional cut-and-count monojet search, the jet energy profile can be used to set stronger bounds on contact interactionsmore » of dark matter. In the event of a discovery of a monojet excess at the 14 TeV LHC, contact interactions between dark matter with quarks or with gluons can be differentiated at the 95% confidence level. For a given rate at the LHC, signal predictions at direct detection experiments for different dark matter interactions can span five orders of magnitude. Lastly, the ability to identify these interactions allows us to make a tighter connection between LHC searches and direct detection experiments.« less

  4. Wanted! Nuclear Data for Dark Matter Astrophysics

    SciTech Connect

    Gondolo, P.

    2014-06-15

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  5. Interaction between bosonic dark matter and stars

    NASA Astrophysics Data System (ADS)

    Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos

    2016-02-01

    We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.

  6. Identifying dark matter interactions in monojet searches

    SciTech Connect

    Agrawal, Prateek; Rentala, Vikram

    2014-05-22

    We study the discrimination of quark-initiated jets from gluon-initiated jets in monojet searches for dark matter using the technique of averaged jet energy profiles. We demonstrate our results in the context of effective field theories of dark matter interactions with quarks and gluons, but our methods apply more generally to a wide class of models. Different effective theories of dark matter and the standard model backgrounds each have a characteristic quark/gluon fraction for the leading jet. When used in conjunction with the traditional cut-and-count monojet search, the jet energy profile can be used to set stronger bounds on contact interactions of dark matter. In the event of a discovery of a monojet excess at the 14 TeV LHC, contact interactions between dark matter with quarks or with gluons can be differentiated at the 95% confidence level. For a given rate at the LHC, signal predictions at direct detection experiments for different dark matter interactions can span five orders of magnitude. Lastly, the ability to identify these interactions allows us to make a tighter connection between LHC searches and direct detection experiments.

  7. Wanted! Nuclear Data for Dark Matter Astrophysics

    NASA Astrophysics Data System (ADS)

    Gondolo, P.

    2014-06-01

    Astronomical observations from small galaxies to the largest scales in the universe can be consistently explained by the simple idea of dark matter. The nature of dark matter is however still unknown. Empirically it cannot be any of the known particles, and many theories postulate it as a new elementary particle. Searches for dark matter particles are under way: production at high-energy accelerators, direct detection through dark matter-nucleus scattering, indirect detection through cosmic rays, gamma rays, or effects on stars. Particle dark matter searches rely on observing an excess of events above background, and a lot of controversies have arisen over the origin of observed excesses. With the new high-quality cosmic ray measurements from the AMS-02 experiment, the major uncertainty in modeling cosmic ray fluxes is in the nuclear physics cross sections for spallation and fragmentation of cosmic rays off interstellar hydrogen and helium. The understanding of direct detection backgrounds is limited by poor knowledge of cosmic ray activation in detector materials, with order of magnitude differences between simulation codes. A scarcity of data on nucleon spin densities blurs the connection between dark matter theory and experiments. What is needed, ideally, are more and better measurements of spallation cross sections relevant to cosmic rays and cosmogenic activation, and data on the nucleon spin densities in nuclei.

  8. Dark matter and dark energy from quark bag model

    SciTech Connect

    Brilenkov, Maxim; Eingorn, Maxim; Jenkovszky, Laszlo; Zhuk, Alexander E-mail: maxim.eingorn@gmail.com E-mail: ai.zhuk2@gmail.com

    2013-08-01

    We calculate the present expansion of our Universe endowed with relict colored objects — quarks and gluons — that survived hadronization either as isolated islands of quark-gluon ''nuggets'' or spread uniformly in the Universe. In the first scenario, the QNs can play the role of dark matter. In the second scenario, we demonstrate that uniform colored objects can play the role of dark energy providing the late-time accelerating expansion of the Universe.

  9. Dynamical evolution of primordial dark matter haloes through mergers

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  10. Astronomical Constraints on Quantum Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  11. Dark matter from dark energy in q-theory

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Volovik, G. E.

    2017-01-01

    A constant (spacetime-independent) q-field may play a crucial role for the cancellation of Planck-scale contributions to the gravitating vacuum energy density. We now show that a small spacetime-dependent perturbation of the equilibrium q-field behaves gravitationally as a pressureless perfect fluid. This makes the fluctuating part of the q-field a candidate for the inferred dark-matter component of the present universe. For a Planck-scale oscillation frequency of the q-field perturbation, the implication would be that direct searches for dark-matter particles would remain unsuccessful in the foreseeable future.

  12. Halos of unified dark matter scalar field

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it

    2008-05-15

    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.

  13. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same

  14. Dark matter complementarity and the Z' portal

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Berlin, Asher; Profumo, Stefano; Queiroz, Farinaldo S.

    2015-10-01

    Z' gauge bosons arise in many particle physics models as mediators between the dark and visible sectors. We exploit dark matter (DM) complementarity and derive stringent and robust collider, direct and indirect constraints, as well as limits from the muon magnetic moment. We rule out almost the entire region of the parameter space that yields the right dark matter thermal relic abundance, using a generic parametrization of the Z'-fermion couplings normalized to the standard model Z-fermion couplings for dark matter masses in the 8 GeV-5 TeV range. We conclude that mediators lighter than 2.1 TeV are excluded regardless of the DM mass, and that depending on the Z'-fermion coupling strength much heavier masses are needed to reproduce the DM thermal relic abundance while avoiding existing limits.

  15. Effective theory for electroweak doublet dark matter

    NASA Astrophysics Data System (ADS)

    Dedes, A.; Karamitros, D.; Spanos, V. C.

    2016-11-01

    We perform a detailed study of an effective field theory which includes the standard model particle content extended by a pair of Weyl fermionic SU(2) doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for dark matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable d =4 operators, and nonrenormalizable d =5 operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of dark matter. We find that a weakly interacting dark matter particle with a mass nearby the electroweak scale, and thus observable at the LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  16. The Density of Dark Matter in the Galactic Bulge and Implications for Indirect Detection

    SciTech Connect

    Hooper, Dan

    2016-07-29

    A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within the $\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$ kpc volume of the bulge-bar region to be ($1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Although uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.

  17. The density of dark matter in the Galactic bulge and implications for indirect detection

    NASA Astrophysics Data System (ADS)

    Hooper, Dan

    2017-03-01

    A recent study by Portail et al., which made use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within the ± 2 . 2 × ± 1 . 4 × ± 1 . 2 kpc volume of the bulge-bar region to be (1 . 84 ± 0 . 07) × 1010M⊙, of which 9%-30% is made up of dark matter. Here, we use this result to constrain the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Although uncertainties remain significant, these results are consistent with and generally favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm3, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large (multi-kiloparsec) flat-density cores are disfavored by this information.

  18. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  19. Dark matter directional detection in non-relativistic effective theories

    SciTech Connect

    Catena, Riccardo

    2015-07-20

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF{sub 4}, CS{sub 2} and {sup 3}He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments.

  20. Radiative neutrino mass, dark matter, and leptogenesis

    SciTech Connect

    Gu Peihong; Sarkar, Utpal

    2008-05-15

    We propose an extension of the standard model, in which neutrinos are Dirac particles and their tiny masses originate from a one-loop radiative diagram. The new fields required by the neutrino mass generation also accommodate the explanation for the matter-antimatter asymmetry and dark matter in the Universe.

  1. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  2. Wave Dark Matter and Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Parry, Alan R.

    We explore a model of dark matter called wave dark matter (also known as scalar field dark matter and boson stars) which has recently been motivated by a new geometric perspective by Bray. Wave dark matter describes dark matter as a scalar field which satisfies the Einstein-Klein-Gordon equations. These equations rely on a fundamental constant Upsilon (also known as the "mass term'' of the Klein-Gordon equation). Specifically, in this dissertation, we study spherically symmetric wave dark matter and compare these results with observations of dwarf spheroidal galaxies as a first attempt to compare the implications of the theory of wave dark matter with actual observations of dark matter. This includes finding a first estimate of the fundamental constant Upsilon. In the introductory Chapter 1, we present some preliminary background material to define and motivate the study of wave dark matter and describe some of the properties of dwarf spheroidal galaxies. In Chapter 2, we present several different ways of describing a spherically symmetric spacetime and the resulting metrics. We then focus our discussion on an especially useful form of the metric of a spherically symmetric spacetime in polar-areal coordinates and its properties. In particular, we show how the metric component functions chosen are extremely compatible with notions in Newtonian mechanics. We also show the monotonicity of the Hawking mass in these coordinates. Finally, we discuss how these coordinates and the metric can be used to solve the spherically symmetric Einstein-Klein-Gordon equations. In Chapter 3, we explore spherically symmetric solutions to the Einstein-Klein-Gordon equations, the defining equations of wave dark matter, where the scalar field is of the form f(t, r) = eiotF(r) for some constant o ∈ R and complex-valued function F(r). We show that the corresponding metric is static if and only if F( r) = h(r)eia for some constant alpha ∈ R and real-valued function h(r). We describe the

  3. Beyond minimal lepton-flavored Dark Matter

    SciTech Connect

    Chen, Mu-Chun; Huang, Jinrui; Takhistov, Volodymyr

    2016-02-09

    In this paper ,we consider a class of flavored dark matter (DM) theories where dark matter interacts with the Standard Model lepton fields at the renormalizable level. We allow for a general coupling matrix between the dark matter and leptons whose structure is beyond the one permitted by the minimal flavor violation (MFV) assumption. It is assumed that this is the only new source of flavor violation in addition to the Standard Model (SM) Yukawa interactions. The setup can be described by augmenting the SM flavor symmetry by an additional SU(3)χ, under which the dark matter χ transforms. This framework is especially phenomenologically rich, due to possible novel flavor-changing interactions which are not present within the more restrictive MFV framework. As a representative case study of this setting, which we call “beyond MFV” (BMFV), we consider Dirac fermion dark matter which transforms as a singlet under the SM gauge group and a triplet under SU(3)χ. The DM fermion couples to the SM lepton sector through a scalar mediator Φ. Unlike the case of quark-flavored DM, we show that there is no Z3 symmetry within either the MFV or BMFV settings which automatically stabilizes the lepton-flavored DM. We discuss constraints on this setup from flavor-changing processes, DM relic abundance as well as direct and indirect detections. We find that relatively large flavor-changing couplings are possible, while the dark matter mass is still within the phenomenologically interesting region below the TeV scale. Collider signatures which can be potentially searched for at the lepton and hadron colliders are discussed. Finally, we discuss the implications for decaying dark matter, which can appear if an additional stabilizing symmetry is not imposed.

  4. Beyond minimal lepton-flavored Dark Matter

    DOE PAGES

    Chen, Mu-Chun; Huang, Jinrui; Takhistov, Volodymyr

    2016-02-09

    In this paper ,we consider a class of flavored dark matter (DM) theories where dark matter interacts with the Standard Model lepton fields at the renormalizable level. We allow for a general coupling matrix between the dark matter and leptons whose structure is beyond the one permitted by the minimal flavor violation (MFV) assumption. It is assumed that this is the only new source of flavor violation in addition to the Standard Model (SM) Yukawa interactions. The setup can be described by augmenting the SM flavor symmetry by an additional SU(3)χ, under which the dark matter χ transforms. This frameworkmore » is especially phenomenologically rich, due to possible novel flavor-changing interactions which are not present within the more restrictive MFV framework. As a representative case study of this setting, which we call “beyond MFV” (BMFV), we consider Dirac fermion dark matter which transforms as a singlet under the SM gauge group and a triplet under SU(3)χ. The DM fermion couples to the SM lepton sector through a scalar mediator Φ. Unlike the case of quark-flavored DM, we show that there is no Z3 symmetry within either the MFV or BMFV settings which automatically stabilizes the lepton-flavored DM. We discuss constraints on this setup from flavor-changing processes, DM relic abundance as well as direct and indirect detections. We find that relatively large flavor-changing couplings are possible, while the dark matter mass is still within the phenomenologically interesting region below the TeV scale. Collider signatures which can be potentially searched for at the lepton and hadron colliders are discussed. Finally, we discuss the implications for decaying dark matter, which can appear if an additional stabilizing symmetry is not imposed.« less

  5. REVIEWS OF TOPICAL PROBLEMS: The search for dark matter particles

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir A.; Tsarev, Vladimir A.; Tskhovrebov, Andrei M.

    2008-11-01

    Evidence of dark matter in the Universe is discussed and the most popular candidates for dark matter particles are reviewed. The review is mainly devoted to numerous experiments, both underway and planned, on the search for dark matter particles. Various experimental methods are discussed, including those involving direct registration of dark matter particles with the detector and those where the products of dark matter decay and annihilation are registered.

  6. DAMA annual modulation and mirror Dark Matter

    NASA Astrophysics Data System (ADS)

    Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z.

    2017-02-01

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities.

  7. Gravitational focusing of imperfect dark matter

    NASA Astrophysics Data System (ADS)

    Babichev, Eugeny; Ramazanov, Sabir

    2017-01-01

    Motivated by the projectable Horava-Lifshitz model/mimetic matter scenario, we consider a particular modification of standard gravity, which manifests as an imperfect low pressure fluid. While practically indistinguishable from a collection of nonrelativistic weakly interacting particles on cosmological scales, it leaves drastically different signatures in the Solar system. The main effect stems from gravitational focusing of the flow of imperfect dark matter passing near the Sun. This entails strong amplification of imperfect dark matter energy density compared to its average value in the surrounding halo. The enhancement is many orders of magnitude larger than in the case of cold dark matter, provoking deviations of the metric in the second order in the Newtonian potential. Effects of gravitational focusing are prominent enough to substantially affect the planetary dynamics. Using the existing bound on the post-Newtonian parameter βPPN, we deduce a stringent constraint on the unique constant of the model.

  8. [Dark matter and dark energy of the universe].

    PubMed

    Aguilar Peris, José

    2005-01-01

    At the turn of the 20th Century, the Universe was thought to consist of our solar system, the Sun, planets, satellites and comets, floating under the Milky Way. The astronomers were ignorant of the existence of galaxies, clusters, quasars and black holes. Over the last ten years the Cosmology has made remarkable progress in our understanding of the composition of the Universe: 23 per cent is in an unknown form called dark matter; 73 per cent in another form called dark energy; 3 per cent is made of free hydrogen and helium atoms; 0.5 per cent makes up all the light we see in the night including the stars, clusters and superclusters; 0.3 per cent is in free neutrino particles; and finally, 0.03 per cent is in the heavier nuclei of which the Sun, the Earth and ourselves are made. In this work we study specially the dark matter and the dark energy. The first one appears to be attached to galaxies, and astronomers agree that it is cold, meaning that the particles that make up that matter are not moving fast. Very recently astronomers discovered that a tremendous amount of the so-cahled dark energy exists and that it is pushing and accelerating the expansion of the Universe. Should this expansion continue for another 14,000 million years, the sky will darken with only a handful of galaxies remaining visible.

  9. Sub-horizon evolution of cold dark matter perturbations through dark matter-dark energy equivalence epoch

    SciTech Connect

    Piattella, O.F.; Martins, D.L.A.; Casarini, L. E-mail: denilsonluizm@gmail.com

    2014-10-01

    We consider a cosmological model of the late universe constituted by standard cold dark matter plus a dark energy component with constant equation of state w and constant effective speed of sound. By neglecting fluctuations in the dark energy component, we obtain an equation describing the evolution of sub-horizon cold dark matter perturbations through the epoch of dark matter-dark energy equality. We explore its analytic solutions and calculate an exact w-dependent correction for the dark matter growth function, logarithmic growth function and growth index parameter through the epoch considered. We test our analytic approximation with the numerical solution and find that the discrepancy is less than 1% for 0k = during the cosmic evolution up to a = 100.

  10. Working Group Report: Dark Matter Complementarity (Dark Matter in the Coming Decade: Complementary Paths to Discovery and Beyond)

    SciTech Connect

    Arrenberg, Sebastian; et al.,

    2013-10-31

    In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches.

  11. Implications of the observation of dark matter self-interactions for singlet scalar dark matter

    NASA Astrophysics Data System (ADS)

    Campbell, Robyn; Godfrey, Stephen; Logan, Heather E.; Peterson, Andrea D.; Poulin, Alexandre

    2015-09-01

    Evidence for dark matter self-interactions has recently been reported based on the observation of a spatial offset between the dark matter halo and the stars in a galaxy in the cluster Abell 3827. Interpreting the offset as due to dark matter self-interactions leads to a cross section measurement of σDM/m ˜(1 - 1.5 ) cm2 g-1 , where m is the mass of the dark matter particle. We use this observation to constrain singlet scalar dark matter coupled to the standard model and to two-Higgs-doublet models. We show that the most natural scenario in this class of models is very light dark matter, below about 0.1 GeV, whose relic abundance is set by freeze-in, i.e., by slow production of dark matter in the early universe via extremely tiny interactions with the Higgs boson, never reaching thermal equilibrium. We also show that the dark matter abundance can be established through the usual thermal freeze-out mechanism in the singlet scalar extension of the Yukawa-aligned two-Higgs-doublet model, but that it requires rather severe fine tuning of the singlet scalar mass.

  12. Direct Search for Dark Matter with DarkSide

    NASA Astrophysics Data System (ADS)

    Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al; Ianni, An; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.

    2015-11-01

    The DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.

  13. Direct search for dark matter with DarkSide

    DOE PAGES

    Agnes, P.

    2015-11-16

    Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL uppermore » limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.« less

  14. Dark Matter and Dark Energy - Fact or Fantasy?

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip

    We show that the origin of the dark matter and dark energy problems originates in the assumption of standard Einstein gravity that Newton's constant is fundamental. We discuss an alternate, conformal invariant, metric theory of gravity in which Newton's constant is induced dynamically, with the global induced one which is effective for cosmology being altogether weaker than the local induced one needed for the solar system. We find that in the theory dark matter is no longer needed, and that the accelerating universe data can be fitted without fine-tuning using a cosmological constant as large as particle physics suggests. In the conformal theory then it is not the cosmological constant which is quenched but rather the amount of gravity that it produces.

  15. Direct search for dark matter with DarkSide

    SciTech Connect

    Agnes, P.

    2015-11-16

    Here, the DarkSide experiment is designed for the direct detection of Dark Matter with a double phase liquid Argon TPC operating underground at Laboratori Nazionali del Gran Sasso. The TPC is placed inside a 30 tons liquid organic scintillator sphere, acting as a neutron veto, which is in turn installed inside a 1 kt water Cherenkov detector. The current detector is running since November 2013 with a 50 kg atmospheric Argon fill and we report here the first null results of a Dark Matter search for a (1422 ± 67) kg.d exposure. This result correspond to a 90% CL upper limit on the WIMP-nucleon cross section of 6.1 × 10-44 cm2 (for a WIMP mass of 100 GeV/c2) and it's currently the most sensitive limit obtained with an Argon target.

  16. The Light Dark Matter eXperiment

    NASA Astrophysics Data System (ADS)

    Colegrove, Owen; LDMX Collaboration

    2017-01-01

    The Light Dark Matter eXperiment (LDMX) proposes a high-statistics search for low-mass dark matter at a new experimental facility, Dark Sector Experiments at LCLS-II (DASEL), at SLAC. LDMX employs the missing momentum technique, where electrons scattering in a thin target can produce dark matter via ``dark bremsstrahlung'' that are not observed in the detector. To identify these rare signal events, LDMX individually tags incoming beam-energy electrons, unambiguously associates them with low energy, moderate transverse-momentum recoils of the incoming electron, and establishes the absence of any additional forward-recoiling charged particles or neutral hadrons. LDMX will employ low mass tracking to tag incoming beam-energy electrons with high purity and cleanly reconstruct recoils. A high-speed, granular calorimeter with MIP sensitivity is used to reject the high rate of bremsstrahlung background at trigger level while working in tandem with a hadronic calorimeter to veto rare photo nuclear reactions. Ultimately, LDMX aims to probe thermal dark matter over most of the viable sub-GeV mass range to a decisive level of sensitivity. This talk will summarize the current status of the LDMX design and performance studies and progress in developing the DASEL beamline.

  17. Dark energy and dark matter perturbations in singular universes

    SciTech Connect

    Denkiewicz, Tomasz

    2015-03-01

    We discuss the evolution of density perturbations of dark matter and dark energy in cosmological models which admit future singularities in a finite time. Up to now geometrical tests of the evolution of the universe do not differentiate between singular universes and ΛCDM scenario. We solve perturbation equations using the gauge invariant formalism. The analysis shows that the detailed reconstruction of the evolution of perturbations within singular cosmologies, in the dark sector, can exhibit important differences between the singular universes models and the ΛCDM cosmology. This is encouraging for further examination and gives hope for discriminating between those models with future galaxy weak lensing experiments like the Dark Energy Survey (DES) and Euclid or CMB observations like PRISM and CoRE.

  18. The vacuum's dark particles behave like dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Haller, John

    2015-04-01

    Building on the governing hypothesis that self-information is equal to action, I solve for the time step of the vacuum. The resulting equations (both quantum diffusion and Friedmann's equations) argue that a dark particle, or special black hole, exists at hbar or twice the reduced Planck mass where the Hawking temperature breaks down. It is hypothesized that if neutral hydrogen is nearby the dark particles are able to couple with the background field and thus have a density that looks like dark matter. If hydrogen is not around, the dark particles become frozen leading to a constant density of black body radiation similar to dark energy. If the Universe's dark particles (away from neutral hydrogen) became frozen during the re-ionization of the Universe's history, its BBR density is well within confidence ranges for the cosmological constant. This hypothesis can also explain the recent observations that dark matter decays into dark energy.

  19. Planckian Interacting Massive Particles as Dark Matter.

    PubMed

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S

    2016-03-11

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  20. Magnetic Enhancements to Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Gardner, William G.; Tinsley, Todd

    2017-01-01

    The rate of dark matter annihilation should be greatest where the dark matter density is maximal. This is typically in the gravity wells of large stars where it also happens to be true that magnetic fields can be very large. In this poster we present an examination of how these intense magnetic fields can alter the cross section for dark matter annihilation into electron-positron pairs. We work within the framework of the minimally supersymmetric extension to the Standard Model (MSSM), and we choose its lightest neutralino as our dark matter candidate. Within this theory, dark matter can annihilate into many different final-state particles through several channels. We restrict our analysis to an electron-positron pair final state because of the low mass and reasonable detection signature. Since strong magnetic fields change how momentum is conserved for charged particles, this calculation investigates the relationship between the annihilation cross section and the electron's and positron's landau level. This is work is supported by NASA/Arkansas Space Grant Consortium and the Hendrix College Odyssey Program.

  1. Baryonic Distributions in Galaxy Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.

    2016-01-01

    Understanding the role and significance of dark matter in the evolution of baryonic components (i.e., conversion of the gaseous disk into stars) is a critical aspect for realistic models of galaxy evolution. In an effort to address fundamental questions regarding the growth and distribution of stellar disks in dark matter halos in a statistical manner, we have undertaken a project correlating structural properties and star formation activity with the dark matter properties of the host galaxy. The project uses a statistical sample of 45 nearby galaxies which are optimally suited for rotation curve decomposition analysis. The dataset includes deep Spitzer 3.6μm images to trace the stellar distribution, neutral and ionized gas rotation curves to trace the total mass distribution, and optical images to examine the dominant stellar populations. Using a sub-set of galaxies from the full sample, we find that the distribution of the baryonic mass relative to the total mass is roughly self-similar in more massive galaxies when normalized by the average stellar disk scale length measured at 3.6μm. We additionally observe an emerging trend between total baryonic mass and the radius at which the total mass distribution transitions from baryon-dominated to dark matter-dominated. However, we find no significant correlation between the distribution of dark matter and structural properties of the stellar disk, such as changes in color or star formation activity.

  2. Planckian Interacting Massive Particles as Dark Matter

    NASA Astrophysics Data System (ADS)

    Garny, Mathias; Sandora, McCullen; Sloth, Martin S.

    2016-03-01

    The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01 Mp is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.

  3. Nonthermal dark matter models and signals

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta; Toma, Takashi

    2016-03-01

    Many experiments exploring weakly interacting massive particles (WIMPs) such as direct, indirect and collider searches have been carried out until now. However, a clear signal of a WIMP has not been found yet and it makes us to suspect that WIMPs are questionable as a dark matter candidate. Taking into account this situation, we propose two models in which dark matter relic density is produced by decay of a metastable particle. In the first model, the metastable particle is a feebly interacting massive particle, which is the so-called FIMP, produced by freeze-in mechanism in the early universe. In the second model, the decaying particle is thermally produced the same as the usual WIMP. However decay of the particle into dark matter is led by a higher dimensional operator. As a phenomenologically interesting feature of nonthermal dark matter discussed in this paper, a strong sharp gamma-ray emission as an indirect detection signal occurs due to internal bremsstrahlung, although some parameter space has already been ruled out by this process. Moreover combining other experimental and theoretical constraints such as dark matter relic density, big bang nucleosynthesis, collider, gamma-rays and perturbativity of couplings, we discuss the two nonthermal DM models.

  4. Hot News for Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Astronomers have used NASA's Chandra X-ray Observatory to make the most detailed probe yet of the distribution of dark matter in a massive cluster of galaxies. Their results indicate that about 80 percent of the matter in the universe consists of cold dark matter - mysterious subatomic particles left over from the dense early universe. Chandra observed a cluster of galaxies called Abell 2029 located about a billion light years from Earth. The cluster is composed of thousands of galaxies enveloped in a gigantic cloud of hot gas, and an amount of dark matter equivalent to more than a hundred trillion Suns. At the center of this cluster is an enormous, elliptically shaped galaxy that is thought to have been formed from the mergers of many smaller galaxies. The X-ray data show that the density of dark matter increases smoothly all the way into the central galaxy of the cluster. This discovery agrees with the predictions of cold dark matter models, and is contrary to other dark matter models that predict a leveling off of the amount of dark matter in the center of the cluster. "I was really surprised at how well we could measure the dark matter so deep into the core of a rich cluster," said Aaron Lewis of the University of California, Irvine, lead author of a paper describing the results in a recent issue of The Astrophysical Journal. "We still have very little idea as to the exact nature of these particles, but our results show that they must behave like cold dark matter." Cold dark matter gets its name from the assumption that the dark matter particles were moving slowly when galaxies and galaxy clusters began to form. Dark matter particles interact with each other and "normal" matter only through gravity. The astronomers' success in placing such tight constraints on the dark matter distribution was partly due to Chandra's ability to make a high resolution intensity and temperature map, and partly due to their choice of a target. The cluster and central galaxy are

  5. Magnetic dipole moments for composite dark matter

    SciTech Connect

    Aranda, Alfredo; Barajas, Luis; Cembranos, Jose A.R. E-mail: luisedua@buffalo.edu

    2016-03-01

    We study neutral dark matter candidates with a nonzero magnetic dipole moment. We assume that they are composite states of new fermions related to the strong phase of a new gauge interaction. In particular, invoking a dark flavor symmetry, we analyze the composition structure of viable candidates depending on the assignations of hypercharge and the multiplets associated to the fundamental constituents of the extended sector. We determine the magnetic dipole moments for the neutral composite states in terms of their constituents masses.

  6. Probing the Dark Sector with Dark Matter Bound States.

    PubMed

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-15

    A model of the dark sector where O(few  GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  7. Probing the Dark Sector with Dark Matter Bound States

    NASA Astrophysics Data System (ADS)

    An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue

    2016-04-01

    A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.

  8. Description of dark energy and dark matter by vector fields

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris E.

    A simple Lagrangian (with squared covariant divergence of a vector field as a kinetic term) turned out an adequate tool for oscopic description of dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the Universe. In particular, the singular "big bang" turns into a regular inflation-like transition from contraction to expansion with accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions (in the absence of vector fields). The simplicity of the general covariant expression for the energy-momentum tensor allows analyzing the main properties of the dark sector analytically, avoiding unnecessary model assumptions.

  9. Dark matter search project PICO-LON

    NASA Astrophysics Data System (ADS)

    Fushimi, K.; Ejiri, H.; Hazama, R.; Ikeda, H.; Imagawa, K.; Inoue, K.; Kanzaki, G.; Kozlov, A.; Orito, R.; Shima, T.; Takemoto, Y.; Teraoka, Y.; Umehara, S.; Yasuda, K.; Yoshida, S.; PICO-LON Collaboration

    2016-05-01

    The PICO-LON project aims at search for cold dark matter by means of highly radio-pure and large volume NaI(Tl) scintillator. The NaI powder was purified by chemical processing to remove lead isotopes and selecting a high purity graphite crucible. The concentrations of radioactive impurities of 226Ra and 228Th were effectively reduced to 58 ± 4 µBq/kg and 1.5 ± 1.9 µBq/kg, respectively. It should be remarked that the concentration of 210Pb, which is crucial for the sensitivity to dark matter, was reduced to 24 ± 2 µBq/kg. The total background rate at 10 keVee was as low as 8 keV-1kg-1day-1, which was sufficiently low to search for dark matter. Further purification of NaI(Tl) ingot and future prospect of PICO-LON project is discussed.

  10. Accretion of dark matter by stars.

    PubMed

    Brito, Richard; Cardoso, Vitor; Okawa, Hirotada

    2015-09-11

    Searches for dark matter imprints are one of the most active areas of current research. We focus here on light fields with mass m_{B}, such as axions and axionlike candidates. Using perturbative techniques and full-blown nonlinear numerical relativity methods, we show the following. (i) Dark matter can pile up in the center of stars, leading to configurations and geometries oscillating with a frequency that is a multiple of f=2.5×10^{14}(m_{B}c^{2}/eV)  Hz. These configurations are stable throughout most of the parameter space, and arise out of credible mechanisms for dark-matter capture. Stars with bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories. We also show that (ii) collapse of the host star to a black hole is avoided by efficient gravitational cooling mechanisms.

  11. Gravitationally bound BCS state as dark matter

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Cormack, Sam

    2017-04-01

    We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ~ 200 eV. We find a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.

  12. Seeded hot dark matter models with inflation

    NASA Technical Reports Server (NTRS)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  13. Minimal Left-Right Symmetric Dark Matter.

    PubMed

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  14. Holographic dark matter and Higgs models.

    PubMed

    Díaz-Cruz, J Lorenzo

    2008-06-06

    We propose a dark matter candidate within the class of models where electroweak symmetry breaking is triggered by a light composite Higgs boson. In these dual anti-de Sitter/conformal field theory models, the Higgs boson emerges as a holographic pseudo-Goldstone boson, while dark matter can be identified with a stable composite fermion X0. The effective Lagrangian description of the Higgs and X0-multiplets, including higher-dimensional operators, can be tested at future colliders (LHC, ILC) and through astrophysical signals (ultrahigh-energy cosmic rays). The expected mass of X0, mX0 < or approximately 4pif approximately O (TeV), satisfies the bounds extracted from the cosmological relic density, while the experimental searches for dark matter further constrains the possible models.

  15. Axion dark matter from topological defects

    NASA Astrophysics Data System (ADS)

    Kawasaki, Masahiro; Saikawa, Ken'ichi; Sekiguchi, Toyokazu

    2015-03-01

    The cosmological scenario where the Peccei-Quinn symmetry is broken after inflation is investigated. In this scenario, topological defects such as strings and domain walls produce a large number of axions, which contribute to the cold dark matter of the Universe. The previous estimations of the cold dark matter abundance are updated and refined based on the field-theoretic simulations with improved grid sizes. The possible uncertainties originated in the numerical calculations are also discussed. It is found that axions can be responsible for the cold dark matter in the mass range ma=(0.9 - 1.4 )×1 0-4 eV for the models with the domain wall number NDW=1 , and ma≈O (1 0-4- 1 0-2) eV with a mild tuning of parameters for the models with NDW>1 . Such higher mass ranges can be probed in future experimental studies.

  16. Revisiting gravitino dark matter in thermal leptogenesis

    NASA Astrophysics Data System (ADS)

    Ibe, Masahiro; Suzuki, Motoo; Yanagida, Tsutomu T.

    2017-02-01

    In this paper, we revisit the gravitino dark matter scenario in the presence of the bilinear R-parity violating interaction. In particular, we discuss a consistency with the thermal leptogenesis. For a high reheating temperature required for the thermal leptogenesis, the gravitino dark matter tends to be overproduced, which puts a severe upper limit on the gluino mass. As we will show, a large portion of parameter space of the gravitino dark matter scenario has been excluded by combining the constraints from the gravitino abundance and the null results of the searches for the superparticles at the LHC experiments. In particular, the models with the stau (and other charged slepton) NLSP has been almost excluded by the searches for the long-lived charged particles at the LHC unless the required reheating temperature is somewhat lowered by assuming, for example, a degenerated right-handed neutrino mass spectrum.

  17. Dark matter elastic scattering through Higgs loops

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Hooper, Dan; McDermott, Samuel D.

    2015-12-01

    We consider a complete list of simplified models in which Majorana dark matter particles annihilate at tree level to h h or h Z final states and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided and can be easily applied to a variety of UV-complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s -channel exchange of a spin-zero mediator or through the t -channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models are generally quite small, XENON1T and LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to h h or h Z can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic center.

  18. Antiproton limits on decaying gravitino dark matter

    SciTech Connect

    Delahaye, Timur; Grefe, Michael E-mail: michael.grefe@uam.es

    2013-12-01

    We derive 95 % CL lower limits on the lifetime of decaying dark matter in the channels Zν, Wℓ and hν using measurements of the cosmic-ray antiproton flux by the PAMELA experiment. Performing a scan over the allowed range of cosmic-ray propagation parameters we find lifetime limits in the range of 8 × 10{sup 28} s to 5 × 10{sup 25} s for dark matter masses from roughly 100 GeV to 10 TeV. We apply these limits to the well-motivated case of gravitino dark matter in scenarios with bilinear violation of R-parity and find a similar range of lifetime limits for the same range of gravitino masses. Converting the lifetime limits to constraints on the size of the R-parity violating coupling we find upper limits in the range of 10{sup −8} to 8 × 10{sup −13}.

  19. Sources and distributions of dark matter

    SciTech Connect

    Sikivie, P. |

    1995-12-31

    In the first section, the author tries to convey a sense of the variety of observational inputs that tell about the existence and the spatial distribution of dark matter in the universe. In the second section, he briefly reviews the four main dark matter candidates, taking note of each candidate`s status in the world of particle physics, its production in the early universe, its effect upon large scale structure formation and the means by which it may be detected. Section 3 concerns the energy spectrum of (cold) dark matter particles on earth as may be observed some day in a direct detection experiment. It is a brief account of work done in collaboration with J. Ipser and, more recently, with I. Tkachev and Y. Wang.

  20. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  1. Investigating Dark Matter using Dwarf Spheroidals

    NASA Astrophysics Data System (ADS)

    Martinez, Gregory David

    Milky Way satellite galaxies have many desirable characteristics (there are dark matter dominated, relatively close by, and have low intrinsic flux) that make these galaxies ideal laboratories for testing dark matter theories. We introduce a comprehensive analysis of multi-epoch stellar line-of-sight velocities to determine the intrinsic velocity dispersion of the ultrafaint satellites of the Milky Way. Our method includes a simultaneous Bayesian analysis of both membership probabilities and the contribution of binary orbital motion to the observed velocity dispersion within a 14-parameter likelihood. We also present a general methodology for determining the gamma-ray flux from annihilation of dark matter particles in Milky Way satellite galaxies with emphasis on expections from the Fermi/GLAST satellite telescope. All relevant astrophysical and particle physics parameter space is explored. We include a detailed analysis of the boost from halo substructure and discuss its affect on indirect detection prospects.

  2. EDITORIAL: Focus on Dark Matter and Particle Physics

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  3. Dynamical Dark Matter from strongly-coupled dark sectors

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Huang, Fei; Su, Shufang; Thomas, Brooks

    2017-02-01

    Dynamical Dark Matter (DDM) is an alternative framework for dark-matter physics in which the dark sector comprises a vast ensemble of particle species whose Standard-Model decay widths are balanced against their cosmological abundances. Previous studies of this framework have focused on a particular class of DDM ensembles—motivated primarily by Kaluza-Klein towers in theories with extra dimensions—in which the density of dark states scales roughly as a polynomial of the mass. In this paper, by contrast, we study the properties of a different class of DDM ensembles in which the density of dark states grows exponentially with mass. Ensembles with this Hagedorn-like property arise naturally as the "hadronic" resonances associated with the confining phase of a strongly-coupled dark sector; they also arise naturally as the gauge-neutral bulk states of Type I string theories. We study the dynamical properties of such ensembles, and demonstrate that an appropriate DDM-like balancing between decay widths and abundances can emerge naturally—even with an exponentially rising density of states. We also study the effective equations of state for such ensembles, and investigate some of the model-independent observational constraints on such ensembles that follow directly from these equations of state. In general, we find that such constraints tend to introduce correlations between various properties of these DDM ensembles such as their associated mass scales, lifetimes, and abundance distributions. For example, we find that these constraints allow DDM ensembles with energy scales ranging from the GeV scale all the way to the Planck scale, but that the total present-day cosmological abundance of the dark sector must be spread across an increasing number of different states in the ensemble as these energy scales are dialed from the Planck scale down to the GeV scale. Numerous other correlations and constraints are also discussed.

  4. Dark matter and dark forces from a supersymmetric hidden sector

    NASA Astrophysics Data System (ADS)

    Andreas, S.; Goodsell, M. D.; Ringwald, A.

    2013-01-01

    We show that supersymmetric “dark force” models with gravity mediation are viable. To this end, we analyze a simple string-inspired supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct-detection cross sections to current experiments.

  5. Dark matter complementarity in the phenomenological MSSM

    SciTech Connect

    Ismail, Ahmed

    2014-06-24

    The lightest neutralino of the Minimal Supersymmetric Standard Model (MSSM) with R-parity conservation is one of the most well-studied dark matter (DM) candidates. Using a set of models in the 19-parameter phenomenological MSSM (pMSSM), we examine the abilities of XENON100/1T, LUX-ZEPLIN, Fermi, CTA, IceCube/DeepCore, and the LHC to study neutralino dark matter. We find that direct detection, indirect detection, neutrino telescope, and collider searches for minimal supersymmetry often fulfill concomitant roles.

  6. The LUX direct dark matter search

    NASA Astrophysics Data System (ADS)

    Murphy, A. St. J.

    2016-06-01

    As evidenced by the numerous contributions on the topic at this meeting, the IX International Conference on Interconnections between Particle Physics and Cosmology (PPC2015), the direct detection of dark matter remains as one of the highest priorities in both particle physics and cosmology. In 2013 the LUX direct dark matter search collaboration reported the most stringent constraints to-date on the spin-independent WIMP-nucleon interaction cross section. Here we present a summary of that work, describe recent technical improvements, and results from new calibrations. Prospects for the future of the LUX scientific program are reported, together with the outlook for its successor project, LZ.

  7. Dark matter and the equivalence principle

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gradwohl, Ben-Ami

    1991-01-01

    If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. The astrophysical and cosmological implications of a long-range force coupled only to the dark matter are discussed and rather tight constraints on its strength are found. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). Such an interaction also has unusual implications for the growth of large-scale structure.

  8. Particle Dark Matter and DAMA/LIBRA

    SciTech Connect

    Bernabei, R.; Nozzoli, F.; Belli, P.; Cappella, F.; D'Angelo, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Ma, X. H.; Sheng, X. D.; Wang, R. G.; Montecchia, F.; Ye, Z. P.

    2010-03-26

    The DAMA/LIBRA set-up (about 250 kg highly radiopure NaI(Tl) sensitive mass) is running at the Gran Sasso National Laboratory of the I.N.F.N.. The first DAMA/LIBRA results confirm the evidence for the presence of a Dark Matter particle component in the galactic halo, as pointed out by the former DAMA/NaI set-up; cumulatively the data support such evidence at 8.2 sigma C.L. and satisfy all the many peculiarities of the Dark Matter annual modulation signature. The main aspects and prospects of this model independent experimental approach will be outlined.

  9. Black holes and local dark matter

    NASA Technical Reports Server (NTRS)

    Hegyi, D. J.; Kolb, E. W.; Olive, K. A.

    1986-01-01

    Two independent constraints are placed on the amount of dark matter in black holes contained in the galactic disk. First, gas accretion by black holes leads to X-ray emission which cannot exceed the observed soft X-ray background. Second, metals produced in stellar processes that lead to black hole formation cannot exceed the observed disk metal abundance. Based on these constraints, it appears unlikely that the missing disk mass could be contained in black holes. A consequence of this conclusion is that at least two different types of dark matter are needed to solve the various missing mass problems.

  10. The XENON1T Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    de Perio, Patrick; Xenon Collaboration

    2017-01-01

    Recent results and status of the XENON1T direct dark matter detector will be presented. XENON1T is a two-phase xenon TPC using 248 low radioactivity PMTs to detect scintillation signals in a 2-ton active liquid xenon target. The detector has been fully operational at the Laboratori Nazionale del Gran Sasso since May 2016, with continuously improving xenon purity and reduction of the internal Kr-85 background source. This talk will summarize the detector performance, calibration, and background studies, discussed in more detail in the following XENON1T talks, which are paving the way towards the world's most sensitive dark matter search.

  11. Composite Higgs models, Dark Matter and {lambda}

    SciTech Connect

    Diaz Cruz, J. Lorenzo

    2009-04-20

    We suggest that dark matter can be identified with a stable composite fermion X{sup 0}, that arises within the holographic AdS/CFT models, where the Higgs boson emerges as a composite pseudo-goldstone boson. The predicted properties of X{sup 0} satisfies the cosmological bounds, with m{sub X{sup 0}}{approx}4{pi}f{approx_equal}O(TeV). Thus, through a deeper understanding of the mechanism of electroweak symmetry breaking, a resolution of the Dark Matter enigma is found. Furthermore, by proposing a discrete structure of the Higgs vacuum, one can get a distinct approach to the cosmological constant problem.

  12. Can cosmic structure form without dark matter?

    PubMed

    Dodelson, Scott; Liguori, Michele

    2006-12-08

    One of the prime pieces of evidence for dark matter is the observation of large overdense regions in the Universe. To account for this observation, perturbations had to have grown since recombination by a factor greater than (1+z*) approximately 1180 where z* is the epoch of recombination. This enhanced growth does not happen in general relativity, and so dark matter is needed in the standard theory. We show here that enhanced growth can occur in alternatives to general relativity, in particular, in Bekenstein's relativistic version of modified Newtonian dynamics.

  13. Search for pseudoscalar cold dark matter

    SciTech Connect

    van Bibber, K.; Stoeffl, W.; LLNL Collaborators

    1992-05-29

    AH dynamical evidence points to the conclusion that the predominant form of matter in the universe is in a non-luminous form. Furthermore, large scale deviations from uniform Hubble flow, and the recent COBE reports of inhomogeneities in the cosmic microwave background strongly suggest that we live in an exactly closed universe. If this is true, then ordinary baryonic matter could only be a minority component (10% at most) of the missing mass, and that what constitutes the majority of the dark matter must involve new physics. The axion is one of very few well motivated candidates which may comprise the dark matter. Additionally it is a `cold` dark-matter candidate which is preferred by the COBE data. We propose to construct and operate an experiment to search for axions which may constitute the dark matter of our own galaxy. As proposed by Sikivie, dark-matter axions may be detected by their stimulated conversion into monochromatic microwave photons in a tunable high-Q cavity inside a strong magnetic field. Our ability to mount an experiment quickly and take data within one year is due to a confluence of three factors. The first is the availability of a compact high field superconducting magnet and a local industrial partner, Wang NMR, who can make a very thermally efficient and economical cryostat for it. The second is an ongoing joint venture with the Institute for Nuclear Research of the Russian Academy of Sciences to do R&D on metalized precision-formed ceramic microwave cavities for the axion search, and INR has commited to providing all the microwave cavity arrays for this experiment, should this proposal be approved. The third is a commitment of very substantial startup capital monies from MIT for all of the state-of-the-art ultra-low noise microwave electronics, to one of our outstanding young collaborators who is joining their faculty.

  14. Doppler effect on indirect detection of dark matter using dark matter only simulations

    NASA Astrophysics Data System (ADS)

    Powell, Devon; Laha, Ranjan; Ng, Kenny C. Y.; Abel, Tom

    2017-03-01

    Indirect detection of dark matter is a major avenue for discovery. However, baryonic backgrounds are diverse enough to mimic many possible signatures of dark matter. In this work, we study the newly proposed technique of dark matter velocity spectroscopy [E. G. Speckhard, K. C. Y. Ng, J. F. Beacom, and R. Laha, Phys. Rev. Lett. 116, 031301 (2016), 10.1103/PhysRevLett.116.031301]. The nonrotating dark matter halo and the Solar motion produce a distinct longitudinal dependence of the signal which is opposite in direction to that produced by baryons. Using collisionless dark matter only simulations of Milky Way like halos, we show that this new signature is robust and holds great promise. We develop mock observations by a high energy resolution x-ray spectrometer on a sounding rocket, the Micro-X experiment, to our test case, the 3.5 keV line. We show that by using six different pointings, Micro-X can exclude a constant line energy over various longitudes at ≥3 σ . The halo triaxiality is an important effect, and it will typically reduce the significance of this signal. We emphasize that this new smoking gun in motion signature of dark matter is general and is applicable to any dark matter candidate which produces a sharp photon feature in annihilation or decay.

  15. Aspects of dark matter and Higgs phenomenology

    NASA Astrophysics Data System (ADS)

    Edezhath, Ralph Angelus

    The existence of dark matter and the hierarchy problem motivates the search for new physics. The formulation of new search strategies and models is crucial in the hunt for physics beyond the Standard Model, and in this work we present three studies of new physics relevant for current and upcoming experiments. First, we study models that contain a singlet dark matter particle with cubic renormalizable couplings between standard model particles and 'partner' particles with the same gauge quantum numbers as the standard model quark. The dark matter has spin 0, ½, 12, or 1, and may or may not be its own antiparticle. Each model has 3 parameters: the masses of the dark matter and standard model partners, and the cubic coupling. Requiring the correct relic abundance gives a 2-dimensional parameter space where collider and direct detection constraints can be directly compared. We find that collider and direct detection searches are remarkably complementary for these models. Direct detection limits for the cases where the dark matter is not its own antiparticle require dark matter masses to be in the multi-TeV range, where they are extremely difficult to probe in collider experiments. The models where dark matter is its own antiparticle are strongly constrained by collider searches for monojet and jets + MET signals. These models are constrained by direct detection mainly near the limit where the dark matter and partner masses are nearly degenerate, where collider searches become more difficult. Second, we study the case where the singlet dark matter has trilinear couplings to leptons and a new "lepton partner'' particle. The most sensitive collider probe is the search for leptons + MET, while the most sensitive direct detection channel is scattering from nuclei arising from loop diagrams. Collider and direct detection searches are highly complementary: colliders give the only meaningful constraint when dark matter is its own antiparticle, while direct detection is

  16. Mystery of the Hidden Cosmos [Complex Dark Matter

    SciTech Connect

    Dobrescu, Bogdan A.; Lincoln, Don

    2015-06-16

    Scientists know there must be more matter in the universe than what is visible. Searches for this dark matter have focused on a single unseen particle, but decades of experiments have been unsuccessful at finding it. Exotic possibilities for dark matter are looking increasingly plausible. Rather than just one particle, dark matter could contain an entire world of particles and forces that barely interact with normal matter. Complex dark matter could form dark atoms and molecules and even clump together to make hidden galactic disks that overlap with the spiral arms of the Milky Way and other galaxies. Experiments are under way to search for evidence of such a dark sector.

  17. Hierarchical formation of dark matter halos and the free streaming scale

    SciTech Connect

    Ishiyama, Tomoaki

    2014-06-10

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.

  18. Ultra-light dark matter in ultra-faint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Calabrese, Erminia; Spergel, David N.

    2016-08-01

    Cold Dark Matter (CDM) models struggle to match the observations at galactic scales. The tension can be reduced either by dramatic baryonic feedback effects or by modifying the particle physics of CDM. Here, we consider an ultra-light scalar field DM particle manifesting a wave nature below a DM particle mass-dependent Jeans scale. For DM mass m ˜ 10-22 eV, this scenario delays galaxy formation and avoids cusps in the centre of the dark matter haloes. We use new measurements of half-light mass in ultra-faint dwarf galaxies Draco II and Triangulum II to estimate the mass of the DM particle in this model. We find that if the stellar populations are within the core of the density profile then the data are in agreement with a Wave Dark Matter model having a DM particle with m ˜ 3.7-5.6 × 10-22 eV. The presence of this extremely light particle will contribute to the formation of a central solitonic core replacing the cusp of a Navarro-Frenk-White profile and bringing predictions closer to observations of cored central density in dwarf galaxies.

  19. Dark Matter Searches in Milky Way Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu

    2017-01-01

    Gamma-ray observations of Milky Way satellite provide one of the most sensitive and robust ways to probe WIMP dark matter. Satellite galaxies are compelling targets for dark matter searches due to their proximity, high dark matter content, and low astrophysical backgrounds. Detailed studies of the stellar kinematics of satellite galaxies precisely determine their dark matter content. In this talk, I will discuss the systematic uncertainties in determining the dark matter content of satellite galaxies from stellar kinematics, and the impacts on WIMP dark matter annihilation/decay cross section limits. I will discuss the modeling of new satellites recently discovered by the Dark Energy Survey (DES), and their impact on indirect dark matter searches. Finally I will discuss how current and future optical imaging surveys will improve our understanding of satellites dark matter distributions.

  20. The DarkSide-50 liquid argon dark matter search

    NASA Astrophysics Data System (ADS)

    Johnson, Tessa; DarkSide-50 Collaboration

    2017-01-01

    The DarkSide-50 experiment uses three nested detectors to directly search for WIMP dark matter, with the innermost detector a time projection chamber filled with a target of liquid argon (LAr). The unique difference in pulse shape between electron recoils and nuclear recoils in LAr allows for exceptional discrimination of beta and gamma backgrounds. Event discrimination due to pulse shape coupled with the neutron discrimination power of the outer detectors is used to create a background-free environment for the DarkSide-50 WIMP search. Atmospheric argon, including the radioactive 39Ar isotope, was first used to search for WIMPs in a 50-day campaign, and later a search with 70.9 days of livetime was performed with argon extracted from underground wells, reducing the 39Ar isotope by a factor of 1 . 4 ×103 . The status of the experiment will be discussed.

  1. Growth of the nonbaryonic dark matter theory

    NASA Astrophysics Data System (ADS)

    Peebles, P. J. E.

    2017-03-01

    The evidence that has accumulated since the 1930s is that the mass of the Universe is dominated by an exotic nonbaryonic form of matter largely draped around the galaxies. This dark matter approximates an initially low-pressure gas of particles that interact only with gravity, but we know little more than that. Searches for detection thus must follow many difficult paths to a great discovery: what the Universe is made of.

  2. The phenomenology of maverick dark matter

    NASA Astrophysics Data System (ADS)

    Krusberg, Zosia Anna Celina

    Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both

  3. Matter parity as the origin of scalar dark matter

    SciTech Connect

    Kadastik, Mario; Kannike, Kristjan; Raidal, Martti

    2010-01-01

    We extend the concept of matter parity P{sub M}=(-1){sup 3(B-L)} to nonsupersymmetric theories and argue that P{sub M} is the natural explanation to the existence of dark matter of the Universe. We show that the nonsupersymmetric dark matter must be contained in a scalar 16 representation(s) of SO(10), thus the unique low-energy dark matter candidates are P{sub M}-odd complex scalar singlet(s) S and an inert scalar doublet(s) H{sub 2}. We have calculated the thermal relic dark matter (DM) abundance of the model and shown that its minimal form may be testable at LHC via the standard model (SM) Higgs boson decays H{sub 1{yields}}DM DM. The PAMELA anomaly can be explained with the decays DM{yields}{nu}lW induced via seesawlike operator which is additionally suppressed by the Planck scale. Because the SM fermions are odd under matter parity too, the DM sector is just our scalar relative.

  4. Shedding light on baryonic dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph

    1991-01-01

    Halo dark matter, if it is baryonic, may plausibly consist of compact stellar remnants. Jeans mass clouds containing 10 to the 6th to 10 to the 8th solar masses could have efficiently formed stars in the early universe and could plausibly have generated, for a suitably top-heavy stellar initial mass function, a high abundance of neutron stars as well as a small admixture of long-lived low mass stars. Within the resulting clusters of dark remnants, which eventually are tidally disrupted when halos eventually form, captures of neutron stars by nondegenerate stars resulted in formation of close binaries. These evolve to produce, by the present epoch, an observable X-ray signal associated with dark matter aggregations in galaxy cluster cores.

  5. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  6. DRIFT: a directionally sensitive dark matter detector

    NASA Astrophysics Data System (ADS)

    Morgan, Ben; Drift; Uk Dark Matter Collaborations

    2003-11-01

    Directional Recoil Identification From Tracks-I (DRIFT) is the world's first WIMP dark matter detector with sensitivity to the directions of nuclear recoils. The distribution of WIMP induced nuclear recoil directions offers the most powerful way of positively identifying a WIMP signal. This paper discusses the DRIFT-I detector and considers future high spatial resolution readout schemes.

  7. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-02

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way.

  8. A couplet from flavored dark matter

    DOE PAGES

    Agrawal, Prateek; Chacko, Zackaria; Kilic, Can; ...

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In this scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to threemore » photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. Furthermore, for dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. As a result, the next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.« less

  9. Electroweak fragmentation functions for dark matter annihilation

    SciTech Connect

    Cavasonza, Leila Ali; Krämer, Michael; Pellen, Mathieu

    2015-02-18

    Electroweak corrections can play a crucial role in dark matter annihilation. The emission of gauge bosons, in particular, leads to a secondary flux consisting of all Standard Model particles, and may be described by electroweak fragmentation functions. To assess the quality of the fragmentation function approximation to electroweak radiation in dark matter annihilation, we have calculated the flux of secondary particles from gauge-boson emission in models with Majorana fermion and vector dark matter, respectively. For both models, we have compared cross sections and energy spectra of positrons and antiprotons after propagation through the galactic halo in the fragmentation function approximation and in the full calculation. Fragmentation functions fail to describe the particle fluxes in the case of Majorana fermion annihilation into light fermions: the helicity suppression of the lowest-order cross section in such models cannot be lifted by the leading logarithmic contributions included in the fragmentation function approach. However, for other classes of models like vector dark matter, where the lowest-order cross section is not suppressed, electroweak fragmentation functions provide a simple, model-independent and accurate description of secondary particle fluxes.

  10. Axino LSP baryogenesis and dark matter

    SciTech Connect

    Monteux, Angelo; Shin, Chang Sub

    2015-05-20

    We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft X{sub t} terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitino can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 10{sup 4}–10{sup 5} GeV in the gravitino dark matter scenario.

  11. Review of dark-matter axion experiments

    SciTech Connect

    van Bibber, K; Kinion, D

    2000-08-30

    We review the status of two ongoing large-scale searches for axions which may constitute the dark matter of our Milky Way halo. The experiments are based on the microwave cavity technique proposed by Sikivie, and marks a 'second-generation' to the original experiments performed by the Rochester-Brookhaven-Fermilab collaboration, and the University of Florida group.

  12. A couplet from flavored dark matter

    SciTech Connect

    Agrawal, Prateek; Chacko, Zackaria; Kilic, Can; Verhaaren, Christopher B.

    2015-08-17

    We show that a couplet, a pair of closely spaced photon lines, in the X-ray spectrum is a distinctive feature of lepton flavored dark matter models for which the mass spectrum is dictated by Minimal Flavor Violation. In this scenario, mass splittings between different dark matter flavors are determined by Standard Model Yukawa couplings and can naturally be small, allowing all three flavors to be long-lived and contribute to the observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark matter flavors can decay via a dipole transition on cosmological timescales, giving rise to three photon lines. Two of these lines are closely spaced, and constitute the couplet. Provided the flavor violation is sufficiently small, the ratios of the line energies are determined in terms of the charged lepton masses, and constitute a prediction of this framework. Furthermore, for dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a much weaker line in the eV-keV region. This scenario constitutes a potential explanation for the recent claim of the observation of a 3.5 keV line. As a result, the next generation of X-ray telescopes may have the necessary resolution to resolve the double line structure of such a couplet.

  13. X-Ray Measurement of Dark Matter

    NASA Astrophysics Data System (ADS)

    Ikebe, Y.; Boehringer, H.; Kitayama, T.

    We establish a method from an X-ray observation of a galaxy cluster to measure the radial profile of the dark matter velocity dispersion, σDM, and to compare the dark matter ``temperature'' defined as μ mp σDM2 with the gas temperature. The method is applied to the XMM-Newton observation of Abell 1795. The ratio between the specific energy of the dark matter and that of the intra cluster medium (ICM), which can be defined as βDM in analogy with βspec, is found to be less than unity everywhere ranging ˜0.3--0.8. In other words, the ICM temperature is higher than the dark matter ``temperature,'' even in the central region where the radiative cooling time is short and cooling flow phenomena are expected to be observed. A βDM value smaller than unity can most naturally be explained by heating of the ICM. The excess energy of ICM is estimated to be ˜1--3 keV per particle. We show that either the kinetic energy of member galaxies or the mass accretion onto the central black hole are possible energy sources to prevent the ICM in the central region from cooling.

  14. Dark matter balls help supernovae to explode

    NASA Astrophysics Data System (ADS)

    Froggatt, C. D.; Nielsen, H. B.

    2015-10-01

    As a solution to the well-known problem that the shock wave potentially responsible for the explosion of a supernova actually tends to stall, we propose a new energy source arising from our model for dark matter. Our earlier model proposed that dark matter should consist of cm-large white dwarf-like objects kept together by a skin separating two different sorts of vacua. These dark matter balls or pearls will collect in the middle of any star throughout its lifetime. At some stage during the development of a supernova, the balls will begin to take in neutrons and then other surrounding material. By passing into a ball nucleons fall through a potential of order 10 MeV, causing a severe production of heat — of order 10 foe for a solar mass of material eaten by the balls. The temperature in the iron core will thereby be raised, splitting up the iron into smaller nuclei. This provides a mechanism for reviving the shock wave when it arrives and making the supernova explosion really occur. The onset of the heating due to the dark matter balls would at first stop the collapse of the supernova progenitor. This opens up the possibility of there being two collapses giving two neutrino outbursts, as apparently seen in the supernova SN1987A — one in Mont Blanc and one 4 h 43 min later in both IMB and Kamiokande.

  15. Axino LSP baryogenesis and dark matter

    SciTech Connect

    Monteux, Angelo; Shin, Chang Sub E-mail: changsub@physics.rutgers.edu

    2015-05-01

    We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft X{sub t} terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitino can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 10{sup 4}–10{sup 5} GeV in the gravitino dark matter scenario.

  16. Neutralino Dark Matter in Gauge Messenger Models

    SciTech Connect

    Bae, Kyu Jung

    2008-11-23

    The lightest neutralino is one of the best candidate for dark matter. In gauge messenger models, It is generic that bino and wino masses are almostly degenerate. Because of this, neutralino annihilation becomes more efficient. Also, gauge messenger models have squeezed mass spectrum so that there are many resonance and co-annihilation regions, and can give correct amount of neutralino relic density.

  17. Sterile neutrinos as subdominant warm dark matter

    SciTech Connect

    Palazzo, A.; Cumberbatch, D.; Slosar, A.; Silk, J.

    2007-11-15

    In light of recent findings which seem to disfavor a scenario with (warm) dark matter entirely constituted of sterile neutrinos produced via the Dodelson-Widrow mechanism, we investigate the constraints attainable for this mechanism by relaxing the usual hypothesis that the relic neutrino abundance must necessarily account for all of the dark matter. We first study how to reinterpret the limits attainable from x-ray nondetection and Lyman-{alpha} forest measurements in the case that sterile neutrinos constitute only a fraction f{sub s} of the total amount of dark matter. Then, assuming that sterile neutrinos are generated in the early universe solely through the Dodelson-Widrow mechanism, we show how the x-ray and Lyman-{alpha} results jointly constrain the mass-mixing parameters governing their production. Furthermore, we show how the same data allow us to set a robust upper limit f{sub s} < or approx. 0.7 at the 2{sigma} level, rejecting the case of dominant dark matter (f{sub s}=1) at the {approx}3{sigma} level.

  18. Missing dark matter in the local universe

    NASA Astrophysics Data System (ADS)

    Karachentsev, I. D.

    2012-04-01

    A sample of 11 thousand galaxies with radial velocities V LG < 3500 km/s is used to study the features of the local distribution of luminous (stellar) and dark matter within a sphere of radius of around 50 Mpc around us. The average density of matter in this volume, Ω m,loc = 0.08 ± 0.02, turns out to be much lower than the global cosmic density Ω m,glob = 0.28 ± 0.03. We discuss three possible explanations of this paradox: 1) galaxy groups and clusters are surrounded by extended dark halos, the major part of the mass of which is located outside their virial radii; 2) the considered local volume of the Universe is not representative, being situated inside a giant void; and 3) the bulk of matter in the Universe is not related to clusters and groups, but is rather distributed between them in the form of massive dark clumps. Some arguments in favor of the latter assumption are presented. Besides the two well-known inconsistencies of modern cosmological models with the observational data: the problem of missing satellites of normal galaxies and the problem of missing baryons, there arises another one—the issue of missing dark matter.

  19. Deformed matter bounce with dark energy epoch

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.

  20. Self-interacting dark matter without direct detection constraints

    NASA Astrophysics Data System (ADS)

    Zhang, Yue

    2017-03-01

    We explore the self-interacting dark matter scenario in a simple dark sector model where the dark matter interacts through a dark photon. Splitting a Dirac fermion dark matter into two levels using a small Majorana mass can evade strong direct detection constraints on the kinetic mixing between the dark and normal photons, thus allowing the dark sector to be more visible at high intensity and/or high energy experiments. It is pointed out that such a mass splitting has a strong impact on the dark matter self-interaction strength. We derive the new parameter space of a pseudo-Dirac self-interacting dark matter. Interestingly, with increasing mass splitting, a weak scale dark matter mass window survives that could be probed by the LHC and future colliders.

  1. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  2. A hydrodynamic approach to cosmology - Texture-seeded cold dark matter and hot dark matter cosmogonies

    NASA Technical Reports Server (NTRS)

    Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.

    1991-01-01

    Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.

  3. On the capture of dark matter by neutron stars

    SciTech Connect

    Güver, Tolga; Erkoca, Arif Emre; Sarcevic, Ina; Reno, Mary Hall E-mail: aeerkoca@gmail.com E-mail: ina@physics.arizona.edu

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 10{sup 3} GeV/cm{sup 3}and dark matter mass m{sub χ} ∼< 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for m{sub χ} ∼ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σ{sub χn} ∼ 10{sup −52} cm{sup 2} to σ{sub χn} ∼ 10{sup −57} cm{sup 2}, the dark matter self-interaction cross section limit is σ{sub χχ} ∼< 10{sup −33} cm{sup 2}, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  4. On the capture of dark matter by neutron stars

    NASA Astrophysics Data System (ADS)

    Güver, Tolga; Emre Erkoca, Arif; Hall Reno, Mary; Sarcevic, Ina

    2014-05-01

    We calculate the number of dark matter particles that a neutron star accumulates over its lifetime as it rotates around the center of a galaxy, when the dark matter particle is a self-interacting boson but does not self-annihilate. We take into account dark matter interactions with baryonic matter and the time evolution of the dark matter sphere as it collapses within the neutron star. We show that dark matter self-interactions play an important role in the rapid accumulation of dark matter in the core of the neutron star. We consider the possibility of determining an exclusion region of the parameter space for dark matter mass and dark matter interaction cross section with the nucleons as well as dark matter self-interaction cross section, based on the observation of old neutron stars. We show that for a dark matter density of 103 GeV/cm3and dark matter mass mχ lesssim 10 GeV, there is a potential exclusion region for dark matter interactions with nucleons that is three orders of magnitude more stringent than without self-interactions. The potential exclusion region for dark matter self-interaction cross sections is many orders of magnitude stronger than the current Bullet Cluster limit. For example, for high dark matter density regions, we find that for mχ ~ 10 GeV when the dark matter interaction cross section with the nucleons ranges from σχn ~ 10-52 cm2 to σχn ~ 10-57 cm2, the dark matter self-interaction cross section limit is σχχ lesssim 10-33 cm2, which is about ten orders of magnitude stronger than the Bullet Cluster limit.

  5. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  6. Dark matter searches using superheated liquids

    NASA Astrophysics Data System (ADS)

    Manuel, Bou-Cabo; Miguel, Ardid; Ivan, Felis

    2016-07-01

    Direct detection of dark matter is one of the most important topics in modern physics. It is estimated that 22% of universe matter is composed by dark matter in front of 0.4% of ordinary matter like stars, galaxies planets and all kind of known astrophysical objects. Several kinds of experiments are nowadays involved in detection of one of the more accepted particle candidates to be dark matter: WIMPs (Weakly Interacting Massive Particles). These detectors, using several kinds of techniques: Cryogenic semiconductors, scintillation materials like I Na or noble gas chambers among others, are reporting very interesting but inconclusive results. In this paper a review of detectors that are using the superheated liquid technique in bubble chambers in order to detect WIMPs is reported. Basically, we will report about Coupp (Chicagoland observatory for underground particle physics), PICO that is composed by Coupp and Picasso researchers having the aim to build a ton experiment and also about a new detector named MOSCAB (Materia oscura a bolle) that recently published a first results of a test chamber that uses also superheated liquid technique but as a Geyser chamber.

  7. Evolution of the dark matter distribution at the galactic center.

    PubMed

    Merritt, David

    2004-05-21

    Annihilation radiation from neutralino dark matter at the Galactic center (GC) would be greatly enhanced if the dark matter were strongly clustered around the supermassive black hole (SBH). The existence of a dark matter "spike" is made plausible by the observed, steeply rising stellar density near the GC SBH. Here the time-dependent equations describing gravitational interaction of the dark matter with the stars are solved. Scattering of dark matter particles by stars would substantially lower the dark matter density near the GC SBH over 10 Gyr, due both to kinetic heating and to capture of dark matter particles by the SBH. This evolution implies a decrease by several orders of magnitude in the observable flux of annihilation products compared with models that associate a steep, dark matter spike with the SBH.

  8. Dark matter superfluidity and galactic dynamics

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin

    2016-02-01

    We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.

  9. Dark radiation constraints on mixed Axion/Neutralino dark matter

    SciTech Connect

    Bae, Kyu Jung; Baer, Howard; Lessa, Andre E-mail: baer@nhn.ou.edu

    2013-04-01

    Recent analyses of CMB data combined with the measurement of BAO and H{sub 0} show that dark radiation — parametrized by the apparent number of additional neutrinos ΔN{sub eff} contributing to the cosmic expansion — is bounded from above by about ΔN{sub eff}∼<1.6 at 95% CL. We consider the mixed axion/neutralino cold dark matter scenario which arises in R-parity conserving supersymmetric (SUSY) models wherein the strong CP problem is solved by hadronic axions with a concommitant axion(a)/saxion(s)/axino(ã) supermultiplet. Our new results include improved calculations of thermal axion and saxion production and include effects of saxion decay to axinos and axions. We show that the above bound on ΔN{sub eff} is easily satisfied if saxions are mainly thermally produced and m{sub LSP} < m{sub ã}∼dark matter are highly constrained by combined CMB, BBN and Xe-100 constraints. In particular, supersymmetric models with a standard overabundance of neutralino dark matter are excluded for all values of the Peccei-Quinn breaking scale. Next generation WIMP direct detection experiments may be able to discover or exclude mixed axion-neutralino CDM scenarios where s → aa is the dominant saxion decay mode.

  10. New Light on Dark Matter

    SciTech Connect

    Freedman, Wendy L., Dr.

    2008-11-22

    Under this proposal, we have been undertaking a calibration of rate of change of the expansion rate of the Universe as a function of cosmic look-back time using the high-precision standard candles, Type Ia supernovae, as observed in their rest-frame near-infrared wavelengths. The apparent acceleration of the Universe, as discovered earlier using these same types of supernovae, was both unanticipated and extremely profound in its implications. Not only does the acceleration mean that the Universe is unbound, but it also implies the existence of a new constituent of the Universe (so-called 'dark energy') that is many orders of magnitude stronger than what physicists can easily accommodate in their standard theories of particle physics. A result with such wide-ranging and important implications must be checked, and all sources of systematic error and uncertainty must be evaluated and accounted for. At increasingly higher redshifts the objects being observed are seen at earlier cosmic times and the radiation that reaches Earth is shifted to longer and longer wavelengths. What leaves a supernova event at one time in the past as an optical photon is downgraded by cosmic expansion into a red or infrared photon by the time it is detected here. Optical images of distant supernovae seen now, began their lives as ultraviolet photons. The ultraviolet properties of nearby supernovae are not well understood, so comparing supernova across time and space becomes complicated and uncertain. Moreover it is well known that the systematic effects of interstellar dust are larger and more variable from place to place in the ultraviolet than they are at longer wavelengths. To mitigate both the uncertainty of the ultraviolet calibration and the certainty of variable dust extinction along the line of sight, the Carnegie Supernova Program (CSP) has been observing the distant supernovae at groundbased infrared wavelengths that more closely match restframe (emitted) optical wavelengths at the

  11. Introduction to the special issue on "indirect dark matter searches"

    NASA Astrophysics Data System (ADS)

    Khlopov, Maxim Yu.

    2014-11-01

    The nature of cosmological dark matter finds its explanation in physics beyond the Standard Model of elementary particles. The landscape of dark matter candidates contains a wide variety of species, either elusive or hardly detectable in direct experimental searches. Even in case, when such searches are possible the interpretation of their results implies additional sources of information, which provide indirect effects of dark matter. Some nontrivial probes for the nature of the dark matter are presented in the present issue.

  12. Dark matter freeze-out in a nonrelativistic sector

    NASA Astrophysics Data System (ADS)

    Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele

    2016-08-01

    A thermally decoupled hidden sector of particles, with a mass gap, generically enters a phase of cannibalism in the early Universe. The Standard Model sector becomes exponentially colder than the hidden sector. We propose the cannibal dark matter framework, where dark matter resides in a cannibalizing sector with a relic density set by 2-to-2 annihilations. Observable signals of cannibal dark matter include a boosted rate for indirect detection, new relativistic degrees of freedom, and warm dark matter.

  13. Revisiting Black Holes as Dark Matter

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA

  14. Finite Inflation, Holography, and Dark Matter Annihilation

    NASA Astrophysics Data System (ADS)

    Scacco, Andrew Joseph

    This thesis covers work on theoretical cosmology relating to inflation, de Sitter space, dark matter annihilation, and holography. A unifying feature of all these topics is that all of them occur in de Sitter space or focus on epochs of the Universe when the spacetime was close to de Sitter and that all of them have some connection to holography. Chapter 1 provides a pedagogical introduction to the fundamentals of cosmology, inflation, de Sitter space, dark matter annihilation and entanglement entropy. Chapter 2 covers the impact on the causal entropic principle of dark matter annihilation that we find to have the greatest relevance at late times in the future when the dark energy has driven the universe to be asymptotically de Sitter. In this chapter we estimate holographically preferred dark matter properties for a range of assumptions. Chapter 3 covers holographic bounds in models of finite inflation, specifically the Banks-Fischler bound and de Sitter equilibrium. The assumptions in each of these models are explored in detail and some interesting new connections are presented. Chapter 4 tests models of inflation with a fast-roll start that happen to satisfy the holographic bounds in Chapter 3 against cosmic microwave background data from Planck. We find a slight preference for a feature at the scale predicted by the Banks-Fischler bound though this preference is not found to be statistically significant. Chapter 5 contains a numerical computation of the holographic mutual information for an annular configuration of regions on a conformal field theory in de Sitter space using the AdS/CFT correspondence. This computation shows that the de Sitter space CFT entanglement entropy matches what would be expected from a Minkowski CFT and shows that the HRT conjecture works for this case.

  15. Dark Energy, Dark Matter and Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  16. Dark energy and dark matter from an additional adiabatic fluid

    NASA Astrophysics Data System (ADS)

    Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo

    2016-10-01

    The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.

  17. Updates from the DMTPC Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Lopez, Jeremy

    2013-04-01

    The motion of Earth through the galactic dark matter halo combined with the rotation of Earth around its axis is expected to create a large daily modulation in the typical directions of WIMP dark matter induced nuclear recoils. This modulation, if found, would provide strong evidence for WIMP interactions with normal matter. To search for this signal, the Dark Matter Time Projection Chamber (DMTPC) collaboration is developing gas TPCs that can measure the directions of low energy nuclear recoils in low pressure CF4 gas. DMTPC detectors use a mesh-based amplification region to measure the ionization profiles of recoils on a two-dimensional readout plane. CCD cameras are used to achieve sub-millimeter spatial resolution for a typical nuclear recoil range of one to several millimeters. This talk will discuss the commissioning and calibration of a prototype DMTPC detector in a surface laboratory at MIT. This detector, the 4-shooter, is testing several new features necessary for a planned 1 m^3 fiducial volume detector currently being designed. Upon completion of surface calibrations in early 2013, the 4-shooter detector will be installed underground at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico.

  18. Gravity resonance spectroscopy constrains dark energy and dark matter scenarios.

    PubMed

    Jenke, T; Cronenberg, G; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H

    2014-04-18

    We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate that Newton's inverse square law of gravity is understood at micron distances on an energy scale of 10-14  eV. At this level of precision, we are able to provide constraints on any possible gravitylike interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant β>5.8×108 at 95% confidence level (C.L.), and an attractive (repulsive) dark matter axionlike spin-mass coupling is excluded for the coupling strength gsgp>3.7×10-16 (5.3×10-16) at a Yukawa length of λ=20  μm (95% C.L.).

  19. Dissipative dark matter and the rotation curves of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and Hα fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  20. Challenges in Cosmology from the Big Bang to Dark Energy, Dark Matter and Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Silk, Joseph

    I review the current status of Big Bang Cosmology, with emphasis on current issues in dark matter, dark energy, and galaxy formation. These topics motivate many of the current goals of experimental cosmology which range from targeting the nature of dark energy and dark matter to probing the epoch of the first stars and galaxies.

  1. `HERON` as a dark matter detector?

    SciTech Connect

    Adams, J.S.; Bandler, S.R.; Brouer, S.M.; Enss, C.; Lanou, R.E.; Maris, H.J.; More, T.; Seidel, G.M.

    1996-10-01

    ``{bold HERON}``, which is the acronym for `` {bold He}lium: {bold Ro}ton detection of {bold N}eutrinos``, is a project whose principal goal is a next generation detector of solar neutrinos from the p-p and {sup 7}Be branches. It will utilize superfluid helium as the target material and employ event energy transport out of the target by phonon and roton processes unique to helium. Many of the challenges presented for dark matter detection are very similar to those for low energy solar neutrinos. We present new results from our feasibility studies for {bold HERON} which indicate an asymmetry in the roton emission distribution from stopping particles and the ability to detect simultaneously the ultraviolet fluorescence photons also emitted. These features are potentially valuable for solar neutrino detection and the question is explored as to whether or not the same helium technique could be valuable for WIMP dark matter detection.

  2. Angular momentum of dark matter black holes

    NASA Astrophysics Data System (ADS)

    Frampton, Paul H.

    2017-04-01

    We provide strongly suggestive evidence that the halo constituents of dark matter are Primordial Intermediate-Mass Black Holes (PIMBHs). PIMBHs are described by a Kerr metric with two parameters, mass M and angular momentum J. There has been little discussion of J since it plays no role in the upcoming attempt at PIMBH detection by microlensing. Nevertheless J does play a central role in understanding their previous lack of detection, especially by CMB distortion. We explain why bounds previously derived from lack of CMB distortion are too strong for PIMBHs with J non-vanishing and that, provided almost no dark matter black holes originate from stellar collapse, excessive CMB distortion is avoided.

  3. Axion dark matter: strings and their cores

    SciTech Connect

    Fleury, Leesa; Moore, Guy D.

    2016-01-04

    Axions constitute a well-motivated dark matter candidate, and if PQ symmetry breaking occurred after inflation, it should be possible to make a clean prediction for the relation between the axion mass and the axion dark matter density. We show that axion (or other global) string networks in 3D have a network density that depends logarithmically on the string separation-to-core ratio. This logarithm would be about 10 times larger in axion cosmology than what we can achieve in numerical simulations. We simulate axion production in the early Universe, finding that, for the separation-to-core ratios we can achieve, the changing density of the network has little impact on the axion production efficiency.

  4. Dark matter constraints from stellar evolution

    NASA Astrophysics Data System (ADS)

    Ayala, A.; Domínguez, I.; Straniero, O.

    2016-01-01

    The study of dark matter constraints from its effect on star evolution has been discussed in recent years. We propose a star evolution simulation approach to determine those costraints from properties related to star evolutionary stages and propose globular cluster observables in order to check those constraints. My work in progress (my PhD project research) employs FRANEC code to simulate complete star evolution from pre-main sequence to AGB phase, and regards several DM candidates like axions or WIMPs, motivated by different unsolved physical problems. Detailed energy production or energy loss due to DM particles are included, taking into account the expected interaction between dark matter particles and stellar plasma within different models.

  5. Axion cold dark matter in nonstandard cosmologies

    SciTech Connect

    Visinelli, Luca; Gondolo, Paolo

    2010-03-15

    We study the parameter space of cold dark matter axions in two cosmological scenarios with nonstandard thermal histories before big bang nucleosynthesis: the low-temperature reheating (LTR) cosmology and the kination cosmology. If the Peccei-Quinn symmetry breaks during inflation, we find more allowed parameter space in the LTR cosmology than in the standard cosmology and less in the kination cosmology. On the contrary, if the Peccei-Quinn symmetry breaks after inflation, the Peccei-Quinn scale is orders of magnitude higher than standard in the LTR cosmology and lower in the kination cosmology. We show that the axion velocity dispersion may be used to distinguish some of these nonstandard cosmologies. Thus, axion cold dark matter may be a good probe of the history of the Universe before big bang nucleosynthesis.

  6. Constraints on dark matter from intergalactic radiation

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1992-01-01

    Several of the dark matter candidates that have been proposed are believed to be unstable to decay, which would contribute photons to the radiation field between galaxies. The main candidates of this type are light neutrinos and axions, primordial mini-black holes, and a nonzero 'vacuum' energy. All of these can be constrained in nature by observational data on the extragalactic background light and the microwave background radiation. Black holes and the vacuum can be ruled out as significant contributors to the 'missing mass'. Light axions are also unlikely candidates; however, those with extremely small rest energies (the so-called 'invisible' axions) remain feasible. Light neutrinos, like those proposed by Sciama, are marginally viable. In general, we believe that the intergalactic radiation field is an important way of constraining all types of dark matter.

  7. Axion dark matter: strings and their cores

    SciTech Connect

    Fleury, Leesa; Moore, Guy D. E-mail: guy.moore@physik.tu-darmstadt.de

    2016-01-01

    Axions constitute a well-motivated dark matter candidate, and if PQ symmetry breaking occurred after inflation, it should be possible to make a clean prediction for the relation between the axion mass and the axion dark matter density. We show that axion (or other global) string networks in 3D have a network density that depends logarithmically on the string separation-to-core ratio. This logarithm would be about 10 times larger in axion cosmology than what we can achieve in numerical simulations. We simulate axion production in the early Universe, finding that, for the separation-to-core ratios we can achieve, the changing density of the network has little impact on the axion production efficiency.

  8. Shedding new light on genetic dark matter

    PubMed Central

    2010-01-01

    Discoveries from genome-wide association studies have contributed to our knowledge of the genetic etiology of many complex diseases. However, these account for only a small fraction of each disease's heritability. Here, we comment on approaches currently available to uncover more of the genetic 'dark matter,' including an approach introduced recently by Naukkarinen and colleagues. These authors propose a method for distinguishing between gene expression driven by genetic variation and that driven by non-genetic factors. This dichotomy allows investigators to focus statistical tests and further molecular analyses on a smaller set of genes, thereby discovering new genetic variation affecting risk for disease. We need more methods like this one if we are to shed a powerful light on dark matter. By enhancing our understanding of molecular genetic etiology, such methods will help us to understand disease processes better and will advance the promise of personalized medicine. PMID:21067556

  9. Light Dark Matter in the NO$\

    SciTech Connect

    Hatzikoutelis, Athanasios

    2015-01-01

    The neutrino oscillations experiment NOA is the agship of Fermi National Laboratory. The neutrino source NuMI is delivering record numbers of protons-on-target surpassing the most stringent dark matter production upper limits of current models in the under-10 GeV mass range. We take advantage of the sophisticated particle identication algorithms of the experiment to interrogate the data from the 300-ton, o-axis, low-Z, Near Detector of NOvA during the rst physics runs. We search for signatures of sub-GeV or Light Dark Matter (LDM), Axion-like-particles, and Heavy or Sterile Neutrinos that may scatter or decay in the volume of the detector.

  10. Inflaton dark matter from incomplete decay

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Cerezo, Rafael; Rosa, João G.

    2016-05-01

    We show that the decay of the inflaton field may be incomplete, while nevertheless successfully reheating the Universe and leaving a stable remnant that accounts for the present dark matter abundance. We note, in particular, that since the mass of the inflaton decay products is field dependent, one can construct models, endowed with an appropriate discrete symmetry, where inflaton decay is kinematically forbidden at late times and only occurs during the initial stages of field oscillations after inflation. We show that this is sufficient to ensure the transition to a radiation-dominated era and that inflaton particles typically thermalize in the process. They eventually decouple and freeze out, yielding a thermal dark matter relic. We discuss possible implementations of this generic mechanism within consistent cosmological and particle physics scenarios, for both single-field and hybrid inflation.

  11. Axions as hot and cold dark matter

    SciTech Connect

    Jeong, Kwang Sik; Kawasaki, Masahiro; Takahashi, Fuminobu E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-02-01

    The presence of a hot dark matter component has been hinted at 3σ by a combination of the results from different cosmological observations. We examine a possibility that pseudo Nambu-Goldstone bosons account for both hot and cold dark matter components. We show that the QCD axions can do the job for the axion decay constant f{sub a}∼

  12. Bounds on dark matter in solar orbit

    SciTech Connect

    Anderson, J.D.; Lau, E.L.; Taylor, A.H.; Dicus, D.A.; Teplitz, D.C.; Texas Univ., Austin; Maryland Univ., College Park )

    1989-07-01

    The possibility is considered that a spherical distribution of dark matter (DM), matter not visible with current instruments, is trapped in the sun's gravitational field. Bounds are placed from the motion of Uranus and Neptune, on the amount of DM that could be so trapped within the radius of those planets' orbits, as follows: from the Voyager 2, Uranus-flyby data new, more accurate ephemeris values are generated. Trapped DM mass is bounded by noting that such a distribution would increase the effective mass of the sun as seen by the outer planets and by using the new ephemeris values to bound such an increase. 34 refs.

  13. Two-loop Dirac neutrino mass and WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Bonilla, Cesar; Ma, Ernest; Peinado, Eduardo; Valle, Jose W. F.

    2016-11-01

    We propose a "scotogenic" mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diracon that induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below mh / 2.

  14. Dark matter and IceCube neutrinos

    NASA Astrophysics Data System (ADS)

    Biondi, R.

    2015-01-01

    We show that the excess of high energy neutrinos observed by the IceCube collaboration at energies above 100TeV might originate from baryon number violating decays of heavy shadow baryons from mirror sector, which in turn constitute Dark Matter. Due to tiny mixing between mirror and ordinary neutrinos, it is possible to explain the specific features of the IceCube events spectrum.

  15. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  16. Direct detection of particle dark matter

    NASA Astrophysics Data System (ADS)

    Rich, J.

    The paper discusses in general terms the problem of detecting and identifying weakly-interacting particles in the galactic halo via the observation of nuclei recoiling from elastic scatters. Emphasis is placed on experimental signatures and on detector requirements as to size, energy sensitivity and background. The problems are illustrated with three popular dark-matter candidates: heavy Diract neutrinos, supersymmetric photinos, and cosmions (particles invented to solve the solar-neutrino problem). Recent progress in the construction of suitable detectors is discussed.

  17. Stellar Spirals in Triaxial Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Hu, Shaoran; Sijacki, Debora

    2017-03-01

    Two-armed grand-design spirals may form if the shape of its dark matter halo changes abruptly enough. The feasibility of such a mechanism is tested in realistic simulations. The interplay of such externally-driven spirals and self-induced transient spirals is then studied. Subhaloes are also found to lead to transient grand-design spiral structures when they impact the disk.

  18. Primordial black holes as dark matter

    NASA Astrophysics Data System (ADS)

    Carr, Bernard; Kühnel, Florian; Sandstad, Marit

    2016-10-01

    The possibility that the dark matter comprises primordial black holes (PBHs) is considered, with particular emphasis on the currently allowed mass windows at 1 016- 1 017 g , 1 020- 1 024 g and 1 - 1 03M⊙ . The Planck mass relics of smaller evaporating PBHs are also considered. All relevant constraints (lensing, dynamical, large-scale structure and accretion) are reviewed and various effects necessary for a precise calculation of the PBH abundance (non-Gaussianity, nonsphericity, critical collapse and merging) are accounted for. It is difficult to put all the dark matter in PBHs if their mass function is monochromatic but this is still possible if the mass function is extended, as expected in many scenarios. A novel procedure for confronting observational constraints with an extended PBH mass spectrum is therefore introduced. This applies for arbitrary constraints and a wide range of PBH formation models and allows us to identify which model-independent conclusions can be drawn from constraints over all mass ranges. We focus particularly on PBHs generated by inflation, pointing out which effects in the formation process influence the mapping from the inflationary power spectrum to the PBH mass function. We then apply our scheme to two specific inflationary models in which PBHs provide the dark matter. The possibility that the dark matter is in intermediate-mass PBHs of 1 - 1 03M⊙ is of special interest in view of the recent detection of black-hole mergers by LIGO. The possibility of Planck relics is also intriguing but virtually untestable.

  19. Direct Dark Matter search with XENON100

    NASA Astrophysics Data System (ADS)

    Orrigo, S. E. A.

    2016-07-01

    The XENON100 experiment is the second phase of the XENON program for the direct detection of the dark matter in the universe. The XENON100 detector is a two-phase Time Projection Chamber filled with 161 kg of ultra pure liquid xenon. The results from 224.6 live days of dark matter search with XENON100 are presented. No evidence for dark matter in the form of WIMPs is found, excluding spin-independent WIMP-nucleon scattering cross sections above 2 × 10-45 cm2 for a 55 GeV/c2 WIMP at 90% confidence level (C.L.). The most stringent limit is established on the spin-dependent WIMP-neutron interaction for WIMP masses above 6 GeV/c2, with a minimum cross section of 3.5 × 10-40 cm2 (90% C.L.) for a 45 GeV/c2 WIMP. The same dataset is used to search for axions and axion-like-particles. The best limits to date are set on the axion-electron coupling constant for solar axions, gAe < 7.7 × 10-12 (90% C.L.), and for axion-like-particles, gAe < 1 × 10-12 (90% C.L.) for masses between 5 and 10 keV/c2.

  20. The baryonic self similarity of dark matter

    SciTech Connect

    Alard, C.

    2014-06-20

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominated regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.

  1. Detecting dark matter with scintillating bubble chambers

    NASA Astrophysics Data System (ADS)

    Zhang, Jianjie; Dahl, C. Eric; Jin, Miaotianzi; Baxter, Daniel

    2016-03-01

    Threshold based direct WIMP dark matter detectors such as the superheated bubble chambers developed by the PICO experiment have demonstrated excellent electron-recoil and alpha discrimination, excellent scalability, ease of change of target fluid, and low cost. However, the nuclear-recoil like backgrounds have been a limiting factor in their dark matter sensitivity. We present a new type of detector, the scintillating bubble chamber, which reads out the scintillation pulse of the scattering events as well as the pressure, temperature, acoustic traces, and bubble images as a conventional bubble chamber does. The event energy provides additional handle to discriminate against the nuclear-recoil like backgrounds. Liquid xenon is chosen as the target fluid in our prototyping detector for its high scintillation yield and suitable vapor pressure which simplifies detector complexity. The detector can be used as an R&D tool to study the backgrounds present in the current PICO bubble chambers or as a prototype for standalone dark matter detectors in the future. Supported by DOE Grant DE-SC0012161.

  2. Substructure of fuzzy dark matter haloes

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.

    2017-02-01

    We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.

  3. The XENONnT Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena; Xenon Collaboration

    2017-01-01

    With XENON1T ready to search for dark matter with the highest sensivity of any experiment to-date the XENON collaboration started to secure funding and resources to upgrade the detector by the end of 2018- phase which we refer to as XENONnT. The XENONnT experiment will utilize the already-built-and-tested XENON1T infrastructures, such as the cryogenic system, Kr distillation system and Xe storage and recovery system, with the main upgrade of the time projection chamber (TPC). The upgraded XENONnT detector will be filled with 7.5-ton ultra-pure liquid xenon, tripling the active liquid xenon target mass of XENON1T. About 500 low-radioactive three-inch R11410 PMTs will be used. Background from internal sources such as radon will be reduced. It will enable another order of magnitude improvement in dark matter search sensitivity compared to that of XENON1T, or accumulate statistics if a positive dark matter signal is observed by XENON1T. The detailed TPC upgrade plan, the background control and reduction techniques, the predicted sensitivity reach will be presented.

  4. Searching for Dark Matter with Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Seo, Eun-Suk

    2015-04-01

    One of the most exciting possibilities in cosmic ray research is the potential to discover new phenomena. A number of elementary particles were discovered in cosmic rays before modern-day accelerators became available to study their detailed properties. Since the discovery of cosmic ray antiprotons in 1979 using a balloon-borne magnet spectrometer, a series of magnet spectrometers have been flown to search for the signature of dark matter annihilation in antiprotons and positrons. Being the same as particles except for their opposite charge sign, antiparticles are readily distinguished as they bend in opposite directions in the magnetic field. As long-duration balloon flights over Antarctica became available, not only antiproton to proton ratios but also measurements of antiproton energy spectra became possible. More recently, space missions are also providing precision measurements of electron and position energy spectra. With other measurements to constrain cosmic ray propagation models, these new measurements play key roles in constraining dark-matter models for understanding the nature of dark matter. Recent results, their implications, and outlook for the field will be presented.

  5. Dark-matter harmonics beyond annual modulation

    SciTech Connect

    Lee, Samuel K.; Lisanti, Mariangela; Safdi, Benjamin R. E-mail: mlisanti@princeton.edu

    2013-11-01

    The count rate at dark-matter direct-detection experiments should modulate annually due to the motion of the Earth around the Sun. We show that higher-frequency modulations, including daily modulation, are also present and in some cases are nearly as strong as the annual modulation. These higher-order modes are particularly relevant if (i) the dark matter is light, O(10) GeV, (ii) the scattering is inelastic, or (iii) velocity substructure is present; for these cases, the higher-frequency modes are potentially observable at current and ton-scale detectors. We derive simple expressions for the harmonic modes as functions of the astrophysical and geophysical parameters describing the Earth's orbit, using an updated expression for the Earth's velocity that corrects a common error in the literature. For an isotropic halo velocity distribution, certain ratios of the modes are approximately constant as a function of nuclear recoil energy. Anisotropic distributions can also leave observable features in the harmonic spectrum. Consequently, the higher-order harmonic modes are a powerful tool for identifying a potential signal from interactions with the Galactic dark-matter halo.

  6. Suppressing structure formation at dwarf galaxy scales and below: Late kinetic decoupling as a compelling alternative to warm dark matter

    NASA Astrophysics Data System (ADS)

    Bringmann, Torsten; Ihle, Hâvard Tveit; Kersten, Jörn; Walia, Parampreet

    2016-11-01

    Warm dark matter cosmologies have been widely studied as an alternative to the cold dark matter paradigm, the characteristic feature being a suppression of structure formation on small cosmological scales. A very similar situation occurs if standard cold dark matter particles are kept in local thermal equilibrium with a, possibly dark, relativistic species until the Universe has cooled down to keV temperatures. We perform a systematic phenomenological study of this possibility, and classify all minimal models containing dark matter and an arbitrary radiation component that allows such a late kinetic decoupling. We recover explicit cases recently discussed in the literature and identify new classes of examples that are very interesting from a model-building point of view. In some of these models dark matter is inevitably self-interacting, which is remarkable in view of recent observational support for this possibility. Hence, dark matter models featuring late kinetic decoupling have the potential not only to alleviate the missing satellites problem but also to address other problems of the cosmological concordance model on small scales, in particular the cusp-core and too-big-too-fail problems, in some cases without invoking any additional input.

  7. Gravitational effects of condensate dark matter on compact stellar objects

    SciTech Connect

    Li, X.Y.; Wang, F.Y.; Cheng, K.S. E-mail: fayinwang@gmail.com

    2012-10-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed.

  8. Dark matter as the trigger of strong electroweak phase transition

    SciTech Connect

    Chowdhury, Talal Ahmed; Nemevšek, Miha; Senjanović, Goran; Zhang, Yue E-mail: miha@ictp.it E-mail: yuezhang@ictp.it

    2012-02-01

    In this paper, we propose a new possible connection between dark matter relic density and baryon asymmetry of the universe. The portal between standard model sector and dark matter not only controls the relic density and detections of dark matter, but also allows the dark matter to trigger the first order electroweak phase transition. We discuss systematically possible scalar dark matter candidates, starting from a real singlet to arbitrary high representations. We show that the simplest realization is provided by a doublet, and that strong first-order electroweak phase transition implies a lower bound on the dark matter direct detection rate. The mass of dark matter lies between 45 and 80 GeV, allowing for an appreciable invisible decay width of the Standard Model Higgs boson, which is constrained to be lighter than 130 GeV for the sake of the strong phase transition.

  9. Constraining Dark Matter and Dark Energy Models using Astrophysical Surveys

    NASA Astrophysics Data System (ADS)

    Cieplak, Agnieszka M.

    This thesis addresses astrophysical probes to constrain dark matter (DM) and dark energy models. Primordial black holes (PBHs) remain one of the few DM candidates within the Standard Model of Particle Physics. This thesis presents a new probe of this PBH DM, using the microlensing of the source stars monitored by the already existing Kepler satellite. With its photometric precision and the large projected cross section of the nearby stars, it is found that previous constraints on PBH DM could theoretically be extended by two orders of magnitude. Correcting a well-known microlensing formula, a limb-darkening analysis is included, and a new approximation is calculated for future star selection. A preliminary prediction is calculated for the planned Wide-Field Infrared Survey Telescope. A preliminary study of the first two years of publicly available Kepler data is presented. The investigation yields many new sources of background error not predicted in the theoretical calculations, such as stellar flares and comets in the field of view. Since no PBH candidates are detected, an efficiency of detection is therefore calculated by running a Monte Carlo with fake limb-darkened finite-source microlensing events. It is found that with just the first 8 quarters of data, a full order of magnitude of the PBH mass range can be already constrained. Finally, one of the astrophysical probes of dark energy is also addressed - specifically, the baryon acoustic oscillations (BAO) measurement in the gas distribution, as detected in quasar absorption lines. This unique measurement of dark energy at intermediate redshifts is being measured by current telescope surveys. The last part of this thesis therefore focuses on understanding the systematic effects in such a detection. Since the bias between the underlying dark matter distribution and the measured gas flux distribution is based on gas physics, hydrodynamic simulations are used to understand the evolution of neutral hydrogen over

  10. Polytropic dark matter flows illuminate dark energy and accelerated expansion

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Spyrou, N. K.

    2015-04-01

    Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. In fact, polytropic processes in a DM fluid have been most successfully used in modeling dark galactic haloes, thus significantly improving the velocity dispersion profiles of galaxies. Motivated by such results, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluidlike properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, together with all the other physical characteristics, we also take the energy of this fluid's internal motions into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy, needed to compromise spatial flatness, namely, to justify that, today, the total energy density parameter is exactly unity. The polytropic cosmological model, depends on only one free parameter, the corresponding (polytropic) exponent, Γ. We find this model particularly interesting, because for Γ ≤ 0.541, without the need for either any exotic DE or the cosmological constant, the conventional pressure becomes negative enough so that the Universe accelerates its expansion at cosmological redshifts below a transition value. In fact, several physical reasons, e.g., the cosmological requirement for cold DM (CDM) and a positive velocity-of-sound square, impose further constraints on the value of Γ, which is eventually settled down to the range -0.089 < Γ ≤ 0. This cosmological model does not suffer either from the age problem or from the

  11. Holographic vortices in the presence of dark matter sector

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-12-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  12. Local dark matter from a carefully selected sample

    NASA Astrophysics Data System (ADS)

    Bahcall, John N.; Flynn, Chris; Gould, Andrew

    1992-04-01

    The precise data obtained by Flynn and Freeman (1991) on K giants at the south Galactic pole are used to analyze the amount of local dark matter in which the systematic effects can be modeled easily and evaluated accurately. The method of Bahcall (1984) is employed to solve the self-consistent equations for the distribution of dark matter. The K-giant survey is found to provide significant evidence for disk dark matter. Taking into account all recognized sources of error using a statistical test devised by Gould (1989, 1990), a model with no dark matter is inconsistent with the data at the 86-percent confidence level. The best-fit P-model (in which dark matter is distributed proportionally to known matter) has 53 percent more dark matter than visible matter.

  13. Resurrection of neutrinos as dark matter

    SciTech Connect

    Schramm, D.N.

    1986-05-01

    It is shown that new observations of large scale structure in the universe (voids, foam, and large-scale velocity fields) are best understood if the dominant matter of the universe is in the form of massive (9eV less than or equal to m/sub nu/ less than or equal to 35 eV) neutrinos. Cold dark matter, even with biasing, seems unable to duplicate the combination of these observations (although a fine-tuned loophole with cold matter and percolated explosions may also marginally work.) The previous fatal problems of galaxy formation with neutrinos can be remedied by combining them with either cosmic strings or explosive galaxy formation. The former naturally gives the scale-free correlation function for galaxies, clusters, and superclusters, and gives large, but not necessarily spherical voids. The latter naturally gives spherical voids, but requires fine tuning and percolation to get the large scales and the scale-free correlation function. 39 refs.

  14. Dark matter from f (R ,T ) gravity

    NASA Astrophysics Data System (ADS)

    Zaregonbadi, Raziyeh; Farhoudi, Mehrdad; Riazi, Nematollah

    2016-10-01

    We consider the f (R ,T ) modified theory of gravity, in which the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor of the matter, in order to investigate the dark-matter effects on the galaxy scale. We obtain the metric components for a spherically symmetric and static spacetime in the vicinity of general relativity solutions. However, we concentrate on a specific model of the theory where the matter is minimally coupled to the geometry, and derive the metric components in the galactic halo. Then, we fix the components by the rotational velocities of the galaxies for the model, and show that the mass corresponding to the interaction term (which appears in the Einstein modified field equation) leads to a flat rotation curve in the halo of galaxies. In addition, for the proposed model, the light-deflection angle has been derived and drawn using some observed data.

  15. Vector Dark Matter through a radiative Higgs portal

    DOE PAGES

    DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.

    2016-04-21

    We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU(2)more » $$_W \\times$$ U(1)$$_Y$$ and under the dark gauge group, U(1)$$^\\prime$$, generate an effective interaction between the Higgs and the dark matter at one loop. Furthermore, we explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.« less

  16. Vector Dark Matter through a radiative Higgs portal

    SciTech Connect

    DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.

    2016-04-21

    We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU(2)$_W \\times$ U(1)$_Y$ and under the dark gauge group, U(1)$^\\prime$, generate an effective interaction between the Higgs and the dark matter at one loop. Furthermore, we explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.

  17. Dissipative dark matter and the Andromeda plane of satellites

    SciTech Connect

    Randall, Lisa; Scholtz, Jakub E-mail: jscholtz@physics.harvard.edu

    2015-09-01

    We show that dissipative dark matter can potentially explain the large observed mass to light ratio of the dwarf satellite galaxies that have been observed in the recently identified planar structure around Andromeda, which are thought to result from tidal forces during a galaxy merger. Whereas dwarf galaxies created from ordinary disks would be dark matter poor, dark matter inside the galactic plane not only provides a source of dark matter, but one that is more readily bound due to the dark matter's lower velocity. This initial N-body study shows that with a thin disk of dark matter inside the baryonic disk, mass-to-light ratios as high as O(90) can be generated when tidal forces pull out patches of sizes similar to the scales of Toomre instabilities of the dark disk. A full simulation will be needed to confirm this result.

  18. New probes of dark matter and dark energy

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rae

    We use N -body simulations of a LCDM universe to study dark matter and dark energy. First, we examine the possibility of detecting the gravitational effect on the total redshift observed for galaxies. For clusters of mass M ~ 10 15 [Special characters omitted.] , the difference in gravitational redshift between the brightest galaxy and the rest of the cluster members is ~ 10 kms - 1 . The most efficient way to detect gravitational redshifts using information from galaxies only involves using the full gravitational redshift profile of clusters. Test on our simulated clusters show that we need at least ~ 2500 clusters/groups with M > 5 x 10 13 [Special characters omitted.] for a detection of gravitational redshifts at the 2s level. Secondly, we investigate the possibility of probing dark energy by measuring the isotropy of the galaxy cluster autocorrelation function (an Alcock-Paczynski test). We assume that the redshift distortion due to peculiar velocities can be removed by measuring kSZ effect. We use the hydrodynamic simulation results of Nagai et al. (2003) to simulate various kSZ surveys. We find by model fitting that a measurement of the correlation function distortion can be used to recover the cosmological parameters that have been used to generate the simulation. With the simulated SPT and ACT surveys, O L could be measured to within 0.1 and 0.2 respectively at one sigma, but only upper limits on the equation of state parameter w will be possible. Finally, using cosmological hydrodynamic simulations we measure the mean transmitted flux in the Lya forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel- quasar separation distance can be fitted using a simple power law form including the usual correlation function parameters r 0 and g so that ([left angle bracket] F ( r )[right angle bracket] = SUMexp(-t eff (1 + [Special characters omitted.] ))). From the simulations we find the relation between r 0

  19. The dark matter distribution of M87 and NGC 1399

    NASA Technical Reports Server (NTRS)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  20. Two-singlet model for light cold dark matter

    SciTech Connect

    Abada, Abdessamad; Ghaffor, Djamal; Nasri, Salah

    2011-05-01

    We extend the standard model by adding two gauge-singlet Z{sub 2}-symmetric scalar fields that interact with visible matter only through the Higgs particle. One is a stable dark matter WIMP, and the other one undergoes a spontaneous breaking of the symmetry that opens new channels for the dark matter annihilation, hence lowering the mass of the WIMP. We study the effects of the observed dark matter relic abundance on the WIMP annihilation cross section and find that in most regions of the parameters' space, light dark matter is viable. We also compare the elastic-scattering cross section of our dark matter candidate off a nucleus with existing (CDMSII and XENON100) and projected (SuperCDMS and XENON1T) experimental exclusion bounds. We find that most of the allowed mass range for light dark matter will be probed by the projected sensitivity of the XENON1T experiment.

  1. Massive gravitons as dark matter and gravitational waves

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuki; Mukohyama, Shinji

    2016-07-01

    We consider the possibility that the massive graviton is a viable candidate for dark matter in the context of bimetric gravity. We first derive the energy-momentum tensor of the massive graviton and show that it indeed behaves as that of dark matter fluid. We then discuss a production mechanism and the present abundance of massive gravitons as dark matter. Since the metric to which ordinary matter fields couple is a linear combination of the two mass eigenstates of bigravity, production of massive gravitons, i.e., the dark matter particles, is inevitably accompanied by generation of massless gravitons, i.e., the gravitational waves. Therefore, in this scenario some information about dark matter in our Universe is encoded in gravitational waves. For instance, if LIGO detects gravitational waves generated by the preheating after inflation, then the massive graviton with the mass of ˜0.01 GeV is a candidate for dark matter.

  2. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  3. Exploring dark matter with Milky Way substructure.

    PubMed

    Kuhlen, Michael; Madau, Piero; Silk, Joseph

    2009-08-21

    The unambiguous detection of dark matter annihilation in our Galaxy would unravel one of the most outstanding puzzles in particle physics and cosmology. Recent observations have motivated models in which the annihilation rate is boosted by the Sommerfeld effect, a nonperturbative enhancement arising from a long-range attractive force. We applied the Sommerfeld correction to Via Lactea II, a high-resolution N-body simulation of a Milky Way-sized galaxy, to investigate the phase-space structure of the galactic halo. We found that the annihilation luminosity from kinematically cold substructure could be enhanced by orders of magnitude relative to previous calculations, leading to the prediction of gamma-ray fluxes from as many as several hundred dark clumps that should be detectable by the Fermi satellite.

  4. Dark-matter admixed white dwarfs

    NASA Astrophysics Data System (ADS)

    Leung, Shing Chi; Chu, Ming Chung; Lin, Lap Ming; Wong, Ka Wing

    2014-03-01

    We study the equilibrium structures of white dwarfs (WD) with dark matter cores formed by non-self-annihilating dark matter (DM) particles with masses ranging from 1 GeV to 100 GeV, assuming in form of an ideal degenerate Fermi gas inside the stars. For DM particles of mass 10 GeV and 100 GeV, we find that stable stellar models exist only if the mass of the DM core inside the star is less than O and -3)Msun , respectively. The global properties of these stars, and the corresponding Chandrasekhar mass (CM) limits, are essentially the same as those of traditional WD models without DM. Nevertheless, in the 10 GeV case, the gravitational attraction of the DM core is strong enough to squeeze the normal matter in the core region to densities above neutron drip. For the 1 GeV case, the DM core inside the star can be as massive as O and affects the global structure of the star significantly. The radius of a stellar model with DM can be about two times smaller than that of a traditional WD. Furthermore, the CM limit can be decreased by as much as 40%. Our results may have implications on the extent to which type Ia supernovae can be regarded as standard candles. This work is partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 400910).

  5. Dark matter from gravitational particle production at reheating

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m~ 0.1 GeV and ξ ~ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  6. Ultralight scalars as cosmological dark matter

    NASA Astrophysics Data System (ADS)

    Hui, Lam; Ostriker, Jeremiah P.; Tremaine, Scott; Witten, Edward

    2017-02-01

    Many aspects of the large-scale structure of the Universe can be described successfully using cosmological models in which 27 ±1 % of the critical mass-energy density consists of cold dark matter (CDM). However, few—if any—of the predictions of CDM models have been successful on scales of ˜10 kpc or less. This lack of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light (m ˜10-22 eV ) boson having a de Broglie wavelength λ ˜1 kpc , often called fuzzy dark matter (FDM). We describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or subhalos smaller than about 1 07(m /10-22 eV )-3 /2 M⊙ do not form, and the abundance of halos smaller than a few times 1 010(m /10-22 eV )-4 /3 M⊙ is substantially smaller in FDM than in CDM. (ii) FDM halos are comprised of a central core that is a stationary, minimum-energy solution of the Schrödinger-Poisson equation, sometimes called a "soliton," surrounded by an envelope that resembles a CDM halo. The soliton can produce a distinct signature in the rotation curves of FDM-dominated systems. (iii) The transition between soliton and envelope is determined by a relaxation process analogous to two-body relaxation in gravitating N-body systems, which proceeds as if the halo were composed of particles with mass ˜ρ λ3 where ρ is the halo density. (iv) Relaxation may have substantial effects on the stellar disk and bulge in the inner parts of disk galaxies, but has negligible effect on disk thickening or globular cluster disruption near the solar radius. (v) Relaxation can produce FDM disks but a FDM disk in the solar neighborhood must have a half-thickness of at least ˜300 (m /10-22 eV )-2/3 pc and a midplane density less

  7. Perturbations of ultralight vector field dark matter

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Núñez Jareño, S. J.

    2017-02-01

    We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with {k}^2≪ Hma, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with {k}^2≫ Hma, we get a wave-like behaviour in which the sound speed is non-vanishing and of order c s 2 ≃ k 2/ m 2 a 2. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order ( Φ - Ψ)/ Φ ˜ c s 2 . Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also h/ Φ ˜ c s 2 . This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.

  8. Dark Matter Detection with Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Pratt, Mark Robin

    There is overwhelming evidence that the majority of the mass in ordinary galaxies like our own is undetected by its absorption or emission of light. If this mass is in the form of massive compact halo objects (Machos) it can be detected through its gravitational microlensing of background stars. The MACHO Project is searching for this Galactic dark matter by monitoring millions of stars in the Magellanic Clouds and Galactic bulge in an attempt to detect rare microlensing events caused by otherwise invisible Machos. Analysis of two years of photometry on 8.5 million stars in the Large Magellanic Cloud (LMC) reveals 8 candidate microlensing events. Detailed calibrations including characterization of our confusion limited photometry allow us to calculate a mass for the entire lensing population and to compare the observed event rate with both that expected from known stars and that expected for the dark matter. We find that only ~1 event should be expected from lensing by stars in known galactic populations. From these eight events we estimate the optical depth towards the LMC from events with duration 2dark matter.

  9. AMS-02 antiprotons: implications for dark matter

    NASA Astrophysics Data System (ADS)

    Boudaud, Mathieu

    2016-05-01

    Using the updated proton and helium fluxes just released by the Ams-02 experiment we reevaluate the secondary astrophysical antiproton to proton ratio and its uncertainties, and compare it with the ratio preliminarly reported by AMS-02. We find no unambiguous evidence for a significant excess with respect to expectations. Yet, some preference for a flatter energy dependence of the diffusion coefficient (with respect to the Med benchmark often used in the literature) starts to emerge. Finally, we provide a first assessment of the room left for exotic components such as Galactic Dark Matter annihilation, deriving new stringent constraints.

  10. Supersymmetric dark matter and lepton flavor violation

    SciTech Connect

    Barger, Vernon; Marfatia, Danny; Mustafayev, Azar; Soleimani, Ali

    2009-10-01

    We study lepton flavor-violating (LFV) processes within a supersymmetric type-I seesaw framework with flavor-blind universal boundary conditions, properly accounting for the effect of the neutrino sector on the dark matter relic abundance. We consider several possibilities for the neutrino Yukawa coupling matrix and show that in regions of SUSY parameter space that yield the correct neutralino relic density, LFV rates can differ from naive estimates by up to 2 orders of magnitude. Contrary to common belief, we find that current LFV limits do not exclude neutrino Yukawa couplings larger than top Yukawa couplings. We introduce the ISAJET-M program that was used for the computations.

  11. Antideuterons from decaying gravitino dark matter

    SciTech Connect

    Delahaye, Timur; Grefe, Michael

    2015-07-08

    We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into account all different sources of theoretical uncertainties, we find that the margin of improvement beyond the limits already set by cosmic-ray antiproton data are quite narrow and unachievable for the next generation of experiments. However, we also identify more promising energy ranges for future experiments.

  12. Antideuterons from decaying gravitino dark matter

    SciTech Connect

    Delahaye, Timur; Grefe, Michael E-mail: michael.grefe@desy.de

    2015-07-01

    We study the possibility of improving the constraints on the lifetime of gravitino dark matter in scenarios with bilinear R-parity violation by estimating the amount of cosmic-ray antideuterons that can be produced in gravitino decays. Taking into account all different sources of theoretical uncertainties, we find that the margin of improvement beyond the limits already set by cosmic-ray antiproton data are quite narrow and unachievable for the next generation of experiments. However, we also identify more promising energy ranges for future experiments.

  13. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  14. The cosmological constant and cold dark matter

    NASA Astrophysics Data System (ADS)

    Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1990-12-01

    It is argued here that the success of the cosmological cold dark matter (CDM) model can be retained and the new observations of very large scale cosmological structures can be accommodated in a spatially flat cosmology in which as much as 80 percent of the critical density is provided by a positive cosmological constant. In such a universe, expansion was dominated by CDM until a recent epoch, but is now governed by the cosmological constant. This constant can also account for the lack of fluctuations in the microwave background and the large number of certain kinds of objects found at high redshift.

  15. Asymmetric capture of Dirac dark matter by the Sun

    SciTech Connect

    Blennow, Mattias; Clementz, Stefan

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  16. Asymmetric capture of Dirac dark matter by the Sun

    SciTech Connect

    Blennow, Mattias; Clementz, Stefan E-mail: scl@kth.se

    2015-08-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  17. Direct and indirect detection of dissipative dark matter

    SciTech Connect

    Fan, JiJi; Katz, Andrey; Shelton, Jessie E-mail: katz.andrey@gmail.com

    2014-06-01

    We study the constraints from direct detection and solar capture on dark matter scenarios with a subdominant dissipative component. This dissipative dark matter component in general has both a symmetric and asymmetric relic abundance. Dissipative dynamics allow this subdominant dark matter component to cool, resulting in its partial or total collapse into a smaller volume inside the halo (e.g., a dark disk) as well as a reduced thermal velocity dispersion compared to that of normal cold dark matter. We first show that these features considerably relax the limits from direct detection experiments on the couplings between standard model (SM) particles and dissipative dark matter. On the other hand, indirect detection of the annihilation of the symmetric dissipative dark matter component inside the Sun sets stringent and robust constraints on the properties of the dissipative dark matter. In particular, IceCube observations force dissipative dark matter particles with mass above 50 GeV to either have a small coupling to the SM or a low local density in the solar system, or to have a nearly asymmetric relic abundance. Possible helioseismology signals associated with purely asymmetric dissipative dark matter are discussed, with no present constraints.

  18. Simulating Gravity: Dark Matter and Gravitational Lensing in the Classroom

    ERIC Educational Resources Information Center

    Ford, Jes; Stang, Jared; Anderson, Catherine

    2015-01-01

    Dark matter makes up most of the matter in the universe but very little of a standard introductory physics curriculum. Here we present our construction and use of a spandex sheet-style gravity simulator to qualitatively demonstrate two aspects of modern physics related to dark matter. First, we describe an activity in which students explore the…

  19. Exploring dark matter microphysics with galaxy surveys

    SciTech Connect

    Escudero, Miguel; Mena, Olga; Vincent, Aaron C.; Wilkinson, Ryan J.; Boehm, Céline E-mail: omena@ific.uv.es E-mail: ryan.wilkinson@durham.ac.uk

    2015-09-01

    We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ΛCDM scenario. To quantify this statement, we focus on an extension of ΛCDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.

  20. Testing Lorentz invariance of dark matter

    SciTech Connect

    Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey E-mail: mm.ivanov@physics.msu.ru

    2012-10-01

    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.

  1. Probing Sub-GeV Dark Matter with Conventional Detectors.

    PubMed

    Kouvaris, Chris; Pradler, Josef

    2017-01-20

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  2. Mystery of the Hidden Cosmos [Complex Dark Matter

    DOE PAGES

    Dobrescu, Bogdan A.; Lincoln, Don

    2015-06-16

    Scientists know there must be more matter in the universe than what is visible. Searches for this dark matter have focused on a single unseen particle, but decades of experiments have been unsuccessful at finding it. Exotic possibilities for dark matter are looking increasingly plausible. Rather than just one particle, dark matter could contain an entire world of particles and forces that barely interact with normal matter. Complex dark matter could form dark atoms and molecules and even clump together to make hidden galactic disks that overlap with the spiral arms of the Milky Way and other galaxies. Experiments aremore » under way to search for evidence of such a dark sector.« less

  3. Taming astrophysical bias in direct dark matter searches

    SciTech Connect

    Pato, Miguel; Strigari, Louis E.; Trotta, Roberto; Bertone, Gianfranco E-mail: strigari@stanford.edu E-mail: gf.bertone@gmail.com

    2013-02-01

    We explore systematic biases in the identification of dark matter in future direct detection experiments and compare the reconstructed dark matter properties when assuming a self-consistent dark matter distribution function and the standard Maxwellian velocity distribution. We find that the systematic bias on the dark matter mass and cross-section determination arising from wrong assumptions for its distribution function is of order ∼ 1σ. A much larger systematic bias can arise if wrong assumptions are made on the underlying Milky Way mass model. However, in both cases the bias is substantially mitigated by marginalizing over galactic model parameters. We additionally show that the velocity distribution can be reconstructed in an unbiased manner for typical dark matter parameters. Our results highlight both the robustness of the dark matter mass and cross-section determination using the standard Maxwellian velocity distribution and the importance of accounting for astrophysical uncertainties in a statistically consistent fashion.

  4. Directional detection of dark matter in universal bound states

    SciTech Connect

    Laha, Ranjan

    2015-10-06

    It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angular recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.

  5. Probing Sub-GeV Dark Matter with Conventional Detectors

    NASA Astrophysics Data System (ADS)

    Kouvaris, Chris; Pradler, Josef

    2017-01-01

    The direct detection of dark matter particles with mass below the GeV scale is hampered by soft nuclear recoil energies and finite detector thresholds. For a given maximum relative velocity, the kinematics of elastic dark matter nucleus scattering sets a principal limit on detectability. Here, we propose to bypass the kinematic limitations by considering the inelastic channel of photon emission from bremsstrahlung in the nuclear recoil. Our proposed method allows us to set the first limits on dark matter below 500 MeV in the plane of dark matter mass and cross section with nucleons. In situations where a dark-matter-electron coupling is suppressed, bremsstrahlung may constitute the only path to probe low-mass dark matter awaiting new detector technologies with lowered recoil energy thresholds.

  6. Exodus: Hidden origin of dark matter and baryons

    NASA Astrophysics Data System (ADS)

    Unwin, James

    2013-06-01

    We propose a new framework for explaining the proximity of the baryon and dark matter relic densities ΩDM ≈ 5Ω B . The scenario assumes that the number density of the observed dark matter states is generated due to decays from a second hidden sector which simultaneously generates the baryon asymmetry. In contrast to asymmetric dark matter models, the dark matter can be a real scalar or Majorana fermion and thus presents distinct phenomenology. We discuss aspects of model building and general constraints in this framework. Moreover, we argue that this scenario circumvents several of the experimental bounds which significantly constrain typical models of asymmetric dark matter. We present a simple supersymmetric implementation of this mechanism and show that it can be used to obtain the correct dark matter relic density for a bino LSP.

  7. Evidence for dark matter interactions in cosmological precision data?

    SciTech Connect

    Lesgourgues, Julien; Marques-Tavares, Gustavo; Schmaltz, Martin E-mail: gusmt@stanford.edu

    2016-02-01

    We study a two-parameter extension of the cosmological standard model ΛCDM in which cold dark matter interacts with a new form of dark radiation. The two parameters correspond to the energy density in the dark radiation fluid ΔN{sub fluid} and the interaction strength between dark matter and dark radiation. The interactions give rise to a very weak ''dark matter drag'' which damps the growth of matter density perturbations throughout radiation domination, allowing to reconcile the tension between predictions of large scale structure from the CMB and direct measurements of σ{sub 8}. We perform a precision fit to Planck CMB data, BAO, large scale structure, and direct measurements of the expansion rate of the universe today. Our model lowers the χ-squared relative to ΛCDM by about 12, corresponding to a preference for non-zero dark matter drag by more than 3σ. Particle physics models which naturally produce a dark matter drag of the required form include the recently proposed non-Abelian dark matter model in which the dark radiation corresponds to massless dark gluons.

  8. Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search

    SciTech Connect

    Pepin, Mark David

    2016-12-01

    An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity

  9. Direct dark matter searches and the CDEX research program

    NASA Astrophysics Data System (ADS)

    Wong, Henry T.; Yue, Qian; Kang, Kejun

    2016-07-01

    We sketch the landscape which gives rise to the missing energy density problem and highlight the direct experimental searches of weakly interacting massive particles (WIMPs) dark matter. An overview of the China Jinping underground laboratory as well as the China dark matter experiment (CDEX) dark matter program based on germanium detectors with sub-keV sensitivities is presented. The achieved results, status as well as the R&D and technology acquisition efforts towards a ton-scale experiment are reported.

  10. Search for low-mass dark matter at BABAR

    SciTech Connect

    Echenard, Bertrand

    2012-05-31

    This study briefly describes light dark matter searches performed by the BABAR experiment. Although dark matter candidates have traditionally been associated with heavy particles appearing in extensions of the Standard Model, a lighter component remains a well-motivated alternative, and many scenarios of light dark matter have been recently proposed. Thanks to their large luminosities, B factories offer an ideal environment to probe these possibilities, complementing searches from direct detection and satellite experiments.

  11. Indirect dark matter searches in gamma and cosmic rays

    NASA Astrophysics Data System (ADS)

    Conrad, Jan; Reimer, Olaf

    2017-03-01

    Dark matter candidates such as weakly interacting massive particles are predicted to annihilate or decay into Standard Model particles, leaving behind distinctive signatures in gamma rays, neutrinos, positrons, antiprotons, or even antinuclei. Indirect dark matter searches, and in particular those based on gamma-ray observations and cosmic-ray measurements, could detect such signatures. Here we review the strengths and limitations of this approach and look into the future of indirect dark matter searches.

  12. Simple J-factors and D-factors for indirect dark matter detection

    NASA Astrophysics Data System (ADS)

    Evans, N. W.; Sanders, J. L.; Geringer-Sameth, Alex

    2016-05-01

    J-factors (or D-factors) describe the distribution of dark matter in an astrophysical system and determine the strength of the signal provided by annihilating (or decaying) dark matter respectively. We provide simple analytic formulas to calculate the J-factors for spherical cusps obeying the empirical relationship between enclosed mass, velocity dispersion and half-light radius. We extend the calculation to the spherical Navarro-Frenk-White model, and demonstrate that our new formulas give accurate results in comparison to more elaborate Jeans models driven by Markov chain Monte Carlo methods. Of the known ultrafaint dwarf spheroidals, we show that Ursa Major II, Reticulum II, Tucana II and Horologium I have the largest J-factors and so provide the most promising candidates for indirect dark matter detection experiments. Amongst the classical dwarfs, Draco, Sculptor and Ursa Minor have the highest J-factors. We show that the behavior of the J-factor as a function of integration angle can be inferred for general dark halo models with inner slope γ and outer slope β . The central and asymptotic behavior of the J-factor curves are derived as a function of the dark halo properties. Finally, we show that models obeying the empirical relation on enclosed mass and velocity dispersion have J-factors that are most robust at the integration angle equal to the projected half-light radius of the dwarf spheroidal (dSph) divided by heliocentric distance. For most of our results, we give the extension to the D-factor which is appropriate for the decaying dark matter picture.

  13. LIKEDM: Likelihood calculator of dark matter detection

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyuan; Tsai, Yue-Lin Sming; Yuan, Qiang

    2017-04-01

    With the large progress in searches for dark matter (DM) particles with indirect and direct methods, we develop a numerical tool that enables fast calculations of the likelihoods of specified DM particle models given a number of observational data, such as charged cosmic rays from space-borne experiments (e.g., PAMELA, AMS-02), γ-rays from the Fermi space telescope, and underground direct detection experiments. The purpose of this tool - LIKEDM, likelihood calculator for dark matter detection - is to bridge the gap between a particle model of DM and the observational data. The intermediate steps between these two, including the astrophysical backgrounds, the propagation of charged particles, the analysis of Fermi γ-ray data, as well as the DM velocity distribution and the nuclear form factor, have been dealt with in the code. We release the first version (v1.0) focusing on the constraints from indirect detection of DM with charged cosmic and gamma rays. Direct detection will be implemented in the next version. This manual describes the framework, usage, and related physics of the code.

  14. Unblinding the dark matter blind spots

    DOE PAGES

    Han, Tao; Kling, Felix; Su, Shufang; ...

    2017-02-10

    The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the $Z$-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relicmore » DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. As a result, the dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.« less

  15. Unblinding the dark matter blind spots

    NASA Astrophysics Data System (ADS)

    Han, Tao; Kling, Felix; Su, Shufang; Wu, Yongcheng

    2017-02-01

    The dark matter (DM) blind spots in the Minimal Supersymmetric Standard Model (MSSM) refer to the parameter regions where the couplings of the DM particles to the Z-boson or the Higgs boson are almost zero, leading to vanishingly small signals for the DM direct detections. In this paper, we carry out comprehensive analyses for the DM searches under the blind-spot scenarios in MSSM. Guided by the requirement of acceptable DM relic abundance, we explore the complementary coverage for the theory parameters at the LHC, the projection for the future underground DM direct searches, and the indirect searches from the relic DM annihilation into photons and neutrinos. We find that (i) the spin-independent (SI) blind spots may be rescued by the spin-dependent (SD) direct detection in the future underground experiments, and possibly by the indirect DM detections from IceCube and SuperK neutrino experiments; (ii) the detection of gamma rays from Fermi-LAT may not reach the desirable sensitivity for searching for the DM blind-spot regions; (iii) the SUSY searches at the LHC will substantially extend the discovery region for the blind-spot parameters. The dark matter blind spots thus may be unblinded with the collective efforts in future DM searches.

  16. Phenomenology of Dirac Neutralino Dark Matter

    SciTech Connect

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  17. Enabling electroweak baryogenesis through dark matter

    NASA Astrophysics Data System (ADS)

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-06-01

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  18. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  19. The Light Side of Dark Matter

    NASA Astrophysics Data System (ADS)

    Cisneros, Sophia

    2013-04-01

    We present a new, heuristic, two-parameter model for predicting the rotation curves of disc galaxies. The model is tested on (22) randomly chosen galaxies, represented in 35 data sets. This Lorentz Convolution [LC] model is derived from a non-linear, relativistic solution of a Kerr-type wave equation, where small changes in the photon's frequencies, resulting from the curved space time, are convolved into a sequence of Lorentz transformations. The LC model is parametrized with only the diffuse, luminous stellar and gaseous masses reported with each data set of observations used. The LC model predicts observed rotation curves across a wide range of disk galaxies. The LC model was constructed to occupy the same place in the explanation of rotation curves that Dark Matter does, so that a simple investigation of the relation between luminous and dark matter might be made, via by a parameter (a). We find the parameter (a) to demonstrate interesting structure. We compare the new model prediction to both the NFW model and MOND fits when available.

  20. DARWIN: towards the ultimate dark matter detector

    NASA Astrophysics Data System (ADS)

    Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; Benabderrahmane, M. L.; Berger, T.; Beskers, B.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Diglio, S.; Drexlin, G.; Duchovni, E.; Erdal, E.; Eurin, G.; Ferella, A.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Di Gangi, P.; Di Giovanni, A.; Galloway, M.; Garbini, M.; Geis, C.; Glueck, F.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hannen, V.; Hogenbirk, E.; Howlett, J.; Hilk, D.; Hils, C.; James, A.; Kaminsky, B.; Kazama, S.; Kilminster, B.; Kish, A.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lin, Q.; Linde, F. L.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K. D.; Morteau, E.; Murra, M.; Naganoma, J.; Newstead, J. L.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; de Perio, P.; Persiani, R.; Piastra, F.; Piro, M. C.; Plante, G.; Rauch, L.; Reichard, S.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schumann, M.; Schreiner, J.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M. C.; Simgen, H.; Sissol, P.; von Sivers, M.; Thers, D.; Thurn, J.; Tiseni, A.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Vargas, M. A.; Wang, H.; Wei, Y.; Weinheimer, C.; Wester, T.; Wulf, J.; Zhang, Y.; Zhu, T.; Zuber, K.

    2016-11-01

    DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.

  1. Missing dark matter in dwarf galaxies?

    NASA Astrophysics Data System (ADS)

    Oman, Kyle A.; Navarro, Julio F.; Sales, Laura V.; Fattahi, Azadeh; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; White, Simon D. M.

    2016-08-01

    We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in ΛCDM haloes that collect into galaxies. This `galaxy formation efficiency' correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to 10 times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or their dark matter content is much lower than expected from ΛCDM haloes. This `missing dark matter' is reminiscent of the inner mass deficit of galaxies with slowly rising rotation curves, but cannot be explained away by star formation-induced `cores' in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard ΛCDM paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.

  2. Status and Prospects of the DMTPC Directional Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Monroe, J.

    2012-02-01

    The DMTPC directional dark matter detection experiment is a low-pressure CF4 gas time projection chamber, instrumented with charge and scintillation photon readout. This detector design strategy emphasizes reconstruction of WIMP-induced nuclear recoil tracks, in order to determine the direction of incident dark matter particles. Directional detection has the potential to make the definitive observation of dark matter using the unique angular signature of the dark matter wind, which is distinct from all known backgrounds. This talk will briefly review the experimental technique and current status of DMTPC.

  3. Analysis of the theoretical bias in dark matter direct detection

    SciTech Connect

    Catena, Riccardo

    2014-09-01

    Fitting the model ''A'' to dark matter direct detection data, when the model that underlies the data is ''B'', introduces a theoretical bias in the fit. We perform a quantitative study of the theoretical bias in dark matter direct detection, with a focus on assumptions regarding the dark matter interactions, and velocity distribution. We address this problem within the effective theory of isoscalar dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle. We analyze 24 benchmark points in the parameter space of the theory, using frequentist and Bayesian statistical methods. First, we simulate the data of future direct detection experiments assuming a momentum/velocity dependent dark matter-nucleon interaction, and an anisotropic dark matter velocity distribution. Then, we fit a constant scattering cross section, and an isotropic Maxwell-Boltzmann velocity distribution to the simulated data, thereby introducing a bias in the analysis. The best fit values of the dark matter particle mass differ from their benchmark values up to 2 standard deviations. The best fit values of the dark matter-nucleon coupling constant differ from their benchmark values up to several standard deviations. We conclude that common assumptions in dark matter direct detection are a source of potentially significant bias.

  4. Direct/indirect detection signatures of nonthermally produced dark matter

    SciTech Connect

    Nagai, Minoru; Nakayama, Kazunori

    2008-09-15

    We study direct and indirect detection possibilities of neutralino dark matter produced nonthermally by, e.g., the decay of long-lived particles, as is easily implemented in the case of anomaly or mirage-mediation models. In this scenario, large self-annihilation cross sections are required to account for the present dark matter abundance, and it leads to significant enhancement of the gamma-ray signature from the galactic center and the positron flux from the dark matter annihilation. It is found that GLAST and PAMELA will find the signal or give tight constraints on such nonthermal production scenarios of neutralino dark matter.

  5. Self-interacting complex scalar field as dark matter

    SciTech Connect

    Briscese, F.

    2011-10-14

    We study the viability of a a complex scalar field {chi} with self-interacting potential V = m{sub 0}{sup {chi}/}2|{chi}|{sup 2}+h|{chi}|{sup 4} as dark matter. Due to the self interaction, the scalar field forms a Bose-Einstein condensate at early times that represents dark matter. The self interaction is also responsible of quantum corrections to the scalar field mass that naturally give the dark matter domination at late times without any fine tuning on the energy density of the scalar field at early times. Finally the properties of the spherically symmetric dark matter halos are also discussed.

  6. The HAWC Sensitivity to Dark Matter Annihilation and Decay

    NASA Astrophysics Data System (ADS)

    Yapici, Tolga; HAWC Collaboration

    2016-03-01

    The High Altitude Water Cherenkov (HAWC) Observatory is an extensive air shower array in the state of Puebla, Mexico at an altitude of 4100m. The HAWC observatory will perform an indirect search for dark matter via GeV-TeV photons resulting from dark matter annihilation and decay, including annihilation from extended dark matter sources. We consider the HAWC sensitivity to a subset of the sources, including the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from the sources in well-motivated dark matter annihilation channels. We show the limits HAWC can place on the dark matter cross-section or lifetime from these sources if gamma-ray excess is not observed. In particular, for dark matter annihilating into gauge bosons, HAWC will be able to measure a narrow range of dark matter masses to cross-sections below that expected for a thermal relic. HAWC should also be sensitive to cross-sections higher than thermal for masses up to nearly 1000 TeV. HAWC will be sensitive to decaying dark matter for these masses as well. HAWC can explore higher dark matter masses than are currently constrained.

  7. Polarization of photons emitted by decaying dark matter

    NASA Astrophysics Data System (ADS)

    Bonivento, W.; Gorbunov, D.; Shaposhnikov, M.; Tokareva, A.

    2017-02-01

    Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  8. Upper bounds on asymmetric dark matter self annihilation cross sections

    NASA Astrophysics Data System (ADS)

    Ellwanger, Ulrich; Mitropoulos, Pantelis

    2012-07-01

    Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.

  9. Dark matter identification with cosmic-ray antideuterons

    NASA Astrophysics Data System (ADS)

    von Doetinchem, Philip

    2016-05-01

    Recent years have seen increased theoretical and experimental effort towards the first-ever detection of cosmic-ray antideuterons, in particular as an indirect signature of dark matter annihilation or decay. In contrast to indirect dark matter searches with positrons, antiprotons, or gamma-rays, which suffer from relatively high and uncertain astrophysical backgrounds, searches with antideuterons benefit from very suppressed conventional backgrounds, offering a potential breakthrough in unexplored phase space for dark matter. This report is a condensed summary of the article “Review of the theoretical and experimental status of dark matter identification with cosmic-ray antideuteron” [1].

  10. Detecting superlight dark matter with Fermi-degenerate materials

    NASA Astrophysics Data System (ADS)

    Hochberg, Yonit; Pyle, Matt; Zhao, Yue; Zurek, Kathryn M.

    2016-08-01

    We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O (keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O (meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ˜ 10-3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in order to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.

  11. Cosmological Model with Dark Matter in a Dissipative Universe

    NASA Astrophysics Data System (ADS)

    Timoshkin, A. V.

    2016-12-01

    A cosmological model is considered, in which two ideal fluids interact: dark energy and dark matter, in a homogeneous and isotropic flat Friedmann-Lemaître-Robertson-Walker Universe with scattering. Scattering in this Universe is investigated in two ways: in terms of bulk viscosity and with the help of the entropic model. The interaction between dark energy and dark matter is described in terms of parameters of the equation of state for dark energy, which take account of dissipative properties of the Universe. In the example of the model of the Universe with a singularity known as the Little Rip, application of a formalism describing dissipative properties is demonstrated. An analytical representation of this model in terms of thermodynamic parameters of the equation of state for dark energy, taking dissipation into account, is obtained. In the expression for the coefficient of bulk viscosity, corrections are taken into account which are due to the interaction between dark energy and dark matter.

  12. A scenario of heavy but visible baryonic dark matter

    NASA Astrophysics Data System (ADS)

    Huo, Ran; Matsumoto, Shigeki; Tsai, Yue-Lin Sming; Yanagida, Tsutomu T.

    2016-09-01

    We consider a model in which dark matter is a composite baryon of a dark sector governed by SU(3) gauge theory, with vector-like quarks also charged under U(1) Y . The model provides simple answer to the dark matter stability problem: it is a result of the accidental dark baryon number conservation. And with an analogy to QCD, all physical quantities of the dark matter can be calculated by rescaling the QCD experimental results. According to the thermal freeze-out mechanism the mass of the dark matter is predicted to be O(100) TeV in order to achieve a correct relic abundance. Such heavy dark matter is in general hard for detection due to small dark matter number density in the universe. However, dark baryon number in our model is not necessarily strictly preserved thanks to operators suppressed by the Planck scale, and such decay operator results in a decay lifetime marginal to the current detection bound. We show our model with O({10}^{27}) s dark matter decay life time can explain the AMS-02 anti-proton data, if it is experimentally interpreted as an access, although some theoretical uncertainty may weaken its significance. We also investigate other phenomena of this model such as the extragalactic gamma ray and neutrino signatures.

  13. Constraints on the coupling between dark energy and dark matter from CMB data

    SciTech Connect

    Murgia, R.; Gariazzo, S.; Fornengo, N. E-mail: gariazzo@to.infn.it

    2016-04-01

    We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H{sub 0} and σ{sub 8}, already present for standard cosmology, increases: this model in fact predicts lower H{sub 0} and higher σ{sub 8}, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H{sub 0} and σ{sub 8} nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.

  14. Effects of the interaction between dark energy and dark matter on cosmological parameters

    SciTech Connect

    He, Jian-Hua; Wang, Bin E-mail: wangb@fudan.edu.cn

    2008-06-15

    We examine the effects of possible phenomenological interactions between dark energy and dark matter on cosmological parameters and their efficiency in solving the coincidence problem. We work with two simple parameterizations of the dynamical dark energy equation of state and the constant dark energy equation of state. Using observational data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, we perform a statistical joint analysis of different forms of phenomenological interaction between dark energy and dark matter.

  15. Impact of semi-annihilations on dark matter phenomenology. An example of Z{sub N} symmetric scalar dark matter

    SciTech Connect

    Bélanger, Geneviève; Kannike, Kristjan; Pukhov, Alexander; Raidal, Martti E-mail: kristjan.kannike@cern.ch E-mail: pukhov@lapp.in2p3.fr

    2012-04-01

    We study the impact of semi-annihilations x{sub i}x{sub j}↔x{sub k}X and dark matter conversion x{sub i}x{sub j}↔x{sub k}x{sub l}, where x{sub i} is any dark matter and X is any standard model particle, on dark matter phenomenology. We formulate minimal scalar dark matter models with an extra doublet and a complex singlet that predict non-trivial dark matter phenomenology with semi-annihilation processes for different discrete Abelian symmetries Z{sub N}, N > 2. We implement two such example models with Z{sub 3} and Z{sub 4} symmetry in micrOMEGAs and work out their phenomenology. We show that both semi-annihilations and dark matter conversion significantly modify the dark matter relic abundance in this type of models. In the Z{sub 4} model, there are two stable neutral particles and therefore multi-component dark matter. We also study the possibility of dark matter direct detection in XENON100 in those models.

  16. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  17. DC and Wave Electric Fields and Other Plasma Parameters Observed on Two Sounding Rockets in the Dark Cusp During IMF Bz North and South Conditions

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Acuna, M.; Bounds, S.; Farrell, W.; Freudenreich, H.; Lepping, R.; Vondrak, R.; Maynard, N. C.; Moen, J.; Egeland, A.

    1997-01-01

    Two Black Brant IX sounding rockets were launched into the dark, dayside cusp near magnetic noon on December 2 and 3, 1997, from Ny Alesund, Spitzbergen at 79 N reaching altitudes of approximately 450 km. Real-time ground-based and Wind IMF data were used to determine the launch conditions. The first launch, with Bz north conditions, crossed into and back out of an open field region with merging poleward of the projected trajectory. The second flight, into Bz south conditions, was timed to coincide with an enhancement in the merging rate from a increase in the negative Bz, while the DMSP F13 satellite was situated slightly to the north of the rocket trajectory. Each payload returned DC electric and magnetic fields, plasma waves, energetic particles, photometer data, and thermal plasma data. Data from both flights will be shown, with an emphasis on the DC electric field results. In particular, the data gathered on December 2, 1997 will be used to discuss ionospheric signatures of merging and the open/closed character of the the cusp/low latitude boundary layer. In contrast, the data gathered on December 3, 1997 shows evidence of pulsed electric field structures which will be examined in the context of cusp plasma entry processes. Both data sets returned a rich variety of plasma waves, as well as optical emissions and thermal plasma data.

  18. DC and Wave Electric Fields and Other Plasma Parameters Observed on Two Sounding Rockets in the Dark Cusp during IMF BZ North and South Conditions

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Bounds, S.; Acuna, M.; Maynard, N. C.; Moen, J.; Egeland, A.; Holtet, J.; Maseide, K.; Sandholt, P. E.; Soraas, F.

    1999-01-01

    Two Black Brant IX sounding rockets were launched into the dark, dayside cusp near magnetic noon on December 2 and 3, 1997, from Ny Alesund, Spitzbergen at 79degN reaching altitudes of approximately 450 km. Real-time ground-based and Wind (interplanetary magnetic field) IMF data were used to determine the launch conditions. The first launch, with Bz north conditions, crossed into and back out of an open field region with merging poleward of the projected trajectory. The second flight, into Bz south conditions, was timed to coincide with an enhancement in the merging rate from a increase in the negative Bz, while the (Defense Meteorological Satellite Program) DMSP F13 satellite was situated slightly to the north of the rocket trajectory. Each payload returned DC electric and magnetic fields, plasma waves, energetic particles, photometer data, and thermal plasma data. Data from both flights will be shown, with an emphasis on the DC electric field results. In particular, the data gathered on December 2, 1997 will be used to discuss ionospheric signatures of merging and the open/closed character of the the cusp/low latitude boundary layer. In contrast, the data gathered on December 3, 1997 shows evidence of pulsed electric field structures which will be examined in the context of cusp plasma entry processes. Both data sets returned a rich variety of plasma waves, as well as optical emissions and thermal plasma data.

  19. DC and Wave Electric Fields and Other Plasma Parameters Observed on Two Sounding Rockets in the Dark Cusp during IMF Bz North and South Conditions

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Acuna, M.; Bounds, S.; Farrell, W.; Freudenreich, W.; Lepping, R.; Vondrak, R.; Maynard, N. C.; Moen, J.; Egeland, A.

    1999-01-01

    Two Black Brant IX sounding rockets were launched into the dark, dayside cusp near magnetic noon on December 2 and 3, 1997, from Ny Alesund, Spitzbergen at 79 deg N reaching altitudes of about 450 km. Real-time ground-based and Wind IMF data were used to determine the launch conditions. The first launch, with Bz north conditions, crossed into and back out of an open field region with merging poleward of the projected trajectory. The second flight, into Bz south conditions, was timed to coincide with an enhancement in the merging rate from a increase in the negative Bz, while the DMSP Fl 3 satellite was situated slightly to the north of the rocket trajectory. Each payload returned DC electric and magnetic fields, plasma waves, energetic particles, photometer data, and thermal plasma data. Data from both flights will be shown, with an emphasis on the DC electric field results. In particular, the data gathered on December 2, 1997 will be used to discuss ionospheric signatures of merging and the open/closed character of the the cusp/low latitude boundary layer. In contrast, the data gathered on December 3, 1997 shows evidence of pulsed electric field structures which will be examined in the context of cusp plasma entry processes. Both data sets returned a rich variety of plasma waves, as well as optical emissions and thermal plasma data.

  20. Stellar discs in Aquarius dark matter haloes

    NASA Astrophysics Data System (ADS)

    DeBuhr, Jackson; Ma, Chung-Pei; White, Simon D. M.

    2012-10-01

    We investigate the gravitational interactions between live stellar discs and their dark matter haloes, using Λ cold dark matter haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar discs by first allowing the haloes to respond to the influence of a growing rigid disc potential from z = 1.3 to 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disc, the inner parts of the haloes contract and change from prolate to oblate as the disc grows to its full size. When the disc's normal is initially aligned with the major axis of the halo at z = 1.3, the length of the major axis contracts and becomes the minor axis by z = 1.0. Six out of the eight discs in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in the m = 2 Fourier amplitude of the disc surface density. The bars are not destroyed by the buckling but continue to grow until the present day. Bars are largely absent when the disc mass is reduced by a factor of 2 or more; the relative disc-to-halo mass is therefore a primary factor in bar formation and evolution. A subset of the discs is warped at the outskirts and contains prominent non-coplanar material with a ring-like structure. Many discs reorient by large angles between z = 1 and 0, following a coherent reorientation of their inner haloes. Larger reorientations produce more strongly warped discs, suggesting a tight link between the two phenomena. The origins of bars and warps appear independent: some discs with strong bars show little disturbances at the outskirts, while the discs with the weakest bars show severe warps.

  1. Dark-matter decay as a complementary probe of multicomponent dark sectors.

    PubMed

    Dienes, Keith R; Kumar, Jason; Thomas, Brooks; Yaylali, David

    2015-02-06

    In single-component theories of dark matter, the 2→2 amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. The detection techniques based on these processes are thus complementary. However, multicomponent theories exhibit an additional direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter components. We discuss how this new detection channel may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  2. Cold dark matter. 1: The formation of dark halos

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  3. Dynamical matter-parity breaking and gravitino dark matter

    SciTech Connect

    Schmidt, Jonas; Weniger, Christoph; Yanagida, Tsutomu T.

    2010-11-15

    Scenarios where gravitinos with GeV masses makeup dark matter are known to be in tension with high reheating temperatures, as required by e.g. thermal leptogenesis. This tension comes from the longevity of the NLSPs (next-to-lightest supersymmetric particle), which can destroy the successful predictions of the standard primordial nucleosynthesis. However, a small violation of matter parity can open new decay channels for the NLSP, avoiding the BBN (standard primordial nucleosynthesis) problems, while being compatible with experimental cosmic-ray constraints. In this paper, we propose a model where matter parity, which we assume to be embedded in the U(1){sub B-L} gauge symmetry, is broken dynamically in a hidden sector at low-scales. This can naturally explain the smallness of the matter parity breaking in the visible sector. We discuss the dynamics of the corresponding pseudo Nambu-Goldstone modes of B-L breaking in the hidden sector, and we comment on typical cosmic-ray and collider signatures in our model.

  4. A WIMP Dark Matter Detector Using MKIDs

    NASA Astrophysics Data System (ADS)

    Golwala, S.; Gao, J.; Moore, D.; Mazin, B.; Eckart, M.; Bumble, B.; Day, P.; Leduc, H. G.; Zmuidzinas, J.

    2008-04-01

    We are pursuing the development of a phonon- and ionization-mediated WIMP dark matter detector employing microwave kinetic inductance detectors (MKIDs) in the phonon-sensing channel. Prospective advantages over existing detectors include: improved reconstruction of the phonon signal and event position; simplified readout wiring and cold electronics; and simplified and more reliable fabrication. We have modeled a simple design using available MKID sensitivity data and anticipate energy resolution as good as existing phonon-mediated detectors and improved position reconstruction. We are doing preparatory experimental work by fabricating strip absorber architectures. Measurements of diffusion length, trapping efficiency, and MKID sensitivity with these devices will enable us to design a 1 cm2×2 mm prototype device to demonstrate phonon energy resolution and position reconstruction.

  5. Neutrino masses and scalar singlet dark matter

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Subhaditya; Jana, Sudip; Nandi, S.

    2017-03-01

    We propose a simple extension of the Standard Model (SM) which has a viable dark matter (DM) candidate and can explain the generation of tiny neutrino masses. The DM is an electroweak (EW) singlet scalar S , odd under an imposed exact Z2 symmetry, that interacts with the SM through the "Higgs portal" coupling, while all other particles are even under Z2. The model also has an EW isospin 3 /2 scalar Δ and a pair of EW isospin vectors Σ and Σ ¯, which are responsible for generating tiny neutrino mass via the effective dimension-seven operator. Thanks to the additional interactions with Δ , the scalar singlet DM S survives a large region of parameter space by relic density constraints from WMAP/Planck and direct search bounds from updated LUX data. Constraints on the model from the LHC are also discussed.

  6. Dark matter and gauged flavor symmetries

    DOE PAGES

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; ...

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however,more » no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.« less

  7. DARK MATTER ADMIXED TYPE Ia SUPERNOVAE

    SciTech Connect

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M. E-mail: mcchu@phy.cuhk.edu.hk

    2015-10-20

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a 19-isotope nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core M {sub DM}: a larger M {sub DM} generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of produced can drop from about 0.3 to 0.03 M {sub ⊙} as M {sub DM} increases from 0.01 to 0.03 M {sub ⊙}. We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous Type Ia supernovae.

  8. Alternatives to dark matter: MOND+Mach

    NASA Astrophysics Data System (ADS)

    Roscoe, David

    2006-04-01

    Modified Newtonian dynamics (MOND) is an empirically motivated modification of Newtonian gravity (or, equivalently, of inertia) suggested by Milgrom as an alternative to cosmic dark matter. The basic idea is that at accelerations below a0≍1.2×10-10 m s-2 the effective gravitational attraction approaches √gna0, where gn is the usual Newtonian acceleration. This simple algorithm yields flat rotation curves for spiral galaxies and a mass-rotation velocity relation of the form M∝V4 that forms the basis for the observed luminosity-rotation velocity relation- the Tully-Fisher law. The second approach, considered only very briefly here, is theoretically motivated and based on a hardline interpreation of Mach's principle.

  9. Neutrinos, Dark Matter and Nuclear Detection

    SciTech Connect

    Goldstein, W H; Bernstein, A; Craig, W W; Johnson, M

    2007-05-29

    Solutions to problems in nuclear non-proliferation and counter-terrorism may be found at the forefront of modern physics. Neutrino oscillation experiments, dark matter searches, and high energy astrophysics, are based on technology advances that have may also have application to nuclear detection. The detection problems share many characteristics, including energy scales, time structures, particle-type, and, of course, the combination of high backgrounds and low signal levels. This convergence of basic and applied physics is realized in non-proliferation and homeland security projects at Lawrence Livermore National Laboratory. Examples described here include reactor anti-neutrino monitoring, dual-phase noble liquid TPC development, gamma-ray telescopes, and nuclear resonance fluorescence.

  10. Search for Dark Matter with DEAP-3600

    NASA Astrophysics Data System (ADS)

    Jillings, Chris; DEAP-3600 Collaboration Collaboration

    2017-01-01

    DEAP-3600 is a single-phase liquid argon detector, which searches for dark matter particle interactions with 1 tonne fiducial target mass (3.6 tonnes total) contained in an ultra-pure acrylic vessel viewed by 255 high quantum efficiency photomultiplier tubes. It is located 2 km underground at SNOLAB, in Sudbury, Ontario. Radioactive backgrounds are controlled through pulse-shape discrimination in case of electromagnetic backgrounds (demonstrated with a smaller 7-kg prototype DEAP-1) and with a combination of excellent radiopurity, shielding and fiducialization for neutron and alpha backgrounds. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons is 10-46 cm2 at 100 GeV/c2. Commissioning of the DEAP-3600 detector is now complete and physics data taking is starting. This talk will present an overview and status of the project, including early results demonstrating the detector performance.

  11. Dark matter prospects in deflected mirage mediation

    SciTech Connect

    Holmes, Michael; Nelson, Brent D. E-mail: b.nelson@neu.edu

    2009-07-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms.

  12. Superheavy dark matter with discrete gauge symmetries

    NASA Astrophysics Data System (ADS)

    Hamaguchi, K.; Nomura, Yasunori; Yanagida, T.

    1998-11-01

    We show that there are discrete gauge symmetries which naturally protect heavy X particles from decaying into ordinary light particles in the supersymmetric standard model. This makes the proposal that superheavy X particles constitute part of the dark matter in the present universe very attractive. It is more interesting that there is a class of discrete gauge symmetries which naturally accommodates a long-lived unstable X particle. We find that in some discrete Z10 models, for example, a superheavy X particle has a lifetime of τX~=1011-1026 yr for a mass of MX~=1013-1014 GeV. This long lifetime is guaranteed by the absence of lower dimensional operators (of light particles) coupled to the X. We briefly discuss a possible explanation for the recently observed ultrahigh-energy cosmic ray events by the decay of this unstable X particle.

  13. The LUX-Zeplin Dark Matter Detector

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; Lux-Zeplin (Lz) Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) detector is a second generation dark matter experiment that will operate at the 4850 foot level of the Sanford Underground Research Experiment as a follow-up to the LUX detector, currently the world's most sensitive WIMP direct detection experiment. The LZ detector will contain 7 tonnes of active liquid xenon with a 5.6 tonne fiducial mass in the TPC. The TPC is surrounded by an active, instrumented, liquid-xenon ``skin'' region to veto gammas, then a layer of liquid scintillator to veto neutrons, all contained within a water shield. Modeling the detector is key to understanding the expected background, which in turn leads to a better understanding of the projected sensitivity, currently expected to be 2e-48 cm2 for a 50 GeV WIMP. I will discuss the current status of the LZ experiment as well as its projected sensitivity.

  14. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  15. Leptophilic Dark Matter from the Lepton Asymmetry

    NASA Astrophysics Data System (ADS)

    Cohen, Timothy; Zurek, Kathryn M.

    2010-03-01

    We present a model of weak scale dark matter (DM) where the thermal DM density is set by the lepton asymmetry due to the presence of higher dimension lepton violating operators. In these models there is generically a separation between the annihilation cross section responsible for the relic abundance (through lepton violating operators) and the annihilation cross section that is relevant for the indirect detection of DM (through lepton preserving operators). This implies a perceived boost in the annihilation cross section in the Galaxy today relative to that derived for canonical thermal freeze-out, giving a natural explanation for the observed cosmic ray electron and positron excesses, without resorting to a Sommerfeld enhancement. These models motivate continued searches for DM with apparently nonthermal annihilation cross sections. The DM may also play a role in radiatively generating Majorana neutrino masses.

  16. Mixed axion-wino dark matter

    NASA Astrophysics Data System (ADS)

    Bae, Kyu; Baer, Howard; Lessa, Andre; Serce, Hasan

    2015-07-01

    A variety of supersymmetric models give rise to a split mass spectrum characterized by very heavy scalars but sub-TeV gauginos, usually with a wino-like LSP. Such models predict a thermally-produced underabundance of wino-like WIMP dark matter so that non-thermal DM production mechanisms are necessary. We examine the case where theories with a wino-like LSP are augmented by a Peccei-Quinn sector including an axion-axino-saxion supermultiplet in either the SUSY KSVZ or SUSY DFSZ models and with/without saxion decays to axions/axinos. We show allowed ranges of PQ breaking scale f_a for various cases which are generated by solving the necessary coupled Boltzmann equations. We also present results for a model with radiatively-driven naturalness but with a wino-like LSP.

  17. Dark matter and gauged flavor symmetries

    SciTech Connect

    Bishara, Fady; Greljo, Admir; Kamenik, Jernej F.; Stamou, Emmanuel; Zupan, Jure

    2015-12-21

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental Z3 symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly 0.5 TeV and 5 TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.

  18. Neutralino dark matter from string scenarios

    SciTech Connect

    Cerdeno, D. G.

    2007-01-12

    The direct detection of neutralino dark matter is analysed within the context of orbifold scenarios from the heterotic superstring. In particular, the neutralino-proton cross section is computed and compared with the sensitivity of detectors, taking into account the most recent experimental and astrophysical constraints. In addition to the usual non-universalities of the soft terms in orbifold compactifications, due to their modular weight dependence, the contribution of a D-term, generated by the presence of an anomalous U(1) is also investigated. The D-term contribution provides more flexibility in the non-universalities, and is crucial iniding dangerous charge and colour-breaking minima. Thanks to it, large neutralino detection cross sections can be obtained in regions of the parameter space fulfilling all experimental and astrophysical constraints.

  19. Neutralino dark matter in orbifold scenarios

    SciTech Connect

    Cerdeno, D. G.

    2006-11-28

    The direct detection of neutralino dark matter is analysed within the context of orbifold scenarios from the heterotic superstring. In particular, the theoretical predictions for the neutralino-proton cross section are evaluated and compared with the sensitivity of detectors, taking into account the most recent experimental and astrophysical constraints. In addition to the usual non-universalities of the soft terms in orbifold compactifications, due to their modular weight dependence, the contribution of a D-term, generated by the presence o anomalous U (1) is also investigated. The D-term contribution provides more flexibility in the non-universalities, and is crucial in avoiding dangerous charge and colour-breaking minima. Large neutralino detection cross sections can be obtained in regions of the parameter space fulfilling all experimental and astrophysical constraints thanks to the inclusion of the D-term contribution.

  20. Warped unification, proton stability, and dark matter.

    PubMed

    Agashe, Kaustubh; Servant, Géraldine

    2004-12-03

    We show that solving the problem of baryon-number violation in nonsupersymmetric grand unified theories (GUT's) in warped higher-dimensional spacetime can lead to a stable Kaluza-Klein particle. This exotic particle has gauge quantum numbers of a right-handed neutrino, but carries fractional baryon number and is related to the top quark within the higher-dimensional GUT. A combination of baryon number and SU(3) color ensures its stability. Its relic density can easily be of the right value for masses in the 10 GeV-few TeV range. An exciting aspect of these models is that the entire parameter space will be tested at near future dark matter direct detection experiments. Other exotic GUT partners of the top quark are also light and can be produced at high energy colliders with distinctive signatures.