Self-interacting dark matter constraints in a thick dark disk scenario
NASA Astrophysics Data System (ADS)
Vattis, Kyriakos; Koushiappas, Savvas M.
2018-05-01
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way-sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to τ+τ-, either the self-interaction may not be strong enough to solve the small-scale structure motivation or a dark disk cannot be present in the Milky Way.
Tying dark matter to baryons with self-interactions.
Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo
2014-07-11
Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.
The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons
NASA Astrophysics Data System (ADS)
Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop
2018-05-01
We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
Self-interacting spin-2 dark matter
NASA Astrophysics Data System (ADS)
Chu, Xiaoyong; Garcia-Cely, Camilo
2017-11-01
Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.
Boosted dark matter signals uplifted with self-interaction
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong -Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in themore » assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.« less
Boosted dark matter signals uplifted with self-interaction
NASA Astrophysics Data System (ADS)
Kong, Kyoungchul; Mohlabeng, Gopolang; Park, Jong-Chul
2015-04-01
We explore detection prospects of a non-standard dark sector in the context of boosted dark matter. We focus on a scenario with two dark matter particles of a large mass difference, where the heavier candidate is secluded and interacts with the standard model particles only at loops, escaping existing direct and indirect detection bounds. Yet its pair annihilation in the galactic center or in the Sun may produce boosted stable particles, which could be detected as visible Cherenkov light in large volume neutrino detectors. In such models with multiple candidates, self-interaction of dark matter particles is naturally utilized in the assisted freeze-out mechanism and is corroborated by various cosmological studies such as N-body simulations of structure formation, observations of dwarf galaxies, and the small scale problem. We show that self-interaction of the secluded (heavier) dark matter greatly enhances the capture rate in the Sun and results in promising signals at current and future experiments. We perform a detailed analysis of the boosted dark matter events for Super-Kamiokande, Hyper-Kamiokande and PINGU, including notable effects such as evaporation due to self-interaction and energy loss in the Sun.
X-ray lines and self-interacting dark matter.
Mambrini, Yann; Toma, Takashi
We study the correlation between a monochromatic signal from annihilating dark matter and its self-interacting cross section. We apply our argument to a complex scalar dark sector, where the pseudo-scalar plays the role of a warm dark matter candidate while the scalar mediates its interaction with the Standard Model. We combine the recent observation of the cluster Abell 3827 for self-interacting dark matter and the constraints on the annihilation cross section for monochromatic X-ray lines. We also confront our model to a set of recent experimental analyses and find that such an extension can naturally produce a monochromatic keV signal corresponding to recent observations of Perseus or Andromeda, while in the meantime it predicts a self-interacting cross section of the order of [Formula: see text], as recently claimed in the observation of the cluster Abell 3827. We also propose a way to distinguish such models by future direct detection techniques.
The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos
NASA Astrophysics Data System (ADS)
Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús
2018-06-01
We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.
Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves
NASA Astrophysics Data System (ADS)
Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B.; Yu, Hai-Bo
2017-09-01
The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25 - 300 km /s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.
Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.
Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B; Yu, Hai-Bo
2017-09-15
The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300 km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.
The nongravitational interactions of dark matter in colliding galaxy clusters.
Harvey, David; Massey, Richard; Kitching, Thomas; Taylor, Andy; Tittley, Eric
2015-03-27
Collisions between galaxy clusters provide a test of the nongravitational forces acting on dark matter. Dark matter's lack of deceleration in the "bullet cluster" collision constrained its self-interaction cross section σ(DM)/m < 1.25 square centimeters per gram (cm(2)/g) [68% confidence limit (CL)] (σ(DM), self-interaction cross section; m, unit mass of dark matter) for long-ranged forces. Using the Chandra and Hubble Space Telescopes, we have now observed 72 collisions, including both major and minor mergers. Combining these measurements statistically, we detect the existence of dark mass at 7.6σ significance. The position of the dark mass has remained closely aligned within 5.8 ± 8.2 kiloparsecs of associated stars, implying a self-interaction cross section σ(DM)/m < 0.47 cm(2)/g (95% CL) and disfavoring some proposed extensions to the standard model. Copyright © 2015, American Association for the Advancement of Science.
Atomic dark matter with hyperfine interactions
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.
2017-11-01
We consider dark matter as an analog of hydrogen in a secluded sector and study its astrophysical implications. The self interactions between dark matter particles include elastic scatterings as well as inelastic processes from hyperfine transitions. We show that for a dark hydrogen mass in the 10-100 GeV range and a dark fine-structure constant larger than 0.01, the self-interaction cross section has the right magnitude and velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of galaxy clusters. Excitations to the hyperfine state and subsequent decays, however, may cause significant cooling losses and affect the evolution of low-mass halos. We also find minimum halo masses in the range of 103.5-107 M⊙, which are significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in structure formation is unique to this model, making it possible to determine the viability of hidden-sector hydrogen as a dark matter candidate.
Probing Self-interacting Dark Matter with Disk Galaxies in Cluster Environments
NASA Astrophysics Data System (ADS)
Secco, Lucas F.; Farah, Amanda; Jain, Bhuvnesh; Adhikari, Susmita; Banerjee, Arka; Dalal, Neal
2018-06-01
Self-interacting dark matter (SIDM) has long been proposed as a solution to small-scale problems posed by standard cold dark matter. We use numerical simulations to study the effect of dark matter interactions on the morphology of disk galaxies falling into galaxy clusters. The effective drag force on dark matter leads to offsets of the stellar disk with respect to the surrounding halo, causing distortions in the disk. For anisotropic scattering cross sections of 0.5 and 1.0 {cm}}2 {{{g}}}-1, we show that potentially observable warps, asymmetries, and thickening of the disk occur in simulations. We discuss observational tests of SIDM with galaxy surveys and more realistic simulations needed to obtain detailed predictions.
Higgs exotic decays in general NMSSM with self-interacting dark matter
NASA Astrophysics Data System (ADS)
Wang, Wenyu; Zhang, Mengchao; Zhao, Jun
2018-04-01
Under current LHC and dark matter constraints, the general NMSSM can have self-interacting dark matter to explain the cosmological small structure. In this scenario, the dark matter is the light singlino-like neutralino (χ) which self-interacts through exchanging the light singlet-like scalars (h1,a1). These light scalars and neutralinos inevitably interact with the 125 GeV SM-like Higgs boson (hSM), which cause the Higgs exotic decays hSM → h1h1, a1a1, χχ. We first demonstrate the parameter space required by the explanation of the cosmological small structure and then display the Higgs exotic decays. We find that in such a parameter space the Higgs exotic decays can have branching ratios of a few percent, which should be accessible in the future e+e‑ colliders.
Dark matter self-interactions from a general spin-0 mediator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahlhoefer, Felix; Schmidt-Hoberg, Kai; Wild, Sebastian, E-mail: felix.kahlhoefer@desy.de, E-mail: kai.schmidt-hoberg@desy.de, E-mail: sebastian.wild@desy.de
2017-08-01
Dark matter particles interacting via the exchange of very light spin-0 mediators can have large self-interaction rates and obtain their relic abundance from thermal freeze-out. At the same time, these models face strong bounds from direct and indirect probes of dark matter as well as a number of constraints on the properties of the mediator. We investigate whether these constraints can be consistent with having observable effects from dark matter self-interactions in astrophysical systems. For the case of a mediator with purely scalar couplings we point out the highly relevant impact of low-threshold direct detection experiments like CRESST-II, which essentiallymore » rule out the simplest realization of this model. These constraints can be significantly relaxed if the mediator has CP-violating couplings, but then the model faces strong constraints from CMB measurements, which can only be avoided in special regions of parameter space.« less
Inception of self-interacting dark matter with dark charge conjugation symmetry
Ma, Ernest
2017-07-04
A new understanding of the stability of self-interacting dark matter is pointed out, based on the simplest spontaneously broken Abelian gauge model with one complex scalar and one Dirac fermion. The key is the imposition of dark charge conjugation symmetry. It allows the possible existence of two stable particles: the Dirac fermion and the vector gauge boson which acts as a light mediator for the former's self-interaction. Since this light mediator does not decay, it avoids the strong cosmological constraints recently obtained for all such models where the light mediator decays into standard-model particles.
A taste of dark matter: Flavour constraints on pseudoscalar mediators
Dolan, Matthew J.; Kahlhoefer, Felix; McCabe, Christopher; ...
2015-03-31
Dark matter interacting via the exchange of a light pseudoscalar can induce observable signals in indirect detection experiments and experience large self-interactions while evading the strong bounds from direct dark matter searches. The pseudoscalar mediator will however induce flavour-changing interactions in the Standard Model, providing a promising alternative way to test these models. We investigate in detail the constraints arising from rare meson decays and fixed target experiments for different coupling structures between the pseudoscalar and Standard Model fermions. The resulting bounds are highly complementary to the information inferred from the dark matter relic density and the constraints from primordialmore » nucleosynthesis. We discuss the implications of our findings for the dark matter self-interaction cross section and the prospects of probing dark matter coupled to a light pseudoscalar with direct or indirect detection experiments. In particular, we find that a pseudoscalar mediator can only explain the Galactic Centre excess if its mass is above that of the B mesons, and that it is impossible to obtain a sufficiently large direct detection cross section to account for the DAMA modulation.« less
Radial oscillations of strange quark stars admixed with condensed dark matter
NASA Astrophysics Data System (ADS)
Panotopoulos, G.; Lopes, Ilídio
2017-10-01
We compute the 20 lowest frequency radial oscillation modes of strange stars admixed with condensed dark matter. We assume a self-interacting bosonic dark matter, and we model dark matter inside the star as a Bose-Einstein condensate. In this case the equation of state is a polytropic one with index 1 +1 /n =2 and a constant K that is computed in terms of the mass of the dark matter particle and the scattering length. Assuming a mass and a scattering length compatible with current observational bounds for self-interacting dark matter, we have integrated numerically first the Tolman-Oppenheimer-Volkoff equations for the hydrostatic equilibrium, and then the equations for the perturbations ξ =Δ r /r and η =Δ P /P . For a compact object with certain mass and radius we have considered here three cases, namely no dark matter at all and two different dark matter scenarios. Our results show that (i) the separation between consecutive modes increases with the amount of dark matter, and (ii) the effect is more pronounced for higher order modes. These effects are relevant even for a strange star made of 5% dark matter.
Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction
NASA Astrophysics Data System (ADS)
Suárez, Abril; Chavanis, Pierre-Henri
2017-03-01
We study the cosmological evolution of a complex scalar field with a self-interaction potential V (|φ |2) , possibly describing self-gravitating Bose-Einstein condensates, using a fully general relativistic treatment. We generalize the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field approximation developed in our previous paper [A. Suárez and P.-H. Chavanis, Phys. Rev. D 92, 023510 (2015), 10.1103/PhysRevD.92.023510]. We establish the general equations governing the evolution of a spatially homogeneous complex scalar field in an expanding background. We show how they can be simplified in the fast oscillation regime (equivalent to the Thomas-Fermi, or semiclassical, approximation) and derive the equation of state of the scalar field in parametric form for an arbitrary potential V (|φ |2) . We explicitly consider the case of a quartic potential with repulsive or attractive self-interaction. For repulsive self-interaction, the scalar field undergoes a stiff matter era followed by a pressureless dark matter era in the weakly self-interacting regime and a stiff matter era followed by a radiationlike era and a pressureless dark matter era in the strongly self-interacting regime. For attractive self-interaction, the scalar field undergoes an inflation era followed by a stiff matter era and a pressureless dark matter era in the weakly self-interacting regime and an inflation era followed by a cosmic stringlike era and a pressureless dark matter era in the strongly self-interacting regime (the inflation era is suggested, not demonstrated). We also find a peculiar branch on which the scalar field emerges suddenly at a nonzero scale factor with a finite energy density. At early times, it behaves as a gas of cosmic strings. At later times, it behaves as dark energy with an almost constant energy density giving rise to a de Sitter evolution. This is due to spintessence. We derive the effective cosmological constant produced by the scalar field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chian-Shu; Department of Physics, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, 30010 R.O.C.; Institute of Physics, Academia Sinica, 128 Sec. 2,Academia Rd., Nangang, Taipei, Taiwan, 11529 R.O.C.
2016-01-07
The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chian-Shu; Lin, Guey-Lin; Lin, Yen-Hsun, E-mail: chianshu@gmail.com, E-mail: glin@cc.nctu.edu.tw, E-mail: chris.py99g@g2.nctu.edu.tw
2016-01-01
The halo dark matter (DM) can be captured by the Sun if its final velocity after the collision with a nucleus in the Sun is less than the escape velocity. We consider a selfinteracting dark matter (SIDM) model where U(1) gauge symmetry is introduced to account for the DM self-interaction. Such a model naturally leads to isospin violating DM-nucleon interaction, although isospin symmetric interaction is still allowed as a special case. We present the IceCube-PINGU 2σ sensitivity to the parameter range of the above model with 5 years of search for neutrino signature from DM annihilation in the Sun. Thismore » indirect detection complements the direct detection by probing those SIDM parameter ranges which are either the region for very small m{sub χ} or the region opened up due to isospin violations.« less
Vector dark matter annihilation with internal bremsstrahlung
Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; ...
2017-01-10
We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less
Make dark matter charged again
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barron, J. P.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bourbeau, J.; Bradascio, F.; Braun, J.; Brayeur, L.; Brenzke, M.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; DeLaunay, J. J.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hokanson-Fasig, B.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kalacynski, P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koschinsky, J. P.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Liu, Q. R.; Lu, L.; Lünemann, J.; Luszczak, W.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moore, R. W.; Moulai, M.; Nahnhauer, R.; Nakarmi, P.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Pollmann, A. Obertacke; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Pepper, J. A.; de los Heros, C. Pérez; Pieloth, D.; Pinat, E.; Plum, M.; Price, P. B.; Przybylski, G. T.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sälzer, T.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schneider, A.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Turley, C. F.; Ty, B.; Unger, E.; Usner, M.; Vandenbroucke, J.; Driessche, W. Van; Eijndhoven, N. van; Vanheule, S.; Santen, J. van; Vehring, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandler, F. D.; Wandkowsky, N.; Waza, A.; Weaver, C.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, J.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Yuan, T.; Zoll, M.
2017-09-01
We present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the IceCube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles < σ _{ {A}}v> . Upper limits are set for dark matter particle candidate masses ranging from 10 GeV up to 1 TeV while considering annihilation through multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100 GeV, with a limit of 1.18\\cdot 10^{-23} { cm}^3 {s}^{-1} for 100 GeV dark matter particles self-annihilating via τ ^+τ ^- to neutrinos (assuming the Navarro-Frenk-White dark matter halo profile).
Dark matter repulsion could thwart direct detection
Davoudiasl, Hooman
2017-11-20
We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less
Dark matter repulsion could thwart direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davoudiasl, Hooman
We consider a feeble repulsive interaction between ordinary matter and dark matter, with a range similar to or larger than the size of the Earth. Dark matter can thus be repelled from the Earth, leading to null results in direct detection experiments, regardless of the strength of the short-distance interactions of dark matter with atoms. Generically, such a repulsive force would not allow trapping of dark matter inside astronomical bodies. In this scenario, accelerator-based experiments may furnish the only robust signals of asymmetric dark matter models, which typically lack indirect signals from self-annihilation. Finally, some of the variants of ourmore » hypothesis are also briefly discussed.« less
Probing dark matter physics with galaxy clusters
NASA Astrophysics Data System (ADS)
Dalal, Neal
2016-10-01
We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.
WIMP capture by the Sun in the effective theory of dark matter self-interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Widmark, Axel, E-mail: catena@chalmers.se, E-mail: axel.widmark@fysik.su.se
We study the capture of WIMP dark matter by the Sun in the non-relativistic effective theory of dark matter self-interactions. The aim is to assess how self-interactions affect the expected neutrino flux coming from WIMP annihilation in the Sun, and to do so in a model independent manner. We consider all non-relativistic Galilean invariant self-interaction operators that can arise from the exchange of a heavy particle of spin less than or equal to 1 for WIMPs of spin equal to 0, 1/2 and 1. We show that for interaction operators depending at most linearly on the momentum transfer, the WIMP-inducedmore » neutrino flux can be enhanced by several orders of magnitude compared to the same flux in absence of self-interactions. This is true even for standard values of the thermally averaged annihilation cross-section. This conclusion impacts the analysis of present and future observations performed at neutrino telescopes.« less
Dark matter phenomenology of high-speed galaxy cluster collisions
Mishchenko, Yuriy; Ji, Chueng-Ryong
2017-07-29
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Dark matter phenomenology of high-speed galaxy cluster collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Yuriy; Ji, Chueng-Ryong
Here, we perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos’ distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark mattermore » expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90°. Our simulations indicate that as much as 20% of the total collision’s mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions.Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017.« less
Make dark matter charged again
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Ackermann, M.; Adams, J.
Here, we present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the IceCube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles < σ A v>. We then set the upper limits for dark matter particle candidate masses ranging from 10 GeV up to 1 TeV while considering annihilation throughmore » multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100 GeV, with a limit of 1.18·10 -23cm 3s -1 for 100 GeV dark matter particles self-annihilating via τ + τ - to neutrinos (assuming the Navarro–Frenk–White dark matter halo profile).« less
Aartsen, M. G.; Ackermann, M.; Adams, J.; ...
2017-09-20
Here, we present a search for a neutrino signal from dark matter self-annihilations in the Milky Way using the IceCube Neutrino Observatory (IceCube). In 1005 days of data we found no significant excess of neutrinos over the background of neutrinos produced in atmospheric air showers from cosmic ray interactions. We derive upper limits on the velocity averaged product of the dark matter self-annihilation cross section and the relative velocity of the dark matter particles < σ A v>. We then set the upper limits for dark matter particle candidate masses ranging from 10 GeV up to 1 TeV while considering annihilation throughmore » multiple channels. This work sets the most stringent limit on a neutrino signal from dark matter with mass between 10 and 100 GeV, with a limit of 1.18·10 -23cm 3s -1 for 100 GeV dark matter particles self-annihilating via τ + τ - to neutrinos (assuming the Navarro–Frenk–White dark matter halo profile).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny
We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less
Probing velocity dependent self-interacting dark matter with neutrino telescopes
NASA Astrophysics Data System (ADS)
Robertson, Denis S.; Albuquerque, Ivone F. M.
2018-02-01
Self-interacting dark matter models constitute an attractive solution to problems in structure formation on small scales. A simple realization of these models considers the dark force mediated by a light particle which can couple to the Standard Model through mixings with the photon or the Z boson. Within this scenario we investigate the sensitivity of the IceCube-DeepCore and PINGU neutrino telescopes to the associated muon neutrino flux produced by dark matter annihilations in the Sun. Despite the model's simplicity, several effects naturally appear: momentum suppressed capture by nuclei, velocity dependent dark matter self-capture, Sommerfeld enhanced annihilation, as well as the enhancement on the neutrino flux due to mediator late decays. Taking all these effects into account, we find that most of the model relevant parameter space can be tested by the three years of data already collected by the IceCube-DeepCore. We show that indirect detection through neutrinos can compete with the strong existing limits from direct detection experiments, specially in the case of isospin violation.
NASA Astrophysics Data System (ADS)
Strickland, Emily; Fitts, Alex; Boylan-Kolchin, Michael
2018-01-01
Our collaboration has simulated several high-resolution (mbaryon = 500Mo, mdm = 2500Mo) cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as a self-interacting dark matter (SIDM) (with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass (MFM) hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark matter dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (UFDs) (at ~105 Mo) provides the clearest window for distinguishing between the two theories. Here our SIDM galaxies continue to display a cored inner profile unlike their CDM counterparts. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts.
General calculation of the cross section for dark matter annihilations into two photons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Cely, Camilo; Rivera, Andres, E-mail: Camilo.Alfredo.Garcia.Cely@ulb.ac.be, E-mail: afelipe.rivera@udea.edu.co
2017-03-01
Assuming that the underlying model satisfies some general requirements such as renormalizability and CP conservation, we calculate the non-relativistic one-loop cross section for any self-conjugate dark matter particle annihilating into two photons. We accomplish this by carefully classifying all possible one-loop diagrams and, from them, reading off the dark matter interactions with the particles running in the loop. Our approach is general and leads to the same results found in the literature for popular dark matter candidates such as the neutralinos of the MSSM, minimal dark matter, inert Higgs and Kaluza-Klein dark matter.
van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph
2012-12-07
The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.
Variable sound speed in interacting dark energy models
NASA Astrophysics Data System (ADS)
Linton, Mark S.; Pourtsidou, Alkistis; Crittenden, Robert; Maartens, Roy
2018-04-01
We consider a self-consistent and physical approach to interacting dark energy models described by a Lagrangian, and identify a new class of models with variable dark energy sound speed. We show that if the interaction between dark energy in the form of quintessence and cold dark matter is purely momentum exchange this generally leads to a dark energy sound speed that deviates from unity. Choosing a specific sub-case, we study its phenomenology by investigating the effects of the interaction on the cosmic microwave background and linear matter power spectrum. We also perform a global fitting of cosmological parameters using CMB data, and compare our findings to ΛCDM.
Mechanism for thermal relic dark matter of strongly interacting massive particles.
Hochberg, Yonit; Kuflik, Eric; Volansky, Tomer; Wacker, Jay G
2014-10-24
We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when a nearly secluded dark sector is thermalized with the standard model after reheating. The freeze-out process is a number-changing 3→2 annihilation of strongly interacting massive particles (SIMPs) in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary for maintaining thermal equilibrium with the standard model, imply measurable signals that will allow coverage of a significant part of the parameter space with future indirect- and direct-detection experiments and via direct production of dark matter at colliders. Moreover, 3→2 annihilations typically predict sizable 2→2 self-interactions which naturally address the "core versus cusp" and "too-big-to-fail" small-scale structure formation problems.
NASA Technical Reports Server (NTRS)
Clowe, Douglas; Markevitch, Maxim; Bradac, Marusa; Gonzalez, Anthony H.; Chung, Sun Mi
2012-01-01
Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 sq cm/g. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed "dark core" that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least approx 5alpha larger than the upper limit of 0.7 sq cm/g determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies.We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario.
Steele, T G; Wang, Zhi-Wei; Contreras, D; Mann, R B
2014-05-02
We consider the generation of dark matter mass via radiative electroweak symmetry breaking in an extension of the conformal standard model containing a singlet scalar field with a Higgs portal interaction. Generating the mass from a sequential process of radiative electroweak symmetry breaking followed by a conventional Higgs mechanism can account for less than 35% of the cosmological dark matter abundance for dark matter mass M(s)>80 GeV. However, in a dynamical approach where both Higgs and scalar singlet masses are generated via radiative electroweak symmetry breaking, we obtain much higher levels of dark matter abundance. At one-loop level we find abundances of 10%-100% with 106 GeV
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.; Argüelles, Carlos R.; Ruffini, Remo; Rueda, Jorge A.
Self-interacting dark matter (SIDM) is a hypothetical form of dark matter (DM), characterized by relatively strong (compared to the weak interaction strength) self-interactions (SIs), which has been proposed to resolve a number of issues concerning tensions between simulations and observations at the galactic or smaller scales. We review here some recent developments discussed at the 14th Marcel Grossmann Meeting (MG14), paying particular attention to restrictions on the SIDM (total) cross-section from using novel observables in merging galactic structures, as well as the rôle of SIDM on the Milky Way halo and its central region. We report on some interesting particle-physics inspired SIDM models that were discussed at MG14, namely the glueball DM, and a right-handed neutrino DM (with mass of a few tens of keV, that may exist in minimal extensions of the standard model (SM)), interacting among themselves via vector bosons mediators in the dark sector. A detailed phenomenology of the latter model on galactic scales, as well as the potential role of the right handed neutrinos in alleviating some of the small-scale cosmology problems, namely the discrepancies between observations and numerical simulations within standard ΛCDM and ΛWDM cosmologies are reported.
Long-range Self-interacting Dark Matter in the Sun
NASA Astrophysics Data System (ADS)
Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang; Zhou, Yu-Feng
2015-12-01
We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in a non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.
A balance for dark matter bound states
NASA Astrophysics Data System (ADS)
Nozzoli, F.
2017-05-01
Massive particles with self interactions of the order of 0.2 barn/GeV are intriguing Dark Matter candidates from an astrophysical point of view. Current and past experiments for direct detection of massive Dark Matter particles are focusing to relatively low cross sections with ordinary matter, however they cannot rule out very large cross sections, σ/M > 0.01 barn/GeV, due to atmosphere and material shielding. Cosmology places a strong indirect limit for the presence of large interactions among Dark Matter and baryons in the Universe, however such a limit cannot rule out the existence of a small sub-dominant component of Dark Matter with non negligible interactions with ordinary matter in our galactic halo. Here, the possibility of the existence of bound states with ordinary matter, for a similar Dark Matter candidate with not negligible interactions, is considered. The existence of bound states, with binding energy larger than ∼ 1 meV, would offer the possibility to test in laboratory capture cross sections of the order of a barn (or larger). The signature of the detection for a mass increasing of cryogenic samples, due to the possible particle accumulation, would allow the investigation of these Dark Matter candidates with mass up to the GUT scale. A proof of concept for a possible detection set-up and the evaluation of some noise sources are described.
Cosmological simulations of multicomponent cold dark matter.
Medvedev, Mikhail V
2014-08-15
The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.
Constraining self-interacting dark matter with scaling laws of observed halo surface densities
NASA Astrophysics Data System (ADS)
Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia
2018-04-01
The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.
Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores
NASA Astrophysics Data System (ADS)
Chanda, Prolay Krishna; Das, Subinoy
2017-04-01
We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higaki, Tetsutaro; Jeong, Kwang Sik; Takahashi, Fuminobu, E-mail: tetsutaro.higaki@riken.jp, E-mail: ksjeong@tuhep.phys.tohoku.ac.jp, E-mail: fumi@tuhep.phys.tohoku.ac.jp
The baryon-dark matter coincidence is a long-standing issue. Interestingly, the recent observations suggest the presence of dark radiation, which, if confirmed, would pose another coincidence problem of why the density of dark radiation is comparable to that of photons. These striking coincidences may be traced back to the dark sector with particle contents and interactions that are quite similar, if not identical, to the standard model: a dark parallel world. It naturally solves the coincidence problems of dark matter and dark radiation, and predicts a sterile neutrino(s) with mass of O(0.1−1) eV, as well as self-interacting dark matter made ofmore » the counterpart of ordinary baryons. We find a robust prediction for the relation between the abundance of dark radiation and the sterile neutrino, which can serve as the smoking-gun evidence of the dark parallel world.« less
Two component Feebly Interacting Massive Particle (FIMP) dark matter
NASA Astrophysics Data System (ADS)
Pandey, Madhurima; Majumdar, Debasish; Prasad Modak, Kamakshya
2018-06-01
We explore the idea of an alternative candidate for particle dark matter namely Feebly Interacting Massive Particle (FIMP) in the framework of a two component singlet scalar model. Singlet scalar dark matter has already been demonstrated to be a viable candidate for WIMP (Weakly Interacting Massive Particle) dark matter in literature. In the FIMP scenario, dark matter particles are slowly produced via "thermal freeze-in" mechanism in the early Universe and are never abundant enough to reach thermal equilibrium or to undergo pair annihilation inside the Universe's plasma due to their extremely small couplings. We demonstrate that for smaller couplings too, required for freeze-in process, a two component scalar dark matter model considered here could well be a viable candidate for FIMP . In this scenario, the Standard Model of particle physics is extended by two gauge singlet real scalars whose stability is protected by an unbroken Z2× Z'2 symmetry and they are assumed to acquire no VEV after Spontaneous Symmetry Breaking. We explore the viable mass regions in the present two scalar DM model that is in accordance with the FIMP scenario. We also explore the upper limits of masses of the two components from the consideration of their self interactions.
Dissipative dark matter and the rotation curves of dwarf galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foot, R., E-mail: rfoot@unimelb.edu.au
2016-07-01
There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interactionmore » facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.« less
Strongly self-interacting vector dark matter via freeze-in
NASA Astrophysics Data System (ADS)
Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da
2018-01-01
We study a vector dark matter (VDM) model in which the dark sector couples to the Standard Model sector via a Higgs portal. If the portal coupling is small enough the VDM can be produced via the freeze-in mechanism. It turns out that the electroweak phase transition have a substantial impact on the prediction of the VDM relic density. We further assume that the dark Higgs boson which gives the VDM mass is so light that it can induce strong VDM self-interactions and solve the small-scale structure problems of the Universe. As illustrated by the latest LUX data, the extreme smallness of the Higgs portal coupling required by the freeze-in mechanism implies that the dark matter direct detection bounds are easily satisfied. However, the model is well constrained by the indirect detections of VDM from BBN, CMB, AMS-02, and diffuse γ/X-rays. Consequently, only when the dark Higgs boson mass is at most of O (keV) does there exist a parameter region which leads to a right amount of VDM relic abundance and an appropriate VDM self-scattering while satisfying all other constraints simultaneously.
Long-range Self-interacting Dark Matter in the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing; State Key Laboratory of Theoretical Physics, Kavli Institute for Theoretical Physics China,Institute of Theoretical Physics, Chinese Academy of Science,Zhong Guan Cun East Street 55#, Beijing, 100190; Liang, Zheng-Liang
2015-12-10
We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in amore » non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.« less
Viscous self interacting dark matter and cosmic acceleration
NASA Astrophysics Data System (ADS)
Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind
2018-02-01
Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.
Cosmology and accelerator tests of strongly interacting dark matter
Berlin, Asher; Blinov, Nikita; Gori, Stefania; ...
2018-03-23
A natural possibility for dark matter is that it is composed of the stable pions of a QCD-like hidden sector. Existing literature largely assumes that pion self-interactions alone control the early universe cosmology. We point out that processes involving vector mesons typically dominate the physics of dark matter freeze-out and significantly widen the viable mass range for these models. The vector mesons also give rise to striking signals at accelerators. For example, in most of the cosmologically favored parameter space, the vector mesons are naturally long-lived and produce standard model particles in their decays. Electron and proton beam fixed-target experimentsmore » such as HPS, SeaQuest, and LDMX can exploit these signals to explore much of the viable parameter space. As a result, we also comment on dark matter decay inherent in a large class of previously considered models and explain how to ensure dark matter stability.« less
Cosmology and accelerator tests of strongly interacting dark matter
NASA Astrophysics Data System (ADS)
Berlin, Asher; Blinov, Nikita; Gori, Stefania; Schuster, Philip; Toro, Natalia
2018-03-01
A natural possibility for dark matter is that it is composed of the stable pions of a QCD-like hidden sector. Existing literature largely assumes that pion self-interactions alone control the early universe cosmology. We point out that processes involving vector mesons typically dominate the physics of dark matter freeze-out and significantly widen the viable mass range for these models. The vector mesons also give rise to striking signals at accelerators. For example, in most of the cosmologically favored parameter space, the vector mesons are naturally long-lived and produce standard model particles in their decays. Electron and proton beam fixed-target experiments such as HPS, SeaQuest, and LDMX can exploit these signals to explore much of the viable parameter space. We also comment on dark matter decay inherent in a large class of previously considered models and explain how to ensure dark matter stability.
Cosmology and accelerator tests of strongly interacting dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, Asher; Blinov, Nikita; Gori, Stefania
A natural possibility for dark matter is that it is composed of the stable pions of a QCD-like hidden sector. Existing literature largely assumes that pion self-interactions alone control the early universe cosmology. We point out that processes involving vector mesons typically dominate the physics of dark matter freeze-out and significantly widen the viable mass range for these models. The vector mesons also give rise to striking signals at accelerators. For example, in most of the cosmologically favored parameter space, the vector mesons are naturally long-lived and produce standard model particles in their decays. Electron and proton beam fixed-target experimentsmore » such as HPS, SeaQuest, and LDMX can exploit these signals to explore much of the viable parameter space. As a result, we also comment on dark matter decay inherent in a large class of previously considered models and explain how to ensure dark matter stability.« less
Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2016-10-01
We study the collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction. Equilibrium states in which the gravitational attraction and the attraction due to the self-interaction are counterbalanced by the quantum pressure (Heisenberg's uncertainty principle) exist only below a maximum mass Mmax=1.012 ℏ/√{G m |as| } where as<0 is the scattering length of the bosons and m is their mass [P. H. Chavanis, Phys. Rev. D 84, 043531 (2011)]. For M >Mmax the system is expected to collapse and form a black hole. We study the collapse dynamics by making a Gaussian ansatz for the wave function and reducing the problem to the study of the motion of a particle in an effective potential. We find that the collapse time scales as (M /Mmax-1 )-1 /4 for M →Mmax+ and as M-1 /2 for M ≫Mmax. Other analytical results are given above and below the critical point corresponding to a saddle-node bifurcation. We apply our results to QCD axions with mass m =10-4 eV /c2 and scattering length as=-5.8 ×10-53 m for which Mmax=6.5 ×10-14M⊙ and R =3.3 ×10-4R⊙. We confirm our previous claim that bosons with attractive self-interaction, such as QCD axions, may form low mass stars (axion stars or dark matter stars) but cannot form dark matter halos of relevant mass and size. These mini axion stars could be the constituents of dark matter. They can collapse into mini black holes of mass ˜10-14M⊙ in a few hours. In that case, dark matter halos would be made of mini black holes. We also apply our results to ultralight axions with mass m =1.93 ×10-20 eV /c2 and scattering length as=-8.29 ×10-60 fm for which Mmax=0.39 ×1 06M⊙ and R =33 pc . These ultralight axions could cluster into dark matter halos. Axionic dark matter halos with attractive self-interaction can collapse into supermassive black holes of mass ˜1 06M⊙ (similar to those reported at the center of galaxies) in about one million years. We point out the limitations of the Gaussian ansatz to describe the late stages of the collapse dynamics. We also mention the possibility that, instead of forming a black hole, the collapse may be accompanied by a burst or relativistic axions (bosenova) leading to a cycle of collapses and explosions as observed for nongravitational Bose-Einstein condensates with attractive self-interaction.
Interaction between bosonic dark matter and stars
NASA Astrophysics Data System (ADS)
Brito, Richard; Cardoso, Vitor; Macedo, Caio F. B.; Okawa, Hirotada; Palenzuela, Carlos
2016-02-01
We provide a detailed analysis of how bosonic dark matter "condensates" interact with compact stars, extending significantly the results of a recent Letter [1]. We focus on bosonic fields with mass mB , such as axions, axion-like candidates and hidden photons. Self-gravitating bosonic fields generically form "breathing" configurations, where both the spacetime geometry and the field oscillate, and can interact and cluster at the center of stars. We construct stellar configurations formed by a perfect fluid and a bosonic condensate, and which may describe the late stages of dark matter accretion onto stars, in dark-matter-rich environments. These composite stars oscillate at a frequency which is a multiple of f =2.5 ×1014(mBc2/eV ) Hz . Using perturbative analysis and numerical relativity techniques, we show that these stars are generically stable, and we provide criteria for instability. Our results also indicate that the growth of the dark matter core is halted close to the Chandrasekhar limit. We thus dispel a myth concerning dark matter accretion by stars: dark matter accretion does not necessarily lead to the destruction of the star, nor to collapse to a black hole. Finally, we argue that stars with long-lived bosonic cores may also develop in other theories with effective mass couplings, such as (massless) scalar-tensor theories.
Dark energy, scalar singlet dark matter and the Higgs portal
NASA Astrophysics Data System (ADS)
Landim, Ricardo G.
2018-05-01
One of the simplest extensions of the Standard Model (SM) comprises the inclusion of a massive real scalar field, neutral under the SM gauge groups, to be a dark matter candidate. The addition of a dimension-six term into the potential of the scalar dark matter enables the appearance of a false vacuum that describes the cosmic acceleration. We show that the running of the singlet self-interaction and the Higgs portal coupling differs from the standard scalar singlet dark matter model. If we maintain a positive quartic coupling, it is also possible to describe the accelerated expansion of the Universe through a false vacuum with the addition of a dimension-eight interaction term. In this case, where the potential remains bounded from below at low energies, the false vacuum decay is highly suppressed.
Dark matter admixed strange quark stars in the Starobinsky model
NASA Astrophysics Data System (ADS)
Lopes, Ilídio; Panotopoulos, Grigoris
2018-01-01
We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br
We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-10-06
It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less
Gravitationally bound BCS state as dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Stephon; Cormack, Sam, E-mail: stephon_alexander@brown.edu, E-mail: samuel.c.cormack.gr@dartmouth.edu
2017-04-01
We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ∼ 200 eV. We findmore » a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.« less
Self-interacting inelastic dark matter: a viable solution to the small scale structure problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au
2017-03-01
Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less
Simulations of galaxy cluster collisions with a dark plasma component
NASA Astrophysics Data System (ADS)
Spethmann, Christian; Veermäe, Hardi; Sepp, Tiit; Heikinheimo, Matti; Deshev, Boris; Hektor, Andi; Raidal, Martti
2017-12-01
Context. Dark plasma is an intriguing form of self-interacting dark matter with an effective fluid-like behavior, which is well motivated by various theoretical particle physics models. Aims: We aim to find an explanation for an isolated mass clump in the Abell 520 system, which cannot be explained by traditional models of dark matter, but has been detected in weak lensing observations. Methods: We performed N-body smoothed particle hydrodynamics simulations of galaxy cluster collisions with a two component model of dark matter, which is assumed to consist of a predominant non-interacting dark matter component and a 10-40% mass fraction of dark plasma. Results: The mass of a possible dark clump was calculated for each simulation in a parameter scan over the underlying model parameters. In two higher resolution simulations shock-waves and Mach cones were observed to form in the dark plasma halos. Conclusions: By choosing suitable simulation parameters, the observed distributions of dark matter in both the Bullet cluster (1E 0657-558) and Abell 520 (MS 0451.5+0250) can be qualitatively reproduced. Movies associated to Figs. A.1 and A.2 are available at http://www.aanda.org
Is Self-Interacting Dark Matter Undergoing Dark Fusion?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Samuel D.
2017-11-02
We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v^n ~ [10^{-(2-3)}]^n, where n=1,2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be sigma ~ 0.1-1 barn, moderately larger than for Standard Model deuteron fusion, indicating a dark nuclear scale Lambda ~ O(100 MeV).more » Dark fusion firmly predicts constant sigma v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometer per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less
Is Self-Interacting Dark Matter Undergoing Dark Fusion?
NASA Astrophysics Data System (ADS)
McDermott, Samuel D.
2018-06-01
We suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than vn˜(10-(2 -3 ))n , where n =1 , 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ˜0.1 - 1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ ˜O (100 MeV ) . Dark fusion firmly predicts constant σ v below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.
Hidden SU ( N ) glueball dark matter
Soni, Amarjit; Zhang, Yue
2016-06-21
Here we investigate the possibility that the dark matter candidate is from a pure non-abelian gauge theory of the hidden sector, motivated in large part by its elegance and simplicity. The dark matter is the lightest bound state made of the confined gauge fields, the hidden glueball. We point out this simple setup is capable of providing rich and novel phenomena in the dark sector, especially in the parameter space of large N. They include self-interacting and warm dark matter scenarios, Bose-Einstein condensation leading to massive dark stars possibly millions of times heavier than our sun giving rise to gravitationalmore » lensing effects, and indirect detections through higher dimensional operators as well as interesting collider signatures.« less
Radiative mixing of the one Higgs boson and emergent self-interacting dark matter
Ma, Ernest
2016-03-01
In all scalar extensions of the standard model of particle interactions, the one Higgs boson responsible for electroweak symmetry breaking always mixes with other neutral scalars at tree level unless a symmetry prevents it. One unexplored important option is that the mixing may be radiative, and thus guaranteed to be small. Moreover, two first such examples are discussed. One is based on the soft breaking of the discrete symmetry Z3. The other starts with the non-Abelian discrete symmetry A4which is then softly broken to Z3, and results in the emergence of an interesting dark-matter candidate together with a light mediatormore » for the dark matter to have its own long-range interaction.« less
Implications of two-component dark matter induced by forbidden channels and thermal freeze-out
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@tum.de
2017-01-01
We consider a model of two-component dark matter based on a hidden U(1) {sub D} symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden U(1) {sub D} symmetry is spontaneously broken to a residual Z{sub 4} symmetry, and the lightest Z{sub 4} charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared tomore » the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of ΛCDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore detectabilities of these dark matter particles and show some parameter space can be tested by the SHiP experiment.« less
Is Self-Interacting Dark Matter Undergoing Dark Fusion?
McDermott, Samuel D.
2018-06-01
Here, we suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v n~(10 –(2–3)) n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ~0.1–1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ~O(100 MeV). Darkmore » fusion firmly predicts constant σv below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less
Is Self-Interacting Dark Matter Undergoing Dark Fusion?
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Samuel D.
Here, we suggest that two-to-two dark matter fusion may be the relaxation process that resolves the small-scale structure problems of the cold collisionless dark matter paradigm. In order for the fusion cross section to scale correctly across many decades of astrophysical masses from dwarf galaxies to galaxy clusters, we require the fractional binding energy released to be greater than v n~(10 –(2–3)) n, where n=1, 2 depends on local dark sector chemistry. The size of the dark-sector interaction cross sections must be σ~0.1–1 barn, moderately larger than for standard model deuteron fusion, indicating a dark nuclear scale Λ~O(100 MeV). Darkmore » fusion firmly predicts constant σv below the characteristic velocities of galaxy clusters. Observations of the inner structure of galaxy groups with velocity dispersion of several hundred kilometers per second, of which a handful have been identified, could differentiate dark fusion from a dark photon model.« less
Simplified phenomenology for colored dark sectors
NASA Astrophysics Data System (ADS)
El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose
2017-04-01
We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.
Fundamental Particle Structure in the Cosmological Dark Matter
NASA Astrophysics Data System (ADS)
Khlopov, Maxim
2013-11-01
The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying fundamental relationship of micro- and macro-worlds, the problem of cosmological dark matter implies cross disciplinary theoretical, experimental and observational studies for its solution.
Planckian Interacting Massive Particles as Dark Matter.
Garny, Mathias; Sandora, McCullen; Sloth, Martin S
2016-03-11
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
Direct detection signatures of self-interacting dark matter with a light mediator
Nobile, Eugenio Del; Kaplinghat, Manoj; Yu, Hai-Bo
2015-10-27
Self-interacting dark matter (SIDM) is a simple and well-motivated scenario that could explain long-standing puzzles in structure formation on small scales. If the required self-interaction arises through a light mediator (with mass ~ 10 MeV) in the dark sector, this new particle must be unstable to avoid overclosing the universe. The decay of the light mediator could happen due to a weak coupling of the hidden and visible sectors, providing new signatures for direct detection experiments. The SIDM nuclear recoil spectrum is more peaked towards low energies compared to the usual case of contact interactions, because the mediator mass ismore » comparable to the momentum transfer of nuclear recoils. We show that the SIDM signal could be distinguished from that of DM particles with contact interactions by considering the time-average energy spectrum in experiments employing different target materials, or the average and modulated spectra in a single experiment. Using current limits from LUX and SuperCDMS, we also derive strong bounds on the mixing parameter between hidden and visible sector.« less
Toroidal halos in a nontopological soliton model of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mielke, Eckehard W.; Perez, Jose A. Velez
2007-02-15
Soliton type solutions of an axionlike scalar model with self-interaction are analyzed further as a toy model of dark matter halos. For a 'nonlinear superposition' of round and flattened configurations we found ringlike substructures in the density profile similarly as has been inferred for our Galaxy from the observed excess of the diffuse component of cosmic gamma rays.
Hunting for dark matter with ultra-stable fibre as frequency delay system.
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-07-10
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs' arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on "frequency-delay system" to search dark-matter by "self-frequency comparison" of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level.
Hunting for dark matter with ultra-stable fibre as frequency delay system
Yang, Wanpeng; Li, Dawei; Zhang, Shuangyou; Zhao, Jianye
2015-01-01
Many cosmological observations point towards the existence of dark-matter(DM) particles and consider them as the main component of the matter content of the universe. The goal of revealing the nature of dark-matter has triggered the development of new, extremely sensitive detectors. It has been demonstrated that the frequencies and phases of optical clock have a transient shift during the DMs’ arrival due to the DM-SM(Standard Model) coupling. A simple, reliable and feasible experimental scheme is firstly proposed in this paper, based on “frequency-delay system” to search dark-matter by “self-frequency comparison” of an optical clock. During the arrival of a dark-matter, frequency discrepancy is expected between two signals with a short time difference(~ms) of the same optical clock to exhibit the interaction between atoms and dark-matter. Furthermore, this process can determine the exact position of dark-matter when it is crossing the optical clocks, therefore a network of detecting stations located in different places is recommended to reduce the misjudgment risk to an acceptable level. PMID:26159113
Detecting superlight dark matter with Fermi-degenerate materials
Hochberg, Yonit; Pyle, Matt; Zhao, Yue; ...
2016-08-08
We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10 –3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in ordermore » to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.« less
Dark matter self-interactions and small scale structure
NASA Astrophysics Data System (ADS)
Tulin, Sean; Yu, Hai-Bo
2018-02-01
We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.
Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter
NASA Astrophysics Data System (ADS)
Massey, Richard; Harvey, David; Liesenborgs, Jori; Richard, Johan; Stach, Stuart; Swinbank, Mark; Taylor, Peter; Williams, Liliya; Clowe, Douglas; Courbin, Frédéric; Edge, Alastair; Israel, Holger; Jauzac, Mathilde; Joseph, Rémy; Jullo, Eric; Kitching, Thomas D.; Leonard, Adrienne; Merten, Julian; Nagai, Daisuke; Nightingale, James; Robertson, Andrew; Romualdez, Luis Javier; Saha, Prasenjit; Smit, Renske; Tam, Sut-Ieng; Tittley, Eric
2018-06-01
We present integral field spectroscopy of galaxy cluster Abell 3827, using Atacama Large Millimetre Array (ALMA) and Very Large Telescope/Multi-Unit Spectroscopic Explorer. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy. Lens modelling based on Hubble Space Telescope imaging had suggested that the dark matter associated with one of the cluster's central galaxies may be offset. The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centred on the galaxies, as expected by Λ cold dark matter. Each galaxy's dark matter also appears to be symmetric. Whilst, we do not find an offset between mass and light (suggestive of self-interacting dark matter) as previously reported, the numerical simulations that have been performed to calibrate Abell 3827 indicate that offsets and asymmetry are still worth looking for in collisions with particular geometries. Meanwhile, ALMA proves exceptionally useful for strong lens image identifications.
Scaling relations of halo cores for self-interacting dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Henry W.; Loeb, Abraham, E-mail: henrylin@college.harvard.edu, E-mail: aloeb@cfa.harvard.edu
2016-03-01
Using a simple analytic formalism, we demonstrate that significant dark matter self-interactions produce halo cores that obey scaling relations nearly independent of the underlying particle physics parameters such as the annihilation cross section and the mass of the dark matter particle. For dwarf galaxies, we predict that the core density ρ{sub c} and the core radius r{sub c} should obey ρ{sub c} r{sub c} ≈ 41 M{sub ⊙} pc{sup −2} with a weak mass dependence ∼ M{sup 0.2}. Remarkably, such a scaling relation has recently been empirically inferred. Scaling relations involving core mass, core radius, and core velocity dispersion are predicted and agree well with observationalmore » data. By calibrating against numerical simulations, we predict the scatter in these relations and find them to be in excellent agreement with existing data. Future observations can test our predictions for different halo masses and redshifts.« less
Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schoenwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.
2011-07-01
Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large-scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of ⟨σAv⟩≃10-22cm3s-1 for weakly interacting massive particle masses above 1 TeV, assuming a monochromatic neutrino line spectrum.
Cosmology beyond the Standard Model
NASA Astrophysics Data System (ADS)
Wells, Christopher M.
The Standard Model of Cosmology, like its particle physics counterpart, is incomplete in its present form theoretically and observationally. Additional structure, in the form of an early period of accelerated expansion (inflation), is suggested by the special initial conditions required to produce the visible universe. Furthermore, a wide variety of indirect observations indicate that 80% of the mass in the universe is dark. In this thesis, we construct a class of inflation models free from the usual pathologies. In particular, we build a novel realization of hybrid inflation, in which both the inflaton and waterfall degrees of freedom are moduli of a higher dimensional compactification. Because the inflationary fields are realized as global degrees of freedom in the extra dimension, they are protected from the 4D quantum corrections that would otherwise spoil inflation. Via the Ads/CFT correspondence we can relate our construction to a dual theory of composite inflationary degrees of freedom. We then turn to studying the problem of missing matter in the Standard Cosmology. Despite an abundance of indirect observations of dark matter, direct detection experiments have produced conflicting results which seem to point to a more complicated dark sector. In this thesis, we propose that dark matter be made up primarily of non-relativistic bound states, i.e. dark atoms. We explore the atomic parameter space allowed by the demands that dark matter is predominantly atomic and that the dark atoms and ions satisfy observational bounds on dark matter self-interactions. We then study possible interactions between dark matter and normal matter such that dark atoms scatter inelastically from nuclei in direct detection experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochberg, Yonit; Pyle, Matt; Zhao, Yue
We examine in greater detail the recent proposal of using superconductors for detecting dark matter as light as the warm dark matter limit of O(keV). Detection of suc light dark matter is possible if the entire kinetic energy of the dark matter is extracted in the scattering, and if the experiment is sensitive to O(meV) energy depositions. This is the case for Fermi-degenerate materials in which the Fermi velocity exceeds the dark matter velocity dispersion in the Milky Way of ~10 –3. We focus on a concrete experimental proposal using a superconducting target with a transition edge sensor in ordermore » to detect the small energy deposits from the dark matter scatterings. Considering a wide variety of constraints, from dark matter self-interactions to the cosmic microwave background, we show that models consistent with cosmological/astrophysical and terrestrial constraints are observable with such detectors. A wider range of viable models with dark matter mass below an MeV is available if dark matter or mediator properties (such as couplings or masses) differ at BBN epoch or in stellar interiors from those in superconductors. We also show that metal targets pay a strong in-medium suppression for kinetically mixed mediators; this suppression is alleviated with insulating targets.« less
The spectrum of darkonium in the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouvaris, Chris; Langæble, Kasper; Nielsen, Niklas Grønlund
Dark matter that gets captured in the Sun may form positronium-like bound states if it self-interacts via light dark photons. In this case, dark matter can either annihilate to dark photons or recombine in bound states which subsequently also decay to dark photons. The fraction of the dark photons that leave the Sun without decaying to Standard Model particles have a characteristic energy spectrum which is a mixture of the direct annihilation process, the decays of ortho- and para- bound states and the recombination process. The ultimate decay of these dark photons to positron-electron pairs (via kinetic mixing) outside themore » Sun creates a distinct signal that can either identify or set strict constraints on dark photon models.« less
Analysis of dark matter axion clumps with spherical symmetry
NASA Astrophysics Data System (ADS)
Schiappacasse, Enrico D.; Hertzberg, Mark P.
2018-01-01
Recently there has been much interest in the spatial distribution of light scalar dark matter, especially axions, throughout the universe. When the local gravitational interactions between the scalar modes are sufficiently rapid, it can cause the field to re-organize into a BEC of gravitationally bound clumps. While these clumps are stable when only gravitation is included, the picture is complicated by the presence of the axion's attractive self-interactions, which can potentially cause the clumps to collapse. Here we perform a detailed stability analysis to determine under what conditions the clumps are stable. In this paper we focus on spherical configurations, leaving aspherical configurations for future work. We identify branches of clump solutions of the axion-gravity-self-interacting system and study their stability properties. We find that clumps that are (spatially) large are stable, while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a maximum number of particles that can be in a clump. We map out the full space of solutions, which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approximation. We also consider repulsive self-interactions that may arise from a generic scalar dark matter candidate, finding a single stable branch that extends to arbitrary particle number.
Higgs portal dark matter in non-standard cosmological histories
NASA Astrophysics Data System (ADS)
Hardy, Edward
2018-06-01
A scalar particle with a relic density set by annihilations through a Higgs portal operator is a simple and minimal possibility for dark matter. However, assuming a thermal cosmological history this model is ruled out over most of parameter space by collider and direct detection constraints. We show that in theories with a non-thermal cosmological history Higgs portal dark matter is viable for a wide range of dark matter masses and values of the portal coupling, evading existing limits. In particular, we focus on the string theory motivated scenario of a period of matter domination due to a light modulus with a decay rate that is suppressed by the Planck scale. Dark matter with a mass ≲ GeV is possible without additional hidden sector states, and this can have astrophysically relevant self-interactions. We also study the signatures of such models at future direct, indirect, and collider experiments. Searches for invisible Higgs decays at the high luminosity LHC or an e + e - collider could cover a significant proportion of the parameter space for low mass dark matter, and future direct detection experiments will play a complementary role.
Flattened halos in a nontopological soliton model of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mielke, Eckehard W.; Peralta, Humberto H.
2004-12-15
Soliton type solutions of a scalar model with a {phi}{sup 6} self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a 'nonlinear superposition' of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp
Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less
Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong
The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is describedmore » by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10{sup −7} fm.« less
Dark-matter particles without weak-scale masses or weak interactions.
Feng, Jonathan L; Kumar, Jason
2008-12-05
We propose that dark matter is composed of particles that naturally have the correct thermal relic density, but have neither weak-scale masses nor weak interactions. These models emerge naturally from gauge-mediated supersymmetry breaking, where they elegantly solve the dark-matter problem. The framework accommodates single or multiple component dark matter, dark-matter masses from 10 MeV to 10 TeV, and interaction strengths from gravitational to strong. These candidates enhance many direct and indirect signals relative to weakly interacting massive particles and have qualitatively new implications for dark-matter searches and cosmological implications for colliders.
Dark matter, neutron stars, and strange quark matter.
Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R
2010-10-01
We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.
Solar atmospheric neutrinos and the sensitivity floor for solar dark matter annihilation searches
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argüelles, C.A.; De Wasseige, G.; Fedynitch, A.
Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP self-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP self-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric showermore » evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.« less
Dark stars in Starobinsky's model
NASA Astrophysics Data System (ADS)
Panotopoulos, Grigoris; Lopes, Ilídio
2018-01-01
In the present work we study non-rotating dark stars in f (R ) modified theory of gravity. In particular, we have considered bosonic self-interacting dark matter modeled inside the star as a Bose-Einstein condensate, while as far as the modified theory of gravity is concerned we have assumed Starobinsky's model R +a R2. We solve the generalized structure equations numerically, and we obtain the mass-to-ratio relation for several different values of the parameter a , and for two different dark matter equation-of-states. Our results show that the dark matter stars become more compact in the R-squared gravity compared to general relativity, while at the same time the highest star mass is slightly increased in the modified gravitational theory. The numerical value of the highest star mass for each case has been reported.
Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states
NASA Astrophysics Data System (ADS)
Cirelli, Marco; Panci, Paolo; Petraki, Kalliopi; Sala, Filippo; Taoso, Marco
2017-05-01
Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeV to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.
Dark Matter's secret liaisons: phenomenology of a dark U(1) sector with bound states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirelli, Marco; Petraki, Kalliopi; Sala, Filippo
Dark matter (DM) charged under a dark U(1) force appears in many extensions of the Standard Model, and has been invoked to explain anomalies in cosmic-ray data, as well as a self-interacting DM candidate. In this paper, we perform a comprehensive phenomenological analysis of such a model, assuming that the DM abundance arises from the thermal freeze-out of the dark interactions. We include, for the first time, bound-state effects both in the DM production and in the indirect detection signals, and quantify their importance for FERMI, AMS-02, and CMB experiments. We find that DM in the mass range 1 GeVmore » to 100 TeV, annihilating into dark photons of MeV to GeV mass, is in conflict with observations. Instead, DM annihilation into heavier dark photons is viable. We point out that the late decays of multi-GeV dark photons can produce significant entropy and thus dilute the DM density. This can lower considerably the dark coupling needed to obtain the DM abundance, and in turn relax the existing constraints.« less
Probes for dark matter physics
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossman, Yuval; Harnik, Roni; Telem, Ofri
We present Self-Destructing Dark Matter (SDDM), a new class of dark matter models which are detectable in large neutrino detectors. In this class of models, a component of dark matter can transition from a long-lived state to a short-lived one by scattering off of a nucleus or an electron in the Earth. The short-lived state then decays to Standard Model particles, generating a dark matter signal with a visible energy of order the dark matter mass rather than just its recoil. This leads to striking signals in large detectors with high energy thresholds. We present a few examples of modelsmore » which exhibit self destruction, all inspired by bound state dynamics in the Standard Model. The models under consideration exhibit a rich phenomenology, possibly featuring events with one, two, or even three lepton pairs, each with a fixed invariant mass and a fixed energy, as well as non-trivial directional distributions. This motivates dedicated searches for dark matter in large underground detectors such as Super-K, Borexino, SNO+, and DUNE.« less
Power spectrum of dark matter substructure in strong gravitational lenses
NASA Astrophysics Data System (ADS)
Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora
2018-01-01
Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.
Small but mighty: Dark matter substructures
NASA Astrophysics Data System (ADS)
Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas
2018-01-01
The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.
Interacting dark sector and precision cosmology
NASA Astrophysics Data System (ADS)
Buen-Abad, Manuel A.; Schmaltz, Martin; Lesgourgues, Julien; Brinckmann, Thejs
2018-01-01
We consider a recently proposed model in which dark matter interacts with a thermal background of dark radiation. Dark radiation consists of relativistic degrees of freedom which allow larger values of the expansion rate of the universe today to be consistent with CMB data (H0-problem). Scattering between dark matter and radiation suppresses the matter power spectrum at small scales and can explain the apparent discrepancies between ΛCDM predictions of the matter power spectrum and direct measurements of Large Scale Structure LSS (σ8-problem). We go beyond previous work in two ways: 1. we enlarge the parameter space of our previous model and allow for an arbitrary fraction of the dark matter to be interacting and 2. we update the data sets used in our fits, most importantly we include LSS data with full k-dependence to explore the sensitivity of current data to the shape of the matter power spectrum. We find that LSS data prefer models with overall suppressed matter clustering due to dark matter - dark radiation interactions over ΛCDM at 3–4 σ. However recent weak lensing measurements of the power spectrum are not yet precise enough to clearly distinguish two limits of the model with different predicted shapes for the linear matter power spectrum. In two appendices we give a derivation of the coupled dark matter and dark radiation perturbation equations from the Boltzmann equation in order to clarify a confusion in the recent literature, and we derive analytic approximations to the solutions of the perturbation equations in the two physically interesting limits of all dark matter weakly interacting or a small fraction of dark matter strongly interacting.
Ultralight Axion Dark Matter and Its Impact on Dark Halo Structure in N-body Simulations
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Sming Tsai, Yue-Lin; Kuo, Jui-Lin; Cheung, Kingman; Chu, Ming-Chung
2018-01-01
Ultralight axion is a dark matter candidate with mass { O }({10}-22){eV} and de Broglie wavelength of order kiloparsec. Such an axion, also called fuzzy dark matter (FDM), thermalizes via gravitational force and forms a Bose–Einstein condensate. Recent studies suggested that the quantum pressure from FDM can significantly affect structure formation in small scales, thus alleviating the so-called “small-scale crisis.” In this paper, we develop a new technique to discretize the quantum pressure and illustrate the interactions among FDM particles in an N-body simulation that accurately simulates the formation of the dark matter halo and its inner structure in the region outside the softening length. In a self-gravitationally bound virialized halo, we find a constant density solitonic core, which is consistent with theoretical prediction. The existence of the solitonic core reveals the nonlinear effect of quantum pressure and impacts structure formation in the FDM model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arrenberg, Sebastian; et al.,
2013-10-31
In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on allmore » four of those approaches.« less
The pursuit of dark matter at colliders—an overview
NASA Astrophysics Data System (ADS)
Penning, Björn
2018-06-01
Dark matter is one of the main puzzles in fundamental physics and the goal of a diverse, multi-pronged research programme. Underground and astrophysical searches look for dark matter particles in the cosmos, either by interacting directly or by searching for dark matter annihilation. Particle colliders, in contrast, might produce dark matter in the laboratory and are able to probe most basic dark-matter–matter interactions. They are sensitive to low dark matter masses, provide complementary information at higher masses and are subject to different systematic uncertainties. Collider searches are therefore an important part of an inter-disciplinary dark matter search strategy. This article highlights the experimental and phenomenological development in collider dark matter searches of recent years and their connection with the wider field.
Challenging the cosmological constant
NASA Astrophysics Data System (ADS)
Kaloper, Nemanja
2007-09-01
We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with a scale tuned to ˜10 eV, as is usual in quintessence models, and an effective mass m influenced by the environmental energy density. Its forces may be suppressed just below the current bounds by the chameleon-like mimicry, whereby only outer layers of mass distributions, of thickness 1/m, give off appreciable long range forces. After inflation and reheating, the field is relativistic, and attains a Planckian expectation value before Hubble friction freezes it. This can make gravity in space slightly stronger than on Earth. During the matter era, interactions with nonrelativistic matter dig a minimum close to the Planck scale. However, due to its sub-gravitational matter couplings the field will linger away from this minimum until the matter energy density dips below ˜10 eV. Then it starts to roll to the minimum, driving a period of cosmic acceleration. Among the signatures of this scenario may be dark energy equation of state w≠-1, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections to Newton's law, close to the present laboratory limits.
Upper bounds on asymmetric dark matter self annihilation cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellwanger, Ulrich; Mitropoulos, Pantelis, E-mail: ulrich.ellwanger@th.u-psud.fr, E-mail: pantelis.mitropoulos@th.u-psud.fr
2012-07-01
Most models for asymmetric dark matter allow for dark matter self annihilation processes, which can wash out the asymmetry at temperatures near and below the dark matter mass. We study the coupled set of Boltzmann equations for the symmetric and antisymmetric dark matter number densities, and derive conditions applicable to a large class of models for the absence of a significant wash-out of an asymmetry. These constraints are applied to various existing scenarios. In the case of left- or right-handed sneutrinos, very large electroweak gaugino masses, or very small mixing angles are required.
What the Milky Way's dwarfs tell us about the Galactic Center extended gamma-ray excess
NASA Astrophysics Data System (ADS)
Keeley, Ryan E.; Abazajian, Kevork N.; Kwa, Anna; Rodd, Nicholas L.; Safdi, Benjamin R.
2018-05-01
The Milky Way's Galactic Center harbors a gamma-ray excess that is a candidate signal of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected commensurate emission. In this work we quantify the degree of consistency between these two observations through a joint likelihood analysis. In doing so we incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center extended gamma-ray excess (GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihilation rates and masses expands when including these unknowns. Even so, using two recent determinations of the Milky Way halo's local density leaves the GCE preferred region of single-channel dark matter annihilation models to be in strong tension with annihilation searches in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alleviates this tension. Our joint likelihood analysis allows us to quantify this inconsistency. We provide a set of tools for testing dark matter annihilation models' consistency within this combined data set. As an example, we test a representative inverse Compton sourced self-interacting dark matter model, which is consistent with both the GCE and dwarfs.
Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector
Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar
2017-06-12
Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less
Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar
Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less
BBN constraints on MeV-scale dark sectors. Part I. Sterile decays
NASA Astrophysics Data System (ADS)
Hufnagel, Marco; Schmidt-Hoberg, Kai; Wild, Sebastian
2018-02-01
We study constraints from Big Bang Nucleosynthesis on inert particles in a dark sector which contribute to the Hubble rate and therefore change the predictions of the primordial nuclear abundances. We pay special attention to the case of MeV-scale particles decaying into dark radiation, which are neither fully relativistic nor non-relativistic during all temperatures relevant to Big Bang Nucleosynthesis. As an application we discuss the implications of our general results for models of self-interacting dark matter with light mediators.
Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations
NASA Astrophysics Data System (ADS)
Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael
2017-06-01
Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.
Looking for dark matter trails in colliding galaxy clusters
NASA Astrophysics Data System (ADS)
Harvey, David; Robertson, Andrew; Massey, Richard; Kneib, Jean-Paul
2017-02-01
If dark matter interacts, even weakly, via non-gravitational forces, simulations predict that it will be preferentially scattered towards the trailing edge of the halo during collisions between galaxy clusters. This will temporarily create a non-symmetric mass profile, with a trailing overdensity along the direction of motion. To test this hypothesis, we fit (and subtract) symmetric haloes to the weak gravitational data of 72 merging galaxy clusters observed with the Hubble Space Telescope. We convert the shear directly into excess κ and project in to a one-dimensional profile. We generate numerical simulations and find that the one-dimensional profile is well described with simple Gaussian approximations. We detect the weak lensing signal of trailing gas at a 4σ confidence, finding a mean gas fraction of Mgas/Mdm = 0.13 ± 0.035. We find no evidence for scattered dark matter particles with an estimated scattering fraction of f = 0.03 ± 0.05. Finally, we find that if we can reduce the statistical error on the positional estimate of a single dark matter halo to <2.5 arcsec, then we will be able to detect a scattering fraction of 10 per cent at the 3σ level with current surveys. This potentially interesting new method can provide an important independent test for other complimentary studies of the self-interaction cross-section of dark matter.
Review of indirect detection of dark matter with neutrinos
NASA Astrophysics Data System (ADS)
Danninger, Matthias
2017-09-01
Dark Matter could be detected indirectly through the observation of neutrinos produced in dark matter self-annihilations or decays. Searches for such neutrino signals have resulted in stringent constraints on the dark matter self-annihilation cross section and the scattering cross section with matter. In recent years these searches have made significant progress in sensitivity through new search methodologies, new detection channels, and through the availability of rich datasets from neutrino telescopes and detectors, like IceCube, ANTARES, Super-Kamiokande, etc. We review recent experimental results and put them in context with respect to other direct and indirect dark matter searches. We also discuss prospects for discoveries at current and next generation neutrino detectors.
The Structure of Dark Matter Halos in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Burkert, A.
1995-07-01
Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.
Signatures of dark radiation in neutrino and dark matter detectors
NASA Astrophysics Data System (ADS)
Cui, Yanou; Pospelov, Maxim; Pradler, Josef
2018-05-01
We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldes, Iason; Petraki, Kalliopi, E-mail: iason.baldes@desy.de, E-mail: kpetraki@lpthe.jussieu.fr
Dark matter that possesses a particle-antiparticle asymmetry and has thermalised in the early universe, requires a larger annihilation cross-section compared to symmetric dark matter, in order to deplete the dark antiparticles and account for the observed dark matter density. The annihilation cross-section determines the residual symmetric component of dark matter, which may give rise to annihilation signals during CMB and inside haloes today. We consider dark matter with long-range interactions, in particular dark matter coupled to a light vector or scalar force mediator. We compute the couplings required to attain a final antiparticle-to-particle ratio after the thermal freeze-out of themore » annihilation processes in the early universe, and then estimate the late-time annihilation signals. We show that, due to the Sommerfeld enhancement, highly asymmetric dark matter with long-range interactions can have a significant annihilation rate, potentially larger than symmetric dark matter of the same mass with contact interactions. We discuss caveats in this estimation, relating to the formation of stable bound states. Finally, we consider the non-relativistic partial-wave unitarity bound on the inelastic cross-section, we discuss why it can be realised only by long-range interactions, and showcase the importance of higher partial waves in this regime of large inelasticity. We derive upper bounds on the mass of symmetric and asymmetric thermal-relic dark matter for s -wave and p -wave annihilation, and exhibit how these bounds strengthen as the dark asymmetry increases.« less
Ratcheting Up The Search for Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Samuel Dylan
2014-01-01
The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, Imore » report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and decay of the Higgs boson represent a unique entry p! oint to searches for new kinds of physics. Continuing to refine our understanding of the Higgs boson will also allow us to learn about a vast array of possible new physics. This dissertation includes work parameterizing some of the scenarios that are most likely to be discovered with future Higgs data.« less
NASA Astrophysics Data System (ADS)
Duch, M.; Grzadkowski, B.
2017-09-01
Motivated by the possibility of enhancing dark matter (DM) self-scattering cross-section σ self , we have revisited the issue of DM annihilation through a Breit-Wigner resonance. In this case thermally averaged annihilation cross-section has strong temper-ature dependence, whereas elastic scattering of DM on the thermal bath particles is sup-pressed. This leads to the early kinetic decoupling of DM and an interesting interplay in the evolution of DM density and temperature that can be described by a set of coupled Boltzmann equations. The standard Breit-Wigner parametrization of a resonance prop-agator is also corrected by including momentum dependence of the resonance width. It has been shown that this effects may change predictions of DM relic density by more than order of magnitude in some regions of the parameter space. Model independent discussion is illustrated within a theory of Abelian vector dark matter. The model assumes extra U(1) symmetry group factor and an additional complex Higgs field needed to generate a mass for the dark vector boson, which provides an extra neutral Higgs boson h 2. We discuss the resonant amplification of σ self . It turns out that if DM abundance is properly reproduced, the Fermi-LAT data favor heavy DM and constraint the enhancement of σ self to the range, which cannot provide a solution to the small-scale structure problems.
Can dark matter be a scalar field?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesus, J.F.; Malatrasi, J.L.G.; Pereira, S.H.
2016-08-01
In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m ≥0.12 H {sub 0}{sup -1} eV ( c = h-bar =1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H {sub 0}=73±1.8 km s{sup -1}Mpc{sup -1}, this leads tomore » m ≥1.56×10{sup -33} eV at 99.7% c.l. Such value is much smaller than m ∼ 10{sup -22} eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.« less
Dark matter and color octets beyond the Standard Model
NASA Astrophysics Data System (ADS)
Krnjaic, Gordan Z.
Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that address each of these issues. Although there is abundant indirect evidence for the existence of dark matter, terrestrial efforts to observe its interactions have yielded conflicting results. We address this situation with a simple model of dark matter that features hydrogen-like bound states that scatter off SM nuclei by undergoing inelastic hyperfine transitions. We explore the available parameter space that results from demanding that DM self-interactions satisfy experimental bounds and ameliorate the tension between positive and null signals at the DAMA and CDMS experiments respectively. However, this simple model does not explain the cosmological abundance of dark matter and also encounters a Landau pole at a low energy scale. We, therefore, extend the field content and gauge group of the dark sector to resolve these issues with a renormalizable UV completion. We also explore the galactic dynamics of unbound dark matter and find that "dark ions" settle into a diffuse isothermal halo that differs from that of the bound states. This suppresses the local dark-ion density and expands the model's viable parameter space. We also consider the > 3σ excess in W plus dijet events recently observed at the Tevatron collider. We show that decays of a color-octet, electroweak-triplet scalar particle ("octo-triplet") can yield the requisite final state to explain the data. We also find that octotriplets can induce mixing in the B - B¯ system and may give rise to additional CP violation. The model makes concrete predictions for several final states accessible at the LHC, so it can promptly be discovered or falsified. Finally we address the anomalous top forward-backward asymmetry observed the Tevatron. We find that a spin-1 color octet particle with flavor blind axial interactions can explain this anomaly if the mass is in the 50 - 90 GeV range. We explore the multitude of experimental constrains in this mass window and present the viable parameter space as a function of the axigluon mass and coupling constant.
Directly detecting isospin-violating dark matter
NASA Astrophysics Data System (ADS)
Kelso, Chris; Kumar, Jason; Marfatia, Danny; Sandick, Pearl
2018-03-01
We consider the prospects for multiple dark matter direct detection experiments to determine if the interactions of a dark matter candidate are isospin-violating. We focus on theoretically well-motivated examples of isospin-violating dark matter (IVDM), including models in which dark matter interactions with nuclei are mediated by a dark photon, a Z , or a squark. We determine that the best prospects for distinguishing IVDM from the isospin-invariant scenario arise in the cases of dark photon-or Z -mediated interactions, and that the ideal experimental scenario would consist of large exposure xenon- and neon-based detectors. If such models just evade current direct detection limits, then one could distinguish such models from the standard isospin-invariant case with two detectors with of order 100 ton-year exposure.
Dark matter and weak signals of quantum spacetime
NASA Astrophysics Data System (ADS)
Doplicher, Sergio; Fredenhagen, Klaus; Morsella, Gerardo; Pinamonti, Nicola
2017-03-01
In physically motivated models of quantum spacetime, a U (1 ) gauge theory turns into a U (∞ ) gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present.
Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions
NASA Astrophysics Data System (ADS)
Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora
2017-09-01
The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide no support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2Δ ln L=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2Δ ln L=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ Nfluid, will be improved by an order of magnitude compared to current bounds.
Wandering in the Lyman-alpha forest: a study of dark matter-dark radiation interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krall, Rebecca; Cyr-Racine, Francis-Yan; Dvorkin, Cora, E-mail: rkrall@physics.harvard.edu, E-mail: fcyrraci@physics.harvard.edu, E-mail: dvorkin@physics.harvard.edu
The amplitude of large-scale matter fluctuations inferred from the observed Sunyaev-Zeldovich (SZ) cluster mass function and from weak gravitational lensing studies, when taken at face value, is in tension with measurements of the cosmic microwave background (CMB) and baryon acoustic oscillation (BAO). In this work, we revisit whether this possible discrepancy can be attributed to new interactions in the dark matter sector. Focusing on a cosmological model where dark matter interacts with a dark radiation species until the epoch of matter-radiation equality, we find that measurements of the Lyman-alpha flux power spectrum from the Sloan Digital Sky Survey provide nomore » support to the hypothesis that new dark matter interactions can resolve the possible tension between CMB and large-scale structure (LSS). Indeed, while the addition of dark matter-dark radiation interactions leads to an improvement of 2ΔlnL=12 with respect to the standard Λ cold dark matter (ΛCDM) model when only CMB, BAO, and LSS data are considered, the inclusion of Lyman-alpha data reduces the improvement of the fit to 2ΔlnL=6 relative to ΛCDM . We thus conclude that the statistical evidence for new dark matter interactions (largely driven by the Planck SZ dataset) is marginal at best, and likely caused by systematics in the data. We also perform a Fisher forecast analysis for the reach of a future dataset composed of a CMB-S4 experiment combined with the Large Synoptic Survey Telescope galaxy survey. We find that the constraint on the effective number of fluid-like dark radiation species, Δ N {sub fluid}, will be improved by an order of magnitude compared to current bounds.« less
NASA Astrophysics Data System (ADS)
Gribov, I. A.; Trigger, S. A.
2016-11-01
A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.
Craig, Nathaniel; Katz, Andrey
2015-10-27
We identify and analyze thermal dark matter candidates in the fraternal twin Higgs model and its generalizations. The relic abundance of fraternal twin dark matter is set by twin weak interactions, with a scale tightly tied to the weak scale of the Standard Model by naturalness considerations. As such, the dark matter candidates benefit from a "fraternal WIMP miracle'', reproducing the observed dark matter abundance for dark matter masses between 50 and 150 GeV . However, the couplings dominantly responsible for dark matter annihilation do not lead to interactions with the visible sector. The direct detection rate is instead setmore » via fermionic Higgs portal interactions, which are likewise constrained by naturalness considerations but parametrically weaker than those leading to dark matter annihilation. Finally, the predicted direct detection cross section is close to current LUX bounds and presents an opportunity for the next generation of direct detection experiments.« less
Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, André A.; Abdalla, E.; Xu, Xiao-Dong
2017-01-01
We investigate phenomenological interactions between dark matter and dark energy and constrain these models by employing the most recent cosmological data including the cosmic microwave background radiation anisotropies from Planck 2015, Type Ia supernovae, baryon acoustic oscillations, the Hubble constant and redshift-space distortions. We find that the interaction in the dark sector parameterized as an energy transfer from dark matter to dark energy is strongly suppressed by the whole updated cosmological data. On the other hand, an interaction between dark sectors with the energy flow from dark energy to dark matter is proved in better agreement with the available cosmologicalmore » observations. This coupling between dark sectors is needed to alleviate the coincidence problem.« less
Collisional dark matter and the origin of massive black holes
Ostriker
2000-06-05
If the cosmological dark matter is primarily in the form of an elementary particle which has mass m(p) and cross section for self-interaction sigma, then seed black holes (formed in stellar collapse) will grow in a Hubble time t(H) due to accretion of the dark matter to a mass, M(H) = sqrt[IC(9)(A)t(H)(sigma/G(3)m(p)c(2))] = 7.1x10(6)(sigma/m(p))(1/2)V(9/2)(c)t(1/2)(H,15) solar masses. Here I is a numerical factor, C(A) the galactic velocity dispersion, and V(c) its rotation velocity. For the same values of ( sigma/m(p)) that are attractive with respect to other cosmological desiderata, this produces massive black holes in the (10(6)-10(9))M( middle dot in circle) range observed, with the same dependence on a V(c) seen, and with a time dependence consistent with observations. Other astrophysical consequences of collisional dark matter and tests of the idea are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jing; Liang, Zheng-Liang; Wu, Yue-Liang
We investigate the implications of the long-rang self-interaction on both the self-capture and the annihilation of the self-interacting dark matter (SIDM) trapped in the Sun. Our discussion is based on a specific SIDM model in which DM particles self-interact via a light scalar mediator, or Yukawa potential, in the context of quantum mechanics. Within this framework, we calculate the self-capture rate across a broad region of parameter space. While the self-capture rate can be obtained separately in the Born regime with perturbative method, and in the classical limits with the Rutherford formula, our calculation covers the gap between in amore » non-perturbative fashion. Besides, the phenomenology of both the Sommerfeld-enhanced s- and p-wave annihilation of the solar SIDM is also involved in our discussion. Moreover, by combining the analysis of the Super-Kamiokande (SK) data and the observed DM relic density, we constrain the nuclear capture rate of the DM particles in the presence of the dark Yukawa potential. The consequence of the long-range dark force on probing the solar SIDM turns out to be significant if the force-carrier is much lighter than the DM particle, and a quantitative analysis is provided.« less
Dynamical system analysis for DBI dark energy interacting with dark matter
NASA Astrophysics Data System (ADS)
Mahata, Nilanjana; Chakraborty, Subenoy
2015-01-01
A dynamical system analysis related to Dirac-Born-Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW spacetime, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.
NASA Astrophysics Data System (ADS)
Flambaum, Victor
2016-05-01
Low-mass boson dark matter particles produced after Big Bang form classical field and/or topological defects. In contrast to traditional dark matter searches, effects produced by interaction of an ordinary matter with this field and defects may be first power in the underlying interaction strength rather than the second or fourth power (which appears in a traditional search for the dark matter). This may give a huge advantage since the dark matter interaction constant is extremely small. Interaction between the density of the dark matter particles and ordinary matter produces both `slow' cosmological evolution and oscillating variations of the fundamental constants including the fine structure constant alpha and particle masses. Recent atomic dysprosium spectroscopy measurements and the primordial helium abundance data allowed us to improve on existing constraints on the quadratic interactions of the scalar dark matter with the photon, electron and light quarks by up to 15 orders of magnitude. Limits on the linear and quadratic interactions of the dark matter with W and Z bosons have been obtained for the first time. In addition to traditional methods to search for the variation of the fundamental constants (atomic clocks, quasar spectra, Big Bang Nucleosynthesis, etc) we discuss variations in phase shifts produced in laser/maser interferometers (such as giant LIGO, Virgo, GEO600 and TAMA300, and the table-top silicon cavity and sapphire interferometers), changes in pulsar rotational frequencies (which may have been observed already in pulsar glitches), non-gravitational lensing of cosmic radiation and the time-delay of pulsar signals. Other effects of dark matter and dark energy include apparent violation of the fundamental symmetries: oscillating or transient atomic electric dipole moments, precession of electron and nuclear spins about the direction of Earth's motion through an axion condensate, and axion-mediated spin-gravity couplings, violation of Lorentz symmetry and Einstein equivalence principle. Finally, we explore a possibility to explain the DAMA collaboration claim of dark matter detection by the dark matter scattering on electrons. We have shown that the electron relativistic effects increase the ionization differential cross section up to 3 orders of magnitude [9].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Agrawal, Prateek; Chacko, Zackaria; Fortes, Elaine C. F. S.; ...
2016-05-10
We explore a novel flavor structure in the interactions of dark matter with the Standard Model. We consider theories in which both the dark matter candidate, and the particles that mediate its interactions with the Standard Model fields, carry flavor quantum numbers. The interactions are skewed in flavor space, so that a dark matter particle does not directly couple to the Standard Model matter fields of the same flavor, but only to the other two flavors. This framework respects minimal flavor violation and is, therefore, naturally consistent with flavor constraints. We study the phenomenology of a benchmark model in whichmore » dark matter couples to right-handed charged leptons. In large regions of parameter space, the dark matter can emerge as a thermal relic, while remaining consistent with the constraints from direct and indirect detection. The collider signatures of this scenario include events with multiple leptons and missing energy. In conclusion, these events exhibit a characteristic flavor pattern that may allow this class of models to be distinguished from other theories of dark matter.« less
Form factors for dark matter capture by the Sun in effective theories
NASA Astrophysics Data System (ADS)
Catena, Riccardo; Schwabe, Bodo
2015-04-01
In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, 3He, 4He, 12C, 14N, 16O, 20Ne, 23Na, 24Mg, 27Al, 28Si, 32S, 40Ar, 40Ca, 56Fe, and 59Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark matter capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.
Dark Matter Ignition of Type Ia Supernovae.
Bramante, Joseph
2015-10-02
Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.
NASA Astrophysics Data System (ADS)
Creasey, Peter; Sameie, Omid; Sales, Laura V.; Yu, Hai-Bo; Vogelsberger, Mark; Zavala, Jesús
2017-06-01
Galactic rotation curves are a fundamental constraint for any cosmological model. We use controlled N-body simulations of galaxies to study the gravitational effect of baryons in a scenario with collisionless cold dark matter (CDM) versus one with a self-interacting dark matter (SIDM) component. In particular, we examine the inner profiles of the rotation curves in the velocity range Vmax = [30-250] km s-1, whose diversity has been found to be greater than predicted by the ΛCDM scenario. We find that the scatter in the observed rotation curves exceeds that predicted by dark matter only mass-concentration relations in either the CDM nor SIDM models. Allowing for realistic baryonic content and spatial distributions, however, helps create a large variety of rotation curve shapes, which is in a better agreement with observations in the case of self-interactions due to the characteristic cored profiles being more accommodating to the slowly rising rotation curves than CDM. We find individual fits to model two of the most remarkable outliers of similar Vmax, UGC 5721 and IC 2574 - the former a cusp-like rotation curve and the latter a seemingly 8-kpc-cored profile. This diversity in SIDM arises as permutations of overly concentrated haloes with compact baryonic distributions versus underdense haloes with extended baryonic discs. The SIDM solution is promising and its feasibility ultimately depends on the sampling of the halo mass-concentration relation and its interplay with the baryonic profiles, emphasizing the need for a better understanding of the frequency of extreme outliers present in current observational samples.
Vector Dark Matter through a radiative Higgs portal
DiFranzo, Anthony; Fox, Patrick J.; Tait, Tim M. P.
2016-04-21
We study a model of spin-1 dark matter which interacts with the Standard Model predominantly via exchange of Higgs bosons. We propose an alternative UV completion to the usual Vector Dark Matter Higgs Portal, in which vector-like fermions charged under SU(2)more » $$_W \\times$$ U(1)$$_Y$$ and under the dark gauge group, U(1)$$^\\prime$$, generate an effective interaction between the Higgs and the dark matter at one loop. Furthermore, we explore the resulting phenomenology and show that this dark matter candidate is a viable thermal relic and satisfies Higgs invisible width constraints as well as direct detection bounds.« less
Interacting dark energy: Dynamical system analysis
NASA Astrophysics Data System (ADS)
Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil
We investigate the impacts of interaction between dark matter (DM) and dark energy (DE) in the context of two DE models, holographic (HDE) and ghost dark energy (GDE). In fact, using the dynamical system analysis, we obtain the cosmological consequence of several interactions, considering all relevant component of universe, i.e. matter (dark and luminous), radiation and DE. Studying the phase space for all interactions in detail, we show the existence of unstable matter-dominated and stable DE-dominated phases. We also show that linear interactions suffer from the absence of standard radiation-dominated epoch. Interestingly, this failure resolved by adding the nonlinear interactions to the models. We find an upper bound for the value of the coupling constant of the interaction between DM and DE as b < 0.57in the case of holographic model, and b < 0.61 in the case of GDE model, to result in a cosmological viable matter-dominated epoch. More specifically, this bound is vital to satisfy instability and deceleration of matter-dominated epoch.
On the effective operators for Dark Matter annihilations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simone, Andrea De; Thamm, Andrea; Monin, Alexander
2013-02-01
We consider effective operators describing Dark Matter (DM) interactions with Standard Model fermions. In the non-relativistic limit of the DM field, the operators can be organized according to their mass dimension and their velocity behaviour, i.e. whether they describe s- or p-wave annihilations. The analysis is carried out for self-conjugate DM (real scalar or Majorana fermion). In this case, the helicity suppression at work in the annihilation into fermions is lifted by electroweak bremsstrahlung. We construct and study all dimension-8 operators encoding such an effect. These results are of interest in indirect DM searches.
Gravity-mediated dark matter annihilation in the Randall-Sundrum model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less
Gravity-mediated dark matter annihilation in the Randall-Sundrum model
Rueter, T. D.; Rizzo, T. G.; Hewett, J. L.
2017-10-13
Observational evidence for dark matter stems from its gravitational interactions, and as of yet there has been no evidence for dark matter interacting via other means. We examine models where dark matter interactions are purely gravitational in a Randall-Sundrum background. In particular, the Kaluza-Klein tower of gravitons which result from the warped fifth dimension can provide viable annihilation channels into Standard Model final states, and we find that we can achieve values of the annihilation cross section, < σv >, which are consistent with the observed relic abundance in the case of spin-1 dark matter. As a result, we examinemore » constraints on these models employing both the current photon line and continuum indirect dark matter searches, and assess the prospects of hunting for the signals of such models in future direct and indirect detection experiments.« less
Singlet particles as cold dark matter in a noncommutative space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettefaghi, M. M.
2009-03-15
We extend the noncommutative (NC) standard model to incorporate singlet particles as cold dark matter. In the NC space-time, the singlet particles can be coupled to the U(1) gauge field in the adjoint representation. We study the relic density of the singlet particles due to the NC induced interaction. Demanding either the singlet fermion or the singlet scalar to serve as cold dark matter and the NC induced interactions to be relevant to the dark matter production, we obtain the corresponding relations between the NC scale and the dark matter masses, which are consistent with some existing bounds.
NASA Astrophysics Data System (ADS)
Chaudhury, Soumini; Bhattacharjee, Pijushpani; Cowsik, Ramanath
2010-09-01
Direct detection of Weakly Interacting Massive Particle (WIMP) candidates of Dark Matter (DM) is studied within the context of a self-consistent truncated isothermal model of the finite-size dark halo of the Galaxy. The halo model, based on the ``King model'' of the phase space distribution function of collisionless DM particles, takes into account the modifications of the phase-space structure of the halo due to the gravitational influence of the observed visible matter in a self-consistent manner. The parameters of the halo model are determined by a fit to a recently determined circular rotation curve of the Galaxy that extends up to ~ 60 kpc. Unlike in the Standard Halo Model (SHM) customarily used in the analysis of the results of WIMP direct detection experiments, the velocity distribution of the WIMPs in our model is non-Maxwellian with a cut-off at a maximum velocity that is self-consistently determined by the model itself. For our halo model that provides the best fit to the rotation curve data, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section from the recent results of the CDMS-II experiment, for example, is ~ 5.3 × 10-8 pb at a WIMP mass of ~ 71 GeV. We also find, using the original 2-bin annual modulation amplitude data on the nuclear recoil event rate seen in the DAMA experiment, that there exists a range of small WIMP masses, typically ~ 2-16 GeV, within which DAMA collaboration's claimed annual modulation signal purportedly due to WIMPs is compatible with the null results of other experiments. These results, based as they are on a self-consistent model of the dark matter halo of the Galaxy, strengthen the possibility of low-mass (lsim10 GeV) WIMPs as a candidate for dark matter as indicated by several earlier studies performed within the context of the SHM. A more rigorous analysis using DAMA bins over smaller intervals should be able to better constrain the ``DAMA regions'' in the WIMP parameter space within the context of our model.
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo
2015-08-13
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Global limits and interference patterns in dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Gondolo, Paolo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: paolo.gondolo@utah.edu
2015-08-01
We compare the general effective theory of one-body dark matter nucleon interactions to current direct detection experiments in a global multidimensional statistical analysis. We derive exclusion limits on the 28 isoscalar and isovector coupling constants of the theory, and show that current data place interesting constraints on dark matter-nucleon interaction operators usually neglected in this context. We characterize the interference patterns that can arise in dark matter direct detection from pairs of dark matter-nucleon interaction operators, or from isoscalar and isovector components of the same operator. We find that commonly neglected destructive interference effects weaken standard direct detection exclusion limitsmore » by up to one order of magnitude in the coupling constants.« less
Decay of ultralight axion condensates
Eby, Joshua; Ma, Michael; Suranyi, Peter; ...
2018-01-15
Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less
Decay of ultralight axion condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eby, Joshua; Ma, Michael; Suranyi, Peter
Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion massesmore » $$m\\sim10^{-22}$$ eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. As a result, we find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.« less
Form factors for dark matter capture by the Sun in effective theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Schwabe, Bodo
2015-04-24
In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-11-28
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
DOE Office of Scientific and Technical Information (OSTI.GOV)
D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less
Direct detection with dark mediators
Curtin, David; Surujon, Ze'ev; Tsai, Yuhsin
2014-10-16
We introduce dark mediator Dark Matter (dmDM) where the dark and visible sectors are connected by at least one light mediator Φ carrying the same dark charge that stabilizes DM. Φ is coupled to the Standard Model via an operator q¯qΦΦ*/Λ, and to dark matter via a Yukawa coupling y χX¯ cXΦ. Direct detection is realized as the 2 → 3 process χN → χ¯NΦ at tree-level for m Φ≲10 keV and small Yukawa coupling, or alternatively as a loop-induced 2 → 2 process χN → χN. We explore the direct-detection consequences of this scenario and find that a heavymore » O(100 GeV) dmDM candidate fakes different O(10 GeV) standard WIMPs in different experiments. Large portions of the dmDM parameter space are detectable above the irreducible neutrino background and not yet excluded by any bounds. Interestingly, for the m Φ range leading to novel direct detection phenomenology, dmDM is also a form of Self-Interacting Dark Matter (SIDM), which resolves inconsistencies between dwarf galaxy observations and numerical simulations.« less
DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter
NASA Astrophysics Data System (ADS)
Emken, Timon; Kouvaris, Chris
2017-10-01
Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold by the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.
DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emken, Timon; Kouvaris, Chris, E-mail: emken@cp3.sdu.dk, E-mail: kouvaris@cp3.sdu.dk
Conventional dark matter direct detection experiments set stringent constraints on dark matter by looking for elastic scattering events between dark matter particles and nuclei in underground detectors. However these constraints weaken significantly in the sub-GeV mass region, simply because light dark matter does not have enough energy to trigger detectors regardless of the dark matter-nucleon scattering cross section. Even if future experiments lower their energy thresholds, they will still be blind to parameter space where dark matter particles interact with nuclei strongly enough that they lose enough energy and become unable to cause a signal above the experimental threshold bymore » the time they reach the underground detector. Therefore in case dark matter is in the sub-GeV region and strongly interacting, possible underground scatterings of dark matter with terrestrial nuclei must be taken into account because they affect significantly the recoil spectra and event rates, regardless of whether the experiment probes DM via DM-nucleus or DM-electron interaction. To quantify this effect we present the publicly available Dark Matter Simulation Code for Underground Scatterings (DaMaSCUS), a Monte Carlo simulator of DM trajectories through the Earth taking underground scatterings into account. Our simulation allows the precise calculation of the density and velocity distribution of dark matter at any detector of given depth and location on Earth. The simulation can also provide the accurate recoil spectrum in underground detectors as well as the phase and amplitude of the diurnal modulation caused by this shadowing effect of the Earth, ultimately relating the modulations expected in different detectors, which is important to decisively conclude if a diurnal modulation is due to dark matter or an irrelevant background.« less
Determining dark matter properties with a XENONnT/LZ signal and LHC Run 3 monojet searches
NASA Astrophysics Data System (ADS)
Baum, Sebastian; Catena, Riccardo; Conrad, Jan; Freese, Katherine; Krauss, Martin B.
2018-04-01
We develop a method to forecast the outcome of the LHC Run 3 based on the hypothetical detection of O (100 ) signal events at XENONnT. Our method relies on a systematic classification of renormalizable single-mediator models for dark matter-quark interactions and is valid for dark matter candidates of spin less than or equal to one. Applying our method to simulated data, we find that at the end of the LHC Run 3 only two mutually exclusive scenarios would be compatible with the detection of O (100 ) signal events at XENONnT. In the first scenario, the energy distribution of the signal events is featureless, as for canonical spin-independent interactions. In this case, if a monojet signal is detected at the LHC, dark matter must have spin 1 /2 and interact with nucleons through a unique velocity-dependent operator. If a monojet signal is not detected, dark matter interacts with nucleons through canonical spin-independent interactions. In a second scenario, the spectral distribution of the signal events exhibits a bump at nonzero recoil energies. In this second case, a monojet signal can be detected at the LHC Run 3; dark matter must have spin 1 /2 and interact with nucleons through a unique momentum-dependent operator. We therefore conclude that the observation of O (100 ) signal events at XENONnT combined with the detection, or the lack of detection, of a monojet signal at the LHC Run 3 would significantly narrow the range of possible dark matter-nucleon interactions. As we argued above, it can also provide key information on the dark matter particle spin.
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande.
Kachulis, C; Abe, K; Bronner, C; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kato, Y; Kishimoto, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Okajima, Y; Orii, A; Pronost, G; Sekiya, H; Shiozawa, M; Sonoda, Y; Takeda, A; Takenaka, A; Tanaka, H; Tasaka, S; Tomura, T; Akutsu, R; Kajita, T; Kaneyuki, K; Nishimura, Y; Okumura, K; Tsui, K M; Labarga, L; Fernandez, P; Blaszczyk, F D M; Gustafson, J; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tobayama, S; Goldhaber, M; Elnimr, M; Kropp, W R; Mine, S; Locke, S; Weatherly, P; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hill, J; Kim, J Y; Lim, I T; Park, R G; Himmel, A; Li, Z; O'Sullivan, E; Scholberg, K; Walter, C W; Ishizuka, T; Nakamura, T; Jang, J S; Choi, K; Learned, J G; Matsuno, S; Smith, S N; Amey, J; Litchfield, R P; Ma, W Y; Uchida, Y; Wascko, M O; Cao, S; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Abe, K E; Hasegawa, M; Suzuki, A T; Takeuchi, Y; Yano, T; Hayashino, T; Hiraki, T; Hirota, S; Huang, K; Jiang, M; Nakamura, K E; Nakaya, T; Quilain, B; Patel, N D; Wendell, R A; Anthony, L H V; McCauley, N; Pritchard, A; Fukuda, Y; Itow, Y; Murase, M; Muto, F; Mijakowski, P; Frankiewicz, K; Jung, C K; Li, X; Palomino, J L; Santucci, G; Vilela, C; Wilking, M J; Yanagisawa, C; Ito, S; Fukuda, D; Ishino, H; Kibayashi, A; Koshio, Y; Nagata, H; Sakuda, M; Xu, C; Kuno, Y; Wark, D; Di Lodovico, F; Richards, B; Tacik, R; Kim, S B; Cole, A; Thompson, L; Okazawa, H; Choi, Y; Ito, K; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Calland, R G; Hartz, M; Martens, K; Simpson, C; Suzuki, Y; Vagins, M R; Hamabe, D; Kuze, M; Yoshida, T; Ishitsuka, M; Martin, J F; Nantais, C M; Tanaka, H A; Konaka, A; Chen, S; Wan, L; Zhang, Y; Wilkes, R J; Minamino, A
2018-06-01
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande
NASA Astrophysics Data System (ADS)
Kachulis, C.; Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Okajima, Y.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Okumura, K.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Elnimr, M.; Kropp, W. R.; Mine, S.; Locke, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hill, J.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hayashino, T.; Hiraki, T.; Hirota, S.; Huang, K.; Jiang, M.; Nakamura, KE.; Nakaya, T.; Quilain, B.; Patel, N. D.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Murase, M.; Muto, F.; Mijakowski, P.; Frankiewicz, K.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Ito, S.; Fukuda, D.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; Minamino, A.; Super-Kamiokande Collaboration
2018-06-01
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.
Sparse Reconstruction of the Merging A520 Cluster System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peel, Austin; Lanusse, François; Starck, Jean-Luc, E-mail: austin.peel@cea.fr
2017-09-20
Merging galaxy clusters present a unique opportunity to study the properties of dark matter in an astrophysical context. These are rare and extreme cosmic events in which the bulk of the baryonic matter becomes displaced from the dark matter halos of the colliding subclusters. Since all mass bends light, weak gravitational lensing is a primary tool to study the total mass distribution in such systems. Combined with X-ray and optical analyses, mass maps of cluster mergers reconstructed from weak-lensing observations have been used to constrain the self-interaction cross-section of dark matter. The dynamically complex Abell 520 (A520) cluster is anmore » exceptional case, even among merging systems: multi-wavelength observations have revealed a surprising high mass-to-light concentration of dark mass, the interpretation of which is difficult under the standard assumption of effectively collisionless dark matter. We revisit A520 using a new sparsity-based mass-mapping algorithm to independently assess the presence of the puzzling dark core. We obtain high-resolution mass reconstructions from two separate galaxy shape catalogs derived from Hubble Space Telescope observations of the system. Our mass maps agree well overall with the results of previous studies, but we find important differences. In particular, although we are able to identify the dark core at a certain level in both data sets, it is at much lower significance than has been reported before using the same data. As we cannot confirm the detection in our analysis, we do not consider A520 as posing a significant challenge to the collisionless dark matter scenario.« less
Point sources from dissipative dark matter
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Randall, Lisa
2017-12-01
If a component of dark matter has dissipative interactions, it can cool to form compact astrophysical objects with higher density than that of conventional cold dark matter (sub)haloes. Dark matter annihilations might then appear as point sources, leading to novel morphology for indirect detection. We explore dissipative models where interaction with the Standard Model might provide visible signals, and show how such objects might give rise to the observed excess in gamma rays arising from the galactic center.
Dark Matter Decays from Nonminimal Coupling to Gravity.
Catà, Oscar; Ibarra, Alejandro; Ingenhütt, Sebastian
2016-07-08
We consider the standard model extended with a dark matter particle in curved spacetime, motivated by the fact that the only current evidence for dark matter is through its gravitational interactions, and we investigate the impact on the dark matter stability of terms in the Lagrangian linear in the dark matter field and proportional to the Ricci scalar. We show that this "gravity portal" induces decay even if the dark matter particle only has gravitational interactions, and that the decay branching ratios into standard model particles only depend on one free parameter: the dark matter mass. We study in detail the case of a singlet scalar as a dark matter candidate, which is assumed to be absolutely stable in flat spacetime due to a discrete Z_{2} symmetry, but which may decay in curved spacetimes due to a Z_{2}-breaking nonminimal coupling to gravity. We calculate the dark matter decay widths and we set conservative limits on the nonminimal coupling parameter from experiments. The limits are very stringent and suggest that there must exist an additional mechanism protecting the singlet scalar from decaying via this gravity portal.
Self-Heating Dark Matter via Semiannihilation
NASA Astrophysics Data System (ADS)
Kamada, Ayuki; Kim, Hee Jung; Kim, Hyungjin; Sekiguchi, Toyokazu
2018-03-01
The freeze-out of dark matter (DM) depends on the evolution of the DM temperature. The DM temperature does not have to follow the standard model one, when the elastic scattering is not sufficient to maintain the kinetic equilibrium. We study the temperature evolution of the semiannihilating DM, where a pair of the DM particles annihilate into one DM particle and another particle coupled to the standard model sector. We find that the kinetic equilibrium is maintained solely via semiannihilation until the last stage of the freeze-out. After the freeze-out, semiannihilation converts the mass deficit to the kinetic energy of DM, which leads to nontrivial evolution of the DM temperature. We argue that the DM temperature redshifts like radiation as long as the DM self-interaction is efficient. We dub this novel temperature evolution as self-heating. Notably, the structure formation is suppressed at subgalactic scales like keV-scale warm DM but with GeV-scale self-heating DM if the self-heating lasts roughly until the matter-radiation equality. The long duration of the self-heating requires the large self-scattering cross section, which in turn flattens the DM density profile in inner halos. Consequently, self-heating DM can be a unified solution to apparent failures of cold DM to reproduce the observed subgalactic scale structure of the Universe.
Cogenerating and pre-annihilating dark matter by a new gauge interaction in a unified model
Barr, S. M.; Scherrer, Robert J.
2016-05-31
Here, grand unified theories based on large groups (with rank ≥ 6) are a natural context for dark matter models. They contain Standard-Model-singlet fermions that could be dark matter candidates, and can contain new non-abelian interactions whose sphalerons convert baryons, leptons, and dark matter into each other, ''cogenerating" a dark matter asymmetry comparable to the baryon asymmetry. In this paper it is shown that the same non-abelian interactions can ''pre-annihilate" the symmetric component of heavy dark matter particles χ, which then decay late into light stable dark matter particles ζ that inherit their asymmetry. We derive cosmological constraints on themore » parameters of such models. The mass of χ must be < 3000 TeV and their decays must happen when 2 × 10 –7 < T dec/mχ < 10 –4. It is shown that such decays can come from d=5 operators with coefficients of order 1/MGUT or 1/M Pℓ. We present a simple realization of our model based on the group SU(7).« less
SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies
NASA Astrophysics Data System (ADS)
Robles, Victor H.; Bullock, James S.; Elbert, Oliver D.; Fitts, Alex; González-Samaniego, Alejandro; Boylan-Kolchin, Michael; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Hayward, Christopher C.
2017-12-01
We compare a suite of four simulated dwarf galaxies formed in 1010 M⊙ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (FIRE) project and utilize the FIRE-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M⋆ ≈ 105.7-7.0M⊙) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M⋆ ∼ 106.6 M⊙ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include FIRE-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our FIRE simulations predict that galaxies less massive than M⋆ ≲ 3 × 106 M⊙ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Schwabe, Bodo, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de, E-mail: bodo.schwabe@theorie.physik.uni-goettingen.de
In the effective theory of isoscalar and isovector dark matter-nucleon interactions mediated by a heavy spin-1 or spin-0 particle, 8 isotope-dependent nuclear response functions can be generated in the dark matter scattering by nuclei. We compute the 8 nuclear response functions for the 16 most abundant elements in the Sun, i.e. H, {sup 3}He, {sup 4}He, {sup 12}C, {sup 14}N, {sup 16}O, {sup 20}Ne, {sup 23}Na, {sup 24}Mg, {sup 27}Al, {sup 28}Si, {sup 32}S, {sup 40}Ar, {sup 40}Ca, {sup 56}Fe, and {sup 59}Ni, through numerical shell model calculations. We use our response functions to compute the rate of dark mattermore » capture by the Sun for all isoscalar and isovector dark matter-nucleon effective interactions, including several operators previously considered for dark matter direct detection only. We study in detail the dependence of the capture rate on specific dark matter-nucleon interaction operators, and on the different elements in the Sun. We find that a so far neglected momentum dependent dark matter coupling to the nuclear vector charge gives a larger contribution to the capture rate than the constant spin-dependent interaction commonly included in dark matter searches at neutrino telescopes. Our investigation lays the foundations for model independent analyses of dark matter induced neutrino signals from the Sun. The nuclear response functions obtained in this study are listed in analytic form in an appendix, ready to be used in other projects.« less
ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.
2015-08-21
Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.
Prospects for detecting a net photon circular polarization produced by decaying dark matter
NASA Astrophysics Data System (ADS)
Elagin, Andrey; Kumar, Jason; Sandick, Pearl; Teng, Fei
2017-11-01
If dark matter interactions with Standard Model particles are C P violating, then dark matter annihilation/decay can produce photons with a net circular polarization. We consider the prospects for experimentally detecting evidence for such a circular polarization. We identify optimal models for dark matter interactions with the Standard Model, from the point of view of detectability of the net polarization, for the case of either symmetric or asymmetric dark matter. We find that, for symmetric dark matter, evidence for net polarization could be found by a search of the Galactic center by an instrument sensitive to circular polarization with an efficiency-weighted exposure of at least 50 ,000 cm2 yr , provided the systematic detector uncertainties are constrained at the 1% level. Better sensitivity can be obtained in the case of asymmetric dark matter. We discuss the prospects for achieving the needed level of performance using possible detector technologies.
Cancellation Mechanism for Dark-Matter-Nucleon Interaction.
Gross, Christian; Lebedev, Oleg; Toma, Takashi
2017-11-10
We consider a simple Higgs portal dark-matter model, where the standard model is supplemented with a complex scalar whose imaginary part plays the role of weakly interacting massive particle dark matter (DM). We show that the direct DM detection cross section vanishes at the tree level and zero momentum transfer due to a cancellation by virtue of a softly broken symmetry. This cancellation is operative for any mediator masses. As a result, our electroweak-scale dark matter satisfies all of the phenomenological constraints quite naturally.
Secretly asymmetric dark matter
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia
2017-01-01
We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.
Observational constraints on holographic tachyonic dark energy in interaction with dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micheletti, Sandro M. R., E-mail: smrm@fma.if.usp.br
2010-05-01
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
A fresh look into the interacting dark matter scenario
NASA Astrophysics Data System (ADS)
Escudero, Miguel; Lopez-Honorez, Laura; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo
2018-06-01
The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of σγ DM < 8 × 10‑10 σT (mDM/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.
Dissipative dark matter halos: The steady state solution
NASA Astrophysics Data System (ADS)
Foot, R.
2018-02-01
Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.
NASA Astrophysics Data System (ADS)
An, Rui; Feng, Chang; Wang, Bin
2018-02-01
We constrain interacting dark matter and dark energy (IDMDE) models using a 450-degree-square cosmic shear data from the Kilo Degree Survey (KiDS) and the angular power spectra from Planck's latest cosmic microwave background measurements. We revisit the discordance problem in the standard Lambda cold dark matter (ΛCDM) model between weak lensing and Planck datasets and extend the discussion by introducing interacting dark sectors. The IDMDE models are found to be able to alleviate the discordance between KiDS and Planck as previously inferred from the ΛCDM model, and moderately favored by a combination of the two datasets.
Probing interaction and spatial curvature in the holographic dark energy model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Miao; Li, Xiao-Dong; Wang, Shuang
2009-12-01
In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ{sub Λ}), matter (ρ{sub m}), and matter plus dark energy (ρ{sub m}+ρ{sub Λ}). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinsonmore » Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model.« less
Ross, Jennifer L
2016-09-06
The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Nonthermal Supermassive Dark Matter
NASA Technical Reports Server (NTRS)
Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio
1999-01-01
We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.
Phases of cannibal dark matter
NASA Astrophysics Data System (ADS)
Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele
2016-12-01
A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.
Phases of cannibal dark matter
Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.; ...
2016-12-13
A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector ismore » cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.« less
Gravitationally Focused Dark Matter around Compact Stars
NASA Astrophysics Data System (ADS)
Bromley, Benjamin C.
2011-12-01
If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
Dark matter annihilation at the galactic center
NASA Astrophysics Data System (ADS)
Linden, Tim
Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the role of future telescopes in differentiating a dark matter model from astrophysical emission.
Cosmology with a stiff matter era
NASA Astrophysics Data System (ADS)
Chavanis, Pierre-Henri
2015-11-01
We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.
Dark Matter Reality Check: Chandra Casts Cloud On Alternative Theory
NASA Astrophysics Data System (ADS)
2002-10-01
New evidence from NASA's Chandra X-ray Observatory challenges an alternative theory of gravity that eliminates the need for dark matter. The observation also narrows the field for competing forms of dark matter, the elusive material thought to be the dominant form of matter in the universe. An observation of the galaxy NGC 720 shows it is enveloped in a slightly flattened, or ellipsoidal cloud of hot gas that has an orientation different from that of the optical image of the galaxy. The flattening is too large to be explained by theories in which stars and gas are assumed to contain most of the mass in the galaxy. "The shape and orientation of the hot gas cloud require it to be confined by an egg-shaped dark matter halo," said David Buote of the University of California, Irvine, and lead author of a report on this research in the 2002 September 20 issue of The Astrophysical Journal. "This means that dark matter is not just an illusion due to a shortcoming of the standard theory of gravity - it is real." According to the generally accepted standard theory of gravity, the hot X-ray cloud would need an additional source of gravity - a halo of dark matter - to keep the hot gas from expanding away. The mass of dark matter required would be about five to ten times the mass of the stars in the galaxy. If the dark matter tracked the optical light from the stars in the galaxy, the hot X-ray cloud would be more round than it is. The flattened shape of the hot gas cloud requires a flattened dark matter halo. An alternative theory of gravity called MOND, for Modified Newtonian Dynamics, was proposed in 1983 by Mordecai Milgrom of the Weizmann Institute in Israel, and has remained viable over the years. MOND does away with the need for dark matter by modifying the theory where the acceleration produced by gravity is very small, such as the outskirts of galaxies. However, MOND cannot explain the Chandra observation of NGC 720. This is apparently the first dynamical evidence that has successfully distinguished dark matter from MOND. The researchers also found that the Chandra data fit predictions of the cold dark matter theories, according to which dark matter consists of slowly moving particles, which interact with each other and "normal" matter only through gravity. Other forms of dark matter, such as self-interacting dark matter, and cold molecular dark matter, are not consistent with the observation in that they require a dark matter halo that is too round or too flat, respectively. "Chandra's ability to precisely identify and locate the point-like sources contaminating the diffuse emission in the X-ray image was absolutely essential," said Buote. "Only then could we make accurate measurements of the shape and orientation of the X-ray image contours." The conclusion from the Chandra data that NGC 720 possesses a dark matter halo assumes that the hot gas cloud has not been unduly disturbed by collisions or mergers with other galaxies in the last 100 million years. The lack of evidence of such activity indicates that this assumption is valid. Chandra observed NGC 720, which is about 80 million light years from Earth, for 11 hours with the Advanced CCD Imaging Spectrometer (ACIS). Other members of the team include Tesla Jeltema and Claude Canizares of Massachusetts Institute of Technology (MIT) in Cambridge, and Gordon Garmire of Pennsylvania State University in University Park. Penn State and MIT developed the instrument for NASA. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Time-varying q-deformed dark energy interacts with dark matter
NASA Astrophysics Data System (ADS)
Dil, Emre; Kolay, Erdinç
We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume that the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum-field theoretically, then construct the action and the dynamical structure of these interacting dark sectors, in order to study the dynamics of the model. We perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation-of-state parameter of the dark matter evolve from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.
Interactive Exploration of Cosmological Dark-Matter Simulation Data.
Scherzinger, Aaron; Brix, Tobias; Drees, Dominik; Volker, Andreas; Radkov, Kiril; Santalidis, Niko; Fieguth, Alexander; Hinrichs, Klaus H
2017-01-01
The winning entry of the 2015 IEEE Scientific Visualization Contest, this article describes a visualization tool for cosmological data resulting from dark-matter simulations. The proposed system helps users explore all aspects of the data at once and receive more detailed information about structures of interest at any time. Moreover, novel methods for visualizing and interactively exploring dark-matter halo substructures are proposed.
Probing the Dark Sector with Dark Matter Bound States
NASA Astrophysics Data System (ADS)
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-01
A model of the dark sector where O (few GeV ) mass dark matter particles χ couple to a lighter dark force mediator V , mV≪mχ, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ , such as 0-+ and 1-- states, ηD and ϒD, is an important search channel. We show that e+e-→ηD+V or ϒD+γ production at B factories for αD>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via ηD→2 V →2 (l+l-) and ϒD→3 V →3 (l+l-) (l =e ,μ ,π ). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e+e-→χ χ ¯+n V , resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.
Probing the Dark Sector with Dark Matter Bound States.
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-15
A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.
Bertoni, Bridget; Ipek, Seyda; McKeen, David; ...
2015-04-30
Here, cold dark matter explains a wide range of data on cosmological scales. However, there has been a steady accumulation of evidence for discrepancies between simulations and observations at scales smaller than galaxy clusters. One promising way to affect structure formation on small scales is a relatively strong coupling of dark matter to neutrinos. We construct an experimentally viable, simple, renormalizable model with new interactions between neutrinos and dark matter and provide the first discussion of how these new dark matter-neutrino interactions affect neutrino phenomenology. We show that addressing the small scale structure problems requires asymmetric dark matter with amore » mass that is tens of MeV. Generating a sufficiently large dark matter-neutrino coupling requires a new heavy neutrino with a mass around 100 MeV. The heavy neutrino is mostly sterile but has a substantial τ neutrino component, while the three nearly massless neutrinos are partly sterile. This model can be tested by future astrophysical, particle physics, and neutrino oscillation data. Promising signatures of this model include alterations to the neutrino energy spectrum and flavor content observed from a future nearby supernova, anomalous matter effects in neutrino oscillations, and a component of the τ neutrino with mass around 100 MeV.« less
Cosmology with interaction in the dark sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, F. E. M.; Barboza, E. M. Jr.; Alcaniz, J. S.
2009-06-15
Unless some unknown symmetry in nature prevents or suppresses a nonminimal coupling in the dark sector, the dark energy field may interact with the pressureless component of dark matter. In this paper, we investigate some cosmological consequences of a general model of interacting dark matter-dark energy characterized by a dimensionless parameter {epsilon}. We derive a coupled scalar field version for this general class of scenarios and carry out a joint statistical analysis involving type Ia supernovae data (Legacy and Constitution sets), measurements of baryon acoustic oscillation peaks at z=0.20 (2dFGRS) and z=0.35 (SDSS), and measurements of the Hubble evolution H(z).more » For the specific case of vacuum decay (w=-1), we find that, although physically forbidden, a transfer of energy from dark matter to dark energy is favored by the data.« less
Indirect search for dark matter in the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rott, Carsten, E-mail: rott@skku.edu
If dark matter is be captured in the Sun and self-annihilate, evidence of this process might be observable on the Earth in form of a neutrinos, which are copiously produced in the annihilation process. We discuss a novel signature of dark matter annihilations in the Sun that originates from monoenergetic neutrinos produced in pion and kaon decays. Based on this signature we find competitive sensitivities for the detection of dark matter at present and next-generation neutrino detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gómez-Valent, Adrià; Karimkhani, Elahe; Solà, Joan, E-mail: adriagova@ecm.ub.edu, E-mail: e.karimkhani91@basu.ac.ir, E-mail: sola@ecm.ub.edu
We determine the Hubble expansion and the general cosmic perturbation equations for a general system consisting of self-conserved matter, ρ{sub m}, and self-conserved dark energy (DE), ρ{sub D}. While at the background level the two components are non-interacting, they do interact at the perturbations level. We show that the coupled system of matter and DE perturbations can be transformed into a single, third order, matter perturbation equation, which reduces to the (derivative of the) standard one in the case that the DE is just a cosmological constant. As a nontrivial application we analyze a class of dynamical models whose DEmore » density ρ{sub D}(H) consists of a constant term, C{sub 0}, and a series of powers of the Hubble rate. These models were previously analyzed from the point of view of dynamical vacuum models, but here we treat them as self-conserved DE models with a dynamical equation of state. We fit them to the wealth of expansion history and linear structure formation data and compare their fit quality with that of the concordance ΛCDM model. Those with C{sub 0}=0 include the so-called ''entropic-force'' and ''QCD-ghost'' DE models, as well as the pure linear model ρ{sub D}∼H, all of which appear strongly disfavored. The models with C{sub 0}≠0 , in contrast, emerge as promising dynamical DE candidates whose phenomenological performance is highly competitive with the rigid Λ-term inherent to the ΛCDM.« less
Non-standard interactions and neutrinos from dark matter annihilation in the Sun
NASA Astrophysics Data System (ADS)
Demidov, S. V.
2018-02-01
We perform an analysis of the influence of non-standard neutrino interactions (NSI) on neutrino signal from dark matter annihilations in the Sun. Taking experimentally allowed benchmark values for the matter NSI parameters we show that the evolution of such neutrinos with energies at GeV scale can be considerably modified. We simulate propagation of neutrinos from the Sun to the Earth for realistic dark matter annihilation channels and find that the matter NSI can result in at most 30% correction to the signal rate of muon track events at neutrino telescopes. Still present experimental bounds on dark matter from these searches are robust in the presence of NSI within considerable part of their allowed parameter space. At the same time electron neutrino flux from dark matter annihilation in the Sun can be changed by a factor of few.
Constraints on the interaction between dark matter and Baryons from cooling flow clusters.
Qin, B; Wu, X P
2001-08-06
Other nongravitational heating processes are needed to resolve the disagreement between the absence of cool gas components in the centers of galaxy clusters revealed recently by Chandra and XMM observations and the expectations of conventional radiative cooling models. We propose that the interaction between dark matter and baryonic matter may act as an alternative for the reheating of intracluster medium (ICM) in the inner regions of clusters, in which kinetic energy of dark matter is transported to ICM to balance radiative cooling. Using the Chandra and XMM data, we set a useful constraint on the dark-matter-baryon cross section: sigma(xp)/m(x) approximately 1x10(-25) cm(2) GeV-1, where m(x) is the mass of dark matter particles.
Aydiner, Ekrem
2018-01-15
In this study, we consider nonlinear interactions between components such as dark energy, dark matter, matter and radiation in the framework of the Friedman-Robertson-Walker space-time and propose a simple interaction model based on the time evolution of the densities of these components. By using this model we show that these interactions can be given by Lotka-Volterra type equations. We numerically solve these coupling equations and show that interaction dynamics between dark energy-dark matter-matter or dark energy-dark matter-matter-radiation has a strange attractor for 0 > w de >-1, w dm ≥ 0, w m ≥ 0 and w r ≥ 0 values. These strange attractors with the positive Lyapunov exponent clearly show that chaotic dynamics appears in the time evolution of the densities. These results provide that the time evolution of the universe is chaotic. The present model may have potential to solve some of the cosmological problems such as the singularity, cosmic coincidence, big crunch, big rip, horizon, oscillation, the emergence of the galaxies, matter distribution and large-scale organization of the universe. The model also connects between dynamics of the competing species in biological systems and dynamics of the time evolution of the universe and offers a new perspective and a new different scenario for the universe evolution.
A small amount of mini-charged dark matter could cool the baryons in the early Universe.
Muñoz, Julian B; Loeb, Abraham
2018-05-01
The dynamics of our Universe is strongly influenced by pervasive-albeit elusive-dark matter, with a total mass about five times the mass of all the baryons 1,2 . Despite this, its origin and composition remain a mystery. All evidence for dark matter relies on its gravitational pull on baryons, and thus such evidence does not require any non-gravitational coupling between baryons and dark matter. Nonetheless, some small coupling would explain the comparable cosmic abundances of dark matter and baryons 3 , as well as solving structure-formation puzzles in the pure cold-dark-matter models 4 . A vast array of observations has been unable to find conclusive evidence for any non-gravitational interactions of baryons with dark matter 5-9 . Recent observations by the EDGES collaboration, however, suggest that during the cosmic dawn, roughly 200 million years after the Big Bang, the baryonic temperature was half of its expected value 10 . This observation is difficult to reconcile with the standard cosmological model but could be explained if baryons are cooled down by interactions with dark matter, as expected if their interaction rate grows steeply at low velocities 11 . Here we report that if a small fraction-less than one per cent-of the dark matter has a mini-charge, a million times smaller than the charge on the electron, and a mass in the range of 1-100 times the electron mass, then the data 10 from the EDGES experiment can be explained while remaining consistent with all other observations. We also show that the entirety of the dark matter cannot have a mini-charge.
Dark matter directionality revisited with a high pressure xenon gas detector
Mohlabeng, Gopolang; Kong, Kyoungchul; Li, Jin; ...
2015-07-20
An observation of the anisotropy of dark matter interactions in a direction-sensitive detector would provide decisive evidence for the discovery of galactic dark matter. Directional information would also provide a crucial input to understanding its distribution in the local Universe. Most of the existing directional dark matter detectors utilize particle tracking methods in a low-pressure gas time projection chamber. These low pressure detectors require excessively large volumes in order to be competitive in the search for physics beyond the current limit. In order to avoid these volume limitations, we consider a novel proposal, which exploits a columnar recombination effect inmore » a high-pressure gas time projection chamber. The ratio of scintillation to ionization signals observed in the detector carries the angular information of the particle interactions. In this paper, we investigate the sensitivity of a future directional detector focused on the proposed high-pressure Xenon gas time projection chamber. We study the prospect of detecting an anisotropy in the dark matter velocity distribution. We find that tens of events are needed to exclude an isotropic distribution of dark matter interactions at 95% confidence level in the most optimistic case with head-to-tail information. However, one needs at least 10-20 times more events without head-to-tail information for light dark matter below ~50 GeV. For an intermediate mass range, we find it challenging to observe an anisotropy of the dark matter distribution. Our results also show that the directional information significantly improves precision measurements of dark matter mass and the elastic scattering cross section for a heavy dark matter.« less
NASA Astrophysics Data System (ADS)
Pan, Zhen; Kaplinghat, Manoj; Knox, Lloyd
2018-05-01
In this paper, we conduct a search in the latest large-scale structure measurements for signatures of the dark matter-dark radiation interaction proposed by Buen-Abad et al. (2015). We show that prior claims of an inference of this interaction at ˜3 σ significance rely on a use of the Sunyaev-Zeldovich cluster mass function that ignores uncertainty in the mass-observable relationship. Including this uncertainty we find that the inferred level of interaction remains consistent with the data, but so does zero interaction; i.e., there is no longer a preference for nonzero interaction. We also point out that inference of the shape and amplitude of the matter power spectrum from Ly α forest measurements is highly inconsistent with the predictions of the Λ CDM model conditioned on Planck cosmic microwave background temperature, polarization, and lensing power spectra, and that the dark matter-dark radiation model can restore that consistency. We also phenomenologically generalize the model of Buen-Abad et al. (2015) to allow for interaction rates with different scalings with temperature, and find that the original scaling is preferred by the data.
NASA Astrophysics Data System (ADS)
Brook, Chris B.
2015-12-01
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
NASA Astrophysics Data System (ADS)
Benson, Bryant Joseph
Context: Galaxy clusters are the most massive gravitationally bound structures in the universe and are formed through the process of hierarchical clustering, in which smaller systems undergo a series of mergers to form ever larger clusters. Because of the masses involved, mergers between these giants provide a unique laboratory for observing many interesting astrophysical processes. These merging systems also act as large dark matter colliders, because the dark matter halos of the clusters involved pass through each other during of the merger. This offers us a means to observe if dark matter-dark matter collisions result in momentum exchange beyond what occurs from gravity alone. Such observations can help us to unravel some of the mysteries behind dark matter, such as does it interact with itself through mechanisms beyond gravity, and how strong are those interactions. Answers to questions like these are what will eventually allow us to discover what dark matter really is. However, the extremely long time scales for these mergers (˜several billion years) make each observation a single snapshot in the long merger history, and we must infer many of the details necessary for understanding the full merger process. Furthermore, current weak lensing analyses lack the precision required to detect a signal from self-interacting dark matter. Uncertain weak lensing mass and position estimates also yield large uncertainties in the dynamical reconstruction of the merger scenarios. Need: In order to better model the dynamics of merging galaxy cluster systems, and to potentially measure any signal from self-interacting dark matter, we need to obtain more precise measurements on the masses and positions of the dark matter halos involved. Gravitational lensing offers a robust method for mapping the mass in these clusters because it directly measures the gravitational field, and does not depend on the dynamical state of the system that has been disturbed in the merger process. Of the lensing methods, weak gravitational lensing is the only way that we can probe a wide field and measure the total mass of the cluster. However, the precision of conventional weak lensing techniques is currently limited by shape noise (uncertainty in the shear due to the dispersion in the intrinsic shapes and orientations of unlensed galaxies). A possible avenue forward is to eliminate shape noise as a source of uncertainty in shear measurements via a technique to be described below. This would eliminate the largest source of uncertainty in weak lensing analyses, and enable us to obtain mass and position estimates of dark matter halos with a much higher level of precision. Task: In this dissertation we perform statistical clustering, conventional weak lensing analyses, and dynamical reconstruction on the merging galaxy cluster system ZwCl 2341.1+0000 in order to test the capabilities of the dynamical modeling on a complex, multiple merger. We use targeted optical spectroscopy to identify cluster member galaxies, which we then use to model the galaxy substructures. We also obtain a dynamical mass estimate using the galaxy velocity dispersions, and perform weak lensing analyses in the forms of aperture densitometry to place an upper bound on the total cluster mass, and multiple NFW profile halo fitting to approximate the masses and positions of the individual dark matter halos present in the merger. The masses, positions, and line of sight velocities of those clusters are then used to constrain the parameters describing the best fit merger scenario, with radio relic positions and polarization used to further tighten those constraints. We also develop a new method for obtaining weak lensing data from individual source galaxies in the form of shear measurements that are independent of shape noise, and direct measurements of the convergence. We accomplish this by simultaneously modeling the pre-lensing velocity and intensity profiles of a lensed, rotating disk galaxy, and the lensing transform required to distort those into the lensed profiles we observe. We test this method with a host of idealized simulations to characterize its capabilities in a best-case scenario and forecast the possible improvements it can bring to the precision of weak lensing analyses on galaxy clusters. (Abstract shortened by ProQuest.).
Cold dark matter: Controversies on small scales.
Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G
2015-10-06
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.
Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam, E-mail: oeb@phys.au.dk, E-mail: subinoy@physik.rwth-aachen.de, E-mail: Adam.Moss@nottingham.ac.uk
2012-10-01
Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decayingmore » into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.« less
The baryonic self similarity of dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alard, C., E-mail: alard@iap.fr
2014-06-20
The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominatedmore » regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.« less
Reconciling large- and small-scale structure in Twin Higgs models
Prilepina, Valentina; Tsai, Yuhsin
2017-09-08
Here, we study possible extensions of the Twin Higgs model that solve the Hierarchy problem and simultaneously address problems of the large- and small-scale structures of the Universe. Besides naturally providing dark matter (DM) candidates as the lightest charged twin fermions, the twin sector contains a light photon and neutrinos, which can modify structure formation relative to the prediction from the ΛCDM paradigm. We focus on two viable scenarios. First, we study a Fraternal Twin Higgs model in which the spin-3/2 baryonmore » $$\\hat{Ω}$$~($$\\hat{b}$$$\\hat{b}$$$\\hat{b}$$) and the lepton twin tau $$\\hat{τ}$$ contribute to the dominant and subcomponent dark matter densities. A non-decoupled scattering between the twin tau and twin neutrino arising from a gauged twin lepton number symmetry provides a drag force that damps the density inhomogeneity of a dark matter subcomponent. Next, we consider the possibility of introducing a twin hydrogen atom $$\\hat{H}$$ as the dominant DM component. After recombination, a small fraction of the twin protons and leptons remains ionized during structure formation, and their scattering to twin neutrinos through a gauged U(1) B-L force provides the mechanism that damps the density inhomogeneity. Both scenarios realize the Partially Acoustic dark matter (PAcDM) scenario and explain the σ 8 discrepancy between the CMB and weak lensing results. Moreover, the self-scattering neutrino behaves as a dark fluid that enhances the size of the Hubble rate H 0 to accommodate the local measurement result while satisfying the CMB constraint. For the small-scale structure, the scattering of $$\\hat{Ω}$$ ’s and $$\\hat{H}$$’s through the twin photon exchange generates a self-interacting dark matter (SIDM) model that solves the mass deficit problem from dwarf galaxy to galaxy cluster scales. Furthermore, when varying general choices of the twin photon coupling, bounds from the dwarf galaxy and the cluster merger observations can set an upper limit on the twin electric coupling.« less
Reconciling large- and small-scale structure in Twin Higgs models
NASA Astrophysics Data System (ADS)
Prilepina, Valentina; Tsai, Yuhsin
2017-09-01
We study possible extensions of the Twin Higgs model that solve the Hierarchy problem and simultaneously address problems of the large- and small-scale structures of the Universe. Besides naturally providing dark matter (DM) candidates as the lightest charged twin fermions, the twin sector contains a light photon and neutrinos, which can modify structure formation relative to the prediction from the ΛCDM paradigm. We focus on two viable scenarios. First, we study a Fraternal Twin Higgs model in which the spin-3/2 baryon \\widehat{Ω}˜ (\\widehat{b}\\widehat{b}\\widehat{b}) and the lepton twin tau \\widehat{τ} contribute to the dominant and subcomponent dark matter densities. A non-decoupled scattering between the twin tau and twin neutrino arising from a gauged twin lepton number symmetry provides a drag force that damps the density inhomogeneity of a dark matter subcomponent. Next, we consider the possibility of introducing a twin hydrogen atom Ĥ as the dominant DM component. After recombination, a small fraction of the twin protons and leptons remains ionized during structure formation, and their scattering to twin neutrinos through a gauged U(1) B-L force provides the mechanism that damps the density inhomogeneity. Both scenarios realize the Partially Acoustic dark matter (PAcDM) scenario and explain the σ 8 discrepancy between the CMB and weak lensing results. Moreover, the self-scattering neutrino behaves as a dark fluid that enhances the size of the Hubble rate H 0 to accommodate the local measurement result while satisfying the CMB constraint. For the small-scale structure, the scattering of \\widehat{Ω} 's and Ĥ's through the twin photon exchange generates a self-interacting dark matter (SIDM) model that solves the mass deficit problem from dwarf galaxy to galaxy cluster scales. Furthermore, when varying general choices of the twin photon coupling, bounds from the dwarf galaxy and the cluster merger observations can set an upper limit on the twin electric coupling.
Cosmological explosions from cold dark matter perturbations
NASA Technical Reports Server (NTRS)
Scherrer, Robert J.
1992-01-01
The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.
Mystery of the Hidden Cosmos [Complex Dark Matter
Dobrescu, Bogdan A.; Lincoln, Don
2015-06-16
Scientists know there must be more matter in the universe than what is visible. Searches for this dark matter have focused on a single unseen particle, but decades of experiments have been unsuccessful at finding it. Exotic possibilities for dark matter are looking increasingly plausible. Rather than just one particle, dark matter could contain an entire world of particles and forces that barely interact with normal matter. Complex dark matter could form dark atoms and molecules and even clump together to make hidden galactic disks that overlap with the spiral arms of the Milky Way and other galaxies. Experiments aremore » under way to search for evidence of such a dark sector.« less
Updated constraints on self-interacting dark matter from Supernova 1987A
NASA Astrophysics Data System (ADS)
Mahoney, Cameron; Leibovich, Adam K.; Zentner, Andrew R.
2017-08-01
We revisit SN1987A constraints on light, hidden sector gauge bosons ("dark photons") that are coupled to the standard model through kinetic mixing with the photon. These constraints are realized because excessive bremsstrahlung radiation of the dark photon can lead to rapid cooling of the SN1987A progenitor core, in contradiction to the observed neutrinos from that event. The models we consider are of interest as phenomenological models of strongly self-interacting dark matter. We clarify several possible ambiguities in the literature and identify errors in prior analyses. We find constraints on the dark photon mixing parameter that are in rough agreement with the early estimates of Dent et al. [arXiv:1201.2683.], but only because significant errors in their analyses fortuitously canceled. Our constraints are in good agreement with subsequent analyses by Rrapaj & Reddy [Phys. Rev. C 94, 045805 (2016)., 10.1103/PhysRevC.94.045805] and Hardy & Lasenby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033]. We estimate the dark photon bremsstrahlung rate using one-pion exchange (OPE), while Rrapaj & Reddy use a soft radiation approximation (SRA) to exploit measured nuclear scattering cross sections. We find that the differences between mixing parameter constraints obtained through the OPE approximation or the SRA approximation are roughly a factor of ˜2 - 3 . Hardy & Laseby [J. High Energy Phys. 02 (2017) 33., 10.1007/JHEP02(2017)033] include plasma effects in their calculations finding significantly weaker constraints on dark photon mixing for dark photon masses below ˜10 MeV . We do not consider plasma effects. Lastly, we point out that the properties of the SN1987A progenitor core remain somewhat uncertain and that this uncertainty alone causes uncertainty of at least a factor of ˜2 - 3 in the excluded values of the dark photon mixing parameter. Further refinement of these estimates is unwarranted until either the interior of the SN1987A progenitor is more well understood or additional, large, and heretofore neglected effects, such as the plasma interactions studied by Hardy & Lasenby [J. High Energy Phys. 02 (2017) 33. 10.1007/JHEP02(2017)033], are identified.
The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model
NASA Astrophysics Data System (ADS)
Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.
2018-02-01
By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.
Search for dark photons using data from CRESST-II Phase 2
NASA Astrophysics Data System (ADS)
Gütlein, A.; Angloher, G.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Ferreiro Iachellini, N.; Gorla, P.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Loebell, J.; Mancuso, M.; Münster, A.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Trinh Thi, H. H.; Türkoǧlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.
2017-09-01
Understanding the nature and origin of dark matter is one of the most important challenges for modern particle physics. During the previous decade the sensitivities of direct dark matter searches have improved by several orders of magnitude. These experiments focus their work mainly on the search for dark-matter particles interacting with nuclei (e.g. Weakly Interacting Massive Particles, WIMPs). However, there exists a large variety of different candidates for dark-matter particles. One of these candidates, the so-called dark photon, is a long-lived vector boson with a kinetic mixing to the standard-model photon. In this work we present the preliminary results of our search for dark photons. Using data from the direct dark matter search CRESST-II Phase 2 we can improve the existing constraints for the kinetic mixing for dark-photon masses between 0.3 and 0.5 keV/c2. In addition, we also present projected sensitivities for the next phases of the CRESST-III experiment showing great potential to improve the sensitivity for dark-photon masses below 1 keV.
Dark matter candidates: a ten-point test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoso, Marco; Masiero, Antonio; Bertone, Gianfranco, E-mail: taoso@pd.infn.it, E-mail: bertone@iap.fr, E-mail: antonio.masiero@pd.infn.it
An extraordinarily rich zoo of non-baryonic dark matter candidates has been proposed over the last three decades. Here we present a ten-point test that a new particle has to pass in order to be considered a viable DM candidate. (I) Does it match the appropriate relic density? (II) Is it cold? (III) Is it neutral? (IV) Is it consistent with BBN? (V) Does it leave stellar evolution unchanged? (VI) Is it compatible with constraints on self-interactions? (VII) Is it consistent with direct DM searches? (VIII) Is it compatible with gamma-ray constraints? (IX) Is it compatible with other astrophysical bounds? (X)more » Can it be probed experimentally?.« less
Chiral effective theory of dark matter direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishara, Fady; Brod, Joachim; Grinstein, Benjamin
2017-02-01
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces.more » Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo, E-mail: n.bozorgnia@uva.nl, E-mail: gelmini@physics.ucla.edu, E-mail: paolo@physics.utah.edu
Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the meanmore » recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Marco; Pappadopulo, Duccio; Ruderman, Joshua T.
A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector ismore » cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.« less
SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crisler, Michael; Essig, Rouven; Estrada, Juan
The Sub-Electron-Noise Skipper CCD Experimental Instrument (SENSEI) uses the recently developed Skipper-CCD technology to search for electron recoils from the interaction of sub-GeV dark matter particles with electrons in silicon. We report first results from a prototype SENSEI detector, which collected 0.019 gram-days of commissioning data above ground at Fermi National Accelerator Laboratory. These commissioning data are sufficient to set new direct-detection constraints for dark matter particles with masses between ~500 keV and 4 MeV. Moreover, since these data were taken on the surface, they disfavor previously allowed strongly interacting dark matter particles with masses between ~500 keV and amore » few hundred MeV. We discuss the implications of these data for several dark matter candidates, including one model proposed to explain the anomalously large 21-cm signal observed by the EDGES Collaboration. SENSEI is the first experiment dedicated to the search for electron recoils from dark matter, and these results demonstrate the power of the Skipper-CCD technology for dark matter searches.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, John
2016-08-17
Warm dark matter (WDM) of order keV mass may be able to resolve the disagreement between structure formation in cold dark matter simulations and observations. The detailed properties of WDM will depend upon its energy distribution, in particular how it deviates from the thermal distribution usually assumed in WDM simulations. Here we focus on WDM production via the Ultra-Violet (UV) freeze-in mechanism, for the case of fermionic Higgs portal dark matter ψ produced via the portal interaction ψ-barψH{sup †}H/Λ. We introduce a new method to simplify the computation of the non-thermal energy distribution of dark matter from freeze-in. We showmore » that the non-thermal energy distribution from UV freeze-in is hotter than the corresponding thermal distribution and has the form of a Bose-Einstein distribution with a non-thermal normalization. The resulting range of dark matter fermion mass consistent with observations is 5–7 keV. The reheating temperature must satisfy T{sub R}≳120 GeV in order to account for the observed dark matter density when m{sub ψ}≈5 keV, where the lower bound on T{sub R} corresponds to the limit where the fermion mass is entirely due to electroweak symmetry breaking via the portal interaction. The corresponding bound on the interaction scale is Λ≳6.0×10{sup 9} GeV.« less
Partially acoustic dark matter, interacting dark radiation, and large scale structure
NASA Astrophysics Data System (ADS)
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; Okui, Takemichi; Tsai, Yuhsinz
2016-12-01
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightly coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.
Partially acoustic dark matter, interacting dark radiation, and large scale structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less
Partially acoustic dark matter, interacting dark radiation, and large scale structure
Chacko, Zackaria; Cui, Yanou; Hong, Sungwoo; ...
2016-12-21
The standard paradigm of collisionless cold dark matter is in tension with measurements on large scales. In particular, the best fit values of the Hubble rate H 0 and the matter density perturbation σ 8 inferred from the cosmic microwave background seem inconsistent with the results from direct measurements. We show that both problems can be solved in a framework in which dark matter consists of two distinct components, a dominant component and a subdominant component. The primary component is cold and collisionless. The secondary component is also cold, but interacts strongly with dark radiation, which itself forms a tightlymore » coupled fluid. The growth of density perturbations in the subdominant component is inhibited by dark acoustic oscillations due to its coupling to the dark radiation, solving the σ 8 problem, while the presence of tightly coupled dark radiation ameliorates the H 0 problem. The subdominant component of dark matter and dark radiation continue to remain in thermal equilibrium until late times, inhibiting the formation of a dark disk. We present an example of a simple model that naturally realizes this scenario in which both constituents of dark matter are thermal WIMPs. Our scenario can be tested by future stage-IV experiments designed to probe the CMB and large scale structure.« less
Hierarchy of N-point functions in the ΛCDM and ReBEL cosmologies
NASA Astrophysics Data System (ADS)
Hellwing, Wojciech A.; Juszkiewicz, Roman; van de Weygaert, Rien
2010-11-01
In this work we investigate higher-order statistics for the ΛCDM and ReBEL scalar-interacting dark matter models by analyzing 180h-1Mpc dark matter N-body simulation ensembles. The N-point correlation functions and the related hierarchical amplitudes, such as skewness and kurtosis, are computed using the counts-in-cells method. Our studies demonstrate that the hierarchical amplitudes Sn of the scalar-interacting dark matter model significantly deviate from the values in the ΛCDM cosmology on scales comparable and smaller than the screening length rs of a given scalar-interacting model. The corresponding additional forces that enhance the total attractive force exerted on dark matter particles at galaxy scales lower the values of the hierarchical amplitudes Sn. We conclude that hypothetical additional exotic interactions in the dark matter sector should leave detectable markers in the higher-order correlation statistics of the density field. We focused in detail on the redshift evolution of the dark matter field’s skewness and kurtosis. From this investigation we find that the deviations from the canonical ΛCDM model introduced by the presence of the “fifth” force attain a maximum value at redshifts 0.5
Light scalars on cosmological backgrounds
NASA Astrophysics Data System (ADS)
Markkanen, Tommi
2018-01-01
We study the behaviour of a light quartically self-interacting scalar field ϕ on curved backgrounds that may be described with the cosmological equation state parameter w. At leading order in the non-perturbative 2PI expansion we find a general formula for the variance < {\\widehat{φ}}^2> and show for several previously unexplored cases, including matter domination and kination, that the curvature of space can induce a significant excitation of the field. We discuss how the generation of a non-zero variance for w ≠ -1 can be understood as a process of self-regulation of the infrared divergences very similarly to what is known to occur in de Sitter space. To conclude, the appearance of an effective mass due to self-interaction is generic for a light scalar in curved space and can have important implications for reheating, vacuum stability and dark matter generation.
Dark degeneracy and interacting cosmic components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aviles, Alejandro; Cervantes-Cota, Jorge L.
2011-10-15
We study some properties of the dark degeneracy, which is the fact that what we measure in gravitational experiments is the energy-momentum tensor of the total dark sector, and any split into components (as in dark matter and dark energy) is arbitrary. In fact, just one dark fluid is necessary to obtain exactly the same cosmological and astrophysical phenomenology as the {Lambda}CDM model. We work explicitly the first-order perturbation theory and show that beyond the linear order the dark degeneracy is preserved under some general assumptions. Then we construct the dark fluid from a collection of interacting fluids. Finally, wemore » try to break the degeneracy with a general class of couplings to baryonic matter. Nonetheless, we show that these interactions can also be understood in the context of the {Lambda}CDM model as between dark matter and baryons. For this last investigation we choose two independent parametrizations for the interactions, one inspired by electromagnetism and the other by chameleon theories. Then, we constrain them with a joint analysis of CMB and supernovae observational data.« less
Cores in Dwarf Galaxies from Fermi Repulsion
NASA Astrophysics Data System (ADS)
Randall, Lisa; Scholtz, Jakub; Unwin, James
2017-05-01
We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of size ≳130 pc can be achieved for fermion dark matter with mass in the range of 70-400 eV. While in conventional dark matter scenarios such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at a lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn, we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lymanα clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is relaxed in dark matter scenarios with non-thermal momentum distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Väliviita, Jussi; Palmgren, Elina, E-mail: jussi.valiviita@helsinki.fi, E-mail: elina.palmgren@helsinki.fi
2015-07-01
We employ the Planck 2013 CMB temperature anisotropy and lensing data, and baryon acoustic oscillation (BAO) data to constrain a phenomenological wCDM model, where dark matter and dark energy interact. We assume time-dependent equation of state parameter for dark energy, and treat dark matter and dark energy as fluids whose energy-exchange rate is proportional to the dark-matter density. The CMB data alone leave a strong degeneracy between the interaction rate and the physical CDM density parameter today, ω{sub c}, allowing a large interaction rate |Γ| ∼ H{sub 0}. However, as has been known for a while, the BAO data break this degeneracy.more » Moreover, we exploit the CMB lensing potential likelihood, which probes the matter perturbations at redshift z ∼ 2 and is very sensitive to the growth of structure, and hence one of the tools for discerning between the ΛCDM model and its alternatives. However, we find that in the non-phantom models (w{sub de}>−1), the constraints remain unchanged by the inclusion of the lensing data and consistent with zero interaction, −0.14 < Γ/H{sub 0} < 0.02 at 95% CL. On the contrary, in the phantom models (w{sub de}<−1), energy transfer from dark energy to dark matter is moderately favoured over the non-interacting model; 0−0.57 < Γ/H{sub 0} < −0.1 at 95% CL with CMB+BAO, while addition of the lensing data shifts this to −0.46 < Γ/H{sub 0} < −0.01.« less
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Dark matter spin determination with directional direct detection experiments
NASA Astrophysics Data System (ADS)
Catena, Riccardo; Conrad, Jan; Döring, Christian; Ferella, Alfredo Davide; Krauss, Martin B.
2018-01-01
If dark matter has spin 0, only two WIMP-nucleon interaction operators can arise as leading operators from the nonrelativistic reduction of renormalizable single-mediator models for dark matter-quark interactions. Based on this crucial observation, we show that about 100 signal events at next generation directional detection experiments can be enough to enable a 2 σ rejection of the spin 0 dark matter hypothesis in favor of alternative hypotheses where the dark matter particle has spin 1 /2 or 1. In this context, directional sensitivity is crucial since anisotropy patterns in the sphere of nuclear recoil directions depend on the spin of the dark matter particle. For comparison, about 100 signal events are expected in a CF4 detector operating at a pressure of 30 torr with an exposure of approximately 26,000 cubic-meter-detector days for WIMPs of 100 GeV mass and a WIMP-fluorine scattering cross section of 0.25 pb. Comparable exposures require an array of cubic meter time projection chamber detectors.
Dark Matter Coannihilation with a Lighter Species
NASA Astrophysics Data System (ADS)
Berlin, Asher
2017-09-01
We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, MGUT˜1016 GeV .
Dark Matter Coannihilation with a Lighter Species.
Berlin, Asher
2017-09-22
We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, M_{GUT}∼10^{16} GeV.
Constraining Elko dark matter at the LHC with monophoton events
NASA Astrophysics Data System (ADS)
Alves, Alexandre; Dias, M.; de Campos, F.; Duarte, L.; Hoff da Silva, J. M.
2018-02-01
A mass-dimension-one fermion, also known as Elko, constitutes a dark-matter candidate which might interact with photons at the tree level in a specific fashion. In this work, we investigate the constraints imposed by unitarity and LHC data on this type of interactions using the search for new physics in monophoton events. We found that Elkos which can explain the dark matter relic abundance mainly through electromagnetic interactions are excluded at the 95% CL by the 8 TeV LHC data for masses up to 1 TeV.
Study of Neutrino-Induced Neutrons in Dark Matter Detectors for Supernova Burst Neutrinos
NASA Astrophysics Data System (ADS)
Kwan, Newton; Scholberg, Kate
2017-09-01
When supernova burst neutrinos (1-50 MeV) pass through the Earth, they occasionally interact with the passive shielding surrounding dark matter detectors. When the neutrinos interact, one or two roughly 2 MeV neutrons are scattered isotropically and uniformly, often leaving undetected. Occasionally, these neutrino-induced neutrons (NINs) interact with the detector and leave a background signal similar to a WIMP. The purpose of this study is to understand the effects of NINs on active dark matter detectors during a supernova burst.
CMB and matter power spectra with non-linear dark-sector interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marttens, R.F. vom; Casarini, L.; Zimdahl, W.
2017-01-01
An interaction between dark matter and dark energy, proportional to the product of their energy densities, results in a scaling behavior of the ratio of these densities with respect to the scale factor of the Robertson-Walker metric. This gives rise to a class of cosmological models which deviate from the standard model in an analytically tractable way. In particular, it becomes possible to quantify the role of potential dark-energy perturbations. We investigate the impact of this interaction on the structure formation process. Using the (modified) CAMB code we obtain the CMB spectrum as well as the linear matter power spectrum.more » It is shown that the strong degeneracy in the parameter space present in the background analysis is considerably reduced by considering Planck data. Our analysis is compatible with the ΛCDM model at the 2σ confidence level with a slightly preferred direction of the energy flow from dark matter to dark energy.« less
Indirect detection of neutrino portal dark matter
NASA Astrophysics Data System (ADS)
Batell, Brian; Han, Tao; Shams Es Haghi, Barmak
2018-05-01
We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the type-I seesaw mechanism and simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxy and Galactic center gamma-ray observations, and AMS-02 antiproton observations, and we also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic center gamma-ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
Dynamical dark matter: A new framework for dark-matter physics
NASA Astrophysics Data System (ADS)
Dienes, Keith R.; Thomas, Brooks
2013-05-01
Although much remains unknown about the dark matter of the universe, one property is normally considered sacrosanct: dark matter must be stable well beyond cosmological time scales. However, a new framework for dark-matter physics has recently been proposed which challenges this assumption. In the "dynamical dark matter" (DDM) framework, the dark sector consists of a vast ensemble of individual dark-matter components with differing masses, lifetimes, and cosmological abundances. Moreover, the usual requirement of stability is replaced by a delicate balancing between lifetimes and cosmological abundances across the ensemble as a whole. As a result, it is possible for the DDM ensemble to remain consistent with all experimental and observational bounds on dark matter while nevertheless giving rise to collective behaviors which transcend those normally associated with traditional dark-matter candidates. These include a new, non-trivial darkmatter equation of state as well as potentially distinctive signatures in collider and direct-detection experiments. In this review article, we provide a self-contained introduction to the DDM framework and summarize some of the work which has recently been done in this area. We also present an explicit model within the DDM framework, and outline a number of ideas for future investigation.
Flooded Dark Matter and S level rise
NASA Astrophysics Data System (ADS)
Randall, Lisa; Scholtz, Jakub; Unwin, James
2016-03-01
Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as "Maximum Baroqueness". We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant non-thermal leptogenesis implementation in which decays of a heavy right-handed neutrino lead to late time reheating of the Standard Model degrees of freedom and provide suitable conditions for creation of a lepton asymmetry.
Cold dark matter: Controversies on small scales
Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.
2015-01-01
The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464
Phenomenology of ELDER dark matter
NASA Astrophysics Data System (ADS)
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2017-08-01
We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.
Dark matter maps reveal cosmic scaffolding.
Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James
2007-01-18
Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.
Multiplicative-Generated Dark Matter Accelerated Cosmic Expansion
NASA Astrophysics Data System (ADS)
Zhang, Weijia; Kelly, Neil
2011-02-01
In order to make the increase of Astronomical Unit consistent with observations of the Earth's orbital period variation, an increase of the Solar dark matter as 10-12/yr is needed. This implies that dark matter has an increase ratio, and therefore supports Dirac's multiplicative matter creation, and provides another explanation to the accelerating expansion of the universe. This is in accordance with the analysis on orbital dynamics around a mass varying central body to the phenomenon of accretion of dark matter assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. Dark matter and dark energy, two of the most vexing problems in science today which dominate the universe, comprising some 96 percent of all mass and energy, seem to be two sides of the same coin.
Charting the Unknown: A Hunt in the Dark
NASA Astrophysics Data System (ADS)
Mohlabeng, Gopolang Mokoka
Astrophysical and cosmological observations have pointed strongly to the existence of dark matter in the Universe, yet its nature remains elusive. It may be hidden in a vast unknown parameter space in which exhaustively searching for a signal is not feasible. We are, therefore, compelled to consider a robust program based on a wide range of new theoretical ideas and complementary strategies for detection. The aim of this dissertation is to investigate the phenomenology of diverse dark sectors with the objective of understanding and characterizing dark matter. We do so by exploring dark matter phenomenology under three main frameworks of study: (I) the model dependent approach, (II) model independent approach and (III) considering simplified models. In each framework we focus on unexplored and well motivated dark matter scenarios as well as their prospects of detection at current and future experiments. First, we concentrate on the model dependent method where we consider minimal dark matter in the form of mixed fermionic stable states in a gauge extension of the standard model. In particular, we incorporate the fermion mixings governed by gauge invariant interactions with the heavier degrees of freedom. We find that the manner of mixing has an impact on the detectability of the dark matter at experiments. Pursuing this model dependent direction, we explore a space-time extension of the standard model which houses a vector dark matter candidate. We incorporate boundary terms arising from the topology of the model and find that these control the way dark matter may interact with baryonic matter. Next we investigate the model independent approach in which we examine a non-minimal dark sector in the form of boosted dark matter. In this study, we consider an effective field theory involving two stable fermionic states. We probe the sensitivity of this type of dark matter coming from the galactic center and the center of the Sun, and investigate its detection prospects at current and future large volume experiments. Finally, we explore an intermediate approach in the form of a simplified model. Here we analyze a different non-minimal dark sector in which its interactions with the standard model sector are mediated primarily by the Higgs Boson. We discuss for the first time a vector and fermion dark matter preserved under the same stabilization symmetry. We find that the presence of both species in the early Universe results in rare processes contributing to the dark matter relic abundance. We conclude that connecting these three frameworks under one main dark matter program, instead of concentrating on them individually, could help us understand what we are missing, and may assist us to produce ground breaking ideas which lead to the discovery of a signal in the near future.
Inelastic Boosted Dark Matter at direct detection experiments
NASA Astrophysics Data System (ADS)
Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong
2018-05-01
We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.
Aad, G; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Agatonovic-Jovin, T; Aguilar-Saavedra, J A; Agustoni, M; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimoto, G; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Alconada Verzini, M J; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Alimonti, G; Alio, L; Alison, J; Allbrooke, B M M; Allison, L J; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amaral Coutinho, Y; Amelung, C; Amidei, D; Amor Dos Santos, S P; Amorim, A; Amoroso, S; Amram, N; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonaki, M; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Auerbach, B; Augsten, K; Aurousseau, M; Avolio, G; Axen, B; Azuelos, G; Azuma, Y; Baak, M A; Baas, A E; Bacci, C; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagiacchi, P; Bagnaia, P; Bai, Y; Bain, T; Baines, J T; Baker, O K; Balek, P; Balli, F; Banas, E; Banerjee, Sw; Bannoura, A A E; Bansil, H S; Barak, L; Baranov, S P; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Bartoldus, R; Barton, A E; Bartos, P; Bartsch, V; Bassalat, A; Basye, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Battistin, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, K; Becker, S; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, K; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Beringer, J; Bernard, C; Bernat, P; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertsche, C; Bertsche, D; Besana, M I; Besjes, G J; Bessidskaia Bylund, O; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilbao De Mendizabal, J; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boddy, C R; Boehler, M; Boek, T T; Bogaerts, J A; Bogdanchikov, A G; Bogouch, A; Bohm, C; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Borri, M; Borroni, S; Bortfeldt, J; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boutouil, S; Boveia, A; Boyd, J; Boyko, I R; Bozic, I; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Brendlinger, K; Brennan, A J; Brenner, R; Bressler, S; Bristow, K; Bristow, T M; Britton, D; Brochu, F M; Brock, I; Brock, R; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Brown, J; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Bryngemark, L; Buanes, T; Buat, Q; Bucci, F; Buchholz, P; Buckley, A G; Buda, S I; Budagov, I A; Buehrer, F; Bugge, L; Bugge, M K; Bulekov, O; Bundock, A C; Burckhart, H; Burdin, S; Burghgrave, B; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Butt, A I; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Camacho Toro, R; Camarda, S; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Campoverde, A; Canale, V; Canepa, A; Cano Bret, M; Cantero, J; Cantrill, R; Cao, T; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Castaneda-Miranda, E; Castelli, A; Castillo Gimenez, V; Castro, N F; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caudron, J; Cavaliere, V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerio, B C; Cerny, K; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chang, P; Chapleau, B; Chapman, J D; Charfeddine, D; Charlton, D G; Chau, C C; Chavez Barajas, C A; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, L; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, Y; Cheplakov, A; Cheremushkina, E; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiefari, G; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Chouridou, S; Chow, B K B; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocio, A; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Cole, B; Cole, S; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Conde Muiño, P; Coniavitis, E; Connell, S H; Connelly, I A; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Crispin Ortuzar, M; Cristinziani, M; Croft, V; Crosetti, G; Cuhadar Donszelmann, T; Cummings, J; Curatolo, M; Cuthbert, C; Czirr, H; Czodrowski, P; D'Auria, S; D'Onofrio, M; Cunha Sargedas De Sousa, M J Da; Via, C Da; Dabrowski, W; Dafinca, A; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Daniells, A C; Danninger, M; Dano Hoffmann, M; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, E; Davies, M; Davignon, O; Davison, A R; Davison, P; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Deigaard, I; Del Peso, J; Del Prete, T; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Doglioni, C; Doherty, T; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Dubreuil, E; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Dudziak, F; Duflot, L; Duguid, L; Dührssen, M; Dunford, M; Duran Yildiz, H; Düren, M; Durglishvili, A; Duschinger, D; Dwuznik, M; Dyndal, M; Ebke, J; Edson, W; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Engelmann, R; Erdmann, J; Ereditato, A; Eriksson, D; Ernis, G; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Favareto, A; Fayard, L; Federic, P; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Fernandez Perez, S; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, J; Fisher, W C; Fitzgerald, E A; Flechl, M; Fleck, I; Fleischmann, P; Fleischmann, S; Fletcher, G T; Fletcher, G; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Franconi, L; Franklin, M; Fraternali, M; French, S T; Friedrich, C; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y S; Garay Walls, F M; Garberson, F; García, C; García Navarro, J E; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerbaudo, D; Gershon, A; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giangiobbe, V; Giannetti, P; Gianotti, F; Gibbard, B; Gibson, S M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giorgi, F M; Giraud, P F; Giugni, D; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Glonti, G L; Goblirsch-Kolb, M; Goddard, J R; Godlewski, J; Goeringer, C; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozani, E; Grabas, H M X; Graber, L; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramling, J; Gramstad, E; Grancagnolo, S; Grassi, V; Gratchev, V; Gray, H M; Graziani, E; Grebenyuk, O G; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Grohs, J P; Grohsjean, A; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guicheney, C; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Gupta, S; Gutierrez, P; Gutierrez Ortiz, N G; Gutschow, C; Guttman, N; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Haefner, P; Hageböeck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Hall, D; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamer, M; Hamilton, A; Hamilton, S; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Harrison, P F; Hartjes, F; Hasegawa, M; Hasegawa, S; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayashi, T; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, L; Hejbal, J; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, J; Heng, Y; Henderson, R C W; Hengler, C; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Herbert, G H; Hernández Jiménez, Y; Herrberg-Schubert, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hoffmann, D; Hohlfeld, M; Holmes, T R; Hong, T M; Hooft van Huysduynen, L; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, X; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikematsu, K; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Inamaru, Y; Ince, T; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Iturbe Ponce, J M; Iuppa, R; Ivarsson, J; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, M; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinaru, A; Jinnouchi, O; Joergensen, M D; Johansson, K E; Johansson, P; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Jongmanns, J; Jorge, P M; Joshi, K D; Jovicevic, J; Ju, X; Jung, C A; Jussel, P; Juste Rozas, A; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalderon, C W; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneda, M; Kaneti, S; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, Y; Katre, A; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Keyes, R A; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharlamov, A; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H Y; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Klok, P F; Kluge, E-E; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohout, Z; Kohriki, T; Koi, T; Kolanoski, H; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; König, S; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, V M; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kreiss, S; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuehn, S; Kugel, A; Kuhl, A; Kuhl, T; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kurumida, R; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kyriazopoulos, D; La Rosa, A; La Rotonda, L; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laier, H; Lambourne, L; Lammers, S; Lampen, C L; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, H; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Lehmann Miotto, G; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Leroy, C; Lester, C G; Lester, C M; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, S; Li, Y; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limbach, C; Limosani, A; Lin, S C; Lin, T H; Linde, F; Lindquist, B E; Linnemann, J T; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y; Livan, M; Lleres, A; Llorente Merino, J; Lloyd, S L; Lo Sterzo, F; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, B A; Long, J D; Long, R E; Lopes, L; Lopez Mateos, D; Lopez Paredes, B; Lopez Paz, I; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lou, X; Lounis, A; Love, J; Love, P A; Lowe, A J; Lu, F; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Lungwitz, M; Lynn, D; Lysak, R; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Machado Miguens, J; Macina, D; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeno, M; Maeno, T; Maevskiy, A; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Maiani, C; Maidantchik, C; Maier, A A; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V M; Malyukov, S; Mamuzic, J; Mandelli, B; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mantifel, R; Mapelli, L; March, L; Marchand, J F; Marchiori, G; Marcisovsky, M; Marino, C P; Marjanovic, M; Marroquim, F; Marsden, S P; Marshall, Z; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, T A; Martin, V J; Martin Dit Latour, B; Martinez, H; Martinez, M; Martin-Haugh, S; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazzaferro, L; Mc Goldrick, G; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Mechnich, J; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mergelmeyer, S; Meric, N; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Middleton, R P; Migas, S; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Mohr, W; Molander, S; Moles-Valls, R; Mönig, K; Monini, C; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morton, A; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, K; Mueller, T; Mueller, T; Muenstermann, D; Munwes, Y; Murillo Quijada, J A; Murray, W J; Musheghyan, H; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagai, Y; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagata, K; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Nanava, G; Naranjo Garcia, R F; Narayan, R; Nattermann, T; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nunes Hanninger, G; Nunnemann, T; Nurse, E; Nuti, F; O'Brien, B J; O'grady, F; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira Damazio, D; Oliver Garcia, E; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Otero Y Garzon, G; Otono, H; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Ovcharova, A; Owen, M; Ozcan, V E; Ozturk, N; Pachal, K; Pacheco Pages, A; Padilla Aranda, C; Pagáčová, M; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Paredes Hernandez, D; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N D; Pater, J R; Patricelli, S; Pauly, T; Pearce, J; Pedersen, L E; Pedersen, M; Pedraza Lopez, S; Pedro, R; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penwell, J; Perepelitsa, D V; Perez Codina, E; Pérez García-Estañ, M T; Perini, L; Pernegger, H; Perrella, S; Perrino, R; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Pettersson, N E; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pingel, A; Pinto, B; Pires, S; Pitt, M; Pizio, C; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poddar, S; Podlyski, F; Poettgen, R; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Proissl, M; Prokofiev, K; Prokoshin, F; Protopapadaki, E; Protopopescu, S; Proudfoot, J; Przybycien, M; Przysiezniak, H; Ptacek, E; Puddu, D; Pueschel, E; Puldon, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quarrie, D R; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Qureshi, A; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Rao, K; Rauscher, F; Rave, T C; Ravenscroft, T; Raymond, M; Read, A L; Readioff, N P; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reisin, H; Relich, M; Rembser, C; Ren, H; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Ridel, M; Rieck, P; Rieger, J; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodrigues, L; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romero Adam, E; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, M; Rose, P; Rosendahl, P L; Rosenthal, O; Rossetti, V; Rossi, E; Rossi, L P; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Rud, V I; Rudolph, C; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sabato, G; Sacerdoti, S; Saddique, A; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Sales De Bruin, P H; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Sanchez, A; Sánchez, J; Sanchez Martinez, V; Sandaker, H; Sandbach, R L; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Santoyo Castillo, I; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sartisohn, G; Sasaki, O; Sasaki, Y; Sauvage, G; Sauvan, E; Savard, P; Savu, D O; Sawyer, C; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schaefer, D; Schaefer, R; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schillo, C; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schneider, B; Schnellbach, Y J; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schramm, S; Schreyer, M; Schroeder, C; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciacca, F G; Scifo, E; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Sedov, G; Sedykh, E; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellers, G; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Serre, T; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Shoaleh Saadi, D; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Shushkevich, S; Sicho, P; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simoniello, R; Sinervo, P; Sinev, N B; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snidero, G; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Song, H Y; Soni, N; Sood, A; Sopczak, A; Sopko, B; Sopko, V; Sorin, V; Sosebee, M; Soualah, R; Soueid, P; Soukharev, A M; South, D; Spagnolo, S; Spanò, F; Spearman, W R; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Spreitzer, T; Denis, R D St; Staerz, S; Stahlman, J; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Stavina, P; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Svatos, M; Swedish, S; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tam, J Y C; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tannenwald, B B; Tannoury, N; Tapprogge, S; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Tavares Delgado, A; Tayalati, Y; Taylor, F E; Taylor, G N; Taylor, W; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Teoh, J J; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Topilin, N D; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tran, H L; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trovatelli, M; True, P; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turk Cakir, I; Turra, R; Turvey, A J; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Uchida, K; Ueda, I; Ueno, R; Ughetto, M; Ugland, M; Uhlenbrock, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urbaniec, D; Urquijo, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Ster, D; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vannucci, F; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vazeille, F; Vazquez Schroeder, T; Veatch, J; Veloso, F; Velz, T; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Vigne, R; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinogradov, V B; Virzi, J; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Warsinsky, M; Washbrook, A; Wasicki, C; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Wessels, M; Wetter, J; Whalen, K; White, A; White, M J; White, R; White, S; Whiteson, D; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, A; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winter, B T; Wittgen, M; Wittig, T; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wright, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wyatt, T R; Wynne, B M; Xella, S; Xiao, M; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamada, M; Yamaguchi, H; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yanush, S; Yao, L; Yao, W-M; Yasu, Y; Yatsenko, E; Yau Wong, K H; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yurkewicz, A; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zevi Della Porta, G; Zhang, D; Zhang, F; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, L; Zhou, L; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, R; Zimmermann, S; Zimmermann, S; Zinonos, Z; Ziolkowski, M; Zobernig, G; Zoccoli, A; Zur Nedden, M; Zurzolo, G; Zutshi, V; Zwalinski, L
This article reports on a search for dark matter pair production in association with bottom or top quarks in [Formula: see text] of [Formula: see text] collisions collected at [Formula: see text] TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing [Formula: see text]-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on the mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter-nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a coloured mediator suitable to explain a possible signal of annihilating dark matter.
Reconstructing the interaction between dark energy and dark matter using Gaussian processes
NASA Astrophysics Data System (ADS)
Yang, Tao; Guo, Zong-Kuan; Cai, Rong-Gen
2015-06-01
We present a nonparametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state (w ) of dark energy is specified, the interaction can be reconstructed as a function of redshift. For the decaying vacuum energy case with w =-1 , the reconstructed interaction is consistent with the standard Λ CDM model, namely, there is no evidence for the interaction. This also holds for the constant w cases from -0.9 to -1.1 and for the Chevallier-Polarski-Linder (CPL) parametrization case. If the equation of state deviates obviously from -1 , the reconstructed interaction exists at 95% confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.
Understanding the core-halo relation of quantum wave dark matter from 3D simulations.
Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy
2014-12-31
We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22) eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60 pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.
Collider detection of dark matter electromagnetic anapole moments
NASA Astrophysics Data System (ADS)
Alves, Alexandre; Santos, A. C. O.; Sinha, Kuver
2018-03-01
Dark matter that interacts with the Standard Model by exchanging photons through higher multipole interactions occurs in a wide range of both strongly and weakly coupled hidden sector models. We study the collider detection prospects of these candidates, with a focus on Majorana dark matter that couples through the anapole moment. The study is conducted at the effective field theory level with the mono-Z signature incorporating varying levels of systematic uncertainties at the high-luminosity LHC. The projected collider reach on the anapole moment is then compared to the reach coming from direct detection experiments like LZ. Finally, the analysis is applied to a weakly coupled completion with leptophilic dark matter.
NASA Astrophysics Data System (ADS)
Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.
2018-04-01
Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 < mψ/(10-23 eV/c2) < 27.0 and for the core radius 0.326 < rc/kpc < 8.96. From the combined analysis with the LSB galaxies, we obtained mψ = 0.554 × 10-23 eV, a result in tension with the severe cosmological constraints. Also, we show the analytical mSFDM model fits the observations as well as or better than the empirical soliton+NFW profile, and it reproduces naturally the wiggles present in some galaxies, being a theoretically motivated framework additional or alternative to the FDM profile.
Detecting the Disruption of Dark-Matter Halos with Stellar Streams.
Bovy, Jo
2016-03-25
Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.
Aaltonen, T.; Álvarez González, B.; Amerio, S.; ...
2012-05-23
We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp̄ collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb⁻¹ recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction belowmore » a dark matter candidate mass of 5 GeV/c², and on spin-dependent interactions up to masses of 200 GeV/c².« less
Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Bai, Y; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Fox, P J; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harnik, R; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S
2012-05-25
We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp[over ¯] collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb(-1) recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c(2), and on spin-dependent interactions up to masses of 200 GeV/c(2).
Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment.
Tan, Andi; Xiao, Mengjiao; Cui, Xiangyi; Chen, Xun; Chen, Yunhua; Fang, Deqing; Fu, Changbo; Giboni, Karl; Giuliani, Franco; Gong, Haowei; Guo, Xuyuan; Han, Ke; Hu, Shouyang; Huang, Xingtao; Ji, Xiangdong; Ju, Yonglin; Lei, Siao; Li, Shaoli; Li, Xiaomei; Li, Xinglong; Liang, Hao; Lin, Qing; Liu, Huaxuan; Liu, Jianglai; Lorenzon, Wolfgang; Ma, Yugang; Mao, Yajun; Ni, Kaixuan; Ren, Xiangxiang; Schubnell, Michael; Shen, Manbin; Shi, Fang; Wang, Hongwei; Wang, Jimin; Wang, Meng; Wang, Qiuhong; Wang, Siguang; Wang, Xuming; Wang, Zhou; Wu, Shiyong; Xiao, Xiang; Xie, Pengwei; Yan, Binbin; Yang, Yong; Yue, Jianfeng; Zeng, Xionghui; Zhang, Hongguang; Zhang, Hua; Zhang, Huanqiao; Zhang, Tao; Zhao, Li; Zhou, Jing; Zhou, Ning; Zhou, Xiaopeng
2016-09-16
We report the weakly interacting massive particle (WIMP) dark matter search results using the first physics-run data of the PandaX-II 500 kg liquid xenon dual-phase time-projection chamber, operating at the China JinPing underground laboratory. No dark matter candidate is identified above background. In combination with the data set during the commissioning run, with a total exposure of 3.3×10^{4} kg day, the most stringent limit to the spin-independent interaction between the ordinary and WIMP dark matter is set for a range of dark matter mass between 5 and 1000 GeV/c^{2}. The best upper limit on the scattering cross section is found 2.5×10^{-46} cm^{2} for the WIMP mass 40 GeV/c^{2} at 90% confidence level.
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability.
Appelquist, T; Berkowitz, E; Brower, R C; Buchoff, M I; Fleming, G T; Jin, X-Y; Kiskis, J; Kribs, G D; Neil, E T; Osborn, J C; Rebbi, C; Rinaldi, E; Schaich, D; Schroeder, C; Syritsyn, S; Vranas, P; Weinberg, E; Witzel, O
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar "stealth baryon" dark matter candidate, arising from a dark SU(4) confining gauge theory-"stealth dark matter." In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest "baryon" states in SU(3) and SU(4) gauge theories using the background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be potentially detectable in the dark matter mass range of about 200-700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m(B)(6), suggests the observable dark matter mass range is not appreciably modified. We briefly highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.
Early Career: The search for weakly interacting dark matter with liquid xenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Carter
2017-02-08
We report results from a search for weakly interacting dark matter particles obtained with the LUX experiment. LUX was located at a depth of 4850 feet at the Sanford Underground Research Facility in Lead, South Dakota from 2013 through 2016. It found no evidence for dark matter particle interactions and set new constraints on the properties of such particles for masses between 6 GeV and 100 TeV. The work reported here also characterized the performance of such experiments by developing a new calibration technique based upon a tritium beta decay source.
Dark Matter Indirect Detection with Gamma Rays
Patrick Harding, J.
2017-07-27
Searches for weakly interacting massive particle (WIMP) dark matter with gamma-ray instruments are a way to get a unique observational handle on the particle nature of dark matter. I will discuss the details of how to perform these searches, both for annihilating and decaying WIMPs. I will discuss the calculation of the gamma-ray flux from possible sources of dark matter annihilation or decay and show examples of limits which have been calculated using these techniques.
NASA Astrophysics Data System (ADS)
Yang, Qiaoli
2017-05-01
Dark matter constitutes about 23% of the total energy density of the universe, but its properties are still little known besides that it should be composed by cold and weakly interacting particles. Many beyond Standard Model theories can provide proper candidates to serve as dark matter and the axion introduced to solve the strong CP problem turns out to be an attractive one. In this paper, we briefly review several important features of the axion and the axion dark matter.
Photons in dense nuclear matter: Random-phase approximation
NASA Astrophysics Data System (ADS)
Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay
2018-04-01
We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.
Dark matter search results from the PICO-60 CF 3 I bubble chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amole, C.; Ardid, M.; Asner, D. M.
2016-03-01
New data are reported from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 livedays, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C3F8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timing behaviors inconsistent withmore » those expected from a dark matter signal. These behaviors allow for analysis cuts to remove all background events while retaining 48.2% of the exposure. Stringent limits on weakly interacting massive particles interacting via spin-dependent proton and spin-independent processes are set, and most interpretations of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei are ruled out.« less
Beyond minimal lepton-flavored Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Mu-Chun; Huang, Jinrui; Takhistov, Volodymyr
In this paper ,we consider a class of flavored dark matter (DM) theories where dark matter interacts with the Standard Model lepton fields at the renormalizable level. We allow for a general coupling matrix between the dark matter and leptons whose structure is beyond the one permitted by the minimal flavor violation (MFV) assumption. It is assumed that this is the only new source of flavor violation in addition to the Standard Model (SM) Yukawa interactions. The setup can be described by augmenting the SM flavor symmetry by an additional SU(3) χ, under which the dark matter χ transforms. Thismore » framework is especially phenomenologically rich, due to possible novel flavor-changing interactions which are not present within the more restrictive MFV framework. As a representative case study of this setting, which we call “beyond MFV” (BMFV), we consider Dirac fermion dark matter which transforms as a singlet under the SM gauge group and a triplet under SU(3) χ. The DM fermion couples to the SM lepton sector through a scalar mediator Φ. Unlike the case of quark-flavored DM, we show that there is no Z 3 symmetry within either the MFV or BMFV settings which automatically stabilizes the lepton-flavored DM. We discuss constraints on this setup from flavor-changing processes, DM relic abundance as well as direct and indirect detections. We find that relatively large flavor-changing couplings are possible, while the dark matter mass is still within the phenomenologically interesting region below the TeV scale. Collider signatures which can be potentially searched for at the lepton and hadron colliders are discussed. Finally, we discuss the implications for decaying dark matter, which can appear if an additional stabilizing symmetry is not imposed.« less
Beyond minimal lepton-flavored Dark Matter
Chen, Mu-Chun; Huang, Jinrui; Takhistov, Volodymyr
2016-02-09
In this paper ,we consider a class of flavored dark matter (DM) theories where dark matter interacts with the Standard Model lepton fields at the renormalizable level. We allow for a general coupling matrix between the dark matter and leptons whose structure is beyond the one permitted by the minimal flavor violation (MFV) assumption. It is assumed that this is the only new source of flavor violation in addition to the Standard Model (SM) Yukawa interactions. The setup can be described by augmenting the SM flavor symmetry by an additional SU(3) χ, under which the dark matter χ transforms. Thismore » framework is especially phenomenologically rich, due to possible novel flavor-changing interactions which are not present within the more restrictive MFV framework. As a representative case study of this setting, which we call “beyond MFV” (BMFV), we consider Dirac fermion dark matter which transforms as a singlet under the SM gauge group and a triplet under SU(3) χ. The DM fermion couples to the SM lepton sector through a scalar mediator Φ. Unlike the case of quark-flavored DM, we show that there is no Z 3 symmetry within either the MFV or BMFV settings which automatically stabilizes the lepton-flavored DM. We discuss constraints on this setup from flavor-changing processes, DM relic abundance as well as direct and indirect detections. We find that relatively large flavor-changing couplings are possible, while the dark matter mass is still within the phenomenologically interesting region below the TeV scale. Collider signatures which can be potentially searched for at the lepton and hadron colliders are discussed. Finally, we discuss the implications for decaying dark matter, which can appear if an additional stabilizing symmetry is not imposed.« less
Asymmetric dark matter and the hadronic spectra of hidden QCD
NASA Astrophysics Data System (ADS)
Lonsdale, Stephen J.; Schroor, Martine; Volkas, Raymond R.
2017-09-01
The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark matter may have similar mass to the proton, while mirror matter and G ×G grand unified theories provide rationales for additional gauge sectors which may have minimal interactions with standard model particles. In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the number of light colored particles and the value of the confinement scale on the lightest stable state, the dark matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic states.
Gravitational collapse of dark matter interacting with dark energy: Black hole formation
NASA Astrophysics Data System (ADS)
Shah, Hasrat Hussain; Iqbal, Quaid
In this work, we study the gravitational collapsing process of a spherically symmetric star constitute of Dark Matter (DM), ρM, and Dark Energy (DE) ρ. In this model, we use anisotropic pressure with Equation of State (EoS) pt = λρ and pr = lρ, (l + 2λ < -1). It reveals that gravitational collapse of DM and DE with interaction leads to the formation of the black hole. When l + 2λ < -3 (phantoms), dust and phantoms could be ejected from the death of white hole. This emitted matter again undergoes to collapsing process and becomes the black hole. This study gives the generalization for isotropy of pressure in the fluid to anisotropy when there will be interaction between DM and DE.
Dynamics of viscous cosmologies in the full Israel-Stewart formalism
NASA Astrophysics Data System (ADS)
Lepe, Samuel; Otalora, Giovanni; Saavedra, Joel
2017-07-01
A detailed dynamical analysis for a bulk viscosity model in the full Israel-Stewart formalism for a spatially flat Friedmann-Robertson-Walker universe is performed. In our study we have considered the total cosmic fluid constituted by radiation, dark matter, and dark energy. The dark matter fluid is treated as an imperfect fluid which has a bulk viscosity that depends on its energy density in the usual form ξ (ρm)=ξ0ρm1 /2, whereas the other components are assumed to behave as perfect fluids with constant equation of state parameter. We show that the thermal history of the Universe is reproduced provided that the viscous coefficient satisfies the condition ξ0≪1 , either for a zero or a suitable nonzero coupling between dark energy and viscous dark matter. In this case, the final attractor is a dark-energy-dominated, accelerating universe, with an effective equation of state parameter in the quintessence-like, cosmological constant-like, or phantom-like regime, in agreement with observations. As our main result, we show that in order to obtain a viable cosmological evolution and at the same time alleviating the cosmological coincidence problem via the mechanism of scaling solution, an explicit interaction between dark energy and viscous dark matter seems inevitable. This result is consistent with the well-known fact that models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. Furthermore, by insisting on above, we show that in the present context a phantom nature of this interacting dark energy fluid is also favored.
Searching for dark matter-dark energy interactions: Going beyond the conformal case
NASA Astrophysics Data System (ADS)
van de Bruck, Carsten; Mifsud, Jurgen
2018-01-01
We consider several cosmological models which allow for nongravitational direct couplings between dark matter and dark energy. The distinguishing cosmological features of these couplings can be probed by current cosmological observations, thus enabling us to place constraints on these specific interactions which are composed of the conformal and disformal coupling functions. We perform a global analysis in order to independently constrain the conformal, disformal, and mixed interactions between dark matter and dark energy by combining current data from: Planck observations of the cosmic microwave background radiation anisotropies, a combination of measurements of baryon acoustic oscillations, a supernova type Ia sample, a compilation of Hubble parameter measurements estimated from the cosmic chronometers approach, direct measurements of the expansion rate of the Universe today, and a compilation of growth of structure measurements. We find that in these coupled dark-energy models, the influence of the local value of the Hubble constant does not significantly alter the inferred constraints when we consider joint analyses that include all cosmological probes. Moreover, the parameter constraints are remarkably improved with the inclusion of the growth of structure data set measurements. We find no compelling evidence for an interaction within the dark sector of the Universe.
Aad, G.
2015-02-24
This article reports on a search for dark matter pair production in association with bottom or top quarks in 20.3 fb –1 of pp collisions collected at √s=8 TeV by the ATLAS detector at the LHC. Events with large missing transverse momentum are selected when produced in association with high-momentum jets of which one or more are identified as jets containing b-quarks. Final states with top quarks are selected by requiring a high jet multiplicity and in some cases a single lepton. The data are found to be consistent with the Standard Model expectations and limits are set on themore » mass scale of effective field theories that describe scalar and tensor interactions between dark matter and Standard Model particles. Limits on the dark-matter–nucleon cross-section for spin-independent and spin-dependent interactions are also provided. These limits are particularly strong for low-mass dark matter. Using a simplified model, constraints are set on the mass of dark matter and of a colored mediator suitable to explain a possible signal of annihilating dark matter.« less
Dark Matter Decay between Phase Transitions at the Weak Scale.
Baker, Michael J; Kopp, Joachim
2017-08-11
We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S_{3} and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S_{3} potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.
Dark Matter Decay between Phase Transitions at the Weak Scale
NASA Astrophysics Data System (ADS)
Baker, Michael J.; Kopp, Joachim
2017-08-01
We propose a new alternative to the weakly interacting massive particle paradigm for dark matter. Rather than being determined by thermal freeze-out, the dark matter abundance in this scenario is set by dark matter decay, which is allowed for a limited amount of time just before the electroweak phase transition. More specifically, we consider fermionic singlet dark matter particles coupled weakly to a scalar mediator S3 and to auxiliary dark sector fields, charged under the standard model gauge groups. Dark matter freezes out while still relativistic, so its abundance is initially very large. As the Universe cools down, the scalar mediator develops a vacuum expectation value (VEV), which breaks the symmetry that stabilizes dark matter. This allows dark matter to mix with charged fermions and decay. During this epoch, the dark matter abundance is reduced to give the value observed today. Later, the SM Higgs field also develops a VEV, which feeds back into the S3 potential and restores the dark sector symmetry. In a concrete model we show that this "VEV flip-flop" scenario is phenomenologically successful in the most interesting regions of its parameter space. We also comment on detection prospects at the LHC and elsewhere.
Supermassive dark-matter Q-balls in galactic centers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troitsky, Sergey; Moscow Institute for Physics and Technology,Institutskii per. 9, 141700, Dolgoprudny, Moscow Region
2016-11-11
Though widely accepted, it is not proven that supermassive compact objects (SMCOs) residing in galactic centers are black holes. In particular, the Milky Way’s SMCO can be a giant nontopological soliton, Q-ball, made of a scalar field: this fits perfectly all observational data. Similar but tiny Q-balls produced in the early Universe may constitute, partly or fully, the dark matter. This picture explains in a natural way, why our SMCO has very low accretion rate and why the observed angular size of the corresponding radio source is much smaller than expected. Interactions between dark-matter Q-balls may explain how SMCOs weremore » seeded in galaxies and resolve well-known problems of standard (non-interacting) dark matter.« less
Mass, Energy, Space And Time System Theory---MEST A way to help our earth
NASA Astrophysics Data System (ADS)
Cao, Dayong
2009-03-01
There are two danger to our earth. The first, the sun will expand to devour our earth, for example, the ozonosphere of our earth is be broken; The second, the asteroid will impact near our earth. According to MEST, there is a interaction between Black hole (and Dark matter-energy) and Solar system. The orbit of Jupiter is a boundary of the interaction between Black hole (and Dark matter-energy) and Solar system. Because there are four terrestrial planets which is mass-energy center as solar system, and there are four or five Jovian planets which is gas (space-time) center as black hole system. According to MEST, dark matter-energy take the velocity of Jupiter gose up. So there are a lot of asteroids and dark matter-energy near the orbit of Jupiter-the boundary. Dark matter-energy can change the orbit of asteroid, and take it impacted near our earth. Because the Dark matter-energy will pressure the Solar system. It is a inverse process with sun's expandedness. So the ``two danger'' is from a new process of the balance system between Black hole (and Dark matter-energy) and Solar system. According to MEST, We need to find the right point for our earth in the ``new process of the balance system.''
Superheavy dark matter through Higgs portal operators
NASA Astrophysics Data System (ADS)
Kolb, Edward W.; Long, Andrew J.
2017-11-01
The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.
Studying generalised dark matter interactions with extended halo-independent methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahlhoefer, Felix; Wild, Sebastian
2016-10-20
The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysicalmore » uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.« less
Probing the stability of superheavy dark matter particles with high-energy neutrinos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esmaili, Arman; Peres, Orlando L.G.; Ibarra, Alejandro, E-mail: aesmaili@ifi.unicamp.br, E-mail: ibarra@tum.de, E-mail: orlando@ifi.unicamp.br
2012-11-01
Two of the most fundamental properties of the dark matter particle, the mass and the lifetime, are only weakly constrained by the astronomical and cosmological evidence of dark matter. We derive in this paper lower limits on the lifetime of dark matter particles with masses in the range 10TeV−10{sup 15}TeV from the non-observation of ultrahigh energy neutrinos in the AMANDA, IceCube, Auger and ANITA experiments. For dark matter particles which produce neutrinos in a two body or a three body leptonic decay, we find that the dark matter lifetime must be longer than O(10{sup 26}−10{sup 28})s for masses between 10more » TeV and the Grand Unification scale. Finally, we also calculate, for concrete particle physics scenarios, the limits on the strength of the interactions that induce the dark matter decay.« less
Detecting Stealth Dark Matter Directly through Electromagnetic Polarizability
Appelquist, T.; Berkowitz, E.; Brower, R. C.; ...
2015-10-23
We calculate the spin-independent scattering cross section for direct detection that results from the electromagnetic polarizability of a composite scalar “stealth baryon” dark matter candidate, arising from a dark SU(4) confining gauge theory—“stealth dark matter.” In the nonrelativistic limit, electromagnetic polarizability proceeds through a dimension-7 interaction leading to a very small scattering cross section for dark matter with weak-scale masses. This represents a lower bound on the scattering cross section for composite dark matter theories with electromagnetically charged constituents. We carry out lattice calculations of the polarizability for the lightest “baryon” states in SU(3) and SU(4) gauge theories using themore » background field method on quenched configurations. We find the polarizabilities of SU(3) and SU(4) to be comparable (within about 50%) normalized to the stealth baryon mass, which is suggestive for extensions to larger SU(N) groups. The resulting scattering cross sections with a xenon target are shown to be possibly detectable in the dark matter mass range of about 200–700 GeV, where the lower bound is from the existing LUX constraint while the upper bound is the coherent neutrino background. Significant uncertainties in the cross section remain due to the more complicated interaction of the polarizablity operator with nuclear structure; however, the steep dependence on the dark matter mass, 1/m 6 B, suggests the observable dark matter mass range is not appreciably modified. We highlight collider searches for the mesons in the theory as well as the indirect astrophysical effects that may also provide excellent probes of stealth dark matter.« less
Chiral gravitational waves and baryon superfluid dark matter
NASA Astrophysics Data System (ADS)
Alexander, Stephon; McDonough, Evan; Spergel, David N.
2018-05-01
We develop a unified model of darkgenesis and baryogenesis involving strongly interacting dark quarks, utilizing the gravitational anomaly of chiral gauge theories. In these models, both the visible and dark baryon asymmetries are generated by the gravitational anomaly induced by the presence of chiral primordial gravitational waves. We provide a concrete model of an SU(2) gauge theory with two massless quarks. In this model, the dark quarks condense and form a dark baryon charge superfluid (DBS), in which the Higgs-mode acts as cold dark matter. We elucidate the essential features of this dark matter scenario and discuss its phenomenological prospects.
GeV-scale dark matter: Production at the main injector
Dobrescu, Bogdan A.; Frugiuele, Claudia
2015-02-03
In this study, assuming that dark matter particles interact with quarks via a GeV-scale mediator, we study dark matter production in fixed target collisions. The ensuing signal in a neutrino near detector consists of neutral-current events with an energy distribution peaked at higher values than the neutrino background. We find that for a Z' boson of mass around a few GeV that decays to dark matter particles, the dark matter beam produced by the Main Injector at Fermilab allows the exploration of a range of values for the gauge coupling that currently satisfy all experimental constraints. The NOνA near detectormore » is well positioned for probing the presence of a dark matter beam, and future LBNF near detectors would provide more sensitive probes.« less
Lincoln, Don
2018-01-16
Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.
Dark matter and the equivalence principle
NASA Technical Reports Server (NTRS)
Frieman, Joshua A.; Gradwohl, Ben-Ami
1991-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. The astrophysical and cosmological implications of a long-range force coupled only to the dark matter are discussed and rather tight constraints on its strength are found. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). Such an interaction also has unusual implications for the growth of large-scale structure.
Current status of direct dark matter detection experiments
NASA Astrophysics Data System (ADS)
Liu, Jianglai; Chen, Xun; Ji, Xiangdong
2017-03-01
Much like ordinary matter, dark matter might consist of elementary particles, and weakly interacting massive particles are one of the prime suspects. During the past decade, the sensitivity of experiments trying to directly detect them has improved by three to four orders of magnitude, but solid evidence for their existence is yet to come. We overview the recent progress in direct dark matter detection experiments and discuss future directions.
Flavored dark matter beyond Minimal Flavor Violation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin
We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less
Flavored dark matter beyond Minimal Flavor Violation
Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin
2014-10-13
We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less
Prospects for distinguishing dark matter models using annual modulation
Witte, Samuel J.; Gluscevic, Vera; McDermott, Samuel D.
2017-02-24
It has recently been demonstrated that, in the event of a putative signal in dark matter direct detection experiments, properly identifying the underlying dark matter-nuclei interaction promises to be a challenging task. Given the most optimistic expectations for the number counts of recoil events in the forthcoming Generation 2 experiments, differentiating between interactions that produce distinct features in the recoil energy spectra will only be possible if a strong signal is observed simultaneously on a variety of complementary targets. However, there is a wide range of viable theories that give rise to virtually identical energy spectra, and may only differmore » by the dependence of the recoil rate on the dark matter velocity. In this work, we investigate how degeneracy between such competing models may be broken by analyzing the time dependence of nuclear recoils, i.e. the annual modulation of the rate. For this purpose, we simulate dark matter events for a variety of interactions and experiments, and perform a Bayesian model-selection analysis on all simulated data sets, evaluating the chance of correctly identifying the input model for a given experimental setup. Lastly, we find that including information on the annual modulation of the rate may significantly enhance the ability of a single target to distinguish dark matter models with nearly degenerate recoil spectra, but only with exposures beyond the expectations of Generation 2 experiments.« less
Primordial 4He constraints on inelastic macro dark matter revisited
NASA Astrophysics Data System (ADS)
Jacobs, David M.; Allwright, Gwyneth; Mafune, Mpho; Manikumar, Samyukta; Weltman, Amanda
2016-11-01
At present, the best model for the evolution of the cosmos requires that dark matter make up approximately 25% of the energy content of the Universe. Most approaches to explain the microscopic nature of dark matter, to date, have assumed its composition to be of intrinsically weakly interacting particles; however, this need not be the case to have consistency with all extant observations. Given decades of inconclusive evidence to support any dark matter candidate, there is strong motivation to consider alternatives to the standard particle scenario. One such example is macro dark matter, a class of candidates (macros) that could interact strongly with the particles of the Standard Model, have large masses and physical sizes, and yet behave as dark matter. Macros that scatter completely inelastically could have altered the primordial production of the elements, and macro charge-dependent constraints have been obtained previously. Here we reconsider the phenomenology of inelastically interacting macros on the abundance of primordially produced 4He and revise previous constraints by also taking into account improved measurements of the primordial 4He abundance. The constraints derived here are limited in applicability to only leptophobic macros that have a surface potential V (RX)≳0.5 MeV . However, an important conclusion from our analysis is that even neutral macros would likely affect the abundance of the light elements. Therefore, constraints on that scenario are possible and are currently an open question.
On the direct detection of multi-component dark matter: sensitivity studies and parameter estimation
NASA Astrophysics Data System (ADS)
Herrero-Garcia, Juan; Scaffidi, Andre; White, Martin; Williams, Anthony G.
2017-11-01
We study the case of multi-component dark matter, in particular how direct detection signals are modified in the presence of several stable weakly-interacting-massive particles. Assuming a positive signal in a future direct detection experiment, stemming from two dark matter components, we study the region in parameter space where it is possible to distinguish a one from a two-component dark matter spectrum. First, we leave as free parameters the two dark matter masses and show that the two hypotheses can be significantly discriminated for a range of dark matter masses with their splitting being the critical factor. We then investigate how including the effects of different interaction strengths, local densities or velocity dispersions for the two components modifies these conclusions. We also consider the case of isospin-violating couplings. In all scenarios, we show results for various types of nuclei both for elastic spin-independent and spin-dependent interactions. Finally, assuming that the two-component hypothesis is confirmed, we quantify the accuracy with which the parameters can be extracted and discuss the different degeneracies that occur. This includes studying the case in which only a single experiment observes a signal, and also the scenario of having two signals from two different experiments, in which case the ratios of the couplings to neutrons and protons may also be extracted.
Possible interaction between baryons and dark-matter particles revealed by the first stars
NASA Astrophysics Data System (ADS)
Barkana, Rennan
2018-03-01
The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars. By observing this 21-centimetre signal—either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers—we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.
Possible interaction between baryons and dark-matter particles revealed by the first stars.
Barkana, Rennan
2018-02-28
The cosmic radio-frequency spectrum is expected to show a strong absorption signal corresponding to the 21-centimetre-wavelength transition of atomic hydrogen around redshift 20, which arises from Lyman-α radiation from some of the earliest stars. By observing this 21-centimetre signal-either its sky-averaged spectrum or maps of its fluctuations, obtained using radio interferometers-we can obtain information about cosmic dawn, the era when the first astrophysical sources of light were formed. The recent detection of the global 21-centimetre spectrum reveals a stronger absorption than the maximum predicted by existing models, at a confidence level of 3.8 standard deviations. Here we report that this absorption can be explained by the combination of radiation from the first stars and excess cooling of the cosmic gas induced by its interaction with dark matter. Our analysis indicates that the spatial fluctuations of the 21-centimetre signal at cosmic dawn could be an order of magnitude larger than previously expected and that the dark-matter particle is no heavier than several proton masses, well below the commonly predicted mass of weakly interacting massive particles. Our analysis also confirms that dark matter is highly non-relativistic and at least moderately cold, and primordial velocities predicted by models of warm dark matter are potentially detectable. These results indicate that 21-centimetre cosmology can be used as a dark-matter probe.
Multi-component dark matter through a radiative Higgs portal
DiFranzo, Anthony; Univ. of California, Irvine, CA; Rutgers Univ., Piscataway, NJ; ...
2017-01-18
Here, we study a multi-component dark matter model where interactions with the Standard Model are primarily via the Higgs boson. The model contains vector-like fermions charged undermore » $$SU(2)_W \\times U(1)_Y$$ and under the dark gauge group, $$U(1)^\\prime$$. This results in two dark matter candidates. A spin-1 and a spin-1/2 candidate, which have loop and tree-level couplings to the Higgs, respectively. We explore the resulting effect on the dark matter relic abundance, while also evaluating constraints on the Higgs invisible width and from direct detection experiments. Generally, we find that this model is highly constrained when the fermionic candidate is the predominant fraction of the dark matter relic abundance.« less
Theoretical Comparison Between Candidates for Dark Matter
NASA Astrophysics Data System (ADS)
McKeough, James; Hira, Ajit; Valdez, Alexandra
2017-01-01
Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.
Pinning down inelastic dark matter in the Sun and in direct detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juhg@kth.se
2016-04-01
We study the solar capture rate of inelastic dark matter with endothermic and/or exothermic interactions. By assuming that an inelastic dark matter signal will be observed in next generation direct detection experiments we can set a lower bound on the capture rate that is independent of the local dark matter density, the velocity distribution, the galactic escape velocity as well as the scattering cross section. In combination with upper limits from neutrino observatories we can place upper bounds on the annihilation channels leading to neutrinos. We find that, while endothermic scattering limits are weak in the isospin-conserving case, strong boundsmore » may be set for exothermic interactions, in particular in the spin-dependent case. Furthermore, we study the implications of observing two direct detection signals, in which case one can halo-independently obtain the dark matter mass and the mass splitting, and disentangle the endothermic/exothermic nature of the scattering. Finally we discuss isospin violation.« less
Solving the Dark Matter Problem
Baltz, Ted
2018-05-11
Cosmological observations have firmly established that the majority of matter in the universe is of an unknown type, called 'dark matter'. A compelling hypothesis is that the dark matter consists of weakly interacting massive particles (WIMPs) in the mass range around 100 GeV. If the WIMP hypothesis is correct, such particles could be created and studied at accelerators. Furthermore they could be directly detected as the primary component of our galaxy. Solving the dark matter problem requires that the connection be made between the two. We describe some theoretical and experimental avenues that might lead to this connection.
Dark Influences at the Threshold of Galaxy Formation
NASA Astrophysics Data System (ADS)
Boylan-Kolchin, Michael
As the faintest, lowest-luminosity, and most dark-matter-dominated extremes of the galaxy population, dwarf galaxies present unique opportunities for studying galaxy formation and the properties of dark matter. Accordingly, they have been observed in detail from the ground and (by NASA missions) from space with the hopes of unraveling how dwarf galaxies form, the effects of reionization on galaxy formation, and whether signatures of the particle nature of dark matter (DM) interactions can be observed. Such work has gained in importance as efforts to directly detect DM have so far yielded only upper limits to the interaction between DM and normal matter, leaving astrophysical tests as the primary means of investigating the nature of DM. We propose to undertake an extensive yet focused program of cosmological hydrodynamic simulations aimed at understanding the formation of dwarf galaxies. We will focus on the interplay between galaxy formation and dark matter in these galaxies, pointing toward specific observables to disentangle the effects of galaxy formation physics from the effects of DM physics. Our simulation suite will explore collisionless Cold Dark Matter (CDM) and broad classes of alternatives, where DM has a nonnegligible free-streaming length and / or self-scattering cross section. The novel aspects of the proposed work will include: (1) a modern treatment of baryonic physics using GIZMO, a new code that uses accurate meshless methods for hydrodynamics; (2) Feedback In Realistic Environments (FIRE), a suite of galaxy formation parametrizations with well-tested, explicit implementations of stellar feedback; (3) an exploration of realistic models of DM beyond CDM based on an effective theory of structure formation, with full baryonic physics; and (4) detailed mock observations of the simulations in order to identify specific, distinguishing tests for CDM and its alternatives. Our research will provide a framework within which astrophysical inferences about the nature of DM can be fairly and self-consistently tested. Crucially, we will explore uncertain aspects of galaxy formation and DM physics in a controlled manner, focusing on the halo mass range - 9.5 < log10(M/M_sun) < 10.5 - where current models are most uncertain. This will mark a major effort to systematically study different DM models combined with realistic treatments of galaxy formation physics that are implemented in an identical way for the various DM models. The results of the proposed research will be dramatic improvements in the understanding of how baryonic versus DM physics affect astrophysical observables. Such a study is very timely, as observations of dwarf galaxies in and beyond the Local Group have progressed substantially in recent years, with new revelations about dwarfs' DM content, star formation histories, and stellar metallicities challenging previous interpretations.
Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector
NASA Astrophysics Data System (ADS)
Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue
2017-10-01
All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.
Light dark matter in superfluid helium: Detection with multi-excitation production
Knapen, Simon; Lin, Tongyan; Zurek, Kathryn M.
2017-03-22
We examine in depth a recent proposal to utilize superfluid helium for direct detection of sub-MeV mass dark matter. For sub-keV recoil energies, nuclear scattering events in liquid helium primarily deposit energy into long-lived phonon and roton quasiparticle excitations. If the energy thresholds of the detector can be reduced to the meV scale, then dark matter as light as ~MeV can be reached with ordinary nuclear recoils. If, on the other hand, two or more quasiparticle excitations are directly produced in the dark matter interaction, the kinematics of the scattering allows sensitivity to dark matter as light as ~keV atmore » the same energy resolution. We present in detail the theoretical framework for describing excitations in superfluid helium, using it to calculate the rate for the leading dark matter scattering interaction, where an off-shell phonon splits into two or more higher-momentum excitations. Here, we validate our analytic results against the measured and simulated dynamic response of superfluid helium. Finally, we apply this formalism to the case of a kinetically mixed hidden photon in the superfluid, both with and without an external electric field to catalyze the processes.« less
Neutrino Oscillations as a Probe of Light Scalar Dark Matter.
Berlin, Asher
2016-12-02
We consider a class of models involving interactions between ultralight scalar dark matter and standard model neutrinos. Such couplings modify the neutrino mass splittings and mixing angles to include additional components that vary in time periodically with a frequency and amplitude set by the mass and energy density of the dark matter. Null results from recent searches for anomalous periodicities in the solar neutrino flux strongly constrain the dark matter-neutrino coupling to be orders of magnitude below current and projected limits derived from observations of the cosmic microwave background.
Possible Dark Matter Annihilation Signal in the AMS-02 Antiproton Data.
Cui, Ming-Yang; Yuan, Qiang; Tsai, Yue-Lin Sming; Fan, Yi-Zhong
2017-05-12
Using the latest AMS-02 cosmic-ray antiproton flux data, we search for a potential dark matter annihilation signal. The background parameters about the propagation, source injection, and solar modulation are not assumed a priori but based on the results inferred from the recent B/C ratio and proton data measurements instead. The possible dark matter signal is incorporated into the model self-consistently under a Bayesian framework. Compared with the astrophysical background-only hypothesis, we find that a dark matter signal is favored. The rest mass of the dark matter particles is ∼20-80 GeV, and the velocity-averaged hadronic annihilation cross section is about (0.2-5)×10^{-26} cm^{3} s^{-1}, in agreement with that needed to account for the Galactic center GeV excess and/or the weak GeV emission from dwarf spheroidal galaxies Reticulum 2 and Tucana III. Tight constraints on the dark matter annihilation models are also set in a wide mass region.
Collider study on the loop-induced dark matter mediation
NASA Astrophysics Data System (ADS)
Tsai, Yuhsin
2016-06-01
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling - given by the Dark Penguin - in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results to constraints from the direct detection experiments.
Constraints on the coupling between dark energy and dark matter from CMB data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murgia, R.; Gariazzo, S.; Fornengo, N., E-mail: riccardo.murgia@sissa.it, E-mail: gariazzo@to.infn.it, E-mail: fornengo@to.infn.it
2016-04-01
We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both models are found to be compatible with all cosmological observables, but in the case where dark matter decays into dark energy, the tension with the independent determinations of H{sub 0} and σ{sub 8}, alreadymore » present for standard cosmology, increases: this model in fact predicts lower H{sub 0} and higher σ{sub 8}, mostly as a consequence of the higher amount of dark matter at early times, leading to a stronger clustering during the evolution. Instead, when dark matter is fed by dark energy, the reconstructed values of H{sub 0} and σ{sub 8} nicely agree with their local determinations, with a full reconciliation between high- and low-redshift observations. A non-zero coupling between dark energy and dark matter, with an energy flow from the former to the latter, appears therefore to be in better agreement with cosmological data.« less
Binary pulsars as probes of a Galactic dark matter disk
NASA Astrophysics Data System (ADS)
Caputo, Andrea; Zavala, Jesús; Blas, Diego
2018-03-01
As a binary pulsar moves through a wind of dark matter particles, the resulting dynamical friction modifies the binary's orbit. We study this effect for the double disk dark matter (DDDM) scenario, where a fraction of the dark matter is dissipative and settles into a thin disk. For binaries within the dark disk, this effect is enhanced due to the higher dark matter density and lower velocity dispersion of the dark disk, and due to its co-rotation with the baryonic disk. We estimate the effect and compare it with observations for two different limits in the Knudsen number (Kn). First, in the case where DDDM is effectively collisionless within the characteristic scale of the binary (Kn ≫ 1) and ignoring the possible interaction between the pair of dark matter wakes. Second, in the fully collisional case (Kn ≪ 1), where a fluid description can be adopted and the interaction of the pair of wakes is taken into account. We find that the change in the orbital period is of the same order of magnitude in both limits. A comparison with observations reveals good prospects to probe currently allowed DDDM models with timing data from binary pulsars in the near future. We finally comment on the possibility of extending the analysis to the intermediate (rarefied gas) case with Kn ∼ 1.
Dark Matter Freeze-in Production in Fast-Expanding Universes
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano
2018-02-01
If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified cosmological history can drastically affect the abundance of relic dark matter particles. Here, we assume that an additional species to radiation dominates at early times, causing the expansion rate at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter abundance to be as large as observations, couplings between the dark matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds some optimistic prospects for the otherwise dire experimental and observational outlook of detecting dark matter produced by freeze-in.
Matter Under Extreme Conditions
2006-03-01
decay of topological defects, or dark matter particles; however, also the acceleration of protons to high energy, and their subsequent interaction to...dominating now and why does it have a comparable contribution to the energy density as the dark matter ? I will try and introduce the observational
Dynamics of one-dimensional self-gravitating systems using Hermite-Legendre polynomials
NASA Astrophysics Data System (ADS)
Barnes, Eric I.; Ragan, Robert J.
2014-01-01
The current paradigm for understanding galaxy formation in the Universe depends on the existence of self-gravitating collisionless dark matter. Modelling such dark matter systems has been a major focus of astrophysicists, with much of that effort directed at computational techniques. Not surprisingly, a comprehensive understanding of the evolution of these self-gravitating systems still eludes us, since it involves the collective non-linear dynamics of many particle systems interacting via long-range forces described by the Vlasov equation. As a step towards developing a clearer picture of collisionless self-gravitating relaxation, we analyse the linearized dynamics of isolated one-dimensional systems near thermal equilibrium by expanding their phase-space distribution functions f(x, v) in terms of Hermite functions in the velocity variable, and Legendre functions involving the position variable. This approach produces a picture of phase-space evolution in terms of expansion coefficients, rather than spatial and velocity variables. We obtain equations of motion for the expansion coefficients for both test-particle distributions and self-gravitating linear perturbations of thermal equilibrium. N-body simulations of perturbed equilibria are performed and found to be in excellent agreement with the expansion coefficient approach over a time duration that depends on the size of the expansion series used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter ideamore » is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.« less
Interacting dark energy models as an approach for solving Cosmic Coincidence Problem
NASA Astrophysics Data System (ADS)
Shojaei, Hamed
Understanding the dark side of the Universe is one of the main tasks of physicists. As there is no thorough understanding of nature of the dark energy, this area is full of new ideas and there may be several discoveries, theoretical or experimental, in the near future. We know that dark energy, though not detected directly, exists and it is not just an exotic idea. The presence of dark energy is required by the observation of the acceleration of the universe. There are several questions regarding dark energy. What is the nature of dark energy? How does it interact with matter, baryonic or dark? Why is the density of dark energy so tiny, i.e. why rhoΛ ≈ 10--120 M4Pl ? And finally why does its density have the same order of magnitude as the density of matter does at the present time? The last question is one form of what is known as the "Cosmic Coincidence Problem" and in this work, I have been investigating one way to resolve this issue. Observations of Type Ia supernovae indicate that we are in an accelerating universe. A matter-dominated universe cannot be accelerating. A good fit is obtained if we assume that energy density parameters are O Λ = 0.7 and Om = 0.3. Here O Λ is related to dark energy, or cosmological constant in ΛCDM model. At the same time data from Wilkinson Microwave Anisotropy Probe (WMAP) satellite and supernova surveys have placed a constraint on w, the equation of state for dark energy, which is actually the ratio of pressure and energy density. Any good theory needs to explain this coincidence problem and yields a value for w between -1.1 and -0.9. I have employed an interesting approach to solve this problem by assuming that there exists an interaction between dark energy and matter in the context of holographic dark energy. This interaction converts dark energy to matter or vice versa without violating the local conservation of energy in the universe. Holographic dark energy by itself indicates that the value of dark energy is related to the surface of a horizon. In this work, interacting dark energy models are considered in flat and curved spacetime, and their properties have been explored. Adding interaction to the equations of motion, creates new equilibrium solutions for the evolution of the universe. Adjusting parameters in the theory yields equilibrium solutions which are very close to the universe at the present time. In this sense, being in a universe where dark energy density and matter density are comparable is not a coincidence anymore. We don't just happen to be in this era. This situation is the equilibrium situation which the universe had been driven toward and there is no coincidence at all. I believe these models are not just for resolving the cosmic coincidence problem. They are capable of explaining the universe in all of its evolutionary stages. Upon finding the correct interaction, a task which is still under investigation, one is able to have a whole picture for the universe from the beginning, before inflation, until now. Finding that interaction also will help to discover the fundamental theory which explains the nature of dark energy.
New Models and Methods for the Electroweak Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Linda
2017-09-26
This is the Final Technical Report to the US Department of Energy for grant DE-SC0013529, New Models and Methods for the Electroweak Scale, covering the time period April 1, 2015 to March 31, 2017. The goal of this project was to maximize the understanding of fundamental weak scale physics in light of current experiments, mainly the ongoing run of the Large Hadron Collider and the space based satellite experiements searching for signals Dark Matter annihilation or decay. This research program focused on the phenomenology of supersymmetry, Higgs physics, and Dark Matter. The properties of the Higgs boson are currently beingmore » measured by the Large Hadron collider, and could be a sensitive window into new physics at the weak scale. Supersymmetry is the leading theoretical candidate to explain the natural nessof the electroweak theory, however new model space must be explored as the Large Hadron collider has disfavored much minimal model parameter space. In addition the nature of Dark Matter, the mysterious particle that makes up 25% of the mass of the universe is still unknown. This project sought to address measurements of the Higgs boson couplings to the Standard Model particles, new LHC discovery scenarios for supersymmetric particles, and new measurements of Dark Matter interactions with the Standard Model both in collider production and annihilation in space. Accomplishments include new creating tools for analyses of Dark Matter models in Dark Matter which annihilates into multiple Standard Model particles, including new visualizations of bounds for models with various Dark Matter branching ratios; benchmark studies for new discovery scenarios of Dark Matter at the Large Hardon Collider for Higgs-Dark Matter and gauge boson-Dark Matter interactions; New target analyses to detect direct decays of the Higgs boson into challenging final states like pairs of light jets, and new phenomenological analysis of non-minimal supersymmetric models, namely the set of Dirac Gaugino Models.« less
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.;
2011-01-01
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(exp -26) cm(exp 3) / s at 5 GeV to about 5 X 10(exp -23) cm(exp 3)/ s at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (approx 3 X 10(exp -26) cm(exp 3)/s for a purely s-wave cross section), without assuming additional boost factors.
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cañadas, B.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jeltema, T. E.; Jóhannesson, G.; Johnson, R. P.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Profumo, S.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strigari, L.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.; Kaplinghat, M.; Martinez, G. D.
2011-12-01
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10-26cm3s-1 at 5 GeV to about 5×10-23cm3s-1 at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (˜3×10-26cm3s-1 for a purely s-wave cross section), without assuming additional boost factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% con dence level upper limits range from about 10 -26 cm3s -1 at 5 GeV to about 5 X10 -23 cm3smore » -1 at 1 TeV, depending on the dark matter annihilation nal state. For the rst time, using gamma rays, we are able to rule out models with the most generic cross section (~ 3 X 10 -26 cm 3s -1 for a purely s-wave cross section), without assuming additional boost factors.« less
Ackermann, M.
2011-12-01
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% con dence level upper limits range from about 10 -26 cm3s -1 at 5 GeV to about 5 X10 -23 cm3smore » -1 at 1 TeV, depending on the dark matter annihilation nal state. For the rst time, using gamma rays, we are able to rule out models with the most generic cross section (~ 3 X 10 -26 cm 3s -1 for a purely s-wave cross section), without assuming additional boost factors.« less
Phenomenology of left-right symmetric dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Cely, Camilo; Heeck, Julian, E-mail: Camilo.Alfredo.Garcia.Cely@ulb.ac.be, E-mail: Julian.Heeck@ulb.ac.be
We present a detailed study of dark matter phenomenology in low-scale left-right symmetric models. Stability of new fermion or scalar multiplets is ensured by an accidental matter parity that survives the spontaneous symmetry breaking of the gauge group by scalar triplets. The relic abundance of these particles is set by gauge interactions and gives rise to dark matter candidates with masses above the electroweak scale. Dark matter annihilations are thus modified by the Sommerfeld effect, not only in the early Universe, but also today, for instance, in the Center of the Galaxy. Majorana candidates—triplet, quintuplet, bi-doublet, and bi-triplet—bring only onemore » new parameter to the model, their mass, and are hence highly testable at colliders and through astrophysical observations. Scalar candidates—doublet and 7-plet, the latter being only stable at the renormalizable level—have additional scalar-scalar interactions that give rise to rich phenomenology. The particles under discussion share many features with the well-known candidates wino, Higgsino, inert doublet scalar, sneutrino, and Minimal Dark Matter. In particular, they all predict a large gamma-ray flux from dark matter annihilations, which can be searched for with Cherenkov telescopes. We furthermore discuss models with unequal left-right gauge couplings, g{sub R} ≠ g{sub L}, taking the recent experimental hints for a charged gauge boson with 2 TeV mass as a benchmark point. In this case, the dark matter mass is determined by the observed relic density.« less
New Perspectives: Wave Mechanical Interpretations of Dark Matter, Baryon and Dark Energy
NASA Astrophysics Data System (ADS)
Russell, Esra
We model the cosmic components: dark matter, dark energy and baryon distributions in the Cosmic Web by means of highly nonlinear Schrodinger type and reaction diffusion type wave mechanical descriptions. The construction of these wave mechanical models of the structure formation is achieved by introducing the Fisher information measure and its comparison with highly nonlinear term which has dynamical analogy to infamous quantum potential in the wave equations. Strikingly, the comparison of this nonlinear term and the Fisher information measure provides a dynamical distinction between lack of self-organization and self-organization in the dynamical evolution of the cosmic components. Mathematically equivalent to the standard cosmic fluid equations, these approaches make it possible to follow the evolution of the matter distribution even into the highly nonlinear regime by circumventing singularities. Also, numerical realizations of the emerging web-like patterns are presented from the nonlinear dynamics of the baryon component while dark energy component shows Gaussian type dynamics corresponding to soliton-like solutions.
Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos
NASA Astrophysics Data System (ADS)
Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal
2017-09-01
We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2 ×10-45 cm2, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.
Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos.
Baryakhtar, Masha; Bramante, Joseph; Li, Shirley Weishi; Linden, Tim; Raj, Nirmal
2017-09-29
We identify a largely model-independent signature of dark matter (DM) interactions with nucleons and electrons. DM in the local galactic halo, gravitationally accelerated to over half the speed of light, scatters against and deposits kinetic energy into neutron stars, heating them to infrared blackbody temperatures. The resulting radiation could potentially be detected by the James Webb Space Telescope, the Thirty Meter Telescope, or the European Extremely Large Telescope. This mechanism also produces optical emission from neutron stars in the galactic bulge, and x-ray emission near the galactic center because dark matter is denser in these regions. For GeV-PeV mass dark matter, dark kinetic heating would initially unmask any spin-independent or spin-dependent dark matter-nucleon cross sections exceeding 2×10^{-45} cm^{2}, with improved sensitivity after more telescope exposure. For lighter-than-GeV dark matter, cross-section sensitivity scales inversely with dark matter mass because of Pauli blocking; for heavier-than-PeV dark matter, it scales linearly with mass as a result of needing multiple scatters for capture. Future observations of dark sector-warmed neutron stars could determine whether dark matter annihilates in or only kinetically heats neutron stars. Because inelastic interstate transitions of up to a few GeV would occur in relativistic scattering against nucleons, elusive inelastic dark matter like pure Higgsinos can also be discovered.
Barbieri, Riccardo; Hall, Lawrence J.; Harigaya, Keisuke
2016-11-29
In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z 2 parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z 2 breaking, can generate the Z 2 breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals i n Higgs decays, direct Dark Matter Detection andmore » Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z 2 breaking from the vacuum expectation values of B-L breaking fields are also discussed.« less
Hidden sector monopole, vector dark matter and dark radiation with Higgs portal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baek, Seungwon; Ko, P.; Park, Wan-Il, E-mail: sbaek1560@gmail.com, E-mail: pko@kias.re.kr, E-mail: wipark@kias.re.kr
2014-10-01
We show that the 't Hooft-Polyakov monopole model in the hidden sector with Higgs portal interaction makes a viable dark matter model, where monopole and massive vector dark matter (VDM) are stable due to topological conservation and the unbroken subgroup U(1 {sub X}. We show that, even though observed CMB data requires the dark gauge coupling to be quite small, a right amount of VDM thermal relic can be obtained via s-channel resonant annihilation for the mass of VDM close to or smaller than the half of SM higgs mass, thanks to Higgs portal interaction. Monopole relic density turns outmore » to be several orders of magnitude smaller than the observed dark matter relic density. Direct detection experiments, particularly, the projected XENON1T experiment, may probe the parameter space where the dark Higgs is lighter than ∼< 50 GeV. In addition, the dark photon associated with the unbroken U(1 {sub X} contributes to the radiation energy density at present, giving Δ N{sub eff}{sup ν} ∼ 0.1 as the extra relativistic neutrino species.« less
Prospects for dark matter detection with inelastic transitions of xenon
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Christopher
2016-05-16
Dark matter can scatter and excite a nucleus to a low-lying excitation in a direct detection experiment. This signature is distinct from the canonical elastic scattering signal because the inelastic signal also contains the energy deposited from the subsequent prompt de-excitation of the nucleus. A measurement of the elastic and inelastic signal will allow a single experiment to distinguish between a spin-independent and spin-dependent interaction. For the first time, we characterise the inelastic signal for two-phase xenon detectors in which dark matter inelastically scatters off the {sup 129}Xe or {sup 131}Xe isotope. We do this by implementing a realistic simulationmore » of a typical tonne-scale two-phase xenon detector and by carefully estimating the relevant background signals. With our detector simulation, we explore whether the inelastic signal from the axial-vector interaction is detectable with upcoming tonne-scale detectors. We find that two-phase detectors allow for some discrimination between signal and background so that it is possible to detect dark matter that inelastically scatters off either the {sup 129}Xe or {sup 131}Xe isotope for dark matter particles that are heavier than approximately 100 GeV. If, after two years of data, the XENON1T search for elastic scattering nuclei finds no evidence for dark matter, the possibility of ever detecting an inelastic signal from the axial-vector interaction will be almost entirely excluded.« less
Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander
2016-08-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.
Analyzing the Discovery Potential for Light Dark Matter.
Izaguirre, Eder; Krnjaic, Gordan; Schuster, Philip; Toro, Natalia
2015-12-18
In this Letter, we determine the present status of sub-GeV thermal dark matter annihilating through standard model mixing, with special emphasis on interactions through the vector portal. Within representative simple models, we carry out a complete and precise calculation of the dark matter abundance and of all available constraints. We also introduce a concise framework for comparing different experimental approaches, and use this comparison to identify important ranges of dark matter mass and couplings to better explore in future experiments. The requirement that dark matter be a thermal relic sets a sharp sensitivity target for terrestrial experiments, and so we highlight complementary experimental approaches that can decisively reach this milestone sensitivity over the entire sub-GeV mass range.
Dissipative hidden sector dark matter
NASA Astrophysics Data System (ADS)
Foot, R.; Vagnozzi, S.
2015-01-01
A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.
Dark matter as a weakly coupled dark baryon
NASA Astrophysics Data System (ADS)
Mitridate, Andrea; Redi, Michele; Smirnov, Juri; Strumia, Alessandro
2017-10-01
Dark Matter might be an accidentally stable baryon of a new confining gauge interaction. We extend previous studies exploring the possibility that the DM is made of dark quarks heavier than the dark confinement scale. The resulting phenomenology contains new unusual elements: a two-stage DM cosmology (freeze-out followed by dark condensation), a large DM annihilation cross section through recombination of dark quarks (allowing to fit the positron excess). Light dark glue-balls are relatively long lived and give extra cosmological effects; DM itself can remain radioactive.
Dynamics of interacting quintessence models: Observational constraints
NASA Astrophysics Data System (ADS)
Olivares, Germán; Atrio-Barandela, Fernando; Pavón, Diego
2008-03-01
Interacting quintessence models have been proposed to explain or, at least, alleviate the coincidence problem of late cosmic acceleration. In this paper we are concerned with two aspects of these kind of models: (i) the dynamical evolution of the model of Chimento et al. [L. P. Chimento, A. S. Jakubi, D. Pavón, and W. Zimdahl, Phys. Rev. D 67, 083513 (2003).PRVDAQ0556-282110.1103/PhysRevD.67.083513], i.e., whether its cosmological evolution gives rise to a right sequence of radiation, dark matter, and dark energy dominated eras, and (ii) whether the dark matter dark energy ratio asymptotically evolves towards a nonzero constant. After showing that the model correctly reproduces these eras, we correlate three data sets that constrain the interaction at three redshift epochs: z≤104, z=103, and z=1. We discuss the model selection and argue that even if the model under consideration fulfills both requirements, it is heavily constrained by observation. The prospects that the coincidence problem can be explained by the coupling of dark matter to dark energy are not clearly favored by the data.
Prospects for detection of target-dependent annual modulation in direct dark matter searches
Nobile, Eugenio Del; Gelmini, Graciela B.; Witte, Samuel J.
2016-02-03
Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy E R imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from E R to v min, the minimum speed a dark matter particle must have to impart a fixed E R to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the darkmore » matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of v min can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential cross section with a non-factorizable dependence on the dark matter velocity.« less
Dynamics of the diffusive DM-DE interaction – Dynamical system approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haba, Zbigniew; Stachowski, Aleksander; Szydłowski, Marek, E-mail: zhab@ift.uni.wroc.pl, E-mail: aleksander.stachowski@uj.edu.pl, E-mail: marek.szydlowski@uj.edu.pl
We discuss dynamics of a model of an energy transfer between dark energy (DE) and dark matter (DM) . The energy transfer is determined by a non-conservation law resulting from a diffusion of dark matter in an environment of dark energy. The relativistic invariance defines the diffusion in a unique way. The system can contain baryonic matter and radiation which do not interact with the dark sector. We treat the Friedman equation and the conservation laws as a closed dynamical system. The dynamics of the model is examined using the dynamical systems methods for demonstration how solutions depend on initialmore » conditions. We also fit the model parameters using astronomical observation: SNIa, H ( z ), BAO and Alcock-Paczynski test. We show that the model with diffuse DM-DE is consistent with the data.« less
Collider study on the loop-induced dark matter mediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Yuhsin, E-mail: yhtsai@umd.edu
2016-06-21
Collider experiments are one of the most promising ways to constrain Dark Matter (DM) interactions. For DM couplings involving light mediators, especially for the loop-mediated interactions, a meaningful interpretation of the results requires to go beyond effective field theory. In this note we discuss the study of the magnetic dipole interacting DM, focusing on a model with anarchic dark flavor structure. By including the momentum-dependent form factors that mediate the coupling – given by the Dark Penguin – in collider processes, we study bounds from monophoton, diphoton, and non-pointing photon searches at the LHC. We also compare our results tomore » constraints from the direct detection experiments.« less
Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric; ...
2017-10-24
Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less
NASA Astrophysics Data System (ADS)
Choi, Soo-Min; Hochberg, Yonit; Kuflik, Eric; Lee, Hyun Min; Mambrini, Yann; Murayama, Hitoshi; Pierre, Mathias
2017-10-01
Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, all while remaining consistent with experimental constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Soo -Min; Hochberg, Yonit; Kuflik, Eric
Strongly Interacting Massive Particles (SIMPs) have recently been proposed as light thermal dark matter relics. Here we consider an explicit realization of the SIMP mechanism in the form of vector SIMPs arising from an SU(2) X hidden gauge theory, where the accidental custodial symmetry protects the stability of the dark matter. We propose several ways of equilibrating the dark and visible sectors in this setup. In particular, we show that a light dark Higgs portal can maintain thermal equilibrium between the two sectors, as can a massive dark vector portal with its generalized Chern-Simons couplings to the vector SIMPs, allmore » while remaining consistent with experimental constraints.« less
The search for axion-like dark matter using magnetic resonance
NASA Astrophysics Data System (ADS)
Sushkov, Alexander; Casper Collaboration
2016-05-01
The nature of dark matter is one of the most important open problems in modern physics, and it is necessary to develop techniques to search for a wide class of dark-matter candidates. Axions, originally introduced to resolve the strong CP problem in quantum chromodynamics (QCD), and axion-like particles (ALPs) are strongly motivated dark matter candidates. Nuclear spins interacting with axion-like background dark matter experience an energy shift, oscillating at the frequency equal to the axion Compton frequency. The Cosmic Axion Spin Precession Experiments (CASPEr) use precision magnetometry and nuclear magnetic resonance techniques to search for the effects of this interaction. The experimental signature is precession of the nuclear spins under the condition of magnetic resonance: when the bias magnetic field is tuned such that the nuclear spin sublevel splitting is equal to the axion Compton frequency. These experiments have the potential to detect axion-like dark matter in a wide mass range (10-12 eV to 10-6 eV, scanned by changing the bias magnetic field from approximately 1 gauss to 20 tesla) and with coupling strengths many orders of magnitude beyond the current astrophysical and laboratory limits, and all the way down to those corresponding to the QCD axion. Supported by the Heising-Simons Foundation.
The phenomenology of maverick dark matter
NASA Astrophysics Data System (ADS)
Krusberg, Zosia Anna Celina
Astrophysical observations from galactic to cosmological scales point to a substantial non-baryonic component to the universe's total matter density. Although very little is presently known about the physical properties of dark matter, its existence offers some of the most compelling evidence for physics beyond the standard model (BSM). In the weakly interacting massive particle (WIMP) scenario, the dark matter consists of particles that possess weak-scale interactions with the particles of the standard model, offering a compelling theoretical framework that allows us to understand the relic abundance of dark matter as a natural consequence of the thermal history of the early universe. From the perspective of particle physics phenomenology, the WIMP scenario is appealing for two additional reasons. First, many theories of BSM physics contain attractive WIMP candidates. Second, the weak-scale interactions between WIMPs and standard model particles imply the possibility of detecting scatterings between relic WIMPs and detector nuclei in direct detection experiments, products of WIMP annihilations at locations throughout the galaxy in indirect detection programs, and WIMP production signals at high-energy particle colliders. In this work, we use an effective field theory approach to study model-independent dark matter phenomenology in direct detection and collider experiments. The maverick dark matter scenario is defined by an effective field theory in which the WIMP is the only new particle within the energy range accessible to the Large Hadron Collider (LHC). Although certain assumptions are necessary to keep the problem tractable, we describe our WIMP candidate generically by specifying only its spin and dominant interaction form with standard model particles. Constraints are placed on the masses and coupling constants of the maverick WIMPs using the Wilkinson Microwave Anisotropy Probe (WMAP) relic density measurement and direct detection exclusion data from both spin-independent (XENON100 and SuperCDMS) and spin-dependent (COUPP) experiments. We further study the distinguishability of maverick WIMP production signals at the Tevatron and the LHC---at its early and nominal configurations---using standard simulation packages, place constraints on maverick WIMP properties using existing collider data, and determine projected mass reaches in future data from both colliders. We find ourselves in a unique era of theoretically-motivated, high-precision dark matter searches that hold the potential to give us important insights, not only into the nature of dark matter, but also into the physics that lies beyond the standard model.
Dark Matter Search Results from the PICO-60 CF$$_3$$I Bubble Chamber
Amole, C.; Ardid, M.; Asner, D. M.; ...
2016-03-01
We reported new data from the operation of the PICO-60 dark matter detector, a bubble chamber filled with 36.8 kg of CF 3I and located in the SNOLAB underground laboratory. PICO-60 is the largest bubble chamber to search for dark matter to date. With an analyzed exposure of 92.8 live-days, PICO-60 exhibits the same excellent background rejection observed in smaller bubble chambers. Alpha decays in PICO-60 exhibit frequency-dependent acoustic calorimetry, similar but not identical to that reported recently in a C 3F 8 bubble chamber. PICO-60 also observes a large population of unknown background events, exhibiting acoustic, spatial, and timingmore » behaviors inconsistent with those expected from a dark matter signal. We found these behaviors allow for analysis cuts to remove all background events while retaining 48.2%of the exposure. Stringent limits on WIMPs interacting via spin-dependent proton and spin-independent processes are set, and the interpretation of the DAMA/LIBRA modulation signal as dark matter interacting with iodine nuclei is ruled out.« less
Khachatryan, V.
2015-06-17
A search is presented for particle dark matter produced in association with a pair of top quarks in pp collisions at a centre-of-mass energy of s√=8 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 19.7 fb -1. This search requires the presence of one lepton, multiple jets, and large missing transverse energy. No excess of events is found above the SM expectation, and upper limits are derived on the production cross section. Interpreting the findings in the context of a scalar contact interaction between fermionic dark matter particles andmore » top quarks, lower limits on the interaction scale are set. These limits are also interpreted in terms of the dark matter-nucleon scattering cross sections for the spin-independent scalar operator and they complement direct searches for dark matter particles in the low mass region.« less
NASA Astrophysics Data System (ADS)
Nam, Sae Woo
1999-10-01
Observations have shown that galaxies, including our own, are surrounded by halos of ``dark matter''. One possibility is that this may be an undiscovered form of matter, weakly interacting massive particles (WIMPs). This thesis describes the development of silicon based cryogenic particle detectors designed to directly detect interactions with these WIMPs. These detectors are part of a new class of detectors which are able to reject background events by simultaneously measuring energy deposited into phonons versus electron hole pairs. By using the phonon sensors with the ionization sensors to compare the partitioning of energy between phonons and ionizations we can discriminate between electron recoil events (background radiation) and nuclear recoil events (dark matter events). These detectors with built-in background rejection are a major advance in background rejection over previous searches. Much of this thesis will describe work in scaling the detectors from / g prototype devices to a fully functional prototype 100g dark matter detector. In particular, many sensors were fabricated and tested to understand the behavior of our phonon sensors, Quasipartice trapping assisted Electrothermal feedback Transition edge sensors (QETs). The QET sensors utilize aluminum quasiparticle traps attached to tungsten superconducting transition edge sensors patterned on a silicon substrate. The tungsten lines are voltage biased and self-regulate in the transition region. Phonons from particle interactions within the silicon propogate to the surface where they are absorbed by the aluminum generating quasiparticles in the aluminum. The quasiparticles diffuse into the tungsten and couple energy into the tungsten electron system. Consequently, the tungsten increases in resistance and causes a current pulse which is measured with a high bandwidth SQUID system. With this advanced sensor technology, we were able to demonstrate detectors with xy position sensitivity with electron and nuclear recoil discrimination. Furthermore, early results from running the 100g detector in the Stanford Underground Facility (SUF) indicate that competitive dark matter results are achievable with the current detector design. Much of the design and testing of the experimental apparatus and instrumentation is described as well.
Dark matter as an effect of the quantum vacuum
NASA Astrophysics Data System (ADS)
Santos, Emilio
2018-04-01
The interaction between the quantum vacuum and a weak gravitational field is calculated for the vacuum fields of quantum electrodynamics. The result shows that the vacuum state is modified by the gravitational field, giving rise to a nonzero interaction energy. This suggests a model that fits in the main properties of the hypothetical dark matter in galactic haloes.
Light weakly interacting massive particles
NASA Astrophysics Data System (ADS)
Gelmini, Graciela B.
2017-08-01
Light weakly interacting massive particles (WIMPs) are dark matter particle candidates with weak scale interaction with the known particles, and mass in the GeV to tens of GeV range. Hints of light WIMPs have appeared in several dark matter searches in the last decade. The unprecedented possible coincidence into tantalizingly close regions of mass and cross section of four separate direct detection experimental hints and a potential indirect detection signal in gamma rays from the galactic center, aroused considerable interest in our field. Even if these hints did not so far result in a discovery, they have had a significant impact in our field. Here we review the evidence for and against light WIMPs as dark matter candidates and discuss future relevant experiments and observations.
Interacting dark sector and the coincidence problem within the scope of LRS Bianchi type I model
NASA Astrophysics Data System (ADS)
Muharlyamov, Ruslan K.; Pankratyeva, Tatiana N.
2018-05-01
It is shown that a suitable interaction between dark energy and dark matter in locally rotationally symmetric (LRS) Bianchi-I space-time can solve the coincidence problem and not contradict the accelerated expansion of present Universe. The interaction parameters are estimated from observational data.
Dark Matter Search in a Proton Beam Dump with MiniBooNE
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; Batell, B.; Brown, B. C.; Carr, R.; Chatterjee, A.; Cooper, R. L.; deNiverville, P.; Dharmapalan, R.; Djurcic, Z.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, J. A.; Huelsnitz, W.; de Icaza Astiz, I. L.; Karagiorgi, G.; Katori, T.; Ketchum, W.; Kobilarcik, T.; Liu, Q.; Louis, W. C.; Marsh, W.; Moore, C. D.; Mills, G. B.; Mirabal, J.; Nienaber, P.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Shaevitz, M. H.; Shahsavarani, S.; Stancu, I.; Tayloe, R.; Taylor, C.; Thornton, R. T.; Van de Water, R.; Wester, W.; White, D. H.; Yu, J.; MiniBooNE-DM Collaboration
2017-06-01
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 ×1 020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y =ɛ2αD(mχ/mV)4≲10-8 , for αD=0.5 and for dark matter masses of 0.01
Single top quarks and dark matter
NASA Astrophysics Data System (ADS)
Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia
2017-08-01
Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.
Dark Matter Search in a Proton Beam Dump with MiniBooNE.
Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J
2017-06-02
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01
On wave dark matter in spiral and barred galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Medina, Luis A.; Matos, Tonatiuh; Bray, Hubert L., E-mail: lmedina@fis.cinvestav.mx, E-mail: bray@math.duke.edu, E-mail: tmatos@fis.cinvestav.mx
2015-12-01
We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particlesmore » simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.« less
Scalar dark matter in leptophilic two-Higgs-doublet model
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Priyotosh; Chun, Eung Jin; Mandal, Rusa
2018-04-01
Two-Higgs-Doublet Model of Type-X in the large tan β limit becomes leptophilic to allow a light pseudo-scalar A and thus provides an explanation of the muon g - 2 anomaly. Introducing a singlet scalar dark matter S in this context, one finds that two important dark matter properties, nucleonic scattering and self-annihilation, are featured separately by individual couplings of dark matter to the two Higgs doublets. While one of the two couplings is strongly constrained by direct detection experiments, the other remains free to be adjusted for the relic density mainly through the process SS → AA. This leads to the 4τ final states which can be probed by galactic gamma ray detections.
Radiative model of neutrino mass with neutrino interacting MeV dark matter
Arhrib, Abdesslam; Bohm, Celine; Ma, Ernest; ...
2016-04-26
We consider the radiative generation of neutrino mass through the interactions of neutrinos with MeV dark matter. We construct a realistic renormalizable model with one scalar doublet (in additional to the standard model doublet) and one complex singlet together with three light singlet Majorana fermions, all transforming under a dark U(1)(D) symmetry which breaks softly to Z(2). We study in detail the scalar sector which supports this specific scenario and its rich phenomenology.
Bose-Einstein condensate & degenerate Fermi cored dark matter halos
NASA Astrophysics Data System (ADS)
Chung, W.-J.; Nelson, L. A.
2018-06-01
There has been considerable interest in the last several years in support of the idea that galaxies and clusters could have highly condensed cores of dark matter (DM) within their central regions. In particular, it has been suggested that dark matter could form Bose-Einstein condensates (BECs) or degenerate Fermi cores. We examine these possibilities under the assumption that the core consists of highly condensed DM (either bosons or fermions) that is embedded in a diffuse envelope (e.g., isothermal sphere). The novelty of our approach is that we invoke composite polytropes to model spherical collisionless structures in a way that is physically intuitive and can be generalized to include other equations of state (EOSs). Our model is very amenable to the analysis of BEC cores (composed of ultra-light bosons) that have been proposed to resolve small-scale CDM anomalies. We show that the analysis can readily be applied to bosons with or without small repulsive self-interactions. With respect to degenerate Fermi cores, we confirm that fermionic particle masses between 1—1000 keV are not excluded by the observations. Finally, we note that this approach can be extended to include a wide range of EOSs in addition to multi-component collisionless systems.
Search for domain wall dark matter with atomic clocks on board global positioning system satellites.
Roberts, Benjamin M; Blewitt, Geoffrey; Dailey, Conner; Murphy, Mac; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei
2017-10-30
Cosmological observations indicate that dark matter makes up 85% of all matter in the universe yet its microscopic composition remains a mystery. Dark matter could arise from ultralight quantum fields that form macroscopic objects. Here we use the global positioning system as a ~ 50,000 km aperture dark matter detector to search for such objects in the form of domain walls. Global positioning system navigation relies on precision timing signals furnished by atomic clocks. As the Earth moves through the galactic dark matter halo, interactions with domain walls could cause a sequence of atomic clock perturbations that propagate through the satellite constellation at galactic velocities ~ 300 km s -1 . Mining 16 years of archival data, we find no evidence for domain walls at our current sensitivity level. This improves the limits on certain quadratic scalar couplings of domain wall dark matter to standard model particles by several orders of magnitude.
Z' portal to Chern-Simons Dark Matter
NASA Astrophysics Data System (ADS)
Arcadi, Giorgio; Ghosh, Pradipta; Mambrini, Yann; Pierre, Mathias; Queiroz, Farinaldo S.
2017-11-01
We study the phenomenological credibility of a vectorial dark matter, coupled to a Z' portal through Chern-Simons interaction. We scrutinize two possibilities of connecting a Z' with the Standard Model: (1) through kinetic mixing and (2) from a second Chern-Simons interaction. Both scenarios are characterized by suppressed nuclear recoil scatterings, rendering direct detection searches not promising. Indirect detection experiments, on the other hand, furnish complementary limits for TeV scale masses, specially with the CTA. Searches for mono-jet and dileptons signals at the LHC are important to partially probe the kinetic mixing setup. Finally we propose an UV completion of the Chern-Simons Dark Matter framework.
First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Arevalo, A.; Amidei, D.; Bertou, X.
We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eVmore » $$c^{-2}$$ with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter $$\\kappa$$ is competitive with constraints from solar emission, reaching a minimum value of 2.2$$\\times$$$10^{-14}$$ at 17 eV$$c^{-2}$$. These results are the most stringent direct detection constraints on hidden-photon dark matter with masses 3-12 eV$$c^{-2}$$ and the first demonstration of direct experimental sensitivity to ionization signals $<$12 eV from dark matter interactions.« less
Astrophysical uncertainties on the local dark matter distribution and direct detection experiments
NASA Astrophysics Data System (ADS)
Green, Anne M.
2017-08-01
The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.
WIMP dark matter candidates and searches-current status and future prospects.
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
WIMP dark matter candidates and searches—current status and future prospects
NASA Astrophysics Data System (ADS)
Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian
2018-06-01
We review several current aspects of dark matter theory and experiment. We overview the present experimental status, which includes current bounds and recent claims and hints of a possible signal in a wide range of experiments: direct detection in underground laboratories, gamma-ray, cosmic ray, x-ray, neutrino telescopes, and the LHC. We briefly review several possible particle candidates for a weakly interactive massive particle (WIMP) and dark matter that have recently been considered in the literature. We pay particular attention to the lightest neutralino of supersymmetry as it remains the best motivated candidate for dark matter and also shows excellent detection prospects. Finally we briefly review some alternative scenarios that can considerably alter properties and prospects for the detection of dark matter obtained within the standard thermal WIMP paradigm.
Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepin, Mark David
An ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) projectmore » operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various gamma and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter t c2 inent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode v to decrease their energy thresholds and correspondingly increase their sensitivity to low-mass WIMPs. This is the CDMS low ionization threshold experiment (CDMSlite), which has pushed the frontier at lower WIMP masses. This dissertation describes the second run of CDMSlite at Soudan: its hardware, operations, analysis, and results. The results include new WIMP mass-cross section upper limits on the spin-independent and spin-dependent WIMP-nucleon interactions. Thanks to the lower background and threshold in this run compared to the first CDMSlite run, these limits are the most sensitive in the world below WIMP masses of ~4 GeV/c 2. This demonstrates also the great promise and utility of the high-voltage operating mode in the SuperCDMS SNOLAB experiment.« less
Enlightening Students about Dark Matter
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Barr, Alex; Eidelman, Dave
2018-01-01
Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.
Indirect detection constraints on s- and t-channel simplified models of dark matter
NASA Astrophysics Data System (ADS)
Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica; Linden, Tim
2016-09-01
Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as b b ¯ or τ+τ- . In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final-state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of effective field theory contact interactions in the high-mass limit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, M.; Ajello, M.; /Stanford U., HEPL /Taiwan, Natl. Taiwan U. /SLAC
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10{sup -26} cm{sup 3} s{sup -1} at 5 GeV to about 5 x 10{supmore » -23} cm{sup 3} s{sup -1} at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section ({approx}3 x 10{sup -26} cm{sup 3} s{sup -1} for a purely s-wave cross section), without assuming additional boost factors.« less
Ackermann, M; Ajello, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Cañadas, B; Caraveo, P A; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Falletti, L; Favuzzi, C; Fegan, S J; Ferrara, E C; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Gustafsson, M; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Jeltema, T E; Jóhannesson, G; Johnson, R P; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lionetto, A M; Llena Garde, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Porter, T A; Profumo, S; Rainò, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Roth, M; Sadrozinski, H F-W; Sbarra, C; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strigari, L; Suson, D J; Tajima, H; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S; Kaplinghat, M; Martinez, G D
2011-12-09
Satellite galaxies of the Milky Way are among the most promising targets for dark matter searches in gamma rays. We present a search for dark matter consisting of weakly interacting massive particles, applying a joint likelihood analysis to 10 satellite galaxies with 24 months of data of the Fermi Large Area Telescope. No dark matter signal is detected. Including the uncertainty in the dark matter distribution, robust upper limits are placed on dark matter annihilation cross sections. The 95% confidence level upper limits range from about 10(-26) cm3 s(-1) at 5 GeV to about 5×10(-23) cm3 s(-1) at 1 TeV, depending on the dark matter annihilation final state. For the first time, using gamma rays, we are able to rule out models with the most generic cross section (∼3×10(-26) cm3 s(-1) for a purely s-wave cross section), without assuming additional boost factors.
NASA Astrophysics Data System (ADS)
Massey, Richard; Kitching, Thomas; Nagai, Daisuke
2011-05-01
The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657-56) and baby bullet (MACS J0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. Constraints on the properties of dark matter, such as its interaction cross-section, are therefore restricted by uncertainties in the individual systems' impact velocity, impact parameter and orientation with respect to the line of sight. Here we develop a complementary, statistical measurement in which every piece of substructure falling into every massive cluster is treated as a bullet. We define 'bulleticity' as the mean separation between dark matter and ordinary matter, and we measure the signal in hydrodynamical simulations. The phase space of substructure orbits also exhibits symmetries that provide an equivalent control test. Any detection of bulleticity in real data would indicate a difference in the interaction cross-sections of baryonic and dark matter that may rule out hypotheses of non-particulate dark matter that are otherwise able to model individual systems. A subsequent measurement of bulleticity could constrain the dark matter cross-section. Even with conservative estimates, the existing Hubble Space Telescope archive should yield an independent constraint tighter than that from the bullet cluster. This technique is then trivially extendable to and benefits enormously from larger, future surveys.
NASA Astrophysics Data System (ADS)
Guo, Juan-Juan; Zhang, Jing-Fei; Li, Yun-He; He, Dong-Ze; Zhang, Xin
2018-03-01
We consider the models of vacuum energy interacting with cold dark matter in this study, in which the coupling can change sigh during the cosmological evolution. We parameterize the running coupling b by the form b( a) = b 0 a+ b e(1- a), where at the early-time the coupling is given by a constant b e and today the coupling is described by another constant b 0. We explore six specific models with (i) Q = b( a) H 0 ρ 0, (ii) Q = b( a) H 0 ρ de, (iii) Q = b( a) H 0 ρ c, (iv) Q = b( a) Hρ 0, (v) Q = b( a) H ρ de, and (vi) Q = b( a) Hρ c. The current observational data sets we use to constrain the models include the JLA compilation of type Ia supernova data, the Planck 2015 distance priors data of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the Hubble constant direct measurement. We find that, for all the models, we have b 0 < 0 and b e > 0 at around the 1 σ level, and b 0 and b e are in extremely strong anti-correlation. Our results show that the coupling changes sign during the evolution at about the 1 σ level, i.e., the energy transfer is from dark matter to dark energy when dark matter dominates the universe and the energy transfer is from dark energy to dark matter when dark energy dominates the universe.
NASA Astrophysics Data System (ADS)
Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel
2014-11-01
We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.
USING A PHENOMENOLOGICAL MODEL TO TEST THE COINCIDENCE PROBLEM OF DARK ENERGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yun; Zhu Zonghong; Alcaniz, J. S.
2010-03-01
By assuming a phenomenological form for the ratio of the dark energy and matter densities rho{sub X} {proportional_to} rho{sub m} a {sup x}i, we discuss the cosmic coincidence problem in light of current observational data. Here, xi is a key parameter to denote the severity of the coincidence problem. In this scenario, xi = 3 and xi = 0 correspond to LAMBDACDM and the self-similar solution without the coincidence problem, respectively. Hence, any solution with a scaling parameter 0 < xi < 3 makes the coincidence problem less severe. In addition, the standard cosmology without interaction between dark energy andmore » dark matter is characterized by xi + 3omega{sub X} = 0, where omega{sub X} is the equation of state of the dark energy component, whereas the inequality xi + 3omega{sub X} {ne} 0 represents non-standard cosmology. We place observational constraints on the parameters (OMEGA{sub X,0}, omega{sub X}, xi) of this model, where OMEGA{sub X,0} is the present value of density parameter of dark energy OMEGA{sub X}, by using the Constitution Set (397 supernovae of type Ia data, hereafter SNeIa), the cosmic microwave background shift parameter from the five-year Wilkinson Microwave Anisotropy Probe and the Sloan Digital Sky Survey baryon acoustic peak. Combining the three samples, we get OMEGA{sub X,0} = 0.72 +- 0.02, omega{sub X} = -0.98 +- 0.07, and xi = 3.06 +- 0.35 at 68.3% confidence level. The result shows that the LAMBDACDM model still remains a good fit to the recent observational data, and the coincidence problem indeed exists and is quite severe, in the framework of this simple phenomenological model. We further constrain the model with the transition redshift (deceleration/acceleration). It shows that if the transition from deceleration to acceleration happens at the redshift z > 0.73, within the framework of this model, we can conclude that the interaction between dark energy and dark matter is necessary.« less
Signatures of Earth-scattering in the direct detection of Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris, E-mail: bkavanagh@lpthe.jussieu.fr, E-mail: catena@chalmers.se, E-mail: kouvaris@cp3.sdu.dk
Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth andmore » allowing for a range of DM-nucleon interactions, we present the EARTHSHADOW code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's rotation induces a daily modulation in the rate, which we find to be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction. These distinctive signatures would allow us to unambiguously detect DM and perhaps even identify its interactions in regions of the parameter space within the reach of current and future experiments.« less
Thermalizing Sterile Neutrino Dark Matter
NASA Astrophysics Data System (ADS)
Hansen, Rasmus S. L.; Vogl, Stefan
2017-12-01
Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.
Thermalizing Sterile Neutrino Dark Matter.
Hansen, Rasmus S L; Vogl, Stefan
2017-12-22
Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.
We present a simple UV completion of Atomic Dark Matter (aDM) in which heavy right-handed neutrinos decay to induce both dark and lepton number densities. This model addresses several outstanding cosmological problems: the matter/anti-matter asymmetry, the dark matter abundance, the number of light degrees of freedom in the early universe, and the smoothing of small-scale structure. Additionally, this realization of aDM may reconcile the CoGeNT excess with recently published null results and predicts a signal in the CRESST Oxygen band. We also find that, due to unscreened long-range interactions, the residual un recombined dark ions settle into a diffuse isothermalmore » halo.« less
The Higgs Portal and Cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assamagan, Ketevi; Chien-Yi Chen; Chou, John Paul
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first-order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
Buchmueller, Oliver; Malik, Sarah A; McCabe, Christopher; Penning, Bjoern
2015-10-30
The monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multijet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator M_{A} is more than twice the dark matter mass m_{DM}. With the forthcoming run of the Large Hadron Collider at higher energies, the remaining regions of the parameter space where M_{A}>2m_{DM} will be fully explored. Furthermore, we highlight the importance of complementing the monojet final state with multijet final states to maximize the sensitivity of the search for the production of dark matter at colliders.
Lectures on Dark Matter Physics
NASA Astrophysics Data System (ADS)
Lisanti, Mariangela
Rotation curve measurements from the 1970s provided the first strong indication that a significant fraction of matter in the Universe is non-baryonic. In the intervening years, a tremendous amount of progress has been made on both the theoretical and experimental fronts in the search for this missing matter, which we now know constitutes nearly 85% of the Universe's matter density. These series of lectures provide an introduction to the basics of dark matter physics. They are geared for the advanced undergraduate or graduate student interested in pursuing research in high-energy physics. The primary goal is to build an understanding of how observations constrain the assumptions that can be made about the astro- and particle physics properties of dark matter. The lectures begin by delineating the basic assumptions that can be inferred about dark matter from rotation curves. A detailed discussion of thermal dark matter follows, motivating Weakly Interacting Massive Particles, as well as lighter-mass alternatives. As an application of these concepts, the phenomenology of direct and indirect detection experiments is discussed in detail.
Extended Gravity: State of the Art and Perspectives
NASA Astrophysics Data System (ADS)
Capozziello, Salvatore; de Laurentis, Mariafelicia
2015-01-01
Several issues coming from Cosmology, Astrophysics and Quantum Field Theory suggest to extend the General Relativity in order to overcome several shortcomings emerging at conceptual and experimental level. From one hand, standard Einstein theory fails as soon as one wants to achieve a full quantum description of space-time. In fact, the lack of a final self-consistent Quantum Gravity Theory can be considered one of the starting points for alternative theories of gravity. Specifically, the approach based on corrections and enlargements of the Einstein scheme, have become a sort of paradigm in the study of gravitational interaction. On the other hand, such theories have acquired great interest in cosmology since they "naturally" exhibit inflationary behaviours which can overcome the shortcomings of standard cosmology. From an astrophysical point of view, Extended Theories of Gravity do not require to find candidates for dark energy and dark matter at fundamental level; the approach starts from taking into account only the "observed" ingredients (i.e., gravity, radiation and baryonic matter); it is in full agreement with the early spirit of General Relativity but one has to relax the strong hypothesis that gravity acts at same way at all scales. Several scalar-tensor and f(R)-models agree with observed cosmology, extragalactic and galactic observations and Solar System tests, and give rise to new effects capable of explaining the observed acceleration of cosmic fluid and the missing matter effect of self-gravitating structures. Despite these preliminary results, no final model addressing all the open issues is available at the moment, however the paradigm seems promising in order to achieve a complete and self-consistent theory working coherently at all interaction scales.
Asymmetric dark matter and CP violating scatterings in a UV complete model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldes, Iason; Bell, Nicole F.; Millar, Alexander J.
We explore possible asymmetric dark matter models using CP violating scatterings to generate an asymmetry. In particular, we introduce a new model, based on DM fields coupling to the SM Higgs and lepton doublets, a neutrino portal, and explore its UV completions. We study the CP violation and asymmetry formation of this model, to demonstrate that it is capable of producing the correct abundance of dark matter and the observed matter-antimatter asymmetry. Crucial to achieving this is the introduction of interactions which violate CP with a T{sup 2} dependence.
NASA Astrophysics Data System (ADS)
de Martino, Ivan; Broadhurst, Tom; Tye, S.-H. Henry; Chiueh, Tzihong; Shive, Hsi-Yu; Lazkoz, Ruth
2018-01-01
The cold dark matter (CDM) paradigm successfully explains the cosmic structure over an enormous span of redshifts. However, it fails when probing the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. Moreover, the lack of experimental detection of Weakly Interacting Massive Particle (WIMP) favors alternative candidates such as light axionic dark matter that naturally arise in string theory. Cosmological N-body simulations have shown that axionic dark matter forms a solitonic core of size of ≃ 150 pc in the innermost region of the galactic halos. The oscillating scalar field associated to the axionic dark matter halo produces an oscillating gravitational potential that induces a time dilation of the pulse arrival time of ≃ 400 ns/(m_B/10^{-22} eV) for pulsar within such a solitonic core. Over the whole galaxy, the averaged predicted signal may be detectable with current and forthcoming pulsar timing array telescopes.
Gravitational waves from SU( N) glueball dark matter
Soni, Amarjit; Zhang, Yue
2017-05-30
Here, a hidden sector with pure non-abelian gauge symmetry is an elegant and just about the simplest model of dark matter. In this model the dark matter candidate is the lightest bound state made of the confined gauge fields, the dark glueball. In spite of its simplicity, the model has been shown to have several interesting non-standard implications in cosmology. In this work, we explore the gravitational waves from binary boson stars made of self-gravitating dark glueball fields as a natural and important consequence. We derive the dark SU(N) star mass and radius as functions of the only two fundamentalmore » parameters in the model, the glueball mass m and the number of colors N, and identify the regions that could be probed by the LIGO and future gravitational wave observatories.« less
Beyond vanilla dark matter: New channels in the multifaceted search for dark matter
NASA Astrophysics Data System (ADS)
Yaylali, David E.
Though we are extremely confident that non-baryonic dark matter exists in our universe, very little is known about its fundamental nature or its relationship with the Standard Model. Guided by theoretical motivations, a desire for generality in our experimental strategies, and a certain amount of hopeful optimism, we have established a basic framework and set of assumptions about the dark sector which we are now actively testing. After years of probing the parameter spaces of these vanilla dark-matter scenarios, through a variety of different search channels, a conclusive direct (non-gravitational) discovery of dark matter eludes us. This very well may suggest that our first-order expectations of the dark sector are too simplistic. This work describes two ways in which we can expand the experimental reach of vanilla dark-matter scenarios while maintaining the model-independent generality which is at this point still warranted. One way in which this is done is to consider coupling structures between the SM and the dark sector other than the two canonical types --- scalar and axial-vector --- leading to spin dependent and independent interactions at direct-detection experiments. The second way we generalize the vanilla scenarios is to consider multi-component dark sectors. We find that both of these generalizations lead to new and interesting phenomenology, and provide a richer complementarity structure between the different experimental probes we are using to search for dark matter.
First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso
NASA Astrophysics Data System (ADS)
Agnes, P.; Alexander, T.; Alton, A.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Brigatti, A.; Brodsky, J.; Budano, F.; Cadonati, L.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cocco, A. G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Deo, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Goretti, A.; Grandi, L.; Gromov, M.; Guan, M. Y.; Guardincerri, Y.; Hackett, B.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Keeter, K.; Kendziora, C.; Kidner, S.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kurlej, A.; Li, P. X.; Loer, B.; Lombardi, P.; Love, C.; Ludhova, L.; Luitz, S.; Ma, Y. Q.; Machulin, I.; Mandarano, A.; Mari, S.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meroni, E.; Meyers, P. D.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B.; Muratova, V.; Musico, P.; Nelson, A.; Odrowski, S.; Okounkova, M.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Papp, L.; Parmeggiano, S.; Parsells, R.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Segreto, E.; Semenov, D.; Shields, E.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Unzhakov, E.; Vogelaar, R. B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A.; Westerdale, S.; Wojcik, M.; Wright, A.; Xiang, X.; Xu, J.; Yang, C. G.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhu, C.; Zuzel, G.
2015-04-01
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter search for a (1422 ± 67) kgd exposure with an atmospheric argon fill. This is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1 ×10-44 cm2 for a WIMP mass of 100 Gev /c2.
FIMP dark matter freeze-in gauge mediation and hidden sector
NASA Astrophysics Data System (ADS)
Tsao, Kuo-Hsing
2018-07-01
We explore the dark matter freeze-in mechanism within the gauge mediation framework, which involves a hidden feebly interacting massive particle (FIMP) coupling feebly with the messenger fields while the messengers are still in the thermal bath. The FIMP is the fermionic component of the pseudo-moduli in a generic metastable supersymmetry (SUSY) breaking model and resides in the hidden sector. The relic abundance and the mass of the FIMP are determined by the SUSY breaking scale and the feeble coupling. The gravitino, which is the canonical dark matter candidate in the gauge mediation framework, contributes to the dark matter relic abundance along with the freeze-in of the FIMP. The hidden sector thus becomes two-component with both the FIMP and gravitino lodging in the SUSY breaking hidden sector. We point out that the ratio between the FIMP and the gravitino is determined by how SUSY breaking is communicated to the messengers. In particular when the FIMP dominates the hidden sector, the gravitino becomes the minor contributor in the hidden sector. Meanwhile, the neutralino is assumed to be both the weakly interacting massive particle dark matter candidate in the freeze-out mechanism and the lightest observable SUSY particle. We further find out the neutralino has the sub-leading contribution to the current dark matter relic density in the parameter space of our freeze-in gauge mediation model. Our result links the SUSY breaking scale in the gauge mediation framework with the FIMP freeze-in production rate leading to a natural and predicting scenario for the studies of the dark matter in the hidden sector.
NASA Astrophysics Data System (ADS)
Plante, Guillaume
An impressive array of astrophysical observations suggest that 83% of the matter in the universe is in a form of non-luminous, cold, collisionless, non-baryonic dark matter. Several extensions of the Standard Model of particle physics aimed at solving the hierarchy problem predict stable weakly interacting massive particles (WIMPs) that could naturally have the right cosmological relic abundance today to compose most of the dark matter if their interactions with normal matter are on the order of a weak scale cross section. These candidates also have the added benefit that their properties and interaction rates can be computed in a well defined particle physics model. A considerable experimental effort is currently under way to uncover the nature of dark matter. One method of detecting WIMP dark matter is to look for its interactions in terrestrial detectors where it is expected to scatter off nuclei. In 2007, the XENON10 experiment took the lead over the most sensitive direct detection dark matter search in operation, the CDMS II experiment, by probing spin-independent WIMP-nucleon interaction cross sections down to sigmachi N ˜ 5 x 10-44 cm 2 at 30 GeV/c2. Liquefied noble gas detectors are now among the technologies at the forefront of direct detection experiments. Liquid xenon (LXe), in particular, is a well suited target for WIMP direct detection. It is easily scalable to larger target masses, allows discrimination between nuclear recoils and electronic recoils, and has an excellent stopping power to shield against external backgrounds. A particle losing energy in LXe creates both ionization electrons and scintillation light. In a dual-phase LXe time projection chamber (TPC) the ionization electrons are drifted and extracted into the gas phase where they are accelerated to amplify the charge signal into a proportional scintillation signal. These two signals allow the three-dimensional localization of events with millimeter precision and the ability to fiducialize the target volume, yielding an inner core with a very low background. Additionally, the ratio of ionization and scintillation can be used to discriminate between nuclear recoils, from neutrons or WIMPs, and electronic recoils, from gamma or beta backgrounds. In these detectors, the energy scale is based on the scintillation signal of nuclear recoils and consequently the precise knowledge of the scintillation efficiency of nuclear recoils in LXe is of prime importance. Inspired by the success of the XENON10 experiment, the XENON collaboration designed and built a new, ten times larger, with a one hundred times lower background, LXe TPC to search for dark matter. It is currently the most sensitive direct detection experiment in operation. In order to shed light on the response of LXe to low energy nuclear recoils a new single phase detector designed specifically for the measurement of the scintillation efficiency of nuclear recoils was also built. In 2011, the XENON100 dark matter results from 100 live days set the most stringent limit on the spin-independent WIMP-nucleon interaction cross section over a wide range of masses, down to sigma chi N ˜ 7 x 10-45 cm2 at 50 GeV/c2, almost an order of magnitude improvement over XENON10 in less than four years. This thesis describes the research conducted in the context of the XENON100 dark matter search experiment. I describe the initial simulation results and ideas that influenced the design of the XENON100 detector, the construction and assembly steps that lead into its concrete realization, the detector and its subsystems, a subset of the calibration results of the detector, and finally dark matter exclusion limits. I also describe in detail the new improved measurement of the important quantity for the interpretation of results from LXe dark matter searches, the scintillation efficiency of low-energy nuclear recoils in LXe.
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcondes, Rafael J.F.; Landim, Ricardo C.G.; Costa, André A.
2016-12-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of f σ{sub 8} can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. After correcting the growth function formore » the correspondence with the velocity field through the continuity equation in the interacting model, we use our analytic result to compare the model's predictions with large-scale structure observations.« less
NASA Astrophysics Data System (ADS)
McKinsey, D. N.;
2016-05-01
The LUX and ZEPLIN collaborations have merged to construct a 7 tonne two-phase Xe dark matter detector, known as LUX-ZEPLIN or LZ. Chosen as one of the Generation 2 suite of dark matter direct detection experiments, LZ will probe spin-independent WIMP-nucleon cross sections down to 2 × 10-48 cm2 at 50 GeV/c2 within 3 years of operation, covering a substantial range of theoretically-motivated dark matter candidates. Along with dark matter interactions with Xe nuclei, LZ will also be sensitive to solar neutrinos emitted by the pp fusion process in the sun, neutrinos emitted by a nearby supernova and detected by coherent neutrino-nucleus scattering, certain classes of axions and axion-like particles, and neutrinoless double-beta decay of 136Xe. The design of LZ is presented, along with its expected backgrounds and projected sensitivity.
First Direct-Detection Constraints on eV-Scale Hidden-Photon Dark Matter with DAMIC at SNOLAB.
Aguilar-Arevalo, A; Amidei, D; Bertou, X; Butner, M; Cancelo, G; Castañeda Vázquez, A; Cervantes Vergara, B A; Chavarria, A E; Chavez, C R; de Mello Neto, J R T; D'Olivo, J C; Estrada, J; Fernandez Moroni, G; Gaïor, R; Guardincerri, Y; Hernández Torres, K P; Izraelevitch, F; Kavner, A; Kilminster, B; Lawson, I; Letessier-Selvon, A; Liao, J; Matalon, A; Mello, V B B; Molina, J; Privitera, P; Ramanathan, K; Sarkis, Y; Schwarz, T; Settimo, M; Sofo Haro, M; Thomas, R; Tiffenberg, J; Tiouchichine, E; Torres Machado, D; Trillaud, F; You, X; Zhou, J
2017-04-07
We present direct detection constraints on the absorption of hidden-photon dark matter with particle masses in the range 1.2-30 eV c^{-2} with the DAMIC experiment at SNOLAB. Under the assumption that the local dark matter is entirely constituted of hidden photons, the sensitivity to the kinetic mixing parameter κ is competitive with constraints from solar emission, reaching a minimum value of 2.2×10^{-14} at 17 eV c^{-2}. These results are the most stringent direct detection constraints on hidden-photon dark matter in the galactic halo with masses 3-12 eV c^{-2} and the first demonstration of direct experimental sensitivity to ionization signals <12 eV from dark matter interactions.
Hidden Sector Dark Matter Models for the Galactic Center Gamma-Ray Excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, Asher; Gratia, Pierre; Hooper, Dan
2014-07-24
The gamma-ray excess observed from the Galactic Center can be interpreted as dark matter particles annihilating into Standard Model fermions with a cross section near that expected for a thermal relic. Although many particle physics models have been shown to be able to account for this signal, the fact that this particle has not yet been observed in direct detection experiments somewhat restricts the nature of its interactions. One way to suppress the dark matter's elastic scattering cross section with nuclei is to consider models in which the dark matter is part of a hidden sector. In such models, themore » dark matter can annihilate into other hidden sector particles, which then decay into Standard Model fermions through a small degree of mixing with the photon, Z, or Higgs bosons. After discussing the gamma-ray signal from hidden sector dark matter in general terms, we consider two concrete realizations: a hidden photon model in which the dark matter annihilates into a pair of vector gauge bosons that decay through kinetic mixing with the photon, and a scenario within the generalized NMSSM in which the dark matter is a singlino-like neutralino that annihilates into a pair of singlet Higgs bosons, which decay through their mixing with the Higgs bosons of the MSSM.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Samuel J.; Gluscevic, Vera; McDermott, Samuel D.
It has recently been demonstrated that, in the event of a putative signal in dark matter direct detection experiments, properly identifying the underlying dark matter-nuclei interaction promises to be a challenging task. Given the most optimistic expectations for the number counts of recoil events in the forthcoming Generation 2 experiments, differentiating between interactions that produce distinct features in the recoil energy spectra will only be possible if a strong signal is observed simultaneously on a variety of complementary targets. However, there is a wide range of viable theories that give rise to virtually identical energy spectra, and may only differmore » by the dependence of the recoil rate on the dark matter velocity. In this work, we investigate how degeneracy between such competing models may be broken by analyzing the time dependence of nuclear recoils, i.e. the annual modulation of the rate. For this purpose, we simulate dark matter events for a variety of interactions and experiments, and perform a Bayesian model-selection analysis on all simulated data sets, evaluating the chance of correctly identifying the input model for a given experimental setup. Lastly, we find that including information on the annual modulation of the rate may significantly enhance the ability of a single target to distinguish dark matter models with nearly degenerate recoil spectra, but only with exposures beyond the expectations of Generation 2 experiments.« less
Gravitational waves as a new probe of Bose-Einstein condensate Dark Matter
NASA Astrophysics Data System (ADS)
Dev, P. S. Bhupal; Lindner, Manfred; Ohmer, Sebastian
2017-10-01
There exists a class of ultralight Dark Matter (DM) models which could give rise to a Bose-Einstein condensate (BEC) in the early universe and behave as a single coherent wave instead of individual particles in galaxies. We show that a generic BEC-DM halo intervening along the line of sight of a gravitational wave (GW) signal could induce an observable change in the speed of GWs, with the effective refractive index depending only on the mass and self-interaction of the constituent DM particles and the GW frequency. Hence, we propose to use the deviation in the speed of GWs as a new probe of the BEC-DM parameter space. With a multi-messenger approach to GW astronomy and/or with extended sensitivity to lower GW frequencies, the entire BEC-DM parameter space can be effectively probed by our new method in the near future.
Searching for axion stars and Q-balls with a terrestrial magnetometer network
Jackson Kimball, D. F.; Budker, D.; Eby, J.; ...
2018-02-08
Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less
Searching for axion stars and Q -balls with a terrestrial magnetometer network
NASA Astrophysics Data System (ADS)
Jackson Kimball, D. F.; Budker, D.; Eby, J.; Pospelov, M.; Pustelny, S.; Scholtes, T.; Stadnik, Y. V.; Weis, A.; Wickenbrock, A.
2018-02-01
Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q -balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q -balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown that a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q -ball could be detected over a broad range of unexplored parameter space.
Searching for axion stars and Q-balls with a terrestrial magnetometer network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson Kimball, D. F.; Budker, D.; Eby, J.
Light (pseudo-)scalar fields are promising candidates to be the dark matter in the Universe. Under certain initial conditions in the early Universe and/or with certain types of self-interactions, they can form compact dark-matter objects such as axion stars or Q-balls. Direct encounters with such objects can be searched for by using a global network of atomic magnetometers. It is shown that for a range of masses and radii not ruled out by existing observations, the terrestrial encounter rate with axion stars or Q-balls can be sufficiently high (at least once per year) for a detection. Furthermore, it is shown thatmore » a global network of atomic magnetometers is sufficiently sensitive to pseudoscalar couplings to atomic spins so that a transit through an axion star or Q-ball could be detected over a broad range of unexplored parameter space.« less
NASA Astrophysics Data System (ADS)
Yang, Kwei-Chou
2018-01-01
In light of the observed Galactic center gamma-ray excess, we investigate a simplified model, for which the scalar dark matter interacts with quarks through a pseudoscalar mediator. The viable regions of the parameter space, that can also account for the relic density and evade the current searches, are identified, if the low-velocity dark matter annihilates through an s -channel off shell mediator mostly into b ¯b , and/or annihilates directly into two hidden on shell mediators, which subsequently decay into the quark pairs. These two kinds of annihilations are s wave. The projected monojet limit set by the high luminosity LHC sensitivity could constrain the favored parameter space, where the mediator's mass is larger than the dark matter mass by a factor of 2. We show that the projected sensitivity of 15-year Fermi-LAT observations of dwarf spheroidal galaxies can provide a stringent constraint on the most parameter space allowed in this model. If the on shell mediator channel contributes to the dark matter annihilation cross sections over 50%, this model with a lighter mediator can be probed in the projected PICO-500L experiment.
Fermilab | About Fermilab | Photo and Video Gallery
LHC Dark matter and dark energy ADMX Muons More fundamental particles and forces Theory Scientific society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery rarely interact with matter. thumb Med-Res Hi-Res A view of Fermilab's MINERvA detector with the MINOS
Secluded and putative flipped dark matter and Stueckelberg extensions of the standard model
NASA Astrophysics Data System (ADS)
Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.
2018-02-01
We consider here three dark matter models with the gauge symmetry of the standard model plus an additional local U(1)D factor. One model is truly secluded and the other two models begin flipped, but end up secluded. All of these models include one dark fermion and one vector boson that gains mass via the Stueckelberg mechanism. We show that the would be flipped models provide an example dark matter composed of "almost least interacting particles" (ALIPs). Such particles are therefore compatible with the constraints obtained from both laboratory measurements and astrophysical observations.
Secluded and Putative Flipped Dark Matter and Stueckelberg Extensions of the Standard Model
NASA Technical Reports Server (NTRS)
Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.
2018-01-01
We consider here three dark matter models with the gauge symmetry of the standard model plus an additional local U(1)D factor. One model is truly secluded and the other two models begin flipped, but end up secluded. All of these models include one dark fermion and one vector boson that gains mass via the Stueckelberg mechanism. We show that the would be flipped models provide an example dark matter composed of "almost least interacting particles" (ALIPs). Such particles are therefore compatible with the constraints obtained from both laboratory measurements and astrophysical observations.
Light dark Higgs boson in minimal sub-GeV dark matter scenarios
NASA Astrophysics Data System (ADS)
Darmé, Luc; Rao, Soumya; Roszkowski, Leszek
2018-03-01
Minimal scenarios with light (sub-GeV) dark matter whose relic density is obtained from thermal freeze-out must include new light mediators. In particular, a very well-motivated case is that of a new "dark" massive vector gauge boson mediator. The mass term for such mediator is most naturally obtained by a "dark Higgs mechanism" which leads to the presence of an often long-lived dark Higgs boson whose mass scale is the same as that of the mediator. We study the phenomenology and experimental constraints on two minimal, self-consistent dark sectors that include such a light dark Higgs boson. In one the dark matter is a pseudo-Dirac fermion, in the other a complex scalar. We find that the constraints from BBN and CMB are considerably relaxed in the framework of such minimal dark sectors. We present detection prospects for the dark Higgs boson in existing and projected proton beam-dump experiments. We show that future searches at experiments like Xenon1T or LDMX can probe all the relevant parameter space, complementing the various upcoming indirect constraints from astrophysical observations.
Extended maximum likelihood halo-independent analysis of dark matter direct detection data
Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; ...
2015-11-24
We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark mattermore » particles with elastic spin-independent interactions and neutron to proton coupling ratio f n/f p=-0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f n/f p=-0.8.« less
Fermionic dark matter with pseudo-scalar Yukawa interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghorbani, Karim, E-mail: k-ghorbani@araku.ac.ir
2015-01-01
We consider a renormalizable extension of the standard model whose fermionic dark matter (DM) candidate interacts with a real singlet pseudo-scalar via a pseudo-scalar Yukawa term while we assume that the full Lagrangian is CP-conserved in the classical level. When the pseudo-scalar boson develops a non-zero vacuum expectation value, spontaneous CP-violation occurs and this provides a CP-violated interaction of the dark sector with the SM particles through mixing between the Higgs-like boson and the SM-like Higgs boson. This scenario suggests a minimal number of free parameters. Focusing mainly on the indirect detection observables, we calculate the dark matter annihilation crossmore » section and then compute the DM relic density in the range up to m{sub DM} = 300 GeV.We then find viable regions in the parameter space constrained by the observed DM relic abundance as well as invisible Higgs decay width in the light of 125 GeV Higgs discovery at the LHC. We find that within the constrained region of the parameter space, there exists a model with dark matter mass m{sub DM} ∼ 38 GeV annihilating predominantly into b quarks, which can explain the Fermi-LAT galactic gamma-ray excess.« less
Dark matter, long-range forces, and large-scale structure
NASA Technical Reports Server (NTRS)
Gradwohl, Ben-Ami; Frieman, Joshua A.
1992-01-01
If the dark matter in galaxies and clusters is nonbaryonic, it can interact with additional long-range fields that are invisible to experimental tests of the equivalence principle. We discuss the astrophysical and cosmological implications of a long-range force coupled only to the dark matter and find rather tight constraints on its strength. If the force is repulsive (attractive), the masses of galaxy groups and clusters (and the mean density of the universe inferred from them) have been systematically underestimated (overestimated). We explore the consequent effects on the two-point correlation function, large-scale velocity flows, and microwave background anisotropies, for models with initial scale-invariant adiabatic perturbations and cold dark matter.
Novel approaches to the study of particle dark matter in astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argüelles, C. R., E-mail: carlos.arguelles@icranet.org; Ruffini, R., E-mail: ruffini@icra.it; Rueda, J. A., E-mail: jorge.rueda@icra.it
A deep understanding of the role of the dark matter in the different astrophysical scenarios of the local Universe such as galaxies, represent a crucial step to describe in a more consistent way the role of dark matter in cosmology. This kind of studies requires the interconnection between particle physics within and beyond the Standard Model, and fundamental physics such as thermodynamics and statistics, within a fully relativistic treatment of Gravity. After giving a comprehensive summary of the different types of dark matter and their role in astrophysics, we discuss the recent efforts in describing the distribution of dark mattermore » in the center and halo of galaxies from first principles such as gravitational interactions, quantum statistics and particle physics; and its implications with the observations.« less
Bahcall, Neta A
2015-10-06
Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.
New class of biological detectors for WIMPs
NASA Astrophysics Data System (ADS)
Drukier, A. K.; Cantor, Ch.; Chonofsky, M.; Church, G. M.; Fagaly, R. L.; Freese, K.; Lopez, A.; Sano, T.; Savage, C.; Wong, W. P.
2014-07-01
Weakly Interacting Massive Particles (WIMPs) may constitute a large fraction of the matter in the Universe. There are excess events in the data of DAMA/LIBRA, CoGeNT, CRESST-II, and recently CDMS-Si, which could be consistent with WIMP masses of approximately 10 GeV/c2. However, for MDM > 10 GeV/c2 null results of the CDMS-Ge, XENON, and LUX detectors may be in tension with the potential detections for certain dark matter scenarios and assuming a certain light response. We propose the use of a new class of biological dark matter (DM) detectors to further examine this light dark matter hypothesis, taking advantage of new signatures with low atomic number targets. Two types of biological DM detectors are discussed here: DNA-based detectors and enzymatic reactions (ER) based detectors. In the case of DNA-based detectors, we discuss a new implementation. In the case of ER detectors, there are four crucial phases of the detection process: (a) change of state due to energy deposited by a particle; (b) amplification due to the release of energy derived from the action of an enzyme on its substrate; (c) sustainable but nonexplosive enzymatic reaction; (d) self-termination due to the denaturation of the enzyme, when the temperature is raised. This paper provides information of how to design as well as optimize these four processes.
Bringing isolated dark matter out of isolation: Late-time reheating and indirect detection
NASA Astrophysics Data System (ADS)
Erickcek, Adrienne L.; Sinha, Kuver; Watson, Scott
2016-09-01
In standard cosmology, the growth of structure becomes significant following matter-radiation equality. In nonthermal histories, where an effectively matter-dominated phase occurs due to scalar oscillations prior to big bang nucleosynthesis, a new scale at smaller wavelengths appears in the matter power spectrum. Density perturbations that enter the horizon during the early matter-dominated era (EMDE) grow linearly with the scale factor prior to the onset of radiation domination, which leads to enhanced inhomogeneity on small scales if dark matter (DM) thermally and kinetically decouples during the EMDE. The microhalos that form from these enhanced perturbations significantly boost the self-annihilation rate for dark matter. This has important implications for indirect detection experiments: the larger annihilation rate may result in observable signals from dark matter candidates that are usually deemed untestable. As a proof of principle, we consider binos in heavy supersymmetry with an intermediate extended Higgs sector and all other superpartners decoupled. We find that these isolated binos, which lie under the neutrino floor, can account for the dark matter relic density and decouple from the standard model early enough to preserve the enhanced small-scale inhomogeneity generated during the EMDE. If early forming microhalos survive as subhalos within larger microhalos, the resulting boost to the annihilation rate for bino dark matter near the pseudoscalar resonance exceeds the upper limit established by Fermi-LAT's observations of dwarf spheroidal galaxies. These DM candidates motivate the N -body simulations required to eliminate uncertainties in the microhalos' internal structure by exemplifying how an EMDE can enable Fermi-LAT to probe isolated dark matter.
Multipartite interacting scalar dark matter in the light of updated LUX data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Subhaditya; Ghosh, Purusottam; Poulose, Poulose, E-mail: subhab@iitg.ernet.in, E-mail: p.ghosh@iitg.ernet.in, E-mail: poulose@iitg.ernet.in
2017-04-01
We explore constraints on multipartite dark matter (DM) framework composed of singlet scalar DM interacting with the Standard Model (SM) through Higgs portal coupling. We compute relic density and direct search constraints including the updated LUX bound for two component scenario with non-zero interactions between two DM components in Z{sub 2} × Z{sub 2}{sup '} framework in comparison with the one having O(2) symmetry. We point out availability of a significantly large region of parameter space of such a multipartite model with DM-DM interactions.
Cosmology and the weak interaction
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
The weak interaction plays a critical role in modern Big Bang cosmology. Two of its most publicized comological connections are emphasized: big bang nucleosynthesis and dark matter. The first of these is connected to the cosmological prediction of neutrine flavors, N(sub nu) is approximately 3 which in now being confirmed. The second is interrelated to the whole problem of galacty and structure formation in the universe. The role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure is demonstrated.
Balkin, Reuven; Perez, Gilad; Weiler, Andreas
2018-01-01
We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.
NASA Astrophysics Data System (ADS)
Balkin, Reuven; Perez, Gilad; Weiler, Andreas
2018-02-01
We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.
Search For Dark Matter Satellites Using Fermi-Lat
Ackermann, M.
2012-02-23
Numerical simulations based on the ΛCDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the γ-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard γ-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on γ-ray spectra consistent with WIMP annihilation through themore » $$b \\bar{b}$$ channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the $$b \\bar{b}$$ channel.« less
Search for Dark Matter Satellites Using the Fermi-Lat
NASA Technical Reports Server (NTRS)
Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.;
2012-01-01
Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the bb(sup raised bar) channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 Ge V WIMP annihilating through the bb(sup raised bar) channel.
NASA Astrophysics Data System (ADS)
Butner, Melissa Jean
The DaMIC (Dark Matter in CCDs) experiment searches for dark matter particles using charge coupled devices (CCDs) operated at a low detection threshold of ˜40 eV electron equivalent energy (eVee). A multiplexor board is tested for DAMIC100+ which has the ability to control up to 16 CCDs at one time allowing for the selection of a single CCD for readout while leaving all others static and maintaining sub-electron noise. A dark matter limit is produced using the results of physics data taken with the DAMIC experiment. Next, the contribution from neutrino-nucleus coherent scattering is investigated using data from the Coherent Neutrino Nucleus Interaction Experiment (CONnuIE) using the same CCD technology. The results are used to explore the performance of CCD detectors that ultimately will limit the ability to differentiate incident solar and atmospheric neutrinos from dark matter particles.
Gravitational wave from dark sector with dark pion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsumura, Koji; Yamada, Masatoshi; Yamaguchi, Yuya, E-mail: ko2@gauge.scphys.kyoto-u.ac.jp, E-mail: m.yamada@thphys.uni-heidelberg.de, E-mail: yy@particle.sci.hokudai.ac.jp
In this work, we investigate the spectra of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion (π) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the 2π → 2 SM process. For a SIMP scenario, we investigate the 3π → 2π annihilation process of the dark pion as a SIMP using chiralmore » perturbation theory. We find that in the WIMP scenario the gravitational wave background spectra can be observed by future space gravitational wave antennas. On the other hand, when the dark pion is the SIMP dark matter with the constraints for the chiral perturbative limit and pion-pion scattering cross section, the chiral phase transition becomes crossover and then the gravitational waves are not produced.« less
Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles
NASA Astrophysics Data System (ADS)
He, Yu; Lin, Wen-bin
2017-04-01
The cosmological model of cold dark matter (CDM) with the dark energy and a scale-invariant adiabatic primordial power spectrum has been considered as the standard cosmological model, i.e. the ΛCDM model. Weakly interacting massive particles (WIMPs) become a prominent candidate for the CDM. Many models extended from the standard model can provide the WIMPs naturally. The standard calculations of relic abundance of dark matter show that the WIMPs are well in agreement with the astronomical observation of ΩDM h2 ≈0.11. The WIMPs have a relatively large mass, and a relatively slow velocity, so they are easy to aggregate into clusters, and the results of numerical simulations based on the WIMPs agree well with the observational results of cosmic large-scale structures. In the aspect of experiments, the present accelerator or non-accelerator direct/indirect detections are mostly designed for the WIMPs. Thus, a wide attention has been paid to the CDM model based on the WIMPs. However, the ΛCDM model has a serious problem for explaining the small-scale structures under one Mpc. Different dark matter models have been proposed to alleviate the small-scale problem. However, so far there is no strong evidence enough to exclude the CDM model. We plan to introduce the research progress of the dark matter model based on the WIMPs, such as the WIMPs miracle, numerical simulation, small-scale problem, and the direct/indirect detection, to analyze the criterion for discriminating the ;cold;, ;hot;, and ;warm; dark matter, and present the future prospects for the study in this field.
Identifying WIMP dark matter from particle and astroparticle data
NASA Astrophysics Data System (ADS)
Bertone, Gianfranco; Bozorgnia, Nassim; Kim, Jong Soo; Liem, Sebastian; McCabe, Christopher; Otten, Sydney; Ruiz de Austri, Roberto
2018-03-01
One of the most promising strategies to identify the nature of dark matter consists in the search for new particles at accelerators and with so-called direct detection experiments. Working within the framework of simplified models, and making use of machine learning tools to speed up statistical inference, we address the question of what we can learn about dark matter from a detection at the LHC and a forthcoming direct detection experiment. We show that with a combination of accelerator and direct detection data, it is possible to identify newly discovered particles as dark matter, by reconstructing their relic density assuming they are weakly interacting massive particles (WIMPs) thermally produced in the early Universe, and demonstrating that it is consistent with the measured dark matter abundance. An inconsistency between these two quantities would instead point either towards additional physics in the dark sector, or towards a non-standard cosmology, with a thermal history substantially different from that of the standard cosmological model.
Dark Matter Search in a Proton Beam Dump with MiniBooNE
Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; ...
2017-05-31
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less
Dark Matter Search in a Proton Beam Dump with MiniBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less
Modelling non-linear effects of dark energy
NASA Astrophysics Data System (ADS)
Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis
2018-04-01
We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.
Lincoln, Don
2018-01-16
After a century of study, scientists have come to the realization that the ordinary matter made of atoms is a minority in the universe. In order to explain observations, it appears that there exists a new and undiscovered kind of matter, called dark matter, that is five times more prevalent than ordinary matter. The evidence for this new matterâs existence is very strong, but scientists know only a little about its nature. In todayâs video, Fermilabâs Dr. Don Lincoln talks about an exciting and unconventional idea, specifically that dark matter might have a very complex set of structures and interactions. While this idea is entirely speculative, it is an interesting hypothesis and one that scientists are investigating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, William A., E-mail: wadawson@ucdavis.edu
2013-08-01
Merging galaxy clusters have become one of the most important probes of dark matter, providing evidence for dark matter over modified gravity and even constraints on the dark matter self-interaction cross-section. To properly constrain the dark matter cross-section it is necessary to understand the dynamics of the merger, as the inferred cross-section is a function of both the velocity of the collision and the observed time since collision. While the best understanding of merging system dynamics comes from N-body simulations, these are computationally intensive and often explore only a limited volume of the merger phase space allowed by observed parametermore » uncertainty. Simple analytic models exist but the assumptions of these methods invalidate their results near the collision time, plus error propagation of the highly correlated merger parameters is unfeasible. To address these weaknesses I develop a Monte Carlo method to discern the properties of dissociative mergers and propagate the uncertainty of the measured cluster parameters in an accurate and Bayesian manner. I introduce this method, verify it against an existing hydrodynamic N-body simulation, and apply it to two known dissociative mergers: 1ES 0657-558 (Bullet Cluster) and DLSCL J0916.2+2951 (Musket Ball Cluster). I find that this method surpasses existing analytic models-providing accurate (10% level) dynamic parameter and uncertainty estimates throughout the merger history. This, coupled with minimal required a priori information (subcluster mass, redshift, and projected separation) and relatively fast computation ({approx}6 CPU hours), makes this method ideal for large samples of dissociative merging clusters.« less
Gravitational collapse and the vacuum energy
NASA Astrophysics Data System (ADS)
Campos, M.
2014-03-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Nearly Supersymmetric Dark Atoms
Behbahani, Siavosh R.; Jankowiak, Martin; Rube, Tomas; ...
2011-01-01
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models, supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed, and several benchmarkmore » models are described. General features of nonrelativistic supersymmetric bound states are emphasized.« less
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Changqiao, C.-Q.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'eramo, L.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vasconcelos Corga, K.; De Vivie De Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Bello, F. A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Petrillo, K. F.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonnella, F.; Gonski, J. L.; González de la Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, D. M. S.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; zur Nedden, M.; Zwalinski, L.
2018-01-01
A search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 fb^{-1} of proton-proton collision data recorded by the ATLAS experiment at √{s}=13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.
Bahcall, Neta A.
2015-01-01
Most of the mass in the universe is in the form of dark matter—a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations—from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is “cold” (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology—a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)—fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle. PMID:26417091
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2017-02-01
© 2017, The Author(s). We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days ofmore » detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube’s predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP–nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
© 2017, The Author(s). We present the results of the first IceCube search for dark matter annihilation in the center of the Earth. Weakly interacting massive particles (WIMPs), candidates for dark matter, can scatter off nuclei inside the Earth and fall below its escape velocity. Over time the captured WIMPs will be accumulated and may eventually self-annihilate. Among the annihilation products only neutrinos can escape from the center of the Earth. Large-scale neutrino telescopes, such as the cubic kilometer IceCube Neutrino Observatory located at the South Pole, can be used to search for such neutrino fluxes. Data from 327 days ofmore » detector livetime during 2011/2012 were analyzed. No excess beyond the expected background from atmospheric neutrinos was detected. The derived upper limits on the annihilation rate of WIMPs in the Earth and the resulting muon flux are an order of magnitude stronger than the limits of the last analysis performed with data from IceCube’s predecessor AMANDA. The limits can be translated in terms of a spin-independent WIMP–nucleon cross section. For a WIMP mass of 50 GeV this analysis results in the most restrictive limits achieved with IceCube data.« less
Alphas and surface backgrounds in liquid argon dark matter detectors
NASA Astrophysics Data System (ADS)
Stanford, Christopher J.
Current observations from astrophysics indicate the presence of dark matter, an invisible form of matter that makes up a large part of the mass of the universe. One of the leading theories for dark matter is that it is made up of Weakly Interacting Massive Particles (WIMPs). One of the ways we try to discover WIMPs is by directly detecting their interaction with regular matter. This can be done using a scintillator such as liquid argon, which gives off light when a particle interacts with it. Liquid argon (LAr) is a favorable means of detecting WIMPs because it has an inherent property that enables a technique called pulse-shape discrimination (PSD). PSD can distinguish a WIMP signal from the constant background of electromagnetic signals from other sources, like gamma rays. However, there are other background signals that PSD is not as capable of rejecting, such as those caused by alpha decays on the interior surfaces of the detector. Radioactive elements that undergo alpha decay are introduced to detector surfaces during construction by radon gas that is naturally present in the air, as well as other means. When these surface isotopes undergo alpha decay, they can produce WIMP-like signals in the detector. We present here two LAr experiments. The first (RaDOSE) discovered a property of an organic compound that led to a technique for rejecting surface alpha decays in LAr detectors with high efficiency. The second (DarkSide-50) is a dark matter experiment operated at LNGS in Italy and is the work of an international collaboration. A detailed look is given into alpha decays and surface backgrounds present in the detector, and projections are made of alpha-related backgrounds for 500 live days of data. The technique developed with RaDOSE is applied to DarkSide-50 to determine its effectiveness in practice. It is projected to suppress the surface background in DarkSide-50 by more than a factor of 1000.
Radon Mitigation for the SuperCDMS-SNOLAB Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Street, Joseph; SuperCDMS Collaboration
2016-03-01
Experiments that seek to detect very rare processes, such as interactions of the dark matter particles thought to make up 85% of the mass of the universe, may suffer background interactions from radon daughters that have plated out onto detector surfaces. To reduce these backgrounds, an ultra-low-radon cleanroom was built at the South Dakota School of Mines & Technology. Cleanroom air is supplied by an optimized vacuum-swing-adsorption radon mitigation system that has achieved a > 300 × reduction from an input activity of 58.6 +/- 0.7 Bq/m3 to a cleanroom activity of 0.13 +/- 0.06 Bq/m3. Expected backgrounds due to radon daughters for the SuperCDMS dark matter search will be presented.
Thermal dark matter co-annihilating with a strongly interacting scalar
NASA Astrophysics Data System (ADS)
Biondini, S.; Laine, M.
2018-04-01
Recently many investigations have considered Majorana dark matter co-annihilating with bound states formed by a strongly interacting scalar field. However only the gluon radiation contribution to bound state formation and dissociation, which at high temperatures is subleading to soft 2 → 2 scatterings, has been included. Making use of a non-relativistic effective theory framework and solving a plasma-modified Schrödinger equation, we address the effect of soft 2 → 2 scatterings as well as the thermal dissociation of bound states. We argue that the mass splitting between the Majorana and scalar field has in general both a lower and an upper bound, and that the dark matter mass scale can be pushed at least up to 5…6TeV.
Global constraints on vector-like WIMP effective interactions
Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique; ...
2016-04-07
In this work we combine information from relic abundance, direct detection, cosmic microwave background, positron fraction, gamma rays, and colliders to explore the existing constraints on couplings between Dark Matter and Standard Model constituents when no underlying model or correlation is assumed. For definiteness, we include independent vector-like effective interactions for each Standard Model fermion. Our results show that low Dark Matter masses below 20 GeV are disfavoured at the 3 σ level with respect to higher masses, due to the tension between the relic abundance requirement and upper constraints on the Dark Matter couplings. Lastly, large couplings are typically onlymore » allowed in combinations which avoid effective couplings to the nuclei used in direct detection experiments.« less
Dark Coulomb binding of heavy neutrinos of fourth family
NASA Astrophysics Data System (ADS)
Belotsky, K. M.; Esipova, E. A.; Khlopov, M. Yu.; Laletin, M. N.
2015-11-01
Direct dark matter searches put severe constraints on the weakly interacting massive particles (WIMPs). These constraints cause serious troubles for the model of stable neutrino of fourth generation with mass around 50GeV. Though the calculations of primordial abundance of these particles make them in the charge symmetric case a sparse subdominant component of the modern dark matter, their presence in the universe would exceed the current upper limits by several orders of the magnitude. However, if quarks and leptons of fourth generation possess their own Coulomb-like y-interaction, recombination of pairs of heavy neutrinos and antineutrinos and their annihilation in the “neutrinium” atoms can play important role in their cosmological evolution, reducing their modern abundance far below the experimental upper limits. The model of stable fourth generation assumes that the dominant part of dark matter is explained by excessive Ū antiquarks, forming (ŪŪŪ)-- charged clusters, bound with primordial helium in nuclear-interacting O-helium (OHe) dark atoms. The y charge conservation implies generation of the same excess of fourth generation neutrinos, potentially dangerous WIMP component of this scenario. We show that due to y-interaction recombination of fourth neutrinos with OHe hides these WIMPs from direct WIMP searches, leaving the negligible fraction of free neutrinos, what makes their existence compatible with the experimental constraints.
Complementarity of dark matter searches in the phenomenological MSSM
Cahill-Rowley, Matthew; Cotta, Randy; Drlica-Wagner, Alex; ...
2015-03-11
As is well known, the search for and eventual identification of dark matter in supersymmetry requires a simultaneous, multipronged approach with important roles played by the LHC as well as both direct and indirect dark matter detection experiments. We examine the capabilities of these approaches in the 19-parameter phenomenological MSSM which provides a general framework for complementarity studies of neutralino dark matter. We summarize the sensitivity of dark matter searches at the 7 and 8 (and eventually 14) TeV LHC, combined with those by Fermi, CTA, IceCube/DeepCore, COUPP, LZ and XENON. The strengths and weaknesses of each of these techniques aremore » examined and contrasted and their interdependent roles in covering the model parameter space are discussed in detail. We find that these approaches explore orthogonal territory and that advances in each are necessary to cover the supersymmetric weakly interacting massive particle parameter space. We also find that different experiments have widely varying sensitivities to the various dark matter annihilation mechanisms, some of which would be completely excluded by null results from these experiments.« less
Impact of Sommerfeld enhancement on helium reionization via WIMP dark matter
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Bidisha; Schleicher, Dominik R. G.
2018-03-01
Dark matter annihilation can have a strong impact on many astrophysical processes in the Universe. In the case of Sommerfeld-enhanced annihilation cross sections, the annihilation rates are enhanced at late times, thus enhancing the potential annihilation signatures. We here calculate the Sommerfeld-enhanced annihilation signatures during the epoch of helium reionization, the epoch where helium becomes fully ionized due to energetic photons. When considering the upper limits on the energy injection from the CMB, we find that the resulting abundance of He++ becomes independent of the dark matter particle mass. The resulting enhancement compared to a standard scenario is thus 1-2 orders of magnitude higher. For realistic scenarios compatible with CMB constraints, there is no significant shift in the epoch of helium reionization, which is completed between redshifts 3 and 4. While it is thus difficult to disentangle dark matter annihilation from astrophysical contributions (active galactic nuclei), a potential detection of dark matter particles and its interactions using the Large Hadron Collider (LHC) would allow one to quantify the dark matter contribution.
Massari, Andrea; Izaguirre, Eder; Essig, Rouven; ...
2015-04-29
Here, we set conservative, robust constraints on the annihilation and decay of dark matter into various Standard Model final states under various assumptions about the distribution of the dark matter in the Milky Way halo. We use the inclusive photon spectrum observed by the Fermi Gamma-ray Space Telescope through its main instrument, the Large Area Telescope. We use simulated data to first find the “optimal” regions of interest in the γ-ray sky, where the expected dark matter signal is largest compared with the expected astrophysical foregrounds. We then require the predicted dark matter signal to be less than the observedmore » photon counts in the a priori optimal regions. This yields a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds. The resulting limits are competitive with other existing limits and, for some final states with cuspy dark-matter distributions in the Galactic Center region, disfavor the typical cross section required during freeze-out for a weakly interacting massive particle to obtain the observed relic abundance.« less
Hunting for Dark Matter particles with new detectors.
Angloher, Godehard; Jochum, Josef
2005-03-01
Although first hints of the existence of Dark Matter were observed by the Swiss astronomer Zwicky already in the 1930s, only in recent years has it become known that the universe, in fact, is dominated by particles whose nature is almost unknown and which have never been directly observed. Meanwhile, as the existence of these particles is postulated not only by astronomy, but also cosmology and theoretical particle physics, there is significant effort to detect them in a laboratory experiment and determine their physical properties. However, as the interaction rate between Dark Matter particles and ordinary matter is extremely low, detectors have to be extremely sensitive. Low temperature detectors have been available for more than a decade and have now reached the highest sensitivity for direct Dark Matter detection. In this article, we give a short overview of observational results that suggest the existence of Dark Matter particles and what physicists have learned so far about their properties. The main focus is on the experimental challenges and effort for their direct detection.
Scalar field dark matter with spontaneous symmetry breaking and the 3.5 keV line
NASA Astrophysics Data System (ADS)
Cosme, Catarina; Rosa, João G.; Bertolami, O.
2018-06-01
We show that the present dark matter abundance can be accounted for by an oscillating scalar field that acquires both mass and a non-zero expectation value from interactions with the Higgs field. The dark matter scalar field can be sufficiently heavy during inflation, due to a non-minimal coupling to gravity, so as to avoid the generation of large isocurvature modes in the CMB anisotropies spectrum. The field begins oscillating after reheating, behaving as radiation until the electroweak phase transition and afterwards as non-relativistic matter. The scalar field becomes unstable, although sufficiently long-lived to account for dark matter, due to mass mixing with the Higgs boson, decaying mainly into photon pairs for masses below the MeV scale. In particular, for a mass of ∼7 keV, which is effectively the only free parameter, the model predicts a dark matter lifetime compatible with the recent galactic and extragalactic observations of a 3.5 keV X-ray line.
Indirect detection of dark matter with γ rays.
Funk, Stefan
2015-10-06
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today-80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles.
Indirect detection of dark matter with γ rays
Funk, Stefan
2015-01-01
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today—80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles. PMID:24821791
First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso
Agnes, P.
2015-03-11
We report the first results of DarkSide-50, a direct search for dark matter operating in the underground Laboratori Nazionali del Gran Sasso (LNGS) and searching for the rare nuclear recoils possibly induced by weakly interacting massive particles (WIMPs). The dark matter detector is a Liquid Argon Time Projection Chamber with a (46.4 ± 0.7) kg active mass, operated inside a 30 t organic liquid scintillator neutron veto, which is in turn installed at the center of a 1 kt water Cherenkov veto for the residual flux of cosmic rays. We report here the null results of a dark matter searchmore » for a (1422 ± 67) kg d exposure with an atmospheric argon fill. As a result, this is the most sensitive dark matter search performed with an argon target, corresponding to a 90% CL upper limit on the WIMP-nucleon spin-independent cross section of 6.1×10 -44 cm 2 for a WIMP mass of 100 Gev/c 2.« less
Simplified models vs. effective field theory approaches in dark matter searches
NASA Astrophysics Data System (ADS)
De Simone, Andrea; Jacques, Thomas
2016-07-01
In this review we discuss and compare the usage of simplified models and Effective Field Theory (EFT) approaches in dark matter searches. We provide a state of the art description on the subject of EFTs and simplified models, especially in the context of collider searches for dark matter, but also with implications for direct and indirect detection searches, with the aim of constituting a common language for future comparisons between different strategies. The material is presented in a form that is as self-contained as possible, so that it may serve as an introductory review for the newcomer as well as a reference guide for the practitioner.
Effect of electromagnetic dipole dark matter on energy transport in the solar interior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geytenbeek, Ben; Rao, Soumya; White, Martin
In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or anmore » anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ∼ 1 GeV{sup −2} or magnetic dipole moment of ∼ 10{sup −3}μ {sub p} can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Marco
2015-11-09
We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of themore » cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farina, Marco, E-mail: mf627@cornell.edu
2015-11-01
We study a natural implementation of Asymmetric Dark Matter in Twin Higgs models. The mirroring of the Standard Model strong sector suggests that a twin baryon with mass around 5 GeV is a natural Dark Matter candidate once a twin baryon number asymmetry comparable to the SM asymmetry is generated. We explore twin baryon Dark Matter in two different scenarios, one with minimal content in the twin sector and one with a complete copy of the SM, including a light twin photon. The essential requirements for successful thermal history are presented, and in doing so we address some of themore » cosmological issues common to many Twin Higgs models. The required interactions we introduce predict signatures at direct detection experiments and at the LHC.« less
Simplified models for dark matter searches at the LHC
NASA Astrophysics Data System (ADS)
Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre; Ashkenazi, Adi; Belyaev, Alexander; Berger, Joshua; Boehm, Celine; Boveia, Antonio; Brennan, Amelia; Brooke, Jim; Buchmueller, Oliver; Buckley, Matthew; Busoni, Giorgio; Calibbi, Lorenzo; Chauhan, Sushil; Daci, Nadir; Davies, Gavin; De Bruyn, Isabelle; De Jong, Paul; De Roeck, Albert; de Vries, Kees; Del Re, Daniele; De Simone, Andrea; Di Simone, Andrea; Doglioni, Caterina; Dolan, Matthew; Dreiner, Herbi K.; Ellis, John; Eno, Sarah; Etzion, Erez; Fairbairn, Malcolm; Feldstein, Brian; Flaecher, Henning; Feng, Eric; Fox, Patrick; Genest, Marie-Hélène; Gouskos, Loukas; Gramling, Johanna; Haisch, Ulrich; Harnik, Roni; Hibbs, Anthony; Hoh, Siewyan; Hopkins, Walter; Ippolito, Valerio; Jacques, Thomas; Kahlhoefer, Felix; Khoze, Valentin V.; Kirk, Russell; Korn, Andreas; Kotov, Khristian; Kunori, Shuichi; Landsberg, Greg; Liem, Sebastian; Lin, Tongyan; Lowette, Steven; Lucas, Robyn; Malgeri, Luca; Malik, Sarah; McCabe, Christopher; Mete, Alaettin Serhan; Morgante, Enrico; Mrenna, Stephen; Nakahama, Yu; Newbold, Dave; Nordstrom, Karl; Pani, Priscilla; Papucci, Michele; Pataraia, Sophio; Penning, Bjoern; Pinna, Deborah; Polesello, Giacomo; Racco, Davide; Re, Emanuele; Riotto, Antonio Walter; Rizzo, Thomas; Salek, David; Sarkar, Subir; Schramm, Steven; Skubic, Patrick; Slone, Oren; Smirnov, Juri; Soreq, Yotam; Sumner, Timothy; Tait, Tim M. P.; Thomas, Marc; Tomalin, Ian; Tunnell, Christopher; Vichi, Alessandro; Volansky, Tomer; Weiner, Neal; West, Stephen M.; Wielers, Monika; Worm, Steven; Yavin, Itay; Zaldivar, Bryan; Zhou, Ning; Zurek, Kathryn
2015-09-01
This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both ss-channel and tt-channel scenarios. For ss-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.
Radiative origin of all quark and lepton masses through dark matter with flavor symmetry.
Ma, Ernest
2014-03-07
The fundamental issue of the origin of mass for all quarks and leptons (including Majorana neutrinos) is linked to dark matter, odd under an exactly conserved Z2 symmetry which may or may not be derivable from an U(1)D gauge symmetry. The observable sector interacts with a proposed dark sector which consists of heavy neutral singlet Dirac fermions and suitably chosen new scalars. Flavor symmetry is implemented in a renormalizable context with just the one Higgs doublet (ϕ(+), ϕ(0)) of the standard model in such a way that all observed fermions obtain their masses radiatively through dark matter.
Many-body matter-wave dark soliton.
Delande, Dominique; Sacha, Krzysztof
2014-01-31
The Gross-Pitaevskii equation--which describes interacting bosons in the mean-field approximation--possesses solitonic solutions in dimension one. For repulsively interacting particles, the stationary soliton is dark, i.e., is represented by a local density minimum. Many-body effects may lead to filling of the dark soliton. Using quasiexact many-body simulations, we show that, in single realizations, the soliton appears totally dark although the single particle density tends to be uniform.
Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment.
Davis, Jonathan H
2017-11-24
Using data from the ν-cleus detector, based on the surface of Earth, we place constraints on dark matter in the form of strongly interacting massive particles (SIMPs) which interact with nucleons via nuclear-scale cross sections. For large SIMP-nucleon cross sections, the sensitivity of traditional direct dark matter searches using underground experiments is limited by the energy loss experienced by SIMPs, due to scattering with the rock overburden and experimental shielding on their way to the detector apparatus. Hence, a surface-based experiment is ideal for a SIMP search, despite the much larger background resulting from the lack of shielding. We show using data from a recent surface run of a low-threshold cryogenic detector that values of the SIMP-nucleon cross section up to approximately 10^{-27} cm^{2} can be excluded for SIMPs with masses above 100 MeV.
An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos
NASA Astrophysics Data System (ADS)
Zhao, Hong Sheng
2008-11-01
Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as antagnising frameworks, e.g. in the muddled debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.
Einasto profiles and the dark matter power spectrum
NASA Astrophysics Data System (ADS)
Ludlow, Aaron D.; Angulo, Raúl E.
2017-02-01
We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.
NASA Astrophysics Data System (ADS)
Gonzalez-Morales, Alma X.; Profumo, Stefano; Queiroz, Farinaldo S.
2014-11-01
Recent discoveries of optical signatures of black holes in dwarf galaxies indicates that low-mass galaxies can indeed host intermediate massive black holes. This motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the nonobservation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the density profile using three different prescriptions for the black hole mass associated with a given spheroidal galaxy, and taking into account the cutoff to the density from dark matter pair-annihilation. We find that the limits on the dark matter annihilation rate from observations of individual dwarfs are enhanced by factors of a few up to 1 06 , depending on the specific galaxy, on the black hole mass prescription, and on the dark matter particle mass. We estimate limits from combined observations of a sample of 15 dwarfs, for a variety of assumptions on the dwarf black hole mass and on the dark matter density profile prior to adiabatic contraction. We find that if black holes are indeed present in local dwarf spheroidals, then, independent of assumptions, (i) the dark matter interpretation of the Galactic center gamma-ray excess would be conclusively ruled out, (ii) wino dark matter would be excluded up to masses of about 3 TeV, and (iii) vanilla thermal relic weakly interacting massive particles must be heavier than 100 GeV.
Constraining the interaction between dark sectors with future HI intensity mapping observations
NASA Astrophysics Data System (ADS)
Xu, Xiaodong; Ma, Yin-Zhe; Weltman, Amanda
2018-04-01
We study a model of interacting dark matter and dark energy, in which the two components are coupled. We calculate the predictions for the 21-cm intensity mapping power spectra, and forecast the detectability with future single-dish intensity mapping surveys (BINGO, FAST and SKA-I). Since dark energy is turned on at z ˜1 , which falls into the sensitivity range of these radio surveys, the HI intensity mapping technique is an efficient tool to constrain the interaction. By comparing with current constraints on dark sector interactions, we find that future radio surveys will produce tight and reliable constraints on the coupling parameters.
Higgs enhancement for the dark matter relic density
NASA Astrophysics Data System (ADS)
Harz, Julia; Petraki, Kalliopi
2018-04-01
We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.
Dips in the diffuse supernova neutrino background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman; Palomares-Ruiz, Sergio, E-mail: yasaman@theory.ipm.ac.ir, E-mail: Sergio.Palomares.Ruiz@ific.uv.es
2014-06-01
Scalar (fermion) dark matter with mass in the MeV range coupled to ordinary neutrinos and another fermion (scalar) is motivated by scenarios that establish a link between radiatively generated neutrino masses and the dark matter relic density. With such a coupling, cosmic supernova neutrinos, on their way to us, could resonantly interact with the background dark matter particles, giving rise to a dip in their redshift-integrated spectra. Current and future neutrino detectors, such as Super-Kamiokande, LENA and Hyper-Kamiokande, could be able to detect this distortion.
Higher dimensional strange quark matter solutions in self creation cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
Lighting the universe with filaments.
Gao, Liang; Theuns, Tom
2007-09-14
The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.
Arina, Chiara; Del Nobile, Eugenio; Panci, Paolo
2015-01-09
We study a Dirac dark matter particle interacting with ordinary matter via the exchange of a light pseudoscalar, and analyze its impact on both direct and indirect detection experiments. We show that this candidate can accommodate the long-standing DAMA modulated signal and yet be compatible with all exclusion limits at 99(S)% C.L. This result holds for natural choices of the pseudoscalar-quark couplings (e.g., flavor universal), which give rise to a significant enhancement of the dark matter-proton coupling with respect to the coupling to neutrons. We also find that this candidate can accommodate the observed 1-3 GeV gamma-ray excess at the Galactic center and at the same time have the correct relic density today. The model could be tested with measurements of rare meson decays, flavor changing processes, and searches for axionlike particles with mass in the MeV range.
NASA Astrophysics Data System (ADS)
Kadribasic, Fedja; Mirabolfathi, Nader; Nordlund, Kai; Sand, Andrea E.; Holmström, Eero; Djurabekova, Flyura
2018-03-01
We propose a method using solid state detectors with directional sensitivity to dark matter interactions to detect low-mass weakly interacting massive particles (WIMPs) originating from galactic sources. In spite of a large body of literature for high-mass WIMP detectors with directional sensitivity, no available technique exists to cover WIMPs in the mass range <1 GeV /c2 . We argue that single-electron-resolution semiconductor detectors allow for directional sensitivity once properly calibrated. We examine the commonly used semiconductor material response to these low-mass WIMP interactions.
COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, David F.; Winther, Hans A.
2011-05-20
In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to {Lambda}CDM, but can in some special cases enhance the growth of the linear perturbationsmore » at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.« less
Aaboud, M.; Aad, G.; Abbott, B.; ...
2018-01-11
Here, a search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1fb –1 of proton–proton collision data recorded by the ATLAS experiment at √s=13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV aremore » excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50GeV and assuming a dark-matter mass of 1GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35GeV, mediator particles with mass below 1.1TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaboud, M.; Aad, G.; Abbott, B.
Here, a search for weakly interacting massive dark-matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1fb –1 of proton–proton collision data recorded by the ATLAS experiment at √s=13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV aremore » excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50GeV and assuming a dark-matter mass of 1GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35GeV, mediator particles with mass below 1.1TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.« less
From quarks to nucleons in dark matter direct detection
NASA Astrophysics Data System (ADS)
Bishara, Fady; Brod, Joachim; Grinstein, Benjamin; Zupan, Jure
2017-11-01
We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give expressions of leading and subleading order in chiral counting. In general, a single partonic operator matches onto several nonrelativistic operators already at leading order in chiral counting. Keeping only one operator at the time in the nonrelativistic effective theory thus does not properly describe the scattering in direct detection. The matching of the axial-axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, include naively momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important.
Dark-matter QCD-axion searches.
Rosenberg, Leslie J
2015-10-06
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.
Dark-matter QCD-axion searches
Rosenberg, Leslie J
2015-01-01
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions. PMID:25583487
Updated constraints on the dark matter interpretation of CDMS-II-Si data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Samuel J.; Gelmini, Graciela B., E-mail: switte@physics.ucla.edu, E-mail: gelmini@physics.ucla.edu
2017-05-01
We present an updated halo-dependent and halo-independent analysis of viable light WIMP dark matter candidates which could account for the excess observed in CDMS-II-Si. We include recent constraints from LUX, PandaX-II, and PICO-60, as well as projected sensitivities for XENON1T, SuperCDMS SNOLAB, LZ, DARWIN, DarkSide-20k, and PICO-250, on candidates with spin-independent isospin conserving and isospin-violating interactions, and either elastic or exothermic scattering. We show that there exist dark matter candidates which can explain the CDMS-II-Si data and remain very marginally consistent with the null results of all current experiments, however such models are highly tuned, making a dark matter interpretationmore » of CDMS-II-Si very unlikely. We find that these models can only be ruled out in the future by an experiment comparable to LZ or PICO-250.« less
Charge Transport Phenomena in Detectors of the Cryogenic Dark Matter Search
NASA Astrophysics Data System (ADS)
Sundqvist, Kyle
2008-03-01
The Cryogenic Dark Matter Search (CDMS) seeks to detect putative weakly-interacting massive particles (WIMPS), which could explain the dark matter problem in cosmology and particle physics. By simultaneously measuring the number of charge carriers and the energy in athermal phonons created by particle interactions in intrinsic Ge and Si crystals at a temperature of 40 mK, a signature response for each event is produced. This response, combined with phonon pulse-shape information, allows CDMS to actively discriminate candidate WIMP interactions with nuclei apart from electromagnetic radioactive background which interacts with electrons. The challenges associated with these techniques are unique. Carrier drift-fields are maintained at only a few V/cm, else drift-emitted Luke-Neganov phonons would dominate the phonons of the original interaction. Under such conditions, carrier scattering is dominated by zero-point fluctuations of the lattice ions. It has been an open question how well the 8 Kelvin data prominent in the literature depicts this case. We compare the simulated transport properties of electrons and holes in <100> Ge at 40 mK and at 8 K, and apply this understanding to our detectors.
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1989-01-01
The types of particles which may provide the nonluminous mass required by big-bang cosmological models are listed and briefly characterized. The observational evidence for the existence of dark matter (outweighing the luminous component by at least a factor of 10) is reviewed; the theoretical arguments favoring mainly nonbaryonic dark matter are summarized; and particular attention is given to weakly interacting massive particles (WIMPs) remaining as relics from the early universe. The WIMPs are classified as thermal relics (heavy stable neutrinos and lighter neutralinos), asymmetric relics (including baryons), nonthermal relics (superheavy magnetic monopoles, axions, and soliton stars), and truly exotic relics (relativistic debris or vacuum energy). Explanations for the current apparent baryon/exotica ratio of about 0.1 in different theoretical scenarios are considered, and the problems of experimental and/or observational dark-matter detection are examined.
Dark matter effective field theory scattering in direct detection experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneck, K.; Cabrera, B.; Cerdeño, D. G.
2015-05-18
We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
Leptogenesis, radiative neutrino masses and inert Higgs triplet dark matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wen-Bin; Gu, Pei-Hong
2016-05-18
We extend the standard model by three types of inert fields including Majorana fermion singlets/triplets, real Higgs singlets/triplets and leptonic Higgs doublets. In the presence of a softly broken lepton number and an exactly conserved Z{sub 2} discrete symmetry, these inert fields together can mediate a one-loop diagram for a Majorana neutrino mass generation. The heavier inert fields can decay to realize a successful leptogenesis while the lightest inert field can provide a stable dark matter candidate. As an example, we demonstrate the leptogenesis by the inert Higgs doublet decays. We also perform a systematic study on the inert Higgsmore » triplet dark matter scenario where the interference between the gauge and Higgs portal interactions can significantly affect the dark matter properties.« less
First Dark Matter Search Results from the XENON1T Experiment
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Gardner, R.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Howlett, J.; Itay, R.; Kaminsky, B.; Kazama, S.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Mariş, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morâ, K.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Riedel, B.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. V.; Stein, A.; Thapa, S.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Upole, N.; Wang, H.; Wang, Z.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Zhu, T.; Xenon Collaboration
2017-11-01
We report the first dark matter search results from XENON1T, a ˜2000 -kg -target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 ±12 )-kg fiducial mass and in the [5 ,40 ] keVnr energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 ±0.25 )×10-4 events /(kg ×day ×keVee) , the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV /c2 , with a minimum of 7.7 ×10-47 cm2 for 35 -GeV /c2 WIMPs at 90% C.L.
Axino LSP baryogenesis and dark matter
Monteux, Angelo; Shin, Chang Sub
2015-05-01
We discuss a new mechanism for baryogenesis, in which the baryon asymmetry is generated by the lightest supersymmetric particle (LSP) decay via baryonic R-parity-violating interactions. As a specific example, we use a supersymmetric axion model with an axino LSP. This scenario predicts large R-parity violation for the stop, and an upper limit on the squark masses between 15 and 130 TeV, for different choices of the Peccei-Quinn scale and the soft Xt terms. We discuss the implications for the nature of dark matter in light of the axino baryogenesis mechanism, and find that both the axion and a metastable gravitinomore » can provide the correct dark matter density. In the axion dark matter scenario, the initial misalignment angle is restricted to be Script O(1). On the other hand, the reheating temperature is linked to the PQ scale and should be higher than 104-105 GeV in the gravitino dark matter scenario.« less
Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.
Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver
2013-08-02
We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.
Electroweak Kaluza-Klein dark matter
Flacke, Thomas; Kang, Dong Woo; Kong, Kyoungchul; ...
2017-04-07
In models with universal extra dimensions (UED), the lightest Kaluza-Klein excitation of neutral electroweak gauge bosons is a stable, weakly interacting massive particle and thus is a candidate for dark matter thanks to Kaluza-Klein parity. We examine concrete model realizations of such dark matter in the context of non-minimal UED extensions. The boundary localized kinetic terms for the electroweak gauge bosons lead to a non-trivial mixing among the first Kaluza-Klein excitations of themore » $${\\rm SU}(2)_W$$ and $${\\rm U}(1)_Y$$ gauge bosons and the resultant low energy phenomenology is rich. We investigate implications of various experiments including low energy electroweak precision measurements, direct and indirect detection of dark matter particles and direct collider searches at the LHC. Furthermore, we show that the electroweak Kaluza-Klein dark matter can be as heavy as 2.4 TeV, which is significantly higher than $1.3$ TeV as is indicated as an upper bound in the minimal UED model.« less
DAMA confronts null searches in the effective theory of dark matter-nucleon interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catena, Riccardo; Ibarra, Alejandro; Wild, Sebastian
2016-05-17
We examine the dark matter interpretation of the modulation signal reported by the DAMA experiment from the perspective of effective field theories displaying Galilean invariance. We consider the most general effective coupling leading to the elastic scattering of a dark matter particle with spin 0 or 1/2 off a nucleon, and we analyze the compatibility of the DAMA signal with the null results from other direct detection experiments, as well as with the non-observation of a high energy neutrino flux in the direction of the Sun from dark matter annihilation. To this end, we develop a novel semi-analytical approach formore » comparing experimental results in the high-dimensional parameter space of the non-relativistic effective theory. Assuming the standard halo model, we find a strong tension between the dark matter interpretation of the DAMA modulation signal and the null result experiments. We also list possible ways-out of this conclusion.« less
Emergence of a dark force in corpuscular gravity
NASA Astrophysics Data System (ADS)
Cadoni, M.; Casadio, R.; Giusti, A.; Tuveri, M.
2018-02-01
We investigate the emergent laws of gravity when dark energy and the de Sitter space-time are modeled as a critical Bose-Einstein condensate of a large number of soft gravitons NG. We argue that this scenario requires the presence of various regimes of gravity in which NG scales in different ways. Moreover, the local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons pulled out from this dark energy condensate (DEC). We then explain the additional component of the acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from the DEC and correctly reproduces the modified Newtonian dynamics (MOND) acceleration. It also allows for an effective description in terms of general relativity sourced by an anisotropic fluid. We finally calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a region of size r at galactic scales and show that it is consistent with the Λ CDM predictions.
Secluded WIMPs, Dark QED with Massive Photons, and the Galactic Center Gamma-Ray Excess
NASA Technical Reports Server (NTRS)
Fortes, E. C. F. S.; Pleitez, V.; Stecker, F. W.
2015-01-01
We discuss a particular secluded WIMP dark matter model consisting of neutral fermions as the dark matter candidate and a Proca-Wentzel (PW) field as a mediator. In the model that we consider here, dark matter WIMPs interact with standard model (SM) particles only through the PW field of approximately MeV-multi-GeV mass particles. The interactions occur via a U(1)' mediator, V'(sub mu), which couples to the SM by kinetic mixing with U(1) hypercharge bosons, B'(sub mu). One important difference between our model and other such models in the literature is the absence of an extra singlet scalar, so that the parameter with dimension of mass M(sup 2, sub V) is not related to a spontaneous symmetry breaking. This QED based model is also renormalizable. The mass scale of the mediator and the absence of the singlet scalar can lead to interesting astrophysical signatures. The dominant annihilation channels are different from those usually considered in previous work. We show that the GeV energy gamma-ray excess in the galactic center region, as derived from Fermi-LAT Gamma-ray Space Telescope data, can be attributed to such secluded dark matter WIMPs, given parameters of the model that are consistent with both the cosmological dark matter density and the upper limits on WIMP spin-independent elastic scattering. Secluded WIMP models are also consistent with suggested upper limits on a DM contribution to the cosmic-ray antiproton flux.
SIMP model at NNLO in chiral perturbation theory
NASA Astrophysics Data System (ADS)
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2015-10-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 →2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By performing a consistent next-to-leading- and next-to-next-to-leading-order chiral perturbative investigation we demonstrate that the leading-order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher-order corrections substantially increase the tension with phenomenological constraints challenging the viability of the simplest realization of the strongly interacting massive particle paradigm.
Simplified models for dark matter searches at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, Jalal; Araujo, Henrique; Arbey, Alexandre
This document a outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions formore » implementation are presented.« less
Simplified Models for Dark Matter Searches at the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdallah, Jalal
This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementationmore » are presented.« less
Simplified Models for Dark Matter Searches at the LHC
Abdallah, Jalal
2015-08-11
This document outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementationmore » are presented.« less
Symmetron dark energy in laboratory experiments.
Upadhye, Amol
2013-01-18
The symmetron scalar field is a matter-coupled dark energy candidate which effectively decouples from matter in high-density regions through a symmetry restoration. We consider a previously unexplored regime, in which the vacuum mass μ~2.4×10(-3) eV of the symmetron is near the dark energy scale, and the matter coupling parameter M~1 TeV is just beyond standard model energies. Such a field will give rise to a fifth force at submillimeter distances which can be probed by short-range gravity experiments. We show that a torsion pendulum experiment such as Eöt-Wash can exclude symmetrons in this regime for all self-couplings λ is < or approximately equal to 7.5.
NASA Astrophysics Data System (ADS)
Ko, P.; Tang, Yong
2014-12-01
We propose an ultraviolet complete theory for cold dark matter (CDM) and sterile neutrinos that can accommodate both cosmological data and neutrino oscillation experiments within 1σ level. We assume a new U(1)X dark gauge symmetry which is broken at ∼ O (MeV) scale resulting light dark photon. Such a light mediator for DM's self-scattering and scattering-off sterile neutrinos can resolve three controversies for cold DM on small cosmological scales: cusp vs. core, too-big-to-fail and missing satellites. We can also accommodate ∼ O (1) eV scale sterile neutrinos as the hot dark matter (HDM) and can fit some neutrino anomalies from neutrino oscillation experiments within 1σ. Finally, the right amount of HDM can make a sizable contribution to dark radiation, and also helps to reconcile the tension between the data on the tensor-to-scalar ratio reported by Planck and BICEP2 Collaborations.
Theory and phenomenology of Planckian interacting massive particles as dark matter
NASA Astrophysics Data System (ADS)
Garny, Mathias; Palessandro, Andrea; Sandora, McCullen; Sloth, Martin S.
2018-02-01
Planckian Interacting Dark Matter (PIDM) is a minimal scenario of dark matter assuming only gravitational interactions with the standard model and with only one free parameter, the PIDM mass. PIDM can be successfully produced by gravitational scattering in the thermal plasma of the Standard Model sector after inflation in the PIDM mass range from TeV up to the GUT scale, if the reheating temperature is sufficiently high. The minimal assumption of a GUT scale PIDM mass can be tested in the future by measurements of the primordial tensor-to-scalar ratio. While large primordial tensor modes would be in tension with the QCD axion as dark matter in a large mass range, it would favour the PIDM as a minimal alternative to WIMPs. Here we generalise the previously studied scalar PIDM scenario to the case of fermion, vector and tensor PIDM scenarios, and show that the phenomenology is nearly identical, independent of the spin of the PIDM. We also consider the specific realisation of the PIDM as the Kaluza-Klein excitation of the graviton in orbifold compactifications of string theory, as well as in models of monodromy inflation and in Higgs inflation. Finally we discuss the possibility of indirect detection of PIDM through non-perturbative decay.
Evaporation and scattering of momentum- and velocity-dependent dark matter in the Sun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busoni, Giorgio; Simone, Andrea De; Scott, Pat
Dark matter with momentum- or velocity-dependent interactions with nuclei has shown significant promise for explaining the so-called Solar Abundance Problem, a longstanding discrepancy between solar spectroscopy and helioseismology. The best-fit models are all rather light, typically with masses in the range of 3–5 GeV. This is exactly the mass range where dark matter evaporation from the Sun can be important, but to date no detailed calculation of the evaporation of such models has been performed. Here we carry out this calculation, for the first time including arbitrary velocity- and momentum-dependent interactions, thermal effects, and a completely general treatment valid frommore » the optically thin limit all the way through to the optically thick regime. We find that depending on the dark matter mass, interaction strength and type, the mass below which evaporation is relevant can vary from 1 to 4 GeV. This has the effect of weakening some of the better-fitting solutions to the Solar Abundance Problem, but also improving a number of others. As a by-product, we also provide an improved derivation of the capture rate that takes into account thermal and optical depth effects, allowing the standard result to be smoothly matched to the well-known saturation limit.« less
Constraints on the composite photon theory
NASA Astrophysics Data System (ADS)
Low, Lerh Feng
2016-10-01
In a 2015 paper [W. A. Perkins, Mod. Phys. Lett. A 30, 1550157 (2015)], Perkins argued that based on the composite photon theory (CPT), antiphotons should not interact with ordinary matter. This implies that antiphotons are undetectable by detectors made of ordinary matter, and hence that antimatter galaxies are a possible candidate for dark matter. The purpose of this short letter is to argue that this conclusion is highly unlikely, because of cosmological constraints on the density of radiation, the distribution of dark matter and C-symmetry.
Indirect searches for dark matter with the Fermi large area telescope
Albert, Andrea
2015-03-24
There is overwhelming evidence that non-baryonic dark matter constitutes ~ 27% of the energy density of the Universe. Weakly Interacting Massive Particles (WIMPs) are promising dark matter candidates that may produce γ rays via annihilation or decay detectable by the Fermi Large Area Telescope (LAT). A detection of WIMPs would also indicate the existence of physics beyond the Standard Model. We present recent results from the two cleanest indirect WIMP searches by the Fermi-LAT Collaboration: searches for γ-ray spectral lines and γ-ray emission associated with Milky Way dwarf spheroidal satellite galaxies.
Dark matter search with CUORE-0 and CUORE
Aguirre, C. P.; Artusa, D. R.; Avignone, F. T.; ...
2015-01-01
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale experiment made of TeO₂ bolometers that will probe the neutrinoless double beta decay of ¹³⁰Te. Excellent energy resolution, low threshold and low background make CUORE sensitive to nuclear recoils, allowing a search for dark matter interactions. With a total mass of 741 kg of TeO₂, CUORE can search for an annual modulation of the counting rate at low energies. We present data obtained with CUORE-like detectors and the prospects for a dark matter search in CUORE-0, a 40-kg prototype, and CUORE.
Lower limit on dark matter production at the CERN Large Hadron Collider.
Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro
2006-04-21
We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.
Interacting parametrized post-Friedmann method
NASA Astrophysics Data System (ADS)
Richarte, Martín G.; Xu, Lixin
2016-04-01
We apply the interacting parametrized post-Friedmann (IPPF) method to coupled dark energy models where the interaction is proportional to dark matter density at background level. In the first case, the dark components are treated as fluids and the growth of dark matter perturbations only feel the interaction via the modification of background quantities provided dark matter follows geodesic. We also perform a Markov Chain Monte-Carlo analysis which combines several cosmological probes including the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation (BAO) measurements, JLA sample of supernovae, Hubble constant (HST), and redshift-space distortion (RSD) measurements through the fσ 8(z) data points. The joint observational analysis of Planck+WP+JLA+BAO+HST+ RSD data leads to a coupling parameter, ξ c=0.00140_{-0.00080}^{+0.00079} at 1σ level for vanishing momentum transfer potential. On the other hand, we deal with a coupled quintessence model which exhibits a violation of the equivalence principle coming form a coupling term in the modified Euler equation; as a result of that the local Hubble expansion rate and the effective gravitational coupling are both enhanced. Provided that the interaction is parallel to scalar field velocity the momentum transfer potential is switched on, leading to a lower interaction coupling ξ c=0.00136_{-0.00073}^{+0.00080} at 1σ level when Planck+WP+JLA+BAO+HST+RSD data are combined. Besides, the CMB power spectrum shows up a correlation between the coupling parameter ξ c and the position of acoustic peaks or their amplitudes. The first peak's height increases when ξ c takes larger values and its position is shifted. We also obtain the matter power spectrum may be affected by the strength of interaction coupling over scales bigger than 10^{-2} h Mpc^{-1}, reducing its amplitude in relation to the vanilla model.
Dark-matter QCD-axion searches
Rosenberg, Leslie J.
2015-01-12
In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10 -(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.« less
Cosmic selection rule for the glueball dark matter relic density
NASA Astrophysics Data System (ADS)
Soni, Amarjit; Xiao, Huangyu; Zhang, Yue
2017-10-01
We point out a unique mechanism to produce the relic abundance for the glueball dark matter from a gauged SU (N )d hidden sector which is bridged to the standard model sector through heavy vectorlike quarks colored under gauge interactions from both sides. A necessary ingredient of our assumption is that the vectorlike quarks, produced either thermally or nonthermally, are abundant enough to dominate the universe for some time in the early universe. They later undergo dark color confinement and form unstable vectorlike-quarkonium states which annihilate decay and reheat the visible and dark sectors. The ratio of entropy dumped into two sectors and the final energy budget in the dark glueballs is only determined by low energy parameters, including the intrinsic scale of the dark SU (N )d , Λd, and number of dark colors, Nd, but depend weakly on parameters in the ultraviolet such as the vectorlike quark mass or the initial condition. We call this a cosmic selection rule for the glueball dark matter relic density.
Stability of satellite planes in M31 II: effects of the dark subhalo population
NASA Astrophysics Data System (ADS)
Fernando, Nuwanthika; Arias, Veronica; Lewis, Geraint F.; Ibata, Rodrigo A.; Power, Chris
2018-01-01
The planar arrangement of nearly half the satellite galaxies of M31 has been a source of mystery and speculation since it was discovered. With a growing number of other host galaxies showing these satellite galaxy planes, their stability and longevity have become central to the debate on whether the presence of satellite planes are a natural consequence of prevailing cosmological models, or represent a challenge. Given the dependence of their stability on host halo shape, we look into how a galaxy plane's dark matter environment influences its longevity. An increased number of dark matter subhaloes results in increased interactions that hasten the deterioration of an already-formed plane of satellite galaxies in spherical dark haloes. The role of total dark matter mass fraction held in subhaloes in dispersing a plane of galaxies presents non-trivial effects on plane longevity as well. But any misalignment of plane inclines to major axes of flattened dark matter haloes lead to their lifetimes being reduced to ≤3 Gyr. Distributing ≥40 per cent of total dark mass in subhaloes in the overall dark matter distribution results in a plane of satellite galaxies which is prone to change through the 5-Gyr integration time period.
How CMB and large-scale structure constrain chameleon interacting dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au
2015-07-01
We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength,more » can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.« less
Characterizing dark matter at the LHC in Drell-Yan events
NASA Astrophysics Data System (ADS)
Capdevilla, Rodolfo M.; Delgado, Antonio; Martin, Adam; Raj, Nirmal
2018-02-01
Spectral features in LHC dileptonic events may signal radiative corrections coming from new degrees of freedom, notably dark matter and mediators. Using simplified models, and under a set of simplifying assumptions, we show how these features can reveal the fundamental properties of the dark sector, such as self-conjugation, spin and mass of dark matter, and the quantum numbers of the mediator. Distributions of both the invariant mass mℓℓ and the Collins-Soper scattering angle cos θCS are studied to pinpoint these properties. We derive constraints on the models from LHC measurements of mℓℓ and cos θCS, which are competitive with direct detection and jets+MET searches. We find that in certain scenarios the cos θCS spectrum provides the strongest bounds, underlining the importance of scattering angle measurements for nonresonant new physics.
Z boson mediated dark matter beyond the effective theory
Kearney, John; Orlofsky, Nicholas; Pierce, Aaron
2017-02-17
Here, direct detection bounds are beginning to constrain a very simple model of weakly interacting dark matter—a Majorana fermion with a coupling to the Z boson. In a particularly straightforward gauge-invariant realization, this coupling is introduced via a higher-dimensional operator. While attractive in its simplicity, this model generically induces a large ρ parameter. An ultraviolet completion that avoids an overly large contribution to ρ is the singlet-doublet model. We revisit this model, focusing on the Higgs blind spot region of parameter space where spin-independent interactions are absent. This model successfully reproduces dark matter with direct detection mediated by the Zmore » boson but whose cosmology may depend on additional couplings and states. Future direct detection experiments should effectively probe a significant portion of this parameter space, aside from a small coannihilating region. As such, Z-mediated thermal dark matter as realized in the singlet-doublet model represents an interesting target for future searches.« less
Dark interactions and cosmological fine-tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E
2008-05-15
Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less
Search for dark matter annihilation in the Galactic Center with IceCube-79
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less
Search for dark matter annihilation in the Galactic Center with IceCube-79
Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...
2015-10-15
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less
Quantum foam, gravitational thermodynamics, and the dark sector
NASA Astrophysics Data System (ADS)
Ng, Y. Jack
2017-05-01
Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected dark matter.
Interacting holographic dark energy models: a general approach
NASA Astrophysics Data System (ADS)
Som, S.; Sil, A.
2014-08-01
Dark energy models inspired by the cosmological holographic principle are studied in homogeneous isotropic spacetime with a general choice for the dark energy density . Special choices of the parameters enable us to obtain three different holographic models, including the holographic Ricci dark energy (RDE) model. Effect of interaction between dark matter and dark energy on the dynamics of those models are investigated for different popular forms of interaction. It is found that crossing of phantom divide can be avoided in RDE models for β>0.5 irrespective of the presence of interaction. A choice of α=1 and β=2/3 leads to a varying Λ-like model introducing an IR cutoff length Λ -1/2. It is concluded that among the popular choices an interaction of the form Q∝ Hρ m suits the best in avoiding the coincidence problem in this model.
Constraints on the dark matter and dark energy interactions from weak lensing bispectrum tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Rui; Feng, Chang; Wang, Bin, E-mail: an_rui@sjtu.edu.cn, E-mail: chang.feng@uci.edu, E-mail: wang_b@sjtu.edu.cn
We estimate uncertainties of cosmological parameters for phenomenological interacting dark energy models using weak lensing convergence power spectrum and bispectrum. We focus on the bispectrum tomography and examine how well the weak lensing bispectrum with tomography can constrain the interactions between dark sectors, as well as other cosmological parameters. Employing the Fisher matrix analysis, we forecast parameter uncertainties derived from weak lensing bispectra with a two-bin tomography and place upper bounds on strength of the interactions between the dark sectors. The cosmic shear will be measured from upcoming weak lensing surveys with high sensitivity, thus it enables us to usemore » the higher order correlation functions of weak lensing to constrain the interaction between dark sectors and will potentially provide more stringent results with other observations combined.« less
The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid
NASA Astrophysics Data System (ADS)
Campos, M.
2014-02-01
To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.
Electroweak bremsstrahlung for wino-like Dark Matter annihilations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciafaloni, Paolo; Comelli, Denis; Simone, Andrea De
2012-06-01
If the Dark Matter is the neutral Majorana component of a multiplet which is charged under the electroweak interactions of the Standard Model, its main annihilation channel is into W{sup +}W{sup −}, while the annihilation into light fermions is helicity suppressed. As pointed out recently, the radiation of gauge bosons from the initial state of the annihilation lifts the suppression and opens up an s-wave contribution to the cross section. We perform the full tree-level calculation of Dark Matter annihilations, including electroweak bremsstrahlung, in the context of an explicit model corresponding to the supersymmetric wino. We find that the fermionmore » channel can become as important as the di-boson one. This result has significant implications for the predictions of the fluxes of particles originating from Dark Matter annihilations.« less
Search for magnetic inelastic dark matter with XENON100
NASA Astrophysics Data System (ADS)
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Pizzella, V.; Piro, M.-C.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Vargas, M.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.
2017-10-01
We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c2 and 122.7 GeV/c2 are excluded at 3.3 σ and 9.3 σ, respectively.
NASA Astrophysics Data System (ADS)
Hooper, Dan; McDermott, Samuel D.
2018-06-01
Due to shielding, direct detection experiments are in some cases insensitive to dark matter candidates with very large scattering cross sections with nucleons. In this paper, we revisit this class of models and derive a simple analytic criterion for conservative but robust direct detection limits. While large spin-independent cross sections seem to be ruled out, we identify potentially viable parameter space for dark matter with a spin-dependent cross section with nucleons in the range of 10-27 cm2≲σDM -p≲10-24 cm2 . With these parameters, cosmic-ray scattering with dark matter in the extended halo of the Milky Way could generate a novel and distinctive gamma-ray signal at high galactic latitudes. Such a signal could be observable by Fermi or future space-based gamma-ray telescopes.
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only [Formula: see text]0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (∼10 AU) and cool (surface temperatures ∼10 000 K) objects. We follow the evolution of dark stars from their inception at ∼[Formula: see text] as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >[Formula: see text] and luminosities >[Formula: see text], making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
NASA Astrophysics Data System (ADS)
Freese, Katherine; Rindler-Daller, Tanja; Spolyar, Douglas; Valluri, Monica
2016-06-01
Dark stars are stellar objects made (almost entirely) of hydrogen and helium, but powered by the heat from dark matter annihilation, rather than by fusion. They are in hydrostatic and thermal equilibrium, but with an unusual power source. Weakly interacting massive particles (WIMPs), among the best candidates for dark matter, can be their own antimatter and can annihilate inside the star, thereby providing a heat source. Although dark matter constitutes only ≲ 0.1% of the stellar mass, this amount is sufficient to power the star for millions to billions of years. Thus, the first phase of stellar evolution in the history of the Universe may have been dark stars. We review how dark stars come into existence, how they grow as long as dark matter fuel persists, and their stellar structure and evolution. The studies were done in two different ways, first assuming polytropic interiors and more recently using the MESA stellar evolution code; the basic results are the same. Dark stars are giant, puffy (˜10 AU) and cool (surface temperatures ˜10 000 K) objects. We follow the evolution of dark stars from their inception at ˜1{{M}⊙} as they accrete mass from their surroundings to become supermassive stars, some even reaching masses >{{10}6}{{M}⊙} and luminosities >{{10}10}{{L}⊙} , making them detectable with the upcoming James Webb Space Telescope. Once the dark matter runs out and the dark star dies, it may collapse to a black hole; thus dark stars may provide seeds for the supermassive black holes observed throughout the Universe and at early times. Other sites for dark star formation may exist in the Universe today in regions of high dark matter density such as the centers of galaxies. The current review briefly discusses dark stars existing today, but focuses on the early generation of dark stars.
Doppelgänger dark energy: modified gravity with non-universal couplings after GW170817
NASA Astrophysics Data System (ADS)
Amendola, Luca; Bettoni, Dario; Domènech, Guillem; Gomes, Adalto R.
2018-06-01
Gravitational Wave (GW) astronomy severely narrowed down the theoretical space for scalar-tensor theories. We propose a new class of attractor models {for Horndeski action} in which GWs propagate at the speed of light in the nearby universe but not in the past. To do so we derive new solutions to the interacting dark sector in which the ratio of dark energy and dark matter remains constant, which we refer to as doppelgänger dark energy (DDE). We then remove the interaction between dark matter and dark energy by a suitable change of variables. The accelerated expansion that (we) baryons observe is due to a conformal coupling to the dark energy scalar field. We show how in this context it is possible to find a non trivial subset of solutions in which GWs propagate at the speed of light only at low red-shifts. The model is an attractor, thus reaching the limit cT→1 relatively fast. However, the effect of baryons turns out to be non-negligible and severely constrains the form of the Lagrangian. In passing, we found that in the simplest DDE models the no-ghost conditions for perturbations require a non-universal coupling to gravity. In the end, we comment on possible ways to solve the lack of matter domination stage for DDE models.
Search for Light Dark Matter Produced in a Proton Beam Dump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thornton, Remington Tyler
Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector.more » The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.« less
Search for light dark matter produced in a proton beam dump
NASA Astrophysics Data System (ADS)
Thornton, Remington Tyler
Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.
NASA Astrophysics Data System (ADS)
Shields, Emily Kathryn
Ample evidence has been gathered demonstrating that the majority of the mass in the universe is composed of non-luminous, non-baryonic matter. Though the evidence for dark matter is unassailable, its nature and properties remain unknown. A broad effort has been undertaken by the physics community to detect dark-matter particles through direct-detection techniques. For over a decade, the DAMA/LIBRA experiment has observed a highly significant (9.3sigma) modulation in the scintillation event rate in their highly pure NaI(Tl) detectors, which they use as the basis of a claim for the discovery of dark-matter particles. However, the dark-matter interpretation of the DAMA/LIBRA modulation remains unverified. While there have been some recent hints of dark matter in the form of a light Weakly-Interacting Massive Particle (WIMP) from the CoGeNT and CDMS-Si experiments, when assuming a WIMP dark-matter model, several other experiments, including the LUX and XENON noble-liquid experiments, the KIMS CsI(Tl) experiment, and several bubble chamber experiments, conflict with DAMA/LIBRA. However, these experiments use different dark-matter targets and cannot be compared with DAMA/LIBRA in a model-independent way. The uncertainty surrounding the dark-matter model, astrophysical model, and nuclear-physics effects makes it necessary for a new NaI(Tl) experiment to directly test the DAMA/LIBRA result. The Sodium-iodide with Active Background REjection (SABRE) experiment seeks to provide a much-needed model-independent test of the DAMA/LIBRA modulation by developing highly pure crystal detectors with very low radioactivity and deploying them in an active veto detector that can reject key backgrounds in a dark-matter measurement. This work focuses on the efforts put forward by the SABRE collaboration in developing low-background, low-threshold crystal detectors, designing and fabricating a liquid-scintillator veto detector, and simulating the predicted background spectrum for a dark-matter measurement. In addition, recent controversy surrounding the value of an important parameter for direct detection---the nuclear quenching factor---prompted SABRE to perform a measurement of the quenching factor in sodium. The measurement, its results, and the implications for DAMA/LIBRA and dark matter are also described.
Dark Matter and Color Octets Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krnjaic, Gordan Zdenko
2012-07-01
Although the Standard Model (SM) of particles and interactions has survived forty years of experimental tests, it does not provide a complete description of nature. From cosmological and astrophysical observations, it is now clear that the majority of matter in the universe is not baryonic and interacts very weakly (if at all) via non-gravitational forces. The SM does not provide a dark matter candidate, so new particles must be introduced. Furthermore, recent Tevatron results suggest that SM predictions for benchmark collider observables are in tension with experimental observations. In this thesis, we will propose extensions to the SM that addressmore » each of these issues.« less
Analysis of interacting entropy-corrected holographic and new agegraphic dark energies
NASA Astrophysics Data System (ADS)
Ranjit, Chayan; Debnath, Ujjal
In the present work, we assume the flat FRW model of the universe is filled with dark matter and dark energy where they are interacting. For dark energy model, we consider the entropy-corrected HDE (ECHDE) model and the entropy-corrected NADE (ECNADE). For entropy-corrected models, we assume logarithmic correction and power law correction. For ECHDE model, length scale L is assumed to be Hubble horizon and future event horizon. The ωde-ωde‧ analysis for our different horizons are discussed.
Capture and decay of electroweak WIMPonium
NASA Astrophysics Data System (ADS)
Asadi, Pouya; Baumgart, Matthew; Fitzpatrick, Patrick J.; Krupczak, Emmett; Slatyer, Tracy R.
2017-02-01
The spectrum of Weakly-Interacting-Massive-Particle (WIMP) dark matter generically possesses bound states when the WIMP mass becomes sufficiently large relative to the mass of the electroweak gauge bosons. The presence of these bound states enhances the annihilation rate via resonances in the Sommerfeld enhancement, but they can also be produced directly with the emission of a low-energy photon. In this work we compute the rate for SU(2) triplet dark matter (the wino) to bind into WIMPonium—which is possible via single-photon emission for wino masses above 5 TeV for relative velocity v < O(10-2) —and study the subsequent decays of these bound states. We present results with applications beyond the wino case, e.g. for dark matter inhabiting a nonabelian dark sector; these include analytic capture and transition rates for general dark sectors in the limit of vanishing force carrier mass, efficient numerical routines for calculating positive and negative-energy eigenstates of a Hamiltonian containing interactions with both massive and massless force carriers, and a study of the scaling of bound state formation in the short-range Hulth&apos{e}n potential. In the specific case of the wino, we find that the rate for bound state formation is suppressed relative to direct annihilation, and so provides only a small correction to the overall annihilation rate. The soft photons radiated by the capture process and by bound state transitions could permit measurement of the dark matter's quantum numbers; for wino-like dark matter, such photons are rare, but might be observable by a future ground-based gamma-ray telescope combining large effective area and a low energy threshold.
Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter
Bishara, Fady; Zupan, Jure
2015-01-19
Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less
Continuous Flavor Symmetries and the Stability of Asymmetric Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishara, Fady; Zupan, Jure
Generically, the asymmetric interactions in asymmetric dark matter (ADM) models could lead to decaying DM. We show that, for ADM that carries nonzero baryon number, continuous flavor symmetries that generate the flavor structure in the quark sector also imply a looser lower bound on the mass scale of the asymmetric mediators between the dark and visible sectors. Furthermore, the mediators for B = 2 ADM that can produce a signal in the future indirect dark matter searches can thus also be searched for at the LHC. For two examples of the mediator models, with either the MFV or Froggatt-Nielsen flavormore » breaking pattern, we derive the FCNC constraints and discuss the search strategies at the LHC.« less
Isocurvature constraints on portal couplings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville
2016-06-01
We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We thenmore » use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.« less
Searching for dark matter with single phase liquid argon
NASA Astrophysics Data System (ADS)
Caldwell, Thomas S., Jr.
The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will probe the WIMP-nucleon cross section parameter space to the level of 10--44 cm2 and demonstrate the pulse-shape discrimination required for next generation experiments capable of further probing the WIMP parameter space in search of WIMP dark matter.
Strong constraints on sub-GeV dark sectors from SLAC beam dump E137.
Batell, Brian; Essig, Rouven; Surujon, Ze'ev
2014-10-24
We present new constraints on sub-GeV dark matter and dark photons from the electron beam-dump experiment E137 conducted at SLAC in 1980-1982. Dark matter interacting with electrons (e.g., via a dark photon) could have been produced in the electron-target collisions and scattered off electrons in the E137 detector, producing the striking, zero-background signature of a high-energy electromagnetic shower that points back to the beam dump. E137 probes new and significant ranges of parameter space and constrains the well-motivated possibility that dark photons that decay to light dark-sector particles can explain the ∼3.6σ discrepancy between the measured and standard model value of the muon anomalous magnetic moment. It also restricts the parameter space in which the relic density of dark matter in these models is obtained from thermal freeze-out. E137 also convincingly demonstrates that (cosmic) backgrounds can be controlled and thus serves as a powerful proof of principle for future beam-dump searches for sub-GeV dark-sector particles scattering off electrons in the detector.