Science.gov

Sample records for darrieus rotors

  1. Aerodynamic loads and rotor performance for the Darrieus wind turbines

    SciTech Connect

    Paraschivoiu, I.

    1981-01-01

    Aerodynamic blade loads and rotor performance are studied for the Darrieus windmill by using a double-multiple streamtube model. The Darrieus is represented as a pair of actuator disks in tandem at each level of the rotor, with upstream and downstream half-cycles. An equilibrium velocity exists in the center plane, and the upwind velocity is higher than the downwind velocity lift and drag coefficients are calculated from the Reynolds number and the local angle of attack. Half-rotor torque and power are found by averaging the contributions from each streamtube at each position of the rotor in the upwind cycle. An example is provided for a 17 m Darrieus employing NACA blades. While the method is found to be suitable for predicting blade and rotor performance, the need to incorporate the effects of dynamic stall in the model is stressed as a means to improve accuracy.

  2. Hybrid Configuration of Darrieus and Savonius Rotors for Stand-alone Power Systems

    NASA Astrophysics Data System (ADS)

    Wakui, Tetsuya; Tanzawa, Yoshiaki; Hashizume, Takumi; Nagao, Toshio

    The suitable hybrid configuration of Darrieus lift-type and Savonius drag-type rotors for stand-alone wind turbine-generator systems is discussed using our dynamic simulation model. Two types of hybrid configurations are taken up: Type-A installs the Savonius rotor inside the Darrieus rotor and Type-B installs the Savonius rotor outside the Darrieus rotor. The computed results of the output characteristics and the dynamic behaviors of the system operated at the maximum power coefficient points show that Type-A, which has fine operating behavior to wind speed changes and can be compactly designed because of a shorter rotational shaft, is an effective way for self-controlled stand-alone small-scale systems.

  3. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    SciTech Connect

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor. 15 references.

  4. The effect of solidity on the performance of H-rotor Darrieus turbine

    NASA Astrophysics Data System (ADS)

    Hassan, S. M. Rakibul; Ali, Mohammad; Islam, Md. Quamrul

    2016-07-01

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (CP) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.

  5. The effect of solidity on the performance of H-rotor Darrieus turbine

    SciTech Connect

    Hassan, S. M. Rakibul Ali, Mohammad Islam, Md. Quamrul

    2016-07-12

    Utilization of wind energy has been investigated for a long period of time by different researchers in different ways. Out of which, the Horizontal Axis Wind Turbine and the Vertical Axis Wind Turbine have now advanced design, but still there is scope to improve their efficiency. The Vertical Axis Wind Turbine (VAWT) has the advantage over Horizontal Axis Wind Turbine (HAWT) for working on omnidirectional air flow without any extra control system. A modified H-rotor Darrieus type VAWT is analysed in this paper, which is a lift based wind turbine. The effect of solidity (i.e. chord length, no. of blades) on power coefficient (C{sub P}) of H-rotor for different tip speed ratios is numerically investigated. The study is conducted using time dependent RANS equations using SST k-ω model. SIMPLE scheme is used as pressure-velocity coupling and in all cases, the second order upwind discretization scheme is chosen for getting more accurate solution. In results, different parameters are compared, which depict the performance of the modified H-rotor Darrieus type VAWT. Double layered H-rotor having inner layer blades with longer chord gives higher power coefficient than those have inner layer blades with smaller chord.

  6. Calculation of the pressure distribution on a pitching airfoil with application to the Darrieus Rotor. [Computer code DARIUS

    SciTech Connect

    Ghodoosian, N.

    1984-05-01

    An analytical model leading to the pressure distribution on the cross section of a Darrieus Rotor Blade (airfoil) has veen constructed. The model is based on the inviscid flow theory and the contribution of the nonsteady wake vortices was neglected. The analytical model was translated into a computer code in order to study a variety of boundary conditions encountered by the rotating blades of the Darrieus Rotor. Results indicate that, for a pitching airfoil, lift can be adequately approximated by the Kutta-Joukowski forces, despite notable deviations in the pressure distribution on the airfoil. These deviations are most significant at the upwind half of the Darrieus Rotor where higher life is accompanied by increased adverse pressure gradients. The effect of pitching on lift can be approximated by a linear shift in the angle of attack proportional to the blade angular velocity. Tabulation of the fluid velocity about the pitching-only NACA 0015 allowed the principle of superposition to be used to determine the fluid velocity about a translating and pitching airfoil.

  7. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  8. Darrieus wind-turbine airfoil configurations

    SciTech Connect

    Migliore, P.G.; Fritschen, J.R.

    1982-06-01

    The purpose of this study was to determine what aerodynamic performance improvement, if any, could be achieved by judiciously choosing the airfoil sections for Darrieus wind turbine blades. Analysis was limited to machines using two blades of infinite aspect ratio, having rotor solidites from seven to twenty-one percent, and operating at maximum Reynolds numbers of approximately three million. Ten different airfoils, having thickness to chord ratios of twelve, fifteen and eighteen percent, were investigated. Performance calculations indicated that the NACA 6-series airfoils yield peak power coefficients at least as great as the NACA four-digit airfoils which have historically been chosen for Darrieus turbines. Furthermore, the power coefficient-tip speed ratio curves were broader and flatter for the 6-series airfoils. Sample calculations for an NACA 63/sub 2/-015 airfoil showed an annual energy output increase of 17 to 27% depending upon rotor solidity, compared to an NACA 0015 airfoil. An attempt was made to account for the flow curvature effects associated with Darrieus turbines by transforming the NACA 63/sub 2/-015 airfoil to an appropriate shape.

  9. An Experimental Study on the Darrieus-Savonius Turbine for the Tidal Current Power Generation

    NASA Astrophysics Data System (ADS)

    Kyozuka, Yusaku

    The Darrieus turbine is popular for tidal current power generation in Japan. It is simple in structure with straight wings rotating around a vertical axis, so that it has no directionality against the motion of tidal flow which changes its direction twice a day. However, there is one defect in the Darrieus turbine; its small starting torque. Once it stops, a Darrieus turbine is hard to re-start until a fairly fast current is exerted on it. To improve the starting torque of the Darrieus turbine used for tidal power generation, a hybrid turbine, composed of a Darrieus turbine and a Savonius rotor is proposed. Hydrodynamic characteristics of a semi-circular section used for the Savonius bucket were measured in a wind tunnel. The torque of a two bucket Savonius rotor was measured in a circulating water channel, where four different configurations of the bucket were compared. A combined Darrieus and Savonius turbine was tested in the circulating water channel, where the effect of the attaching angle between Darrieus wing and Savonius rotor was studied. Finally, power generation experiments using a 48 pole electric generator were conducted in a towing tank and the power coefficients were compared with the results of experiments obtained in the circulating water channel.

  10. Straight-bladed Darrieus wind turbines - A protagonist's view

    NASA Astrophysics Data System (ADS)

    Migliore, P. G.

    The technology development and market penetration of Darrieus and propeller-type wind turbines is addressed. Important characteristics of competing configurations are compared, and it is claimed that aerodynamic efficiency is not a distinguishing feature. Advantages of the Darrieus machine include omni-directionality and self-limitation, but propeller types require less rotor length per unit swept area. It is argued that the straight-bladed Darrieus is much simpler than the curved-bladed and should be capable of comparable aerodynamic efficiency. Some of the problems of structural design, as well as blade induced drag losses and support-arm counter torque, diminish rapidly as machine size is increased. Taper ratio has similar beneficial effects.

  11. Aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.

    1982-01-01

    The stability of small oscillations of the troposkein-shaped blade used on Darrieus wind turbines is investigated. The blade is assumed to be attached to a perfectly rigid rotor shaft and spinning in still air. Linear equations of motion are derived which include the effects of inplane, out-of-plane, and torsional stiffness, mass and aerodynamic center offsets, and the aerodynamic wake. Results presented include the free-vibration characteristics of the rotating blade, stability of the blade rotating in air, and the effects of mass density, mass center offset, and stiffness parameters on the flutter rotation rates. All results are presented in dimensionless form, hence apply to a family of blades.

  12. Scale Adaptive Simulation Model for the Darrieus Wind Turbine

    NASA Astrophysics Data System (ADS)

    Rogowski, K.; Hansen, M. O. L.; Maroński, R.; Lichota, P.

    2016-09-01

    Accurate prediction of aerodynamic loads for the Darrieus wind turbine using more or less complex aerodynamic models is still a challenge. One of the problems is the small amount of experimental data available to validate the numerical codes. The major objective of the present study is to examine the scale adaptive simulation (SAS) approach for performance analysis of a one-bladed Darrieus wind turbine working at a tip speed ratio of 5 and at a blade Reynolds number of 40 000. The three-dimensional incompressible unsteady Navier-Stokes equations are used. Numerical results of aerodynamic loads and wake velocity profiles behind the rotor are compared with experimental data taken from literature. The level of agreement between CFD and experimental results is reasonable.

  13. Computer subroutine for estimating aerodynamic blade loads on Darrieus vertical axis wind turbines. [FORCE code

    SciTech Connect

    Sullivan, W. N.; Leonard, T. M.

    1980-11-01

    An important aspect of structural design of the Darrieus rotor is the determination of aerodynamic blade loads. This report describes a load generator which has been used at Sandia for quasi-static and dynamic rotor analyses. The generator is based on the single streamtube aerodynamic flow model and is constructed as a FORTRAN IV subroutine to facilitate its use in finite element structural models. Input and output characteristics of the subroutine are described and a complete listing is attached as an appendix.

  14. CFD analysis of a Darrieus wind turbine

    NASA Astrophysics Data System (ADS)

    Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Pepelea, D.; Dumitrache, A.; Crunteanu, D. E.

    2017-07-01

    The Darrieus wind turbine has some advantages over the horizontal-axis wind turbine. Firstly, its tip speed ratio is lower than that of the horizontal-axis wind turbine and, therefore, its noise is smaller, privileging their placement near populated areas. Secondly, the Darrieus wind turbine does needs no orientation mechanism with respect to wind direction in contrast to the horizontal-axis wind turbine. However, the efficiency of the Darrieus wind turbine is lower than that of the horizontal-axis wind turbine since its aerodynamics is much more complex. With the advances in computational fluids and computers, it is possible to simulate the Darrieus wind turbine more accurately to understand better its aerodynamics. For these reasons, the present papers deals with the computational aerodynamics of a Darrieus wind turbine applying the state of the art of CFD methods (anisotropic turbulence models, transition from laminar to turbulent, scale adaptive simulation) to better understand its unsteady behavior.

  15. Turbulent wind at the equatorial segment of an operating Darrieus wind turbine blade

    NASA Astrophysics Data System (ADS)

    Connell, J. R.; Morris, V. R.

    1989-09-01

    Six turbulent wind time series, measured at equally spaced equator-height locations on a circle 3 m outside a 34-m Darrieus rotor, are analyzed to approximate the wind fluctuations experienced by the rotor. The flatwise lower root-bending stress of one blade was concurrently recorded. The wind data are analyzed in three ways: wind components that are radial and tangential to the rotation of a blade were rotationally sampled; induction and wake effects of the rotor were estimated from the six Eulerian time series; and turbulence spectra of both the measured wind and the modeled wind from the PNL theory of rotationally sampled turbulence. The wind and the rotor response are related by computing the spectral response function of the flatwise lower root-bending stress. Two bands of resonant response that surround the first and second flatwise modal frequencies shift with the rotor rotation rate.

  16. An aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.; Smith, C.E.

    1983-11-01

    The flutter stability of a single Darrieus wind turbine blade spinning in still air is investigated. The blade is modeled as a thin, uniform beam pinned to the rotor shaft, with aerodynamic forces accounted for using strip theory. Eliminating the spatial dependence using cubic B-splines results in a system of algebraic characteristic equations from which the stability of linear motions of the blade at any rotation rate may be inferred. The two most dangerous flutter modes are characterized for a one-parameter family of blades, and the flutter mechanism is shown to be dominated by gyroscopic coupling between motions in the plane of the blade and normal to the plane of the blade.

  17. Design of h-Darrieus vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Parra, Teresa; Vega, Carmen; Gallegos, A.; Uzarraga, N. C.; Castro, F.

    2015-05-01

    Numerical simulation is used to predict the performance of a Vertical Axis Wind Turbine (VAWT) H-Darrieus. The rotor consists of three straight blades with shape of aerofoil of the NACA family attached to a rotating vertical shaft. The influence of the solidity is tested to get design tendencies. The mesh has two fluid volumes: one sliding mesh for the rotor where the rotation velocity is established while the other is the environment of the rotor. Bearing in mind the overall flow is characterized by important secondary flows, the turbulence model selected was realizable k-epsilon with non-equilibrium wall functions. Conservation equations were solved with a Third-Order Muscl scheme using SIMPLE to couple pressure and velocity. During VAWT operation, the performance depends mainly on the relative motion of the rotating blade and has a fundamental period which depends both on the rate of rotation and the number of blades. The transient study is necessary to characterise the hysteresis phenomenon. Hence, more than six revolutions get the periodic behaviour. Instantaneous flows provide insight about wake structure interaction. Time averaged parameters let obtain the characteristic curves of power coefficient.

  18. Flutter of Darrieus wind turbine blades

    NASA Technical Reports Server (NTRS)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  19. Aerodynamic tests of Darrieus wind turbine blades

    SciTech Connect

    Migliore, P.G.; Walters, R.E.; Wolfe, W.P.

    1983-03-01

    An indoor facility for the aerodynamic testing of Darrieus turbine blades was developed. Lift, drag, and moment coefficients were measured for two blades whose angle of attack and chord-to-radius ratio were varied. The first blade used an NACA 0015 airfoil section; the second used a 15% elliptical cross section with a modified circular arc trailing edge. Blade aerodynamic coefficients were corrected to section coefficients for comparison to published rectilinear flow data. Although the airfoil sections were symmetrical, moment coefficients were not zero and the lift and drag curves were asymmetrical about zero lift coefficient and angle of attack. These features verified the predicted virtual camber and incidence phenomena. Boundary-layer centrifugal effects were manifested by discontinuous lift curves and large differences in the angle of zero lift between th NACA 0015 and elliptical airfoils. It was concluded that rectilinear flow aerodynamic data are not applicable to Darrieus turbine blades, even for small chord-to-radius ratios.

  20. Comparison of NACA 6-series and 4-digit airfoils for Darrieus wind turbines

    SciTech Connect

    Migliore, P.G.

    1983-07-01

    The aerodynamic efficiency of Darrieus wind turbines as effected by blade airfoil geometry was investigated. Analysis was limited to curved-bladed machines having rotor solidities of 7 to 21% and operating at a Reynolds number of 3 X 10/sup 6/, Ten different airfoils, having thickness-to-chord ratios of 12, 15, and 18%, were studied. Performance estimates were made using a blade element/momentum theory approach. Results indicated that NACA 6-series airfoils yeild peak power coefficients as great as NACA 4-digit airfoils and have broader and flatter power coefficient-tip speed ratio curves. Sample calculations for an NACA 63/sub 2/-015 airfoil showed an annual energy output increase of 17-27%, depending on rotor solidity, compared to an NACA 0015 airfoil.

  1. Wind tunnel tests of sailwings for Darrieus rotors

    NASA Astrophysics Data System (ADS)

    Revell, P. S.; Everitt, K. W.

    Wind tunnel tests have been made to investigate the aerodynamics of sailwings intended for use in vertical axis wind turbines. The tests were made over the full range of angles of incidence and used a number of different membranes and pre-tensions. The majority of tests used a rigid trailing edge but a limited number of tests was made using a wire or nylon cord in a circular-arc shaped trailing-edge. The tangential and radial force coefficients were measured as also was the chordwise component of membrane tension. It is concluded that such turbines should produce a high starting torque and that their performance will be influenced by the trailing edge elasticity and pre-tension at quite low tip speed ratios.

  2. The Darrieus wind turbine for electrical power generation

    NASA Astrophysics Data System (ADS)

    Robinson, M. L.

    1981-06-01

    Aspects of wind as an energy source and the momentum theory of wind turbines are briefly examined. Types of Darrieus wind turbine are described; attention is given to a turbine with airfoil blades curved in troposkein form, and a turbine with straight blades of fixed or variable pitch. The Darrieus vertical-axis wind turbine is then considered with regard to aerodynamics, annual energy output, structures, control systems, and energy storage. Brief reviews of selected Darrieus wind turbine projects are given, including those at Magdalen Islands, Canada, Sandia Laboratories, Reading University, and Australia and New Zealand.

  3. Operation of Darrieus turbines in constant circulation framework

    NASA Astrophysics Data System (ADS)

    Gorle, J. M. R.; Chatellier, L.; Pons, F.; Ba, M.

    2017-07-01

    Analytical and computational studies of flow across a low-speed marine turbine of Darrieus type with pitching blades have been carried out for flowfield and performance evaluation. The objective of this study is to develop efficient blade pitching laws to arrest or control the vortex shedding from the blades during turbine's operation. This is achieved by imparting an arbitrary constant amount of circulation to the blades, where Kelvin's theorem is respected. This paper presents the extension of the application of conformal mapping to produce the time-dependent flow over a rotating turbine blade in order to develop a quantified relationship between the blade's orientation with respect to the rotor's tangent and its rotational motion. The flow development is based on the analytical treatment given to potential flow formulation through Laurent series decomposition, where the Kutta condition is satisfied. The pitch control law and the analytical modeling of the hydrodynamic forces acting on the blade are derived based on Kelvin's theorem for the conservation of circulation. The application of this pitch control law in the real flow conditions is however limited due to viscous losses and rotational effects. Therefore, a 2D computational fluid dynamics (CFD) study with the shear stress transport (SST) k -ω turbulence model has been performed to examine the flow across a 4-bladed turbine model. While validating the analytical work, the numerical investigation reveals the applicability and limitations of circulation-controlled blade pitching laws in real flow conditions. In particular, a reference equivalent angle of attack is defined, which must be contained in a tight range in order to effectively prevent vortex shedding at a given tip-speed ratio.

  4. Aerodynamic interference between two Darrieus wind turbines

    SciTech Connect

    Schatzle, P.R.; Klimas, P.C.; Spahr, H.R.

    1981-04-01

    The effect of aerodynamic interference on the performance of two curved bladed Darrieus-type vertical axis wind turbines has been calculated using a vortex/lifting line aerodynamic model. The turbines have a tower-to-tower separation distance of 1.5 turbine diameters, with the line of turbine centers varying with respect to the ambient wind direction. The effects of freestream turbulence were neglected. For the cases examined, the calculations showed that the downwind turbine power decrement (1) was significant only when the line of turbine centers was coincident with the ambient wind direction, (2) increased with increasing tipspeed ratio, and (3) is due more to induced flow angularities downstream than to speed deficits near the downstream turbine.

  5. An aeroelastic analysis of the Darrieus wind turbine

    SciTech Connect

    Meyer, E.E.; Smith, C.E.

    1981-01-01

    The stability of a single Darrieus wind turbine blade spinning in still air is investigated using linearized equations of motion. The three most dangerous flutter modes are characterized for a one-parameter family of blades. In addition, the influence of blade density, mass and aerodynamic center offsets, and structural damping is presented.

  6. Design and fabrication of a low cost Darrieus vertical axis wind turbine system: Phase 2, volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1983-03-01

    Described is the successful fabrication, installation, and checkout of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs). The turbines are Darrieus-type VAWTs with rotors 17 meters (55 feet) in diameter and 25.15 meters (83 feet) in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines were produced; three are installed and are operable at: (1) Wind Systems Test Center, Rocky Flats, Colorado; (2) the US Department of Agriculture Conservation and Production Research Center at Bushland, Texas; and (3) Tisbury Water Authority, Vineyard Haven, Massachusetts, on the island of Martha's Vineyard. The fourth turbine is stored at Bushland, Texas awaiting selection of an erection site.

  7. Comparison of field and wind tunnel Darrieus wind turbine data

    SciTech Connect

    Sheldahl, R.E.

    1981-01-01

    A 2-m-dia Darrieus Vertical Axis Wind Turbine with NACA-0012 blades was extensively tested in the Vought Corporation Low Speed Wind Tunnel. This same turbine was installed in the field at the Sandia National Laboratories Wind Turbine Test Site and operated to determine if field data corresponded to data obtained in the wind tunnel. It is believed that the accuracy of the wind tunnel test data was verified and thus the credibility of that data base was further established.

  8. Aeroelastic stability analysis of a Darrieus wind turbine

    SciTech Connect

    Popelka, D.

    1982-02-01

    An aeroelastic stability analysis has been developed for predicting flutter instabilities on vertical axis wind turbines. The analytical model and mathematical formulation of the problem are described as well as the physical mechanism that creates flutter in Darrieus turbines. Theoretical results are compared with measured experimental data from flutter tests of the Sandia 2 Meter turbine. Based on this comparison, the analysis appears to be an adequate design evaluation tool.

  9. Aeroelastic analysis of a Darrieus type wind turbine blade with troposkien geometry

    SciTech Connect

    Nitzsche, F.

    1983-01-01

    The troposkien geometry has been invoked in structural modeling of blades belonging to a class of vertical axis wind turbines called Darrieus rotors. Although it is free of bending stresses in the equilibrium position, determined by a constant angular velocity, tests have indicated that under certain conditions serious vibrations about the original shape may occur. A new approach is proposed to study the general problem of free vibration of one-dimensional structures and in particular one of a blade initially curved in the troposkien shape. The present scheme links for the first time two already existing ideas: the transfer matrices which were first developed in the 50's and the relatively recent idea of integrating matrices. Modal superposition is employed to study the flutter problem when the blade is aerodynamically loaded according to two hypothetical experiments. In the first, a vacuum chamber containing the rotating troposkien blade is brought up to the sea level air density. The second experiment consists of placing the rotating blade in the wind tunnel, increasing the velocity of the wind from zero to characteristic values in the operating range of the turbine. Two different analytical treatments are employed in each one of the aforementioned experiments. The root-locus method of tracing complex roots of the flutter determinant in the frequency-domain is used in the first experiment, whereas the Floquet-Liapunov stability theory is applied to the second. The stability of the blade as a function of different support conditions, elastic axis location, turbine speed and structural damping is studied in detail.

  10. The Darrieus-Landau instability in fast deflagration and laser ablation

    SciTech Connect

    Bychkov, Vitaly; Modestov, Mikhail; Marklund, Mattias

    2008-03-15

    The problem of the Darrieus-Landau instability at a discontinuous deflagration front in a compressible flow is solved. Numerous previous attempts to solve this problem suffered from the deficit of boundary conditions. Here, the required additional boundary condition is derived rigorously taking into account the internal structure of the front. The derived condition implies a constant mass flux at the front; it reduces to the classical Darrieus-Landau condition in the limit of an incompressible flow. It is demonstrated that in general the solution to the problem depends on the type of energy source in the flow. In the common case of a strongly localized source, compression effects make the Darrieus-Landau instability considerably weaker. Particularly, the instability growth rate is reduced for laser ablation in comparison to the classical incompressible case. The instability disappears completely in the Chapman-Jouguet regime of ultimately fast deflagration.

  11. Design and fabrication of a Darrieus/Savonius hybrid vertical-axis wind turbine

    SciTech Connect

    Bell, B.F.

    1983-09-01

    This report presents the results of a design and analysis of a Darrieus/Savonius hybrid vertical-axis wind turbine. The system described is a utility interfaced 3-m turbine/1-kW generator designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Included are the review of design efforts in the areas of aerodynamics and structural analysis; and preliminary design details of the 3-m/1-kW Darrieus/Savonius turbine (DST).

  12. Molecular Rotors

    DTIC Science & Technology

    2006-10-31

    Molecular Dipolar Rotors on Insulating Surfaces," Salamanca , Spain. Trends in Nanotechnology Conference. September 5-9, 2003 [86] Laura I. Clarke, Mary Beth...Horansky at the Trends in Nanotechnology Conference, Salamanca , Spain (September 5-9, 2003). [145] Michl, J. “Unusual Molecules: Artificial Surface...temperature and frequency for difluorophenylene rotor crystal. Figure JP6. Monte Carlo results for the local potential asymmetry at

  13. Performance Prediction of Darrieus-Type Hydroturbine with Inlet Nozzle Operated in Open Water Channels

    NASA Astrophysics Data System (ADS)

    Nakashima, K.; Watanabe, S.; Matsushita, D.; Tsuda, S.; Furukawa, A.

    2016-11-01

    Small hydropower is one of the renewable energies and is expected to be effectively used for local supply of electricity. We have developed Darrieus-type hydro-turbine systems, and among them, the Darrieus-turbine with a weir and a nozzle installed upstream of turbine is, so far, in success to obtain more output power by gathering all water into the turbine. However, there can several cases exist, in which installing the weir covering all the flow channel width is unrealistic, and in such cases, the turbine should be put alone in open channels without upstream weir. Since the output power is very small in such a utilization of small hydropower, it is important to derive more power for the cost reduction. In the present study, we parametrically investigate the preferable shape of the inlet nozzle for the Darrieus-type hydroturbine operated in an open flow channel. Experimental investigation is carried out in the open channel in our lab. Tested inlet nozzles are composed of two flat plates with the various nozzle converging angles and nozzle outlet (runner inlet) widths with the nozzle inlet width kept constant. As a result, the turbine with the nozzles having large converging angle and wide outlet width generates higher power. Two-dimensional unsteady numerical simulation is also carried out to qualitatively understand the flow mechanism leading to the better performance of turbine. Since the depth, the width and the flow rate in the real open flow channels are different from place to place and, in some cases from time to time, it is also important to predict the onsite performance of the hydroturbine from the lab experiment at planning stage. One-dimensional stream-tube model is developed for this purpose, in which the Darrieus-type hydroturbine with the inlet nozzle is considered as an actuator-disk modelled based on our experimental and numerical results.

  14. Dynamic-stall regulation of the Darrieus turbine

    SciTech Connect

    Oler, J.W.; Strickland, J.H.; Im, B.J.; Graham, G.H.

    1983-08-01

    A two-dimensional unsteady airfoil analysis is described which utilizes a doublet panel method to model the airfoil surface, an integral boundary scheme to model the viscous attached flow, and discrete vortices to model the detached boundary layers which form the airfoil wake region. This model has successfully predicted steady lift and drag coefficients as well as pressure distributions for several airfoils with both attached and detached boundary layers. Unsteady calculations have thus far been limited to attached flow situations. Instantaneous pressure distributions have also been obtained on a single-bladed rotor operating in a tow tank in order to provide experimental data for eventual comparison with analytical predictions.

  15. Separators for flywheel rotors

    DOEpatents

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  16. Separators for flywheel rotors

    DOEpatents

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  17. Cavitating behaviour analysis of Darrieus-type cross flow water turbines

    NASA Astrophysics Data System (ADS)

    Aumelas, V.; Pellone, C.; Maître, T.

    2010-08-01

    The aim of this paper is to study the cavitating behaviour of bare Darrieus-type turbines. For that, the RANS code CAVKA, has been used. Under non-cavitating conditions, the power coefficient and the thrusts calculated with CAVKA are compared to experimental values obtained in the LEGI hydrodynamic tunnel. Under cavitating conditions, for several cavitation numbers, the numerical power coefficients and vapour structures are compared to experimental ones. Different blade profiles and camber lines are also studied for non-cavitating and cavitating conditions.

  18. Assessment of C-Type Darrieus Wind Turbine Under Low Wind Speed Condition

    NASA Astrophysics Data System (ADS)

    Misaran, M. S.; Rahman, Md. M.; Muzammil, W. K.; Ismail, M. A.

    2017-07-01

    Harvesting wind energy in in a low wind speed region is deem un-economical if not daunting task. Study shows that a minimum cut in speed of 3.5 m/s is required to extract a meaningful wind energy for electricity while a mean speed of 6 m/s is preferred. However, in Malaysia the mean speed is at 2 m/s with certain potential areas having 3 m/s mean speed. Thus, this work aims to develop a wind turbine that able to operate at lower cut-in speed and produce meaningful power for electricity generation. A C-type Darrieus blade is selected as it shows good potential to operate in arbitrary wind speed condition. The wind turbine is designed and fabricated in UMS labs while the performance of the wind turbine is evaluated in a simulated wind condition. Test result shows that the wind turbine started to rotate at 1 m/s compared to a NACA 0012 Darrieus turbine that started to rotate at 3 m/s. The performance of the turbine shows that it have good potential to be used in an intermittent arbitrary wind speed condition as well as low mean wind speed condition.

  19. Navier-Stokes simulation of the flow around an airfoil in Darrieus motion

    SciTech Connect

    Tchon, K.F.; Paraschivoiu, I. . Dept. of Mechanical Engineering)

    1994-12-01

    In order to study the dynamic stall phenomenon on a Darrieus wind turbine, the incompressible flow field around a moving airfoil is simulated using a noninertial stream function-vorticity formulation of the two-dimensional unsteady navier-Stokes equations. Spatial discretization is achieved by the streamline upwind Petrov-Galerkin finite element method on a hybrid mesh composed of a structured region of quadrilateral elements in the vicinity of solid boundaries, an unstructured region of triangular elements elsewhere, and a layer of infinite elements surrounding the domain and projecting the external boundary to infinity. Temporal discretization is achieved by an implicit second order finite difference scheme. At each time step, a nonlinear algebraic system is solved by a Newton method. To accelerate computations, the generalized minimum residual method with an incomplete triangular factorization preconditioning is used to solve the linearized Newton systems. The solver is applied to simulate the flow around a NACA 0015 airfoil in Darrieus motion and the results are compared to experimental observations. To the authors' knowledge, it is the first time that the simulation of such a motion has been performed using the Navier-Stokes equations.

  20. Numerical simulation of dynamic stall around an airfoil in Darrieus motion

    SciTech Connect

    Allet, A.; Halle, S.; Paraschivoiu, I.

    1999-02-01

    The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under dynamic stall conditions are presented.

  1. Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability

    SciTech Connect

    Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

    2003-11-24

    Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.

  2. Darrieus wind-turbine and pump performance for low-lift irrigation pumping

    NASA Astrophysics Data System (ADS)

    Hagen, L. J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind powered pumping system for low lift irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind powered prototype in a design and test an farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind powered tailwater pumping systems in western Kansas. The power source selected was a two bladed, 6 m diameter, 9 m tall Darrieus vertical axis wind turbine with 0.10 solidity and 36.1 M(2) swept area.

  3. Counterpart of the Darrieus-Landau instability at a magnetic deflagration front

    NASA Astrophysics Data System (ADS)

    Jukimenko, O.; Modestov, M.; Dion, C. M.; Marklund, M.; Bychkov, V.

    2016-04-01

    The magnetic instability at the front of the spin avalanche in a crystal of molecular magnets is considered. This phenomenon reveals similar features with the Darrieus-Landau instability, inherent to classical combustion flame fronts. The instability growth rate and the cutoff wavelength are investigated with respect to the strength of the external magnetic field, both analytically in the limit of an infinitely thin front and numerically for finite-width fronts. The presence of quantum tunneling resonances is shown to increase the growth rate significantly, which may lead to a possible transition from deflagration to detonation regimes. Different orientations of the crystal easy axis are shown to exhibit opposite stability properties. In addition, we suggest experimental conditions that could evidence the instability and its influence on the magnetic deflagration velocity.

  4. Effects of flow curvature on the aerodynamics of Darrieus wind turbines

    SciTech Connect

    Migliore, P. G.; Wolfe, W. P.

    1980-07-01

    A theoretical and experimental investigation was conducted which clearly showed the effects of flow curvature to be significant determinants of Darrieus turbine blade aerodynamics; qualitatively, these results apply equally to straight or curved bladed machines. Unusually large boundary layer radial pressure gradients and virtually altered camber and incidence are the phenomena of primary importance. Conformal mapping techniques were developed which transform the geometric turbine airfoils in curved flow to their virtual equivalents in rectilinear flow, thereby permitting the more accurate selection of airfoil aerodynamic coefficients from published sectional data. It is demonstrated that once the flow idiosyncracies are fully understood, they may be used to advantage to improve the wind energy extraction efficiency of these machines.

  5. Feedback control of a Darrieus wind turbine and optimization of the produced energy

    NASA Astrophysics Data System (ADS)

    Maurin, T.; Henry, B.; Devos, F.; de Saint Louvent, B.; Gosselin, J.

    1984-03-01

    A microprocessor-driven control system, applied to the feedback control of a Darrieus wind turbine is presented. The use of a dc machine as a generator to recover the energy and as a motor to start the engine, allows simplified power electronics. The architecture of the control unit is built to ensure four different functions: starting, optimization of the recoverable energy, regulation of the speed, and braking. An experimental study of the system in a wind tunnel allowed optimization of the coefficients of the proportional and integral (pi) control algorithm. The electrical energy recovery was found to be much more efficient using the feedback system than without the control unit. This system allows a better characterization of the wind turbine and a regulation adapted to the wind statistics observed in one given geographical location.

  6. Aeroelastic equations of motion of a Darrieus vertical-axis wind-turbine blade

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Kvaternik, R. G.

    1979-01-01

    The second-degree nonlinear aeroelastic equations of motion for a slender, flexible, nonuniform, Darrieus vertical-axis wind turbine blade which is undergoing combined flatwise bending, edgewise bending, torsion, and extension are developed using Hamilton's principle. The blade aerodynamic loading is obtained from strip theory based on a quasi-steady approximation of two-dimensional incompressible unsteady airfoil theory. The derivation of the equations has its basis in the geometric nonlinear theory of elasticity and the resulting equations are consistent with the small deformation approximation in which the elongations and shears are negligible compared to unity. These equations are suitable for studying vibrations, static and dynamic aeroelastic instabilities, and dynamic response. Several possible methods of solution of the equations, which have periodic coefficients, are discussed.

  7. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    NASA Astrophysics Data System (ADS)

    Roa, A. M.; Aumelas, V.; Maître, T.; Pellone, C.

    2010-08-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  8. Halbach Magnetic Rotor Development

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.

    2008-01-01

    The NASA John H. Glenn Research Center has a wealth of experience in Halbach array technology through the Fundamental Aeronautics Program. The goals of the program include improving aircraft efficiency, reliability, and safety. The concept of a Halbach magnetically levitated electric aircraft motor will help reduce harmful emissions, reduce the Nation s dependence on fossil fuels, increase efficiency and reliability, reduce maintenance and decrease operating noise levels. Experimental hardware systems were developed in the GRC Engineering Development Division to validate the basic principles described herein and the theoretical work that was performed. A number of Halbach Magnetic rotors have been developed and tested under this program. A separate test hardware setup was developed to characterize each of the rotors. A second hardware setup was developed to test the levitation characteristics of the rotors. Each system focused around a unique Halbach array rotor. Each rotor required original design and fabrication techniques. A 4 in. diameter rotor was developed to test the radial levitation effects for use as a magnetic bearing. To show scalability from the 4 in. rotor, a 1 in. rotor was developed to also test radial levitation effects. The next rotor to be developed was 20 in. in diameter again to show scalability from the 4 in. rotor. An axial rotor was developed to determine the force that could be generated to position the rotor axially while it is rotating. With both radial and axial magnetic bearings, the rotor would be completely suspended magnetically. The purpose of this report is to document the development of a series of Halbach magnetic rotors to be used in testing. The design, fabrication and assembly of the rotors will be discussed as well as the hardware developed to test the rotors.

  9. Open Rotor Development

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  10. Helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, S.-T.; George, A. R.

    1986-01-01

    A study was made of helicopter tail rotor noise, particularly that due to interactions with the main rotor tip vortices, and with the fuselage separation mean wake. The tail rotor blade-main rotor tip vortex interaction is modelled as an airfoil of infinite span cutting through a moving vortex. The vortex and the geometry information required by the analyses are obtained through a free wake geometry analysis of the main rotor. The acoustic pressure-time histories for the tail rotor blade-vortex interactions are then calculated. These acoustic results are compared to tail rotor loading and thickness noise, and are found to be significant to the overall tail rotor noise generation. Under most helicopter operating conditions, large acoustic pressure fluctuations can be generated due to a series of skewed main rotor tip vortices passing through the tail rotor disk. The noise generation depends strongly upon the helicopter operating conditions and the location of the tail rotor relative to the main rotor.

  11. Two-dimensional corrugated flames - a consequence of the Darrieus-Landau instability

    NASA Astrophysics Data System (ADS)

    Patyal, Advitya; Matalon, Moshe

    2016-11-01

    In this study we present for the first time the development of corrugated flame surfaces resulting from gas expansion in a three-dimensional flow as a consequence of the Darrieus-Landau instability. The computations are carried out within the context of the hydrodynamic theory where the flame is treated as a surface of density discontinuity separating burned gas from the fresh combustible mixture, and its movement is tracked via a level-set method with a propagation speed that depends on the local curvature and hydrodynamic strain. To this end, a surface parameterization method is used to accurately capture the velocity jump across the flame and the strain rate along the flame interface. The numerical scheme is shown to accurately recover the exact pole-solutions predicted by the nonlinear Michelson-Sivashinsky equation in the weak gas expansion limit, and corroborates the bifurcation results from linear stability analysis. It is shown that, in accord with experimental observations, the new conformations that evolve beyond the instability threshold have a sharp crest pointing towards the burned gas with ridges along the troughs, and that these structures propagate steadily, nearly 50% faster than planar flames.

  12. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation.

    PubMed

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  13. Computational investigation of flow control by means of tubercles on Darrieus wind turbine blades

    NASA Astrophysics Data System (ADS)

    Sevinç, K.; Özdamar, G.; Şentürk, U.; Özdamar, A.

    2015-09-01

    This work presents the current status of the computational study of the boundary layer control of a vertical axis wind turbine blade by modifying the blade geometry for use in wind energy conversion. The control method is a passive method which comprises the implementation of the tubercle geometry of a humpback whale flipper onto the leading edge of the blades. The baseline design is an H-type, three-bladed Darrieus turbine with a NACA 0015 cross-section. Finite-volume based software ANSYS Fluent was used in the simulations. Using the optimum control parameters for a NACA 634-021 profile given by Johari et al. (2006), turbine blades were modified. Three dimensional, unsteady, turbulent simulations for the blade were conducted to look for a possible improvement on the performance. The flow structure on the blades was investigated and flow phenomena such as separation and stall were examined to understand their impact on the overall performance. For a tip speed ratio of 2.12, good agreement was obtained in the validation of the baseline model with a relative error in time- averaged power coefficient of 1.05%. Modified turbine simulations with a less expensive but less accurate turbulence model yielded a decrease in power coefficient. Results are shown comparatively.

  14. Fractal flame structure due to the hydrodynamic Darrieus-Landau instability.

    PubMed

    Yu, Rixin; Bai, Xue-Song; Bychkov, Vitaly

    2015-12-01

    By using large scale numerical simulations, we obtain fractal structure, which develops at originally planar flame fronts due to the hydrodynamic Darrieus-Landau (DL) instability bending the fronts. We clarify some important issues regarding the DL fractal flames, which have been debated for a long time. We demonstrate an increase of the flame propagation speed with the hypothetic channel width, which controls the length scale of the instability development. We show that this increase may be fitted by a power law indicating the mean fractal properties of the flame front structure. The power exponent in this law is found to be not a universal constant, rather it depends on the flame properties-on the density drop at the front. Using box counting on the simulated flame front shapes we show the fractal flame dimension at the intermediate scale is smaller than the one given by the power law, but it has a similar dependency on the density drop. We also obtain a formation of pockets at the DL fractal flame fronts, which previously has been associated only with turbulent burning.

  15. Darrieus wind-turbine and pump performance for low-lift irrigation pumping. Final report

    SciTech Connect

    Hagen, L.J.; Sharif, M.

    1981-10-01

    In the Great Plains about 15 percent of the irrigation water pumped on farms comes from surface water sources; for the United States as a whole, the figure is about 22 percent. Because of forecast fuel shortages, there is a need to develop alternative energy sources such as wind power for surface water pumping. Specific objectives of this investigation were to: design and assemble a prototype wind-powered pumping system for low-lift (i.e., < 15 m head) irrigation pumping; determine performance of the prototype system; design and test an irrigation system using the wind-powered prototype in a farm application; and determine the size combinations of wind turbines, tailwater pits, and temporary storage reservoirs needed for successful farm application of wind-powered tailwater pumping systems in western Kansas. The power source selected was a two-bladed, 6-m-diameter, 9-m-tall Darrieus vertical-axis wind turbine with 0.10 solidity and 36.1 M/sup 2/ swept area.

  16. Interplay of Darrieus-Landau instability and weak turbulence in premixed flame propagation

    NASA Astrophysics Data System (ADS)

    Creta, Francesco; Lamioni, Rachele; Lapenna, Pasquale Eduardo; Troiani, Guido

    2016-11-01

    In this study we investigate, both numerically and experimentally, the interplay between the intrinsic Darrieus-Landau (DL) or hydrodynamic instability of a premixed flame and the moderately turbulent flow field in which the flame propagates. The objective is threefold: to establish, unambiguously, through a suitably defined marker, the presence or absence of DL-induced effects on the turbulent flame, to quantify the DL effects on the flame propagation and morphology and, finally, to asses whether such effects are mitigated or suppressed as the turbulence intensity is increased. The numerical simulations are based on a deficient reactant model which lends itself to a wealth of results from asymptotic theory, such as the determination of stability limits. The skewness of the flame curvature probability density function is identified as an unambiguous morphological marker for the presence or absence of DL effects in a turbulent environment. In addition, the turbulent propagation speed is shown to exhibit a distinct dual behavior whereby it is noticeably enhanced in the presence of DL instability while it is unchanged otherwise. Furthermore, increasing the turbulence intensity is found to be mitigating with respect to DL-induced effects such as the mentioned dual behavior which disappears at higher intensities. Experimental propane and/or air Bunsen flames are also investigated, utilizing two distinct diameters, respectively, above and below the estimated DL cutoff wavelength. Curvature skewness is still clearly observed to act as a marker for DL instability while the turbulent propagation speed is concurrently enhanced in the presence of the instability.

  17. Rotor control system

    NASA Technical Reports Server (NTRS)

    Bradford, Michael P. (Inventor); Maciolek, Joseph R. (Inventor)

    1987-01-01

    A helicopter rotor control system (13) including a stop azimuth controller (32) for establishing the value of a deceleration command (15') to a deceleration controller (23), a transition azimuth predictor (41) and a position reference generator (55), which are effective during the last revolution of said rotor (14) to establish a correction indication (38) to adjust the deceleration command (15') to ensure that one of the rotor blades (27) stops at a predetermined angular position.

  18. Tilt Rotor Aircraft Aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.

    1996-01-01

    A fleet of civil tilt rotor transports offers a means of reducing airport congestion and point-to-point travel time. The speed, range, and fuel economy of these aircraft, along with their efficient use of vertiport area, make them good candidates for short-to-medium range civil transport. However, to be successfully integrated into the civilian community, the tilt rotor must be perceived as a quiet, safe, and economical mode of transportation that does not harm the environment. In particular, noise impact has been identified as a possible barrier to the civil tilt rotor. Along with rotor conversion-mode flight, and blade-vortex interaction noise during descent, hover mode is a noise problem for tilt rotor operations. In the present research, tilt rotor hover aeroacoustics have been studied analytically, experimentally, and computationally. Various papers on the subject were published as noted in the list of publications. More recently, experimental measurements were made on a 1/12.5 scale model of the XV-15 in hover and analyses of this data and extrapolations to full scale were also carried out. A dimensional analysis showed that the model was a good aeroacoustic approximation to the full-scale aircraft, and scale factors were derived to extrapolate the model measurements to the full-scale XV-15. The experimental measurements included helium bubble flow visualization, silk tuft flow visualization, 2-component hot wire anemometry, 7-hole pressure probe measurements, vorticity measurements, and outdoor far field acoustic measurements. The hot wire measurements were used to estimate the turbulence statistics of the flow field into the rotors, such as length scales, velocity scales, dissipation, and turbulence intermittency. Several different configurations of the model were tested: (1) standard configurations (single isolated rotor, two rotors without the aircraft, standard tilt rotor configuration); (2) flow control devices (the 'plate', the 'diagonal fences'); (3

  19. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  20. Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System

    NASA Technical Reports Server (NTRS)

    Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.

    2016-01-01

    The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.

  1. Tilt rotor hover aeroacoustics

    NASA Technical Reports Server (NTRS)

    Coffen, Charles David

    1992-01-01

    The methodology, results, and conclusions of a study of tilt rotor hover aeroacoustics and aerodynamics are presented. Flow visualization and hot wire velocity measurement were performed on a 1/12-scale model of the XV-15 Tilt Rotor Aircraft in hover. The wing and fuselage below the rotor cause a complex recirculating flow. Results indicate the physical dimensions and details of the flow including the relative unsteadiness and turbulence characteristics of the flow. Discrete frequency harmonic thickness and the loading noise mechanism were predicted using WOPWOP for the standard metal blades and the Advanced Technology Blades. The recirculating flow created by the wing below the rotor is a primary sound mechanism for a hovering tilt rotor. The effects of dynamic blade response should be included for fountain flow conditions which produce impulsive blade loading. Broadband noise mechanisms were studied using Amiet's method with azimuthally varying turbulence characteristics derived from the measurements. The recirculating fountain flow with high turbulence levels in the recirculating zone is the dominant source of broadband noise for a hovering rotor. It is shown that tilt rotor hover aeroacoustic noise mechanisms are now understood. Noise predictions can be made based on reasonably accurate aerodynamic models developed here.

  2. Open Rotor Aeroacoustic Modeling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  3. Open Rotor Aeroacoustic Modelling

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    Owing to their inherent fuel efficiency, there is renewed interest in developing open rotor propulsion systems that are both efficient and quiet. The major contributor to the overall noise of an open rotor system is the propulsor noise, which is produced as a result of the interaction of the airstream with the counter-rotating blades. As such, robust aeroacoustic prediction methods are an essential ingredient in any approach to designing low-noise open rotor systems. To that end, an effort has been underway at NASA to assess current open rotor noise prediction tools and develop new capabilities. Under this effort, high-fidelity aerodynamic simulations of a benchmark open rotor blade set were carried out and used to make noise predictions via existing NASA open rotor noise prediction codes. The results have been compared with the aerodynamic and acoustic data that were acquired for this benchmark open rotor blade set. The emphasis of this paper is on providing a summary of recent results from a NASA Glenn effort to validate an in-house open noise prediction code called LINPROP which is based on a high-blade-count asymptotic approximation to the Ffowcs-Williams Hawkings Equation. The results suggest that while predicting the absolute levels may be difficult, the noise trends are reasonably well predicted by this approach.

  4. Open Rotor Spin Test

    NASA Image and Video Library

    An open rotor, also known as a high-speed propeller, is tested in a wind tunnel. The propeller moves much more quickly than a standard propeller, and the blades of the propeller are shaped differen...

  5. Single Rotor Turbine

    DOEpatents

    Platts, David A.

    2004-10-26

    A rotor for use in turbine applications has a centrifugal compressor having axially disposed spaced apart fins forming passages and an axial turbine having hollow turbine blades interleaved with the fins and through which fluid from the centrifugal compressor flows.

  6. Reducing rotor weight

    SciTech Connect

    Cheney, M.C.

    1997-12-31

    The cost of energy for renewables has gained greater significance in recent years due to the drop in price in some competing energy sources, particularly natural gas. In pursuit of lower manufacturing costs for wind turbine systems, work was conducted to explore an innovative rotor designed to reduce weight and cost over conventional rotor systems. Trade-off studies were conducted to measure the influence of number of blades, stiffness, and manufacturing method on COE. The study showed that increasing number of blades at constant solidity significantly reduced rotor weight and that manufacturing the blades using pultrusion technology produced the lowest cost per pound. Under contracts with the National Renewable Energy Laboratory and the California Energy Commission, a 400 kW (33m diameter) turbine was designed employing this technology. The project included tests of an 80 kW (15.5m diameter) dynamically scaled rotor which demonstrated the viability of the design.

  7. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  8. Modelling of Landau-Darrieus and thermo-diffusive instability effects for CFD simulations of laminar and turbulent premixed combustion

    NASA Astrophysics Data System (ADS)

    Keppeler, Roman; Pfitzner, Michael

    2015-01-01

    An algebraic model is derived that accounts for the effects of non-resolved Landau-Darrieus and thermo-diffusive instabilities on the propagation speed of fully premixed laminar and turbulent flame fronts in the Large Eddy Simulation (LES) context provided that the laminar flame speed appears as a model parameter in the LES combustion model. The model is derived assuming fractal characteristics of flames which exhibit cellular structures due to instabilities. The smallest and largest unstable wavelengths are computed employing a dispersion relation for nominally planar flames. Values for the fractal dimension characterising the flame structures are taken from the literature. A phenomenological model accounts for the stabilising effect of strain. Based on experimental data, a correlation for a critical strain rate, which indicates the onset of instabilities, is formulated. To validate the new model which accounts for instabilities on the effective speed of laminar flame propagation, laminar expanding spherical methane-air flames at p = 5 bar and p = 10 bar are simulated in the LES context. Values for the fractal dimension, as proposed in the literature, are varied. The predicted flame propagation speed is in very good agreement with experimental data when applying a fractal dimension of about D = 2.06. The critical strain turns out to be a suitable parameter to indicate the onset of instabilities and to quantify the influence of instabilities. Simulations applying a second model proposed by Bradley and valid for spherically expanding flames show similar results. LES of turbulent Bunsen flames at 1, 5 and 10 bar, which are characterised by u‧/s0L < 1, are performed to evaluate the derived instability model for turbulent flames. The simulated flames (from the Kobayashi database) have already been experimentally investigated in the context of Landau-Darrieus and thermo-diffusive instabilities. In agreement with conclusions from these investigations, for the

  9. Wind turbine rotor

    SciTech Connect

    Baskin, J. M.; Miller, G. E.; Wiesner, W.

    1985-12-10

    A fixed pitch wind turbine rotor is teeter mounted onto a low speed input shaft which is connected to the input of a step-up transmission. The output of the transmission is connected to a rotary pole amplitude modulated induction machine which is operable as a generator at a plurality of discreet speeds of rotation and is also operable as a startup motor for the rotor. A switch responsive to the rotational speed of the wind turbine rotor switches the generator from one speed of operation to the other. The rotor hub and the inner body portions of two blades which extend radially outwardly in opposite directions from the hub, are constructed from steel. The outer end portions of the blade are constructed from a lighter material, such as wood, and are both thinner and narrower than the remainder of the rotor. The outer end section of each blade includes a main body portion and a trailing edge portion which is hinge-connected to the main body portion. Each blade includes a centrifugal force operated positioning means which normally holds the drag brake section in a retracted position, but operates in response to a predetermined magnitude of centrifugal force to move the drag brake section into its deployed position. Each blade has an airfoil cross section and each blade has a plus twist inner portion adjacent the hub changing to first a zero twist and then a minus twist as it extends radially outwardly from the hub.

  10. Rotor-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amiet, R. K.

    1983-01-01

    A theoretical and experimental study was conducted to develop a validated first principles analysis for predicting noise generated by helicopter main-rotor shed vortices interacting with the tail rotor. The generalized prediction procedure requires a knowledge of the incident vortex velocity field, rotor geometry, and rotor operating conditions. The analysis includes compressibility effects, chordwise and spanwise noncompactness, and treats oblique intersections with the blade planform. Assessment of the theory involved conducting a model rotor experiment which isolated the blade-vortex interaction noise from other rotor noise mechanisms. An isolated tip vortex, generated by an upstream semispan airfoil, was convected into the model tail rotor. Acoustic spectra, pressure signatures, and directivity were measured. Since assessment of the acoustic prediction required a knowledge of the vortex properties, blade-vortes intersection angle, intersection station, vortex stength, and vortex core radius were documented. Ingestion of the vortex by the rotor was experimentally observed to generate harmonic noise and impulsive waveforms.

  11. Tilt rotor aircraft aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Smith, Charles A.; Maisel, Martin D.; Brieger, John T.

    1989-01-01

    This paper studies the state of knowledge and the needed improvement in noise methodology and measurements for tilt rotor aircraft. Similarities and differences between tilt rotor aeroacoustic conditions and helicopter and propeller experience are identified. A discussion of the possible principal noise mechanisms throughout the flight envelope shows a need for further experimental and analytical investigations to develop an adequate understanding of the important sources and influencing factors. Existing experimental data from flight tests suggest terminal area noise reduction by operating within certain portions of the conversion flight envelope. Prediction methods are found to provide approximate indications only for low frequency harmonic and broadband noise for several of the tilt rotor's operating conditions. The acoustic effects of the hover case 'fountain' flow are pronounced and need further research. Impulsive noise and high frequency harmonic noise remain problems, as on helicopters, pending major improvements in wake, unsteady aerodynamics, and acoustics methodology.

  12. Tilt rotor aircraft aeroacoustics

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Smith, Charles A.; Maisel, Martin D.; Brieger, John T.

    1989-01-01

    This paper studies the state of knowledge and the needed improvement in noise methodology and measurements for tilt rotor aircraft. Similarities and differences between tilt rotor aeroacoustic conditions and helicopter and propeller experience are identified. A discussion of the possible principal noise mechanisms throughout the flight envelope shows a need for further experimental and analytical investigations to develop an adequate understanding of the important sources and influencing factors. Existing experimental data from flight tests suggest terminal area noise reduction by operating within certain portions of the conversion flight envelope. Prediction methods are found to provide approximate indications only for low frequency harmonic and broadband noise for several of the tilt rotor's operating conditions. The acoustic effects of the hover case 'fountain' flow are pronounced and need further research. Impulsive noise and high frequency harmonic noise remain problems, as on helicopters, pending major improvements in wake, unsteady aerodynamics, and acoustics methodology.

  13. Rotor balancing apparatus and system

    NASA Technical Reports Server (NTRS)

    Lyman, Frank (Inventor); Lyman, Joseph (Inventor)

    1976-01-01

    Rotor balancing apparatus and a system comprising balance probes for measuring unbalance at the ends of a magnetically suspended rotor are disclosed. Each balance probe comprises a photocell which is located in relationship to the magnetically suspended rotor such that unbalance of the rotor changes the amount of light recorded by each photocell. The signal from each photocell is electrically amplified and displayed by a suitable device, such as an oscilloscope.

  14. Helicopter tail rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1986-01-01

    A study was made of helicopter tail rotor noise, particularly that due to interactions with the main rotor tip vortices, and with the fuselage separation mean wake. The tail rotor blade-main rotor tip vortex interaction is modelled as an airfoil of infinite span cutting through a moving vortex. The vortex and the geometry information required by the analyses are obtained through a free wake geometry analysis of the main rotor. The acoustic pressure-time histories for the tail rotor blade-vortex interactions are then calculated. These acoustic results are compared to tail rotor loading and thickness noise, and are found to be significant to the overall tail rotor noise generation. Under most helicopter operating conditions, large acoustic pressure fluctuations can be generated due to a series of skewed main rotor tip vortices passing through the tail rotor disk. The noise generation depends strongly upon the helicopter operating conditions and the location of the tail rotor relative to the main rotor.

  15. Wave rotor demonstrator engine assessment

    NASA Technical Reports Server (NTRS)

    Snyder, Philip H.

    1996-01-01

    The objective of the program was to determine a wave rotor demonstrator engine concept using the Allison 250 series engine. The results of the NASA LERC wave rotor effort were used as a basis for the wave rotor design. A wave rotor topped gas turbine engine was identified which incorporates five basic requirements of a successful demonstrator engine. Predicted performance maps of the wave rotor cycle were used along with maps of existing gas turbine hardware in a design point study. The effects of wave rotor topping on the engine cycle and the subsequent need to rematch compressor and turbine sections in the topped engine were addressed. Comparison of performance of the resulting engine is made on the basis of wave rotor topped engine versus an appropriate baseline engine using common shaft compressor hardware. The topped engine design clearly demonstrates an impressive improvement in shaft horsepower (+11.4%) and SFC (-22%). Off design part power engine performance for the wave rotor topped engine was similarly improved including that at engine idle conditions. Operation of the engine at off design was closely examined with wave rotor operation at less than design burner outlet temperatures and rotor speeds. Challenges identified in the development of a demonstrator engine are discussed. A preliminary design was made of the demonstrator engine including wave rotor to engine transition ducts. Program cost and schedule for a wave rotor demonstrator engine fabrication and test program were developed.

  16. Broadband rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1984-01-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  17. XV-15 tilt rotor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This photo shows the unique XV-15 Tiltrotor aircraft in vertical flight at the NASA Dryden Flight Research Center. The XV-15s, manufactured by Bell, were involved in limited research at NASA/Dryden in 1980 and 1981. The development of the XV-15 Tiltrotor research aircraft was initiated in 1973 with joint Army/NASA funding as a 'proof of concept', or 'technology demonstrator' program, with two aircraft being built by Bell Helicopter Textron (BHT) in 1977. NASA Ames Research Center, where most of the NASA research is conducted, continues to be in charge of the joint NASA/Army/Bell program. The aircraft are powered by twin Lycoming T-53 turboshaft engines that are connected by a cross-shaft and drive three-bladed, 25 ft diameter metal rotors (the size extensively tested in a wind tunnel). The engines and main transmissions are located in wingtip nacelles to minimize the operational loads on the cross-shaft system and, with the rotors, tilt as a single unit. For takeoff, the proprotors and their engines are used in the straight-up position where the thrust is directed downward. The XV-15 then climbs vertically into the air like a helicopter. In this VTOL mode, the vehicle can lift off and hover for approximately one hour. Once off the ground, the XV-15 has the ability to fly in one of two different modes. It can fly as a helicopter, in the partially converted airplane mode. The XV-15 can also then convert from the helicopter mode to the airplane mode. This is accomplished by continuous rotation of the proprotors from the helicopter rotor position to the conventional airplane propeller position. During the ten to fifteen second conversion period, the aircraft speed increases and lift is transferred from the rotors to the wing. To land, the proprotors are rotated up to the helicopter rotor position and flown as a helicopter to a vertical landing.

  18. Acoustic test of a model rotor and tail rotor: Results for the isolated rotors and combined configuration

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Burley, C. L.; Elliott, J. W.

    1989-01-01

    Acoustic data from a model scale main rotor and tail rotor experiment in the NASA Langley 14 by 22 Foot Subsonic Tunnel are presented for the main rotor and trail rotor in isolation and for the two rotors operating together. Results for the isolated main rotor show the importance of the rotor flapping conditions on mid-frequency noise content. High levels of main rotor retreating side blade-vortex interaction noise are shown to radiate downstream of the model. The isolated tail rotor noise results show the dominance of harmonic noise in the thrusting direction. The occurrence of tail rotor broadband noise is seen by the broadening of the tail rotor harmonics and is attributed to fuselage wake turbulence. The combined main and tail rotor data are presented to show the dominance of each rotor's different noise sources at different directivity locations.

  19. ROTOR END CAP

    DOEpatents

    Rushing, F.C.

    1959-02-01

    An improved end cap is described for the cylindrical rotor or bowl of a high-speed centrifugal separator adapted to permit free and efficient continuous counter current flow of gas therethrough for isotope separation. The end cap design provides for securely mounting the same to the hollow central shaft and external wall of the centrifuge. Passageways are incorporated and so arranged as to provide for continuous counter current flow of the light and heavy portions of the gas fed to the centrifuge.

  20. Single rotor turbine engine

    DOEpatents

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  1. Polygonal shaft hole rotor

    DOEpatents

    Hussey, John H.; Rose, John Scott; Meystrik, Jeffrey J.; White, Kent Lee

    2001-01-23

    A laminated rotor for an induction motor has a plurality of ferro-magnetic laminations mounted axially on a rotor shaft. Each of the plurality of laminations has a central aperture in the shape of a polygon with sides of equal length. The laminations are alternatingly rotated 180.degree. from one another so that the straight sides of the polygon shaped apertures are misaligned. As a circular rotor shaft is press fit into a stack of laminations, the point of maximum interference occurs at the midpoints of the sides of the polygon (i.e., at the smallest radius of the central apertures of the laminations). Because the laminates are alternatingly rotated, the laminate material at the points of maximum interference yields relatively easily into the vertices (i.e., the greatest radius of the central aperture) of the polygonal central aperture of the next lamination as the shaft is inserted into the stack of laminations. Because of this yielding process, the amount of force required to insert the shaft is reduced, and a tighter fit is achieved.

  2. Variable camber rotor study

    NASA Technical Reports Server (NTRS)

    Dadone, L.; Cowan, J.; Mchugh, F. J.

    1982-01-01

    Deployment of variable camber concepts on helicopter rotors was analytically assessed. It was determined that variable camber extended the operating range of helicopters provided that the correct compromise can be obtained between performance/loads gains and mechanical complexity. A number of variable camber concepts were reviewed on a two dimensional basis to determine the usefulness of leading edge, trailing edge and overall camber variation schemes. The most powerful method to vary camber was through the trailing edge flaps undergoing relatively small motions (-5 deg to +15 deg). The aerodynamic characteristics of the NASA/Ames A-1 airfoil with 35% and 50% plain trailing edge flaps were determined by means of current subcritical and transonic airfoil design methods and used by rotor performance and loads analysis codes. The most promising variable camber schedule reviewed was a configuration with a 35% plain flap deployment in an on/off mode near the tip of a blade. Preliminary results show approximately 11% reduction in power is possible at 192 knots and a rotor thrust coefficient of 0.09. The potential demonstrated indicates a significant potential for expanding the operating envelope of the helicopter. Further investigation into improving the power saving and defining the improvement in the operational envelope of the helicopter is recommended.

  3. Homopolar motor with dual rotors

    DOEpatents

    Hsu, J.S.

    1998-12-01

    A homopolar motor has a field rotor mounted on a frame for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor mounted for rotation on said frame within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor. The two rotors are coupled through a 1:1 gearing mechanism, so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed. 7 figs.

  4. Homopolar motor with dual rotors

    DOEpatents

    Hsu, John S.

    1998-01-01

    A homopolar motor (10) has a field rotor (15) mounted on a frame (11) for rotation in a first rotational direction and for producing an electromagnetic field, and an armature rotor (17) mounted for rotation on said frame (11) within said electromagnetic field and in a second rotational direction counter to said first rotational direction of said field rotor (15). The two rotors (15, 17) are coupled through a 1:1 gearing mechanism (19), so as to travel at the same speed but in opposite directions. This doubles the output voltage and output power, as compared to a motor in which only the armature is rotated. Several embodiments are disclosed.

  5. 14 CFR 29.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 29.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  6. 14 CFR 27.921 - Rotor brake.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Rotor Drive System § 27.921 Rotor brake. If there is a means to control the rotation of the rotor drive system independently of the engine, any limitations...

  7. Development of flexible rotor balancing criteria

    NASA Technical Reports Server (NTRS)

    Walter, W. W.; Rieger, N. F.

    1979-01-01

    Several studies in which analytical procedures were used to obtain balancing criteria for flexible rotors are described. General response data for a uniform rotor in damped flexible supports were first obtained for plain cylindrical bearings, tilting pad bearings, axial groove bearings, and partial arc bearings. These data formed the basis for the flexible rotor balance criteria presented. A procedure by which a practical rotor in bearings could be reduced to an equivalent uniform rotor was developed and tested. It was found that the equivalent rotor response always exceeded to practical rotor response by more than sixty percent for the cases tested. The equivalent rotor procedure was then tested against six practical rotor configurations for which data was available. It was found that the equivalent rotor method offered a procedure by which balance criteria could be selected for practical flexible rotors, using the charts given for the uniform rotor.

  8. Integrated technology rotor/flight research rotor concept definition study

    NASA Technical Reports Server (NTRS)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  9. Internal rotor friction instability

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1990-01-01

    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations.

  10. Molecular Rotors as Switches

    PubMed Central

    Xue, Mei; Wang, Kang L.

    2012-01-01

    The use of a functional molecular unit acting as a state variable provides an attractive alternative for the next generations of nanoscale electronics. It may help overcome the limits of conventional MOSFETd due to their potential scalability, low-cost, low variability, and highly integratable characteristics as well as the capability to exploit bottom-up self-assembly processes. This bottom-up construction and the operation of nanoscale machines/devices, in which the molecular motion can be controlled to perform functions, have been studied for their functionalities. Being triggered by external stimuli such as light, electricity or chemical reagents, these devices have shown various functions including those of diodes, rectifiers, memories, resonant tunnel junctions and single settable molecular switches that can be electronically configured for logic gates. Molecule-specific electronic switching has also been reported for several of these device structures, including nanopores containing oligo(phenylene ethynylene) monolayers, and planar junctions incorporating rotaxane and catenane monolayers for the construction and operation of complex molecular machines. A specific electrically driven surface mounted molecular rotor is described in detail in this review. The rotor is comprised of a monolayer of redox-active ligated copper compounds sandwiched between a gold electrode and a highly-doped P+ Si. This electrically driven sandwich-type monolayer molecular rotor device showed an on/off ratio of approximately 104, a read window of about 2.5 V, and a retention time of greater than 104 s. The rotation speed of this type of molecular rotor has been reported to be in the picosecond timescale, which provides a potential of high switching speed applications. Current-voltage spectroscopy (I-V) revealed a temperature-dependent negative differential resistance (NDR) associated with the device. The analysis of the device I–V characteristics suggests the source of the

  11. The large pursuit rotor.

    PubMed

    Williams, L R; Grbin, I R

    1976-09-01

    The question of whether certain phenomena that occur on the conventional rotary pursuit and other small apparatus also appear on a gross motor task was examined using a large pursuit rotor that required whole-body movements. College males (n=29) were given 90 10-sec trials over three consecutive days with 30 trials of continuous practice per day. The existence of reactive inhibition, reminiscence, and warmup decrement was confirmed, indicating that common mechanisms underlie both fine and gross bodily movements. In addition, the substantial amounts of learning and the high reliabilities for performance and learning indicated that the present apparatus has considerable potential for motor-learning research.

  12. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  13. Blade lock for a rotor disk and rotor blade assembly

    NASA Technical Reports Server (NTRS)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  14. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  15. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  16. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  17. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  18. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  19. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  20. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  1. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  2. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  3. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  4. NASA Open Rotor Noise Research

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2010-01-01

    Owing to their inherent fuel burn efficiency advantage compared with the current generation high bypass ratio turbofan engines, there is resurgent interest in developing open rotor propulsion systems for powering the next generation commercial aircraft. However, to make open rotor systems truly competitive, they must be made to be acoustically acceptable too. To address this challenge, NASA in collaboration with industry is exploring the design space for low-noise open rotor propulsion systems. The focus is on the system level assessment of the open rotors compared with other candidate concepts like the ultra high bypass ratio cycle engines. To that end there is an extensive research effort at NASA focused on component testing and diagnostics of the open rotor acoustic performance as well as assessment and improvement of open rotor noise prediction tools. In this presentation and overview of the current NASA research on open rotor noise will be provided. Two NASA projects, the Environmentally Responsible Aviation Project and the Subsonic Fixed Wing Project, have been funding this research effort.

  5. Gas turbine rotor straightening -- Case history

    SciTech Connect

    Mazur, Z.; Kubiak, J.; Villela, A.; Orozco, J.

    1999-11-01

    Due to catastrophic damage, the turbine-compressor rotor of a gas turbine has been bent 0.62 mm. The in-situ repair process of rotor straightening is fully described. The repair process included the design of special fixtures for placing the rotor vertically and then hydraulically tensioning the rotor bolts for discs disassembling and run-out check by a special rotary equipment. After the repair process the rotor run-out fell within the design limits. Finally the rotor was put back into service. The approach to the in-house repair of the rotor bend has been successful and can be widely recommended for users of turbomachinery.

  6. Rotor blade assembly having internal loading features

    DOEpatents

    Soloway, Daniel David

    2017-05-16

    Rotor blade assemblies and wind turbines are provided. A rotor blade assembly includes a rotor blade having exterior surfaces defining a pressure side, a suction side, a leading edge and a trailing edge each extending between a tip and a root, the rotor blade defining a span and a chord, the exterior surfaces defining an interior of the rotor blade. The rotor blade assembly further includes a loading assembly, the loading assembly including a weight disposed within the interior and movable generally along the span of the rotor blade, the weight connected to a rotor blade component such that movement of the weight towards the tip causes application of a force to the rotor blade component by the weight. Centrifugal force due to rotation of the rotor blade biases the weight towards the tip.

  7. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  8. Wind turbine rotor aileron

    DOEpatents

    Coleman, Clint; Kurth, William T.

    1994-06-14

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  9. Rotor assembly for a gas turbine engine

    SciTech Connect

    Antonellis, S. M.; Breunig, R. D.

    1985-07-02

    A rotor assembly for a gas turbine engine is disclosed. The rotor assembly includes a pair of axially spaced apart rotor disks such as the rotor disks. An inner air seal extends axially between the adjacent rotor disks. A member extends axially between the disks to join the disks together and is attached to the inner air seal at a mid span location to restrain the seal against outward movement.

  10. Feedback Control of Rotor Overspeed

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.

    1984-01-01

    Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.

  11. Feedback Control of Rotor Overspeed

    NASA Technical Reports Server (NTRS)

    Churchill, G. B.

    1984-01-01

    Feedback system for automatically governing helicopter rotor speed promises to lessen pilot's workload, enhance maneuverability, and protect airframe. With suitable modifications, concept applied to control speed of electrical generators, automotive engines and other machinery.

  12. LAVA Applications to Open Rotors

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Housman, Jeff; Barad, Mike; Brehm, Christoph

    2015-01-01

    Outline: LAVA (Launch Ascent Vehicle Aerodynamics); Introduction; Acoustics Related Applications; LAVA Applications to Open Rotor; Structured Overset Grids; Cartesian Grid with Immersed Boundary; High Speed Case; High Speed Case with Plate Low Speed Case.

  13. Soft hub for bearingless rotors

    NASA Technical Reports Server (NTRS)

    Dixon, Peter G. C.

    1991-01-01

    Soft hub concepts which allow the direct replacement of articulated rotor systems by bearingless types without any change in controllability or need for reinforcement to the drive shaft and/or transmission/fuselage attachments of the helicopter were studied. Two concepts were analyzed and confirmed for functional and structural feasibility against a design criteria and specifications established for this effort. Both systems are gimballed about a thrust carrying universal elastomeric bearing. One concept includes a set of composite flexures for drive torque transmittal from the shaft to the rotor, and another set (which is changeable) to impart hub tilting stiffness to the rotor system as required to meet the helicopter application. The second concept uses a composite bellows flexure to drive the rotor and to augment the hub stiffness provided by the elastomeric bearing. Each concept was assessed for weight, drag, ROM cost, and number of parts and compared with the production BO-105 hub.

  14. Macroscopic balance model for wave rotors

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  15. System for Controlling a Magnetically Levitated Rotor

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R. (Inventor)

    2006-01-01

    In a rotor assembly having a rotor supported for rotation by magnetic bearings, a processor controlled by software or firmware controls the generation of force vectors that position the rotor relative to its bearings in a "bounce" mode in which the rotor axis is displaced from the principal axis defined between the bearings and a "tilt" mode in which the rotor axis is tilted or inclined relative to the principal axis. Waveform driven perturbations are introduced to generate force vectors that excite the rotor in either the "bounce" or "tilt" modes.

  16. Research investigation of helicopter main rotor/tail rotor interaction noise

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J.; Kohlhepp, F.

    1988-01-01

    Acoustic measurements were obtained in a Langley 14 x 22 foot Subsonic Wind Tunnel to study the aeroacoustic interaction of 1/5th scale main rotor, tail rotor, and fuselage models. An extensive aeroacoustic data base was acquired for main rotor, tail rotor, fuselage aerodynamic interaction for moderate forward speed flight conditions. The details of the rotor models, experimental design and procedure, aerodynamic and acoustic data acquisition and reduction are presented. The model was initially operated in trim for selected fuselage angle of attack, main rotor tip-path-plane angle, and main rotor thrust combinations. The effects of repositioning the tail rotor in the main rotor wake and the corresponding tail rotor countertorque requirements were determined. Each rotor was subsequently tested in isolation at the thrust and angle of attack combinations for trim. The acoustic data indicated that the noise was primarily dominated by the main rotor, especially for moderate speed main rotor blade-vortex interaction conditions. The tail rotor noise increased when the main rotor was removed indicating that tail rotor inflow was improved with the main rotor present.

  17. Turbomachinery rotor support with damping

    NASA Technical Reports Server (NTRS)

    Vonpragenau, George L. (Inventor)

    1990-01-01

    Damping seals, damping bearings, and a support sleeve are presented for the ball bearings of a high speed rotor. The ball bearings consist of a duplex set having the outer races packaged tightly within the sleeve while the sleeve provides a gap with a support member so that the bearings may float with the sleeve. The sleeve has a web extending radially between the pair of outer races and acts in conjunction with one or more springs to apply an axial preload to the outer races. The sleeves have a series of slits which provide the sleeve with a spring-like quality so that the spring acts to center the rotor upon which the bearings are mounted during start up and shut down. A damping seal or a damping bearing may be used in conjunction with the ball bearings and supporting sleeve, the damping seal and damping bearing having rotor portions including rigid outer surfaces mounted within the bore of a stator portion having triangular shaped pockets on the surface facing the rotor. Axial gates are provided between adjacent pockets in sections of the stator permitting fluid to flow with less resistance axially relative to the flow of fluids circumferentially between the rotor and the stator.

  18. Rotor assembly and assay method

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1993-09-07

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor. 34 figures.

  19. Rotor assembly and assay method

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1993-01-01

    A rotor assembly for carrying out an assay includes a rotor body which is rotatable about an axis of rotation, and has a central chamber and first, second, third, fourth, fifth, and sixth chambers which are in communication with and radiate from the central chamber. The rotor assembly further includes a shuttle which is movable through the central chamber and insertable into any of the chambers, the shuttle including a reaction cup carrying an immobilized antigen or an antibody for transport among the chambers. A method for carrying out an assay using the rotor assembly includes moving the reaction cup among the six chambers by passing the cup through the central chamber between centrifugation steps in order to perform the steps of: separating plasma from blood cells, binding plasma antibody or antigen, washing, drying, binding enzyme conjugate, reacting with enzyme substrate and optically comparing the resulting reaction product with unreacted enzyme substrate solution. The movement of the reaction cup can be provided by attaching a magnet to the reaction cup and supplying a moving magnetic field to the rotor.

  20. Rotor-to-stator Partial Rubbing and Its Effects on Rotor Dynamic Response

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Franklin, Wesley D.; Hayashida, Robert D.

    1991-01-01

    Results from experimental and analytical studies on rotor to stationary element partial rubbings at several locations and their effects on rotor dynamic responses are presented. The mathematical model of a rubbing rotor is given. The computer program provides numerical results which agree with experimentally obtained rotor responses.

  1. Open Rotor: New Option for Jet Engines

    NASA Image and Video Library

    NASA's Dale Van Zante describes how the open rotor propulsion system will be tested in a wind tunnel at NASA's Glenn Research Center. Open rotor aircraft engines use high-speed propellers and are c...

  2. Rotor/Wing Interactions in Hover

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Derby, Michael R.

    2002-01-01

    Hover predictions of tiltrotor aircraft are hampered by the lack of accurate and computationally efficient models for rotor/wing interactional aerodynamics. This paper summarizes the development of an approximate, potential flow solution for the rotor-on-rotor and wing-on-rotor interactions. This analysis is based on actuator disk and vortex theory and the method of images. The analysis is applicable for out-of-ground-effect predictions. The analysis is particularly suited for aircraft preliminary design studies. Flow field predictions from this simple analytical model are validated against experimental data from previous studies. The paper concludes with an analytical assessment of the influence of rotor-on-rotor and wing-on-rotor interactions. This assessment examines the effect of rotor-to-wing offset distance, wing sweep, wing span, and flaperon incidence angle on tiltrotor inflow and performance.

  3. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran; McLaurin, Leroy Dixon; Bertsch, Oran Leroy; Lowe, Perry Eugene

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  4. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  5. Quantum rotor in nanostructured superconductors

    PubMed Central

    Lin, Shi-Hsin; Milošević, M. V.; Covaci, L.; Jankó, B.; Peeters, F. M.

    2014-01-01

    Despite its apparent simplicity, the idealized model of a particle constrained to move on a circle has intriguing dynamic properties and immediate experimental relevance. While a rotor is rather easy to set up classically, the quantum regime is harder to realize and investigate. Here we demonstrate that the quantum dynamics of quasiparticles in certain classes of nanostructured superconductors can be mapped onto a quantum rotor. Furthermore, we provide a straightforward experimental procedure to convert this nanoscale superconducting rotor into a regular or inverted quantum pendulum with tunable gravitational field, inertia, and drive. We detail how these novel states can be detected via scanning tunneling spectroscopy. The proposed experiments will provide insights into quantum dynamics and quantum chaos. PMID:24686241

  6. On Cup Anemometer Rotor Aerodynamics

    PubMed Central

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup. PMID:22778638

  7. On cup anemometer rotor aerodynamics.

    PubMed

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  8. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  9. Rotor for centrifugal fast analyzers

    DOEpatents

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  10. Wave Rotor Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1998-01-01

    Wave rotor technology offers the potential to increase the performance of gas turbine engines significantly, within the constraints imposed by current material temperature limits. The wave rotor research at the NASA Lewis Research Center is a three-element effort: 1) Development of design and analysis tools to accurately predict the performance of wave rotor components; 2) Experiments to characterize component performance; 3) System integration studies to evaluate the effect of wave rotor topping on the gas turbine engine system.

  11. Filter type rotor for multistation photometer

    DOEpatents

    Shumate, II, Starling E.

    1977-07-12

    A filter type rotor for a multistation photometer is provided. The rotor design combines the principle of cross-flow filtration with centrifugal sedimentation so that these occur simultaneously as a first stage of processing for suspension type fluids in an analytical type instrument. The rotor is particularly useful in whole-blood analysis.

  12. Design of plywood and paper flywheel rotors

    NASA Astrophysics Data System (ADS)

    Erdman, A. G.; Hagen, D. L.; Gaff, S. A.

    1982-05-01

    Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.

  13. Flywheels Would Compensate for Rotor Imbalance

    NASA Technical Reports Server (NTRS)

    Hrastar, J. A. S.

    1982-01-01

    Spinning flywheels within rotor can null imbalance forces in rotor. Flywheels axes are perpendicular to each other and to rotor axis. Feedback signals from accelerometers or strain gages in platform control flywheel speeds and rotation directions. Concept should be useful for compensating rotating bodies on Earth. For example, may be applied to large industrial centrifuge, particularly if balance changes during operation.

  14. Bucket rotor wind-driven generator

    NASA Technical Reports Server (NTRS)

    Chang, H. H.; Mccracken, H.

    1973-01-01

    As compared with the ordinary propeller type rotor, the bucket rotor is limited in rotational speed since the tip rotor speed can never exceed the wind speed. However, it does not present the blade fatigue problem that the ordinary rotor has, and it perhaps causes less sight pollution. The deflector vanes also provide a venturi passage to capture greater wind flow. The bucket rotors can be strung together end-to-end up to thousands of feet long to produce large amounts of power.

  15. Previous Open Rotor Research in the US

    NASA Technical Reports Server (NTRS)

    VanZante, Dale

    2011-01-01

    Previous Open Rotor noise experience in the United States, current Open Rotor noise research in the United States and current NASA prediction methods activities were presented at a European Union (EU) X-Noise seminar. The invited attendees from EU industries, research establishments and universities discussed prospects for reducing Open Rotor noise and reviewed all technology programs, past and present, dedicated to Open Rotor engine concepts. This workshop was particularly timely because the Committee on Aviation Environmental Protection (CAEP) plans to involve Independent Experts in late 2011 in assessing the noise of future low-carbon technologies including the open rotor.

  16. Advanced Rotor Blade Materials Evaluation

    DTIC Science & Technology

    2014-07-23

    helicopter rotor blade erosion resistant treatments that had been supplied in response to a US Navy BAA Program. The Navy Program was meant to improve the...earlier ONR BAA Program had been concluded and while this specific program was active. This program was one of the drivers behind the need to

  17. Optimization of stall regulated rotors

    SciTech Connect

    Fuglsang, P.L.; Madsen, H.A.

    1995-09-01

    The present work deals with the optimization of stall regulated rotors for wind turbines. Two different optimization methods are presented. The first method is a single design point optimization procedure, whereas the second is a multi pointed optimization technique which is founded on a general optimization algorithm. The use of an optimization algorithm offers the possibility to treat complex optimization problems concerning the entire rotor geometry. The two methods are compared through design of a 20 kW rotor showing good agreement. By use of the optimization algorithm, different aspects of modern wind turbine design layout are investigated. The improvement of the annual energy production by optimizing the airfoil characteristics in addition to the blade chord and twist has been found marginal compared to a case where a standard NACA 634x airfoil family is used. The optimal ratio of swept area to rated power is found depending strongly on the value of the specified maximum loads. Optimization of rotors to specific wind regimes has not been found favorable. In general, the results show that the optimization algorithm is an useful aid to the design.

  18. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  19. Fuselage upwash effects on RSRA rotor systems

    NASA Technical Reports Server (NTRS)

    Cowan, J.; Dadone, L.

    1985-01-01

    The effects of RSRA fuselage configurations on rotor performance and loads have been quantified analytically by means of currently available potential flow and rotor analysis. Four configurations of the Rotor Systems Research Aircraft (RSRA) were considered in this study. They were: (1) fuselage alone (conventional helicopter); (2) fuselage with auxiliary propulsion; (3) fuselage with wings (auxiliary lift); and (4) fuselage with both auxiliary lift propulsion. The rotor system investigated was identical to a CH-47D front rotor except that it had four instead of three blades. Two scaled-down versions of the same rotor were also analyzed to determine the effect of rotor scale on the fuselage upwash effects. The flight conditions considered for the upwash study are discussed. The potential flow models for the RSRA configuration, with and without the wings and the auxiliary propulsion system, are presented. The results of fuselage/wing/propulsion system upwash on performance and loads are also presented.

  20. Advances in tilt rotor noise prediction

    NASA Technical Reports Server (NTRS)

    George, A. R.; Coffen, C. D.; Ringler, T. D.

    1992-01-01

    The two most serious tilt rotor external noise problems, hover noise and blade-vortex interaction noise, are studied. The results of flow visualization and inflow velocity measurements document a complex, recirculating highly unsteady and turbulent flow due to the rotor-wing-body interactions characteristic of tilt rotors. The wing under the rotor is found to obstruct the inflow, causing a deficit in the inflow velocities over the inboard region of the rotor. Discrete frequency harmonic thickness and loading noise mechanisms in hover are examined by first modeling tilt rotor hover aerodynamics and then applying various noise prediction methods using the WOPWOP code. The analysis indicates that the partial ground plane created by the wing below the rotor results in a primary sound source for hover.

  1. Investigation of rotor blade element airloads for a teetering rotor in the blade stall regime

    NASA Technical Reports Server (NTRS)

    Dadone, L. U.; Fukushima, T.

    1974-01-01

    A model of a teetering rotor was tested in a low speed wind tunnel. Blade element airloads measured on an articulated model rotor were compared with the teetering rotor and showed that the teetering rotor is subjected to less extensive flow separation. Retreating blade stall was studied. Results show that stall, under the influence of unsteady aerodynamic effects, consists of four separate stall events, each associated with a vortex shed from the leading edge and sweeping over the upper surface of the rotor blade. Current rotor performance prediction methodology was evaluated through computer simulation.

  2. Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA). [integrating the YAH-64 main rotor

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.; Logan, A. H.

    1981-01-01

    Various candidate rotor systems were compared in an effort to select a modern four-bladed rotor for the RSRA. The YAH-64 rotor system was chosen as the candidate rotor system for further development for the RSRA. The process used to select the rotor system, studies conducted to mate the rotor with the RSRA and provide parametric variability, and the development plan which would be used to implement these studies are presented. Drawings are included.

  3. Aeroelastic considerations for torsionally soft rotors

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1986-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by variations in the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not. In addition, fixed system vibratory loads and rotor track for potential conformable rotor candidates appears very sensitive to parametric rotor changes.

  4. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  5. Rotor blades for turbine engines

    DOEpatents

    Piersall, Matthew R; Potter, Brian D

    2013-02-12

    A tip shroud that includes a plurality of damping fins, each damping fin including a substantially non-radially-aligned surface that is configured to make contact with a tip shroud of a neighboring rotor blade. At least one damping fin may include a leading edge damping fin and at least one damping fin may include a trailing edge damping fin. The leading edge damping fin may be configured to correspond to the trailing edge damping fin.

  6. Rotor blade vortex interaction noise

    NASA Astrophysics Data System (ADS)

    Yu, Yung H.

    2000-02-01

    Blade-vortex interaction noise-generated by helicopter main rotor blades is one of the most severe noise problems and is very important both in military applications and community acceptance of rotorcraft. Research over the decades has substantially improved physical understanding of noise-generating mechanisms, and various design concepts have been investigated to control noise radiation using advanced blade planform shapes and active blade control techniques. The important parameters to control rotor blade-vortex interaction noise and vibration have been identified: blade tip vortex structures and its trajectory, blade aeroelastic deformation, and airloads. Several blade tip design concepts have been investigated for diffusing tip vortices and also for reducing noise. However, these tip shapes have not been able to substantially reduce blade-vortex interaction noise without degradation of rotor performance. Meanwhile, blade root control techniques, such as higher-harmonic pitch control (HHC) and individual blade control (IBC) concepts, have been extensively investigated for noise and vibration reduction. The HHC technique has proved the substantial blade-vortex interaction noise reduction, up to 6 dB, while vibration and low-frequency noise have been increased. Tests with IBC techniques have shown the simultaneous reduction of rotor noise and vibratory loads with 2/rev pitch control inputs. Recently, active blade control concepts with smart structures have been investigated with the emphasis on active blade twist and trailing edge flap. Smart structures technologies are very promising, but further advancements are needed to meet all the requirements of rotorcraft applications in frequency, force, and displacement.

  7. Architecture of the flagellar rotor

    PubMed Central

    Paul, Koushik; Gonzalez-Bonet, Gabriela; Bilwes, Alexandrine M; Crane, Brian R; Blair, David

    2011-01-01

    Rotation and switching of the bacterial flagellum depends on a large rotor-mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular-genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C-terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment. PMID:21673656

  8. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  9. An unsteady rotor/fuselage interaction method

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Lorber, Peter F.

    1987-01-01

    An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.

  10. Parametric tip effects for conformable rotor applications

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Yeager, W. T., Jr.

    1983-01-01

    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on aeroelasticity conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and three tip designs were tested on the torsionally soft blades. The designs incorporated a systematic variation in three geometric parameters: sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. Based on the test results, tip parameter variations generated significant rotor performance and loads difference for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not correlate.

  11. An unsteady rotor/fuselage interaction method

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Lorber, Peter F.

    1987-01-01

    An analytical method has been developed to treat unsteady helicopter rotor, wake, and fuselage interaction aerodynamics. An existing lifting line/prescribed wake rotor analysis and a source panel fuselage analysis were modified to predict vibratory fuselage airloads. The analyses were coupled through the induced flow velocities of the rotor and wake on the fuselage and the fuselage on the rotor. A prescribed displacement technique was used to distort the rotor wake about the fuselage. Sensitivity studies were performed to determine the influence of wake and body geometry on the computed airloads. Predicted and measured mean and unsteady pressures on a cylindrical body in the wake of a two-bladed rotor were compared. Initial results show good qualitative agreement.

  12. Flywheel Rotor Safe-Life Technology

    NASA Technical Reports Server (NTRS)

    Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)

    2002-01-01

    Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options

  13. Eigenvalues and stability problems of rotors

    NASA Technical Reports Server (NTRS)

    Walczyk, Z.

    1985-01-01

    The essential theoretical results of the application of a developed transfer matrix method to the free transverse vibration of a rotor are shown. Gyroscopic and shear effects, rotary inertia, and external and internal damping as well as the influence of sleeve bearings and rotor supports are taken into consideration. The eigenvalues of the motion equations of the rotor are searched by using a modified determinant method.

  14. Rotor fatigue monitoring data acquisition system

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    1993-01-01

    The 40 by 80 Foot Wind Tunnel of the National Full Scale Aerodynamics Complex (NFAC) had a requirement to monitor rotor fatigue during a test. This test subjected various rotor components to stress levels higher than their structural fatigue limits. A data acquisition system was developed to monitor the cumulative fatigue damage of rotor components using National Instruments hardware and LabVIEW software. A full description of the data acquisition system including its configuration and salient features, is presented in this paper.

  15. Inertial dynamics of a general purpose rotor

    NASA Technical Reports Server (NTRS)

    Duval, R. W.

    1979-01-01

    The inertial dynamics of a fully articulated stiff rotor blade are derived with emphasis on equations that facilitate an organized programming approach for simulation applications. The model for the derivation includes hinge offset and six degrees of freedom for the rotor shaft. Results are compared with the flapping and lead-lag equations currently used in the Rotor Systems Research Aircraft simulation model and differences are analyzed.

  16. Design of helicopter rotors to noise constraints

    NASA Technical Reports Server (NTRS)

    Schaeffer, E. G.; Sternfeld, H., Jr.

    1978-01-01

    Results of the initial phase of a research project to study the design constraints on helicopter noise are presented. These include the calculation of nonimpulsive rotor harmonic and broadband hover noise spectra, over a wide range of rotor design variables and the sensitivity of perceived noise level (PNL) to changes in rotor design parameters. The prediction methodology used correlated well with measured whirl tower data. Application of the predictions to variations in rotor design showed tip speed and thrust as having the most effect on changing PNL.

  17. High Speed Rotor Head Mounted Instrumentation System

    NASA Technical Reports Server (NTRS)

    Hee, Leonard; Reynolds, R. S. (Technical Monitor)

    1997-01-01

    NASA Ames Research Center has been investigating the air flow of a rotor blade on a UH-60 Blackhawk helicopter in-flight. This paper will address the hardware problems and solutions used to design and fabricate an instrumentation system on top of a UH-60 main rotor head. The instrumentation system consisted of 10 data systems operating in parallel and collected data from 370 sensors that are mounted in four rotor blades and on the rotating rotor head. The data was recorded on board the aircraft and simultaneously down linked to the ground station at 7.5 MHz.

  18. Effect of seals on rotor systems

    NASA Technical Reports Server (NTRS)

    Fleming, D. P.

    1982-01-01

    Seals can exert large forces on rotors. As an example, in turbopump ring seals film stiffness as high as 90 MN/m (500,000 lb/in) have been calculated. This stiffness is comparable to the stiffness of rotor support bearings; thus seals can play an important part in supporting and stabilizing rotor systems. The work done to determine forces generated in ring seals is reviewed. Working formulas are presented for seal stiffness and damping, and geometries to maximize stiffness are discussed. An example is described where a change in seal design stabilized a previously unstable rotor.

  19. Rotor Flapping Response to Active Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Khanh; Johnson, Wayne

    2004-01-01

    Rotor active control using higher harmonic blade pitch has been proposed as a means to reduce both rotor radiated noise and airframe vibration and to enhance rotor performance. The higher harmonic input, however, can affect rotor thrust and cyclic flapping - the basic trim characteristics of the rotor. Some of the trim changes can negate the active control benefits. For example, wind tunnel test results of a full scale BO-105 rotor with individual-blade control indicate some rotor performance improvements, accompanied with changes in rotor trim, using two-per-rev blade pitch input. The observed performance benefits could therefore be a simple manifestation of the trim change rather than an efficient redistribution of the rotor airloads. More recently, the flight test of the BO-105 helicopter equip,ped with individual-blade-control actuators also reported trim changes whenever the two-per-rev blade pitch for noise reduction was activated. The pilot had to adjust the trim control to maintain the aircraft under a constant flight path. These two cases highlight the, importance of trim considerations in the application of active control to rotorcraft.

  20. Dynamic Balancing Of Turbomachinery Shafts And Rotors

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1993-01-01

    Method for dynamic balancing of turbomachinery shafts and rotors developed with view toward reducing time spent in balancing process. Improved method based on existing dynamic-balancing techniques and equipment, incorporating use of balancing arbor, which is mandrel duplicating mounting geometry and dynamic-balance properties of shaft balanced. Once shaft balanced, not necessary to disassemble machinery and/or shaft completely and rebalance shaft when replacing rotor on shaft. Instead, one balances replacement rotor on balancing arbor, then installs balanced rotor on shaft.

  1. Prediction of helicopter rotor rotational noise

    NASA Astrophysics Data System (ADS)

    Xu, Guohua; Gao, Zheng

    1991-06-01

    Based on Farassat (1981) formulation 1A for subsonic time domain, a method is developed for predicting the rotor rotational noise, which is valid for arbitrary observer positions and all linear flight conditions. Without considering the elasticity of the blade, the retarded time equation and all of the integrands in the formulation 1A are derived and expressed as the proper form for numerical calculation. As examples, the noise calculation of the helicopter Z-8 rotor and 1/4 scale UH-1 rotor in hover are carried out. Discussions are presented on the influence of rotor parameters, such as the tip Mach number, the disk loading, and the blade airfoil.

  2. Rotor/wing aerodynamic interactions in hover

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Light, J. S.

    1986-01-01

    An experimental and theoretical investigation of rotor/wing aerodynamic interactions in hover is described. The experimental investigation consisted of both a large-scale and small-scale test. A 0.658-scale, V-22 rotor and wing was used in the large-scale test. Wind download, wing surface pressure, rotor performance, and rotor downwash data from the large-scale test are presented. A small-scale experiment was conducted to determine how changes in the rotor/wing geometry affected the aerodynamic interactions. These geometry variations included the distance between the rotor and wing, wing incidence angle, and configurations both with the rotor axis at the tip of the wing (tilt rotor configuration) and with the rotor axis at the center of the wing (compound helicopter configuration). A wing with boundary-layer control was also tested to evaluate the effect of leading and trailing edge upper surface blowing on the wing download. A computationally efficient, semi-empirical theory was developed to predict the download on the wing. Finally, correlations between the theoretical predictions and test data are presented.

  3. Rotor thermal stress monitoring in steam turbines

    NASA Astrophysics Data System (ADS)

    Antonín, Bouberle; Jan, Jakl; Jindřich, Liška

    2015-11-01

    One of the issues of steam turbines diagnostics is monitoring of rotor thermal stress that arises from nonuniform temperature field. The effort of steam turbine operator is to operate steam turbine in such conditions, that rotor thermal stress doesn't exceed the specified limits. If rotor thermal stress limits are exceeded for a long time during machine operation, the rotor fatigue life is shortened and this may lead to unexpected machine failure. Thermal stress plays important role during turbine cold startup, when occur the most significant differences of temperatures through rotor cross section. The temperature field can't be measured directly in the entire rotor cross section and standardly the temperature is measured by thermocouple mounted in stator part. From this reason method for numerical solution of partial differential equation of heat propagation through rotor cross section must be combined with method for calculation of temperature on rotor surface. In the first part of this article, the application of finite volume method for calculation of rotor thermal stress is described. The second part of article deals with optimal trend generation of thermal flux, that could be used for optimal machine loading.

  4. Method for manufacturing a rotor having superconducting coils

    DOEpatents

    Driscoll, David I.; Shoykhet, Boris A.

    2001-01-01

    A method and apparatus for manufacturing a rotor for use with a rotating machine is provided that employs a superconducting coil on the rotor. An adhesive is applied to an outer surface of the rotor body, which may include a groove disposed within an outer surface of the rotor body. A superconducting coil is then mounted onto the rotor body such that the adhesive bonds the superconducting coil to the rotor body.

  5. Recent developments in the dynamics of advanced rotor systems

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1985-01-01

    The problems that were encountered in the dynamics of advanced rotor systems are described. The methods for analyzing these problems are discussed, as are past solutions of the problems. To begin, the basic dynamic problems of rotors are discussed: aeroelastic stability, rotor and airframe loads, and aircraft vibration. Next, advanced topics that are the subject of current research are described: vibration control, dynamic upflow, finite element analyses, and composite materials. Finally, the dynamics of various rotorcraft configurations are considered: hingeless rotors, bearingless rotors, rotors with circulation control, coupled rotor/engine dynamics, articulated rotors, and tilting proprotor aircraft.

  6. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  7. Multiple piece turbine rotor blade

    DOEpatents

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  8. Variable-Tilt Helicopter Rotor Mast

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.

    1995-01-01

    Variable-tilt helicopter rotor mast proposed to improve helicopter performance and reduce vibration, especially at upper end of forward-speed range of helicopters. Achieved by use of universal coupling in main rotor mast or by tilting entire engine-and-transmission platform. Performance, energy efficiency, and safety enhanced.

  9. Theoretical models of helicopter rotor noise

    NASA Technical Reports Server (NTRS)

    Hawkings, D. L.

    1978-01-01

    For low speed rotors, it is shown that unsteady load models are only partially successful in predicting experimental levels. A theoretical model is presented which leads to the concept of unsteady thickness noise. This gives better agreement with test results. For high speed rotors, it is argued that present models are incomplete and that other mechanisms are at work. Some possibilities are briefly discussed.

  10. Flapping inertia for selected rotor blades

    NASA Technical Reports Server (NTRS)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  11. Total main rotor isolation system analysis

    NASA Technical Reports Server (NTRS)

    Sankewitsch, V.

    1981-01-01

    Requirements, preliminary design, and verification procedures for a total main rotor isolation system at n/rev are presented. The fuselage is isolated from the vibration inducing main rotor at one frequency in all degrees of freedom by four antiresonant isolation units. Effects of parametric variations on isolation system performance are evaluated.

  12. 14 CFR 33.34 - Turbocharger rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger rotors. 33.34 Section 33.34... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.34 Turbocharger rotors. Each turbocharger case must be designed and constructed to be able to contain fragments of a...

  13. Prediction and reduction of rotor broadband noise

    NASA Technical Reports Server (NTRS)

    Hayden, R. E.; Aravamudan, K. S.

    1978-01-01

    Prediction techniques which can be or have been applied to subsonic rotors, and methods for designing helicopter rotors for reduced broadband noise generation are summarized. It is shown how detailed physical models of the noise source can be used to identify approaches to noise control.

  14. Calculating Flow Through A Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Kunz, Donald L.; Hodges, Dewey H.

    1991-01-01

    New method for calculating flow of air through and around helicopter rotor incorporated into General Rotorcraft Aeromechanical Stability Program (GRASP) (computer program for aeroelastic analysis). Flow about helicopter rotor represented by axisymmetric flow field in cylindrical region with actuator disk as source of flow.

  15. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  16. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  17. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2002-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  18. Blood Pump Having a Magnetically Suspended Rotor

    NASA Technical Reports Server (NTRS)

    Antaki, James F. (Inventor); Paden, Bradley (Inventor); Burgreen, Gregory (Inventor); Groom, Nelson J. (Inventor)

    2001-01-01

    A blood pump preferably has a magnetically suspended rotor that rotates within a housing. The rotor may rotate about a stator disposed within the housing. Radial magnetic bearings may be defined within the stator and the rotor in order to suspend the rotor. The radial magnetic bearings may be passive magnetic bearings that include permanent magnets disposed within the stator and the rotor or active magnetic bearings. The pump may further include an axial magnetic bearing that may be either a passive or an active magnetic bearing. A motor that drives the rotor may be disposed within the housing in order to more easily dissipate heat generated by the motor. A primary flow path is defined between the rotor and the stator, and a secondary flow path is defined between the stator and the rotor. Preferably, a substantial majority of blood passes through the primary flow path. The secondary flow path is large enough so that it provides adequate flushing of the secondary flow path while being small enough to permit efficient operation of the radial magnet bearings across the secondary flow path.

  19. Computerized Analysis Of Helicopter-Rotor Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1988-01-01

    Analysis of aeroelastic stability of helicopter rotor automated. Symbolic-manipulation program, HESL, written in FORTRAN, used to aid in derivation of government equations of motion for elastic-bladed rotor. Operates both on expressions and matrices. By transferring some burden of algebraic manipulations from human analyst to computer, program reduces tedium analysis and conequent opportunity for errors.

  20. Wave rotor-enhanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Scott, Jones M.; Paxson, Daniel E.

    1995-01-01

    The benefits of wave rotor-topping in small (400 to 600 hp-class) and intermediate (3000 to 4000 hp-class) turboshaft engines, and large (80,000 to 100,000 lb(sub f)-class) high bypass ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor-toppings is shown to significantly enhance the specific fuel consumption and specific power of small and intermediate size turboshaft engines. The specific fuel consumption of the wave rotor-enhanced large turbofan engine can be reduced while operating at significantly reduced turbine inlet temperature. The wave rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies tenable technical challenges.

  1. Pneumatic boot for helicopter rotor deicing

    NASA Technical Reports Server (NTRS)

    Blaha, B. J.; Evanich, P. L.

    1981-01-01

    Pneumatic deicer boots for helicopter rotor blades were tested. The tests were conducted in the 6 by 9 ft icing research tunnel on a stationary section of a UH-IH helicopter main rotor blade. The boots were effective in removing ice and in reducing aerodynamic drag due to ice.

  2. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  3. An unsteady helicopter rotor: Fuselage interaction analysis

    NASA Technical Reports Server (NTRS)

    Lorber, Peter F.; Egolf, T. Alan

    1988-01-01

    A computational method was developed to treat unsteady aerodynamic interactions between a helicopter rotor, wake, and fuselage and between the main and tail rotors. An existing lifting line prescribed wake rotor analysis and a source panel fuselage analysis were coupled and modified to predict unsteady fuselage surface pressures and airloads. A prescribed displacement technique is used to position the rotor wake about the fuselage. Either a rigid blade or an aeroelastic blade analysis may be used to establish rotor operating conditions. Sensitivity studies were performed to determine the influence of the wake fuselage geometry on the computation. Results are presented that describe the induced velocities, pressures, and airloads on the fuselage and on the rotor. The ability to treat arbitrary geometries is demonstrated using a simulated helicopter fuselage. The computational results are compared with fuselage surface pressure measurements at several locations. No experimental data was available to validate the primary product of the analysis: the vibratory airloads on the entire fuselage. A main rotor-tail rotor interaction analysis is also described, along with some hover and forward flight.

  4. Radial-radial single rotor turbine

    SciTech Connect

    Platts, David A.

    2006-05-16

    A rotor for use in turbine applications has a radial compressor/pump having radially disposed spaced apart fins forming passages and a radial turbine having hollow turbine blades interleaved with the fins and through which fluid from the radial compressor/pump flows. The rotor can, in some applications, be used to produce electrical power.

  5. Open Rotor - Analysis of Diagnostic Data

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2011-01-01

    NASA is researching open rotor propulsion as part of its technology research and development plan for addressing the subsonic transport aircraft noise, emission and fuel burn goals. The low-speed wind tunnel test for investigating the aerodynamic and acoustic performance of a benchmark blade set at the approach and takeoff conditions has recently concluded. A high-speed wind tunnel diagnostic test campaign has begun to investigate the performance of this benchmark open rotor blade set at the cruise condition. Databases from both speed regimes will comprise a comprehensive collection of benchmark open rotor data for use in assessing/validating aerodynamic and noise prediction tools (component & system level) as well as providing insights into the physics of open rotors to help guide the development of quieter open rotors.

  6. Substantially parallel flux uncluttered rotor machines

    DOEpatents

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  7. Computational Analysis of Multi-Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Interactional aerodynamics of multi-rotor flows has been studied for a quadcopter representing a generic quad tilt-rotor aircraft in hover. The objective of the present study is to investigate the effects of the separation distances between rotors, and also fuselage and wings on the performance and efficiency of multirotor systems. Three-dimensional unsteady Navier-Stokes equations are solved using a spatially 5th order accurate scheme, dual-time stepping, and the Detached Eddy Simulation turbulence model. The results show that the separation distances as well as the wings have significant effects on the vertical forces of quadroror systems in hover. Understanding interactions in multi-rotor flows would help improve the design of next generation multi-rotor drones.

  8. A CFD study of tilt rotor flowfields

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1989-01-01

    The download on the wing produced by the rotor wake of a tilt rotor vehicle in hover is of major concern because of its severe impact on payload-carrying capability. In a concerted effort to understand the fundamental fluid dynamics that cause this download, and to help find ways to reduce it, computational fluid dynamics (CFD) is employed to study this problem. The thin-layer Navier-Stokes equations are used to describe the flow, and an implicit, finite difference numerical algorithm is the method of solution. The methodology is developed to analyze the tilt rotor flowfield. Included are discussions of computations of an airfoil and wing in freestream flows at -90 degrees, a rotor alone, and wing/rotor interaction in two and three dimensions. Preliminary results demonstrate the feasibility and great potential of the present approach. Recommendations are made for both near-term and far-term improvements to the method.

  9. Vibration control of rotor shaft

    NASA Technical Reports Server (NTRS)

    Nonami, K.

    1985-01-01

    Suppression of flexural forced vibration or the self-excited vibration of a rotating shaft system not by passive elements but by active elements is described. The distinctive feature of this method is not to dissipate the vibration energy but to provide the force cancelling the vibration displacement and the vibration velocity through the bearing housing in rotation. Therefore the bearings of this kind are appropriately named Active Control Bearings. A simple rotor system having one disk at the center of the span on flexible supports is investigated in this paper. The actuators of the electrodynamic transducer are inserted in the sections of the bearing housing. First, applying the optimal regulator of optimal control theory, the flexural vibration control of the rotating shaft and the vibration control of support systems are performed by the optimal state feedback system using these actuators. Next, the quasi-modal control based on a modal analysis is applied to this rotor system. This quasi-modal control system is constructed by means of optimal velocity feedback loops. The differences between optimal control and quasi-modal control are discussed and their merits and demerits are made clear. Finally, the experiments are described concerning only the optimal regulator method.

  10. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  11. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  12. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  13. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  14. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  15. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  16. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  17. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  18. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  19. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  20. 14 CFR 29.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 29... § 29.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  1. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  2. 14 CFR 27.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 27... Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must be able to...

  3. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  4. 14 CFR 25.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 25... § 25.1461 Equipment containing high energy rotors. (a) Equipment containing high energy rotors must meet paragraph (b), (c), or (d) of this section. (b) High energy rotors contained in equipment must...

  5. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following loads...

  6. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following loads...

  7. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Main rotor structure. 27.547 Section 27.547... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in this section. (b) (c) The main rotor structure must be designed to withstand the following loads...

  8. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  9. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  10. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  11. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  12. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  13. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  14. 14 CFR 27.661 - Rotor blade clearance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  15. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  16. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  17. 14 CFR 29.661 - Rotor blade clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  18. A review of research in rotor loads

    NASA Technical Reports Server (NTRS)

    Bousman, William G.; Mantay, Wayne R.

    1988-01-01

    The research accomplished in the area of rotor loads over the last 13 to 14 years is reviewed. The start of the period examined is defined by the 1973 AGARD Milan conference and the 1974 hypothetical rotor comparison. The major emphasis of the review is research performed by the U.S. Army and NASA at their laboratories and/or by the industry under government contract. For the purpose of this review, two main topics are addressed: rotor loads prediction and means of rotor loads reduction. A limited discussion of research in gust loads and maneuver loads is included. In the area of rotor loads predictions, the major problem areas are reviewed including dynamic stall, wake induced flows, blade tip effects, fuselage induced effects, blade structural modeling, hub impedance, and solution methods. It is concluded that the capability to predict rotor loads has not significantly improved in this time frame. Future progress will require more extensive correlation of measurements and predictions to better understand the causes of the problems, and a recognition that differences between theory and measurement have multiple sources, yet must be treated as a whole. There is a need for high-quality data to support future research in rotor loads, but the resulting data base must not be seen as an end in itself. It will be useful only if it is integrated into firm long-range plans for the use of the data.

  19. Flywheel rotor and containment technology development

    SciTech Connect

    Kulkarni, S.V.

    1981-08-11

    The goals of the project are: to develop an economical and practical composite flywheel having an energy density of 88 Wh/kg at failure, an operational energy density of 44 to 55 Wh/kg, and an energy storage capacity of approximately 1 kWh; to determine the suitability of various manufacturing processes for low-cost rotor fabrication; to investigate flywheel and flywheel-systems dynamics; to test and evaluate prototype rotors for use in transportation and stationary applications; and to develop a fail-safe, lightweight, and low-cost flywheel containment. The following tasks have been accomplished: evaluation and selection of 1-kWh, first-generation, advanced flywheel rotor designs for subsequent development towards the DOE-established energy density goal of 88 Wh/kg at burst; completion of an advanced design concept for a flywheel primary containment structure, capable of containing the failure of a 1-kWh flywheel rotor and targeted for vehicular applications; non-destructive inspection and burst testing of approximately twenty (20) prototype rotors, and initiation of cyclic testing; completion of various activities in the areas of rotor manufacturing processes, dynamic analyses and composite materials design data generation; and initiation of an economic feasibility study to establish a rational costing methodology for composite rotors and containment.

  20. Exploratory wind-tunnel investigation of the effect of the main rotor wake on tail rotor noise. [langley anechoic noise facility

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Shidler, P. A.

    1978-01-01

    Approaches to minimizing the noise generated by the interaction of the tail rotor blades with the wake of the main rotor considered include repositioning of the tail rotor with respect to the main rotor, changes in the rotational direction of the tail rotor, and modification of the main rotor tip vortex. A variable geometry model was built which had the capability of varying tail rotor position relative to the main rotor as well as direction of tail rotor rotation. Acoustic data taken from the model in the Langley anechoic noise facility indicates interaction effects due to both main rotor shed vortex and the main rotor turbulence.

  1. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  2. Vacuum coupling of rotating superconducting rotor

    DOEpatents

    Shoykhet, Boris A.; Zhang, Burt Xudong; Driscoll, David Infante

    2003-12-02

    A rotating coupling allows a vacuum chamber in the rotor of a superconducting electric motor to be continually pumped out. The coupling consists of at least two concentric portions, one of which is allowed to rotate and the other of which is stationary. The coupling is located on the non-drive end of the rotor and is connected to a coolant supply and a vacuum pump. The coupling is smaller in diameter than the shaft of the rotor so that the shaft can be increased in diameter without having to increase the size of the vacuum seal.

  3. Helicopter rotor induced velocities theory and experiment

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Hoad, Danny R.; Elliott, Joe W.; Althoff, Susan L.

    1987-01-01

    An investigation has been performed to assess methods used for rotor inflow modeling. A key element of this assessment has been the recent acquisition of high quality experimental measurements of inflow velocities taken in the proximity of a lifting rotor in forward flight. Widely used rotor performance predictive methods are based on blade element strip theory coupled with an inflow model. The inflow prediction models assessed in this paper include the uniform inflow based on momentum, a skewed disk model, and two methods based on a vortex wake structure.

  4. Discrete analog computing with rotor-routers.

    PubMed

    Propp, James

    2010-09-01

    Rotor-routing is a procedure for routing tokens through a network that can implement certain kinds of computation. These computations are inherently asynchronous (the order in which tokens are routed makes no difference) and distributed (information is spread throughout the system). It is also possible to efficiently check that a computation has been carried out correctly in less time than the computation itself required, provided one has a certificate that can itself be computed by the rotor-router network. Rotor-router networks can be viewed as both discrete analogs of continuous linear systems and deterministic analogs of stochastic processes.

  5. Internal Friction And Instabilities Of Rotors

    NASA Technical Reports Server (NTRS)

    Walton, J.; Artiles, A.; Lund, J.; Dill, J.; Zorzi, E.

    1992-01-01

    Report describes study of effects of internal friction on dynamics of rotors prompted by concern over instabilities in rotors of turbomachines. Theoretical and experimental studies described. Theoretical involved development of nonlinear mathematical models of internal friction in three joints found in turbomachinery - axial splines, Curvic(TM) splines, and interference fits between smooth cylindrical surfaces. Experimental included traction tests to determine the coefficients of friction of rotor alloys at various temperatures, bending-mode-vibration tests of shafts equipped with various joints and rotordynamic tests of shafts with axial-spline and interference-fit joints.

  6. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2002-01-14

    Congressional Research Service ˜ The Library of Congress CRS Issue Brief for Congress Received through the CRS Web Order Code IB86103 V-22 Osprey ...00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Congress V-22 Osprey Tilt-Rotor Aircraft SUMMARY The V-22 Osprey is a tilt-rotor aircraft that takes off and lands vertically like a heli- copter and

  7. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2004-04-23

    Order Code RL31384 CRS Report for Congress V-22 Osprey Tilt-Rotor Aircraft Updated April 23, 2004 Christopher Bolkcom Specialist in National Defense...2004 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 V-22 Osprey Tilt-Rotor Aircraft Summary The V-22 Osprey is a

  8. Rotor-Liquid-Fundament System's Oscillation

    NASA Astrophysics Data System (ADS)

    Kydyrbekuly, A.

    The work is devoted to research of oscillation and sustainability of stationary twirl of vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and set on relative frame fundament. The accounting of such factors like oscillation of fundament, liquid oscillation, influence of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, allows to settle an invoice more precisely kinematic and dynamic characteristics of system.

  9. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  10. Multiple piece turbine rotor blade

    DOEpatents

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  11. Predesign study for a modern 4-bladed rotor for the NASA rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Bishop, H. E.; Burkam, J. E.; Heminway, R. C.; Keys, C. N.; Smith, K. E.; Smith, J. H.; Staley, J. A.

    1981-01-01

    Trade-off study results and the rationale for the final selection of an existing modern four-bladed rotor system that can be adapted for installation on the Rotor Systems Research Aircraft (RSRA) are reported. The results of the detailed integration studies, parameter change studies, and instrumentation studies and the recommended plan for development and qualification of the rotor system is also given. Its parameter variants, integration on the RSRA, and support of ground and flight test programs are also discussed.

  12. Full Scale Rotor Aeroacoustic Predictions and the Link to Model Scale Rotor Data

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.; Burley, Casey L.; Conner, David A.

    2004-01-01

    The NASA Aeroacoustic Prediction System (NAPS) is used to establish a link between model-scale and full-scale rotor predictions and is partially validated against measured wind tunnel and flight aeroacoustic data. The prediction approach of NAPS couples a comprehensive rotorcraft analysis with acoustic source noise and propagation codes. The comprehensive analysis selected for this study is CAMRAD-II, which provides the performance/trim/wake solution for a given rotor or flight condition. The post-trim capabilities of CAMRAD-II are used to compute high-resolution sectional airloads for the acoustic tone noise analysis, WOPMOD. The tone noise is propagated to observers on the ground with the propagation code, RNM (Rotor Noise Model). Aeroacoustic predictions are made with NAPS for an isolated rotor and compared to results of the second Harmonic Aeroacoustic Rotor Test (HART-II) program, which tested a 40% dynamically and Mach-scaled BO-105 main rotor at the DNW. The NAPS is validated with comparisons for three rotor conditions: a baseline condition and two Higher Harmonic Control (HHC) conditions. To establish a link between model and full-scale rotor predictions, a full-scale BO-105 main rotor input deck for NAPS is created from the 40% scale rotor input deck. The full-scale isolated rotor predictions are then compared to the model predictions. The comparisons include aerodynamic loading, acoustic levels, and acoustic pressure time histories for each of the three conditions. With this link established, full-scale predictions are made for a range of descent flight conditions and compared with measured trends from the recent Rotorcraft Operational Noise Abatement Procedures (RONAP) flight test conducted by DLR and ONERA. Additionally, the effectiveness of two HHC conditions from the HART-II program is demonstrated for the full-scale rotor in flight.

  13. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  14. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  15. HARP model rotor test at the DNW. [Hughes Advanced Rotor Program

    NASA Technical Reports Server (NTRS)

    Dawson, Seth; Jordan, David; Smith, Charles; Ekins, James; Silverthorn, Lou

    1989-01-01

    Data from a test of a dynamically scaled model of the Hughes Advanced Rotor Program (HARP) bearingless model main rotor and 369K tail rotor are reported. The history of the HARP program and its goals are reviewed, and the main and tail rotor models are described. The test facilities and instrumentation are described, and wind tunnel test data are presented on hover, forward flight performance, and blade-vortex interaction. Performance data, acoustic data, and dynamic data from near field/far field and shear layer studies are presented.

  16. Characteristics of hingeless rotors with hub moment feedback controls including experimental rotor frequency response, Volume 1

    NASA Technical Reports Server (NTRS)

    Kuczynski, W. A.; Sissingh, G. J.

    1972-01-01

    Wind tunnel tests to determine the dynamic characteristics of hingeless rotors with hub moment feedback controls and to acquire experimental hingeless rotor transfer functions are discussed. Rotor transfer functions were calculated from data acquired during open loop frequency response tests. The transfer functions are linear and present the rotor longitudinal and lateral frequency responses to collective pitch, longitudinal cyclic pitch, and lateral cyclic pitch. The theoretical analysis was based on the rigid blade flapping model coupled with appropriate control system and cyclic pitch actuator equations of motion.

  17. Wind turbine rotor hub and teeter joint

    DOEpatents

    Coleman, Clint; Kurth, William T.; Jankowski, Joseph

    1994-10-11

    A rotor hub is provided for coupling a wind turbine rotor blade and a shaft. The hub has a yoke with a body which is connected to the shaft, and extension portions which are connected to teeter bearing blocks, each of which has an aperture. The blocks are connected to a saddle which envelops the rotor blade by one or two shafts which pass through the apertures in the bearing blocks. The saddle and blade are separated by a rubber interface which provides for distribution of stress over a larger portion of the blade. Two teeter control mechanisms, which may include hydraulic pistons and springs, are connected to the rotor blade and to the yoke at extension portions. These control mechanisms provide end-of-stroke damping, braking, and stiffness based on the teeter angle and speed of the blade.

  18. Interlayer toughening of fiber composite flywheel rotors

    DOEpatents

    Groves, S.E.; Deteresa, S.J.

    1998-07-14

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  19. Interlayer toughening of fiber composite flywheel rotors

    DOEpatents

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  20. Potential acoustic benefits of circulation control rotors

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Cheeseman, I. C.

    1978-01-01

    The fundamental aeroacoustic mechanisms responsible for noise generation on a rotating blade are theoretically examined. Their contribution to the overall rotor sound pressure level is predicted. Results from a theory for airfoil trailing edge noise are presented. Modifications and extensions to other source theories are described where it is necessary to account for unique aspects of circulation control (CC) aerodynamics. The circulation control rotor (CCR), as embodied on an X-wing vertical takeoff and landing (VTOL) aircraft, is used as an example for computational purposes, although many of the theoretical results presented are generally applicable to other CC applications (such as low speed rotors, propellers, compressors, and fixed wing aircraft). Using the analytical models, it is shown that the utilization CC aerodynamics theoretically makes possible unprecedented advances in rotor noise reduction. For the X-wing VTOL these reductions appear to be feasible without incurring significant attendant performance and weight penalties.

  1. Using molecular rotors to probe gelation.

    PubMed

    Raeburn, Jaclyn; Chen, Lin; Awhida, Salmah; Deller, Robert C; Vatish, Manu; Gibson, Matthew I; Adams, Dave J

    2015-05-14

    A series of fluorescent probes, including a number of molecular rotors, have been used to follow the self-assembly of dipeptide-based low molecular weight gelators. We show that these probes can be used to gain an insight into the assembly process. Thioflavin T, a commonly used stain for β-sheets, appears to act as a molecular rotor in these gelling systems, with the fluorescence data closely matching that of other rotors. The molecular rotor was incorporated into an assay system with glucose oxidase to enable glucose-concentration specific gelation and hence generating a fluorescent output. Applying this system to urine from patients with various levels of glycosuria (a symptom of diabetes), it was found to provide excellent correlation with different clinical assessments of diabetes. This demonstrates a new concept in gelation-linked biosensing for a real clinical problem.

  2. Transonic aeroelasticity analysis for rotor blades

    NASA Technical Reports Server (NTRS)

    Chow, Chuen-Yen; Chang, I-Chung; Gea, Lie-Mine

    1989-01-01

    A numerical method is presented for calculating the unsteady transonic rotor flow with aeroelasticity effects. The blade structural dynamic equations based on beam theory were formulated by FEM and were solved in the time domain, instead of the frequency domain. For different combinations of precone, droop, and pitch, the correlations are very good in the first three flapping modes and the first twisting mode. However, the predicted frequencies are too high for the first lagging mode at high rotational speeds. This new structure code has been coupled into a transonic rotor flow code, TFAR2, to demonstrate the capability of treating elastic blades in transonic rotor flow calculations. The flow fields for a model-scale rotor in both hover and forward flight are calculated. Results show that the blade elasticity significantly affects the flow characteristics in forward flight.

  3. Transonic Aeroelasticity Analysis For Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen

    1991-01-01

    Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.

  4. Transonic Aeroelasticity Analysis For Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung; Gea, Lie-Mine; Chow, Chuen-Yen

    1991-01-01

    Numerical-simulation method for aeroelasticity analysis of helicopter rotor blade combines established techniques for analysis of aerodynamics and vibrations of blade. Application of method clearly shows elasticity of blade modifies flow and, consequently, aerodynamic loads on blade.

  5. Direct integration of transient rotor dynamics

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1980-01-01

    An implicit method was developed for integrating the equations of motion for a lumped mass model of a rotor dynamics system. As an aside, a closed form solution to the short bearing theory was also developed for a damper with arbitrary motion. The major conclusions are that the method is numerically stable and that the computation time is proportional to the number of elements in the rotor dynamics model rather than to the cube of the number. This computer code allowed the simulation of a complex rotor bearing system experiencing nonlinear transient motion and displayed the vast amount of results in an easily understood motion picture format - a 10 minute, 16 millimeter, color, sound motion picture supplement. An example problem with 19 mass elements in the rotor dynamics model took 0.7 second of central processing unit time per time step on an IBM 360-67 computer in a time sharing mode.

  6. Transonic Axial Splittered Rotor Tandem Stator Stage

    DTIC Science & Technology

    2016-12-01

    position relative to the design configuration. Numerical simulations were conducted of both hot and cold rotor shapes and compared. This study advanced...that of the cold shape results; however, the hot shape achieved a greater mass flow range. The procedure developed is easily implemented, utilizing a...negative 10 percent clocking position relative to the design configuration. Numerical simulations were conducted of both hot and cold rotor shapes and

  7. Spin stabilized magnetic levitation of horizontal rotors.

    SciTech Connect

    Romero, Louis Anthony

    2004-10-01

    In this paper we present an analysis of a new configuration for achieving spin stabilized magnetic levitation. In the classical configuration, the rotor spins about a vertical axis; and the spin stabilizes the lateral instability of the top in the magnetic field. In this new configuration the rotor spins about a horizontal axis; and the spin stabilizes the axial instability of the top in the magnetic field.

  8. Bistable devices for morphing rotor blades

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence

    This dissertation presents two bistable concepts for morphing rotor blades. These concepts are simple and are composed of bistable devices that act as coupling structures between an actuator and the rotor blade. Bistable or "snap-through" mechanisms have two stable equilibrium states and are a novel way to achieve large actuation output stroke at relatively modest effort for gross rotor morphing applications. This is because in addition to the large actuation stroke associated with the snap-through (relative to conventional actuator/ amplification systems) coming at relatively low actuation effort, no locking is required in either equilibrium state (since they are both stable). The first concept that is presented in this dissertation is a that is composed of a bistable twisting device that twists the tip of helicopter rotor blades. This work examines the performance of the presented bistable twisting device for rotor morphing, specifically, blade tip twist under an aerodynamic lift load. The device is analyzed using finite element analysis to predict its load carrying capability and bistable behavior. The second concept that is presented is a concept that is composed of a bistable arch for rotor blade chord extension. The bistable arch is coupled to a thin flat plate that is supported by rollers. Increasing the chord of the rotor blade is expected to generate more lift-load and improve helicopter performance. In this work, a methodology is presented to design the bistable arches for chord morphing using the finite element analysis and pseudo-rigid body model method. This work also examines the effect of different arches, arch hinge size and shape, inertial loads and rigidity on arch performance. Finally, this work shows results from an experiment that was conducted to validate the developed numerical model and demonstrates how the arch can be actuated using a Nitinol Shape Memory Alloy (SMA) wire to extend the chord of a helicopter rotor blade.

  9. Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.

  10. Coupled rotor/airframe vibration prediction methods

    NASA Technical Reports Server (NTRS)

    Staley, J. A.; Sciarra, J. J.

    1974-01-01

    The problems of airframe structural dynamic representation and effects of coupled rotor/airframe vibration are discussed. Several finite element computer programs (including NASTRAN) and methods for idealization and computation of airframe natural modes and frequencies and forced response are reviewed. Methods for obtaining a simultaneous rotor and fuselage vibratory response, determining effectiveness of vibration control devices, and energy methods for structural optimization are also discussed. Application of these methods is shown for the vibration prediction of the model 347 helicopter.

  11. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  12. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  13. Prediction of the Aero-Acoustic Performance of Open Rotors

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.; Envia, Edmane

    2014-01-01

    The rising cost of jet fuel has renewed interest in contrarotating open rotor propulsion systems. Contemporary design methods offer the potential to maintain the inherently high aerodynamic efficiency of open rotors while greatly reducing their noise output, something that was not feasible in the 1980's designs. The primary source mechanisms of open rotor noise generation are thought to be the front rotor wake and tip vortex interacting with the aft rotor. In this paper, advanced measurement techniques and high-fidelity prediction tools are used to gain insight into the relative importance of the contributions to the open rotor noise signature of the front rotor wake and rotor tip vortex. The measurements include three-dimensional particle image velocimetry of the intra-rotor flowfield and the acoustic field of a model-scale open rotor. The predictions provide the unsteady flowfield and the associated acoustic field. The results suggest that while the front rotor tip vortex can have a significant influence on the blade passing tone noise produced by the aft rotor, the front rotor wake plays the decisive role in the generation of the interaction noise produced as a result of the unsteady aerodynamic interaction of the two rotors. At operating conditions typical of takeoff and landing operations, the interaction noise level is easily on par with that generated by the individual rotors, and in some cases is even higher. This suggests that a comprehensive approach to reducing open rotor noise should include techniques for mitigating the wake of the front rotor as well as eliminating the interaction of the front rotor tip vortex with the aft rotor blade tip.

  14. V/STOL tilt rotor aircraft study: Wind tunnel tests of a full scale hingeless prop/rotor designed for the Boeing Model 222 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1973-01-01

    The rotor system designed for the Boeing Model 222 tilt rotor aircraft is a soft-in-plane hingeless rotor design, 26 feet in diameter. This rotor has completed two test programs in the NASA Ames 40' X 80' wind tunnel. The first test was a windmilling rotor test on two dynamic wing test stands. The rotor was tested up to an advance ratio equivalence of 400 knots. The second test used the NASA powered propeller test rig and data were obtained in hover, transition and low speed cruise flight. Test data were obtained in the areas of wing-rotor dynamics, rotor loads, stability and control, feedback controls, and performance to meet the test objectives. These data are presented.

  15. Labyrinth seal forces on a whirling rotor

    NASA Technical Reports Server (NTRS)

    Wright, D. V.

    1983-01-01

    An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of an active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant. Comparisons made between the measured seal forces and theoretical results show that present theory is inadequate.

  16. Induced Power of the Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Ormiston, Robert A.

    2004-01-01

    A simplified rotor model was used to explore fundamental behavior of lifting rotor induced power at moderate and high advance ratios. Several rotor inflow theories, including dynamic inflow theory and prescribed-wake vortex theory, together with idealized notional airfoil stall models were employed. A number of unusual results were encountered at high advance ratios including trim control reversal and multiple trim solutions. Significant increases in rotor induced power (torque) above the ideal minimum were observed for moderately high advance ratio. Very high induced power was observed near and above unity advance ratio. The results were sensitive to the stall characteristics of the airfoil models used. An equivalent wing analysis was developed to determine induced power from Prandtl lifting line theory and help interpret the rotor induced power behavior in terms of the spanwise airload distribution. The equivalent wing approach was successful in capturing the principal variations of induced power for different configurations and operating conditions. The effects blade root cutout were found to have a significant effect on rotor trim and induced power at high advance ratios.

  17. Studies of a flat wake rotor theory

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Mckillip, R. M., Jr.

    1992-01-01

    A computer code was developed at Princeton University to calculate the velocity components in the flow field near a lifting rotor. The induced velocity components in the rotor flow field predicted by this theory are compared with experiment. It appears that on balance, this relatively simple theory gives a reasonable prediction of the average induced velocities in a rotor flow and is quite suitable for such applications as estimating the influence of the rotor wake on the tail surfaces of rotorcraft. The theory predicts that significant induced velocity components are present in all three flow directions in the wake at a lifting rotor. It should be noted , however, that there are a few experimental measurements of the longitudinal and lateral induced velocity components in the rotor wake. This theory, known as the flat wake theory, is essentially the rotary wing analog of Prandtl's lifting line theory. The theory is described in this report. Calculations based on the theory are presented and compared with a modern free wake theory.

  18. Labyrinth seal forces on a whirling rotor

    NASA Technical Reports Server (NTRS)

    Wright, D. V.

    1983-01-01

    An experimental investigation of air labyrinth seal forces on a subsynchronously whirling model rotor is described and test results are given for diverging, converging, and straight two-strip seals. The effects of pressure drop, back pressure, whirl direction, and whirl frequency are shown. These results provide basic experimental data needed in the development of design methods for predicting and preventing self-excited whirl of turbine rotors and other machines having labyrinth seals. The total dynamic seal forces on the whirling model rotor are measured accurately by means of a novel active damping and stiffness system that is adjusted to obtain neutral whirl stability of the model rotor system. In addition, the whirling pressure pattern in the seal annulus is measured for a few test conditions and the corresponding pressure forces on the rotor are compared with the total measured forces. This comparison shows that either radial and axial pressure gradients in the seal annulus or drag forces on the rotor are significant.

  19. Forces exciting generation roll at rotor vibrations when rotor-to-stator rubbing

    NASA Astrophysics Data System (ADS)

    Shatokhin, V. F.

    2017-07-01

    The consequences of emergencies of turbosets for different application are revealed, the cause of forced shutdown and even catastrophic destructions of which many researchers consider the rotor-to-stator rubbing and development—to a greater or lesser extent—of the phenomena of the rotor generation roll over the stator. The synchronous or asynchronous generation roll is determined by the rotor precession direction, coinciding or not coinciding with the self-rotation direction of the rotor. Asynchronous generation roll is the most dangerous form of the rotor-stator contact interaction with the vibrations with rubbing. The basic equations of rotor vibrations are presented: symmetric rotor fixed on two supports and that fixed on several supports after abrupt imbalance with and without rotor coming in contact with a flexible stator. The vibration process is considered as the rotor motion in a backlash with subsequent contact with the stator, loss of contact, or development of generation roll. The latter essentially depends on the properties of the "rotor-support-stator" dynamic system. The stator stiffness characteristic is specified in "force-deformation" coordinates that make it possible to take into account damping in the supports and power loss in the stator. The diagram of elastic-damping device was presented, which makes it possible to ensure a certain level of power loss at the stator displacements. The exciting forces promoting development of self-exciting vibrations of the rotor in the form of asynchronous generation roll were compared with the exciting forces of oil film of sliding bearings and forces of aerodynamic excitation in the turbine flow path and sealings. For the rotor systems of high and medium pressure of a 300 MW capacity turboset, the simulation results of the process of development of asynchronous generation roll at the vibrations with rubbing were revealed, and the basic characteristics of development of generation roll in a span between

  20. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    NASA Astrophysics Data System (ADS)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  1. Analysis of rotor vibratory loads using higher harmonic pitch control

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Bliss, Donald B.; Boschitsch, Alexander H.; Wachspress, Daniel A.

    1992-01-01

    Experimental studies of isolated rotors in forward flight have indicated that higher harmonic pitch control can reduce rotor noise. These tests also show that such pitch inputs can generate substantial vibratory loads. The modification is summarized of the RotorCRAFT (Computation of Rotor Aerodynamics in Forward flighT) analysis of isolated rotors to study the vibratory loading generated by high frequency pitch inputs. The original RotorCRAFT code was developed for use in the computation of such loading, and uses a highly refined rotor wake model to facilitate this task. The extended version of RotorCRAFT incorporates a variety of new features including: arbitrary periodic root pitch control; computation of blade stresses and hub loads; improved modeling of near wake unsteady effects; and preliminary implementation of a coupled prediction of rotor airloads and noise. Correlation studies are carried out with existing blade stress and vibratory hub load data to assess the performance of the extended code.

  2. Epicardial rotors in panoramic optical maps of fibrillating swine ventricles.

    PubMed

    Kay, Matthew W; Rogers, Jack M

    2006-01-01

    It has been proposed that VF waves emanate from stable periodic sources (often called "mother rotors"). Our objective was to determine if stable rotors are consistently present on the epicardial surface of hearts comparable in size to human hearts. Using new optical mapping technology, we imaged VF from nearly the entire ventricular surface of 6 isolated swine hearts. Using newly developed pattern analysis algorithms, we identified and tracked VF wavefronts and phase singularities (PS). We introduce the notion of a compound rotor in which the rotor's central PS can change and describe an algorithm for automatically identifying such patterns. This prevents rotor lifetimes from being inappropriately abbreviated by wavefront fragmentation and collision events near the PS. We found that stable epicardial rotors were not consistently present during VF: only 1 of 17 VF episodes contained a compound rotor that lasted for the entire mapped interval of 4s. However, shorter-lived rotors were common; 12.2+/-3.3 compound rotors with lifetime>200 ms were visible on the epicardium at any given instant. We conclude that epicardial mother rotors do not drive VF in this experimental model; if mother rotors do exist, they are intramural or septal. This paucity of persistent rotors suggests that individual rotors will eventually terminate by themselves and therefore the continual formation of new rotors is critical for VF maintenance.

  3. The Effect of Rotor Tip Markings on Judgements of Rotor Sweep Extent

    DTIC Science & Technology

    2010-12-01

    displays, and to the experimental study of visual factors affecting pilot performance...research described in this report was to examine whether rotor tip markings would have any effect on the ability of helicopter pilots to judge the...helicopter rotor tips more visible to the pilot . The second aim was to determine whether increased visibility improves the judgement of the distance of

  4. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  5. Important Scaling Parameters for Testing Model-Scale Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Singleton, Jeffrey D.; Yeager, William T., Jr.

    1998-01-01

    An investigation into the effects of aerodynamic and aeroelastic scaling parameters on model scale helicopter rotors has been conducted in the NASA Langley Transonic Dynamics Tunnel. The effect of varying Reynolds number, blade Lock number, and structural elasticity on rotor performance has been studied and the performance results are discussed herein for two different rotor blade sets at two rotor advance ratios. One set of rotor blades were rigid and the other set of blades were dynamically scaled to be representative of a main rotor design for a utility class helicopter. The investigation was con-densities permits the acquisition of data for several Reynolds and Lock number combinations.

  6. Rotor blade structure and mounting for vertical axis wind machines

    SciTech Connect

    Lechner, W. L.

    1981-02-03

    A lightweight simplified economical and efficient sail or rotor blade for a vertical axis wind machine and simplified self-acting restraining means for the blade during rotor operation are disclosed. The rotor structure is characterized by ease of assembly and the absence of need for adjustment and frequent maintenance. Individual rotor blades are attached to vertical axis whips extending above and below horizontal rotor arms. The rotor is self-starting and turns in one direction only in response to wind coming from any direction on the compass.

  7. Lifting surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Tai, H.; Runyan, H. L.

    1985-01-01

    A lifting surface theory was developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the vortex lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a single rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. In addition, the lift on a rotor which is vibrating in a pitching mode at 4/rev is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  8. The response of turbine engine rotors to interference rubs

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.

    1980-01-01

    A method was developed for the direct integration of a rotor dynamics system experiencing a blade loss induced rotor rub. Both blade loss and rotor rub were simulated on a rotor typical of a small gas turbine. A small change in the coefficient of friction (from 0.1 to 0.2) caused the rotor to change from forward to backward whirl and to theoretically destroy itself in a few rotations. This method provides an analytical capability to study the susceptibility of rotors to rub induced backward whirl problems.

  9. Lifting surface theory for a helicopter rotor in forward flight

    NASA Technical Reports Server (NTRS)

    Tai, H.; Runyan, H. L.

    1984-01-01

    A lifting surface theory was developed for a helicopter rotor in forward flight for compressible and incompressible flow. The method utilizes the concept of the linearized acceleration potential and makes use of the vortex lattice procedure. Calculations demonstrating the application of the method are given in terms of the lift distribution on a single rotor, a two-bladed rotor, and a rotor with swept-forward and swept-back tips. In addition, the lift on a rotor which is vibrating in a pitching mode at 4/rev is given. Compressibility effects and interference effects for a two-bladed rotor are discussed.

  10. Overview of the Novel Intelligent JAXA Active Rotor Program

    NASA Technical Reports Server (NTRS)

    Saito, Shigeru; Kobiki, Noboru; Tanabe, Yasutada; Johnson, Wayne; Yamauchi, Gloria K.; Young, Larry A.

    2010-01-01

    The Novel Intelligent JAXA Active Rotor (NINJA Rotor) program is a cooperative effort between JAXA and NASA, involving a test of a JAXA pressure-instrumented, active-flap rotor in the 40- by 80-Foot Wind Tunnel at Ames Research Center. The objectives of the program are to obtain an experimental database of a rotor with active flaps and blade pressure instrumentation, and to use that data to develop analyses to predict the aerodynamic and aeroacoustic performance of rotors with active flaps. An overview of the program is presented, including a description of the rotor and preliminary pretest calculations.

  11. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  12. Effects of aerodynamic interaction between main and tail rotors on helicopter hover performance and noise

    NASA Technical Reports Server (NTRS)

    Menger, R. P.; Wood, T. L.; Brieger, J. T.

    1983-01-01

    A model test was conducted to determine the effects of aerodynamic interaction between main rotor, tail rotor, and vertical fin on helicopter performance and noise in hover out of ground effect. The experimental data were obtained from hover tests performed with a .151 scale Model 222 main rotor, tail rotor and vertical fin. Of primary interest was the effect of location of the tail rotor with respect to the main rotor. Penalties on main rotor power due to interaction with the tail rotor ranged up to 3% depending upon tail rotor location and orientation. Penalties on tail rotor power due to fin blockage alone ranged up to 10% for pusher tail rotors and up to 50% for tractor tail rotors. The main rotor wake had only a second order effect on these tail rotor/fin interactions. Design charts are presented showing the penalties on main rotor power as a function of the relative location of the tail rotor.

  13. Rotor burst protection program: Statistics on aircraft gas turbine engine rotor failures that occurred in US commercial aviation during 1975

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Mangano, G. J.

    1977-01-01

    Statistics on gas turbine rotor failures that have occurred in U.S. commercial aviation during 1975 are presented. The compiled data were analyzed to establish: (1) The incidence of rotor failures and the number of contained and uncontained rotor bursts; (2) The distribution of rotor bursts with respect to engine rotor component; i.e., fan, compressor or turbine; (3) The type of rotor fragment (disk, rim or blade) typically generated at burst; (4) The cause of failure; (5) The type of engines involved; and (6) The flight condition at the time of failure.

  14. A rotor optimization using regression analysis

    NASA Technical Reports Server (NTRS)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  15. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  16. Performance investigation of the S-Rotors

    NASA Astrophysics Data System (ADS)

    Bhayo, B. A.; Al-Kayiem, H. H.; Yahaya, N. Z.

    2015-12-01

    This paper presents and discusses results from an experimental investigation of three models of wind S-rotors. Models 1 is modified from conventional Savonius rotor with a single stage and zero offsets zero overlaps; model 2 is three blade single stage wind rotor; and model 3 is double stage conventional Savonius rotor. The three models were designed, fabricated and characterized in terms of their coefficient of performance and dynamic torque coefficient. A special open wind simulator was designed for the test. The optimum parameters for the models were based on previous studies. The results showed that the model 1, model 2 and model 3 has the maximum power coefficient of 0.26, 0.17, and 0.21 at the correspondence tip speed ratio (TSR) of 0.42, 0.39 and 0.46, respectively. Model 1 is further optimized in terms of the aspect ratio resulting in improved power coefficient by 24%. The maximum dynamic torque coefficient of model 1, model 2 and model 3 was found as 0.81, 0.56 and 0.67 at the correspondence minimum TSR of 0.28, 0.21 and 0.17, respectively. It was noted that the all three models have high torque coefficient because the models were tested at higher applied torque on the rotors.

  17. Boost pulverizer performance with new exhauster rotor

    SciTech Connect

    Lauber, J.A.

    1994-10-01

    Georgia Power Co.'s Jack McDonough station, near Atlanta, Ga, consists of two tangentially fired boilers rated 1.734-million lb/hr, each paired with a 265-MW turbine/generator. The plant's primary fuel is Eastern Bituminous coal, which is ground by five pulverizers. In April 1993, it first began evaluating a new high-efficiency rotor for the pulverizer exhausters, supplied by ABB C-E Services Inc. Windsor, Conn. McDonough was designed to burn coal with a Hardgrove Grindability Index (HGI) of 55 and is typically supplied fuel with an HGI of 45. Thus, the units must operate with all five pulverizers to obtain full load, although each was intended to generate full load using four pulverizers. Now that the plant is burning low-sulfur coal to comply with the clean Air Act Amendments of 1990, the increased hardness limits McDonough's full-load capabilities and will dramatically increase pulverizer maintenance. Management was left with two options: a complete pulverizer replacement or further modifications. (The mills had already been upgraded several years ago.) The introduction of high-efficiency rotors for the exhauster fans made the second option more attractive. Unfortunately, the vendor had no significant operating experience with the rotor design, still in the developmental stage. Therefore, the plant decided to install a test rotor at McDonough Unit 2. This article is a review of the rotor's basic theory of operation, test results, and wear characteristics experienced at the unit.

  18. A rotor optimization using regression analysis

    NASA Technical Reports Server (NTRS)

    Giansante, N.

    1984-01-01

    The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.

  19. Rotor instability due to loose rotating part

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Loosening of a rotating part from its fixed position on the shaft or a part of the stator which comes loose and begins to turn with the rotor very frequently represents machinery malfunction. The loose part becomes involved in rotative motion mostly due to dry or fluid friction, and thus its motion is very erratic. The loose part can also move axially along the shaft. Detachment of the rotating part causes changes in the rotor balance state. Most often this results in higher unbalance. During steady-state operation the effect of a loose rotating part can manifest itself through heat vibration. It can be diagnosed by observing periodic changes of amplitude and phase of the synchronous response. During start-up (or shutdown) a loose rotating part carrying some amount of unbalance may manifest its dynamic action in the form of subsynchronous vibrations, very similar to those of other instabilities. The objective of this demonstration is to observe the effect of a loose rotating part (fixed, however, in the axial direction) under both steady-state (rotor constant speed) and transient (rotor start-up or shutdown) operation. The dynamic response depends very much on the amount of damping in the system: lubrication of the loose part/shaft surfaces and addition/elimination of aerodynamic drag blades, mounted on the loose disk, significantly change the rotor response.

  20. NASA Now: Engineering Design: Tilt Rotors, Aircraft of the Future

    NASA Image and Video Library

    Meet Carl Russell, a research aerospace engineer who is working on developing new innovations for air travel. Russell discusses how tilt rotors work, including a demonstration on how rotors use Ber...

  1. Interaction between rotors of a counter rotating propeller

    NASA Technical Reports Server (NTRS)

    Chung, Jin-Deog; Hough, Joseph; Nagel, Robert T.

    1990-01-01

    Thermal anemometer measurements were obtained from a stationary hot film probe mounted between the forward and aft rotors of a model CRP. Data were obtained at several locations between rotors. To establish the rotor-rotor interaction flow mechanism, a method of conditional sampling has been developed which effectively fixes the forward rotor position in time or space and permits averaging the mean wake at any fixed rotor angular location. By 'fixing' the position of the forward blades, one can track the disturbance of the forward rotor as the rear rotor moves by. The decay and spreading of the forward blade wakes and the upstream propagation of the rear blade disturbance are shown along with the interaction of the flow disturbances from the two sets of blades.

  2. Tip Vortex and Wake Characteristics of a Counterrotating Open Rotor

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.; Wernet, Mark P.

    2012-01-01

    One of the primary noise sources for Open Rotor systems is the interaction of the forward rotor tip vortex and blade wake with the aft rotor. NASA has collaborated with General Electric on the testing of a new generation of low noise, counterrotating Open Rotor systems. Three-dimensional particle image velocimetry measurements were acquired in the intra-rotor gap of the Historical Baseline blade set. The velocity measurements are of sufficient resolution to characterize the tip vortex size and trajectory as well as the rotor wake decay and turbulence character. The tip clearance vortex trajectory is compared to results from previously developed models. Forward rotor wake velocity profiles are shown. Results are presented in a form as to assist numerical modeling of Open Rotor system aerodynamics and acoustics.

  3. Measurements of atmospheric turbulence effects on tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Hagen, Martin J.; Yamauchi, Gloria K.; Signor, David B.; Mosher, Marianne

    1994-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of atmospheric turbulence ingestion on rotor noise are quantified. In contradiction to current theories, increasing rotor inflow and rotor thrust were found to increase turbulence ingestion noise. This is the final report of Task 13A--Helicopter Tail Rotor Noise, of the NASA/United Kingdom Defense Research Agency cooperative Aeronautics Research Program.

  4. Laser balancing demonstration on a high-speed flexible rotor

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.; Rio, R. A.; Fleming, D. P.

    1979-01-01

    This paper describes a flexible rotor system used for two-plane laser balancing and an experimental demonstration of the laser material removal method for balancing. A laboratory test rotor was modified to accept balancing corrections using a laser metal removal method while the rotor is at operating speed. The laser setup hardware required to balance the rotor using two correction planes is described. The test rig optical configuration and a neodymium glass laser were assembled and calibrated for material removal rates. Rotor amplitudes before and after balancing, trial and correction weights, rotor speed during operation of laser, and balancing time were documented. The rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  5. Laser balancing demonstration on a high-speed flexible rotor

    NASA Technical Reports Server (NTRS)

    Demuth, R. S.; Rio, R. A.; Fleming, D. P.

    1979-01-01

    This paper describes a flexible rotor system used for two-plane laser balancing and an experimental demonstration of the laser material removal method for balancing. A laboratory test rotor was modified to accept balancing corrections using a laser metal removal method while the rotor is at operating speed. The laser setup hardware required to balance the rotor using two correction planes is described. The test rig optical configuration and a neodymium glass laser were assembled and calibrated for material removal rates. Rotor amplitudes before and after balancing, trial and correction weights, rotor speed during operation of laser, and balancing time were documented. The rotor was balanced through the first bending critical speed using the laser material removal procedure to apply trial weights and correction weights without stopping the rotor.

  6. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  7. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  8. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1994-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.

  9. Helicopter Rotor Blade With Free Tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry; Cawthorne, Matthew; Keys, Charles

    1992-01-01

    Free-tip rotor blades improve fuel efficiency and performance characteristics of helicopters. Outermost portion of blade pivots independently with respect to inboard portion about pitch axis parallel to blade axis, located forward of aerodynamic center. Centrifugal force acts on tension/torsion strap and biases tip nose-up. Airstream turns tip nose-down, other torques cause tip to "weathervane" to intermediate angular position resulting in net lift. Reduces fluctuations in lift, with two effects: flapwise vibratory loads on blade and vibratory loads on pitch-control mechanism reduced; negative lift produced by advancing fixed tip eliminated, reducing power required to achieve same overall lift. Applies to tilt rotors and tail rotors as well.

  10. Helicopter Rotor Blade With Free Tip

    NASA Technical Reports Server (NTRS)

    Stroub, Robert H.; Young, Larry; Cawthorne, Matthew; Keys, Charles

    1992-01-01

    Free-tip rotor blades improve fuel efficiency and performance characteristics of helicopters. Outermost portion of blade pivots independently with respect to inboard portion about pitch axis parallel to blade axis, located forward of aerodynamic center. Centrifugal force acts on tension/torsion strap and biases tip nose-up. Airstream turns tip nose-down, other torques cause tip to "weathervane" to intermediate angular position resulting in net lift. Reduces fluctuations in lift, with two effects: flapwise vibratory loads on blade and vibratory loads on pitch-control mechanism reduced; negative lift produced by advancing fixed tip eliminated, reducing power required to achieve same overall lift. Applies to tilt rotors and tail rotors as well.

  11. Housing flexibility effects on rotor stability

    NASA Technical Reports Server (NTRS)

    Davis, L. B.; Wolfe, E. A.; Beatty, R. F.

    1985-01-01

    Preliminary rotordynamic evaluations are performed with a housing stiffness assumption that is typically determined only after the hardware is built. In addressing rotor stability, a rigid housing assumption was shown to predict an instability at a lower spin speed than a comparable flexible housing analysis. This rigid housing assumption therefore provides a conservative estimate of the stability threshold speed. A flexible housing appears to act as an energy absorber and dissipated some of the destabilizing force. The fact that a flexible housing is usually asymmetric and considerably heavier than the rotor was related to this apparent increase in rotor stability. Rigid housing analysis is proposed as a valuable screening criteria and may save time and money in construction of elaborate housing finite element models for linear stability analyses.

  12. Active-Twist Rotor Control Applications for UAVs

    NASA Technical Reports Server (NTRS)

    Wilbur, Matthew L.; Wilkie, W. Keats

    2004-01-01

    The current state-of-the-art in active-twist rotor control is discussed using representative examples from analytical and experimental studies, and the application to rotary-wing UAVs is considered. Topics include vibration and noise reduction, rotor performance improvement, active blade tracking, stability augmentation, and rotor blade de-icing. A review of the current status of piezoelectric fiber composite actuator technology, the class of piezoelectric actuators implemented in active-twist rotor systems, is included.

  13. On aerodynamic design of the Savonius windmill rotor

    SciTech Connect

    Mojola, O.O.

    1982-08-01

    This paper examines under field conditions the performance characteristics of the Savonius windmill rotor. Test data were collected on the speed, torque and power of the rotor at a large number of wind speeds for each of seven values of the rotor overlap ratio. Field testing procedures are critically appraised and a unified approach is suggested. The performance data of the Savonius rotor are also fully discussed and design criteria established.

  14. Backward whirl in a simple rotor supported on hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Subbiah, R.; Rhat, R. B.; Sankar, T. S.; Rao, J. S.

    1985-01-01

    The asymmetric nature of the fluid film stiffness and damping properties in rotors supported on fluid film bearings causes a forward or a backward whirl depending on the bearing parameters and the speed of the rotor. A rotor was designed to exhibit backward synchronous whirl. The rotor-bearing system exhibited split criticals, and a backward whirl was observed between the split criticals. The orbital diagrams show the whirl pattern.

  15. A Study of Coaxial Rotor Performance and Flow Field Characteristics

    DTIC Science & Technology

    2016-01-22

    A Study of Coaxial Rotor Performance and Flow Field Characteristics Natasha L. Barbely Aerospace Engineer NASA Ames Research Center Moffett Field...The pressure field generated by the two airfoils aided our interpretation of the more complex coaxial rotor system flow field. The pressure fields...velocity (ft/sec) Z vertical distance between rotors (ft) αS pitch angle (deg), negative pitch down κint coaxial rotor induced power interference

  16. Finite Element Stability Analysis for Coupled Rotor and Support Systems

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Yin, S. K.

    1977-01-01

    The effects of fuselage motions on stability and random response were analytically assessed. The feasibility of adequate perturbation models from non-linear trim conditions was studied by computer and hardware experiments. Rotor wake-blade interactions were assessed by using a 4-bladed rotor model with the capability of progressing and regressing blade pitch excitation (cyclic pitch stirring), by using a 4-bladed rotor model with hub tilt stirring, and by testing rotor models in sinusoidal up or side flow.

  17. Recent Developments in the Theory of Atmospheric Rotors

    DTIC Science & Technology

    2004-03-01

    Sierra Wave Project, illustrating (a) and (b) common rotor char- acteristics such as ro- tor and lenticular clouds and (a) blow- ing dust. The flow in...forced phenomena such as trapped lee waves, downslope windstorms, rotors, and atten- dant wave and rotor cloud struc- tures, as shown in the examples...this day, strong winds were observed on the lee side of the Colorado Front Range and rotor clouds were reported at the U.S. Air Force Academy in

  18. User's Manual for Computer Program ROTOR. [to calculate tilt-rotor aircraft dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Yasue, M.

    1974-01-01

    A detailed description of a computer program to calculate tilt-rotor aircraft dynamic characteristics is presented. This program consists of two parts: (1) the natural frequencies and corresponding mode shapes of the rotor blade and wing are developed from structural data (mass distribution and stiffness distribution); and (2) the frequency response (to gust and blade pitch control inputs) and eigenvalues of the tilt-rotor dynamic system, based on the natural frequencies and mode shapes, are derived. Sample problems are included to assist the user.

  19. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  20. Comprehensive analysis of helicopters with bearingless rotors

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.

    1988-01-01

    A modified Galerkin method is developed to analyze the dynamic problems of multiple-load-path bearingless rotor blades. The development and selection of functions are quite parallel to CAMRAD procedures, greatly facilitating the implementation of the method into the CAMRAD program. A software is developed implementing the modified Galerkin method to determine free vibration characteristics of multiple-load-path rotor blades undergoing coupled flapwise bending, chordwise bending, twisting, and extensional motions. Results are in the process of being obtained by debugging the software.

  1. Analyses of Multishaft Rotor-Bearing Response

    NASA Technical Reports Server (NTRS)

    Nelson, H. D.; Meacham, W. L.

    1985-01-01

    Method works for linear and nonlinear systems. Finite-element-based computer program developed to analyze free and forced response of multishaft rotor-bearing systems. Acronym, ARDS, denotes Analysis of Rotor Dynamic Systems. Systems with nonlinear interconnection or support bearings or both analyzed by numerically integrating reduced set of coupledsystem equations. Linear systems analyzed in closed form for steady excitations and treated as equivalent to nonlinear systems for transient excitation. ARDS is FORTRAN program developed on an Amdahl 470 (similar to IBM 370).

  2. Variable diameter wind turbine rotor blades

    DOEpatents

    Jamieson, Peter McKeich; Hornzee-Jones, Chris; Moroz, Emilian M.; Blakemore, Ralph W.

    2005-12-06

    A system and method for changing wind turbine rotor diameters to meet changing wind speeds and control system loads is disclosed. The rotor blades on the wind turbine are able to adjust length by extensions nested within or containing the base blade. The blades can have more than one extension in a variety of configurations. A cable winching system, a hydraulic system, a pneumatic system, inflatable or elastic extensions, and a spring-loaded jack knife deployment are some of the methods of adjustment. The extension is also protected from lightning by a grounding system.

  3. Rotor welding to improve SCC resistance

    SciTech Connect

    Segletes, D.S.; Moreci, J.A.; Cramer, E.P.

    1999-11-01

    Stress corrosion cracking (SCC) of low pressure steam turbine rotor blade attachments and disc bores is an industry issue on many older fossil and nuclear units. This paper discusses repair options available to the plant operator ranging from component restoration to enhancements dramatically increasing SCC resistance. The techniques described are uniformly applicable regardless of OEM and include geometric improvements to reduce peak surface stresses and material improvements through replacement or weld repair of components. Highlighted is the application of Gas Tungsten Arc Welding (GTAW) of steam turbine rotors including the use of 12% Cr weld metal to minimize susceptibility to SCC.

  4. Higher harmonic rotor blade pitch control

    NASA Technical Reports Server (NTRS)

    Ewans, J. R.

    1976-01-01

    Tests of a model 'Reverse Velocity Rotor' system at high advance ratios and with twice-per-revolution cyclic pitch control were made under joint Navy-NASA sponsorship in the NASA, Ames 12 ft. pressure tunnel. The results showed significant gains in rotor performance at all advance ratios by using twice-per-revolution control. Detailed design studies have been made of alternative methods of providing higher harmonic motion including four types of mechanical systems and an electro-hydraulic system. The relative advantages and disadvantages are evaluated on the basis of stiffness, weight, volume, reliability and maintainability.

  5. Analyses of Multishaft Rotor-Bearing Response

    NASA Technical Reports Server (NTRS)

    Nelson, H. D.; Meacham, W. L.

    1985-01-01

    Method works for linear and nonlinear systems. Finite-element-based computer program developed to analyze free and forced response of multishaft rotor-bearing systems. Acronym, ARDS, denotes Analysis of Rotor Dynamic Systems. Systems with nonlinear interconnection or support bearings or both analyzed by numerically integrating reduced set of coupledsystem equations. Linear systems analyzed in closed form for steady excitations and treated as equivalent to nonlinear systems for transient excitation. ARDS is FORTRAN program developed on an Amdahl 470 (similar to IBM 370).

  6. Superballistic wavepacket spreading in double kicked rotors

    NASA Astrophysics Data System (ADS)

    Fang, Ping; Wang, Jiao

    2016-08-01

    We investigate possible ways in which a quantum wavepacket spreads. We show that in a general class of double kicked rotor system, a wavepacket may undergo superballistic spreading; i.e., its variance increases as the cubic of time. The conditions for the observed superballistic spreading and two related characteristic time scales are studied. Our results suggest that the symmetry of the studied model and whether it is a Kolmogorov-Arnold-Moser system are crucial to its wavepacket spreading behavior. Our study also sheds new light on the exponential wavepacket spreading phenomenon previously observed in the double kicked rotor system.

  7. Rotor/bearing system dynamic stiffness measurements

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    Sweep perturbation testing as used in Modal Analysis when applied to a rotating machine has to take into consideration the machine dynamic state of equilibrium at its operational rotative speed. This stands in contrasts to a static equilibrium of nonrotating structures. The rotational energy has a significant influence on rotor dynamic characteristics. The best perturbing input for rotating machines is a forward or reverse rotating, circular force applied directly to the shaft. Determination of Dynamic Stiffness Characteristics of the rotor bearing system by nonsynchronous perturbation of a symmetric rotating shaft supported in one relatively rigid and one oil lubricated bearing.

  8. Edge states of periodically kicked quantum rotors.

    PubMed

    Floss, Johannes; Averbukh, Ilya Sh

    2015-05-01

    We present a quantum localization phenomenon that exists in periodically kicked three-dimensional rotors, but is absent in the commonly studied two-dimensional ones: edge localization. We show that under the condition of a fractional quantum resonance there are states of the kicked rotor that are strongly localized near the edge of the angular momentum space at J=0. These states are analogs of surface states in crystalline solids, and they significantly affect resonant excitation of molecular rotation by laser pulse trains.

  9. Simple theoretical models for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  10. Fan and Open-Rotor Noise

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2010-01-01

    This presentation is a technical progress report and near term outlook for work on fan (in-duct) and open-rotor (high speed propeller) noise funded by NASA's Fundamental Aeronautics Program, Subsonic Fixed Wing (SFW) Project and the Integrated Systems Research Program, Environmentally Responsible Aircraft Project. Sections of the presentation cover: the system level metrics are outlined for the SFW timeframes (2015, 2020 1 2025); the Ultra-High Bypass ratio technology development roadmap; a feasibility study for a low technology readiness level fan test rig; the development plan for a turbomachinery oriented computational aero-acoustics code; and systems analysis work on open-rotor modeling.

  11. Ceramic blade attachments. [for turbine rotors

    NASA Technical Reports Server (NTRS)

    Calvert, G. S.; Carruthers, W. D.

    1978-01-01

    Studies under way on two concepts for producing a turbine rotor with ceramic blades and superalloy disks are discussed. One concept employs hot-pressed silicon nitride blades and a compliant interlayer at the blade root end fitting whereas the second concept relies on a superplastic plastic forging technique to attach ceramic blades to the metal disk. This latter concept has been hot spin tested at 2250 F and 45,000 RPM for 50 hours in a vacuum spin pit. The fully bladed (30 blades) rotor survived this major test.

  12. 76 FR 42020 - Airworthiness Standards; Rotor Overspeed Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... ``extremely remote'' in Sec. 33.27(c); Exclusions of shaft sections from overspeed tests; Material properties... comment. Material Properties of Test Rotors Section 33.27(a)(1) proposed that test rotors used to... validated to prior overspeed test results of a similar rotor. The tool must be validated for each...

  13. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  14. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  15. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  16. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  17. 14 CFR 23.1461 - Equipment containing high energy rotors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Equipment containing high energy rotors. 23... Equipment Miscellaneous Equipment § 23.1461 Equipment containing high energy rotors. (a) Equipment, such as Auxiliary Power Units (APU) and constant speed drive units, containing high energy rotors must...

  18. Development of a rotor wake-vortex model, volume 1

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    Certain empirical rotor wake and turbulence relationships were developed using existing low speed rotor wave data. A tip vortex model was developed by replacing the annulus wall with a row of image vortices. An axisymmetric turbulence spectrum model, developed in the context of rotor inflow turbulence, was adapted to predicting the turbulence spectrum of the stator gust upwash.

  19. Helicopter tail rotor blade-vortex interaction noise

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Chou, S.-T.

    1987-01-01

    A study is made of helicopter tail rotor noise, particularly that due to the interactions with main rotor tip vortices. Summarized here are present analysis, the computer codes, and the results of several test cases. Amiet's unsteady thin airfoil theory is used to calculate the acoustics of blade-vortex interaction. The noise source is modelled as a force dipole resulting from an airfoil of infinite span chopping through a skewed line vortex. To analyze the interactions between helicopter tail rotor and main rotor tip vortices, we developed a two-step approach: (1) the main rotor tip vortex system is obtained through a free wake geometry calculation of the main rotor using CAMRAD code; (2) acoustic analysis takes the results from the aerodynamic interaction analysis and calculates the farfield pressure signatures for the interactions. It is found that under a wide range of helicopter flight conditions, acoustic pressure fluctuations of significant magnitude can be generated by tail rotors due to a series of interactions with main rotor tip vortices. This noise mechanism depends strongly on the helicopter flight conditions and the relative location and phasing of the main and tail rotors. fluctuations of significant magnitude can be generated by tail rotors due to a series of interactions with main rotor tip vortices. This noise mechanism depends strongly upon the helicopter flight conditions and the relative location and phasing of the main and tail rotors.

  20. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor...

  1. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  2. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  3. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  4. 14 CFR 29.411 - Ground clearance: tail rotor guard.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground clearance: tail rotor guard. 29.411 Section 29.411 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... System Loads § 29.411 Ground clearance: tail rotor guard. (a) It must be impossible for the tail rotor to...

  5. Dovetail Rotor Construction For Permanent-Magnet Motors

    NASA Technical Reports Server (NTRS)

    Kintz, Lawrence J., Jr.; Puskas, William J.

    1988-01-01

    New way of mounting magnets in permanent-magnet, electronically commutated, brushless dc motors. Magnets wedge shaped, tapering toward center of rotor. Oppositely tapered pole pieces, electron-beam welded to rotor hub, retain magnets against centrifugal force generated by spinning rotor. To avoid excessively long electron-beam welds, pole pieces assembled in segments rather than single long bars.

  6. Tarp rotor system thrust, yaw and load control

    SciTech Connect

    Weisbrich, A. L.

    1985-09-10

    Presented is a means for thrust and, hence, yaw and load control of a TARP twin rotor system by means of initiating a thrust differential between said rotors which, in turn, yaws the twin rotor assembly into a protected low flow velocity region about a TARP and alleviates load on said assembly.

  7. 14 CFR 29.547 - Main and tail rotor structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that... autorotation. (d) The rotor structure must be designed to withstand loads simulating— (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation;...

  8. 14 CFR 29.547 - Main and tail rotor structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that... autorotation. (d) The rotor structure must be designed to withstand loads simulating— (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation;...

  9. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in... blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground... limit torque must be distributed to the rotor blades in a rational manner. (Secs. 604, 605, 72 Stat....

  10. 14 CFR 27.547 - Main rotor structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... structure. (a) Each main rotor assembly (including rotor hubs and blades) must be designed as prescribed in... blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground... limit torque must be distributed to the rotor blades in a rational manner. (Secs. 604, 605, 72 Stat....

  11. 14 CFR 29.547 - Main and tail rotor structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that... autorotation. (d) The rotor structure must be designed to withstand loads simulating— (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation;...

  12. 14 CFR 29.547 - Main and tail rotor structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that... autorotation. (d) The rotor structure must be designed to withstand loads simulating— (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation;...

  13. 14 CFR 29.547 - Main and tail rotor structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... includes the rotor hub, blades, blade dampers, the pitch control mechanisms, and all other parts that... autorotation. (d) The rotor structure must be designed to withstand loads simulating— (1) For the rotor blades, hubs, and flapping hinges, the impact force of each blade against its stop during ground operation;...

  14. An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.

    1992-01-01

    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used.

  15. Response studies of rotors and rotor blades with application to aeroelastic tailoring

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.

    1982-01-01

    Various tools for the aeroelastic stability and response analysis of rotor blades in hover and forward flight were developed and incorporated in a comprehensive package capable of performing aeroelastic tailoring of rotor blades in forward flight. The results indicate that substantial vibration reductions, of order 15-40%, in the vibratory hub shears can be achieved by relatively small modifications of the initial design. Furthermore the optimized blade can be up to 20% lighter than the original design. Accomplishments are reported for the following tasks: (1) finite element modeling of rotary-wing aeroelastic problems in hover and forward flight; (2) development of numerical methods for calculating the aeroelastic response and stability of rotor blades in forward fight; (3) formulation of the helicopter air resonance problem in hover with active controls; and (4) optimum design of rotor blades for vibration reduction in forward flight.

  16. Definition of Forces on Turbomachinery Rotors. Task B Report: Dynamic Analysis of Rotors

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1983-01-01

    The rotordynamic characteristics of turbomachinery are known to depend on the forces developed due to relative motion between the rotor and the housing. For example, the critical speed locations generally depend on the bearing stiffnesses, seal dampling influences rotor stability and bearing reaction amplitudes near critical speeds, etc. A systematic examination of the influence of changes in the forces acting on rotors is studied. More specifically, the sensitivity of the rotordynamic characteristics to changes in rotor forces is analyzed. Rotordynamic characteristics of the HPOTP (High Pressure Oxygen Turbopump) and HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine) are investigated. Because of their markedly different rotordynamic characteristics, these units are considered to be representative of a range of possible future liquid rocket engine turbomachinery.

  17. NASA/HAA Advanced Rotorcraft Technology and Tilt Rotor Workshop. Volume 7: Tilt Rotor Session

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The technical characteristics of the XV-15 aircraft were discussed. Program objectives, concept evaluation, tilt rotor experiments and civil market applications are presented. The XV-15 status and test schedule are also included.

  18. Effect of Rotor Diameter on the Thermal Stresses of a Turbine Rotor Model

    NASA Astrophysics Data System (ADS)

    Dávalos, J. O.; García, J. C.; Urquiza, G.; Castro-Gómez, L. L.; Rodríguez, J. A.; De Santiago, O.

    2016-04-01

    Thermal stresses in a simplified steam turbine rotor model during a cold startup are analyzed using finite element analysis (FEA). In order to validate the numerical model, an experimental array is developed in which a hollow cylinder is heated with hot air in the external surface. At the thick wall of the cylinder, temperature distribution is measured in real time, while at the same time an algorithm computes thermal stresses. Additional computational fluid dynamics (CFD) calculations are made to obtain magnitudes of velocity and pressure in order to compute convective heat transfer coefficient. The experimental results show good agreement with the FEA computations. To evaluate the effect of rotor diameter size, FEA computations with variation in external and internal diameters are performed. Results show that thermal stresses are proportional to rotor diameter size. Also, zones of higher stress concentration are found in the external and internal surfaces of the rotor.

  19. Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit

    DOEpatents

    Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig

    2002-01-01

    In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.

  20. Computational Study of Flow Interactions in Coaxial Rotors

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Lee, Henry C.; Pulliam, Thomas H.

    2016-01-01

    Although the first idea of coaxial rotors appeared more than 150 years ago, most helicopters have used single main-rotor/tail-rotor combination. Since reactive moments of coaxial rotors are canceled by contra-rotation, no tail rotor is required to counter the torque generated by the main rotor. Unlike the single main rotor design that distributes power to both main and tail rotors, all of the power for coaxial rotors is used for vertical thrust. Thus, no power is wasted for anti-torque or directional control. The saved power helps coaxial rotors reach a higher hover ceiling than single rotor helicopters. Another advantage of coaxial rotors is that the overall rotor diameter can be reduced for a given vehicle gross weight because each rotor provides a maximum contribution to vertical thrust to overcome vehicle weight. However, increased mechanical complexity of the hub has been one of the challenges for manufacturing coaxial rotorcraft. Only the Kamov Design Bureau of Russia had been notably successful in production of coaxial helicopters until Sikorsky built X2, an experimental compound helicopter. Recent developments in unmanned aircraft systems and high-speed rotorcraft have renewed interest in the coaxial configuration. Multi-rotors are frequently used for small electric unmanned rotorcraft partly due to mechanical simplicity. The use of multiple motors provides redundancy as well as cost-efficiency. The multi-rotor concept has rarely been used until recently because of its inherent stability and control problems. However, advances in inexpensive electronic flight control systems have opened the floodgates for small drones using multirotors. Coaxial rotors have started to appear in some multi-rotor configurations. Small coaxial rotors have often been designed using a hundred year old approach that is "sketch, build, fly, and iterate." In that approach, there is no systematic way to explore trade-offs or determine logical next steps. It is neither possible to

  1. Comparison of Two Windstorm Events During the Sierra Rotors Project and Terrain-Induced Rotor Experiment

    DTIC Science & Technology

    2010-06-01

    Experiment (T-REX, Grubišić et al. 2008) was to perform a comprehensive study of the coupled mountain - wave /rotor/boundary-layer system. In addition to...troposphere. However, there is evidence to indicate that mountain wave and rotor activity was present over the valley. Figure 5 shows a satellite image and...cloud associated with a long- wavelength mountain lee wave . The photograph shows that the cloud has a relatively smooth upper surface, which further

  2. Optical Shaft-Angle Encoder For Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Fitzpatrick, Fred; Dennis, Dale V.; Taylor, Bryant D.

    1993-01-01

    Angular position of helicopter rotor blade determined precisely. Accomplished by use of optical shaft-angle encoder called "256 Ring" on rotor swashplate. Each 360 degree rotation of helicopter main rotor broken down into 256 reflective segments. As rotor rotates, beam of light reflected in turn from each segment into optoelectronic system. One of 256 segments reflects larger pulse than others do. Position of rotor determined by counting number of pulses after this reference pulse. While swashplate mounting requirements unique to each type of helicopter, concept applicable to all types of rotorcraft.

  3. On the flow field around a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Bergeles, G.; Athanassiadis, N.

    A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.

  4. Optical Shaft-Angle Encoder For Helicopter Rotor

    NASA Technical Reports Server (NTRS)

    Golub, Robert A.; Fitzpatrick, Fred; Dennis, Dale V.; Taylor, Bryant D.

    1993-01-01

    Angular position of helicopter rotor blade determined precisely. Accomplished by use of optical shaft-angle encoder called "256 Ring" on rotor swashplate. Each 360 degree rotation of helicopter main rotor broken down into 256 reflective segments. As rotor rotates, beam of light reflected in turn from each segment into optoelectronic system. One of 256 segments reflects larger pulse than others do. Position of rotor determined by counting number of pulses after this reference pulse. While swashplate mounting requirements unique to each type of helicopter, concept applicable to all types of rotorcraft.

  5. Equivalence Between Squirrel Cage and Sheet Rotor Induction Motor

    NASA Astrophysics Data System (ADS)

    Dwivedi, Ankita; Singh, S. K.; Srivastava, R. K.

    2016-06-01

    Due to topological changes in dual stator induction motor and high cost of its fabrication, it is convenient to replace the squirrel cage rotor with a composite sheet rotor. For an experimental machine, the inner and outer stator stampings are normally available whereas the procurement of rotor stampings is quite cumbersome and is not always cost effective. In this paper, the equivalence between sheet/solid rotor induction motor and squirrel cage induction motor has been investigated using layer theory of electrical machines, so as to enable one to utilize sheet/solid rotor in dual port experimental machines.

  6. Calculated Hovering Helicopter Flight Dynamics with a Circulation Controlled Rotor

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Chopra, I.

    1977-01-01

    The influence of the rotor blowing coefficient on the calculated roots of the longitudinal and lateral motion was examined for a range of values of the rotor lift and the blade flap frequency. The control characteristics of a helicopter with a circulation controlled rotor are discussed. The principal effect of the blowing is a reduction in the rotor speed stability derivative. Above a critical level of blowing coefficient, which depends on the flap frequency and rotor lift, negative speed stability is produced and the dynamic characteristics of the helicopter are radically altered.

  7. T700 power turbine rotor multiplane/multispeed balancing demonstration

    NASA Technical Reports Server (NTRS)

    Burgess, G.; Rio, R.

    1979-01-01

    Research was conducted to demonstrate the ability of influence coefficient based multispeed balancing to control rotor vibration through bending criticals. Rotor dynamic analyses were conducted of the General Electric T700 power turbine rotor. The information was used to generate expected rotor behavior for optimal considerations in designing a balance rig and a balance technique. The rotor was successfully balanced 9500 rpm. Uncontrollable coupling behavior prevented observations through the 16,000 rpm service speed. The balance technique is practical and with additional refinement it can meet production standards.

  8. Test results from a dynamic model dynaflex rotor

    NASA Technical Reports Server (NTRS)

    Niebanck, C. F.; Goodman, R. K.

    1985-01-01

    A one-fifth scale dynamic model of the Sikorsky Dynaflex rotor was tested in hover and in forward flight conditions in a wind tunnel. The Dynaflex rotor features an advanced composite structure which flexes to provide a constant speed universal joint action. Testing concentrated on confirming that the stability and dynamic response of the rotor were satisfactory. Lift conditions of up to .11 Ct/sigma and advance ratios as high as .46 were reached. Vibratory loads were compared to those of articulated rotors. The Dynaflex rotor concept appears to be a practical concept from the standpoint of dynamic response and stability.

  9. Method for repairing a steam turbine or generator rotor

    SciTech Connect

    Clark, R.E.; Amos, D.R.

    1987-01-06

    A method is described for repairing low alloy steel steam turbine or generator rotors, the method comprising: a. machining mating attachments on a replacement end and a remaining portion of the original rotor; b. mating the replacement end and the original rotor; c. welding the replacement end to the original rotor by narrow-gap gas metal arc or submerged arc welding up to a depth of 1/2-2 inches from the rotor surface; d. gas tungsten arc welding the remaining 1/2-2 inches; e. boring out the mating attachment and at least the inside 1/4 inch of the welding; and f. inspecting the bore.

  10. Synthesis of rotor test data for real-time simulation

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1979-01-01

    A mathematical model of a hingeless tilting rotor is presented. The model was obtained by a systematic curve fit procedure applied to an extensive set of model scale wind tunnel data. The math model equations were used in a real time flight simulation model of a hingeless tilt rotor XV-15 to assess changes in flying qualities compared to those obtained using a previous rotor model. Extensive plots of the rotor derivatives are given. Discussions of attempts to apply multivariable linear regression technqiues to the data and the use of an analytical rotor representation are included.

  11. Flywheel system using wire-wound rotor

    DOEpatents

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  12. 14 CFR 27.1565 - Tail rotor.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... conditions. Rotorcraft Flight Manual and Approved Manual Material...

  13. 14 CFR 27.1565 - Tail rotor.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... conditions. Rotorcraft Flight Manual and Approved Manual Material...

  14. 14 CFR 27.1565 - Tail rotor.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Tail rotor. 27.1565 Section 27.1565 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... conditions. Rotorcraft Flight Manual and Approved Manual Material...

  15. Eigenvalue assignment strategies in rotor systems

    NASA Technical Reports Server (NTRS)

    Youngblood, J. N.; Welzyn, K. J.

    1986-01-01

    The work done to establish the control and direction of effective eigenvalue excursions of lightly damped, speed dependent rotor systems using passive control is discussed. Both second order and sixth order bi-axis, quasi-linear, speed dependent generic models were investigated. In every case a single, bi-directional control bearing was used in a passive feedback stabilization loop to resist modal destabilization above the rotor critical speed. Assuming incomplete state measurement, sub-optimal control strategies were used to define the preferred location of the control bearing, the most effective measurement locations, and the best set of control gains to extend the speed range of stable operation. Speed dependent control gains were found by Powell's method to maximize the minimum modal damping ratio for the speed dependent linear model. An increase of 300 percent in stable speed operation was obtained for the sixth order linear system using passive control. Simulations were run to examine the effectiveness of the linear control law on nonlinear rotor models with bearing deadband. The maximum level of control effort (force) required by the control bearing to stabilize the rotor at speeds above the critical was determined for the models with bearing deadband.

  16. A Model Rotor in Axial Flight

    NASA Technical Reports Server (NTRS)

    McAlister, K. W.; Huang, S. S.; Abrego, A. I.

    2001-01-01

    A model rotor was mounted horizontally in the settling chamber of a wind tunnel to obtain performance and wake structure data under low climb conditions. The immediate wake of the rotor was carefully surveyed using 3-component particle image velocimetry to define the velocity and vortical content of the flow, and used in a subsequent study to validate a theory for the separate determination of induced and profile drag. Measurements were obtained for two collective pitch angles intended to render a predominately induced drag state and another with a marked increase in profile drag. A majority of the azimuthally directed vorticity in the wake was found to be concentrated in the tip vortices. However, adjacent layers of inboard vorticity with opposite sense were clearly present. At low collective, the close proximity of the tip vortex from the previous blade caused the wake from the most recent blade passage to be distorted. The deficit velocity component that was directed along the azimuth of the rotor blade was never more that 15 percent of the rotor tip speed, and except for the region of the tip vortex, appeared to have totally disappeared form the wake left by the previous blade.

  17. Modeling Aerodynamically Generated Sound of Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Brentner, Kenneth S.; Farassat, F.

    2002-01-01

    A great deal of progress has been made in the modeling of aerodynamically generated sound of rotors over the past decade. Although the modeling effort has focused on helicopter main rotors, the theory is generally valid for a wide range of rotor configurations. The Ffowcs Williams Hawkings (FW-H) equation has been the foundation for much of the development. The monopole and dipole source terms of the FW-H equation account for the thickness and loading noise, respectively. Bladevortex-interaction noise and broadband noise are important types of loading noise, hence much research has been directed toward the accurate modeling of these noise mechanisms. Both subsonic and supersonic quadrupole noise formulations have been developed for the prediction of high-speed impulsive noise. In an effort to eliminate the need to compute the quadrupole contribution, the FW-H equation has also been utilized on permeable surfaces surrounding all physical noise sources. Comparisons of the Kirchhoff formulation for moving surfaces with the FW-H equation have shown that the Kirchhoff formulation for moving surfaces can give erroneous results for aeroacoustic problems. Finally, significant progress has been made incorporating the rotor noise models into full vehicle noise prediction tools.

  18. The Evolution of Rotor and Blade Design

    SciTech Connect

    Tangler, J.

    2000-08-01

    The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.

  19. Partial rotor-to-stator rub demonstration

    NASA Technical Reports Server (NTRS)

    Grissom, R.

    1985-01-01

    A rotor radial rub typically occurs in seals or at a blade tip or shroud when there is insufficient clearance, high vibration, or the shaft equilibrium position has been displaced to effectively limit the clearance (eccentricity). There are two extreme cases of radial rubs: full annular rub, when the rotor maintains continuous contact with the seal, etc.; and a partial rub, when the contact occurs during a fraction of the precession period. They both involve similar physical phenomena such as friction and modification of stiffness. In partial rubs with consecutive impacts, a significant average value of radial force is generated. This results in shaft average displacement in the direction opposite the rub location. The rotor rig demonstrates the characteristics of a partial lateral rub of varying severity and location. These characteristics include: (1) subharmonic components as a function of rotative speed/first balance resonance ratio and radial force; (2) higher harmonic content as a function of severity; (3) increased average rotor stiffness resulting in increased first balance resonance speed; and (4) change in overall orbital pattern as a sum of the unbalance response (1x) and subharmonic response (1nx).

  20. Navier-Stokes computation of wing/rotor interaction for a tilt rotor in hover

    NASA Technical Reports Server (NTRS)

    Fejtek, Ian; Roberts, Leonard

    1991-01-01

    A method has been developed to analyze the wing/rotor interaction of tilt rotor aircraft in hover. The unsteady, thin-layer compressible Navier-Stokes equations are solved using an implicit, finite difference scheme that employs LU-ADI factorization. The rotor is modeled as an actuator disk which imparts a radial and azimuthal distribution of pressure rise and swirl to the flowfield. The 'chimera' approach of grid point blanking is used to update the rotor boundary conditions. Results are presented for both a rotor alone and for wing/rotor interaction where the thrust coefficient is 0.0164 and wing flap deflection is 67 degrees. Many of the complex flow features are captured including the fountain effect, leading and trailing edge separation, and the unsteady wake beneath the wing. Wing surface pressures compare fairly well with experimental data although the time-averaged download is about twenty percent higher than the measured value. This discrepancy is due to a combination of factors that are discussed.

  1. Icing Research Tunnel test of a model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Bond, Thomas H.

    1989-01-01

    An experimental program has been conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in which an OH-58 tail rotor assembly was operated in a horizontal plane to simulate the action of a typical main rotor. Ice was accreted on the blades in a variety of rotor and tunnel operating conditions and documentation of the resulting shapes was performed. Rotor torque and vibration are presented as functions of time for several representative test runs, and the effects of various parametric variations on the blade ice shapes are shown. This OH-58 test was the first of its kind in the United States and will encourage additional model rotor icing tunnel testing. Although not a scaled representative of any actual full-scale main rotor system, this rig has produced torque and vibration data which will be useful in assessing the quality of existing rotor icing analyses.

  2. Predesign study for a modern 4-bladed rotor for RSRA

    NASA Technical Reports Server (NTRS)

    Davis, S. J.

    1981-01-01

    The feasibility of providing a modern four-bladed rotor for flight research testing on a rotor system aircraft was evaluated. The capabilities of a state of the art rotor system and the contributions of key design parameters to these capabilities were investigated. Three candidate rotors were examined: the UH-60A BLACK HAWK rotor with and without root extenders and the H-3 composite blade rotor. It was concluded that the technical/cost objectives could best be accomplished using the basic BLACK HAWK rotor (i.e. without root extenders). Further, the availability of three existing sets of blade tip of varying design, together with a demonstrated capability for altering airfoil geometry should provide early research information on important design variables at reduced cost.

  3. Optimum performance and potential flow field of hovering rotors

    NASA Technical Reports Server (NTRS)

    Wu, J. C.; Sigman, R. K.

    1975-01-01

    Rotor and propeller performance and induced potential flowfields were studied on the basis of a rotating actuator disk concept, with special emphasis on rotors hovering out of ground effect. A new theory for the optimum performance of rotors hovering OGE is developed and presented. An extended theory for the optimum performance of rotors and propellers in axial motion is also presented. Numerical results are presented for the optimum distributions of blade-bound circulation together with axial inflow and ultimate wake velocities for the hovering rotor over the range of thrust coefficient of interest in rotorcraft applications. Shapes of the stream tubes and of the velocities in the slipstream are obtained, using available methods, for optimum and off-optimum circulation distributions for rotors hovering in and out of ground effect. A number of explicit formulae useful in computing rotor and propeller induced flows are presented for stream functions and velocities due to distributions of circular vortices over axi-symmetric surfaces.

  4. Time-resolved studies of individual molecular rotors.

    PubMed

    Jewell, April D; Tierney, Heather L; Baber, Ashleigh E; Iski, Erin V; Laha, Michael M; Sykes, E Charles H

    2010-07-07

    Thioether molecular rotors show great promise as nanoscale models for exploring the fundamental limits of thermally and electrically driven molecular rotation. By using time-resolved measurements which increase the time resolution of the scanning tunneling microscope we were able to record the dynamics of individual thioether molecular rotors as a function of surface structure, rotor chemistry, thermal energy and electrical excitation. Our results demonstrate that the local surface structure can have a dramatic influence on the energy landscape that the molecular rotors experience. In terms of rotor structure, altering the length of the rotor's alkyl tails allowed the origin of the barrier to rotation to be more fully understood. Finally, time-resolved measurement of electrically excited rotation revealed that vibrational excitation of a C-H bond in the rotor's alkyl tail is an efficient channel with which to excite rotation, and that the excitation is a one-electron process. © 2010 IOP Publishing Ltd

  5. Effects of ingested atmospheric turbulence on measured tail rotor acoustics

    NASA Technical Reports Server (NTRS)

    Signor, David B.; Yamauchi, Gloria K.; Mosher, Marianne; Hagen, Martin J.; George, Albert R.

    1992-01-01

    Results from an outdoor hover test of a full-scale Lynx tail rotor are presented. The investigation was designed to further the understanding of the acoustics of an isolated tail rotor hovering out-of-ground effect in atmospheric turbulence, without the effects of the main rotor wake or other helicopter components. Measurements include simultaneous rotor performance, noise, inflow, and far-field atmospheric turbulence. Results with grid-generated inflow turbulence are also presented. The effects of turbulence ingestion on rotor noise are quantified. Turbulence ingestion noise is found to be the dominant noise mechanism at locations near the rotor axis. At these locations, the sound radiated by the hovering rotor increases with both increasing atmospheric wind speed and ingested rms turbulent velocity.

  6. Rotor for a line start permanent magnet machine

    DOEpatents

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  7. The development of CFD methods for rotor applications

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Mccroskey, W. J.

    1988-01-01

    The optimum design of the advancing helicopter rotor for high-speed forward flight always involves a tradeoff between transonic and stall limitations. However, the preoccupation of the rotor industry was primarily concerned with stall until well into the 1970s. This emphasis on stall resulted from the prevalent use of low-solidity rotors with rather outdated airfoil sections. The use of cambered airfoil sections and higher-solidity rotors substantially reduced stall and revealed the advancing transonic flow to be a more persistent limitation to high-speed rotor performance. Work in this area was spurred not only by operational necessity but also by the development of a tool for the prediction of these flows (the method of computational fluid dynamics). The development of computational fluid dynamics for these rotor problems was a major Army and NASA achievement. This work is now being extended to other rotor flow problems. The developments are outlined.

  8. Speed benefits of tilt-rotor designs for LHX

    NASA Technical Reports Server (NTRS)

    Mcdaniel, R. L.; Adams, J. V.; Balberde, A.; Dereska, S. P.; Gearin, C. J.; Shaw, D. E.

    1983-01-01

    The merits of an advanced helicopter and a tilt rotor aircraft for light utility, scout, and attack roles in combat missions envisioned for the year 2000 and beyond were compared. It is demonstrated that speed has increasing value for 11 different mission classes broadly encompassing the intended LHX roles. Helicopter speeds beyond 250 knots are judged to have lower military worth. Since the tilt rotor concept offers a different cost speed relationship than that of helicopters, assessment of a tilt rotor LHX variant was warranted. The technical parameters of an advanced tilt rotor are stablished. Parameters of representative missions are identified, computed relative value of the tilt rotor LHX are compared to the baseline helicopter, a first-order life cycle estimate for the tilt rotor LHX is established, military worth of the alternative design is computed and the results are evaluated. It is suggested that the tilt rotor is the solution with the greatest capability for meeting the uncertainties of future needs.

  9. The prediction of transonic loading on advancing helicopter rotors

    NASA Technical Reports Server (NTRS)

    Strawn, R. C.; Tung, C.

    1986-01-01

    Two different schemes are presented for including the effect of rotor wakes on the finie-difference prediction of rotor loads. The first formulation includes wake effects by means of a blade-surface inflow specification. This approach is sufficiently simple to permit coupling of a full-potential finite-difference rotor code to a comprehensive integral model for the rotor wake and blade motion. The coupling involves a transfer of appropriate loads and inflow data between the two computer codes. Results are compared with experimental data for two advancing rotor cases. The second rotor-wake modeling scheme is a split potential formulation for computing unsteady blade-vortex interactions. Discrete vortex fields are introduced into a three-dimensional, conservative, full-potential rotor code. Computer predictions are compared with two experimental blade-vortex interaction cases.

  10. The prediction of transonic loading advancing helicopter rotors

    NASA Technical Reports Server (NTRS)

    Strawn, R.; Tung, C.

    1986-01-01

    Two different schemes are presented for including the effect of rotor wakes on the finite-difference prediction of rotor loads. The first formulation includes wake effects by means of a blade-surface inflow specification. This approach is sufficiently simple to permit coupling of a full-potential finite-difference rotor code to a comprehensive integral model for the rotor wake and blade motion. The coupling involves a transfer of appropriate loads and inflow data between the two computer codes. Results are compared with experimental data for two advancing rotor cases. The second rotor wake modeling scheme in this paper is a split potential formulation for computing unsteady blade-vortex interactions. Discrete vortex fields are introduced into a three-dimensional, conservative, full-potential rotor code. Computer predictions are compared with two experimental blade-vortex interaction cases.

  11. Utilization of rotor kinetic energy storage for hybrid vehicles

    SciTech Connect

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  12. Icing research tunnel test of a model helicopter rotor

    NASA Technical Reports Server (NTRS)

    Miller, Thomas L.; Bond, Thomas H.

    1989-01-01

    An experimental program has been conducted in the NASA Lewis Research Center Icing Research Tunnel (IRT) in which an OH-58 tail rotor assembly was operated in a horizontal plane to simulate the action of a typical main rotor. Ice was accreted on the blades in a variety of rotor and tunnel operating conditions and documentation of the resulting shapes was performed. Rotor torque and vibration are presented as functions of time for several representative test runs, and the effects of various parametric variations on the blade ice shapes are shown. This OH-58 test was the first of its kind in the United States and will encourage additional model rotor icing tunnel testing. Although not a scaled representative of any actual full-scale main rotor system, this rig has produced torque and vibration data which will be useful in assessing the quality of existing rotor icing analyses.

  13. Whirl and whip: Rotor/bearing stability problems

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    A mathematical model of a symmetric rotor supported by one rigid and one fluid lubricated bearing is proposed. The rotor model is represented by generalized (modal) parameters of its first bending mode. The rotational character of the bearing fluid force is taken into account. The model yields synchronous vibrations due to rotor unbalance as a particular solution of the equations of motion, rotor/bearing system natural frequencies and corresponding self-excited vibrations known as oil whirl and oil whip. The stability analysis yields rotative speed threshold of stability. The model also gives the evaluation of stability of the rotor synchronous vibrations. In the first balance resonance speed region two more thresholds of stability are yielded. The width of this stability region is directly related to the amount of rotor unbalance. The results of the analysis based on this model stand with very good agreement with field observations of rotor dynamic behavior and the experimental results.

  14. Welding of combustion turbine rotors and discs

    SciTech Connect

    Driver, T.L.; Amos, D.R.; Clark, R.E.

    1995-12-31

    Weld repair of steam turbine rotors and discs by Westinghouse has been performed successfully and has proven itself in operation for the last 15 years. Since 1978, over 200 low pressure (LP) rotors and discs have been weld repaired using the Gas Tungsten Arc Welding (GTAW) process. This process yields properties equal to or better than the original rotor/disc forging for LP alloys. In 1987, the GTAW process was extended to include repair on high pressure (HP) rotor alloys. Since that time, over 45 high pressure and intermediate pressure (IP) rotors have been successfully weld repaired and returned to service. Recently, to meet the demand for repair of combustion turbine alloys, a development program was initiated to make a step increase in the current LP welding process and filler materials from 100--110 ksi weld metal yield strength (on LP alloys) to 140 ksi needed on many areas of a combustion turbine. The challenge to increase the strength by 30% could not be achieved at the expense of the other critical properties particularly toughness. This paper first reviews the successful LP and HP welding programs which were fundamental building blocks for welding combustion turbines. Secondly, the development and testing of a new filler material for welding combustion turbines is reviewed which demonstrated the ability to achieve approximately 135 ksi yield strength. This new program was implemented on lower stress areas of several production parts which are described in part three. The paper concludes with a summary of possible future work to achieve nominal yield strengths near 145 ksi.

  15. Mechanisms Underlying AF: Triggers, Rotors, Other?

    PubMed

    Krummen, David E; Hebsur, Shrinivas; Salcedo, Jon; Narayan, Sanjiv M; Lalani, Gautam G; Schricker, Amir A

    2015-04-01

    There is ongoing debate regarding the precise mechanisms underlying atrial fibrillation (AF). An improved understanding of these mechanisms is urgently needed to improve interventional strategies to suppress and eliminate AF, since the success of current strategies is suboptimal. At present, guidelines for AF ablation focus on pulmonary vein (PV) isolation for the prevention of arrhythmia. Additional targets are presently unclear, and include additional linear ablation and electrogram-guided substrate modification, without clear mechanistic relevance. PV and non-PV triggers are likely central in the first few seconds of AF initiation. Rapid activation from such triggers interacts with transitional mechanisms including conduction velocity slowing, action potential duration (APD) alternans, and steep APD restitution to cause conduction block and initiate functional reentry. However, complete suppression of potential triggers has proven elusive, and the intra-procedural mapping and targeting of transitional mechanisms has not been reported. A growing body of research implicates electrical rotors and focal sources as central mechanisms for the maintenance of AF. In several recent series, they were observed in nearly all patients with sustained arrhythmia. Ablation of rotor and focal source sites, prior to pulmonary vein isolation, substantially modulated atrial fibrillation in a high proportion of patients, and improved ablation outcomes versus pulmonary vein isolation alone. These results have subsequently been confirmed in multicenter series, and the improved outcomes have been found to persist to a mean follow-up of 3 years. Recently, rotors have been observed by multiple groups using diverse technologies. These findings represent a paradigm shift in AF, focusing on sustaining mechanisms, as is currently done with other arrhythmias such as atrioventricular node reentrant tachycardia. Studies are currently underway to assess the optimal strategy for the application

  16. Dynamical localization of coupled relativistic kicked rotors

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Galitski, Victor

    2017-02-01

    A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.

  17. Simulation of rotor blade element turbulence

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. E.; Duisenberg, Ken

    1995-01-01

    A piloted, motion-based simulation of Sikorsky's Black Hawk helicopter was used as a platform for the investigation of rotorcraft responses to vertical turbulence. By using an innovative temporal and geometrical distribution algorithm that preserved the statistical characteristics of the turbulence over the rotor disc, stochastic velocity components were applied at each of twenty blade-element stations. This model was implemented on NASA Ames' Vertical Motion Simulator (VMS), and ten test pilots were used to establish that the model created realistic cues. The objectives of this research included the establishment of a simulation-technology basis for future investigation into real-time turbulence modeling. This goal was achieved; our extensive additions to the rotor model added less than a 10 percent computational overhead. Using a VAX 9000 computer the entire simulation required a cycle time of less than 12 msec. Pilot opinion during this simulation was generally quite favorable. For low speed flight the consensus was that SORBET (acronym for title) was better than the conventional body-fixed model, which was used for comparison purposes, and was determined to be too violent (like a washboard). For high speed flight the pilots could not identify differences between these models. These opinions were something of a surprise because only the vertical turbulence component on the rotor system was implemented in SORBET. Because of the finite-element distribution of the inputs, induced outputs were observed in all translational and rotational axes. Extensive post-simulation spectral analyses of the SORBET model suggest that proper rotorcraft turbulence modeling requires that vertical atmospheric disturbances not be superimposed at the vehicle center of gravity but, rather, be input into the rotor system, where the rotor-to-body transfer function severely attenuates high frequency rotorcraft responses.

  18. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 2: Run log and tabulated data

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.

  19. Psychoacoustic Testing of Modulated Blade Spacing for Main Rotors

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    Psychoacoustic testing of simulated helicopter main rotor noise is described, and the subjective results are presented. The objective of these tests was to evaluate the potential acoustic benefits of main rotors with modulated (uneven) blade spacing. Sound simulations were prepared for six main rotor configurations. A baseline 4-blade main rotor with regular blade spacing was based on the Bell Model 427 helicopter. A 5-blade main rotor with regular spacing was designed to approximate the performance of the 427, but at reduced tipspeed. Four modulated rotors - one with "optimum" spacing and three alternate configurations - were derived from the 5 bladed regular spacing rotor. The sounds were played to 2 subjects at a time, with care being taken in the speaker selection and placement to ensure that the sounds were identical for each subject. A total of 40 subjects participated. For each rotor configuration, the listeners were asked to evaluate the sounds in terms of noisiness. The test results indicate little to no "annoyance" benefit for the modulated blade spacing. In general, the subjects preferred the sound of the 5-blade regular spaced rotor over any of the modulated ones. A conclusion is that modulated blade spacing is not a promising design feature to reduce the annoyance for helicopter main rotors.

  20. Rotor-Fuselage Interaction: Analysis and Validation with Experiment

    NASA Technical Reports Server (NTRS)

    Berry, John D.; Bettschart, Nicolas

    1997-01-01

    The problem of rotor-fuselage aerodynamic interaction has to be considered in industry applications from various aspects. First, in order to increase helicopter speed and reduce operational costs, rotorcraft tend to be more and more compact, with a main rotor closer to the fuselage surface. This creates significant perturbations both on the main rotor and on the fuselage, including steady and unsteady effects due to blade and wake passage and perturbed inflow at the rotor disk. Furthermore,the main rotor wake affects the tail boom, empennage and anti-torque system. This has important consequences for helicopter control and vibrations at low speeds and also on tail rotor acoustics (main rotor wake-tail rotor interactions). This report describes the US Army-France MOD cooperative work on this problem from both the theoretical and experimental aspects. Using experimental 3D velocity field and fuselage surface pressure measurements, three codes that model the interactions of a helicopter rotor with a fuselage are compared. These comparisons demonstrate some of the strengths and weaknesses of current models for the combined rotor-fuselage analysis.

  1. Blade-Pitch Control for Quieting Tilt-Rotor Aircraft

    NASA Technical Reports Server (NTRS)

    Betzina, Mark D.; Nguyen, Khanh Q.

    2004-01-01

    A method of reducing the noise generated by a tilt-rotor aircraft during descent involves active control of the blade pitch of the rotors. This method is related to prior such noise-reduction methods, of a type denoted generally as higher-harmonic control (HHC), in which the blade pitch is made to oscillate at a harmonic of the frequency of rotation of the rotor. A tilt-rotor aircraft is so named because mounted at its wing tips are motors that can be pivoted to enable the aircraft to take off and land like a helicopter or to fly like a propeller airplane. When the aircraft is operating in its helicopter mode, the rotors generate more thrust per unit rotor-disk area than helicopter rotors do, thus producing more blade-vortex interaction (BVI) noise. BVI is a major source of noise produced by helicopters and tilt-rotor aircraft during descent: When a rotor descends into its own wake, the interaction of each blade with the blade-tip vortices generated previously gives rise to large air-pressure fluctuations. These pressure fluctuations radiate as distinct, impulsive noise. In general, the pitch angle of the rotor blades of a tilt-rotor aircraft is controlled by use of a swash plate connected to the rotor blades by pitch links. In both prior HHC methods and the present method, HHC control signals are fed as input to swash-plate control actuators, causing the rotor-blade pitch to oscillate. The amplitude, frequency, and phase of the control signal can be chosen to minimize BVI noise.

  2. Helicopter rotor noise investigation during ice accretion

    NASA Astrophysics Data System (ADS)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  3. An experimental investigation of the chopping of helicopter main rotor tip vortices by the tail rotor

    NASA Technical Reports Server (NTRS)

    Ahmadi, A. R.

    1984-01-01

    The chopping of helicopter main rotor tip vortices by the tail rotor was experimentally investigated. This is a problem of blade vortex interaction (BVI) at normal incidence where the vortex is generally parallel to the rotor axis. The experiment used a model rotor and an isolated vortex and was designed to isolate BVI noise from other types of rotor noise. Tip Mach number, radical BVI station, and free stream velocity were varied. Fluctuating blade pressures, farfield sound pressure level and directivity, velocity field of the incident vortex, and blade vortex interaction angles were measured. Blade vortex interaction was found to produce impulsive noise which radiates primarily ahead of the blade. For interaction away from the blade tip, the results demonstrate the dipole character of BVI radiation. For BVI close to the tip, three dimensional relief effect reduces the intensity of the interaction, despite larger BVI angle and higher local Mach number. Furthermore, in this case, the radiation patern is more complex due to diffraction at and pressure communication around the tip.

  4. Design study of prestressed rotor spar concept

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1980-01-01

    Studies on the Bell Helicopter 540 Rotor System of the AH-1G helicopter were performed. The stiffness, mass and geometric configurations of the Bell blade were matched to give a dynamically similar prestressed composite blade. A multi-tube, prestressed composite spar blade configuration was designed for superior ballistic survivability at low life cycle cost. The composite spar prestresses, imparted during fabrication, are chosen to maintain compression in the high strength cryogenically stretchformed 304-L stainless steel liner and tension in the overwrapped HTS graphite fibers under operating loads. This prestressing results in greatly improved crack propagation and fatigue resistance as well as enhanced fiber stiffness properties. Advantages projected for the prestressed composite rotor spar concept include increased operational life and improved ballistic survivability at low life cycle cost.

  5. Performance optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.

    1991-01-01

    As part of a center-wide activity at NASA Langley Research Center to develop multidisciplinary design procedures by accounting for discipline interactions, a performance design optimization procedure is developed. The procedure optimizes the aerodynamic performance of rotor blades by selecting the point of taper initiation, root chord, taper ratio, and maximum twist which minimize hover horsepower while not degrading forward flight performance. The procedure uses HOVT (a strip theory momentum analysis) to compute the horse power required for hover and the comprehensive helicopter analysis program CAMRAD to compute the horsepower required for forward flight and maneuver. The optimization algorithm consists of the general purpose optimization program CONMIN and approximate analyses. Sensitivity analyses consisting of derivatives of the objective function and constraints are carried out by forward finite differences. The procedure is applied to a test problem which is an analytical model of a wind tunnel model of a utility rotor blade.

  6. Closed continuous-flow centrifuge rotor

    DOEpatents

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  7. Aerodynamic design of the National Rotor Testbed.

    SciTech Connect

    Kelley, Christopher Lee

    2015-10-01

    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  8. Development of synchronous machines with HTS rotor

    NASA Astrophysics Data System (ADS)

    Kummeth, P.; Frank, M.; Nick, W.; Nerowski, G.; Neumueller, H.-W.

    2005-10-01

    Optimized design of synchronous machines can be achieved by use of HTS tape conductors. The introduction of an iron-free air-core stator winding and replacement of the rotor's copper windings by Bi-2223 tapes allows to develop very compact HTS machines with less than half the weight and volume, higher efficiency and excellent operational behavior compared to conventional devices. In consequence these rotating machines with HTS rotors become very attractive for ship drives, power generation and industrial applications. A 400 kW synchronous HTS machine was designed, manufactured and tested at Siemens. Main goal was to demonstrate the feasibility of basic concepts. Development of a 4 MVA synchronous HTS generator is currently under way.

  9. Electrofriction method of manufacturing squirrel cage rotors

    DOEpatents

    Hsu, John S.

    2005-04-12

    A method of making a squirrel cage rotor of copper material for use in AC or DC motors, includes forming a core with longitudinal slots, inserting bars of conductive material in the slots, with ends extending out of opposite ends of the core, and joining the end rings to the bars, wherein the conductive material of either the end rings or the bars is copper. Various methods of joining the end rings to the bars are disclosed including electrofriction welding, current pulse welding and brazing, transient liquid phase joining and casting. Pressure is also applied to the end rings to improve contact and reduce areas of small or uneven contact between the bar ends and the end rings. Rotors made with such methods are also disclosed.

  10. Stability evaluation of rotor/bearing system

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1982-01-01

    A stability study of rotor/bearing systems is presented. Even though it was limited to study of a fully lubricated bearing subject to oil whirl, and further limited to low eccentricity region for linearity and with only one type of lubricant, it can be seen that the perturbation methodology, together with the sorting of the impedance terms into direct and quadrature with respect to input force can be very useful to the general study of stability. Further, the concept of active feedback should assist to increase knowledge in rotor system stability. While there remains a large amount of study to be accomplished, perhaps some more tools are available to assist this field of analysis.

  11. Design of rotors for improved structural life

    NASA Technical Reports Server (NTRS)

    Hill, J. T.

    1977-01-01

    Major rotor design criteria are discussed with particular emphasis on those aspects of rotor design that ensure long life component integrity. Dynamic considerations, that necessitate tuning of bladed disk and seal assemblies to avoid excessive vibratory stress at both design and off-design conditions are reviewed as well as low cycle fatigue considerations, which have resulted in detailed analysis procedures to establish part temperature and stress variation throughout an operating cycle and extensive specimen and component fatigue testing to establish safe cyclic operating limits. The frequency, size, and behavior of intrinsic material defects were investigated. Manufacturing process improvements, including the application of increasingly sophisticated inspection techniques and quality control procedures are reviewed in light of their impact on component durability.

  12. Vortex shedding by a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Botrini, M.; Beguier, C.; Chauvin, A.; Brun, R.

    1984-05-01

    A series of flow visualizations was performed to characterize the wake vortices of a Savonius rotor. The trials were undertaken in an attempt to account for discrepancies between theoretical and experimentally-derived power coefficients. The Savonius examined was two-bladed with a center offset. All tests were made in a water tunnel. Dye injection provided the visualization, and average velocities and velocity fluctuations were measured using a laser Doppler anemometer. A system of three vortices was found to be periodically shed by the rotor. Flow velocity fluctuation intensity peaked as a vortex was shed. The vortex shedding alternated from blade to blade, so that one was shed from a blade moving upstream.

  13. Helicopter rotor blade design for minimum vibration

    NASA Technical Reports Server (NTRS)

    Taylor, R. B.

    1984-01-01

    The importance of blade design parameters in rotor vibratory response and the design of a minimum vibration blade based upon this understanding are examined. Various design approaches are examined for a 4 bladed articulated rotor operating at a high speed flight condition. Blade modal shaping, frequency placement, structural and aerodynamic coupling, and intermodal cancellation are investigated to systematically identify and evaluate blade design parameters that influence blade airloads, blade modal response, hub loads, and fuselage vibration. The relative contributions of the various components of blade force excitation and response to the vibratory hub loads transmitted to the fuselage are determined in order to isolate primary candidates for vibration alleviation. A blade design is achieved which reduces the predicted fuselage vibration from the baseline blade by approximately one half. Blade designs are developed that offer significant reductions in vibration (and fatigue stresses) without resorting to special vibration alleviation devices, radical blade geometries, or weight penalties.

  14. Radionuclide cholescintigraphy in genetically confirmed Rotor syndrome.

    PubMed

    Sirucek, Pavel; Sulakova, Astrida; Jirsa, Milan; Mrhac, Lubomir; Havel, Martin; Kraft, Otakar

    2015-10-01

    A 7-year-old girl had been followed up for persistent conjugated hyperbilirubinemia since birth. Alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transpeptidase activity was within the normal range, and liver protein synthesis had always been normal. Infectious etiology of jaundice, autoimmune diseases, drug-induced liver injury, hemolytic anemia, α-1 anti-trypsin deficiency, Wilson disease and Gilbert syndrome were ruled out. At the age of 8 years the patient underwent radionuclide dynamic cholescintigraphy, indicating poor accumulation of the radiotracer in the liver on one hand, and severe retention of the radiopharmaceutical in the blood pool (including the heart) on the other hand. Rotor syndrome was suspected and finally confirmed on molecular analysis. This case represents the first cholescintigraphy report in a pediatric patient with genetically proven Rotor syndrome. © 2015 Japan Pediatric Society.

  15. Rotor with Flattened Exit Pressure Profile

    NASA Technical Reports Server (NTRS)

    Baltas, Constantine (Inventor); Prasad, Dilip (Inventor); Gallagher, Edward J. (Inventor)

    2015-01-01

    A rotor blade comprises an airfoil extending radially from a root section to a tip section and axially from a leading edge to a trailing edge, the leading and trailing edges defining a curvature therebetween. The curvature determines a relative exit angle at a relative span height between the root section and the tip section, based on an incident flow velocity at the leading edge of the airfoil and a rotational velocity at the relative span height. In operation of the rotor blade, the relative exit angle determines a substantially flat exit pressure ratio profile for relative span heights from 75% to 95%, wherein the exit pressure ratio profile is constant within a tolerance of 10% of a maximum value of the exit pressure ratio profile.

  16. New twist to steering. [Magnus effect rotors

    SciTech Connect

    Borg, J.L.

    1980-06-01

    The new vessel steering system is based on The Magnus Effect which is defined in simplified terms; if a vertical cylinder immersed in water is rotated, it produces a force at right angles to the direction of the water flowing past it. The Magnus Effect rotor needs only sufficient torque to overcome bearing and surface friction forces, so that the power requirements are very low. Further energy savings are realized because the rotor can develop maximum turning force or can return to zero in a few seconds. Tests with these cylindrical rudders have been conducted to verify the hydrodynamic theory. This concept is in the preliminary stages of development. Results are expected soon from field testing on an 1800-hp pushboat working four barges on the Warrior and Tombigbee Rivers in Alabama and Mississippi.

  17. Experimental study of main rotor tip geometry and tail rotor interactions in hover. Volume 1. Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Lombardi, J.

    1985-01-01

    A model scale hover test was conducted in the Sikorsky Aircraft Model rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. The test showed that overall the tail rotor effects on the advanced tip configurations tested are not substantially different from the effects on conventional tips.

  18. Ice Shapes on a Tail Rotor

    NASA Technical Reports Server (NTRS)

    Kreeger, Richard E.; Tsao, Jen-Ching

    2014-01-01

    Testing of a thermally-protected helicopter rotor in the Icing Research Tunnel (IRT) was completed. Data included inter-cycle and cold blade ice shapes. Accreted ice shapes were thoroughly documented, including tracing, scanning and photographing. This was the first time this scanning capability was used outside of NASA. This type of data has never been obtained for a rotorcraft before. This data will now be used to validate the latest generation of icing analysis tools.

  19. Multicyclic Controllable Twist Rotor Data Analysis

    NASA Technical Reports Server (NTRS)

    Wei, F. S.; Weisbrich, A. L.

    1979-01-01

    Rsults provide functional relationship between rotor performance, blade vibratory loads and dual control settings and indicate that multicyclic control produced significant reductions in blade flatwise bending moments and blade root actuator control loads. Higher harmonic terms of servo flap deflection were found to be most pronounced in flatwise bending moment, transmission vertical vibration and pitch link vibratory load equations. The existing test hardware represents a satisfactory configuration for demonstrating MCTR technology and defining a data base for additional wind tunnel testing.

  20. Labyrinthine turbine-rotor-blade tip seal

    NASA Technical Reports Server (NTRS)

    Wagner, William R. (Inventor)

    1987-01-01

    Means for sealing the tip 18 of a rotor turbine blade 10 against tip leakage flow comprising a multiplicity of recesses 30 formed in the surface of the tip 18. The recesses 30 are preferably formed in a labyrinthine or slaggered pattern which interposes at least one recess 30 in every leakage flow path across the tip 18 from the pressure side 26 to the suction side 28 of the blade 10.

  1. Flowfield Characteristics on a Retreating Rotor Blade

    DTIC Science & Technology

    2015-12-03

    these is the dynamic stall problem . In order to balance the rolling moments between the two sides of the rotor, the blade pitch is increased as the blade...consistent frequency. A similar phenomenon occurs in the canonical problem of flow induced over a spinning disk, when the disk has edgewise flow at an...turn bring closure to the 3-D dynamic stall problem . We also performed stereo Particle Image Velocimetry (SPIV) capture of the 3-component, phase

  2. Rotor blade construction for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Carter, Sr., Donald R. (Inventor); Krauss, Timothy A. (Inventor); Sedlak, Matthew (Inventor)

    1986-01-01

    A circulation control aircraft rotor blade having a spanwise Coanda surface 16 and a plurality of spanwise extending flexible composite material panels 18 cooperating with the surface to define slots for the discharge of compressed air from within the blade with each panel having first flexure means 60 associated with screw adjustments 36 for establishing a slot opening preload and second flexure means 62 associated with screw adjustments 38 for establishing a slot maximum opening.

  3. Tip cap for a rotor blade

    NASA Technical Reports Server (NTRS)

    Kofel, W. K.; Tuley, E. N.; Gay, C. H., Jr.; Troeger, R. E.; Sterman, A. P. (Inventor)

    1983-01-01

    A replaceable tip cap for attachment to the end of a rotor blade is described. The tip cap includes a plurality of walls defining a compartment which, if desired, can be divided into a plurality of subcompartments. The tip cap can include inlet and outlet holes in walls thereof to permit fluid communication of a cooling fluid there through. Abrasive material can be attached with the radially outer wall of the tip cap.

  4. Methyl rotor dependent vibrational interactions in toluene.

    PubMed

    Gascooke, Jason R; Lawrance, Warren D

    2013-04-07

    The methyl rotor dependence of a three state Fermi resonance in S1 toluene at ∼460 cm(-1) has been investigated using two-dimensional laser induced fluorescence. An earlier time-resolved study has shown the Fermi resonance levels to have different energy spacings at the two lowest methyl rotor states, m = 0 and 1 [J. A. Davies, A. M. Green, and K. L. Reid, Phys. Chem. Chem. Phys. 12, 9872 (2010)]. The overlapped m = 0 and 1 spectral features have been separated to provide direct spectral evidence for the m dependence of the resonance. The resonance has been probed at m = 3a(") 1 for the first time and found to be absent, providing further evidence for a large change in the interaction with m. Deperturbing the resonance at m = 0 and 1 reveals that the m dependence arises through differences in the separations of the "zero-order," locally coupled states. It is shown that this is the result of the local "zero-order" states being perturbed by long-range torsion-vibration coupling that shifts their energy by small amounts. The m dependence of the shifts arises from the Δm = ±3n (n = 1, 2, ...) coupling selection rule associated with torsion-rotation coupling in combination with the m(2) scaling of the rotor energies, which changes the ΔE for the interaction for each m. There is also an increase in the number of states that can couple to m = 1 compared with m = 0. Consideration of the magnitude of reported torsion-rotation coupling constants suggests that this effect is likely to be pervasive in molecules with methyl rotors.

  5. Open Rotor Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. The research program in both the low and high-speed wind tunnels is reviewed. Some detailed flowfield and acoustics measurements acquired for an internal NASA program are highlighted. The publically available research data is presented also.

  6. Dynamic Tester For Rotor Seals And Bearings

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1991-01-01

    Simplified apparatus measures performance under vibration. Measures some of dynamic parameters of rotor seals and bearings. Tests damping seals, damping bearings, conventional seals, and conventional bearings. Used with variety of pumped liquids, from water to liquid oxygen or hydrogen. Designed to test bearings and seals of turbopumps, tester rotates shaft at high speed while liquid flows much as it would in real turbopump. Also measures deflections of components.

  7. Dynamic Tester For Rotor Seals And Bearings

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1991-01-01

    Simplified apparatus measures performance under vibration. Measures some of dynamic parameters of rotor seals and bearings. Tests damping seals, damping bearings, conventional seals, and conventional bearings. Used with variety of pumped liquids, from water to liquid oxygen or hydrogen. Designed to test bearings and seals of turbopumps, tester rotates shaft at high speed while liquid flows much as it would in real turbopump. Also measures deflections of components.

  8. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2005-01-07

    U.S. tactical transport aircraft with designed -in radiological, biological, and chemical warfare protection. CRS-11 Figure 1. V-22 Osprey in Flight Key...Congressional Research Service ˜ The Library of Congress CRS Report for Congress Received through the CRS Web Order Code RL31384 V-22 Osprey Tilt...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  9. Flow Field Around a Hovering Rotor

    NASA Technical Reports Server (NTRS)

    Tung, C.; Low, S.

    1997-01-01

    A lifting surface hover code developed by the Analytical Method Inc. (AMI) was used to compute the average and unsteady velocity flow field of an isolated rotor without ground effect. The predicted velocity field compares well with experimental data obtained by hot-wire anemometry and by Laser Doppler Velocimetry. A subroutine 'DOWNWASH' was written to predict the velocity field at any given point in the wake for a given blade position.

  10. Dynamics of Full Annular Rotor Rub.

    DTIC Science & Technology

    1986-06-01

    the freqaency of excitation at which resonance occurs, is given by czr= /Kr 1 r. The rotor dikis enclosed in its casing, separated radially by a...stator which limits the magnitude of their responses at their respective resonant frequencies. Damping also causes a phase lag between the System’s...8217- with the element’s dynamic characteristics represented as in a simple linear resonator system: a spring-mounted mass with a dashpot in which

  11. Dark rotors in the late universe.

    PubMed

    Mayer, Frederick J

    2015-11-01

    The tresino phase-transition that took place about 300 years after the big-bang, converted most baryons into almost equal numbers of protons and tresinos. Many of these become oppositely-charged rotating pairs or "rotors". This paper examines the formation, evolution, disposition and observations of the protons and tresinos from the phase-transition to the present era. The solar corona is further examined within the same tresino phase-transition picture.

  12. Monitoring system of wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Frankenstein, B.; Schubert, L.; Meyendorf, N.; Friedmann, H.; Ebert, C.

    2009-03-01

    Conventionally, modal monitoring of Wind Turbine Rotor Blades is primarily based on the evaluation of eigenfrequencies. Beyond this, combining a sensor network with the Operational Modal Analysis (OMA) method, mode shape and parallely a local component are utilized here. In addition it is expected that the damping, which is also determined by the OMA method, will give a lead on damage development at the rotor already at an early stage. Modal monitoring by means of measurement is combined with FEM simulation and with the comparison of results obtained from measurement and simulation. Moreover, this will establish a connection between the engineer and the design data of a rotor blade, which also are based on FEM analyzes. A further significant increase regarding error resolution is possible by combining the global modal methods with locally sensitive monitoring methods, based on guided elastic waves. These assume plate-like structures through which elastic waves propagate in the low-frequency ultrasonic range (10 - 100 kHz) in certain modes. These different wave modes interact distinctively with inner structural damages such as web fractures and delaminations. It is differentiated between piezoelectrically excited waves (acousto ultrasonics), and waves produced by energy released at fractures, delamination etc. (acoustic emission). Applying a moderate number of sensors, the combination of both methods can allow an effective monitoring of the global structure.

  13. Wobbling geometry in a simple triaxial rotor

    NASA Astrophysics Data System (ADS)

    Shi, Wen-Xian; Chen, Qi-Bo

    2015-05-01

    The spectroscopic properties and angular momentum geometry of the wobbling motion of a simple triaxial rotor are investigated within the triaxial rotor model. The obtained exact solutions of energy spectra and reduced quadrupole transition probabilities are compared to the approximate analytic solutions from the harmonic approximation formula and Holstein-Primakoff formula. It is found that the low lying wobbling bands can be well described by the analytic formulae. The evolution of the angular momentum geometry as well as the K-distribution with respect to the rotation and the wobbling phonon excitation are studied in detail. It is demonstrated that with the increase of the wobbling phonon number, the triaxial rotor changes its wobbling motions along the axis with the largest moment of inertia to the axis with the smallest moment of inertia. In this process, a specific evolutionary track that can be used to depict the motion of a triaxial rotating nucleus is proposed. Supported by President's Undergraduate Research Fellowship (PURF), Peking University, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11345004, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206) and Research Fund for the Doctoral Program of Higher Education (20110001110087)

  14. Stopped-Rotor Cyclocopter for Venus Exploration

    NASA Technical Reports Server (NTRS)

    Husseyin, Sema; Warmbrodt, William G.

    2016-01-01

    The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.

  15. The tilt rotor research aircraft (XV-15) program

    NASA Technical Reports Server (NTRS)

    Magee, J. P.

    1983-01-01

    The tilt rotor concept is introduced and the performance capabilities and noise characteristics of the XV-15 aircraft are discussed. In hover, the aircraft is lifted by the two wing tip mounted rotors with the nacelles in the vertical position. In this flight mode, the vehicle is a twin rotor helicopter and is controlled by rotor cyclic and collective controls. The aircraft can fly as a helicopter or tilt the nacelle to the propeller mode and operate as a fixed-wing twin turboprop airplane. It is also possible to stop the conversion at any intermediate angle and fly continuously or reconvert. The rotors are powered by two modified T-53 engines and the power train includes a cross shaft located in the wing, to allow for the engine failure case and still retain power to both rotors.

  16. Two-Dimensional Computational Model for Wave Rotor Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.

    1996-01-01

    A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.

  17. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, Carl A.; Johnson, Wayne F.; Walker, William A.

    1992-01-01

    A rotor assembly for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water, includes a rotor body for rotation about an axis and including a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses.

  18. Rotor assembly and method for automatically processing liquids

    DOEpatents

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  19. Flight Testing the Rotor Systems Research Aircraft (RSRA)

    NASA Technical Reports Server (NTRS)

    Hall, G. W.; Merrill, R. K.

    1983-01-01

    In the late 1960s, efforts to advance the state-of-the-art in rotor systems technology indicated a significant gap existed between our ability to accurately predict the characteristics of a complex rotor system and the results obtained through flight verification. Even full scale wind tunnel efforts proved inaccurate because of the complex nature of a rotating, maneuvering rotor system. The key element missing, which prevented significant advances, was our inability to precisely measure the exact rotor state as a function of time and flight condition. Two Rotor Research Aircraft (RSRA) were designed as pure research aircraft and dedicated rotor test vehicles whose function is to fill the gap between theory, wind tunnel testing, and flight verification. The two aircraft, the development of the piloting techniques required to safely fly the compound helicopter, the government flight testing accomplished to date, and proposed future research programs.

  20. HPOTP low-speed flexible rotor balancing, phase 1

    NASA Technical Reports Server (NTRS)

    Giordano, J.; Zorzi, E.

    1985-01-01

    A method was developed that shows promise in overcoming many balancing limitations. This method establishes one or more windows for low speed, out-of-housing balancing of flexible rotors. These windows are regions of speed and support flexibility where two conditions are simultaneously fulfilled. First, the rotor system behaves flexibly; therefore, there is separation among balance planes. Second, the response due to balance weights is large enough to reliably measure. The analytic formulation of the low-speed flexible rotor balancing method is described. The results of proof-of-principle tests conducted under the program are presented. Based on this effort, it is concluded that low speed flexible rotor balancing is a viable technology. In particular, the method can be used to balance a rotor bearing system at low speed which results in smooth operation above more than one bending critical speed. Furthermore, this balancing methodology is applicable to SSME turbopump rotors.

  1. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, Peter B.; Myers, Wendell B.

    1995-01-01

    A ceramic helical rotor expander using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1100.degree. C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals.

  2. Double-ended ceramic helical-rotor expander

    DOEpatents

    Mohr, P.B.; Myers, W.B.

    1995-02-28

    A ceramic helical rotor expander is disclosed using a double-ended or tandem herringbone type rotor arrangement with bearing and seal assemblies remote from the hot gas inlets and especially capable of operating at an inlet temperature of above 1,100 C. The rotors are solid or hollow and bonded to hollow metal shafts, and mounted in a composite or simple prismatic casing. The rotors, casing and shafts are constructed from low expansivity materials. In the preferred embodiment the rotors are constructed of silicon nitride and the shafts constructed of an molybdenum alloy, with the metal shafts being supported in bearings and secured to synchronizing gears. The rotors and casing may be provided with coolant channels therein, and are constructed to eliminate the problem of end leakages at inlet temperature and pressure, and the need for high temperature bearings and seals. 3 figs.

  3. Rotor for processing liquids using movable capillary tubes

    DOEpatents

    Johnson, Wayne F.; Burtis, Carl A.; Walker, William A.

    1989-05-30

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described.

  4. Rotor for processing liquids using movable capillary tubes

    DOEpatents

    Johnson, Wayne F.; Burtis, Carl A.; Walker, William A.

    1989-01-01

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described.

  5. Theoretical study on the flow about Savonius rotor

    SciTech Connect

    Ogawa, T.

    1984-03-01

    A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively. 21 references.

  6. Theoretical study on the flow about Savonius rotor

    NASA Astrophysics Data System (ADS)

    Ogawa, T.

    1984-03-01

    A method for the two-dimensional analysis of the separated flow about Savonius rotors is presented. Calculations are performed by combining the singularity method and the discrete vortex method. The method is applied to the simulation of flows about a stationary rotor and a rotating rotor. Moreover, torque and power coefficients are computed and compared with the experimental results presented by Sheldahl et al. Theoretical and experimental results agree well qualitatively.

  7. Rotor for processing liquids using movable capillary tubes

    DOEpatents

    Johnson, W.F.; Burtis, C.A.; Walker, W.A.

    1987-07-17

    A rotor assembly for processing liquids, especially whole blood samples, is disclosed. The assembly includes apparatus for separating non-liquid components of whole blood samples from liquid components, apparatus for diluting the separated liquid component with a diluent and apparatus for transferring the diluted sample to an external apparatus for analysis. The rotor assembly employs several movable capillary tubes to handle the sample and diluents. A method for using the rotor assembly to process liquids is also described. 5 figs.

  8. Vibration analysis of rotor blades with pendulum absorbers

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Hammond, C. E.

    1979-01-01

    A comprehensive vibration analysis of rotor blades with spherical pendulum absorbers is presented. Linearized equations of motion for small oscillations about the steady-state deflection of a spherical pendulum on elastic rotor blades undergoing coupled flapwise bending, chordwise bending, and torsional vibrations are obtained. A transmission matrix formulation is given to determine the natural vibrational characteristics of rotor blades with spherical or simple flapping pendulum absorbers. The natural frequencies and mode shapes of a hingeless rotor blade with a spherical pendulum are computed.

  9. Rotor aeroelastic stability coupled with helicopter body motion

    NASA Technical Reports Server (NTRS)

    Miao, W. L.; Huber, H. B.

    1974-01-01

    A 5.5-foot-diameter, soft-in-plane, hingeless-rotor system was tested on a gimbal which allowed the helicopter rigid-body pitch and roll motions. Coupled rotor/airframe aeroelastic stability boundaries were explored and the modal damping ratios were measured. The time histories were correlated with analysis with excellent agreement. The effects of forward speed and some rotor design parameters on the coupled rotor/airframe stability were explored both by model and analysis. Some physical insights into the coupled stability phenomenon are suggested.

  10. Interface structure for hub and mass attachment in flywheel rotors

    DOEpatents

    Deteresa, Steven J.; Groves, Scott E.

    1998-06-02

    An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

  11. Interface structure for hub and mass attachment in flywheel rotors

    DOEpatents

    Deteresa, S.J.; Groves, S.E.

    1998-06-02

    An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

  12. Tuned mass damper for integrally bladed turbine rotor

    NASA Technical Reports Server (NTRS)

    Marra, John J. (Inventor)

    1994-01-01

    The invention is directed to a damper ring for damping the natural vibration of the rotor blades of an integrally bladed rocket turbine rotor. The invention consists of an integral damper ring which is fixed to the underside of the rotor blade platform of a turbine rotor. The damper ring includes integral supports which extend radially outwardly therefrom. The supports are located adjacent to the base portion and directly under each blade of the rotor. Vibration damping is accomplished by action of tuned mass damper beams attached at each end to the supports. These beams vibrate at a predetermined frequency during operation. The vibration of the beams enforce a local node of zero vibratory amplitude at the interface between the supports and the beam. The vibration of the beams create forces upon the supports which forces are transmitted through the rotor blade mounting platform to the base of each rotor blade. When these forces attain a predetermined design frequency and magnitude and are directed to the base of the rotor blades, vibration of the rotor blades is effectively counteracted.

  13. Aerodynamic Interaction Effects of a Helicopter Rotor and Fuselage

    NASA Technical Reports Server (NTRS)

    Boyd, David D., Jr.

    1999-01-01

    A three year Cooperative Research Agreements made in each of the three years between the Subsonic Aerodynamics Branch of the NASA Langley Research Center and the Virginia Polytechnic Institute and State University (Va. Tech) has been completed. This document presents results from this three year endeavor. The goal of creating an efficient method to compute unsteady interactional effects between a helicopter rotor and fuselage has been accomplished. This paper also includes appendices to support these findings. The topics are: 1) Rotor-Fuselage Interactions Aerodynamics: An Unsteady Rotor Model; and 2) Rotor/Fuselage Unsteady Interactional Aerodynamics: A New Computational Model.

  14. Note: Attenuation motion of acoustically levitated spherical rotor

    NASA Astrophysics Data System (ADS)

    Lü, P.; Hong, Z. Y.; Yin, J. F.; Yan, N.; Zhai, W.; Wang, H. P.

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  15. Note: Attenuation motion of acoustically levitated spherical rotor.

    PubMed

    Lü, P; Hong, Z Y; Yin, J F; Yan, N; Zhai, W; Wang, H P

    2016-11-01

    Here we observe the attenuation motion of spherical rotors levitated by near-field acoustic radiation force and analyze the factors that affect the duration time of free rotation. It is found that the rotating speed of freely rotating rotor decreases exponentially with respect to time. The time constant of exponential attenuation motion depends mainly on the levitation height, the mass of rotor, and the depth of concave ultrasound emitter. Large levitation height, large mass of rotor, and small depth of concave emitter are beneficial to increase the time constant and hence extend the duration time of free rotation.

  16. Helicopter rotor dynamics and aeroelasticity - Some key ideas and insights

    NASA Technical Reports Server (NTRS)

    Friedmann, Peretz P.

    1990-01-01

    Four important current topics in helicopter rotor dynamics and aeroelasticity are discussed: (1) the role of geometric nonlinearities in rotary-wing aeroelasticity; (2) structural modeling, free vibration, and aeroelastic analysis of composite rotor blades; (3) modeling of coupled rotor/fuselage areomechanical problems and their active control; and (4) use of higher-harmonic control for vibration reduction in helicopter rotors in forward flight. The discussion attempts to provide an improved fundamental understanding of the current state of the art. In this way, future research can be focused on problems which remain to be solved instead of producing marginal improvements on problems which are already understood.

  17. Position Sensing for Rotor in Hybrid Stepper Motor

    NASA Technical Reports Server (NTRS)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  18. Influence of rubbing on rotor dynamics, part 2

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    Rotor dynamic behavior depends considerably on how much the specific physical phenomena accompanying rotor rubbing against the stator is involved. The experimental results of rotor-to-stator rubbing contact are analyzed. The computer code is described for obtaining numerical calculations of rotor-to-stator rubbing system dynamic responses. Computer generated results are provided. The reduced dynamic data from High Pressure Fuel Turbo Pump (HPFTP) hot fire test are given. The results provide some significant conclusions. Information is provided on the electronic instrumentation used in the experimental testing.

  19. Results of a sub-scale model rotor icing test

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.; Bond, Thomas H.; Britton, Randall K.

    1991-01-01

    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested.

  20. The computation and validation of hovering rotor performance

    NASA Technical Reports Server (NTRS)

    Mba, M. N.; Ramachandran, K.; Caradonna, F. X.

    1991-01-01

    Recent experience with the HELIX-I code is presented, and its ability to predict the flow and performance of both conventional rotors and the unconventional anhedral parabolic tip rotor utilized on the Super Puma MK2 is described. HELIX-I is a standard full-potential rotor code having the ability to efficiently predict the detailed flow on a rotor blade, including 3D, transonic, and weak viscous effects (using appropriate boundary layer analyses). The resulting code is the first full-potential CFD code with the ability to model free wake convection and the first CFD code of any type to predict hover performance.

  1. Open Rotor Noise Shielding by Blended-Wing-Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Czech, Michael J.; Thomas, Russell H.

    2015-01-01

    This paper presents an analysis of open rotor noise shielding by Blended Wing Body (BWB) aircraft by using model scale test data acquired in the Boeing Low Speed Aeroacoustic Facility (LSAF) with a legacy F7/A7 rotor model and a simplified BWB platform. The objective of the analysis is the understanding of the shielding features of the BWB and the method of application of the shielding data for noise studies of BWB aircraft with open rotor propulsion. By studying the directivity patterns of individual tones, it is shown that though the tonal energy distribution and the spectral content of the wind tunnel test model, and thus its total noise, may differ from those of more advanced rotor designs, the individual tones follow directivity patterns that characterize far field radiations of modern open rotors, ensuring the validity of the use of this shielding data. Thus, open rotor tonal noise shielding should be categorized into front rotor tones, aft rotor tones and interaction tones, not only because of the different directivities of the three groups of tones, but also due to the differences in their source locations and coherence features, which make the respective shielding characteristics of the three groups of tones distinctly different from each other. To reveal the parametric trends of the BWB shielding effects, results are presented with variations in frequency, far field emission angle, rotor operational condition, engine installation geometry, and local airframe features. These results prepare the way for the development of parametric models for the shielding effects in prediction tools.

  2. Experimental study on the aerodynamic performance of a Savonius rotor

    SciTech Connect

    Fujisawa, Nobuyuki; Gotoh, Futoshi . Dept. of Mechanical Engineering)

    1994-08-01

    The aerodynamic performance of a Savonius rotor has been studied by measuring the pressure distributions on the blade surfaces at various rotor angles and tip-speed ratios. It is found that the pressure distributions on the rotating rotor differ remarkably from those on the still rotor especially on the convex side of the advancing blade, where a low pressure region is formed by the moving wall effect of the blade. The torque and power performances, evaluated by integrating the pressure, are in close agreement with those by the direct torque measurement. The drag and side force performance is also studied.

  3. Performance testing of a Savonius windmill rotor in shear flows

    NASA Astrophysics Data System (ADS)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  4. RWF rotor-wake-fuselage code software reference guide

    NASA Technical Reports Server (NTRS)

    Berry, John D.

    1991-01-01

    The RWF (Rotor-Wake-Fuselage) code was developed from first principles to compute the aerodynamics associated with the complex flow field of helicopter configurations. The code is sized for a single, multi-bladed main rotor and any configuration of non-lifting fuselage. The mathematical model for the RWF code is based on the integration of the momentum equations and Green's theorem. The unknowns in the problem are the strengths of prescribed singularity distributions on the boundaries of the flow. For the body (fuselage) a surface of constant strength source panels is used. For the rotor blades and rotor wake a surface of constant strength doublet panels is used. The mean camber line of the rotor airfoil is partitioned into surface panels. The no-flow boundary condition at the panel centroids is modified at each azimuthal step to account for rotor blade cyclic pitch variation. The geometry of the rotor wake is computers at each time step of the solution. The code produces rotor and fuselage surface pressures, as well as the complex geometry of the evolving rotor wake.

  5. Full-scale hingeless rotor performance and loads

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.

    1995-01-01

    A full-scale BO-105 hingeless rotor system was tested in the NASA Ames 40- by 80-Foot Wind Tunnel on the rotor test apparatus. Rotor performance, rotor loads, and aeroelastic stability as functions of both collective and cyclic pitch, tunnel velocity, and shaft angle were investigated. This test was performed in support of the Rotor Data Correlation Task under the U.S. Army/German Memorandum of Understanding on Cooperative Research in the Field of Helicopter Aeromechanics. The primary objective of this test program was to create a data base for full-scale hingeless rotor performance and structural blade loads. A secondary objective was to investigate the ability to match flight test conditions in the wind tunnel. This data base can be used for the experimental and analytical studies of hingeless rotor systems over large variations in rotor thrust and tunnel velocity. Rotor performance and structural loads for tunnel velocities from hover to 170 knots and thrust coefficients (C(sub T)/sigma) from 0.0 to 0.12 are presented in this report. Thrust sweeps at tunnel velocities of 10, 20, and 30 knots are also included in this data set.

  6. Numerical simulation of a hovering rotor using embedded grids

    NASA Technical Reports Server (NTRS)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  7. Mechanical coupling for a rotor shaft assembly of dissimilar materials

    DOEpatents

    Shi, Jun [Glastonbury, CT; Bombara, David [New Hartford, CT; Green, Kevin E [Broad Brook, CT; Bird, Connic [Rocky Hill, CT; Holowczak, John [South Windsor, CT

    2009-05-05

    A mechanical coupling for coupling a ceramic disc member to a metallic shaft includes a first wedge clamp and a second wedge clamp. A fastener engages a threaded end of a tie-bolt to sandwich the ceramic disc between the wedge clamps. An axial spring is positioned between the fastener and the second wedge clamp to apply an axial preload along the longitudinal axis. Another coupling utilizes a rotor shaft end of a metallic rotor shaft as one wedge clamp. Still another coupling includes a solid ceramic rotor disc with a multiple of tie-bolts radially displaced from the longitudinal axis to exert the preload on the solid ceramic rotor disc.

  8. Instability thresholds for flexible rotors in hydrodynamic bearings

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Flack, R. D.

    1980-01-01

    Two types of fixed pad hydrodynamic bearings (multilobe and pressure dam) were considered. Optimum and nonoptimum geometric configurations were tested. The optimum geometric configurations were determined by using a theoretical analysis and then the bearings were constructed for a flexible rotor test rig. It was found that optimizing bearings using this technique produces a 100% or greater increase in rotor stability. It is shown that this increase in rotor stability is carried out in the absence of certain types of instability mechanisms such as aerodynamic crosscoupling. However, the increase in rotor stability should greatly improve rotating machinery performance in the presence of such forces as well.

  9. Vibration analysis of rotor blades with an attached concentrated mass

    NASA Technical Reports Server (NTRS)

    Murthy, V. R.; Barna, P. S.

    1977-01-01

    The effect of an attached concentrated mass on the dynamics of helicopter rotor blades is determined. The point transmission matrix method was used to define, through three completely automated computer programs, the natural vibrational characteristics (natural frequencies and mode shapes) of rotor blades. The problems of coupled flapwise bending, chordwise bending, and torsional vibration of a twisted nonuniform blade and its special subcase pure torsional vibration are discussed. The orthogonality relations that exist between the natural modes of rotor blades with an attached concentrated mass are derived. The effect of pitch, rotation, and point mass parameters on the collective, cyclic, scissor, and pure torsional modes of a seesaw rotor blade is determined.

  10. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  11. Wind-tunnel Tests of a Cyclogiro Rotor

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Windler, Ray

    1935-01-01

    During an extensive study of all types of rotating wings, the NACA examined the cyclogiro rotor and made an aerodynamic analysis of that system (reference 1). The examination disclosed that such a machine had sufficient promise to justify an experimental investigation; a model with a diameter and span of 8 feet was therefore constructed and tested in the 20-foot wind tunnel during 1934. The experimental work included tests of the effect of the motion upon the rotor forces during the static-lift and forward-flight conditions at several rotor speeds and the determination of the relations between the forces generated by the rotor and the power required by it.

  12. Rotor dynamic considerations for large wind power generator systems

    NASA Technical Reports Server (NTRS)

    Ormiston, R. A.

    1973-01-01

    Successful large, reliable, low maintenance wind turbines must be designed with full consideration for minimizing dynamic response to aerodynamic, inertial, and gravitational forces. Much of existing helicopter rotor technology is applicable to this problem. Compared with helicopter rotors, large wind turbines are likely to be relatively less flexible with higher dimensionless natural frequencies. For very large wind turbines, low power output per unit weight and stresses due to gravitational forces are limiting factors. The need to reduce rotor complexity to a minimum favors the use of cantilevered (hingeless) rotor configurations where stresses are relieved by elastic deformations.

  13. Tuned mass damper for integrally bladed turbine rotor

    NASA Astrophysics Data System (ADS)

    Marra, John J.

    1994-12-01

    The invention is directed to a damper ring for damping the natural vibration of the rotor blades of an integrally bladed rocket turbine rotor. The invention consists of an integral damper ring which is fixed to the underside of the rotor blade platform of a turbine rotor. The damper ring includes integral supports which extend radially outwardly therefrom. The supports are located adjacent to the base portion and directly under each blade of the rotor. Vibration damping is accomplished by action of tuned mass damper beams attached at each end to the supports. These beams vibrate at a predetermined frequency during operation. The vibration of the beams enforce a local node of zero vibratory amplitude at the interface between the supports and the beam. The vibration of the beams create forces upon the supports which forces are transmitted through the rotor blade mounting platform to the base of each rotor blade. When these forces attain a predetermined design frequency and magnitude and are directed to the base of the rotor blades, vibration of the rotor blades is effectively counteracted.

  14. Tuned mass damper for integrally bladed turbine rotor

    NASA Astrophysics Data System (ADS)

    Marra, John J.

    1993-10-01

    The invention is directed to a damper ring for damping the natural vibration of the rotor blades of an integrally bladed rocket turbine rotor. The invention consists of an integral damper ring which is fixed to the underside of the rotor blade platform of a turbine rotor. The damper ring includes integral supports which extend radially outwardly therefrom. The supports are located adjacent to the base portion and directly under each blade of the rotor. Vibration damping is accomplished by action of tuned mass damper beams attached at each end to the supports. These beams vibrate at a predetermined frequency during operation. The vibration of the beams enforce a local node of zero vibratory amplitude at the interface between the supports and the beam. The vibration of the beams create forces upon the supports which forces are transmitted through the rotor blade mounting platform to the base of each rotor blade. When these forces attain a predetermined design frequency and magnitude and are directed to the base of the rotor blades, vibration of the rotor blades is effectively counteracted.

  15. Experimental study of main rotor/tail rotor/airframe interactions in hover. Volume 1: Text and figures

    NASA Technical Reports Server (NTRS)

    Balch, D. T.; Saccullo, A.; Sheehy, T. W.

    1983-01-01

    To assist in identifying and quantifying the relevant parameters associated with the complex topic of main rotor/fuselage/tail rotor interference, a model scale hover test was conducted in the Model Rotor Hover Facility. The test was conducted using the basic model test rig, fuselage skins to represent a UH-60A BLACK HAWK helicopter, 4 sets of rotor blades of varying geometry (i.e., twist, airfoils and solidity) and a model tail rotor that could be relocated to give changes in rotor clearance (axially, laterally, and vertically), can't angle and operating model (pusher or tractor). The description of the models and the tests, data analysis and summary (including plots) are included. The customary system of units gas used for principal measurements and calculations. Expressions in both SI units and customary units are used with the SI units stated first and the customary units afterwords, in parenthesis.

  16. Use of Cholesteric Liquid Crystals for Locating Voids in Adhesively Bonded Helicopter Rotor Blades.

    DTIC Science & Technology

    rotor blades. Results of testing two tail rotors are presented and analyzed. A general review of other nondestructive testing methods for rotor blades and a review of liquid crystals is also included. (Author)

  17. Rotor fragment protection program: Statistics on aircraft gas turbine engine rotor failures that occurred in US commercial aviation during 1979

    NASA Technical Reports Server (NTRS)

    Delucia, R. A.; Salvino, J. T.

    1982-01-01

    Statistical information relating to the number of gas turbine engine rotor failures which occurred during 1979 in commercial aviation service use is provided. The predominant failure mode involved blade fragments, 84 percent of which were contained. No uncontained disk failures occurred and although fewer rotor rim and seal failures occurred, 100 percent and 50 percent, respectively, were uncontained. Sixty-eight percent of the 157 rotor failures occurred during the take-off and climb stages of flight.

  18. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    PubMed Central

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  19. Development of an advanced high-speed rotor - Final results from the Advanced Flight Research Rotor program

    NASA Technical Reports Server (NTRS)

    Jenks, Mark; Haslim, Leonard

    1988-01-01

    The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.

  20. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  1. Wind tunnel test on a 1/4.622 Froude scale, hingeless rotor, tilt rotor model, volume 1

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Alexander, H. R.

    1976-01-01

    Wing tunnel test data on a 1/4.622 Froude scale, hingeless rotor, tilt rotor mode are reported for all potential flight conditions through hover and a wide envelope of transitions. A mathematical model was used to describe the rotor system in real time simulation by means of regression analyses. Details of the model, test program and data system are provided together with four data files for hover and transition.

  2. Development of a rotor wake/vortex model. Volume 2: User's manual for computer program

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Gliebe, P. R.

    1984-01-01

    The principal objective was to establish a verified rotor wake/vortex model for specific application to fan and compressor rotor-stator interaction and resulting noise generation. A description and flow chart of the Rotor Wake/Vortex Model computer program, a listing of the program, definitions of the input/output parameters, a sample input/output case, and input files for Rotor 55, the JT15D rotor, and Rotor 67, Stage 1 are provided.

  3. Performance and loads data from a hover test of a full-scale XV-15 rotor

    NASA Technical Reports Server (NTRS)

    Felker, F. F.; Betzina, M. D.; Signor, D. B.

    1985-01-01

    A hover test of a full-scale XV-15 rotor was conducted at the Outdoor Aerodynamic Research Facility at Ames Research Center. The primary objective of the test was to obtain accurate measurements of the hover performance of the original, metal-blade XV-15 rotor system. Data were acquired for rotor tip Mach numbers ranging from 0.60 to 0.73. This report presents data on rotor performance, rotor wake downwash velocities, and rotor loads.

  4. Rotor system having alternating length rotor blades for reducing blade-vortex interaction (BVI) noise

    NASA Technical Reports Server (NTRS)

    Moffitt, Robert C. (Inventor); Visintainer, Joseph A. (Inventor)

    1997-01-01

    A rotor system (4) having odd and even blade assemblies (O.sub.b, E.sub.b) mounting to and rotating with a rotor hub assembly (6) wherein the odd blade assemblies (O.sub.b) define a radial length R.sub.O, and the even blade assemblies (E.sub.b) define a radial length R.sub.E and wherein the radial length R.sub.E is between about 70% to about 95% of the radial length R.sub.O. Other embodiments of the invention are directed to a Variable Diameter Rotor system (4) which may be configured for operating in various operating modes for optimizing aerodynamic and acoustic performance. The Variable Diameter Rotor system (4) includes odd and even blade assemblies (O.sub.b, E.sub.b) having inboard and outboard blade sections (10, 12) wherein the outboard blade sections (12) telescopically mount to the inboard blade sections (10). The outboard blade sections (12) are positioned with respect to the inboard blade sections (10 such that the radial length R.sub.E of the even blade assemblies (E.sub.b) is equal to the radial length R.sub.O of the odd blade assemblies (O.sub.b) in a first operating mode, and such that the radial length R.sub.E is between about 70% to about 95% of the length R.sub.O in a second operating mode.

  5. Simulation of Rotor Blade Element Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.; Duisenberg, Ken

    1996-01-01

    A turbulence model has been developed for blade-element helicopter simulation. This model, called Simulation of Rotor Blade Element Turbulence (SORBET), uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. An initial investigation of SORBET has been performed using a piloted, motion-based simulation of the Sikorsky UH60A Black Hawk. Although only the vertical component of stochastic turbulence was used in this investigation, vertical turbulence components induce vehicle responses in all translational and rotational degrees of freedom of the helicopter. The single-degree-of-freedom configuration of SORBET was compared to a conventional full 6-degrees-of-freedom baseline configuration, where translational velocity inputs are superimposed at the vehicle center of gravity, and rotational velocity inputs are created from filters that approximate the immersion rate into the turbulent field. For high-speed flight the vehicle responses were satisfactory for both models. Test pilots could not distinguish differences between the baseline configuration and SORBET. In low-speed flight the baseline configuration received criticism for its high frequency content, whereas the SORBET model elicited favorable pilot opinion. For this helicopter, which has fully articulated blades, results from SORBET show that vehicle responses to turbulent blade-station disturbances are severely attenuated. This is corroborated by in-flight observation of the rotor tip path plane as compared to vehicle responses.

  6. Simulation of Rotor Blade Element Turbulence

    NASA Technical Reports Server (NTRS)

    McFarland, R. E.; Duisenberg, Ken

    1996-01-01

    A turbulence model has been developed for blade-element helicopter simulation. This model, called Simulation of Rotor Blade Element Turbulence (SORBET), uses an innovative temporal and geometrical distribution algorithm that preserves the statistical characteristics of the turbulence spectra over the rotor disc, while providing velocity components in real time to each of five blade-element stations along each of four blades. An initial investigation of SORBET has been performed using a piloted, motion-based simulation of the Sikorsky UH60A Black Hawk. Although only the vertical component of stochastic turbulence was used in this investigation, vertical turbulence components induce vehicle responses in all translational and rotational degrees of freedom of the helicopter. The single-degree-of-freedom configuration of SORBET was compared to a conventional full 6-degrees-of-freedom baseline configuration, where translational velocity inputs are superimposed at the vehicle center of gravity, and rotational velocity inputs are created from filters that approximate the immersion rate into the turbulent field. For high-speed flight the vehicle responses were satisfactory for both models. Test pilots could not distinguish differences between the baseline configuration and SORBET. In low-speed flight the baseline configuration received criticism for its high frequency content, whereas the SORBET model elicited favorable pilot opinion. For this helicopter, which has fully articulated blades, results from SORBET show that vehicle responses to turbulent blade-station disturbances are severely attenuated. This is corroborated by in-flight observation of the rotor tip path plane as compared to vehicle responses.

  7. Design optimization for active twist rotor blades

    NASA Astrophysics Data System (ADS)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  8. Inflight Rotor Stability Monitor. [for Sikorsky aircraft

    NASA Technical Reports Server (NTRS)

    Kuczynski, W. A.

    1976-01-01

    An inflight rotor stability monitor developed at Sikorsky Aircraft to support stability testing of new rotorcraft is described. The monitor has as its core a damping estimation algorithm which embodies spectral analysis techniques. The interactive system is activated and controlled from a cathode ray tube (CRT) and operates on-line in a flight test telemetry environment. Accurate estimates of the level of damping of critical system modes are generated within one minute of the completion of a prescribed test maneuver. The stability monitor was used successfully to support various Sikorsky research and development flight programs including the UTTAS, CH-53E, S-67 Fan-in-Fin, and ABC.

  9. Porphyrin and bodipy molecular rotors as microviscometers

    NASA Astrophysics Data System (ADS)

    Kimball, Joseph Daniel, III

    Viscosity, a fluid's internal resistance to flow and resist molecular diffusion, is a fundamental property of fluid media. Determining the bulk viscosity of a fluid has been easy to relatively simple to accomplish for many years, yet in the recent decade there has been a focus on techniques to measure a fluid's microviscosity. Microviscosity differs from bulk viscosity such that microviscosity is the friction experienced by a single particle interacting with its micron-sized local environment. Macroscopic methods to evaluate the viscosity are well established, but methods to determine viscosity on the microscale level remains unclear. This work determines the viability of three molecular rotors designed as probes for microviscosity in organic media, ionic liquids, and in the cellular microenvironment. Understanding microviscosity is important because it one of the main properties of any fluid and thus has an effect on any diffusion related processes. A variety of mass and signal transport phenomena as well as intermolecular interactions are often governed by viscosity. Molecular rotors are a subclass of intramolecular charge transfer fluorophores which form a lower energy twisted state. This results in a charge separated species which is highly sensitive to its surrounding microenviroment's viscosity as high viscosity limits its ability to form this twisted state. Once excited, there are deactivation routes which the excited fluorophore can undergo: radiative and non-radiative. Both were studied in this work. In the case of a radiative decay, as seen in porphyrin dimer, the energy is released in the form of a photon and is seen as a shifted band in the emission structure. The conformation of the porphyrin dimer was found to be influenced differently by ionic liquids as compared to molecular solvents, indicating the microheterogenous nature of ionic liquids play a role in the conformation. For non-radiative decays, BODIPY dyads and triads were investigated. The

  10. Progress in rotor broadband noise research

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Schlinker, R. H.

    1983-01-01

    The current status of research on various rotor broadband noise sources is reviewed. Theoretical modeling techniques which appear to have the most promise in the development of successful noise prediction capabilities are emphasized. The types of noise considered include: turbulence ingestion noise, blade self-noise due to turbulence passing the trailing edge, blade self-noise due to separated flow, and blade self-noise due to vortex shedding. Comparisons with experimental results are given, and present theoretical and experimental limitations are delineated to help identify areas of needed research.

  11. Integrated Technology Rotor Methodology Assessment Workshop

    NASA Technical Reports Server (NTRS)

    Mcnulty, Michael J. (Editor); Bousman, William G. (Editor)

    1988-01-01

    The conference proceedings contains 14 formal papers and the results of two panel discussions. In addition, a transcript of discussion that followed the paper presentations and panels is included. The papers are of two kinds. The first seven papers were directed specifically to the correlation of industry and government mathematical models with data for rotorcraft stability from six experiments. The remaining 7 papers dealt with related topics in the prediction of rotor aeroelastic or aeromechanical stability. The first of the panels provided an evaluation of the correlation that was shown between the mathematical models and the experimental data. The second panel addressed the general problems of the validation of mathematical models.

  12. Vortex control for rotor blade devices

    NASA Technical Reports Server (NTRS)

    Greenblatt, David (Inventor)

    2008-01-01

    To control vortices originating at the tips of a rotor's blades rotating through the air at a revolution frequency f, separation control device(s) are actuated to periodically introduce perturbations into the airflow moving over the blades. The periodic introduction of perturbations is controlled in accordance with a periodic modulating frequency of introduction f.sub.0 while the frequency of the perturbations so-introduced is designated as f.sub.e. Vortex control is achieved when the periodic modulating frequency of introduction f.sub.0 satisfies the relationship nf.ltoreq.f.sub.0.ltoreq.f.sub.e where n is the number of blades.

  13. SMART Rotor Development and Wind Tunnel Test

    DTIC Science & Technology

    2009-09-01

    600 800 Side - Cos 5P, lb S id e - S in 5 P , l b 4P 5P 6P 0deg 30deg Baseline 0 100 200 300 400 500 600 700 0 90 180 270 360 Phase, deg V ib ra ti...1 SMART Rotor Development and Wind Tunnel Test Friedrich K. Straub Boeing Technical Fellow The Boeing Company Mesa, Arizona Vaidyanathan R...Anand Dynamics Engineer The Boeing Company Mesa, Arizona Terrence S . Birchette Design Engineer The Boeing Company Mesa, Arizona Benton H. Lau

  14. V-22 Osprey Tilt-Rotor Aircraft

    DTIC Science & Technology

    2001-11-05

    Website [http://www.navair.navy.mil/ v22 /]. The V-22 has the ability to carry considerably larger IB86103 11-05-01 CRS-8 Figure 1. V-22 Osprey in...Congressional Research Service ˜ The Library of Congress CRS Issue Brief for Congress Received through the CRS Web Order Code IB86103 V-22 Osprey ...00-00-2001 to 00-00-2001 4. TITLE AND SUBTITLE V-22 Osprey Tilt-Rotor Aircraft 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  15. Permanent Magnet Generator Rotor Containment Study

    DTIC Science & Technology

    1983-05-01

    IN ORDER TO REDUCE THE ROTOR POLE FACE LOSSES, THE MAGNETIC SEGM=.E OF THE SHRINK RING IS CONSTRUCTED FROM THIN LAMINATIONS. AN AMORTISSEUR CIRCUIT...2.3.2 Non-Magnetic Shrink Ring 23 2.3.3 Pole Retained Magnets 25 2.3.4 Bi-Metallic Ring with 27 Surface Amortisseur 2.4 Selected Design 29 III...laminations. The amortisseur circuit comprising of three bars per pole is incorporated to reduce the commutating inductance of the generator and, thus, improve

  16. Rotor heating effects from geomagnetic induced currents

    SciTech Connect

    Gish, W.B.; Feero, W.E.; Rockefeller, G.D. )

    1994-04-01

    The heating effects at the end-ring connection areas of the rotor due to the harmonic current generation of a saturating unit transformer from geomagnetic induced currents (GIC) on the transmission system have been calculated from observed data and from EMTP studies sponsored by the Electric Power Research Institute. These calculations show that damage may occur during strong GIC storm activity. This damage can occur from unit transformer saturation or other transformers in the system near the generator. The possibility of damage should be monitored during strong GIC storms through the use of appropriate negative sequence current monitoring and alarms.

  17. Initial results from the NASA-Lewis wave rotor experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Fronek, Dennis

    1993-01-01

    Wave rotors may play a role as topping cycles for jet engines, since by their use, the combustion temperature can be raised without increasing the turbine inlet temperature. In order to design a wave rotor for this, or any other application, knowledge of the loss mechanisms is required, and also how the design parameters affect those losses. At NASA LeRC, a 3-port wave rotor experiment operating on the flow-divider cycle, has been started with the objective of determining the losses. The experimental scheme is a three factor Box-Behnken design, with passage opening time, friction factor, and leakage gap as the factors. Variation of these factors is provided by using two rotors, of different length, two different passage widths for each rotor, and adjustable leakage gap. In the experiment, pressure transducers are mounted on the rotor, and give pressure traces as a function of rotational angle at the entrance and exit of a rotor passage. In addition, pitot rakes monitor the stagnation pressures for each port, and orifice meters measure the mass flows. The results show that leakage losses are very significant in the present experiment, but can be reduced considerably by decreasing the rotor to wall clearance spacing.

  18. A Sequential Shifting Algorithm for Variable Rotor Speed Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Edwards, Jason M.; DeCastro, Jonathan A.

    2007-01-01

    A proof of concept of a continuously variable rotor speed control methodology for rotorcraft is described. Variable rotor speed is desirable for several reasons including improved maneuverability, agility, and noise reduction. However, it has been difficult to implement because turboshaft engines are designed to operate within a narrow speed band, and a reliable drive train that can provide continuous power over a wide speed range does not exist. The new methodology proposed here is a sequential shifting control for twin-engine rotorcraft that coordinates the disengagement and engagement of the two turboshaft engines in such a way that the rotor speed may vary over a wide range, but the engines remain within their prescribed speed bands and provide continuous torque to the rotor; two multi-speed gearboxes facilitate the wide rotor speed variation. The shifting process begins when one engine slows down and disengages from the transmission by way of a standard freewheeling clutch mechanism; the other engine continues to apply torque to the rotor. Once one engine disengages, its gear shifts, the multi-speed gearbox output shaft speed resynchronizes and it re-engages. This process is then repeated with the other engine. By tailoring the sequential shifting, the rotor may perform large, rapid speed changes smoothly, as demonstrated in several examples. The emphasis of this effort is on the coordination and control aspects for proof of concept. The engines, rotor, and transmission are all simplified linear models, integrated to capture the basic dynamics of the problem.

  19. Effects of the rotor obliquity on the cylindrical capacitive sensor

    NASA Astrophysics Data System (ADS)

    Ahn, Hyeong-Joon; Jeon, Soo

    2011-04-01

    The cylindrical capacitive sensor (CCS) is superior to conventional probe-type sensors in measuring the radial error motion of a rotor accurately since the CCS is immune to geometric errors of the rotor. However, due to the extended axial length of the CCS, the obliquity (or the axial tilt) of the rotor may cause unnecessary measurement error. This paper presents the effects of rotor obliquity on the performance of the CCS. The existing analytical model for the CCS has been extended to incorporate the axial tilt of the rotor, which leads to a new mathematical model for the CCS that can describe the complete three-dimensional motion of the rotor. Based on the new mathematical model, a nonlinear analysis is performed to derive the analytical solution of the measured rotor displacement with the CCS. As a result, it has been revealed how the rotor obliquity causes measurement errors in both eccentricity and phase angle. The analytical results are compared and verified with simulations.

  20. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  1. Effect of Turbulence Modeling on Hovering Rotor Flows

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Chaderjian, Neal M.; Pulliam, Thomas H.; Holst, Terry L.

    2015-01-01

    The effect of turbulence models in the off-body grids on the accuracy of solutions for rotor flows in hover has been investigated. Results from the Reynolds-Averaged Navier-Stokes and Laminar Off-Body models are compared. Advection of turbulent eddy viscosity has been studied to find the mechanism leading to inaccurate solutions. A coaxial rotor result is also included.

  2. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    NASA Technical Reports Server (NTRS)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  3. Rotor mapping and ablation to treat atrial fibrillation.

    PubMed

    Zaman, Junaid A B; Peters, Nicholas S; Narayan, Sanjiv M

    2015-01-01

    Rotors have long been postulated to drive atrial fibrillation, but evidence has been limited to animal models. This changed recently with the demonstration using focal impulse and rotor modulation (FIRM) mapping that rotors act as human atrial fibrillation sources. This mechanistic approach to diagnosing the causes of atrial fibrillation in individual patients has been supported by substantially improved outcomes from FIRM-guided ablation, resulting in increased attention to rotors as therapeutic targets. In this review, we outline the pathophysiology of rotors in animal and in-silico studies of fibrillation, and how this motivated FIRM mapping in humans. We highlight the characteristics of rotors in human atrial fibrillation, now validated by several techniques, with discussion on similar and discrepant findings between techniques. The interventional approaches to eliminate atrial fibrillation rotors are explained and the ablation results in latest studies using FIRM are discussed. We propose that mapping localized sources for human atrial fibrillation, specifically rotors, is moving the field towards a unifying hypothesis that explains several otherwise contradictory observations in atrial fibrillation management. We conclude by suggesting areas of potential research that may reveal more about these critical sites and how these may lead to better and novel treatments for atrial fibrillation.

  4. Hover performance tests of full scale variable geometry rotors

    NASA Technical Reports Server (NTRS)

    Rorke, J. B.

    1976-01-01

    Full scale whirl tests were conducted to determine the effects of interblade spatial relationships and pitch variations on the hover performance and acoustic signature of a 6-blade main rotor system. The variable geometry rotor (VGR) variations from the conventional baseline were accomplished by: (1) shifting the axial position of alternate blades by one chord-length to form two tip path planes; and (2) varying the relative azimuthal spacing from the upper rotor to the lagging hover rotor in four increments from 25.2 degrees to 62.1 degrees. For each of these four configurations, the differential collective pitch between upper and lower rotors was set at + or - 1 deg, 0 deg and -1 deg. Hover performance data for all configurations were acquired at blade tip Mach numbers of 0.523 and 0.45. Acoustic data were recorded at all test conditions, but analyzed only at 0 deg differential pitch at the higher rotor speed. The VGR configurations tested demonstrated improvements in thrust at constant power as high as 6 percent. Reductions of 3 PNdb in perceived noise level and of 4 db in blade passage frequency noise level were achieved at the higher thrust levels. Consistent correlation exists between performance and acoustic improvements. For any given azimuth spacing, performance was consistently better for the differential pitch condition of + or - 1 degree, i.e. with the upper rotor pitch one degree higher than the lower rotor.

  5. Composite rotor blades for large wind energy installations

    NASA Technical Reports Server (NTRS)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  6. Improved measurement of the rotor temperature in analytical ultracentrifugation.

    PubMed

    Zhao, Huaying; Balbo, Andrea; Metger, Howard; Clary, Robert; Ghirlando, Rodolfo; Schuck, Peter

    2014-04-15

    Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study comparing various analytical ultracentrifuges, we showed that external calibration of the scan time, radial magnification, and temperature is critically important for accurate measurements (Anal. Biochem. 440 (2013) 81-95). To achieve accurate temperature calibration, we introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton) that can be inserted into an ultracentrifugation cell assembly and spun at low rotor speeds. In the current work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allowing for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000rpm. We demonstrated the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration and the reverse process on rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control.

  7. An Apparatus to Simulate an Amusement Park Rotor

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2010-01-01

    The rotor is a device that can be found in many amusement parks. In the literature there are various articles about this topic. The rotor is a hollow cylindrical room, covered inside with canvas and which can be rotated about the central vertical axis. People stand upright, with their backs against the internal face of the device. When it reaches…

  8. Process Improvements for the AH-64 Tail Rotor Vibration Analysis

    DTIC Science & Technology

    2007-06-01

    Free vortex wake (Scully) ! 7. Wind turbine induction flow (rotors only) a 1...Scissor Tail Rotor Variant 7 Figure 4. RPM Sensor Installation (17) 12 Figure 5. Accelerometer and Tachometer Installation locations. (17) 13 Figure...weight adjusted made to the aft pocket. (17) An accelerometer is used to measure the accelerations in vertical direction. An optical tachometer is

  9. An Apparatus to Simulate an Amusement Park Rotor

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2010-01-01

    The rotor is a device that can be found in many amusement parks. In the literature there are various articles about this topic. The rotor is a hollow cylindrical room, covered inside with canvas and which can be rotated about the central vertical axis. People stand upright, with their backs against the internal face of the device. When it reaches…

  10. 9. Generator Barrel and Rotor of Unit 1, view to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Generator Barrel and Rotor of Unit 1, view to the southeast, showing part of the rotor and generator coils along top of photograph and southeast entry stairwell and doors in lower center of photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  11. Performance testing of a Savonius windmill rotor in shear flows

    SciTech Connect

    Mojola, O.O.; Onasanya, O.E.

    1981-08-01

    The effects of flow shear and/or unsteadiness on the power-producing performance of a Savonius windmill rotor are discussed. Measurements were made, in two statistically steady shear flows and in the natural wind, of the speed, torque and (hence) power of the rotor at a number of streamwise stations for each of four values of the bucket overlap ratio. 8 refs.

  12. Performance Benefits for Wave Rotor-Topped Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Jones, Scott M.; Welch, Gerard E.

    1996-01-01

    The benefits of wave rotor-topping in turboshaft engines, subsonic high-bypass turbofan engines, auxiliary power units, and ground power units are evaluated. The thermodynamic cycle performance is modeled using a one-dimensional steady-state code; wave rotor performance is modeled using one-dimensional design/analysis codes. Design and off-design engine performance is calculated for baseline engines and wave rotor-topped engines, where the wave rotor acts as a high pressure spool. The wave rotor-enhanced engines are shown to have benefits in specific power and specific fuel flow over the baseline engines without increasing turbine inlet temperature. The off-design steady-state behavior of a wave rotor-topped engine is shown to be similar to a conventional engine. Mission studies are performed to quantify aircraft performance benefits for various wave rotor cycle and weight parameters. Gas turbine engine cycles most likely to benefit from wave rotor-topping are identified. Issues of practical integration and the corresponding technical challenges with various engine types are discussed.

  13. Improved Measurement of the Rotor Temperature in Analytical Ultracentrifugation

    PubMed Central

    Zhao, Huaying; Balbo, Andrea; Metger, Howard; Clary, Robert; Ghirlando, Rodolfo; Schuck, Peter

    2014-01-01

    Sedimentation velocity is a classical method for measuring the hydrodynamic, translational friction coefficient of biological macromolecules. In a recent study, comparing various analytical ultracentrifuges, we have shown that external calibration of the scan time, radial magnification, and temperature are critically important for accurate measurements (Anal. Biochem., 2013, doi: 10.1016/j.ab.2013.05.011). To achieve accurate temperature calibration, we have introduced the use of an autonomous miniature temperature logging integrated circuit (Maxim Thermochron iButton ™) that can be inserted in an ultracentrifugation cell assembly and spun at low rotor speeds. In the present work, we developed an improved holder for the temperature sensor located in the rotor handle. This has the advantage of not reducing the rotor capacity and allows for a direct temperature measurement of the spinning rotor during high-speed sedimentation velocity experiments up to 60,000 rpm. We demonstrate the sensitivity of this approach by monitoring the adiabatic cooling due to rotor stretching during rotor acceleration, and the reverse process upon rotor deceleration. Based on this, we developed a procedure to approximate isothermal rotor acceleration for better temperature control. PMID:24530285

  14. 14 CFR 33.92 - Rotor locking tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rotor locking tests. 33.92 Section 33.92 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued...

  15. 14 CFR 33.92 - Rotor locking tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rotor locking tests. 33.92 Section 33.92 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.92 Rotor locking tests. If continued...

  16. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  17. Influence of rubbing on rotor dynamics, part 1

    NASA Technical Reports Server (NTRS)

    Muszynska, Agnes; Bently, Donald E.; Franklin, Wesley D.; Hayashida, Robert D.; Kingsley, Lori M.; Curry, Arthur E.

    1989-01-01

    The results of analytical and experimental research on rotor-to-stationary element rubbing in rotating machines are presented. A characterization of physical phenomena associated with rubbing, as well as a literature survey on the subject of rub is given. The experimental results were obtained from two rubbing rotor rigs: one, which dynamically simulates the space shuttle main engine high pressure fuel turbopump (HPFTP), and the second one, much simpler, a two-mode rotor rig, designed for more generic studies on rotor-to-stator rubbing. Two areas were studied: generic rotor-to-stator rub-related dynamic phenomena affecting rotating machine behavior and applications to the space shuttle HPFTP. An outline of application of dynamic stiffness methodology for identification of rotor/bearing system modal parameters is given. The mathematical model of rotor/bearing/seal system under rub condition is given. The computer program was developed to calculate rotor responses. Compared with experimental results the computed results prove an adequacy of the model.

  18. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1985-01-01

    The mass and stiffness distributions for helicopter rotor blades are tailored in such a way to give a predetermined placement of blade natural frequencies. The optimal design is pursued with respect of minimum weight, sufficient inertia, and reasonable dynamic characteristics. Finite element techniques are used as a tool. Rotor types include hingeless, articulated, and teetering.

  19. Fault detection in rotor bearing systems using time frequency techniques

    NASA Astrophysics Data System (ADS)

    Chandra, N. Harish; Sekhar, A. S.

    2016-05-01

    Faults such as misalignment, rotor cracks and rotor to stator rub can exist collectively in rotor bearing systems. It is an important task for rotor dynamic personnel to monitor and detect faults in rotating machinery. In this paper, the rotor startup vibrations are utilized to solve the fault identification problem using time frequency techniques. Numerical simulations are performed through finite element analysis of the rotor bearing system with individual and collective combinations of faults as mentioned above. Three signal processing tools namely Short Time Fourier Transform (STFT), Continuous Wavelet Transform (CWT) and Hilbert Huang Transform (HHT) are compared to evaluate their detection performance. The effect of addition of Signal to Noise ratio (SNR) on three time frequency techniques is presented. The comparative study is focused towards detecting the least possible level of the fault induced and the computational time consumed. The computation time consumed by HHT is very less when compared to CWT based diagnosis. However, for noisy data CWT is more preferred over HHT. To identify fault characteristics using wavelets a procedure to adjust resolution of the mother wavelet is presented in detail. Experiments are conducted to obtain the run-up data of a rotor bearing setup for diagnosis of shaft misalignment and rotor stator rubbing faults.

  20. Design of helicopter rotor blades for optimum dynamic characteristics

    NASA Technical Reports Server (NTRS)

    Peters, D. A.; Ko, T.; Korn, A.; Rossow, M. P.

    1984-01-01

    The optimal design of helicopter rotor blades is addressed. The forced response of an initial (i.e., non-optimized) blade to those of a final (optimized) blade are compared. Response of starting design and optimal designs for varying forcing frequencies, blade response to harmonics of rotor speed, and derivation of mass and stiffness matrices or functions of natural frequencies are discussed.