Sample records for database search algorithms

  1. A review on quantum search algorithms

    NASA Astrophysics Data System (ADS)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  2. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing.

    PubMed

    Tai, David; Fang, Jianwen

    2012-08-27

    The large sizes of today's chemical databases require efficient algorithms to perform similarity searches. It can be very time consuming to compare two large chemical databases. This paper seeks to build upon existing research efforts by describing a novel strategy for accelerating existing search algorithms for comparing large chemical collections. The quest for efficiency has focused on developing better indexing algorithms by creating heuristics for searching individual chemical against a chemical library by detecting and eliminating needless similarity calculations. For comparing two chemical collections, these algorithms simply execute searches for each chemical in the query set sequentially. The strategy presented in this paper achieves a speedup upon these algorithms by indexing the set of all query chemicals so redundant calculations that arise in the case of sequential searches are eliminated. We implement this novel algorithm by developing a similarity search program called Symmetric inDexing or SymDex. SymDex shows over a 232% maximum speedup compared to the state-of-the-art single query search algorithm over real data for various fingerprint lengths. Considerable speedup is even seen for batch searches where query set sizes are relatively small compared to typical database sizes. To the best of our knowledge, SymDex is the first search algorithm designed specifically for comparing chemical libraries. It can be adapted to most, if not all, existing indexing algorithms and shows potential for accelerating future similarity search algorithms for comparing chemical databases.

  3. Algorithms for database-dependent search of MS/MS data.

    PubMed

    Matthiesen, Rune

    2013-01-01

    The frequent used bottom-up strategy for identification of proteins and their associated modifications generate nowadays typically thousands of MS/MS spectra that normally are matched automatically against a protein sequence database. Search engines that take as input MS/MS spectra and a protein sequence database are referred as database-dependent search engines. Many programs both commercial and freely available exist for database-dependent search of MS/MS spectra and most of the programs have excellent user documentation. The aim here is therefore to outline the algorithm strategy behind different search engines rather than providing software user manuals. The process of database-dependent search can be divided into search strategy, peptide scoring, protein scoring, and finally protein inference. Most efforts in the literature have been put in to comparing results from different software rather than discussing the underlining algorithms. Such practical comparisons can be cluttered by suboptimal implementation and the observed differences are frequently caused by software parameters settings which have not been set proper to allow even comparison. In other words an algorithmic idea can still be worth considering even if the software implementation has been demonstrated to be suboptimal. The aim in this chapter is therefore to split the algorithms for database-dependent searching of MS/MS data into the above steps so that the different algorithmic ideas become more transparent and comparable. Most search engines provide good implementations of the first three data analysis steps mentioned above, whereas the final step of protein inference are much less developed for most search engines and is in many cases performed by an external software. The final part of this chapter illustrates how protein inference is built into the VEMS search engine and discusses a stand-alone program SIR for protein inference that can import a Mascot search result.

  4. LETTER TO THE EDITOR: Optimization of partial search

    NASA Astrophysics Data System (ADS)

    Korepin, Vladimir E.

    2005-11-01

    A quantum Grover search algorithm can find a target item in a database faster than any classical algorithm. One can trade accuracy for speed and find a part of the database (a block) containing the target item even faster; this is partial search. A partial search algorithm was recently suggested by Grover and Radhakrishnan. Here we optimize it. Efficiency of the search algorithm is measured by the number of queries to the oracle. The author suggests a new version of the Grover-Radhakrishnan algorithm which uses a minimal number of such queries. The algorithm can run on the same hardware that is used for the usual Grover algorithm.

  5. Quantum partial search for uneven distribution of multiple target items

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Korepin, Vladimir

    2018-06-01

    Quantum partial search algorithm is an approximate search. It aims to find a target block (which has the target items). It runs a little faster than full Grover search. In this paper, we consider quantum partial search algorithm for multiple target items unevenly distributed in a database (target blocks have different number of target items). The algorithm we describe can locate one of the target blocks. Efficiency of the algorithm is measured by number of queries to the oracle. We optimize the algorithm in order to improve efficiency. By perturbation method, we find that the algorithm runs the fastest when target items are evenly distributed in database.

  6. An approach in building a chemical compound search engine in oracle database.

    PubMed

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework.

  7. mTM-align: a server for fast protein structure database search and multiple protein structure alignment.

    PubMed

    Dong, Runze; Pan, Shuo; Peng, Zhenling; Zhang, Yang; Yang, Jianyi

    2018-05-21

    With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop algorithms for efficient protein structure comparisons. In this article, we present the mTM-align server, which consists of two closely related modules: one for structure database search and the other for multiple structure alignment. The database search is speeded up based on a heuristic algorithm and a hierarchical organization of the structures in the database. The multiple structure alignment is performed using the recently developed algorithm mTM-align. Benchmark tests demonstrate that our algorithms outperform other peering methods for both modules, in terms of speed and accuracy. One of the unique features for the server is the interplay between database search and multiple structure alignment. The server provides service not only for performing fast database search, but also for making accurate multiple structure alignment with the structures found by the search. For the database search, it takes about 2-5 min for a structure of a medium size (∼300 residues). For the multiple structure alignment, it takes a few seconds for ∼10 structures of medium sizes. The server is freely available at: http://yanglab.nankai.edu.cn/mTM-align/.

  8. Vehicle-triggered video compression/decompression for fast and efficient searching in large video databases

    NASA Astrophysics Data System (ADS)

    Bulan, Orhan; Bernal, Edgar A.; Loce, Robert P.; Wu, Wencheng

    2013-03-01

    Video cameras are widely deployed along city streets, interstate highways, traffic lights, stop signs and toll booths by entities that perform traffic monitoring and law enforcement. The videos captured by these cameras are typically compressed and stored in large databases. Performing a rapid search for a specific vehicle within a large database of compressed videos is often required and can be a time-critical life or death situation. In this paper, we propose video compression and decompression algorithms that enable fast and efficient vehicle or, more generally, event searches in large video databases. The proposed algorithm selects reference frames (i.e., I-frames) based on a vehicle having been detected at a specified position within the scene being monitored while compressing a video sequence. A search for a specific vehicle in the compressed video stream is performed across the reference frames only, which does not require decompression of the full video sequence as in traditional search algorithms. Our experimental results on videos captured in a local road show that the proposed algorithm significantly reduces the search space (thus reducing time and computational resources) in vehicle search tasks within compressed video streams, particularly those captured in light traffic volume conditions.

  9. Reducing process delays for real-time earthquake parameter estimation - An application of KD tree to large databases for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Yin, Lucy; Andrews, Jennifer; Heaton, Thomas

    2018-05-01

    Earthquake parameter estimations using nearest neighbor searching among a large database of observations can lead to reliable prediction results. However, in the real-time application of Earthquake Early Warning (EEW) systems, the accurate prediction using a large database is penalized by a significant delay in the processing time. We propose to use a multidimensional binary search tree (KD tree) data structure to organize large seismic databases to reduce the processing time in nearest neighbor search for predictions. We evaluated the performance of KD tree on the Gutenberg Algorithm, a database-searching algorithm for EEW. We constructed an offline test to predict peak ground motions using a database with feature sets of waveform filter-bank characteristics, and compare the results with the observed seismic parameters. We concluded that large database provides more accurate predictions of the ground motion information, such as peak ground acceleration, velocity, and displacement (PGA, PGV, PGD), than source parameters, such as hypocenter distance. Application of the KD tree search to organize the database reduced the average searching process by 85% time cost of the exhaustive method, allowing the method to be feasible for real-time implementation. The algorithm is straightforward and the results will reduce the overall time of warning delivery for EEW.

  10. Interactive searching of facial image databases

    NASA Astrophysics Data System (ADS)

    Nicholls, Robert A.; Shepherd, John W.; Shepherd, Jean

    1995-09-01

    A set of psychological facial descriptors has been devised to enable computerized searching of criminal photograph albums. The descriptors have been used to encode image databased of up to twelve thousand images. Using a system called FACES, the databases are searched by translating a witness' verbal description into corresponding facial descriptors. Trials of FACES have shown that this coding scheme is more productive and efficient than searching traditional photograph albums. An alternative method of searching the encoded database using a genetic algorithm is currenly being tested. The genetic search method does not require the witness to verbalize a description of the target but merely to indicate a degree of similarity between the target and a limited selection of images from the database. The major drawback of FACES is that is requires a manual encoding of images. Research is being undertaken to automate the process, however, it will require an algorithm which can predict human descriptive values. Alternatives to human derived coding schemes exist using statistical classifications of images. Since databases encoded using statistical classifiers do not have an obvious direct mapping to human derived descriptors, a search method which does not require the entry of human descriptors is required. A genetic search algorithm is being tested for such a purpose.

  11. muBLASTP: database-indexed protein sequence search on multicore CPUs.

    PubMed

    Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun

    2016-11-04

    The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.

  12. Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)*

    PubMed Central

    Renard, Bernhard Y.; Xu, Buote; Kirchner, Marc; Zickmann, Franziska; Winter, Dominic; Korten, Simone; Brattig, Norbert W.; Tzur, Amit; Hamprecht, Fred A.; Steen, Hanno

    2012-01-01

    Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis. PMID:22493179

  13. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book.

    PubMed

    Sadygov, Rovshan G; Cociorva, Daniel; Yates, John R

    2004-12-01

    Database searching is an essential element of large-scale proteomics. Because these methods are widely used, it is important to understand the rationale of the algorithms. Most algorithms are based on concepts first developed in SEQUEST and PeptideSearch. Four basic approaches are used to determine a match between a spectrum and sequence: descriptive, interpretative, stochastic and probability-based matching. We review the basic concepts used by most search algorithms, the computational modeling of peptide identification and current challenges and limitations of this approach for protein identification.

  14. Doubling down on phosphorylation as a variable peptide modification.

    PubMed

    Cooper, Bret

    2016-09-01

    Some mass spectrometrists believe that searching for variable PTMs like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false-positive matching. The basis for this is the premise that the algorithm compares a spectrum to both a nonphosphorylated peptide candidate and a phosphorylated candidate, which is double the number of candidates compared to a search with no possible phosphorylation. Hence, if the search space doubles, false-positive matching could increase accordingly as the algorithm considers more candidates to which false matches could be made. In this study, it is shown that the search for variable phosphoserine and phosphothreonine modifications does not always double the search space or unduly impinge upon the FDR. A breakdown of how one popular database-search algorithm deals with variable phosphorylation is presented. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Reprint of "pFind-Alioth: A novel unrestricted database search algorithm to improve the interpretation of high-resolution MS/MS data".

    PubMed

    Chi, Hao; He, Kun; Yang, Bing; Chen, Zhen; Sun, Rui-Xiang; Fan, Sheng-Bo; Zhang, Kun; Liu, Chao; Yuan, Zuo-Fei; Wang, Quan-Hui; Liu, Si-Qi; Dong, Meng-Qiu; He, Si-Min

    2015-11-03

    Database search is the dominant approach in high-throughput proteomic analysis. However, the interpretation rate of MS/MS spectra is very low in such a restricted mode, which is mainly due to unexpected modifications and irregular digestion types. In this study, we developed a new algorithm called Alioth, to be integrated into the search engine of pFind, for fast and accurate unrestricted database search on high-resolution MS/MS data. An ion index is constructed for both peptide precursors and fragment ions, by which arbitrary digestions and a single site of any modifications and mutations can be searched efficiently. A new re-ranking algorithm is used to distinguish the correct peptide-spectrum matches from random ones. The algorithm is tested on several HCD datasets and the interpretation rate of MS/MS spectra using Alioth is as high as 60%-80%. Peptides from semi- and non-specific digestions, as well as those with unexpected modifications or mutations, can be effectively identified using Alioth and confidently validated using other search engines. The average processing speed of Alioth is 5-10 times faster than some other unrestricted search engines and is comparable to or even faster than the restricted search algorithms tested.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures.

    PubMed

    Li, Guo-Zhong; Vissers, Johannes P C; Silva, Jeffrey C; Golick, Dan; Gorenstein, Marc V; Geromanos, Scott J

    2009-03-01

    A novel database search algorithm is presented for the qualitative identification of proteins over a wide dynamic range, both in simple and complex biological samples. The algorithm has been designed for the analysis of data originating from data independent acquisitions, whereby multiple precursor ions are fragmented simultaneously. Measurements used by the algorithm include retention time, ion intensities, charge state, and accurate masses on both precursor and product ions from LC-MS data. The search algorithm uses an iterative process whereby each iteration incrementally increases the selectivity, specificity, and sensitivity of the overall strategy. Increased specificity is obtained by utilizing a subset database search approach, whereby for each subsequent stage of the search, only those peptides from securely identified proteins are queried. Tentative peptide and protein identifications are ranked and scored by their relative correlation to a number of models of known and empirically derived physicochemical attributes of proteins and peptides. In addition, the algorithm utilizes decoy database techniques for automatically determining the false positive identification rates. The search algorithm has been tested by comparing the search results from a four-protein mixture, the same four-protein mixture spiked into a complex biological background, and a variety of other "system" type protein digest mixtures. The method was validated independently by data dependent methods, while concurrently relying on replication and selectivity. Comparisons were also performed with other commercially and publicly available peptide fragmentation search algorithms. The presented results demonstrate the ability to correctly identify peptides and proteins from data independent acquisition strategies with high sensitivity and specificity. They also illustrate a more comprehensive analysis of the samples studied; providing approximately 20% more protein identifications, compared to a more conventional data directed approach using the same identification criteria, with a concurrent increase in both sequence coverage and the number of modified peptides.

  17. Data-driven indexing mechanism for the recognition of polyhedral objects

    NASA Astrophysics Data System (ADS)

    McLean, Stewart; Horan, Peter; Caelli, Terry M.

    1992-02-01

    This paper is concerned with the problem of searching large model databases. To date, most object recognition systems have concentrated on the problem of matching using simple searching algorithms. This is quite acceptable when the number of object models is small. However, in the future, general purpose computer vision systems will be required to recognize hundreds or perhaps thousands of objects and, in such circumstances, efficient searching algorithms will be needed. The problem of searching a large model database is one which must be addressed if future computer vision systems are to be at all effective. In this paper we present a method we call data-driven feature-indexed hypothesis generation as one solution to the problem of searching large model databases.

  18. Fast Multivariate Search on Large Aviation Datasets

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Zhu, Qiang; Oza, Nikunj C.; Srivastava, Ashok N.

    2010-01-01

    Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which can contain up to several gigabytes of data. Surprisingly, research on MTS search is very limited. Most existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two provably correct algorithms to solve this problem (1) an R-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences, and (2) a List Based Search (LBS) algorithm which uses sorted lists for indexing. We demonstrate the performance of these algorithms using two large MTS databases from the aviation domain, each containing several millions of observations Both these tests show that our algorithms have very high prune rates (>95%) thus needing actual

  19. MIDAS: a database-searching algorithm for metabolite identification in metabolomics.

    PubMed

    Wang, Yingfeng; Kora, Guruprasad; Bowen, Benjamin P; Pan, Chongle

    2014-10-07

    A database searching approach can be used for metabolite identification in metabolomics by matching measured tandem mass spectra (MS/MS) against the predicted fragments of metabolites in a database. Here, we present the open-source MIDAS algorithm (Metabolite Identification via Database Searching). To evaluate a metabolite-spectrum match (MSM), MIDAS first enumerates possible fragments from a metabolite by systematic bond dissociation, then calculates the plausibility of the fragments based on their fragmentation pathways, and finally scores the MSM to assess how well the experimental MS/MS spectrum from collision-induced dissociation (CID) is explained by the metabolite's predicted CID MS/MS spectrum. MIDAS was designed to search high-resolution tandem mass spectra acquired on time-of-flight or Orbitrap mass spectrometer against a metabolite database in an automated and high-throughput manner. The accuracy of metabolite identification by MIDAS was benchmarked using four sets of standard tandem mass spectra from MassBank. On average, for 77% of original spectra and 84% of composite spectra, MIDAS correctly ranked the true compounds as the first MSMs out of all MetaCyc metabolites as decoys. MIDAS correctly identified 46% more original spectra and 59% more composite spectra at the first MSMs than an existing database-searching algorithm, MetFrag. MIDAS was showcased by searching a published real-world measurement of a metabolome from Synechococcus sp. PCC 7002 against the MetaCyc metabolite database. MIDAS identified many metabolites missed in the previous study. MIDAS identifications should be considered only as candidate metabolites, which need to be confirmed using standard compounds. To facilitate manual validation, MIDAS provides annotated spectra for MSMs and labels observed mass spectral peaks with predicted fragments. The database searching and manual validation can be performed online at http://midas.omicsbio.org.

  20. A k-Vector Approach to Sampling, Interpolation, and Approximation

    NASA Astrophysics Data System (ADS)

    Mortari, Daniele; Rogers, Jonathan

    2013-12-01

    The k-vector search technique is a method designed to perform extremely fast range searching of large databases at computational cost independent of the size of the database. k-vector search algorithms have historically found application in satellite star-tracker navigation systems which index very large star catalogues repeatedly in the process of attitude estimation. Recently, the k-vector search algorithm has been applied to numerous other problem areas including non-uniform random variate sampling, interpolation of 1-D or 2-D tables, nonlinear function inversion, and solution of systems of nonlinear equations. This paper presents algorithms in which the k-vector search technique is used to solve each of these problems in a computationally-efficient manner. In instances where these tasks must be performed repeatedly on a static (or nearly-static) data set, the proposed k-vector-based algorithms offer an extremely fast solution technique that outperforms standard methods.

  1. Over 20 years of reaction access systems from MDL: a novel reaction substructure search algorithm.

    PubMed

    Chen, Lingran; Nourse, James G; Christie, Bradley D; Leland, Burton A; Grier, David L

    2002-01-01

    From REACCS, to MDL ISIS/Host Reaction Gateway, and most recently to MDL Relational Chemistry Server, a new product based on Oracle data cartridge technology, MDL's reaction database management and retrieval systems have undergone great changes. The evolution of the system architecture is briefly discussed. The evolution of MDL reaction substructure search (RSS) algorithms is detailed. This article mainly describes a novel RSS algorithm. This algorithm is based on a depth-first search approach and is able to fully and prospectively use reaction specific information, such as reacting center and atom-atom mapping (AAM) information. The new algorithm has been used in the recently released MDL Relational Chemistry Server and allows the user to precisely find reaction instances in databases while minimizing unrelated hits. Finally, the existing and new RSS algorithms are compared with several examples.

  2. Development of program package for investigation and modeling of carbon nanostructures in diamond like carbon films with the help of Raman scattering and infrared absorption spectra line resolving

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.

    2013-04-01

    The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.

  3. Accelerating Information Retrieval from Profile Hidden Markov Model Databases.

    PubMed

    Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem

    2016-01-01

    Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.

  4. Validated methods for identifying tuberculosis patients in health administrative databases: systematic review.

    PubMed

    Ronald, L A; Ling, D I; FitzGerald, J M; Schwartzman, K; Bartlett-Esquilant, G; Boivin, J-F; Benedetti, A; Menzies, D

    2017-05-01

    An increasing number of studies are using health administrative databases for tuberculosis (TB) research. However, there are limitations to using such databases for identifying patients with TB. To summarise validated methods for identifying TB in health administrative databases. We conducted a systematic literature search in two databases (Ovid Medline and Embase, January 1980-January 2016). We limited the search to diagnostic accuracy studies assessing algorithms derived from drug prescription, International Classification of Diseases (ICD) diagnostic code and/or laboratory data for identifying patients with TB in health administrative databases. The search identified 2413 unique citations. Of the 40 full-text articles reviewed, we included 14 in our review. Algorithms and diagnostic accuracy outcomes to identify TB varied widely across studies, with positive predictive value ranging from 1.3% to 100% and sensitivity ranging from 20% to 100%. Diagnostic accuracy measures of algorithms using out-patient, in-patient and/or laboratory data to identify patients with TB in health administrative databases vary widely across studies. Use solely of ICD diagnostic codes to identify TB, particularly when using out-patient records, is likely to lead to incorrect estimates of case numbers, given the current limitations of ICD systems in coding TB.

  5. STEPS: a grid search methodology for optimized peptide identification filtering of MS/MS database search results.

    PubMed

    Piehowski, Paul D; Petyuk, Vladislav A; Sandoval, John D; Burnum, Kristin E; Kiebel, Gary R; Monroe, Matthew E; Anderson, Gordon A; Camp, David G; Smith, Richard D

    2013-03-01

    For bottom-up proteomics, there are wide variety of database-searching algorithms in use for matching peptide sequences to tandem MS spectra. Likewise, there are numerous strategies being employed to produce a confident list of peptide identifications from the different search algorithm outputs. Here we introduce a grid-search approach for determining optimal database filtering criteria in shotgun proteomics data analyses that is easily adaptable to any search. Systematic Trial and Error Parameter Selection--referred to as STEPS--utilizes user-defined parameter ranges to test a wide array of parameter combinations to arrive at an optimal "parameter set" for data filtering, thus maximizing confident identifications. The benefits of this approach in terms of numbers of true-positive identifications are demonstrated using datasets derived from immunoaffinity-depleted blood serum and a bacterial cell lysate, two common proteomics sample types. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    NASA Technical Reports Server (NTRS)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.

  7. Fast and Flexible Multivariate Time Series Subsequence Search

    NASA Technical Reports Server (NTRS)

    Bhaduri, Kanishka; Oza, Nikunj C.; Zhu, Qiang; Srivastava, Ashok N.

    2010-01-01

    Multivariate Time-Series (MTS) are ubiquitous, and are generated in areas as disparate as sensor recordings in aerospace systems, music and video streams, medical monitoring, and financial systems. Domain experts are often interested in searching for interesting multivariate patterns from these MTS databases which often contain several gigabytes of data. Surprisingly, research on MTS search is very limited. Most of the existing work only supports queries with the same length of data, or queries on a fixed set of variables. In this paper, we propose an efficient and flexible subsequence search framework for massive MTS databases, that, for the first time, enables querying on any subset of variables with arbitrary time delays between them. We propose two algorithms to solve this problem (1) a List Based Search (LBS) algorithm which uses sorted lists for indexing, and (2) a R*-tree Based Search (RBS) which uses Minimum Bounding Rectangles (MBR) to organize the subsequences. Both algorithms guarantee that all matching patterns within the specified thresholds will be returned (no false dismissals). The very few false alarms can be removed by a post-processing step. Since our framework is also capable of Univariate Time-Series (UTS) subsequence search, we first demonstrate the efficiency of our algorithms on several UTS datasets previously used in the literature. We follow this up with experiments using two large MTS databases from the aviation domain, each containing several millions of observations. Both these tests show that our algorithms have very high prune rates (>99%) thus needing actual disk access for only less than 1% of the observations. To the best of our knowledge, MTS subsequence search has never been attempted on datasets of the size we have used in this paper.

  8. The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra.

    PubMed

    Shilov, Ignat V; Seymour, Sean L; Patel, Alpesh A; Loboda, Alex; Tang, Wilfred H; Keating, Sean P; Hunter, Christie L; Nuwaysir, Lydia M; Schaeffer, Daniel A

    2007-09-01

    The Paragon Algorithm, a novel database search engine for the identification of peptides from tandem mass spectrometry data, is presented. Sequence Temperature Values are computed using a sequence tag algorithm, allowing the degree of implication by an MS/MS spectrum of each region of a database to be determined on a continuum. Counter to conventional approaches, features such as modifications, substitutions, and cleavage events are modeled with probabilities rather than by discrete user-controlled settings to consider or not consider a feature. The use of feature probabilities in conjunction with Sequence Temperature Values allows for a very large increase in the effective search space with only a very small increase in the actual number of hypotheses that must be scored. The algorithm has a new kind of user interface that removes the user expertise requirement, presenting control settings in the language of the laboratory that are translated to optimal algorithmic settings. To validate this new algorithm, a comparison with Mascot is presented for a series of analogous searches to explore the relative impact of increasing search space probed with Mascot by relaxing the tryptic digestion conformance requirements from trypsin to semitrypsin to no enzyme and with the Paragon Algorithm using its Rapid mode and Thorough mode with and without tryptic specificity. Although they performed similarly for small search space, dramatic differences were observed in large search space. With the Paragon Algorithm, hundreds of biological and artifact modifications, all possible substitutions, and all levels of conformance to the expected digestion pattern can be searched in a single search step, yet the typical cost in search time is only 2-5 times that of conventional small search space. Despite this large increase in effective search space, there is no drastic loss of discrimination that typically accompanies the exploration of large search space.

  9. Speeding-up Bioinformatics Algorithms with Heterogeneous Architectures: Highly Heterogeneous Smith-Waterman (HHeterSW).

    PubMed

    Gálvez, Sergio; Ferusic, Adis; Esteban, Francisco J; Hernández, Pilar; Caballero, Juan A; Dorado, Gabriel

    2016-10-01

    The Smith-Waterman algorithm has a great sensitivity when used for biological sequence-database searches, but at the expense of high computing-power requirements. To overcome this problem, there are implementations in literature that exploit the different hardware-architectures available in a standard PC, such as GPU, CPU, and coprocessors. We introduce an application that splits the original database-search problem into smaller parts, resolves each of them by executing the most efficient implementations of the Smith-Waterman algorithms in different hardware architectures, and finally unifies the generated results. Using non-overlapping hardware allows simultaneous execution, and up to 2.58-fold performance gain, when compared with any other algorithm to search sequence databases. Even the performance of the popular BLAST heuristic is exceeded in 78% of the tests. The application has been tested with standard hardware: Intel i7-4820K CPU, Intel Xeon Phi 31S1P coprocessors, and nVidia GeForce GTX 960 graphics cards. An important increase in performance has been obtained in a wide range of situations, effectively exploiting the available hardware.

  10. Graphics-based intelligent search and abstracting using Data Modeling

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger M.; Handley, James W.; Case, Carl T.; Songy, Claude G.

    2002-11-01

    This paper presents an autonomous text and context-mining algorithm that converts text documents into point clouds for visual search cues. This algorithm is applied to the task of data-mining a scriptural database comprised of the Old and New Testaments from the Bible and the Book of Mormon, Doctrine and Covenants, and the Pearl of Great Price. Results are generated which graphically show the scripture that represents the average concept of the database and the mining of the documents down to the verse level.

  11. Quantum Search in Hilbert Space

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2003-01-01

    A proposed quantum-computing algorithm would perform a search for an item of information in a database stored in a Hilbert-space memory structure. The algorithm is intended to make it possible to search relatively quickly through a large database under conditions in which available computing resources would otherwise be considered inadequate to perform such a task. The algorithm would apply, more specifically, to a relational database in which information would be stored in a set of N complex orthonormal vectors, each of N dimensions (where N can be exponentially large). Each vector would constitute one row of a unitary matrix, from which one would derive the Hamiltonian operator (and hence the evolutionary operator) of a quantum system. In other words, all the stored information would be mapped onto a unitary operator acting on a quantum state that would represent the item of information to be retrieved. Then one could exploit quantum parallelism: one could pose all search queries simultaneously by performing a quantum measurement on the system. In so doing, one would effectively solve the search problem in one computational step. One could exploit the direct- and inner-product decomposability of the unitary matrix to make the dimensionality of the memory space exponentially large by use of only linear resources. However, inasmuch as the necessary preprocessing (the mapping of the stored information into a Hilbert space) could be exponentially expensive, the proposed algorithm would likely be most beneficial in applications in which the resources available for preprocessing were much greater than those available for searching.

  12. Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns

    PubMed Central

    2013-01-01

    Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810

  13. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.

    PubMed

    Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil

    2013-04-04

    The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.

  14. Combining De Novo Peptide Sequencing Algorithms, A Synergistic Approach to Boost Both Identifications and Confidence in Bottom-up Proteomics.

    PubMed

    Blank-Landeshammer, Bernhard; Kollipara, Laxmikanth; Biß, Karsten; Pfenninger, Markus; Malchow, Sebastian; Shuvaev, Konstantin; Zahedi, René P; Sickmann, Albert

    2017-09-01

    Complex mass spectrometry based proteomics data sets are mostly analyzed by protein database searches. While this approach performs considerably well for sequenced organisms, direct inference of peptide sequences from tandem mass spectra, i.e., de novo peptide sequencing, oftentimes is the only way to obtain information when protein databases are absent. However, available algorithms suffer from drawbacks such as lack of validation and often high rates of false positive hits (FP). Here we present a simple method of combining results from commonly available de novo peptide sequencing algorithms, which in conjunction with minor tweaks in data acquisition ensues lower empirical FDR compared to the analysis using single algorithms. Results were validated using state-of-the art database search algorithms as well specifically synthesized reference peptides. Thus, we could increase the number of PSMs meeting a stringent FDR of 5% more than 3-fold compared to the single best de novo sequencing algorithm alone, accounting for an average of 11 120 PSMs (combined) instead of 3476 PSMs (alone) in triplicate 2 h LC-MS runs of tryptic HeLa digestion.

  15. Pattern Classifications Using Grover's and Ventura's Algorithms in a Two-qubits System

    NASA Astrophysics Data System (ADS)

    Singh, Manu Pratap; Radhey, Kishori; Rajput, B. S.

    2018-03-01

    Carrying out the classification of patterns in a two-qubit system by separately using Grover's and Ventura's algorithms on different possible superposition, it has been shown that the exclusion superposition and the phase-invariance superposition are the most suitable search states obtained from two-pattern start-states and one-pattern start-states, respectively, for the simultaneous classifications of patterns. The higher effectiveness of Grover's algorithm for large search states has been verified but the higher effectiveness of Ventura's algorithm for smaller data base has been contradicted in two-qubit systems and it has been demonstrated that the unknown patterns (not present in the concerned data-base) are classified more efficiently than the known ones (present in the data-base) in both the algorithms. It has also been demonstrated that different states of Singh-Rajput MES obtained from the corresponding self-single- pattern start states are the most suitable search states for the classification of patterns |00>,|01 >, |10> and |11> respectively on the second iteration of Grover's method or the first operation of Ventura's algorithm.

  16. Dynamical analysis of Grover's search algorithm in arbitrarily high-dimensional search spaces

    NASA Astrophysics Data System (ADS)

    Jin, Wenliang

    2016-01-01

    We discuss at length the dynamical behavior of Grover's search algorithm for which all the Walsh-Hadamard transformations contained in this algorithm are exposed to their respective random perturbations inducing the augmentation of the dimension of the search space. We give the concise and general mathematical formulations for approximately characterizing the maximum success probabilities of finding a unique desired state in a large unsorted database and their corresponding numbers of Grover iterations, which are applicable to the search spaces of arbitrary dimension and are used to answer a salient open problem posed by Grover (Phys Rev Lett 80:4329-4332, 1998).

  17. SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.

    PubMed

    Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile

    2015-01-01

    In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.

  18. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-09-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  19. Anatomy and evolution of database search engines-a central component of mass spectrometry based proteomic workflows.

    PubMed

    Verheggen, Kenneth; Raeder, Helge; Berven, Frode S; Martens, Lennart; Barsnes, Harald; Vaudel, Marc

    2017-09-13

    Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines. © 2017 Wiley Periodicals, Inc.

  20. Fast and efficient search for MPEG-4 video using adjacent pixel intensity difference quantization histogram feature

    NASA Astrophysics Data System (ADS)

    Lee, Feifei; Kotani, Koji; Chen, Qiu; Ohmi, Tadahiro

    2010-02-01

    In this paper, a fast search algorithm for MPEG-4 video clips from video database is proposed. An adjacent pixel intensity difference quantization (APIDQ) histogram is utilized as the feature vector of VOP (video object plane), which had been reliably applied to human face recognition previously. Instead of fully decompressed video sequence, partially decoded data, namely DC sequence of the video object are extracted from the video sequence. Combined with active search, a temporal pruning algorithm, fast and robust video search can be realized. The proposed search algorithm has been evaluated by total 15 hours of video contained of TV programs such as drama, talk, news, etc. to search for given 200 MPEG-4 video clips which each length is 15 seconds. Experimental results show the proposed algorithm can detect the similar video clip in merely 80ms, and Equal Error Rate (ERR) of 2 % in drama and news categories are achieved, which are more accurately and robust than conventional fast video search algorithm.

  1. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA)

    PubMed Central

    Li, Isaac TS; Shum, Warren; Truong, Kevin

    2007-01-01

    Background To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. Results In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. Conclusion This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching. PMID:17555593

  2. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).

    PubMed

    Li, Isaac T S; Shum, Warren; Truong, Kevin

    2007-06-07

    To infer homology and subsequently gene function, the Smith-Waterman (SW) algorithm is used to find the optimal local alignment between two sequences. When searching sequence databases that may contain hundreds of millions of sequences, this algorithm becomes computationally expensive. In this paper, we focused on accelerating the Smith-Waterman algorithm by using FPGA-based hardware that implemented a module for computing the score of a single cell of the SW matrix. Then using a grid of this module, the entire SW matrix was computed at the speed of field propagation through the FPGA circuit. These modifications dramatically accelerated the algorithm's computation time by up to 160 folds compared to a pure software implementation running on the same FPGA with an Altera Nios II softprocessor. This design of FPGA accelerated hardware offers a new promising direction to seeking computation improvement of genomic database searching.

  3. Dynamic Grover search: applications in recommendation systems and optimization problems

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Indranil; Khan, Shahzor; Singh, Vanshdeep

    2017-06-01

    In the recent years, we have seen that Grover search algorithm (Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212-219, 1996) by using quantum parallelism has revolutionized the field of solving huge class of NP problems in comparisons to classical systems. In this work, we explore the idea of extending Grover search algorithm to approximate algorithms. Here we try to analyze the applicability of Grover search to process an unstructured database with a dynamic selection function in contrast to the static selection function used in the original work (Grover in Proceedings, 28th annual ACM symposium on the theory of computing, pp. 212-219, 1996). We show that this alteration facilitates us to extend the application of Grover search to the field of randomized search algorithms. Further, we use the dynamic Grover search algorithm to define the goals for a recommendation system based on which we propose a recommendation algorithm which uses binomial similarity distribution space giving us a quadratic speedup over traditional classical unstructured recommendation systems. Finally, we see how dynamic Grover search can be used to tackle a wide range of optimization problems where we improve complexity over existing optimization algorithms.

  4. Cloud parallel processing of tandem mass spectrometry based proteomics data.

    PubMed

    Mohammed, Yassene; Mostovenko, Ekaterina; Henneman, Alex A; Marissen, Rob J; Deelder, André M; Palmblad, Magnus

    2012-10-05

    Data analysis in mass spectrometry based proteomics struggles to keep pace with the advances in instrumentation and the increasing rate of data acquisition. Analyzing this data involves multiple steps requiring diverse software, using different algorithms and data formats. Speed and performance of the mass spectral search engines are continuously improving, although not necessarily as needed to face the challenges of acquired big data. Improving and parallelizing the search algorithms is one possibility; data decomposition presents another, simpler strategy for introducing parallelism. We describe a general method for parallelizing identification of tandem mass spectra using data decomposition that keeps the search engine intact and wraps the parallelization around it. We introduce two algorithms for decomposing mzXML files and recomposing resulting pepXML files. This makes the approach applicable to different search engines, including those relying on sequence databases and those searching spectral libraries. We use cloud computing to deliver the computational power and scientific workflow engines to interface and automate the different processing steps. We show how to leverage these technologies to achieve faster data analysis in proteomics and present three scientific workflows for parallel database as well as spectral library search using our data decomposition programs, X!Tandem and SpectraST.

  5. Searching social networks for subgraph patterns

    NASA Astrophysics Data System (ADS)

    Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises

    2013-06-01

    Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.

  6. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.

    PubMed

    Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.

  7. Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm

    PubMed Central

    Yang, Zhang; Li, Guo; Weifeng, Ding

    2016-01-01

    The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428

  8. [Using cancer case identification algorithms in medico-administrative databases: Literature review and first results from the REDSIAM Tumors group based on breast, colon, and lung cancer].

    PubMed

    Bousquet, P-J; Caillet, P; Coeuret-Pellicer, M; Goulard, H; Kudjawu, Y C; Le Bihan, C; Lecuyer, A I; Séguret, F

    2017-10-01

    The development and use of healthcare databases accentuates the need for dedicated tools, including validated selection algorithms of cancer diseased patients. As part of the development of the French National Health Insurance System data network REDSIAM, the tumor taskforce established an inventory of national and internal published algorithms in the field of cancer. This work aims to facilitate the choice of a best-suited algorithm. A non-systematic literature search was conducted for various cancers. Results are presented for lung, breast, colon, and rectum. Medline, Scopus, the French Database in Public Health, Google Scholar, and the summaries of the main French journals in oncology and public health were searched for publications until August 2016. An extraction grid adapted to oncology was constructed and used for the extraction process. A total of 18 publications were selected for lung cancer, 18 for breast cancer, and 12 for colorectal cancer. Validation studies of algorithms are scarce. When information is available, the performance and choice of an algorithm are dependent on the context, purpose, and location of the planned study. Accounting for cancer disease specificity, the proposed extraction chart is more detailed than the generic chart developed for other REDSIAM taskforces, but remains easily usable in practice. This study illustrates the complexity of cancer detection through sole reliance on healthcare databases and the lack of validated algorithms specifically designed for this purpose. Studies that standardize and facilitate validation of these algorithms should be developed and promoted. Copyright © 2017. Published by Elsevier Masson SAS.

  9. A World Wide Web (WWW) server database engine for an organelle database, MitoDat.

    PubMed

    Lemkin, P F; Chipperfield, M; Merril, C; Zullo, S

    1996-03-01

    We describe a simple database search engine "dbEngine" which may be used to quickly create a searchable database on a World Wide Web (WWW) server. Data may be prepared from spreadsheet programs (such as Excel, etc.) or from tables exported from relationship database systems. This Common Gateway Interface (CGI-BIN) program is used with a WWW server such as available commercially, or from National Center for Supercomputer Algorithms (NCSA) or CERN. Its capabilities include: (i) searching records by combinations of terms connected with ANDs or ORs; (ii) returning search results as hypertext links to other WWW database servers; (iii) mapping lists of literature reference identifiers to the full references; (iv) creating bidirectional hypertext links between pictures and the database. DbEngine has been used to support the MitoDat database (Mendelian and non-Mendelian inheritance associated with the Mitochondrion) on the WWW.

  10. Computer algorithms in the search for unrelated stem cell donors.

    PubMed

    Steiner, David

    2012-01-01

    Hematopoietic stem cell transplantation (HSCT) is a medical procedure in the field of hematology and oncology, most often performed for patients with certain cancers of the blood or bone marrow. A lot of patients have no suitable HLA-matched donor within their family, so physicians must activate a "donor search process" by interacting with national and international donor registries who will search their databases for adult unrelated donors or cord blood units (CBU). Information and communication technologies play a key role in the donor search process in donor registries both nationally and internationaly. One of the major challenges for donor registry computer systems is the development of a reliable search algorithm. This work discusses the top-down design of such algorithms and current practice. Based on our experience with systems used by several stem cell donor registries, we highlight typical pitfalls in the implementation of an algorithm and underlying data structure.

  11. Pattern Recognition-Assisted Infrared Library Searching of the Paint Data Query Database to Enhance Lead Information from Automotive Paint Trace Evidence.

    PubMed

    Lavine, Barry K; White, Collin G; Allen, Matthew D; Weakley, Andrew

    2017-03-01

    Multilayered automotive paint fragments, which are one of the most complex materials encountered in the forensic science laboratory, provide crucial links in criminal investigations and prosecutions. To determine the origin of these paint fragments, forensic automotive paint examiners have turned to the paint data query (PDQ) database, which allows the forensic examiner to compare the layer sequence and color, texture, and composition of the sample to paint systems of the original equipment manufacturer (OEM). However, modern automotive paints have a thin color coat and this layer on a microscopic fragment is often too thin to obtain accurate chemical and topcoat color information. A search engine has been developed for the infrared (IR) spectral libraries of the PDQ database in an effort to improve discrimination capability and permit quantification of discrimination power for OEM automotive paint comparisons. The similarity of IR spectra of the corresponding layers of various records for original finishes in the PDQ database often results in poor discrimination using commercial library search algorithms. A pattern recognition approach employing pre-filters and a cross-correlation library search algorithm that performs both a forward and backward search has been used to significantly improve the discrimination of IR spectra in the PDQ database and thus improve the accuracy of the search. This improvement permits inter-comparison of OEM automotive paint layer systems using the IR spectra alone. Such information can serve to quantify the discrimination power of the original automotive paint encountered in casework and further efforts to succinctly communicate trace evidence to the courts.

  12. A Firefly Algorithm-based Approach for Pseudo-Relevance Feedback: Application to Medical Database.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2016-11-01

    The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity. In contrast to the existing literature, the proposed approach uses a Firefly Algorithm to find the best expanded query among a set of expanded query candidates. Moreover, this new approach allows the determination of the length of the expanded query empirically. Experimental results on MEDLINE, the on-line medical information database, show that our proposed approach is more effective and efficient compared to the state-of-the-art.

  13. The HMMER Web Server for Protein Sequence Similarity Search.

    PubMed

    Prakash, Ananth; Jeffryes, Matt; Bateman, Alex; Finn, Robert D

    2017-12-08

    Protein sequence similarity search is one of the most commonly used bioinformatics methods for identifying evolutionarily related proteins. In general, sequences that are evolutionarily related share some degree of similarity, and sequence-search algorithms use this principle to identify homologs. The requirement for a fast and sensitive sequence search method led to the development of the HMMER software, which in the latest version (v3.1) uses a combination of sophisticated acceleration heuristics and mathematical and computational optimizations to enable the use of profile hidden Markov models (HMMs) for sequence analysis. The HMMER Web server provides a common platform by linking the HMMER algorithms to databases, thereby enabling the search for homologs, as well as providing sequence and functional annotation by linking external databases. This unit describes three basic protocols and two alternate protocols that explain how to use the HMMER Web server using various input formats and user defined parameters. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Fast, Inclusive Searches for Geographic Names Using Digraphs

    USGS Publications Warehouse

    Donato, David I.

    2008-01-01

    An algorithm specifies how to quickly identify names that approximately match any specified name when searching a list or database of geographic names. Based on comparisons of the digraphs (ordered letter pairs) contained in geographic names, this algorithmic technique identifies approximately matching names by applying an artificial but useful measure of name similarity. A digraph index enables computer name searches that are carried out using this technique to be fast enough for deployment in a Web application. This technique, which is a member of the class of n-gram algorithms, is related to, but distinct from, the soundex, PHONIX, and metaphone phonetic algorithms. Despite this technique's tendency to return some counterintuitive approximate matches, it is an effective aid for fast, inclusive searches for geographic names when the exact name sought, or its correct spelling, is unknown.

  15. [Algorithms for the identification of hospital stays due to osteoporotic femoral neck fractures in European medical administrative databases using ICD-10 codes: A non-systematic review of the literature].

    PubMed

    Caillet, P; Oberlin, P; Monnet, E; Guillon-Grammatico, L; Métral, P; Belhassen, M; Denier, P; Banaei-Bouchareb, L; Viprey, M; Biau, D; Schott, A-M

    2017-10-01

    Osteoporotic hip fractures (OHF) are associated with significant morbidity and mortality. The French medico-administrative database (SNIIRAM) offers an interesting opportunity to improve the management of OHF. However, the validity of studies conducted with this database relies heavily on the quality of the algorithm used to detect OHF. The aim of the REDSIAM network is to facilitate the use of the SNIIRAM database. The main objective of this study was to present and discuss several OHF-detection algorithms that could be used with this database. A non-systematic literature search was performed. The Medline database was explored during the period January 2005-August 2016. Furthermore, a snowball search was then carried out from the articles included and field experts were contacted. The extraction was conducted using the chart developed by the REDSIAM network's "Methodology" task force. The ICD-10 codes used to detect OHF are mainly S72.0, S72.1, and S72.2. The performance of these algorithms is at best partially validated. Complementary use of medical and surgical procedure codes would affect their performance. Finally, few studies described how they dealt with fractures of non-osteoporotic origin, re-hospitalization, and potential contralateral fracture cases. Authors in the literature encourage the use of ICD-10 codes S72.0 to S72.2 to develop algorithms for OHF detection. These are the codes most frequently used for OHF in France. Depending on the study objectives, other ICD10 codes and medical and surgical procedures could be usefully discussed for inclusion in the algorithm. Detection and management of duplicates and non-osteoporotic fractures should be considered in the process. Finally, when a study is based on such an algorithm, all these points should be precisely described in the publication. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Aggregated Indexing of Biomedical Time Series Data

    PubMed Central

    Woodbridge, Jonathan; Mortazavi, Bobak; Sarrafzadeh, Majid; Bui, Alex A.T.

    2016-01-01

    Remote and wearable medical sensing has the potential to create very large and high dimensional datasets. Medical time series databases must be able to efficiently store, index, and mine these datasets to enable medical professionals to effectively analyze data collected from their patients. Conventional high dimensional indexing methods are a two stage process. First, a superset of the true matches is efficiently extracted from the database. Second, supersets are pruned by comparing each of their objects to the query object and rejecting any objects falling outside a predetermined radius. This pruning stage heavily dominates the computational complexity of most conventional search algorithms. Therefore, indexing algorithms can be significantly improved by reducing the amount of pruning. This paper presents an online algorithm to aggregate biomedical times series data to significantly reduce the search space (index size) without compromising the quality of search results. This algorithm is built on the observation that biomedical time series signals are composed of cyclical and often similar patterns. This algorithm takes in a stream of segments and groups them to highly concentrated collections. Locality Sensitive Hashing (LSH) is used to reduce the overall complexity of the algorithm, allowing it to run online. The output of this aggregation is used to populate an index. The proposed algorithm yields logarithmic growth of the index (with respect to the total number of objects) while keeping sensitivity and specificity simultaneously above 98%. Both memory and runtime complexities of time series search are improved when using aggregated indexes. In addition, data mining tasks, such as clustering, exhibit runtimes that are orders of magnitudes faster when run on aggregated indexes. PMID:27617298

  17. Mass spectrometry-based protein identification by integrating de novo sequencing with database searching.

    PubMed

    Wang, Penghao; Wilson, Susan R

    2013-01-01

    Mass spectrometry-based protein identification is a very challenging task. The main identification approaches include de novo sequencing and database searching. Both approaches have shortcomings, so an integrative approach has been developed. The integrative approach firstly infers partial peptide sequences, known as tags, directly from tandem spectra through de novo sequencing, and then puts these sequences into a database search to see if a close peptide match can be found. However the current implementation of this integrative approach has several limitations. Firstly, simplistic de novo sequencing is applied and only very short sequence tags are used. Secondly, most integrative methods apply an algorithm similar to BLAST to search for exact sequence matches and do not accommodate sequence errors well. Thirdly, by applying these methods the integrated de novo sequencing makes a limited contribution to the scoring model which is still largely based on database searching. We have developed a new integrative protein identification method which can integrate de novo sequencing more efficiently into database searching. Evaluated on large real datasets, our method outperforms popular identification methods.

  18. Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials.

    PubMed

    Ashton, Michael; Paul, Joshua; Sinnott, Susan B; Hennig, Richard G

    2017-03-10

    The Materials Project crystal structure database has been searched for materials possessing layered motifs in their crystal structures using a topology-scaling algorithm. The algorithm identifies and measures the sizes of bonded atomic clusters in a structure's unit cell, and determines their scaling with cell size. The search yielded 826 stable layered materials that are considered as candidates for the formation of two-dimensional monolayers via exfoliation. Density-functional theory was used to calculate the exfoliation energy of each material and 680 monolayers emerge with exfoliation energies below those of already-existent two-dimensional materials. The crystal structures of these two-dimensional materials provide templates for future theoretical searches of stable two-dimensional materials. The optimized structures and other calculated data for all 826 monolayers are provided at our database (https://materialsweb.org).

  19. Application of Metaheuristic and Deterministic Algorithms for Aircraft Reference Trajectory Optimization =

    NASA Astrophysics Data System (ADS)

    Murrieta Mendoza, Alejandro

    Aircraft reference trajectory is an alternative method to reduce fuel consumption, thus the pollution released to the atmosphere. Fuel consumption reduction is of special importance for two reasons: first, because the aeronautical industry is responsible of 2% of the CO2 released to the atmosphere, and second, because it will reduce the flight cost. The aircraft fuel model was obtained from a numerical performance database which was created and validated by our industrial partner from flight experimental test data. A new methodology using the numerical database was proposed in this thesis to compute the fuel burn for a given trajectory. Weather parameters such as wind and temperature were taken into account as they have an important effect in fuel burn. The open source model used to obtain the weather forecast was provided by Weather Canada. A combination of linear and bi-linear interpolations allowed finding the required weather data. The search space was modelled using different graphs: one graph was used for mapping the different flight phases such as climb, cruise and descent, and another graph was used for mapping the physical space in which the aircraft would perform its flight. The trajectory was optimized in its vertical reference trajectory using the Beam Search algorithm, and a combination of the Beam Search algorithm with a search space reduction technique. The trajectory was optimized simultaneously for the vertical and lateral reference navigation plans while fulfilling a Required Time of Arrival constraint using three different metaheuristic algorithms: the artificial bee's colony, and the ant colony optimization. Results were validated using the software FlightSIMRTM, a commercial Flight Management System, an exhaustive search algorithm, and as flown flights obtained from flightawareRTM. All algorithms were able to reduce the fuel burn, and the flight costs. None None None None None None None

  20. The Cluster AgeS Experiment (CASE). Detecting Aperiodic Photometric Variability with the Friends of Friends Algorithm

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Narloch, W.; Pietrukowicz, P.; Thompson, I. B.; Pych, W.; Poleski, R.

    2018-03-01

    We adapt the friends of friends algorithm to the analysis of light curves, and show that it can be succesfully applied to searches for transient phenomena in large photometric databases. As a test case we search OGLE-III light curves for known dwarf novae. A single combination of control parameters allows us to narrow the search to 1% of the data while reaching a ≍90% detection efficiency. A search involving ≍2% of the data and three combinations of control parameters can be significantly more effective - in our case a 100% efficiency is reached. The method can also quite efficiently detect semi-regular variability. In particular, 28 new semi-regular variables have been found in the field of the globular cluster M22, which was examined earlier with the help of periodicity-searching algorithms.

  1. Efficient RNA structure comparison algorithms.

    PubMed

    Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason

    2017-12-01

    Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.

  2. Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process

    PubMed Central

    Chang, Qiang; Li, Qun; Shi, Zesen; Chen, Wei; Wang, Weiping

    2016-01-01

    Indoor localization using Received Signal Strength Indication (RSSI) fingerprinting has been extensively studied for decades. The positioning accuracy is highly dependent on the density of the signal database. In areas without calibration data, however, this algorithm breaks down. Building and updating a dense signal database is labor intensive, expensive, and even impossible in some areas. Researchers are continually searching for better algorithms to create and update dense databases more efficiently. In this paper, we propose a scalable indoor positioning algorithm that works both in surveyed and unsurveyed areas. We first propose Minimum Inverse Distance (MID) algorithm to build a virtual database with uniformly distributed virtual Reference Points (RP). The area covered by the virtual RPs can be larger than the surveyed area. A Local Gaussian Process (LGP) is then applied to estimate the virtual RPs’ RSSI values based on the crowdsourced training data. Finally, we improve the Bayesian algorithm to estimate the user’s location using the virtual database. All the parameters are optimized by simulations, and the new algorithm is tested on real-case scenarios. The results show that the new algorithm improves the accuracy by 25.5% in the surveyed area, with an average positioning error below 2.2 m for 80% of the cases. Moreover, the proposed algorithm can localize the users in the neighboring unsurveyed area. PMID:26999139

  3. Accelerating Smith-Waterman Algorithm for Biological Database Search on CUDA-Compatible GPUs

    NASA Astrophysics Data System (ADS)

    Munekawa, Yuma; Ino, Fumihiko; Hagihara, Kenichi

    This paper presents a fast method capable of accelerating the Smith-Waterman algorithm for biological database search on a cluster of graphics processing units (GPUs). Our method is implemented using compute unified device architecture (CUDA), which is available on the nVIDIA GPU. As compared with previous methods, our method has four major contributions. (1) The method efficiently uses on-chip shared memory to reduce the data amount being transferred between off-chip video memory and processing elements in the GPU. (2) It also reduces the number of data fetches by applying a data reuse technique to query and database sequences. (3) A pipelined method is also implemented to overlap GPU execution with database access. (4) Finally, a master/worker paradigm is employed to accelerate hundreds of database searches on a cluster system. In experiments, the peak performance on a GeForce GTX 280 card reaches 8.32 giga cell updates per second (GCUPS). We also find that our method reduces the amount of data fetches to 1/140, achieving approximately three times higher performance than a previous CUDA-based method. Our 32-node cluster version is approximately 28 times faster than a single GPU version. Furthermore, the effective performance reaches 75.6 giga instructions per second (GIPS) using 32 GeForce 8800 GTX cards.

  4. Tachyon search speeds up retrieval of similar sequences by several orders of magnitude.

    PubMed

    Tan, Joshua; Kuchibhatla, Durga; Sirota, Fernanda L; Sherman, Westley A; Gattermayer, Tobias; Kwoh, Chia Yee; Eisenhaber, Frank; Schneider, Georg; Maurer-Stroh, Sebastian

    2012-06-15

    The usage of current sequence search tools becomes increasingly slower as databases of protein sequences continue to grow exponentially. Tachyon, a new algorithm that identifies closely related protein sequences ~200 times faster than standard BLAST, circumvents this limitation with a reduced database and oligopeptide matching heuristic. The tool is publicly accessible as a webserver at http://tachyon.bii.a-star.edu.sg and can also be accessed programmatically through SOAP.

  5. MICA: desktop software for comprehensive searching of DNA databases

    PubMed Central

    Stokes, William A; Glick, Benjamin S

    2006-01-01

    Background Molecular biologists work with DNA databases that often include entire genomes. A common requirement is to search a DNA database to find exact matches for a nondegenerate or partially degenerate query. The software programs available for such purposes are normally designed to run on remote servers, but an appealing alternative is to work with DNA databases stored on local computers. We describe a desktop software program termed MICA (K-Mer Indexing with Compact Arrays) that allows large DNA databases to be searched efficiently using very little memory. Results MICA rapidly indexes a DNA database. On a Macintosh G5 computer, the complete human genome could be indexed in about 5 minutes. The indexing algorithm recognizes all 15 characters of the DNA alphabet and fully captures the information in any DNA sequence, yet for a typical sequence of length L, the index occupies only about 2L bytes. The index can be searched to return a complete list of exact matches for a nondegenerate or partially degenerate query of any length. A typical search of a long DNA sequence involves reading only a small fraction of the index into memory. As a result, searches are fast even when the available RAM is limited. Conclusion MICA is suitable as a search engine for desktop DNA analysis software. PMID:17018144

  6. SAM: String-based sequence search algorithm for mitochondrial DNA database queries

    PubMed Central

    Röck, Alexander; Irwin, Jodi; Dür, Arne; Parsons, Thomas; Parson, Walther

    2011-01-01

    The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the corrected version of the first sequenced mtDNA. This convention requires recommendations for standardized sequence alignment that is known to vary between scientific disciplines, even between laboratories. As a consequence, database searches that are vital for the interpretation of mtDNA data can suffer from biased results when query and database haplotypes are annotated differently. In the forensic context that would usually lead to underestimation of the absolute and relative frequencies. To address this issue we introduce SAM, a string-based search algorithm that converts query and database sequences to position-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query. The mere application of a BLAST algorithm would not be a sufficient remedy as it uses a heuristic approach and does not address properties specific to mtDNA, such as phylogenetically stable but also rapidly evolving insertion and deletion events. The software presented here provides additional flexibility to incorporate phylogenetic data, site-specific mutation rates, and other biologically relevant information that would refine the interpretation of mitochondrial DNA data. The manuscript is accompanied by freeware and example data sets that can be used to evaluate the new software (http://stringvalidation.org). PMID:21056022

  7. Web server to identify similarity of amino acid motifs to compounds (SAAMCO).

    PubMed

    Casey, Fergal P; Davey, Norman E; Baran, Ivan; Varekova, Radka Svobodova; Shields, Denis C

    2008-07-01

    Protein-protein interactions are fundamental in mediating biological processes including metabolism, cell growth, and signaling. To be able to selectively inhibit or induce protein activity or complex formation is a key feature in controlling disease. For those situations in which protein-protein interactions derive substantial affinity from short linear peptide sequences, or motifs, we can develop search algorithms for peptidomimetic compounds that resemble the short peptide's structure but are not compromised by poor pharmacological properties. SAAMCO is a Web service ( http://bioware.ucd.ie/ approximately saamco) that facilitates the screening of motifs with known structures against bioactive compound databases. It is built on an algorithm that defines compound similarity based on the presence of appropriate amino acid side chain fragments and a favorable Root Mean Squared Deviation (RMSD) between compound and motif structure. The methodology is efficient as the available compound databases are preprocessed and fast regular expression searches filter potential matches before time-intensive 3D superposition is performed. The required input information is minimal, and the compound databases have been selected to maximize the availability of information on biological activity. "Hits" are accompanied with a visualization window and links to source database entries. Motif matching can be defined on partial or full similarity which will increase or reduce respectively the number of potential mimetic compounds. The Web server provides the functionality for rapid screening of known or putative interaction motifs against prepared compound libraries using a novel search algorithm. The tabulated results can be analyzed by linking to appropriate databases and by visualization.

  8. The Fragment Network: A Chemistry Recommendation Engine Built Using a Graph Database.

    PubMed

    Hall, Richard J; Murray, Christopher W; Verdonk, Marcel L

    2017-07-27

    The hit validation stage of a fragment-based drug discovery campaign involves probing the SAR around one or more fragment hits. This often requires a search for similar compounds in a corporate collection or from commercial suppliers. The Fragment Network is a graph database that allows a user to efficiently search chemical space around a compound of interest. The result set is chemically intuitive, naturally grouped by substitution pattern and meaningfully sorted according to the number of observations of each transformation in medicinal chemistry databases. This paper describes the algorithms used to construct and search the Fragment Network and provides examples of how it may be used in a drug discovery context.

  9. ACMES: fast multiple-genome searches for short repeat sequences with concurrent cross-species information retrieval

    PubMed Central

    Reneker, Jeff; Shyu, Chi-Ren; Zeng, Peiyu; Polacco, Joseph C.; Gassmann, Walter

    2004-01-01

    We have developed a web server for the life sciences community to use to search for short repeats of DNA sequence of length between 3 and 10 000 bases within multiple species. This search employs a unique and fast hash function approach. Our system also applies information retrieval algorithms to discover knowledge of cross-species conservation of repeat sequences. Furthermore, we have incorporated a part of the Gene Ontology database into our information retrieval algorithms to broaden the coverage of the search. Our web server and tutorial can be found at http://acmes.rnet.missouri.edu. PMID:15215469

  10. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units

    PubMed Central

    Liu, Yongchao; Maskell, Douglas L; Schmidt, Bertil

    2009-01-01

    Background The Smith-Waterman algorithm is one of the most widely used tools for searching biological sequence databases due to its high sensitivity. Unfortunately, the Smith-Waterman algorithm is computationally demanding, which is further compounded by the exponential growth of sequence databases. The recent emergence of many-core architectures, and their associated programming interfaces, provides an opportunity to accelerate sequence database searches using commonly available and inexpensive hardware. Findings Our CUDASW++ implementation (benchmarked on a single-GPU NVIDIA GeForce GTX 280 graphics card and a dual-GPU GeForce GTX 295 graphics card) provides a significant performance improvement compared to other publicly available implementations, such as SWPS3, CBESW, SW-CUDA, and NCBI-BLAST. CUDASW++ supports query sequences of length up to 59K and for query sequences ranging in length from 144 to 5,478 in Swiss-Prot release 56.6, the single-GPU version achieves an average performance of 9.509 GCUPS with a lowest performance of 9.039 GCUPS and a highest performance of 9.660 GCUPS, and the dual-GPU version achieves an average performance of 14.484 GCUPS with a lowest performance of 10.660 GCUPS and a highest performance of 16.087 GCUPS. Conclusion CUDASW++ is publicly available open-source software. It provides a significant performance improvement for Smith-Waterman-based protein sequence database searches by fully exploiting the compute capability of commonly used CUDA-enabled low-cost GPUs. PMID:19416548

  11. Doubling down on peptide phosphorylation as a variable mass modification

    USDA-ARS?s Scientific Manuscript database

    Some mass spectrometrists believe that searching for variable post-translational modifications like phosphorylation of serine or threonine when using database-search algorithms to interpret peptide tandem mass spectra will increase false positive rates. The basis for this is the premise that the al...

  12. A systematic review of validated methods to capture acute bronchospasm using administrative or claims data.

    PubMed

    Sharifi, Mona; Krishanswami, Shanthi; McPheeters, Melissa L

    2013-12-30

    To identify and assess billing, procedural, or diagnosis code, or pharmacy claim-based algorithms used to identify acute bronchospasm in administrative and claims databases. We searched the MEDLINE database from 1991 to September 2012 using controlled vocabulary and key terms related to bronchospasm, wheeze and acute asthma. We also searched the reference lists of included studies. Two investigators independently assessed the full text of studies against pre-determined inclusion criteria. Two reviewers independently extracted data regarding participant and algorithm characteristics. Our searches identified 677 citations of which 38 met our inclusion criteria. In these 38 studies, the most commonly used ICD-9 code was 493.x. Only 3 studies reported any validation methods for the identification of bronchospasm, wheeze or acute asthma in administrative and claims databases; all were among pediatric populations and only 2 offered any validation statistics. Some of the outcome definitions utilized were heterogeneous and included other disease based diagnoses, such as bronchiolitis and pneumonia, which are typically of an infectious etiology. One study offered the validation of algorithms utilizing Emergency Department triage chief complaint codes to diagnose acute asthma exacerbations with ICD-9 786.07 (wheezing) revealing the highest sensitivity (56%), specificity (97%), PPV (93.5%) and NPV (76%). There is a paucity of studies reporting rigorous methods to validate algorithms for the identification of bronchospasm in administrative data. The scant validated data available are limited in their generalizability to broad-based populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm.

    PubMed

    Godfrin, C; Ferhat, A; Ballou, R; Klyatskaya, S; Ruben, M; Wernsdorfer, W; Balestro, F

    2017-11-03

    Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.

  14. Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm

    NASA Astrophysics Data System (ADS)

    Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.

    2017-11-01

    Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.

  15. Efficient privacy-preserving string search and an application in genomics.

    PubMed

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-06-01

    Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. We propose a novel approach that combines efficient string data structures such as the Burrows-Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows-Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within [Formula: see text] 4.6 s and [Formula: see text] 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  16. Efficient privacy-preserving string search and an application in genomics

    PubMed Central

    Shimizu, Kana; Nuida, Koji; Rätsch, Gunnar

    2016-01-01

    Motivation: Personal genomes carry inherent privacy risks and protecting privacy poses major social and technological challenges. We consider the case where a user searches for genetic information (e.g. an allele) on a server that stores a large genomic database and aims to receive allele-associated information. The user would like to keep the query and result private and the server the database. Approach: We propose a novel approach that combines efficient string data structures such as the Burrows–Wheeler transform with cryptographic techniques based on additive homomorphic encryption. We assume that the sequence data is searchable in efficient iterative query operations over a large indexed dictionary, for instance, from large genome collections and employing the (positional) Burrows–Wheeler transform. We use a technique called oblivious transfer that is based on additive homomorphic encryption to conceal the sequence query and the genomic region of interest in positional queries. Results: We designed and implemented an efficient algorithm for searching sequences of SNPs in large genome databases. During search, the user can only identify the longest match while the server does not learn which sequence of SNPs the user queried. In an experiment based on 2184 aligned haploid genomes from the 1000 Genomes Project, our algorithm was able to perform typical queries within ≈ 4.6 s and ≈ 10.8 s for client and server side, respectively, on laptop computers. The presented algorithm is at least one order of magnitude faster than an exhaustive baseline algorithm. Availability and implementation: https://github.com/iskana/PBWT-sec and https://github.com/ratschlab/PBWT-sec. Contacts: shimizu-kana@aist.go.jp or Gunnar.Ratsch@ratschlab.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153731

  17. rasbhari: Optimizing Spaced Seeds for Database Searching, Read Mapping and Alignment-Free Sequence Comparison.

    PubMed

    Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard

    2016-10-01

    Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.

  18. Dereplication of peptidic natural products through database search of mass spectra

    PubMed Central

    Mohimani, Hosein; Gurevich, Alexey; Mikheenko, Alla; Garg, Neha; Nothias, Louis-Felix; Ninomiya, Akihiro; Takada, Kentaro; Dorrestein, Pieter C.; Pevzner, Pavel A.

    2016-01-01

    Peptidic Natural Products (PNPs) are widely used compounds that include many antibiotics and a variety of other bioactive peptides. While recent breakthroughs in PNP discovery raised the challenge of developing new algorithms for their analysis, identification of PNPs via database search of tandem mass spectra remains an open problem. To address this problem, natural product researchers utilize dereplication strategies that identify known PNPs and lead to the discovery of new ones even in cases when the reference spectra are not present in existing spectral libraries. DEREPLICATOR is a new dereplication algorithm that enabled high-throughput PNP identification and that is compatible with large-scale mass spectrometry-based screening platforms for natural product discovery. After searching nearly one hundred million tandem mass spectra in the Global Natural Products Social (GNPS) molecular networking infrastructure, DEREPLICATOR identified an order of magnitude more PNPs (and their new variants) than any previous dereplication efforts. PMID:27820803

  19. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  20. Research on parallel algorithm for sequential pattern mining

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Qin, Bai; Wang, Yu; Hao, Zhongxiao

    2008-03-01

    Sequential pattern mining is the mining of frequent sequences related to time or other orders from the sequence database. Its initial motivation is to discover the laws of customer purchasing in a time section by finding the frequent sequences. In recent years, sequential pattern mining has become an important direction of data mining, and its application field has not been confined to the business database and has extended to new data sources such as Web and advanced science fields such as DNA analysis. The data of sequential pattern mining has characteristics as follows: mass data amount and distributed storage. Most existing sequential pattern mining algorithms haven't considered the above-mentioned characteristics synthetically. According to the traits mentioned above and combining the parallel theory, this paper puts forward a new distributed parallel algorithm SPP(Sequential Pattern Parallel). The algorithm abides by the principal of pattern reduction and utilizes the divide-and-conquer strategy for parallelization. The first parallel task is to construct frequent item sets applying frequent concept and search space partition theory and the second task is to structure frequent sequences using the depth-first search method at each processor. The algorithm only needs to access the database twice and doesn't generate the candidated sequences, which abates the access time and improves the mining efficiency. Based on the random data generation procedure and different information structure designed, this paper simulated the SPP algorithm in a concrete parallel environment and implemented the AprioriAll algorithm. The experiments demonstrate that compared with AprioriAll, the SPP algorithm had excellent speedup factor and efficiency.

  1. Knowledge Based Engineering for Spatial Database Management and Use

    NASA Technical Reports Server (NTRS)

    Peuquet, D. (Principal Investigator)

    1984-01-01

    The use of artificial intelligence techniques that are applicable to Geographic Information Systems (GIS) are examined. Questions involving the performance and modification to the database structure, the definition of spectra in quadtree structures and their use in search heuristics, extension of the knowledge base, and learning algorithm concepts are investigated.

  2. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.

    PubMed

    Audain, Enrique; Uszkoreit, Julian; Sachsenberg, Timo; Pfeuffer, Julianus; Liang, Xiao; Hermjakob, Henning; Sanchez, Aniel; Eisenacher, Martin; Reinert, Knut; Tabb, David L; Kohlbacher, Oliver; Perez-Riverol, Yasset

    2017-01-06

    In mass spectrometry-based shotgun proteomics, protein identifications are usually the desired result. However, most of the analytical methods are based on the identification of reliable peptides and not the direct identification of intact proteins. Thus, assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Currently, different protein inference algorithms and tools are available for the proteomics community. Here, we evaluated five software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using four different public datasets with varying complexities (different sample preparation, species and analytical instruments). We defined a set of quality control metrics to evaluate the performance of each combination of search engines, protein inference algorithm, and parameters on each dataset. We show that the results for complex samples vary not only regarding the actual numbers of reported protein groups but also concerning the actual composition of groups. Furthermore, the robustness of reported proteins when using databases of differing complexities is strongly dependant on the applied inference algorithm. Finally, merging the identifications of multiple search engines does not necessarily increase the number of reported proteins, but does increase the number of peptides per protein and thus can generally be recommended. Protein inference is one of the major challenges in MS-based proteomics nowadays. Currently, there are a vast number of protein inference algorithms and implementations available for the proteomics community. Protein assembly impacts in the final results of the research, the quantitation values and the final claims in the research manuscript. Even though protein inference is a crucial step in proteomics data analysis, a comprehensive evaluation of the many different inference methods has never been performed. Previously Journal of proteomics has published multiple studies about other benchmark of bioinformatics algorithms (PMID: 26585461; PMID: 22728601) in proteomics studies making clear the importance of those studies for the proteomics community and the journal audience. This manuscript presents a new bioinformatics solution based on the KNIME/OpenMS platform that aims at providing a fair comparison of protein inference algorithms (https://github.com/KNIME-OMICS). Six different algorithms - ProteinProphet, MSBayesPro, ProteinLP, Fido and PIA- were evaluated using the highly customizable workflow on four public datasets with varying complexities. Five popular database search engines Mascot, X!Tandem, MS-GF+ and combinations thereof were evaluated for every protein inference tool. In total >186 proteins lists were analyzed and carefully compare using three metrics for quality assessments of the protein inference results: 1) the numbers of reported proteins, 2) peptides per protein, and the 3) number of uniquely reported proteins per inference method, to address the quality of each inference method. We also examined how many proteins were reported by choosing each combination of search engines, protein inference algorithms and parameters on each dataset. The results show that using 1) PIA or Fido seems to be a good choice when studying the results of the analyzed workflow, regarding not only the reported proteins and the high-quality identifications, but also the required runtime. 2) Merging the identifications of multiple search engines gives almost always more confident results and increases the number of peptides per protein group. 3) The usage of databases containing not only the canonical, but also known isoforms of proteins has a small impact on the number of reported proteins. The detection of specific isoforms could, concerning the question behind the study, compensate for slightly shorter reports using the parsimonious reports. 4) The current workflow can be easily extended to support new algorithms and search engine combinations. Copyright © 2016. Published by Elsevier B.V.

  3. Parameter optimization of differential evolution algorithm for automatic playlist generation problem

    NASA Astrophysics Data System (ADS)

    Alamag, Kaye Melina Natividad B.; Addawe, Joel M.

    2017-11-01

    With the digitalization of music, the number of collection of music increased largely and there is a need to create lists of music that filter the collection according to user preferences, thus giving rise to the Automatic Playlist Generation Problem (APGP). Previous attempts to solve this problem include the use of search and optimization algorithms. If a music database is very large, the algorithm to be used must be able to search the lists thoroughly taking into account the quality of the playlist given a set of user constraints. In this paper we perform an evolutionary meta-heuristic optimization algorithm, Differential Evolution (DE) using different combination of parameter values and select the best performing set when used to solve four standard test functions. Performance of the proposed algorithm is then compared with normal Genetic Algorithm (GA) and a hybrid GA with Tabu Search. Numerical simulations are carried out to show better results from Differential Evolution approach with the optimized parameter values.

  4. Burn Injury Assessment Tool with Morphable 3D Human Body Models

    DTIC Science & Technology

    2017-04-21

    waist, arms and legs measurements) as stored in most anthropometry databases . To improve on bum area estimations, the bum tool will allow the user to...different algorithm for morphing that relies on searching of an extensive anthropometric database , which is created from thousands of randomly...interpolation methods are required. Develop Patient Database : Patient data entered (name, gender, age, anthropometric measurements), collected (photographic

  5. Accelerating Smith-Waterman Alignment for Protein Database Search Using Frequency Distance Filtration Scheme Based on CPU-GPU Collaborative System.

    PubMed

    Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun

    2015-01-01

    The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.

  6. Projections for fast protein structure retrieval

    PubMed Central

    Bhattacharya, Sourangshu; Bhattacharyya, Chiranjib; Chandra, Nagasuma R

    2006-01-01

    Background In recent times, there has been an exponential rise in the number of protein structures in databases e.g. PDB. So, design of fast algorithms capable of querying such databases is becoming an increasingly important research issue. This paper reports an algorithm, motivated from spectral graph matching techniques, for retrieving protein structures similar to a query structure from a large protein structure database. Each protein structure is specified by the 3D coordinates of residues of the protein. The algorithm is based on a novel characterization of the residues, called projections, leading to a similarity measure between the residues of the two proteins. This measure is exploited to efficiently compute the optimal equivalences. Results Experimental results show that, the current algorithm outperforms the state of the art on benchmark datasets in terms of speed without losing accuracy. Search results on SCOP 95% nonredundant database, for fold similarity with 5 proteins from different SCOP classes show that the current method performs competitively with the standard algorithm CE. The algorithm is also capable of detecting non-topological similarities between two proteins which is not possible with most of the state of the art tools like Dali. PMID:17254310

  7. Ursgal, Universal Python Module Combining Common Bottom-Up Proteomics Tools for Large-Scale Analysis.

    PubMed

    Kremer, Lukas P M; Leufken, Johannes; Oyunchimeg, Purevdulam; Schulze, Stefan; Fufezan, Christian

    2016-03-04

    Proteomics data integration has become a broad field with a variety of programs offering innovative algorithms to analyze increasing amounts of data. Unfortunately, this software diversity leads to many problems as soon as the data is analyzed using more than one algorithm for the same task. Although it was shown that the combination of multiple peptide identification algorithms yields more robust results, it is only recently that unified approaches are emerging; however, workflows that, for example, aim to optimize search parameters or that employ cascaded style searches can only be made accessible if data analysis becomes not only unified but also and most importantly scriptable. Here we introduce Ursgal, a Python interface to many commonly used bottom-up proteomics tools and to additional auxiliary programs. Complex workflows can thus be composed using the Python scripting language using a few lines of code. Ursgal is easily extensible, and we have made several database search engines (X!Tandem, OMSSA, MS-GF+, Myrimatch, MS Amanda), statistical postprocessing algorithms (qvality, Percolator), and one algorithm that combines statistically postprocessed outputs from multiple search engines ("combined FDR") accessible as an interface in Python. Furthermore, we have implemented a new algorithm ("combined PEP") that combines multiple search engines employing elements of "combined FDR", PeptideShaker, and Bayes' theorem.

  8. Search and Graph Database Technologies for Biomedical Semantic Indexing: Experimental Analysis.

    PubMed

    Segura Bedmar, Isabel; Martínez, Paloma; Carruana Martín, Adrián

    2017-12-01

    Biomedical semantic indexing is a very useful support tool for human curators in their efforts for indexing and cataloging the biomedical literature. The aim of this study was to describe a system to automatically assign Medical Subject Headings (MeSH) to biomedical articles from MEDLINE. Our approach relies on the assumption that similar documents should be classified by similar MeSH terms. Although previous work has already exploited the document similarity by using a k-nearest neighbors algorithm, we represent documents as document vectors by search engine indexing and then compute the similarity between documents using cosine similarity. Once the most similar documents for a given input document are retrieved, we rank their MeSH terms to choose the most suitable set for the input document. To do this, we define a scoring function that takes into account the frequency of the term into the set of retrieved documents and the similarity between the input document and each retrieved document. In addition, we implement guidelines proposed by human curators to annotate MEDLINE articles; in particular, the heuristic that says if 3 MeSH terms are proposed to classify an article and they share the same ancestor, they should be replaced by this ancestor. The representation of the MeSH thesaurus as a graph database allows us to employ graph search algorithms to quickly and easily capture hierarchical relationships such as the lowest common ancestor between terms. Our experiments show promising results with an F1 of 69% on the test dataset. To the best of our knowledge, this is the first work that combines search and graph database technologies for the task of biomedical semantic indexing. Due to its horizontal scalability, ElasticSearch becomes a real solution to index large collections of documents (such as the bibliographic database MEDLINE). Moreover, the use of graph search algorithms for accessing MeSH information could provide a support tool for cataloging MEDLINE abstracts in real time. ©Isabel Segura Bedmar, Paloma Martínez, Adrián Carruana Martín. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.12.2017.

  9. Benchmarking database performance for genomic data.

    PubMed

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc. © 2015 Wiley Periodicals, Inc.

  10. Image-based query-by-example for big databases of galaxy images

    NASA Astrophysics Data System (ADS)

    Shamir, Lior; Kuminski, Evan

    2017-01-01

    Very large astronomical databases containing millions or even billions of galaxy images have been becoming increasingly important tools in astronomy research. However, in many cases the very large size makes it more difficult to analyze these data manually, reinforcing the need for computer algorithms that can automate the data analysis process. An example of such task is the identification of galaxies of a certain morphology of interest. For instance, if a rare galaxy is identified it is reasonable to expect that more galaxies of similar morphology exist in the database, but it is virtually impossible to manually search these databases to identify such galaxies. Here we describe computer vision and pattern recognition methodology that receives a galaxy image as an input, and searches automatically a large dataset of galaxies to return a list of galaxies that are visually similar to the query galaxy. The returned list is not necessarily complete or clean, but it provides a substantial reduction of the original database into a smaller dataset, in which the frequency of objects visually similar to the query galaxy is much higher. Experimental results show that the algorithm can identify rare galaxies such as ring galaxies among datasets of 10,000 astronomical objects.

  11. Real-time Author Co-citation Mapping for Online Searching.

    ERIC Educational Resources Information Center

    Lin, Xia; White, Howard D.; Buzydlowski, Jan

    2003-01-01

    Describes the design and implementation of a prototype visualization system, AuthorLink, to enhance author searching. AuthorLink is based on author co-citation analysis and visualization mapping algorithms. AuthorLink produces interactive author maps in real time from a database of 1.26 million records supplied by the Institute for Scientific…

  12. Tempest: Accelerated MS/MS database search software for heterogeneous computing platforms

    PubMed Central

    Adamo, Mark E.; Gerber, Scott A.

    2017-01-01

    MS/MS database search algorithms derive a set of candidate peptide sequences from in-silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU generates peptide candidates that are asynchronously sent to a discrete GPU to be scored against experimental spectra in parallel (Milloy et al., 2012). The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. PMID:27603022

  13. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.

    PubMed

    Wang, Chunlin; Lefkowitz, Elliot J

    2004-10-28

    Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist.

  14. SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters

    PubMed Central

    Wang, Chunlin; Lefkowitz, Elliot J

    2004-01-01

    Background Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. Results We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Conclusions Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist. PMID:15511296

  15. RNA Bricks—a database of RNA 3D motifs and their interactions

    PubMed Central

    Chojnowski, Grzegorz; Waleń, Tomasz; Bujnicki, Janusz M.

    2014-01-01

    The RNA Bricks database (http://iimcb.genesilico.pl/rnabricks), stores information about recurrent RNA 3D motifs and their interactions, found in experimentally determined RNA structures and in RNA–protein complexes. In contrast to other similar tools (RNA 3D Motif Atlas, RNA Frabase, Rloom) RNA motifs, i.e. ‘RNA bricks’ are presented in the molecular environment, in which they were determined, including RNA, protein, metal ions, water molecules and ligands. All nucleotide residues in RNA bricks are annotated with structural quality scores that describe real-space correlation coefficients with the electron density data (if available), backbone geometry and possible steric conflicts, which can be used to identify poorly modeled residues. The database is also equipped with an algorithm for 3D motif search and comparison. The algorithm compares spatial positions of backbone atoms of the user-provided query structure and of stored RNA motifs, without relying on sequence or secondary structure information. This enables the identification of local structural similarities among evolutionarily related and unrelated RNA molecules. Besides, the search utility enables searching ‘RNA bricks’ according to sequence similarity, and makes it possible to identify motifs with modified ribonucleotide residues at specific positions. PMID:24220091

  16. Boyer-Moore Algorithm in Retrieving Deleted Short Message Service in Android Platform

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Prayoga, D. F.; Gunawan, D.; Sitompul, O. S.

    2018-02-01

    Short message service (SMS) can be used as digital evidence of disclosure of crime because it can strengthen the charges against the offenders. Criminals use various ways to destroy the evidence, including by deleting SMS. On the Android OS, SMS is stored in a SQLite database file. Deletion of SMS data is not followed by bit deletion in memory so that it is possible to rediscover the deleted SMS. Based on this case, the mobile forensic needs to be done to rediscover the short message service. The proposed method in this study is Boyer-Moore algorithm for searching string matching. An auto finds feature is designed to rediscover the short message service by searching using a particular pattern to rematch a text with the result of the hex value conversion in the database file. The system will redisplay the message for each of a match. From all the testing results, the proposed method has quite a high accuracy in rediscovering the short message service using the used dataset. The search results to rediscover the deleted SMS depend on the possibility of overwriting process and the vacuum procedure on the database file.

  17. Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework

    PubMed Central

    2012-01-01

    Background For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. Results We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. Conclusion The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources. PMID:23216909

  18. Hydra: a scalable proteomic search engine which utilizes the Hadoop distributed computing framework.

    PubMed

    Lewis, Steven; Csordas, Attila; Killcoyne, Sarah; Hermjakob, Henning; Hoopmann, Michael R; Moritz, Robert L; Deutsch, Eric W; Boyle, John

    2012-12-05

    For shotgun mass spectrometry based proteomics the most computationally expensive step is in matching the spectra against an increasingly large database of sequences and their post-translational modifications with known masses. Each mass spectrometer can generate data at an astonishingly high rate, and the scope of what is searched for is continually increasing. Therefore solutions for improving our ability to perform these searches are needed. We present a sequence database search engine that is specifically designed to run efficiently on the Hadoop MapReduce distributed computing framework. The search engine implements the K-score algorithm, generating comparable output for the same input files as the original implementation. The scalability of the system is shown, and the architecture required for the development of such distributed processing is discussed. The software is scalable in its ability to handle a large peptide database, numerous modifications and large numbers of spectra. Performance scales with the number of processors in the cluster, allowing throughput to expand with the available resources.

  19. A systematic review of validated methods to capture stillbirth and spontaneous abortion using administrative or claims data.

    PubMed

    Likis, Frances E; Sathe, Nila A; Carnahan, Ryan; McPheeters, Melissa L

    2013-12-30

    To identify and assess diagnosis, procedure and pharmacy dispensing codes used to identify stillbirths and spontaneous abortion in administrative and claims databases from the United States or Canada. We searched the MEDLINE database from 1991 to September 2012 using controlled vocabulary and key terms related to stillbirth or spontaneous abortion. We also searched the reference lists of included studies. Two investigators independently assessed the full text of studies against pre-determined inclusion criteria. Two reviewers independently extracted data regarding participant and algorithm characteristics and assessed each study's methodological rigor using a pre-defined approach. Ten publications addressing stillbirth and four addressing spontaneous abortion met our inclusion criteria. The International Classification of Diseases, Ninth Revision (ICD-9) codes most commonly used in algorithms for stillbirth were those for intrauterine death (656.4) and stillborn outcomes of delivery (V27.1, V27.3-V27.4, and V27.6-V27.7). Papers identifying spontaneous abortion used codes for missed abortion and spontaneous abortion: 632, 634.x, as well as V27.0-V27.7. Only two studies identifying stillbirth reported validation of algorithms. The overall positive predictive value of the algorithms was high (99%-100%), and one study reported an algorithm with 86% sensitivity. However, the predictive value of individual codes was not assessed and study populations were limited to specific geographic areas. Additional validation studies with a nationally representative sample are needed to confirm the optimal algorithm to identify stillbirths or spontaneous abortion in administrative and claims databases.' Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. An Efficient Conflict Detection Algorithm for Packet Filters

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Liang; Lin, Guan-Yu; Chen, Yaw-Chung

    Packet classification is essential for supporting advanced network services such as firewalls, quality-of-service (QoS), virtual private networks (VPN), and policy-based routing. The rules that routers use to classify packets are called packet filters. If two or more filters overlap, a conflict occurs and leads to ambiguity in packet classification. This study proposes an algorithm that can efficiently detect and resolve filter conflicts using tuple based search. The time complexity of the proposed algorithm is O(nW+s), and the space complexity is O(nW), where n is the number of filters, W is the number of bits in a header field, and s is the number of conflicts. This study uses the synthetic filter databases generated by ClassBench to evaluate the proposed algorithm. Simulation results show that the proposed algorithm can achieve better performance than existing conflict detection algorithms both in time and space, particularly for databases with large numbers of conflicts.

  1. ATHENA: A knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci

    PubMed Central

    2010-01-01

    Background Growing interest and burgeoning technology for discovering genetic mechanisms that influence disease processes have ushered in a flood of genetic association studies over the last decade, yet little heritability in highly studied complex traits has been explained by genetic variation. Non-additive gene-gene interactions, which are not often explored, are thought to be one source of this "missing" heritability. Methods Stochastic methods employing evolutionary algorithms have demonstrated promise in being able to detect and model gene-gene and gene-environment interactions that influence human traits. Here we demonstrate modifications to a neural network algorithm in ATHENA (the Analysis Tool for Heritable and Environmental Network Associations) resulting in clear performance improvements for discovering gene-gene interactions that influence human traits. We employed an alternative tree-based crossover, backpropagation for locally fitting neural network weights, and incorporation of domain knowledge obtainable from publicly accessible biological databases for initializing the search for gene-gene interactions. We tested these modifications in silico using simulated datasets. Results We show that the alternative tree-based crossover modification resulted in a modest increase in the sensitivity of the ATHENA algorithm for discovering gene-gene interactions. The performance increase was highly statistically significant when backpropagation was used to locally fit NN weights. We also demonstrate that using domain knowledge to initialize the search for gene-gene interactions results in a large performance increase, especially when the search space is larger than the search coverage. Conclusions We show that a hybrid optimization procedure, alternative crossover strategies, and incorporation of domain knowledge from publicly available biological databases can result in marked increases in sensitivity and performance of the ATHENA algorithm for detecting and modelling gene-gene interactions that influence a complex human trait. PMID:20875103

  2. Development of Infrared Library Search Prefilters for Automotive Clear Coats from Simulated Attenuated Total Reflection (ATR) Spectra.

    PubMed

    Perera, Undugodage Don Nuwan; Nishikida, Koichi; Lavine, Barry K

    2018-06-01

    A previously published study featuring an attenuated total reflection (ATR) simulation algorithm that mitigated distortions in ATR spectra was further investigated to evaluate its efficacy to enhance searching of infrared (IR) transmission libraries. In the present study, search prefilters were developed from transformed ATR spectra to identify the assembly plant of a vehicle from ATR spectra of the clear coat layer. A total of 456 IR transmission spectra from the Paint Data Query (PDQ) database that spanned 22 General Motors assembly plants and served as a training set cohort were transformed into ATR spectra by the simulation algorithm. These search prefilters were formulated using the fingerprint region (1500 cm -1 to 500 cm -1 ). Both the transformed ATR spectra (training set) and the experimental ATR spectra (validation set) were preprocessed for pattern recognition analysis using the discrete wavelet transform, which increased the signal-to-noise of the ATR spectra by concentrating the signal in specific wavelet coefficients. Attenuated total reflection spectra of 14 clear coat samples (validation set) measured with a Nicolet iS50 Fourier transform IR spectrometer were correctly classified as to assembly plant(s) of the automotive vehicle from which the paint sample originated using search prefilters developed from 456 simulated ATR spectra. The ATR simulation (transformation) algorithm successfully facilitated spectral library matching of ATR spectra against IR transmission spectra of automotive clear coats in the PDQ database.

  3. Comparative homology agreement search: An effective combination of homology-search methods

    PubMed Central

    Alam, Intikhab; Dress, Andreas; Rehmsmeier, Marc; Fuellen, Georg

    2004-01-01

    Many methods have been developed to search for homologous members of a protein family in databases, and the reliability of results and conclusions may be compromised if only one method is used, neglecting the others. Here we introduce a general scheme for combining such methods. Based on this scheme, we implemented a tool called comparative homology agreement search (chase) that integrates different search strategies to obtain a combined “E value.” Our results show that a consensus method integrating distinct strategies easily outperforms any of its component algorithms. More specifically, an evaluation based on the Structural Classification of Proteins database reveals that, on average, a coverage of 47% can be obtained in searches for distantly related homologues (i.e., members of the same superfamily but not the same family, which is a very difficult task), accepting only 10 false positives, whereas the individual methods obtain a coverage of 28–38%. PMID:15367730

  4. Convalescing Cluster Configuration Using a Superlative Framework

    PubMed Central

    Sabitha, R.; Karthik, S.

    2015-01-01

    Competent data mining methods are vital to discover knowledge from databases which are built as a result of enormous growth of data. Various techniques of data mining are applied to obtain knowledge from these databases. Data clustering is one such descriptive data mining technique which guides in partitioning data objects into disjoint segments. K-means algorithm is a versatile algorithm among the various approaches used in data clustering. The algorithm and its diverse adaptation methods suffer certain problems in their performance. To overcome these issues a superlative algorithm has been proposed in this paper to perform data clustering. The specific feature of the proposed algorithm is discretizing the dataset, thereby improving the accuracy of clustering, and also adopting the binary search initialization method to generate cluster centroids. The generated centroids are fed as input to K-means approach which iteratively segments the data objects into respective clusters. The clustered results are measured for accuracy and validity. Experiments conducted by testing the approach on datasets from the UC Irvine Machine Learning Repository evidently show that the accuracy and validity measure is higher than the other two approaches, namely, simple K-means and Binary Search method. Thus, the proposed approach proves that discretization process will improve the efficacy of descriptive data mining tasks. PMID:26543895

  5. Winnowing sequences from a database search.

    PubMed

    Berman, P; Zhang, Z; Wolf, Y I; Koonin, E V; Miller, W

    2000-01-01

    In database searches for sequence similarity, matches to a distinct sequence region (e.g., protein domain) are frequently obscured by numerous matches to another region of the same sequence. In order to cope with this problem, algorithms are developed to discard redundant matches. One model for this problem begins with a list of intervals, each with an associated score; each interval gives the range of positions in the query sequence that align to a database sequence, and the score is that of the alignment. If interval I is contained in interval J, and I's score is less than J's, then I is said to be dominated by J. The problem is then to identify each interval that is dominated by at least K other intervals, where K is a given level of "tolerable redundancy." An algorithm is developed to solve the problem in O(N log N) time and O(N*) space, where N is the number of intervals and N* is a precisely defined value that never exceeds N and is frequently much smaller. This criterion for discarding database hits has been implemented in the Blast program, as illustrated herein with examples. Several variations and extensions of this approach are also described.

  6. A systematic review of validated methods to capture myopericarditis using administrative or claims data.

    PubMed

    Idowu, Rachel T; Carnahan, Ryan; Sathe, Nila A; McPheeters, Melissa L

    2013-12-30

    To identify algorithms that can capture incident cases of myocarditis and pericarditis in administrative and claims databases; these algorithms can eventually be used to identify cardiac inflammatory adverse events following vaccine administration. We searched MEDLINE from 1991 to September 2012 using controlled vocabulary and key terms related to myocarditis. We also searched the reference lists of included studies. Two investigators independently assessed the full text of studies against pre-determined inclusion criteria. Two reviewers independently extracted data regarding participant and algorithm characteristics as well as study conduct. Nine publications (including one study reported in two publications) met criteria for inclusion. Two studies performed medical record review in order to confirm that these coding algorithms actually captured patients with the disease of interest. One of these studies identified five potential cases, none of which were confirmed as acute myocarditis upon review. The other study, which employed a search algorithm based on diagnostic surveillance (using ICD-9 codes 420.90, 420.99, 422.90, 422.91 and 429.0) and sentinel reporting, identified 59 clinically confirmed cases of myopericarditis among 492,671 United States military service personnel who received smallpox vaccine between 2002 and 2003. Neither study provided algorithm validation statistics (positive predictive value, sensitivity, or specificity). A validated search algorithm is currently unavailable for identifying incident cases of pericarditis or myocarditis. Several authors have published unvalidated ICD-9-based search algorithms that appear to capture myocarditis events occurring in the context of other underlying cardiac or autoimmune conditions. Copyright © 2013. Published by Elsevier Ltd.

  7. Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence

    PubMed Central

    Botsinis, Panagiotis; Babar, Zunaira; Alanis, Dimitrios; Chandra, Daryus; Nguyen, Hung; Ng, Soon Xin; Hanzo, Lajos

    2016-01-01

    When quantum computing becomes a wide-spread commercial reality, Quantum Search Algorithms (QSA) and especially Grover’s QSA will inevitably be one of their main applications, constituting their cornerstone. Most of the literature assumes that the quantum circuits are free from decoherence. Practically, decoherence will remain unavoidable as is the Gaussian noise of classic circuits imposed by the Brownian motion of electrons, hence it may have to be mitigated. In this contribution, we investigate the effect of quantum noise on the performance of QSAs, in terms of their success probability as a function of the database size to be searched, when decoherence is modelled by depolarizing channels’ deleterious effects imposed on the quantum gates. Moreover, we employ quantum error correction codes for limiting the effects of quantum noise and for correcting quantum flips. More specifically, we demonstrate that, when we search for a single solution in a database having 4096 entries using Grover’s QSA at an aggressive depolarizing probability of 10−3, the success probability of the search is 0.22 when no quantum coding is used, which is improved to 0.96 when Steane’s quantum error correction code is employed. Finally, apart from Steane’s code, the employment of Quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes is also considered. PMID:27924865

  8. A systematic review of validated methods for identifying patients with rheumatoid arthritis using administrative or claims data.

    PubMed

    Chung, Cecilia P; Rohan, Patricia; Krishnaswami, Shanthi; McPheeters, Melissa L

    2013-12-30

    To review the evidence supporting the validity of billing, procedural, or diagnosis code, or pharmacy claim-based algorithms used to identify patients with rheumatoid arthritis (RA) in administrative and claim databases. We searched the MEDLINE database from 1991 to September 2012 using controlled vocabulary and key terms related to RA and reference lists of included studies were searched. Two investigators independently assessed the full text of studies against pre-determined inclusion criteria and extracted the data. Data collected included participant and algorithm characteristics. Nine studies reported validation of computer algorithms based on International Classification of Diseases (ICD) codes with or without free-text, medication use, laboratory data and the need for a diagnosis by a rheumatologist. These studies yielded positive predictive values (PPV) ranging from 34 to 97% to identify patients with RA. Higher PPVs were obtained with the use of at least two ICD and/or procedure codes (ICD-9 code 714 and others), the requirement of a prescription of a medication used to treat RA, or requirement of participation of a rheumatologist in patient care. For example, the PPV increased from 66 to 97% when the use of disease-modifying antirheumatic drugs and the presence of a positive rheumatoid factor were required. There have been substantial efforts to propose and validate algorithms to identify patients with RA in automated databases. Algorithms that include more than one code and incorporate medications or laboratory data and/or required a diagnosis by a rheumatologist may increase the PPV. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.

    PubMed

    O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D

    2015-04-01

    The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Tachyon search speeds up retrieval of similar sequences by several orders of magnitude

    PubMed Central

    Tan, Joshua; Kuchibhatla, Durga; Sirota, Fernanda L.; Sherman, Westley A.; Gattermayer, Tobias; Kwoh, Chia Yee; Eisenhaber, Frank; Schneider, Georg; Maurer-Stroh, Sebastian

    2012-01-01

    Summary: The usage of current sequence search tools becomes increasingly slower as databases of protein sequences continue to grow exponentially. Tachyon, a new algorithm that identifies closely related protein sequences ~200 times faster than standard BLAST, circumvents this limitation with a reduced database and oligopeptide matching heuristic. Availability and implementation: The tool is publicly accessible as a webserver at http://tachyon.bii.a-star.edu.sg and can also be accessed programmatically through SOAP. Contact: sebastianms@bii.a-star.edu.sg Supplementary information: Supplementary data are available at the Bioinformatics online. PMID:22531216

  11. A literature search tool for intelligent extraction of disease-associated genes.

    PubMed

    Jung, Jae-Yoon; DeLuca, Todd F; Nelson, Tristan H; Wall, Dennis P

    2014-01-01

    To extract disorder-associated genes from the scientific literature in PubMed with greater sensitivity for literature-based support than existing methods. We developed a PubMed query to retrieve disorder-related, original research articles. Then we applied a rule-based text-mining algorithm with keyword matching to extract target disorders, genes with significant results, and the type of study described by the article. We compared our resulting candidate disorder genes and supporting references with existing databases. We demonstrated that our candidate gene set covers nearly all genes in manually curated databases, and that the references supporting the disorder-gene link are more extensive and accurate than other general purpose gene-to-disorder association databases. We implemented a novel publication search tool to find target articles, specifically focused on links between disorders and genotypes. Through comparison against gold-standard manually updated gene-disorder databases and comparison with automated databases of similar functionality we show that our tool can search through the entirety of PubMed to extract the main gene findings for human diseases rapidly and accurately.

  12. Twitter K-H networks in action: Advancing biomedical literature for drug search.

    PubMed

    Hamed, Ahmed Abdeen; Wu, Xindong; Erickson, Robert; Fandy, Tamer

    2015-08-01

    The importance of searching biomedical literature for drug interaction and side-effects is apparent. Current digital libraries (e.g., PubMed) suffer infrequent tagging and metadata annotation updates. Such limitations cause absence of linking literature to new scientific evidence. This demonstrates a great deal of challenges that stand in the way of scientists when searching biomedical repositories. In this paper, we present a network mining approach that provides a bridge for linking and searching drug-related literature. Our contributions here are two fold: (1) an efficient algorithm called HashPairMiner to address the run-time complexity issues demonstrated in its predecessor algorithm: HashnetMiner, and (2) a database of discoveries hosted on the web to facilitate literature search using the results produced by HashPairMiner. Though the K-H network model and the HashPairMiner algorithm are fairly young, their outcome is evidence of the considerable promise they offer to the biomedical science community in general and the drug research community in particular. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Tempest: Accelerated MS/MS Database Search Software for Heterogeneous Computing Platforms.

    PubMed

    Adamo, Mark E; Gerber, Scott A

    2016-09-07

    MS/MS database search algorithms derive a set of candidate peptide sequences from in silico digest of a protein sequence database, and compute theoretical fragmentation patterns to match these candidates against observed MS/MS spectra. The original Tempest publication described these operations mapped to a CPU-GPU model, in which the CPU (central processing unit) generates peptide candidates that are asynchronously sent to a discrete GPU (graphics processing unit) to be scored against experimental spectra in parallel. The current version of Tempest expands this model, incorporating OpenCL to offer seamless parallelization across multicore CPUs, GPUs, integrated graphics chips, and general-purpose coprocessors. Three protocols describe how to configure and run a Tempest search, including discussion of how to leverage Tempest's unique feature set to produce optimal results. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  14. Stationary states in quantum walk search

    NASA Astrophysics Data System (ADS)

    PrÅ«sis, Krišjānis; Vihrovs, Jevgěnijs; Wong, Thomas G.

    2016-09-01

    When classically searching a database, having additional correct answers makes the search easier. For a discrete-time quantum walk searching a graph for a marked vertex, however, additional marked vertices can make the search harder by causing the system to approximately begin in a stationary state, so the system fails to evolve. In this paper, we completely characterize the stationary states, or 1-eigenvectors, of the quantum walk search operator for general graphs and configurations of marked vertices by decomposing their amplitudes into uniform and flip states. This infinitely expands the number of known stationary states and gives an optimization procedure to find the stationary state closest to the initial uniform state of the walk. We further prove theorems on the existence of stationary states, with them conditionally existing if the marked vertices form a bipartite connected component and always existing if nonbipartite. These results utilize the standard oracle in Grover's algorithm, but we show that a different type of oracle prevents stationary states from interfering with the search algorithm.

  15. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Search algorithm complexity modeling with application to image alignment and matching

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2014-05-01

    Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.

  17. Characterizing the genetic structure of a forensic DNA database using a latent variable approach.

    PubMed

    Kruijver, Maarten

    2016-07-01

    Several problems in forensic genetics require a representative model of a forensic DNA database. Obtaining an accurate representation of the offender database can be difficult, since databases typically contain groups of persons with unregistered ethnic origins in unknown proportions. We propose to estimate the allele frequencies of the subpopulations comprising the offender database and their proportions from the database itself using a latent variable approach. We present a model for which parameters can be estimated using the expectation maximization (EM) algorithm. This approach does not rely on relatively small and possibly unrepresentative population surveys, but is driven by the actual genetic composition of the database only. We fit the model to a snapshot of the Dutch offender database (2014), which contains close to 180,000 profiles, and find that three subpopulations suffice to describe a large fraction of the heterogeneity in the database. We demonstrate the utility and reliability of the approach with three applications. First, we use the model to predict the number of false leads obtained in database searches. We assess how well the model predicts the number of false leads obtained in mock searches in the Dutch offender database, both for the case of familial searching for first degree relatives of a donor and searching for contributors to three-person mixtures. Second, we study the degree of partial matching between all pairs of profiles in the Dutch database and compare this to what is predicted using the latent variable approach. Third, we use the model to provide evidence to support that the Dutch practice of estimating match probabilities using the Balding-Nichols formula with a native Dutch reference database and θ=0.03 is conservative. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Application and Effects of Linguistic Functions on Information Retrieval in a German Language Full-Text Database: Comparison between Retrieval in Abstract and Full Text.

    ERIC Educational Resources Information Center

    Tauchert, Wolfgang; And Others

    1991-01-01

    Describes the PADOK-II project in Germany, which was designed to give information on the effects of linguistic algorithms on retrieval in a full-text database, the German Patent Information System (GPI). Relevance assessments are discussed, statistical evaluations are described, and searches are compared for the full-text section versus the…

  19. GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.

    PubMed

    Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun

    2013-01-01

    As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.

  20. Methods and means used in programming intelligent searches of technical documents

    NASA Technical Reports Server (NTRS)

    Gross, David L.

    1993-01-01

    In order to meet the data research requirements of the Safety, Reliability & Quality Assurance activities at Kennedy Space Center (KSC), a new computer search method for technical data documents was developed. By their very nature, technical documents are partially encrypted because of the author's use of acronyms, abbreviations, and shortcut notations. This problem of computerized searching is compounded at KSC by the volume of documentation that is produced during normal Space Shuttle operations. The Centralized Document Database (CDD) is designed to solve this problem. It provides a common interface to an unlimited number of files of various sizes, with the capability to perform any diversified types and levels of data searches. The heart of the CDD is the nature and capability of its search algorithms. The most complex form of search that the program uses is with the use of a domain-specific database of acronyms, abbreviations, synonyms, and word frequency tables. This database, along with basic sentence parsing, is used to convert a request for information into a relational network. This network is used as a filter on the original document file to determine the most likely locations for the data requested. This type of search will locate information that traditional techniques, (i.e., Boolean structured key-word searching), would not find.

  1. The Parallel Implementation of Algorithms for Finding the Reflection Symmetry of the Binary Images

    NASA Astrophysics Data System (ADS)

    Fedotova, S.; Seredin, O.; Kushnir, O.

    2017-05-01

    In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on "Butterflies" and "Flavia" datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.

  2. GenderMedDB: an interactive database of sex and gender-specific medical literature.

    PubMed

    Oertelt-Prigione, Sabine; Gohlke, Björn-Oliver; Dunkel, Mathias; Preissner, Robert; Regitz-Zagrosek, Vera

    2014-01-01

    Searches for sex and gender-specific publications are complicated by the absence of a specific algorithm within search engines and by the lack of adequate archives to collect the retrieved results. We previously addressed this issue by initiating the first systematic archive of medical literature containing sex and/or gender-specific analyses. This initial collection has now been greatly enlarged and re-organized as a free user-friendly database with multiple functions: GenderMedDB (http://gendermeddb.charite.de). GenderMedDB retrieves the included publications from the PubMed database. Manuscripts containing sex and/or gender-specific analysis are continuously screened and the relevant findings organized systematically into disciplines and diseases. Publications are furthermore classified by research type, subject and participant numbers. More than 11,000 abstracts are currently included in the database, after screening more than 40,000 publications. The main functions of the database include searches by publication data or content analysis based on pre-defined classifications. In addition, registrants are enabled to upload relevant publications, access descriptive publication statistics and interact in an open user forum. Overall, GenderMedDB offers the advantages of a discipline-specific search engine as well as the functions of a participative tool for the gender medicine community.

  3. A search map for organic additives and solvents applicable in high-voltage rechargeable batteries.

    PubMed

    Park, Min Sik; Park, Insun; Kang, Yoon-Sok; Im, Dongmin; Doo, Seok-Gwang

    2016-09-29

    Chemical databases store information such as molecular formulas, chemical structures, and the physical and chemical properties of compounds. Although the massive databases of organic compounds exist, the search of target materials is constrained by a lack of physical and chemical properties necessary for specific applications. With increasing interest in the development of energy storage systems such as high-voltage rechargeable batteries, it is critical to find new electrolytes efficiently. Here we build a search map to screen organic additives and solvents with novel core and functional groups, and thus establish a database of electrolytes to identify the most promising electrolyte for high-voltage rechargeable batteries. This search map is generated from MAssive Molecular Map BUilder (MAMMBU) by combining a high-throughput quantum chemical simulation with an artificial neural network algorithm. MAMMBU is designed for predicting the oxidation and reduction potentials of organic compounds existing in the massive organic compound database, PubChem. We develop a search map composed of ∼1 000 000 redox potentials and elucidate the quantitative relationship between the redox potentials and functional groups. Finally, we screen a quinoxaline compound for an anode additive and apply it to electrolytes and improve the capacity retention from 64.3% to 80.8% near 200 cycles for a lithium ion battery in experiments.

  4. Demystifying the Search Button

    PubMed Central

    McKeever, Liam; Nguyen, Van; Peterson, Sarah J.; Gomez-Perez, Sandra

    2015-01-01

    A thorough review of the literature is the basis of all research and evidence-based practice. A gold-standard efficient and exhaustive search strategy is needed to ensure all relevant citations have been captured and that the search performed is reproducible. The PubMed database comprises both the MEDLINE and non-MEDLINE databases. MEDLINE-based search strategies are robust but capture only 89% of the total available citations in PubMed. The remaining 11% include the most recent and possibly relevant citations but are only searchable through less efficient techniques. An effective search strategy must employ both the MEDLINE and the non-MEDLINE portion of PubMed to ensure all studies have been identified. The robust MEDLINE search strategies are used for the MEDLINE portion of the search. Usage of the less robust strategies is then efficiently confined to search only the remaining 11% of PubMed citations that have not been indexed for MEDLINE. The current article offers step-by-step instructions for building such a search exploring methods for the discovery of medical subject heading (MeSH) terms to search MEDLINE, text-based methods for exploring the non-MEDLINE database, information on the limitations of convenience algorithms such as the “related citations feature,” the strengths and pitfalls associated with commonly used filters, the proper usage of Boolean operators to organize a master search strategy, and instructions for automating that search through “MyNCBI” to receive search query updates by email as new citations become available. PMID:26129895

  5. Searching for patterns in remote sensing image databases using neural networks

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.

  6. PRIM versus CART in subgroup discovery: when patience is harmful.

    PubMed

    Abu-Hanna, Ameen; Nannings, Barry; Dongelmans, Dave; Hasman, Arie

    2010-10-01

    We systematically compare the established algorithms CART (Classification and Regression Trees) and PRIM (Patient Rule Induction Method) in a subgroup discovery task on a large real-world high-dimensional clinical database. Contrary to current conjectures, PRIM's performance was generally inferior to CART's. PRIM often considered "peeling of" a large chunk of data at a value of a relevant discrete ordinal variable unattractive, ultimately missing an important subgroup. This finding has considerable significance in clinical medicine where ordinal scores are ubiquitous. PRIM's utility in clinical databases would increase when global information about (ordinal) variables is better put to use and when the search algorithm keeps track of alternative solutions.

  7. Library Search Prefilters for Vehicle Manufacturers to Assist in the Forensic Examination of Automotive Paints.

    PubMed

    Lavine, Barry K; White, Collin G; Ding, Tao

    2018-03-01

    Pattern recognition techniques have been applied to the infrared (IR) spectral libraries of the Paint Data Query (PDQ) database to differentiate between nonidentical but similar IR spectra of automotive paints. To tackle the problem of library searching, search prefilters were developed to identify the vehicle make from IR spectra of the clear coat, surfacer-primer, and e-coat layers. To develop these search prefilters with the appropriate degree of accuracy, IR spectra from the PDQ database were preprocessed using the discrete wavelet transform to enhance subtle but significant features in the IR spectral data. Wavelet coefficients characteristic of vehicle make were identified using a genetic algorithm for pattern recognition and feature selection. Search prefilters to identify automotive manufacturer through IR spectra obtained from a paint chip recovered at a crime scene were developed using 1596 original manufacturer's paint systems spanning six makes (General Motors, Chrysler, Ford, Honda, Nissan, and Toyota) within a limited production year range (2000-2006). Search prefilters for vehicle manufacturer that were developed as part of this study were successfully validated using IR spectra obtained directly from the PDQ database. Information obtained from these search prefilters can serve to quantify the discrimination power of original automotive paint encountered in casework and further efforts to succinctly communicate trace evidential significance to the courts.

  8. Visibiome: an efficient microbiome search engine based on a scalable, distributed architecture.

    PubMed

    Azman, Syafiq Kamarul; Anwar, Muhammad Zohaib; Henschel, Andreas

    2017-07-24

    Given the current influx of 16S rRNA profiles of microbiota samples, it is conceivable that large amounts of them eventually are available for search, comparison and contextualization with respect to novel samples. This process facilitates the identification of similar compositional features in microbiota elsewhere and therefore can help to understand driving factors for microbial community assembly. We present Visibiome, a microbiome search engine that can perform exhaustive, phylogeny based similarity search and contextualization of user-provided samples against a comprehensive dataset of 16S rRNA profiles environments, while tackling several computational challenges. In order to scale to high demands, we developed a distributed system that combines web framework technology, task queueing and scheduling, cloud computing and a dedicated database server. To further ensure speed and efficiency, we have deployed Nearest Neighbor search algorithms, capable of sublinear searches in high-dimensional metric spaces in combination with an optimized Earth Mover Distance based implementation of weighted UniFrac. The search also incorporates pairwise (adaptive) rarefaction and optionally, 16S rRNA copy number correction. The result of a query microbiome sample is the contextualization against a comprehensive database of microbiome samples from a diverse range of environments, visualized through a rich set of interactive figures and diagrams, including barchart-based compositional comparisons and ranking of the closest matches in the database. Visibiome is a convenient, scalable and efficient framework to search microbiomes against a comprehensive database of environmental samples. The search engine leverages a popular but computationally expensive, phylogeny based distance metric, while providing numerous advantages over the current state of the art tool.

  9. A formulation of a matrix sparsity approach for the quantum ordered search algorithm

    NASA Astrophysics Data System (ADS)

    Parmar, Jupinder; Rahman, Saarim; Thiara, Jaskaran

    One specific subset of quantum algorithms is Grovers Ordered Search Problem (OSP), the quantum counterpart of the classical binary search algorithm, which utilizes oracle functions to produce a specified value within an ordered database. Classically, the optimal algorithm is known to have a log2N complexity; however, Grovers algorithm has been found to have an optimal complexity between the lower bound of ((lnN-1)/π≈0.221log2N) and the upper bound of 0.433log2N. We sought to lower the known upper bound of the OSP. With Farhi et al. MITCTP 2815 (1999), arXiv:quant-ph/9901059], we see that the OSP can be resolved into a translational invariant algorithm to create quantum query algorithm restraints. With these restraints, one can find Laurent polynomials for various k — queries — and N — database sizes — thus finding larger recursive sets to solve the OSP and effectively reducing the upper bound. These polynomials are found to be convex functions, allowing one to make use of convex optimization to find an improvement on the known bounds. According to Childs et al. [Phys. Rev. A 75 (2007) 032335], semidefinite programming, a subset of convex optimization, can solve the particular problem represented by the constraints. We were able to implement a program abiding to their formulation of a semidefinite program (SDP), leading us to find that it takes an immense amount of storage and time to compute. To combat this setback, we then formulated an approach to improve results of the SDP using matrix sparsity. Through the development of this approach, along with an implementation of a rudimentary solver, we demonstrate how matrix sparsity reduces the amount of time and storage required to compute the SDP — overall ensuring further improvements will likely be made to reach the theorized lower bound.

  10. Transaction Logging.

    ERIC Educational Resources Information Center

    Jones, S.; And Others

    1997-01-01

    Discusses the use of transaction logging in Okapi-related projects to allow search algorithms and user interfaces to be investigated, evaluated, and compared. A series of examples is presented, illustrating logging software for character-based and graphical user interface systems, and demonstrating the usefulness of relational database management…

  11. TOPDOM: database of conservatively located domains and motifs in proteins.

    PubMed

    Varga, Julia; Dobson, László; Tusnády, Gábor E

    2016-09-01

    The TOPDOM database-originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins-has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. TOPDOM database is available at http://topdom.enzim.hu The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. tusnady.gabor@ttk.mta.hu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  12. Sequence tagging reveals unexpected modifications in toxicoproteomics

    PubMed Central

    Dasari, Surendra; Chambers, Matthew C.; Codreanu, Simona G.; Liebler, Daniel C.; Collins, Ben C.; Pennington, Stephen R.; Gallagher, William M.; Tabb, David L.

    2010-01-01

    Toxicoproteomic samples are rich in posttranslational modifications (PTMs) of proteins. Identifying these modifications via standard database searching can incur significant performance penalties. Here we describe the latest developments in TagRecon, an algorithm that leverages inferred sequence tags to identify modified peptides in toxicoproteomic data sets. TagRecon identifies known modifications more effectively than the MyriMatch database search engine. TagRecon outperformed state of the art software in recognizing unanticipated modifications from LTQ, Orbitrap, and QTOF data sets. We developed user-friendly software for detecting persistent mass shifts from samples. We follow a three-step strategy for detecting unanticipated PTMs in samples. First, we identify the proteins present in the sample with a standard database search. Next, identified proteins are interrogated for unexpected PTMs with a sequence tag-based search. Finally, additional evidence is gathered for the detected mass shifts with a refinement search. Application of this technology on toxicoproteomic data sets revealed unintended cross-reactions between proteins and sample processing reagents. Twenty five proteins in rat liver showed signs of oxidative stress when exposed to potentially toxic drugs. These results demonstrate the value of mining toxicoproteomic data sets for modifications. PMID:21214251

  13. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.

    PubMed Central

    Wallace, A. C.; Borkakoti, N.; Thornton, J. M.

    1997-01-01

    It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions. PMID:9385633

  14. Development and Demonstration of a Networked Telepathology 3-D Imaging, Databasing, and Communication System

    DTIC Science & Technology

    1996-10-01

    aligned using an octree search algorithm combined with cross correlation analysis . Successive 4x downsampling with optional and specifiable neighborhood...desired and the search engine embedded in the OODBMS will find the requested imagery and que it to the user for further analysis . This application was...obtained during Hoftmann-LaRoche production pathology imaging performed at UMICH. Versant works well and is easy to use; 3) Pathology Image Analysis

  15. MassSieve: Panning MS/MS peptide data for proteins

    PubMed Central

    Slotta, Douglas J.; McFarland, Melinda A.; Markey, Sanford P.

    2010-01-01

    We present MassSieve, a Java-based platform for visualization and parsimony analysis of single and comparative LC-MS/MS database search engine results. The success of mass spectrometric peptide sequence assignment algorithms has led to the need for a tool to merge and evaluate the increasing data set sizes that result from LC-MS/MS-based shotgun proteomic experiments. MassSieve supports reports from multiple search engines with differing search characteristics, which can increase peptide sequence coverage and/or identify conflicting or ambiguous spectral assignments. PMID:20564260

  16. Matching CCD images to a stellar catalog using locality-sensitive hashing

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Yu, Jia-Zong; Peng, Qing-Yu

    2018-02-01

    The usage of a subset of observed stars in a CCD image to find their corresponding matched stars in a stellar catalog is an important issue in astronomical research. Subgraph isomorphic-based algorithms are the most widely used methods in star catalog matching. When more subgraph features are provided, the CCD images are recognized better. However, when the navigation feature database is large, the method requires more time to match the observing model. To solve this problem, this study investigates further and improves subgraph isomorphic matching algorithms. We present an algorithm based on a locality-sensitive hashing technique, which allocates quadrilateral models in the navigation feature database into different hash buckets and reduces the search range to the bucket in which the observed quadrilateral model is located. Experimental results indicate the effectivity of our method.

  17. Zebra Crossing Spotter: Automatic Population of Spatial Databases for Increased Safety of Blind Travelers

    PubMed Central

    Ahmetovic, Dragan; Manduchi, Roberto; Coughlan, James M.; Mascetti, Sergio

    2016-01-01

    In this paper we propose a computer vision-based technique that mines existing spatial image databases for discovery of zebra crosswalks in urban settings. Knowing the location of crosswalks is critical for a blind person planning a trip that includes street crossing. By augmenting existing spatial databases (such as Google Maps or OpenStreetMap) with this information, a blind traveler may make more informed routing decisions, resulting in greater safety during independent travel. Our algorithm first searches for zebra crosswalks in satellite images; all candidates thus found are validated against spatially registered Google Street View images. This cascaded approach enables fast and reliable discovery and localization of zebra crosswalks in large image datasets. While fully automatic, our algorithm could also be complemented by a final crowdsourcing validation stage for increased accuracy. PMID:26824080

  18. Evidential significance of automotive paint trace evidence using a pattern recognition based infrared library search engine for the Paint Data Query Forensic Database.

    PubMed

    Lavine, Barry K; White, Collin G; Allen, Matthew D; Fasasi, Ayuba; Weakley, Andrew

    2016-10-01

    A prototype library search engine has been further developed to search the infrared spectral libraries of the paint data query database to identify the line and model of a vehicle from the clear coat, surfacer-primer, and e-coat layers of an intact paint chip. For this study, search prefilters were developed from 1181 automotive paint systems spanning 3 manufacturers: General Motors, Chrysler, and Ford. The best match between each unknown and the spectra in the hit list generated by the search prefilters was identified using a cross-correlation library search algorithm that performed both a forward and backward search. In the forward search, spectra were divided into intervals and further subdivided into windows (which corresponds to the time lag for the comparison) within those intervals. The top five hits identified in each search window were compiled; a histogram was computed that summarized the frequency of occurrence for each library sample, with the IR spectra most similar to the unknown flagged. The backward search computed the frequency and occurrence of each line and model without regard to the identity of the individual spectra. Only those lines and models with a frequency of occurrence greater than or equal to 20% were included in the final hit list. If there was agreement between the forward and backward search results, the specific line and model common to both hit lists was always the correct assignment. Samples assigned to the same line and model by both searches are always well represented in the library and correlate well on an individual basis to specific library samples. For these samples, one can have confidence in the accuracy of the match. This was not the case for the results obtained using commercial library search algorithms, as the hit quality index scores for the top twenty hits were always greater than 99%. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Accelerated Profile HMM Searches

    PubMed Central

    Eddy, Sean R.

    2011-01-01

    Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches. PMID:22039361

  20. GEMINI: a computationally-efficient search engine for large gene expression datasets.

    PubMed

    DeFreitas, Timothy; Saddiki, Hachem; Flaherty, Patrick

    2016-02-24

    Low-cost DNA sequencing allows organizations to accumulate massive amounts of genomic data and use that data to answer a diverse range of research questions. Presently, users must search for relevant genomic data using a keyword, accession number of meta-data tag. However, in this search paradigm the form of the query - a text-based string - is mismatched with the form of the target - a genomic profile. To improve access to massive genomic data resources, we have developed a fast search engine, GEMINI, that uses a genomic profile as a query to search for similar genomic profiles. GEMINI implements a nearest-neighbor search algorithm using a vantage-point tree to store a database of n profiles and in certain circumstances achieves an [Formula: see text] expected query time in the limit. We tested GEMINI on breast and ovarian cancer gene expression data from The Cancer Genome Atlas project and show that it achieves a query time that scales as the logarithm of the number of records in practice on genomic data. In a database with 10(5) samples, GEMINI identifies the nearest neighbor in 0.05 sec compared to a brute force search time of 0.6 sec. GEMINI is a fast search engine that uses a query genomic profile to search for similar profiles in a very large genomic database. It enables users to identify similar profiles independent of sample label, data origin or other meta-data information.

  1. Optimizing Algorithm Choice for Metaproteomics: Comparing X!Tandem and Proteome Discoverer for Soil Proteomes

    NASA Astrophysics Data System (ADS)

    Diaz, K. S.; Kim, E. H.; Jones, R. M.; de Leon, K. C.; Woodcroft, B. J.; Tyson, G. W.; Rich, V. I.

    2014-12-01

    The growing field of metaproteomics links microbial communities to their expressed functions by using mass spectrometry methods to characterize community proteins. Comparison of mass spectrometry protein search algorithms and their biases is crucial for maximizing the quality and amount of protein identifications in mass spectral data. Available algorithms employ different approaches when mapping mass spectra to peptides against a database. We compared mass spectra from four microbial proteomes derived from high-organic content soils searched with two search algorithms: 1) Sequest HT as packaged within Proteome Discoverer (v.1.4) and 2) X!Tandem as packaged in TransProteomicPipeline (v.4.7.1). Searches used matched metagenomes, and results were filtered to allow identification of high probability proteins. There was little overlap in proteins identified by both algorithms, on average just ~24% of the total. However, when adjusted for spectral abundance, the overlap improved to ~70%. Proteome Discoverer generally outperformed X!Tandem, identifying an average of 12.5% more proteins than X!Tandem, with X!Tandem identifying more proteins only in the first two proteomes. For spectrally-adjusted results, the algorithms were similar, with X!Tandem marginally outperforming Proteome Discoverer by an average of ~4%. We then assessed differences in heat shock proteins (HSP) identification by the two algorithms by BLASTing identified proteins against the Heat Shock Protein Information Resource, because HSP hits typically account for the majority signal in proteomes, due to extraction protocols. Total HSP identifications for each of the 4 proteomes were approximately ~15%, ~11%, ~17%, and ~19%, with ~14% for total HSPs with redundancies removed. Of the ~15% average of proteins from the 4 proteomes identified as HSPs, ~10% of proteins and spectra were identified by both algorithms. On average, Proteome Discoverer identified ~9% more HSPs than X!Tandem.

  2. Pepitome: evaluating improved spectral library search for identification complementarity and quality assessment

    PubMed Central

    Dasari, Surendra; Chambers, Matthew C.; Martinez, Misti A.; Carpenter, Kristin L.; Ham, Amy-Joan L.; Vega-Montoto, Lorenzo J.; Tabb, David L.

    2012-01-01

    Spectral libraries have emerged as a viable alternative to protein sequence databases for peptide identification. These libraries contain previously detected peptide sequences and their corresponding tandem mass spectra (MS/MS). Search engines can then identify peptides by comparing experimental MS/MS scans to those in the library. Many of these algorithms employ the dot product score for measuring the quality of a spectrum-spectrum match (SSM). This scoring system does not offer a clear statistical interpretation and ignores fragment ion m/z discrepancies in the scoring. We developed a new spectral library search engine, Pepitome, which employs statistical systems for scoring SSMs. Pepitome outperformed the leading library search tool, SpectraST, when analyzing data sets acquired on three different mass spectrometry platforms. We characterized the reliability of spectral library searches by confirming shotgun proteomics identifications through RNA-Seq data. Applying spectral library and database searches on the same sample revealed their complementary nature. Pepitome identifications enabled the automation of quality analysis and quality control (QA/QC) for shotgun proteomics data acquisition pipelines. PMID:22217208

  3. Andromeda: a peptide search engine integrated into the MaxQuant environment.

    PubMed

    Cox, Jürgen; Neuhauser, Nadin; Michalski, Annette; Scheltema, Richard A; Olsen, Jesper V; Mann, Matthias

    2011-04-01

    A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.

  4. Improving sensitivity in proteome studies by analysis of false discovery rates for multiple search engines.

    PubMed

    Jones, Andrew R; Siepen, Jennifer A; Hubbard, Simon J; Paton, Norman W

    2009-03-01

    LC-MS experiments can generate large quantities of data, for which a variety of database search engines are available to make peptide and protein identifications. Decoy databases are becoming widely used to place statistical confidence in result sets, allowing the false discovery rate (FDR) to be estimated. Different search engines produce different identification sets so employing more than one search engine could result in an increased number of peptides (and proteins) being identified, if an appropriate mechanism for combining data can be defined. We have developed a search engine independent score, based on FDR, which allows peptide identifications from different search engines to be combined, called the FDR Score. The results demonstrate that the observed FDR is significantly different when analysing the set of identifications made by all three search engines, by each pair of search engines or by a single search engine. Our algorithm assigns identifications to groups according to the set of search engines that have made the identification, and re-assigns the score (combined FDR Score). The combined FDR Score can differentiate between correct and incorrect peptide identifications with high accuracy, allowing on average 35% more peptide identifications to be made at a fixed FDR than using a single search engine.

  5. Morphology-based Query for Galaxy Image Databases

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    Galaxies of rare morphology are of paramount scientific interest, as they carry important information about the past, present, and future Universe. Once a rare galaxy is identified, studying it more effectively requires a set of galaxies of similar morphology, allowing generalization and statistical analysis that cannot be done when N=1. Databases generated by digital sky surveys can contain a very large number of galaxy images, and therefore once a rare galaxy of interest is identified it is possible that more instances of the same morphology are also present in the database. However, when a researcher identifies a certain galaxy of rare morphology in the database, it is virtually impossible to mine the database manually in the search for galaxies of similar morphology. Here we propose a computer method that can automatically search databases of galaxy images and identify galaxies that are morphologically similar to a certain user-defined query galaxy. That is, the researcher provides an image of a galaxy of interest, and the pattern recognition system automatically returns a list of galaxies that are visually similar to the target galaxy. The algorithm uses a comprehensive set of descriptors, allowing it to support different types of galaxies, and it is not limited to a finite set of known morphologies. While the list of returned galaxies is neither clean nor complete, it contains a far higher frequency of galaxies of the morphology of interest, providing a substantial reduction of the data. Such algorithms can be integrated into data management systems of autonomous digital sky surveys such as the Large Synoptic Survey Telescope (LSST), where the number of galaxies in the database is extremely large. The source code of the method is available at http://vfacstaff.ltu.edu/lshamir/downloads/udat.

  6. PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm

    PubMed Central

    Plikus, Maksim V; Zhang, Zina; Chuong, Cheng-Ming

    2006-01-01

    Background Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. Results PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. Conclusion We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed. PMID:17014720

  7. Recurrent neural network-based modeling of gene regulatory network using elephant swarm water search algorithm.

    PubMed

    Mandal, Sudip; Saha, Goutam; Pal, Rajat Kumar

    2017-08-01

    Correct inference of genetic regulations inside a cell from the biological database like time series microarray data is one of the greatest challenges in post genomic era for biologists and researchers. Recurrent Neural Network (RNN) is one of the most popular and simple approach to model the dynamics as well as to infer correct dependencies among genes. Inspired by the behavior of social elephants, we propose a new metaheuristic namely Elephant Swarm Water Search Algorithm (ESWSA) to infer Gene Regulatory Network (GRN). This algorithm is mainly based on the water search strategy of intelligent and social elephants during drought, utilizing the different types of communication techniques. Initially, the algorithm is tested against benchmark small and medium scale artificial genetic networks without and with presence of different noise levels and the efficiency was observed in term of parametric error, minimum fitness value, execution time, accuracy of prediction of true regulation, etc. Next, the proposed algorithm is tested against the real time gene expression data of Escherichia Coli SOS Network and results were also compared with others state of the art optimization methods. The experimental results suggest that ESWSA is very efficient for GRN inference problem and performs better than other methods in many ways.

  8. A systematic review of validated methods for identifying anaphylaxis, including anaphylactic shock and angioneurotic edema, using administrative and claims data.

    PubMed

    Schneider, Gary; Kachroo, Sumesh; Jones, Natalie; Crean, Sheila; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W

    2012-01-01

    The Food and Drug Administration's Mini-Sentinel pilot program initially aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest from administrative and claims data. This article summarizes the process and findings of the algorithm review of anaphylaxis. PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the anaphylaxis health outcome of interest. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles using administrative and claims data to identify anaphylaxis and including validation estimates of the coding algorithms. Our search revealed limited literature focusing on anaphylaxis that provided administrative and claims data-based algorithms and validation estimates. Only four studies identified via literature searches provided validated algorithms; however, two additional studies were identified by Mini-Sentinel collaborators and were incorporated. The International Classification of Diseases, Ninth Revision, codes varied, as did the positive predictive value, depending on the cohort characteristics and the specific codes used to identify anaphylaxis. Research needs to be conducted on designing validation studies to test anaphylaxis algorithms and estimating their predictive power, sensitivity, and specificity. Copyright © 2012 John Wiley & Sons, Ltd.

  9. A Cross-Species Analysis of Animal Models for the Investigation of Preterm Birth Mechanisms

    PubMed Central

    Nielsen, Brian W.; Bonney, Elizabeth A.; Pearce, Bradley D.; Donahue, Leah Rae; Sarkar, Indra Neil

    2015-01-01

    Background: Spontaneous preterm birth is the leading cause of neonatal morbidity and mortality worldwide. The ability to examine the exact mechanisms underlying this syndrome in humans is limited. Therefore, the study of animal models is critical to unraveling the key physiologic mechanisms that control the timing of birth. The purpose of this review is to facilitate enhanced assimilation of the literature on animal models of preterm birth by a broad range of investigators. Methods: Using classical systematic and informatics search techniques of the available literature through 2012, a database of intact animal models was generated. Research librarians generated a list of articles using multiple databases. From these articles, a comprehensive list of Medical Subject Headings (MeSH) was created. Using mathematical modeling, significant MeSH descriptors were determined, and a MEDLINE search algorithm was created. The articles were reviewed for mechanism of labor induction categorized by species. Results: Existing animal models of preterm birth comprise specific interventions to induce preterm birth, as no animal model was identified that exhibits natural spontaneous preterm birth at an incidence comparable to that of the humans. A search algorithm was developed which when used results in a comprehensive list of agents used to induce preterm delivery in a host of animal species. The evolution of 3 specific animal models—sheep, mice, and rats—has demonstrated a clear shift in focus in the literature from endocrine to inflammatory agents of preterm birth induction. Conclusion: The process of developing a search algorithm to provide efficient access to information on animal models of preterm birth illustrates the need for a more precise organization of the literature to allow the investigator to focus on distinctly maternal versus fetal outcomes. PMID:26377998

  10. Gapped Spectral Dictionaries and Their Applications for Database Searches of Tandem Mass Spectra*

    PubMed Central

    Jeong, Kyowon; Kim, Sangtae; Bandeira, Nuno; Pevzner, Pavel A.

    2011-01-01

    Generating all plausible de novo interpretations of a peptide tandem mass (MS/MS) spectrum (Spectral Dictionary) and quickly matching them against the database represent a recently emerged alternative approach to peptide identification. However, the sizes of the Spectral Dictionaries quickly grow with the peptide length making their generation impractical for long peptides. We introduce Gapped Spectral Dictionaries (all plausible de novo interpretations with gaps) that can be easily generated for any peptide length thus addressing the limitation of the Spectral Dictionary approach. We show that Gapped Spectral Dictionaries are small thus opening a possibility of using them to speed-up MS/MS searches. Our MS-GappedDictionary algorithm (based on Gapped Spectral Dictionaries) enables proteogenomics applications (such as searches in the six-frame translation of the human genome) that are prohibitively time consuming with existing approaches. MS-GappedDictionary generates gapped peptides that occupy a niche between accurate but short peptide sequence tags and long but inaccurate full length peptide reconstructions. We show that, contrary to conventional wisdom, some high-quality spectra do not have good peptide sequence tags and introduce gapped tags that have advantages over the conventional peptide sequence tags in MS/MS database searches. PMID:21444829

  11. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    PubMed

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  12. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    PubMed Central

    Gerdtman, Christer

    2018-01-01

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412

  13. A novel algorithm for validating peptide identification from a shotgun proteomics search engine.

    PubMed

    Jian, Ling; Niu, Xinnan; Xia, Zhonghang; Samir, Parimal; Sumanasekera, Chiranthani; Mu, Zheng; Jennings, Jennifer L; Hoek, Kristen L; Allos, Tara; Howard, Leigh M; Edwards, Kathryn M; Weil, P Anthony; Link, Andrew J

    2013-03-01

    Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has revolutionized the proteomics analysis of complexes, cells, and tissues. In a typical proteomic analysis, the tandem mass spectra from a LC-MS/MS experiment are assigned to a peptide by a search engine that compares the experimental MS/MS peptide data to theoretical peptide sequences in a protein database. The peptide spectra matches are then used to infer a list of identified proteins in the original sample. However, the search engines often fail to distinguish between correct and incorrect peptides assignments. In this study, we designed and implemented a novel algorithm called De-Noise to reduce the number of incorrect peptide matches and maximize the number of correct peptides at a fixed false discovery rate using a minimal number of scoring outputs from the SEQUEST search engine. The novel algorithm uses a three-step process: data cleaning, data refining through a SVM-based decision function, and a final data refining step based on proteolytic peptide patterns. Using proteomics data generated on different types of mass spectrometers, we optimized the De-Noise algorithm on the basis of the resolution and mass accuracy of the mass spectrometer employed in the LC-MS/MS experiment. Our results demonstrate De-Noise improves peptide identification compared to other methods used to process the peptide sequence matches assigned by SEQUEST. Because De-Noise uses a limited number of scoring attributes, it can be easily implemented with other search engines.

  14. Facial Age Synthesis Using Sparse Partial Least Squares (The Case of Ben Needham).

    PubMed

    Bukar, Ali M; Ugail, Hassan

    2017-09-01

    Automatic facial age progression (AFAP) has been an active area of research in recent years. This is due to its numerous applications which include searching for missing. This study presents a new method of AFAP. Here, we use an active appearance model (AAM) to extract facial features from available images. An aging function is then modelled using sparse partial least squares regression (sPLS). Thereafter, the aging function is used to render new faces at different ages. To test the accuracy of our algorithm, extensive evaluation is conducted using a database of 500 face images with known ages. Furthermore, the algorithm is used to progress Ben Needham's facial image that was taken when he was 21 months old to the ages of 6, 14, and 22 years. The algorithm presented in this study could potentially be used to enhance the search for missing people worldwide. © 2017 American Academy of Forensic Sciences.

  15. Compact 0-complete trees: A new method for searching large files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orlandic, R.; Pfaltz, J.L.

    1988-01-26

    In this report, a novel approach to ordered retrieval in very large files is developed. The method employs a B-tree like search algorithm that is independent of key type or key length because all keys in index blocks are encoded by a 1 byte surrogate. The replacement of actual key sequences by the 1 byte surrogate ensures a maximal possible fan out and greatly reduces the storage overhead of maintaining access indices. Initially, retrieval in binary trie structure is developed. With the aid of a fairly complex recurrence relation, the rather scraggly binary trie is transformed into compact multi-way searchmore » tree. Then the recurrence relation itself is replaced by an unusually simple search algorithm. Then implementation details and empirical performance results are presented. Reduction of index size by 50%--75% opens up the possibility of replicating system-wide indices for parallel access in distributed databases. 23 figs.« less

  16. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.

    PubMed

    Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka

    2016-01-01

    Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads.

  17. k2photometry: Read, reduce and detrend K2 photometry

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Nowak, Grzegorz; Albrecht, Simon; Palle, Enric; Ribas, Ignasi; Bruntt, Hans; Perger, Manuel; Gandolfi, Davide; Hirano, Teriyuki; Sanchis-Ojeda, Roberto; Kiilerich, Amanda; Arranz, Jorge P.; Badenas, Mariona; Dai, Fei; Deeg, Hans J.; Guenther, Eike W.; Montanes-Rodriguez, Pilar; Narita, Norio; Rogers, Leslie A.; Bejar, Victor J. S.; Shrotriya, Tushar S.; Winn, Joshua N.; Sebastian, Daniel

    2016-02-01

    k2photometry reads, reduces and detrends K2 photometry and searches for transiting planets. MAST database pixel files are used as input; the output includes raw lightcurves, detrended lightcurves and a transit search can be performed as well. Stellar variability is not typically well-preserved but parameters can be tweaked to change that. The BLS algorithm used to detect periodic events is a Python implementation by Ruth Angus and Dan Foreman-Mackey (https://github.com/dfm/python-bls).

  18. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  19. Design Optimization of Space Launch Vehicles Using a Genetic Algorithm

    DTIC Science & Technology

    2007-06-01

    function until no improvement in the objective function could be made. The search space is modeled in a geometric form such as a polyhedron . The simplex... database . AeroDesign assumes that there are no boundary layers and that no separation occurs. AeroDesign can analyze either a cone or ogive shape

  20. Islander: A database of precisely mapped genomic islands in tRNA and tmRNA genes

    DOE PAGES

    Hudson, Corey M.; Lau, Britney Y.; Williams, Kelly P.

    2014-11-05

    Genomic islands are mobile DNAs that are major agents of bacterial and archaeal evolution. Integration into prokaryotic chromosomes usually occurs site-specifically at tRNA or tmRNA gene (together, tDNA) targets, catalyzed by tyrosine integrases. This splits the target gene, yet sequences within the island restore the disrupted gene; the regenerated target and its displaced fragment precisely mark the endpoints of the island. We applied this principle to search for islands in genomic DNA sequences. Our algorithm identifies tDNAs, finds fragments of those tDNAs in the same replicon and removes unlikely candidate islands through a series of filters. A search for islandsmore » in 2168 whole prokaryotic genomes produced 3919 candidates. The website Islander (recently moved to http://bioinformatics.sandia.gov/islander/) presents these precisely mapped candidate islands, the gene content and the island sequence. The algorithm further insists that each island encode an integrase, and attachment site sequence identity is carefully noted; therefore, the database also serves in the study of integrase site-specificity and its evolution.« less

  1. Use of a Drosophila Genome-Wide Conserved Sequence Database to Identify Functionally Related cis-Regulatory Enhancers

    PubMed Central

    Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F

    2012-01-01

    Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086

  2. Biosequence Similarity Search on the Mercury System

    PubMed Central

    Krishnamurthy, Praveen; Buhler, Jeremy; Chamberlain, Roger; Franklin, Mark; Gyang, Kwame; Jacob, Arpith; Lancaster, Joseph

    2007-01-01

    Biosequence similarity search is an important application in modern molecular biology. Search algorithms aim to identify sets of sequences whose extensional similarity suggests a common evolutionary origin or function. The most widely used similarity search tool for biosequences is BLAST, a program designed to compare query sequences to a database. Here, we present the design of BLASTN, the version of BLAST that searches DNA sequences, on the Mercury system, an architecture that supports high-volume, high-throughput data movement off a data store and into reconfigurable hardware. An important component of application deployment on the Mercury system is the functional decomposition of the application onto both the reconfigurable hardware and the traditional processor. Both the Mercury BLASTN application design and its performance analysis are described. PMID:18846267

  3. High-throughput Database Search and Large-scale Negative Polarity Liquid Chromatography–Tandem Mass Spectrometry with Ultraviolet Photodissociation for Complex Proteomic Samples*

    PubMed Central

    Madsen, James A.; Xu, Hua; Robinson, Michelle R.; Horton, Andrew P.; Shaw, Jared B.; Giles, David K.; Kaoud, Tamer S.; Dalby, Kevin N.; Trent, M. Stephen; Brodbelt, Jennifer S.

    2013-01-01

    The use of ultraviolet photodissociation (UVPD) for the activation and dissociation of peptide anions is evaluated for broader coverage of the proteome. To facilitate interpretation and assignment of the resulting UVPD mass spectra of peptide anions, the MassMatrix database search algorithm was modified to allow automated analysis of negative polarity MS/MS spectra. The new UVPD algorithms were developed based on the MassMatrix database search engine by adding specific fragmentation pathways for UVPD. The new UVPD fragmentation pathways in MassMatrix were rigorously and statistically optimized using two large data sets with high mass accuracy and high mass resolution for both MS1 and MS2 data acquired on an Orbitrap mass spectrometer for complex Halobacterium and HeLa proteome samples. Negative mode UVPD led to the identification of 3663 and 2350 peptides for the Halo and HeLa tryptic digests, respectively, corresponding to 655 and 645 peptides that were unique when compared with electron transfer dissociation (ETD), higher energy collision-induced dissociation, and collision-induced dissociation results for the same digests analyzed in the positive mode. In sum, 805 and 619 proteins were identified via UVPD for the Halobacterium and HeLa samples, respectively, with 49 and 50 unique proteins identified in contrast to the more conventional MS/MS methods. The algorithm also features automated charge determination for low mass accuracy data, precursor filtering (including intact charge-reduced peaks), and the ability to combine both positive and negative MS/MS spectra into a single search, and it is freely open to the public. The accuracy and specificity of the MassMatrix UVPD search algorithm was also assessed for low resolution, low mass accuracy data on a linear ion trap. Analysis of a known mixture of three mitogen-activated kinases yielded similar sequence coverage percentages for UVPD of peptide anions versus conventional collision-induced dissociation of peptide cations, and when these methods were combined into a single search, an increase of up to 13% sequence coverage was observed for the kinases. The ability to sequence peptide anions and cations in alternating scans in the same chromatographic run was also demonstrated. Because ETD has a significant bias toward identifying highly basic peptides, negative UVPD was used to improve the identification of the more acidic peptides in conjunction with positive ETD for the more basic species. In this case, tryptic peptides from the cytosolic section of HeLa cells were analyzed by polarity switching nanoLC-MS/MS utilizing ETD for cation sequencing and UVPD for anion sequencing. Relative to searching using ETD alone, positive/negative polarity switching significantly improved sequence coverages across identified proteins, resulting in a 33% increase in unique peptide identifications and more than twice the number of peptide spectral matches. PMID:23695934

  4. Validation of asthma recording in electronic health records: protocol for a systematic review.

    PubMed

    Nissen, Francis; Quint, Jennifer K; Wilkinson, Samantha; Mullerova, Hana; Smeeth, Liam; Douglas, Ian J

    2017-05-29

    Asthma is a common, heterogeneous disease with significant morbidity and mortality worldwide. It can be difficult to define in epidemiological studies using electronic health records as the diagnosis is based on non-specific respiratory symptoms and spirometry, neither of which are routinely registered. Electronic health records can nonetheless be valuable to study the epidemiology, management, healthcare use and control of asthma. For health databases to be useful sources of information, asthma diagnoses should ideally be validated. The primary objectives are to provide an overview of the methods used to validate asthma diagnoses in electronic health records and summarise the results of the validation studies. EMBASE and MEDLINE will be systematically searched for appropriate search terms. The searches will cover all studies in these databases up to October 2016 with no start date and will yield studies that have validated algorithms or codes for the diagnosis of asthma in electronic health records. At least one test validation measure (sensitivity, specificity, positive predictive value, negative predictive value or other) is necessary for inclusion. In addition, we require the validated algorithms to be compared with an external golden standard, such as a manual review, a questionnaire or an independent second database. We will summarise key data including author, year of publication, country, time period, date, data source, population, case characteristics, clinical events, algorithms, gold standard and validation statistics in a uniform table. This study is a synthesis of previously published studies and, therefore, no ethical approval is required. The results will be submitted to a peer-reviewed journal for publication. Results from this systematic review can be used to study outcome research on asthma and can be used to identify case definitions for asthma. CRD42016041798. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Automated search method for AFM and profilers

    NASA Astrophysics Data System (ADS)

    Ray, Michael; Martin, Yves C.

    2001-08-01

    A new automation software creates a search model as an initial setup and searches for a user-defined target in atomic force microscopes or stylus profilometers used in semiconductor manufacturing. The need for such automation has become critical in manufacturing lines. The new method starts with a survey map of a small area of a chip obtained from a chip-design database or an image of the area. The user interface requires a user to point to and define a precise location to be measured, and to select a macro function for an application such as line width or contact hole. The search algorithm automatically constructs a range of possible scan sequences within the survey, and provides increased speed and functionality compared to the methods used in instruments to date. Each sequence consists in a starting point relative to the target, a scan direction, and a scan length. The search algorithm stops when the location of a target is found and criteria for certainty in positioning is met. With today's capability in high speed processing and signal control, the tool can simultaneously scan and search for a target in a robotic and continuous manner. Examples are given that illustrate the key concepts.

  6. Speeding Up Chemical Searches Using the Inverted Index: the Convergence of Chemoinformatics and Text Search Methods

    PubMed Central

    Nasr, Ramzi; Vernica, Rares; Li, Chen; Baldi, Pierre

    2012-01-01

    In ligand-based screening, retrosynthesis, and other chemoinformatics applications, one of-ten seeks to search large databases of molecules in order to retrieve molecules that are similar to a given query. With the expanding size of molecular databases, the efficiency and scalability of data structures and algorithms for chemical searches are becoming increasingly important. Remarkably, both the chemoinformatics and information retrieval communities have converged on similar solutions whereby molecules or documents are represented by binary vectors, or fingerprints, indexing their substructures such as labeled paths for molecules and n-grams for text, with the same Jaccard-Tanimoto similarity measure. As a result, similarity search methods from one field can be adapted to the other. Here we adapt recent, state-of-the-art, inverted index methods from information retrieval to speed up similarity searches in chemoinformatics. Our results show a several-fold speed-up improvement over previous methods for both thresh-old searches and top-K searches. We also provide a mathematical analysis that allows one to predict the level of pruning achieved by the inverted index approach, and validate the quality of these predictions through simulation experiments. All results can be replicated using data freely downloadable from http://cdb.ics.uci.edu/. PMID:22462644

  7. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    NASA Astrophysics Data System (ADS)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including comparisons against ICESat altimetry for selected regions with tall vegetation and high relief. The extensive verification effort by the Receiver Algorithm team at GSFC is aimed at assuring that the onboard databases are sufficiently accurate. We will present the results of those assessments and verification tests, along with measures taken to implement modifications to the databases to optimize their use by the receiver algorithms. Companion presentations by McGarry et al. and Leigh et al. describe the details on the ATLAS Onboard Receiver Algorithms and databases development, respectively.

  8. Structator: fast index-based search for RNA sequence-structure patterns

    PubMed Central

    2011-01-01

    Background The secondary structure of RNA molecules is intimately related to their function and often more conserved than the sequence. Hence, the important task of searching databases for RNAs requires to match sequence-structure patterns. Unfortunately, current tools for this task have, in the best case, a running time that is only linear in the size of sequence databases. Furthermore, established index data structures for fast sequence matching, like suffix trees or arrays, cannot benefit from the complementarity constraints introduced by the secondary structure of RNAs. Results We present a novel method and readily applicable software for time efficient matching of RNA sequence-structure patterns in sequence databases. Our approach is based on affix arrays, a recently introduced index data structure, preprocessed from the target database. Affix arrays support bidirectional pattern search, which is required for efficiently handling the structural constraints of the pattern. Structural patterns like stem-loops can be matched inside out, such that the loop region is matched first and then the pairing bases on the boundaries are matched consecutively. This allows to exploit base pairing information for search space reduction and leads to an expected running time that is sublinear in the size of the sequence database. The incorporation of a new chaining approach in the search of RNA sequence-structure patterns enables the description of molecules folding into complex secondary structures with multiple ordered patterns. The chaining approach removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our method runs up to two orders of magnitude faster than previous methods. Conclusions The presented method's sublinear expected running time makes it well suited for RNA sequence-structure pattern matching in large sequence databases. RNA molecules containing several stem-loop substructures can be described by multiple sequence-structure patterns and their matches are efficiently handled by a novel chaining method. Beyond our algorithmic contributions, we provide with Structator a complete and robust open-source software solution for index-based search of RNA sequence-structure patterns. The Structator software is available at http://www.zbh.uni-hamburg.de/Structator. PMID:21619640

  9. FitSearch: a robust way to interpret a yeast fitness profile in terms of drug's mode-of-action.

    PubMed

    Lee, Minho; Han, Sangjo; Chang, Hyeshik; Kwak, Youn-Sig; Weller, David M; Kim, Dongsup

    2013-01-01

    Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more widespread use of these useful resources. For general usage of those public resources, we designed FitRankDB as a general repository of fitness profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity score with statistical significance for a given fitness profile. We demonstrated that our new repository and algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-action of bioactive compounds, regardless of the types of experiments that have been performed using yeast deletion-mutant collection in various types of different measurement platforms, especially non-chip-based platforms. We showed that our new database and algorithm are useful when attempting to construct a hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs. FitSearch is freely available at http://fitsearch.kaist.ac.kr.

  10. FitSearch: a robust way to interpret a yeast fitness profile in terms of drug's mode-of-action

    PubMed Central

    2013-01-01

    Background Yeast deletion-mutant collections have been successfully used to infer the mode-of-action of drugs especially by profiling chemical-genetic and genetic-genetic interactions on a genome-wide scale. Although tens of thousands of those profiles are publicly available, a lack of an accurate method for mining such data has been a major bottleneck for more widespread use of these useful resources. Results For general usage of those public resources, we designed FitRankDB as a general repository of fitness profiles, and developed a new search algorithm, FitSearch, for identifying the profiles that have a high similarity score with statistical significance for a given fitness profile. We demonstrated that our new repository and algorithm are highly beneficial to researchers who attempting to make hypotheses based on unknown modes-of-action of bioactive compounds, regardless of the types of experiments that have been performed using yeast deletion-mutant collection in various types of different measurement platforms, especially non-chip-based platforms. Conclusions We showed that our new database and algorithm are useful when attempting to construct a hypothesis regarding the unknown function of a bioactive compound through small-scale experiments with a yeast deletion collection in a platform independent manner. The FitRankDB and FitSearch enhance the ease of searching public yeast fitness profiles and obtaining insights into unknown mechanisms of action of drugs. FitSearch is freely available at http://fitsearch.kaist.ac.kr. PMID:23368702

  11. The LANL hemorrhagic fever virus database, a new platform for analyzing biothreat viruses.

    PubMed

    Kuiken, Carla; Thurmond, Jim; Dimitrijevic, Mira; Yoon, Hyejin

    2012-01-01

    Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55,000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide. The HFV sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database [Kuiken, C., B. Korber, and R.W. Shafer, HIV sequence databases. AIDS Rev, 2003. 5: p. 52-61]. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database [Sayers et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38-D51.] is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. The HFV website can be accessed via http://hfv.lanl.gov.

  12. LoopX: A Graphical User Interface-Based Database for Comprehensive Analysis and Comparative Evaluation of Loops from Protein Structures.

    PubMed

    Kadumuri, Rajashekar Varma; Vadrevu, Ramakrishna

    2017-10-01

    Due to their crucial role in function, folding, and stability, protein loops are being targeted for grafting/designing to create novel or alter existing functionality and improve stability and foldability. With a view to facilitate a thorough analysis and effectual search options for extracting and comparing loops for sequence and structural compatibility, we developed, LoopX a comprehensively compiled library of sequence and conformational features of ∼700,000 loops from protein structures. The database equipped with a graphical user interface is empowered with diverse query tools and search algorithms, with various rendering options to visualize the sequence- and structural-level information along with hydrogen bonding patterns, backbone φ, ψ dihedral angles of both the target and candidate loops. Two new features (i) conservation of the polar/nonpolar environment and (ii) conservation of sequence and conformation of specific residues within the loops have also been incorporated in the search and retrieval of compatible loops for a chosen target loop. Thus, the LoopX server not only serves as a database and visualization tool for sequence and structural analysis of protein loops but also aids in extracting and comparing candidate loops for a given target loop based on user-defined search options.

  13. Blocked inverted indices for exact clustering of large chemical spaces.

    PubMed

    Thiel, Philipp; Sach-Peltason, Lisa; Ottmann, Christian; Kohlbacher, Oliver

    2014-09-22

    The calculation of pairwise compound similarities based on fingerprints is one of the fundamental tasks in chemoinformatics. Methods for efficient calculation of compound similarities are of the utmost importance for various applications like similarity searching or library clustering. With the increasing size of public compound databases, exact clustering of these databases is desirable, but often computationally prohibitively expensive. We present an optimized inverted index algorithm for the calculation of all pairwise similarities on 2D fingerprints of a given data set. In contrast to other algorithms, it neither requires GPU computing nor yields a stochastic approximation of the clustering. The algorithm has been designed to work well with multicore architectures and shows excellent parallel speedup. As an application example of this algorithm, we implemented a deterministic clustering application, which has been designed to decompose virtual libraries comprising tens of millions of compounds in a short time on current hardware. Our results show that our implementation achieves more than 400 million Tanimoto similarity calculations per second on a common desktop CPU. Deterministic clustering of the available chemical space thus can be done on modern multicore machines within a few days.

  14. Enhancement and Validation of an Arab Surname Database

    PubMed Central

    Schwartz, Kendra; Beebani, Ganj; Sedki, Mai; Tahhan, Mamon; Ruterbusch, Julie J.

    2015-01-01

    Objectives Arab Americans constitute a large, heterogeneous, and quickly growing subpopulation in the United States. Health statistics for this group are difficult to find because US governmental offices do not recognize Arab as separate from white. The development and validation of an Arab- and Chaldean-American name database will enhance research efforts in this population subgroup. Methods A previously validated name database was supplemented with newly identified names gathered primarily from vital statistic records and then evaluated using a multistep process. This process included 1) review by 4 Arabic- and Chaldean-speaking reviewers, 2) ethnicity assessment by social media searches, and 3) self-report of ancestry obtained from a telephone survey. Results Our Arab- and Chaldean-American name algorithm has a positive predictive value of 91% and a negative predictive value of 100%. Conclusions This enhanced name database and algorithm can be used to identify Arab Americans in health statistics data, such as cancer and hospital registries, where they are often coded as white, to determine the extent of health disparities in this population. PMID:24625771

  15. Detecting chronic kidney disease in population-based administrative databases using an algorithm of hospital encounter and physician claim codes.

    PubMed

    Fleet, Jamie L; Dixon, Stephanie N; Shariff, Salimah Z; Quinn, Robert R; Nash, Danielle M; Harel, Ziv; Garg, Amit X

    2013-04-05

    Large, population-based administrative healthcare databases can be used to identify patients with chronic kidney disease (CKD) when serum creatinine laboratory results are unavailable. We examined the validity of algorithms that used combined hospital encounter and physician claims database codes for the detection of CKD in Ontario, Canada. We accrued 123,499 patients over the age of 65 from 2007 to 2010. All patients had a baseline serum creatinine value to estimate glomerular filtration rate (eGFR). We developed an algorithm of physician claims and hospital encounter codes to search administrative databases for the presence of CKD. We determined the sensitivity, specificity, positive and negative predictive values of this algorithm to detect our primary threshold of CKD, an eGFR <45 mL/min per 1.73 m² (15.4% of patients). We also assessed serum creatinine and eGFR values in patients with and without CKD codes (algorithm positive and negative, respectively). Our algorithm required evidence of at least one of eleven CKD codes and 7.7% of patients were algorithm positive. The sensitivity was 32.7% [95% confidence interval: (95% CI): 32.0 to 33.3%]. Sensitivity was lower in women compared to men (25.7 vs. 43.7%; p <0.001) and in the oldest age category (over 80 vs. 66 to 80; 28.4 vs. 37.6 %; p < 0.001). All specificities were over 94%. The positive and negative predictive values were 65.4% (95% CI: 64.4 to 66.3%) and 88.8% (95% CI: 88.6 to 89.0%), respectively. In algorithm positive patients, the median [interquartile range (IQR)] baseline serum creatinine value was 135 μmol/L (106 to 179 μmol/L) compared to 82 μmol/L (69 to 98 μmol/L) for algorithm negative patients. Corresponding eGFR values were 38 mL/min per 1.73 m² (26 to 51 mL/min per 1.73 m²) vs. 69 mL/min per 1.73 m² (56 to 82 mL/min per 1.73 m²), respectively. Patients with CKD as identified by our database algorithm had distinctly higher baseline serum creatinine values and lower eGFR values than those without such codes. However, because of limited sensitivity, the prevalence of CKD was underestimated.

  16. Detecting chronic kidney disease in population-based administrative databases using an algorithm of hospital encounter and physician claim codes

    PubMed Central

    2013-01-01

    Background Large, population-based administrative healthcare databases can be used to identify patients with chronic kidney disease (CKD) when serum creatinine laboratory results are unavailable. We examined the validity of algorithms that used combined hospital encounter and physician claims database codes for the detection of CKD in Ontario, Canada. Methods We accrued 123,499 patients over the age of 65 from 2007 to 2010. All patients had a baseline serum creatinine value to estimate glomerular filtration rate (eGFR). We developed an algorithm of physician claims and hospital encounter codes to search administrative databases for the presence of CKD. We determined the sensitivity, specificity, positive and negative predictive values of this algorithm to detect our primary threshold of CKD, an eGFR <45 mL/min per 1.73 m2 (15.4% of patients). We also assessed serum creatinine and eGFR values in patients with and without CKD codes (algorithm positive and negative, respectively). Results Our algorithm required evidence of at least one of eleven CKD codes and 7.7% of patients were algorithm positive. The sensitivity was 32.7% [95% confidence interval: (95% CI): 32.0 to 33.3%]. Sensitivity was lower in women compared to men (25.7 vs. 43.7%; p <0.001) and in the oldest age category (over 80 vs. 66 to 80; 28.4 vs. 37.6 %; p < 0.001). All specificities were over 94%. The positive and negative predictive values were 65.4% (95% CI: 64.4 to 66.3%) and 88.8% (95% CI: 88.6 to 89.0%), respectively. In algorithm positive patients, the median [interquartile range (IQR)] baseline serum creatinine value was 135 μmol/L (106 to 179 μmol/L) compared to 82 μmol/L (69 to 98 μmol/L) for algorithm negative patients. Corresponding eGFR values were 38 mL/min per 1.73 m2 (26 to 51 mL/min per 1.73 m2) vs. 69 mL/min per 1.73 m2 (56 to 82 mL/min per 1.73 m2), respectively. Conclusions Patients with CKD as identified by our database algorithm had distinctly higher baseline serum creatinine values and lower eGFR values than those without such codes. However, because of limited sensitivity, the prevalence of CKD was underestimated. PMID:23560464

  17. Towards the design of novel cuprate-based superconductors

    NASA Astrophysics Data System (ADS)

    Yee, Chuck-Hou

    The rapid maturation of materials databases combined with recent development of theories seeking to quantitatively link chemical properties to superconductivity in the cuprates provide the context to design novel superconductors. In this talk, we describe a framework designed to search for new superconductors, which combines chemical rules-of-thumb, insights of transition temperatures from dynamical mean-field theory, first-principles electronic structure tools, materials databases and structure prediction via evolutionary algorithms. We apply the framework to design a family of copper oxysulfides and evaluate the prospects of superconductivity.

  18. Computational Discovery of Materials Using the Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Avendaño-Franco, Guillermo; Romero, Aldo

    Our current ability to model physical phenomena accurately, the increase computational power and better algorithms are the driving forces behind the computational discovery and design of novel materials, allowing for virtual characterization before their realization in the laboratory. We present the implementation of a novel firefly algorithm, a population-based algorithm for global optimization for searching the structure/composition space. This novel computation-intensive approach naturally take advantage of concurrency, targeted exploration and still keeping enough diversity. We apply the new method in both periodic and non-periodic structures and we present the implementation challenges and solutions to improve efficiency. The implementation makes use of computational materials databases and network analysis to optimize the search and get insights about the geometric structure of local minima on the energy landscape. The method has been implemented in our software PyChemia, an open-source package for materials discovery. We acknowledge the support of DMREF-NSF 1434897 and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10.

  19. Machine learning for a Toolkit for Image Mining

    NASA Technical Reports Server (NTRS)

    Delanoy, Richard L.

    1995-01-01

    A prototype user environment is described that enables a user with very limited computer skills to collaborate with a computer algorithm to develop search tools (agents) that can be used for image analysis, creating metadata for tagging images, searching for images in an image database on the basis of image content, or as a component of computer vision algorithms. Agents are learned in an ongoing, two-way dialogue between the user and the algorithm. The user points to mistakes made in classification. The algorithm, in response, attempts to discover which image attributes are discriminating between objects of interest and clutter. It then builds a candidate agent and applies it to an input image, producing an 'interest' image highlighting features that are consistent with the set of objects and clutter indicated by the user. The dialogue repeats until the user is satisfied. The prototype environment, called the Toolkit for Image Mining (TIM) is currently capable of learning spectral and textural patterns. Learning exhibits rapid convergence to reasonable levels of performance and, when thoroughly trained, Fo appears to be competitive in discrimination accuracy with other classification techniques.

  20. Fast and simple character classes and bounded gaps pattern matching, with applications to protein searching.

    PubMed

    Navarro, Gonzalo; Raffinot, Mathieu

    2003-01-01

    The problem of fast exact and approximate searching for a pattern that contains classes of characters and bounded size gaps (CBG) in a text has a wide range of applications, among which a very important one is protein pattern matching (for instance, one PROSITE protein site is associated with the CBG [RK] - x(2,3) - [DE] - x(2,3) - Y, where the brackets match any of the letters inside, and x(2,3) a gap of length between 2 and 3). Currently, the only way to search for a CBG in a text is to convert it into a full regular expression (RE). However, a RE is more sophisticated than a CBG, and searching for it with a RE pattern matching algorithm complicates the search and makes it slow. This is the reason why we design in this article two new practical CBG matching algorithms that are much simpler and faster than all the RE search techniques. The first one looks exactly once at each text character. The second one does not need to consider all the text characters, and hence it is usually faster than the first one, but in bad cases may have to read the same text character more than once. We then propose a criterion based on the form of the CBG to choose a priori the fastest between both. We also show how to search permitting a few mistakes in the occurrences. We performed many practical experiments using the PROSITE database, and all of them show that our algorithms are the fastest in virtually all cases.

  1. Biological sequence compression algorithms.

    PubMed

    Matsumoto, T; Sadakane, K; Imai, H

    2000-01-01

    Today, more and more DNA sequences are becoming available. The information about DNA sequences are stored in molecular biology databases. The size and importance of these databases will be bigger and bigger in the future, therefore this information must be stored or communicated efficiently. Furthermore, sequence compression can be used to define similarities between biological sequences. The standard compression algorithms such as gzip or compress cannot compress DNA sequences, but only expand them in size. On the other hand, CTW (Context Tree Weighting Method) can compress DNA sequences less than two bits per symbol. These algorithms do not use special structures of biological sequences. Two characteristic structures of DNA sequences are known. One is called palindromes or reverse complements and the other structure is approximate repeats. Several specific algorithms for DNA sequences that use these structures can compress them less than two bits per symbol. In this paper, we improve the CTW so that characteristic structures of DNA sequences are available. Before encoding the next symbol, the algorithm searches an approximate repeat and palindrome using hash and dynamic programming. If there is a palindrome or an approximate repeat with enough length then our algorithm represents it with length and distance. By using this preprocessing, a new program achieves a little higher compression ratio than that of existing DNA-oriented compression algorithms. We also describe new compression algorithm for protein sequences.

  2. SuperNatural: a searchable database of available natural compounds

    PubMed Central

    Dunkel, Mathias; Fullbeck, Melanie; Neumann, Stefanie; Preissner, Robert

    2006-01-01

    Although tremendous effort has been put into synthetic libraries, most drugs on the market are still natural compounds or derivatives thereof. There are encyclopaedias of natural compounds, but the availability of these compounds is often unclear and catalogues from numerous suppliers have to be checked. To overcome these problems we have compiled a database of ∼50 000 natural compounds from different suppliers. To enable efficient identification of the desired compounds, we have implemented substructure searches with typical templates. Starting points for in silico screenings are about 2500 well-known and classified natural compounds from a compendium that we have added. Possible medical applications can be ascertained via automatic searches for similar drugs in a free conformational drug database containing WHO indications. Furthermore, we have computed about three million conformers, which are deployed to account for the flexibilities of the compounds when the 3D superposition algorithm that we have developed is used. The SuperNatural Database is publicly available at . Viewing requires the free Chime-plugin from MDL (Chime) or Java2 Runtime Environment (MView), which is also necessary for using Marvin application for chemical drawing. PMID:16381957

  3. Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics

    NASA Astrophysics Data System (ADS)

    Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal

    2017-12-01

    Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.

  4. A systematic review of validated methods for identifying transfusion-related ABO incompatibility reactions using administrative and claims data.

    PubMed

    Carnahan, Ryan M; Kee, Vicki R

    2012-01-01

    This paper aimed to systematically review algorithms to identify transfusion-related ABO incompatibility reactions in administrative data, with a focus on studies that have examined the validity of the algorithms. A literature search was conducted using PubMed, Iowa Drug Information Service database, and Embase. A Google Scholar search was also conducted because of the difficulty identifying relevant studies. Reviews were conducted by two investigators to identify studies using data sources from the USA or Canada because these data sources were most likely to reflect the coding practices of Mini-Sentinel data sources. One study was found that validated International Classification of Diseases (ICD-9-CM) codes representing transfusion reactions. None of these cases were ABO incompatibility reactions. Several studies consistently used ICD-9-CM code 999.6, which represents ABO incompatibility reactions, and a technical report identified the ICD-10 code for these reactions. One study included the E-code E8760 for mismatched blood in transfusion in the algorithm. Another study reported finding no ABO incompatibility reaction codes in the Healthcare Cost and Utilization Project Nationwide Inpatient Sample database, which contains data of 2.23 million patients who received transfusions, raising questions about the sensitivity of administrative data for identifying such reactions. Two studies reported perfect specificity, with sensitivity ranging from 21% to 83%, for the code identifying allogeneic red blood cell transfusions in hospitalized patients. There is no information to assess the validity of algorithms to identify transfusion-related ABO incompatibility reactions. Further information on the validity of algorithms to identify transfusions would also be useful. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Advanced SPARQL querying in small molecule databases.

    PubMed

    Galgonek, Jakub; Hurt, Tomáš; Michlíková, Vendula; Onderka, Petr; Schwarz, Jan; Vondrášek, Jiří

    2016-01-01

    In recent years, the Resource Description Framework (RDF) and the SPARQL query language have become more widely used in the area of cheminformatics and bioinformatics databases. These technologies allow better interoperability of various data sources and powerful searching facilities. However, we identified several deficiencies that make usage of such RDF databases restrictive or challenging for common users. We extended a SPARQL engine to be able to use special procedures inside SPARQL queries. This allows the user to work with data that cannot be simply precomputed and thus cannot be directly stored in the database. We designed an algorithm that checks a query against data ontology to identify possible user errors. This greatly improves query debugging. We also introduced an approach to visualize retrieved data in a user-friendly way, based on templates describing visualizations of resource classes. To integrate all of our approaches, we developed a simple web application. Our system was implemented successfully, and we demonstrated its usability on the ChEBI database transformed into RDF form. To demonstrate procedure call functions, we employed compound similarity searching based on OrChem. The application is publicly available at https://bioinfo.uochb.cas.cz/projects/chemRDF.

  6. ARMOUR - A Rice miRNA: mRNA Interaction Resource.

    PubMed

    Sanan-Mishra, Neeti; Tripathi, Anita; Goswami, Kavita; Shukla, Rohit N; Vasudevan, Madavan; Goswami, Hitesh

    2018-01-01

    ARMOUR was developed as A Rice miRNA:mRNA interaction resource. This informative and interactive database includes the experimentally validated expression profiles of miRNAs under different developmental and abiotic stress conditions across seven Indian rice cultivars. This comprehensive database covers 689 known and 1664 predicted novel miRNAs and their expression profiles in more than 38 different tissues or conditions along with their predicted/known target transcripts. The understanding of miRNA:mRNA interactome in regulation of functional cellular machinery is supported by the sequence information of the mature and hairpin structures. ARMOUR provides flexibility to users in querying the database using multiple ways like known gene identifiers, gene ontology identifiers, KEGG identifiers and also allows on the fly fold change analysis and sequence search query with inbuilt BLAST algorithm. ARMOUR database provides a cohesive platform for novel and mature miRNAs and their expression in different experimental conditions and allows searching for their interacting mRNA targets, GO annotation and their involvement in various biological pathways. The ARMOUR database includes a provision for adding more experimental data from users, with an aim to develop it as a platform for sharing and comparing experimental data contributed by research groups working on rice.

  7. Astronomical data analysis software and systems I; Proceedings of the 1st Annual Conference, Tucson, AZ, Nov. 6-8, 1991

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M. (Editor); Biemesderfer, Chris (Editor); Barnes, Jeannette (Editor)

    1992-01-01

    Consideration is given to a definition of a distribution format for X-ray data, the Einstein on-line system, the NASA/IPAC extragalactic database, COBE astronomical databases, Cosmic Background Explorer astronomical databases, the ADAM software environment, the Groningen Image Processing System, search for a common data model for astronomical data analysis systems, deconvolution for real and synthetic apertures, pitfalls in image reconstruction, a direct method for spectral and image restoration, and a discription of a Poisson imagery super resolution algorithm. Also discussed are multivariate statistics on HI and IRAS images, a faint object classification using neural networks, a matched filter for improving SNR of radio maps, automated aperture photometry of CCD images, interactive graphics interpreter, the ROSAT extreme ultra-violet sky survey, a quantitative study of optimal extraction, an automated analysis of spectra, applications of synthetic photometry, an algorithm for extra-solar planet system detection and data reduction facilities for the William Herschel telescope.

  8. GIRAF: a method for fast search and flexible alignment of ligand binding interfaces in proteins at atomic resolution

    PubMed Central

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Comparison and classification of protein structures are fundamental means to understand protein functions. Due to the computational difficulty and the ever-increasing amount of structural data, however, it is in general not feasible to perform exhaustive all-against-all structure comparisons necessary for comprehensive classifications. To efficiently handle such situations, we have previously proposed a method, now called GIRAF. We herein describe further improvements in the GIRAF protein structure search and alignment method. The GIRAF method achieves extremely efficient search of similar structures of ligand binding sites of proteins by exploiting database indexing of structural features of local coordinate frames. In addition, it produces refined atom-wise alignments by iterative applications of the Hungarian method to the bipartite graph defined for a pair of superimposed structures. By combining the refined alignments based on different local coordinate frames, it is made possible to align structures involving domain movements. We provide detailed accounts for the database design, the search and alignment algorithms as well as some benchmark results. PMID:27493524

  9. A multi-populations multi-strategies differential evolution algorithm for structural optimization of metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua

    2016-11-01

    Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.

  10. A hybrid, auto-adaptive and rule-based multi-agent approach using evolutionary algorithms for improved searching

    NASA Astrophysics Data System (ADS)

    Izquierdo, Joaquín; Montalvo, Idel; Campbell, Enrique; Pérez-García, Rafael

    2016-08-01

    Selecting the most appropriate heuristic for solving a specific problem is not easy, for many reasons. This article focuses on one of these reasons: traditionally, the solution search process has operated in a given manner regardless of the specific problem being solved, and the process has been the same regardless of the size, complexity and domain of the problem. To cope with this situation, search processes should mould the search into areas of the search space that are meaningful for the problem. This article builds on previous work in the development of a multi-agent paradigm using techniques derived from knowledge discovery (data-mining techniques) on databases of so-far visited solutions. The aim is to improve the search mechanisms, increase computational efficiency and use rules to enrich the formulation of optimization problems, while reducing the search space and catering to realistic problems.

  11. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    PubMed

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in small scale systems. In addition, the results of this study can be used to estimate kinetic parameter values in the stage of model selection for different experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics.

    PubMed

    Klukowski, Piotr; Schubert, Mario

    2018-06-15

    A better understanding of oligosaccharides and their wide-ranging functions in almost every aspect of biology and medicine promises to uncover hidden layers of biology and will support the development of better therapies. Elucidating the chemical structure of an unknown oligosaccharide is still a challenge. Efficient tools are required for non-targeted glycomics. Chemical shifts are a rich source of information about the topology and configuration of biomolecules, whose potential is however not fully explored for oligosaccharides. We hypothesize that the chemical shifts of each monosaccharide are unique for each saccharide type with a certain linkage pattern, so that correlated data measured by NMR spectroscopy can be used to identify the chemical nature of a carbohydrate. We present here an efficient search algorithm, GlycoNMRSearch, that matches either a subset or the entire set of chemical shifts of an unidentified monosaccharide spin system to all spin systems in an NMR database. The search output is much more precise than earlier search functions and highly similar matches suggest the chemical structure of the spin system within the oligosaccharide. Thus searching for connected chemical shift correlations within all electronically available NMR data of oligosaccharides is a very efficient way of identifying the chemical structure of unknown oligosaccharides. With an improved database in the future, GlycoNMRSearch will be even more efficient deducing chemical structures of oligosaccharides and there is a high chance that it becomes an indispensable technique for glycomics. The search algorithm presented here, together with a graphical user interface, is available at http://glyconmrsearch.santos.pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  13. Smiles2Monomers: a link between chemical and biological structures for polymers.

    PubMed

    Dufresne, Yoann; Noé, Laurent; Leclère, Valérie; Pupin, Maude

    2015-01-01

    The monomeric composition of polymers is powerful for structure comparison and synthetic biology, among others. Many databases give access to the atomic structure of compounds but the monomeric structure of polymers is often lacking. We have designed a smart algorithm, implemented in the tool Smiles2Monomers (s2m), to infer efficiently and accurately the monomeric structure of a polymer from its chemical structure. Our strategy is divided into two steps: first, monomers are mapped on the atomic structure by an efficient subgraph-isomorphism algorithm ; second, the best tiling is computed so that non-overlapping monomers cover all the structure of the target polymer. The mapping is based on a Markovian index built by a dynamic programming algorithm. The index enables s2m to search quickly all the given monomers on a target polymer. After, a greedy algorithm combines the mapped monomers into a consistent monomeric structure. Finally, a local branch and cut algorithm refines the structure. We tested this method on two manually annotated databases of polymers and reconstructed the structures de novo with a sensitivity over 90 %. The average computation time per polymer is 2 s. s2m automatically creates de novo monomeric annotations for polymers, efficiently in terms of time computation and sensitivity. s2m allowed us to detect annotation errors in the tested databases and to easily find the accurate structures. So, s2m could be integrated into the curation process of databases of small compounds to verify the current entries and accelerate the annotation of new polymers. The full method can be downloaded or accessed via a website for peptide-like polymers at http://bioinfo.lifl.fr/norine/smiles2monomers.jsp.Graphical abstract:.

  14. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering

    PubMed Central

    Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka

    2016-01-01

    Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads. PMID:27482905

  15. Automated extraction of chemical structure information from digital raster images

    PubMed Central

    Park, Jungkap; Rosania, Gus R; Shedden, Kerby A; Nguyen, Mandee; Lyu, Naesung; Saitou, Kazuhiro

    2009-01-01

    Background To search for chemical structures in research articles, diagrams or text representing molecules need to be translated to a standard chemical file format compatible with cheminformatic search engines. Nevertheless, chemical information contained in research articles is often referenced as analog diagrams of chemical structures embedded in digital raster images. To automate analog-to-digital conversion of chemical structure diagrams in scientific research articles, several software systems have been developed. But their algorithmic performance and utility in cheminformatic research have not been investigated. Results This paper aims to provide critical reviews for these systems and also report our recent development of ChemReader – a fully automated tool for extracting chemical structure diagrams in research articles and converting them into standard, searchable chemical file formats. Basic algorithms for recognizing lines and letters representing bonds and atoms in chemical structure diagrams can be independently run in sequence from a graphical user interface-and the algorithm parameters can be readily changed-to facilitate additional development specifically tailored to a chemical database annotation scheme. Compared with existing software programs such as OSRA, Kekule, and CLiDE, our results indicate that ChemReader outperforms other software systems on several sets of sample images from diverse sources in terms of the rate of correct outputs and the accuracy on extracting molecular substructure patterns. Conclusion The availability of ChemReader as a cheminformatic tool for extracting chemical structure information from digital raster images allows research and development groups to enrich their chemical structure databases by annotating the entries with published research articles. Based on its stable performance and high accuracy, ChemReader may be sufficiently accurate for annotating the chemical database with links to scientific research articles. PMID:19196483

  16. The Mendeleev-Meyer force project.

    PubMed

    Santos, Sergio; Lai, Chia-Yun; Amadei, Carlo A; Gadelrab, Karim R; Tang, Tzu-Chieh; Verdaguer, Albert; Barcons, Victor; Font, Josep; Colchero, Jaime; Chiesa, Matteo

    2016-10-14

    Here we present the Mendeleev-Meyer Force Project which aims at tabulating all materials and substances in a fashion similar to the periodic table. The goal is to group and tabulate substances using nanoscale force footprints rather than atomic number or electronic configuration as in the periodic table. The process is divided into: (1) acquiring nanoscale force data from materials, (2) parameterizing the raw data into standardized input features to generate a library, (3) feeding the standardized library into an algorithm to generate, enhance or exploit a model to identify a material or property. We propose producing databases mimicking the Materials Genome Initiative, the Medical Literature Analysis and Retrieval System Online (MEDLARS) or the PRoteomics IDEntifications database (PRIDE) and making these searchable online via search engines mimicking Pubmed or the PRIDE web interface. A prototype exploiting deep learning algorithms, i.e. multilayer neural networks, is presented.

  17. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  18. Querying databases of trajectories of differential equations: Data structures for trajectories

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1989-01-01

    One approach to qualitative reasoning about dynamical systems is to extract qualitative information by searching or making queries on databases containing very large numbers of trajectories. The efficiency of such queries depends crucially upon finding an appropriate data structure for trajectories of dynamical systems. Suppose that a large number of parameterized trajectories gamma of a dynamical system evolving in R sup N are stored in a database. Let Eta is contained in set R sup N denote a parameterized path in Euclidean Space, and let the Euclidean Norm denote a norm on the space of paths. A data structure is defined to represent trajectories of dynamical systems, and an algorithm is sketched which answers queries.

  19. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.

    PubMed

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K; Martin, Daniel B

    2011-06-03

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate-limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper, we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching), is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA, which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment.

  20. Evaluating the efficacy of a structure-derived amino acid substitution matrix in detecting protein homologs by BLAST and PSI-BLAST.

    PubMed

    Goonesekere, Nalin Cw

    2009-01-01

    The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.

  1. Enhancing navigation in biomedical databases by community voting and database-driven text classification

    PubMed Central

    Duchrow, Timo; Shtatland, Timur; Guettler, Daniel; Pivovarov, Misha; Kramer, Stefan; Weissleder, Ralph

    2009-01-01

    Background The breadth of biological databases and their information content continues to increase exponentially. Unfortunately, our ability to query such sources is still often suboptimal. Here, we introduce and apply community voting, database-driven text classification, and visual aids as a means to incorporate distributed expert knowledge, to automatically classify database entries and to efficiently retrieve them. Results Using a previously developed peptide database as an example, we compared several machine learning algorithms in their ability to classify abstracts of published literature results into categories relevant to peptide research, such as related or not related to cancer, angiogenesis, molecular imaging, etc. Ensembles of bagged decision trees met the requirements of our application best. No other algorithm consistently performed better in comparative testing. Moreover, we show that the algorithm produces meaningful class probability estimates, which can be used to visualize the confidence of automatic classification during the retrieval process. To allow viewing long lists of search results enriched by automatic classifications, we added a dynamic heat map to the web interface. We take advantage of community knowledge by enabling users to cast votes in Web 2.0 style in order to correct automated classification errors, which triggers reclassification of all entries. We used a novel framework in which the database "drives" the entire vote aggregation and reclassification process to increase speed while conserving computational resources and keeping the method scalable. In our experiments, we simulate community voting by adding various levels of noise to nearly perfectly labelled instances, and show that, under such conditions, classification can be improved significantly. Conclusion Using PepBank as a model database, we show how to build a classification-aided retrieval system that gathers training data from the community, is completely controlled by the database, scales well with concurrent change events, and can be adapted to add text classification capability to other biomedical databases. The system can be accessed at . PMID:19799796

  2. Mobile Visual Search Based on Histogram Matching and Zone Weight Learning

    NASA Astrophysics Data System (ADS)

    Zhu, Chuang; Tao, Li; Yang, Fan; Lu, Tao; Jia, Huizhu; Xie, Xiaodong

    2018-01-01

    In this paper, we propose a novel image retrieval algorithm for mobile visual search. At first, a short visual codebook is generated based on the descriptor database to represent the statistical information of the dataset. Then, an accurate local descriptor similarity score is computed by merging the tf-idf weighted histogram matching and the weighting strategy in compact descriptors for visual search (CDVS). At last, both the global descriptor matching score and the local descriptor similarity score are summed up to rerank the retrieval results according to the learned zone weights. The results show that the proposed approach outperforms the state-of-the-art image retrieval method in CDVS.

  3. The LANL hemorrhagic fever virus database, a new platform for analyzing biothreat viruses

    PubMed Central

    Kuiken, Carla; Thurmond, Jim; Dimitrijevic, Mira; Yoon, Hyejin

    2012-01-01

    Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55 000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide. The HFV sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database [Kuiken, C., B. Korber, and R.W. Shafer, HIV sequence databases. AIDS Rev, 2003. 5: p. 52–61]. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database [Sayers et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38–D51.] is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. The HFV website can be accessed via http://hfv.lanl.gov. PMID:22064861

  4. Bat-Inspired Algorithm Based Query Expansion for Medical Web Information Retrieval.

    PubMed

    Khennak, Ilyes; Drias, Habiba

    2017-02-01

    With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords. The use of these ambiguous and vague queries to describe the patients' needs has resulted in a failure of Web search engines to retrieve accurate and relevant information. One of the most natural and promising method to overcome this drawback is Query Expansion. In this paper, an original approach based on Bat Algorithm is proposed to improve the retrieval effectiveness of query expansion in medical field. In contrast to the existing literature, the proposed approach uses Bat Algorithm to find the best expanded query among a set of expanded query candidates, while maintaining low computational complexity. Moreover, this new approach allows the determination of the length of the expanded query empirically. Numerical results on MEDLINE, the on-line medical information database, show that the proposed approach is more effective and efficient compared to the baseline.

  5. G-Bean: an ontology-graph based web tool for biomedical literature retrieval

    PubMed Central

    2014-01-01

    Background Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. Methods G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Results Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to form the appropriate Boolean query statement automatically from the natural language query strings. G-Bean is available at http://bioinformatics.clemson.edu/G-Bean/index.php. Conclusions G-Bean addresses PubMed's limitations with ontology-graph based query expansion, automatic document indexing, and user search intention discovery. It shows significant advantages in finding relevant articles from the MEDLINE database to meet the information need of the user. PMID:25474588

  6. G-Bean: an ontology-graph based web tool for biomedical literature retrieval.

    PubMed

    Wang, James Z; Zhang, Yuanyuan; Dong, Liang; Li, Lin; Srimani, Pradip K; Yu, Philip S

    2014-01-01

    Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to form the appropriate Boolean query statement automatically from the natural language query strings. G-Bean is available at http://bioinformatics.clemson.edu/G-Bean/index.php. G-Bean addresses PubMed's limitations with ontology-graph based query expansion, automatic document indexing, and user search intention discovery. It shows significant advantages in finding relevant articles from the MEDLINE database to meet the information need of the user.

  7. Primary Repair of Moderate Severity Rhegmatogenous Retinal Detachment: A Critical Decision-Making Algorithm.

    PubMed

    Velez-Montoya, Raul; Jacobo-Oceguera, Paola; Flores-Preciado, Javier; Dalma-Weiszhausz, Jose; Guerrero-Naranjo, Jose; Salcedo-Villanueva, Guillermo; Garcia-Aguirre, Gerardo; Fromow-Guerra, Jans; Morales-Canton, Virgilio

    2016-01-01

    We reviewed all the available data regarding the current management of non-complex rhegmatogenous retinal detachment and aimed to propose a new decision-making algorithm aimed to improve the single surgery success rate for mid-severity rhegmatogenous retinal detachment. An online review of the Pubmed database was performed. We searched for all available manuscripts about the anatomical and functional outcomes after the surgical management, by either scleral buckle or primary pars plana vitrectomy, of retinal detachment. The search was limited to articles published from January 1995 to December 2015. All articles obtained from the search were carefully screened and their references were manually reviewed for additional relevant data. Our search specifically focused on preoperative clinical data that were associated with the surgical outcomes. After categorizing the available data according to their level of evidence, with randomized-controlled clinical trials as the highest possible level of evidence, followed by retrospective studies, and retrospective case series as the lowest level of evidence, we proceeded to design a logical decision-making algorithm, enhanced by our experiences as retinal surgeons. A total of 7 randomized-controlled clinical trials, 19 retrospective studies, and 9 case series were considered. Additional articles were also included in order to support the observations further. Rhegmatogenous retinal detachment is a potentially blinding disorder. Its surgical management seems to depend more on a surgeon´s preference than solid scientific data or is based on a good clinical history and examination. The algorithms proposed herein strive to offer a more rational approach to improve both anatomical and functional outcomes after the first surgery.

  8. Primary Repair of Moderate Severity Rhegmatogenous Retinal Detachment: A Critical Decision-Making Algorithm

    PubMed Central

    VELEZ-MONTOYA, Raul; JACOBO-OCEGUERA, Paola; FLORES-PRECIADO, Javier; DALMA-WEISZHAUSZ, Jose; GUERRERO-NARANJO, Jose; SALCEDO-VILLANUEVA, Guillermo; GARCIA-AGUIRRE, Gerardo; FROMOW-GUERRA, Jans; MORALES-CANTON, Virgilio

    2016-01-01

    We reviewed all the available data regarding the current management of non-complex rhegmatogenous retinal detachment and aimed to propose a new decision-making algorithm aimed to improve the single surgery success rate for mid-severity rhegmatogenous retinal detachment. An online review of the Pubmed database was performed. We searched for all available manuscripts about the anatomical and functional outcomes after the surgical management, by either scleral buckle or primary pars plana vitrectomy, of retinal detachment. The search was limited to articles published from January 1995 to December 2015. All articles obtained from the search were carefully screened and their references were manually reviewed for additional relevant data. Our search specifically focused on preoperative clinical data that were associated with the surgical outcomes. After categorizing the available data according to their level of evidence, with randomized-controlled clinical trials as the highest possible level of evidence, followed by retrospective studies, and retrospective case series as the lowest level of evidence, we proceeded to design a logical decision-making algorithm, enhanced by our experiences as retinal surgeons. A total of 7 randomized-controlled clinical trials, 19 retrospective studies, and 9 case series were considered. Additional articles were also included in order to support the observations further. Rhegmatogenous retinal detachment is a potentially blinding disorder. Its surgical management seems to depend more on a surgeon´s preference than solid scientific data or is based on a good clinical history and examination. The algorithms proposed herein strive to offer a more rational approach to improve both anatomical and functional outcomes after the first surgery. PMID:28289689

  9. Embedding strategies for effective use of information from multiple sequence alignments.

    PubMed Central

    Henikoff, S.; Henikoff, J. G.

    1997-01-01

    We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452

  10. Rapid Tsunami Inundation Forecast from Near-field or Far-field Earthquakes using Pre-computed Tsunami Database: Pelabuhan Ratu, Indonesia

    NASA Astrophysics Data System (ADS)

    Gusman, A. R.; Setiyono, U.; Satake, K.; Fujii, Y.

    2017-12-01

    We built pre-computed tsunami inundation database in Pelabuhan Ratu, one of tsunami-prone areas on the southern coast of Java, Indonesia. The tsunami database can be employed for a rapid estimation of tsunami inundation during an event. The pre-computed tsunami waveforms and inundations are from a total of 340 scenarios ranging from 7.5 to 9.2 in moment magnitude scale (Mw), including simple fault models of 208 thrust faults and 44 tsunami earthquakes on the plate interface, as well as 44 normal faults and 44 reverse faults in the outer-rise region. Using our tsunami inundation forecasting algorithm (NearTIF), we could rapidly estimate the tsunami inundation in Pelabuhan Ratu for three different hypothetical earthquakes. The first hypothetical earthquake is a megathrust earthquake type (Mw 9.0) offshore Sumatra which is about 600 km from Pelabuhan Ratu to represent a worst-case event in the far-field. The second hypothetical earthquake (Mw 8.5) is based on a slip deficit rate estimation from geodetic measurements and represents a most likely large event near Pelabuhan Ratu. The third hypothetical earthquake is a tsunami earthquake type (Mw 8.1) which often occur south off Java. We compared the tsunami inundation maps produced by the NearTIF algorithm with results of direct forward inundation modeling for the hypothetical earthquakes. The tsunami inundation maps produced from both methods are similar for the three cases. However, the tsunami inundation map from the inundation database can be obtained in much shorter time (1 min) than the one from a forward inundation modeling (40 min). These indicate that the NearTIF algorithm based on pre-computed inundation database is reliable and useful for tsunami warning purposes. This study also demonstrates that the NearTIF algorithm can work well even though the earthquake source is located outside the area of fault model database because it uses a time shifting procedure for the best-fit scenario searching.

  11. Advances in Satellite Microwave Precipitation Retrieval Algorithms Over Land

    NASA Astrophysics Data System (ADS)

    Wang, N. Y.; You, Y.; Ferraro, R. R.

    2015-12-01

    Precipitation plays a key role in the earth's climate system, particularly in the aspect of its water and energy balance. Satellite microwave (MW) observations of precipitation provide a viable mean to achieve global measurement of precipitation with sufficient sampling density and accuracy. However, accurate precipitation information over land from satellite MW is a challenging problem. The Goddard Profiling Algorithm (GPROF) algorithm for the Global Precipitation Measurement (GPM) is built around the Bayesian formulation (Evans et al., 1995; Kummerow et al., 1996). GPROF uses the likelihood function and the prior probability distribution function to calculate the expected value of precipitation rate, given the observed brightness temperatures. It is particularly convenient to draw samples from a prior PDF from a predefined database of observations or models. GPROF algorithm does not search all database entries but only the subset thought to correspond to the actual observation. The GPM GPROF V1 database focuses on stratification by surface emissivity class, land surface temperature and total precipitable water. However, there is much uncertainty as to what is the optimal information needed to subset the database for different conditions. To this end, we conduct a database stratification study of using National Mosaic and Multi-Sensor Quantitative Precipitation Estimation, Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced Technology Microwave Sounder (ATMS) and reanalysis data from Modern-Era Retrospective Analysis for Research and Applications (MERRA). Our database study (You et al., 2015) shows that environmental factors such as surface elevation, relative humidity, and storm vertical structure and height, and ice thickness can help in stratifying a single large database to smaller and more homogeneous subsets, in which the surface condition and precipitation vertical profiles are similar. It is found that the probability of detection (POD) increases about 8% and 12% by using stratified databases for rainfall and snowfall detection, respectively. In addition, by considering the relative humidity at lower troposphere and the vertical velocity at 700 hPa in the precipitation detection process, the POD for snowfall detection is further increased by 20.4% from 56.0% to 76.4%.

  12. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation

    PubMed Central

    2011-01-01

    Background The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. Results A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Conclusions Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance. PMID:21631914

  13. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.

    PubMed

    Rognes, Torbjørn

    2011-06-01

    The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  14. Prefiltering Model for Homology Detection Algorithms on GPU.

    PubMed

    Retamosa, Germán; de Pedro, Luis; González, Ivan; Tamames, Javier

    2016-01-01

    Homology detection has evolved over the time from heavy algorithms based on dynamic programming approaches to lightweight alternatives based on different heuristic models. However, the main problem with these algorithms is that they use complex statistical models, which makes it difficult to achieve a relevant speedup and find exact matches with the original results. Thus, their acceleration is essential. The aim of this article was to prefilter a sequence database. To make this work, we have implemented a groundbreaking heuristic model based on NVIDIA's graphics processing units (GPUs) and multicore processors. Depending on the sensitivity settings, this makes it possible to quickly reduce the sequence database by factors between 50% and 95%, while rejecting no significant sequences. Furthermore, this prefiltering application can be used together with multiple homology detection algorithms as a part of a next-generation sequencing system. Extensive performance and accuracy tests have been carried out in the Spanish National Centre for Biotechnology (NCB). The results show that GPU hardware can accelerate the execution times of former homology detection applications, such as National Centre for Biotechnology Information (NCBI), Basic Local Alignment Search Tool for Proteins (BLASTP), up to a factor of 4.

  15. Ant-cuckoo colony optimization for feature selection in digital mammogram.

    PubMed

    Jona, J B; Nagaveni, N

    2014-01-15

    Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques.

  16. Fast human pose estimation using 3D Zernike descriptors

    NASA Astrophysics Data System (ADS)

    Berjón, Daniel; Morán, Francisco

    2012-03-01

    Markerless video-based human pose estimation algorithms face a high-dimensional problem that is frequently broken down into several lower-dimensional ones by estimating the pose of each limb separately. However, in order to do so they need to reliably locate the torso, for which they typically rely on time coherence and tracking algorithms. Their losing track usually results in catastrophic failure of the process, requiring human intervention and thus precluding their usage in real-time applications. We propose a very fast rough pose estimation scheme based on global shape descriptors built on 3D Zernike moments. Using an articulated model that we configure in many poses, a large database of descriptor/pose pairs can be computed off-line. Thus, the only steps that must be done on-line are the extraction of the descriptors for each input volume and a search against the database to get the most likely poses. While the result of such process is not a fine pose estimation, it can be useful to help more sophisticated algorithms to regain track or make more educated guesses when creating new particles in particle-filter-based tracking schemes. We have achieved a performance of about ten fps on a single computer using a database of about one million entries.

  17. What is the actual epidemiology of familial hypercholesterolemia in Italy? Evidence from a National Primary Care Database.

    PubMed

    Guglielmi, Valeria; Bellia, Alfonso; Pecchioli, Serena; Medea, Gerardo; Parretti, Damiano; Lauro, Davide; Sbraccia, Paolo; Federici, Massimo; Cricelli, Iacopo; Cricelli, Claudio; Lapi, Francesco

    2016-11-15

    There are some inconsistencies on prevalence estimates of familial hypercholesterolemia (FH) in general population across Europe due to variable application of its diagnostic criteria. We aimed to investigate the FH epidemiology in Italy applying the Dutch Lipid Clinical Network (DLCN) score, and two alternative diagnostic algorithms to a primary care database. We performed a retrospective population-based study using the Health Search IMS Health Longitudinal Patient Database (HSD) and including active (alive and currently registered with their general practitioners (GPs)) patients on December 31, 2014. Cases of FH were identified by applying DLCN score. Two further algorithms, based on either ICD9CM coding for FH or some clinical items adopted by the DLCN, were tested towards DLCN itself as gold standard. We estimated a prevalence of 0.01% for "definite" and 0.18% for "definite" plus "probable" cases as per the DLCN. Algorithms 1 and 2 reported a FH prevalence of 0.9 and 0.13%, respectively. Both algorithms resulted in consistent specificity (1: 99.10%; 2: 99.9%) towards DLCN, but Algorithm 2 considerably better identified true positive (sensitivity=85.90%) than Algorithm 1 (sensitivity=10.10%). The application of DLCN or valid diagnostic alternatives in the Italian primary care setting provides estimates of FH prevalence consistent with those reported in other screening studies in Caucasian population. These diagnostic criteria should be therefore fostered among GPs. In the perspective of FH new therapeutic options, the epidemiological picture of FH is even more relevant to foresee the costs and to plan affordable reimbursement programs in Italy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. SuperNatural: a searchable database of available natural compounds.

    PubMed

    Dunkel, Mathias; Fullbeck, Melanie; Neumann, Stefanie; Preissner, Robert

    2006-01-01

    Although tremendous effort has been put into synthetic libraries, most drugs on the market are still natural compounds or derivatives thereof. There are encyclopaedias of natural compounds, but the availability of these compounds is often unclear and catalogues from numerous suppliers have to be checked. To overcome these problems we have compiled a database of approximately 50,000 natural compounds from different suppliers. To enable efficient identification of the desired compounds, we have implemented substructure searches with typical templates. Starting points for in silico screenings are about 2500 well-known and classified natural compounds from a compendium that we have added. Possible medical applications can be ascertained via automatic searches for similar drugs in a free conformational drug database containing WHO indications. Furthermore, we have computed about three million conformers, which are deployed to account for the flexibilities of the compounds when the 3D superposition algorithm that we have developed is used. The SuperNatural Database is publicly available at http://bioinformatics.charite.de/supernatural. Viewing requires the free Chime-plugin from MDL (Chime) or Java2 Runtime Environment (MView), which is also necessary for using Marvin application for chemical drawing.

  19. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm

    PubMed Central

    Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng; Leperi, Karson T.; Deria, Pravas; Zhang, Hongda; Vermeulen, Nicolaas A.; Stoddart, J. Fraser; You, Fengqi; Hupp, Joseph T.; Farha, Omar K.; Snurr, Randall Q.

    2016-01-01

    Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here. PMID:27757420

  20. Authentication and Encryption Using Modified Elliptic Curve Cryptography with Particle Swarm Optimization and Cuckoo Search Algorithm

    NASA Astrophysics Data System (ADS)

    Kota, Sujatha; Padmanabhuni, Venkata Nageswara Rao; Budda, Kishor; K, Sruthi

    2018-05-01

    Elliptic Curve Cryptography (ECC) uses two keys private key and public key and is considered as a public key cryptographic algorithm that is used for both authentication of a person and confidentiality of data. Either one of the keys is used in encryption and other in decryption depending on usage. Private key is used in encryption by the user and public key is used to identify user in the case of authentication. Similarly, the sender encrypts with the private key and the public key is used to decrypt the message in case of confidentiality. Choosing the private key is always an issue in all public key Cryptographic Algorithms such as RSA, ECC. If tiny values are chosen in random the security of the complete algorithm becomes an issue. Since the Public key is computed based on the Private Key, if they are not chosen optimally they generate infinity values. The proposed Modified Elliptic Curve Cryptography uses selection in either of the choices; the first option is by using Particle Swarm Optimization and the second option is by using Cuckoo Search Algorithm for randomly choosing the values. The proposed algorithms are developed and tested using sample database and both are found to be secured and reliable. The test results prove that the private key is chosen optimally not repetitive or tiny and the computations in public key will not reach infinity.

  1. Lynx: a database and knowledge extraction engine for integrative medicine.

    PubMed

    Sulakhe, Dinanath; Balasubramanian, Sandhya; Xie, Bingqing; Feng, Bo; Taylor, Andrew; Wang, Sheng; Berrocal, Eduardo; Dave, Utpal; Xu, Jinbo; Börnigen, Daniela; Gilliam, T Conrad; Maltsev, Natalia

    2014-01-01

    We have developed Lynx (http://lynx.ci.uchicago.edu)--a web-based database and a knowledge extraction engine, supporting annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Its underlying knowledge base (LynxKB) integrates various classes of information from >35 public databases and private collections, as well as manually curated data from our group and collaborators. Lynx provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization to assist the user in extracting meaningful knowledge from LynxKB and experimental data, whereas its service-oriented architecture provides public access to LynxKB and its analytical tools via user-friendly web services and interfaces.

  2. Supervised learning of tools for content-based search of image databases

    NASA Astrophysics Data System (ADS)

    Delanoy, Richard L.

    1996-03-01

    A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.

  3. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    PubMed Central

    2010-01-01

    Background Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl. Conclusions RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field. PMID:20459631

  4. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures.

    PubMed

    Popenda, Mariusz; Szachniuk, Marta; Blazewicz, Marek; Wasik, Szymon; Burke, Edmund K; Blazewicz, Jacek; Adamiak, Ryszard W

    2010-05-06

    Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl. RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field.

  5. An ultra low power ECG signal processor design for cardiovascular disease detection.

    PubMed

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2015-08-01

    This paper presents an ultra low power ASIC design based on a new cardiovascular disease diagnostic algorithm. This new algorithm based on forward search is designed for real time ECG signal processing. The algorithm is evaluated for Physionet PTB database from the point of view of cardiovascular disease diagnosis. The failed detection rate of QRS complex peak detection of our algorithm ranges from 0.07% to 0.26% for multi lead ECG signal. The ASIC is designed using 130-nm CMOS low leakage process technology. The area of ASIC is 1.21 mm(2). This ASIC consumes only 96 nW at an operating frequency of 1 kHz with a supply voltage of 0.9 V. Due to ultra low power consumption, our proposed ASIC design is most suitable for energy efficient wearable ECG monitoring devices.

  6. Current algorithmic solutions for peptide-based proteomics data generation and identification.

    PubMed

    Hoopmann, Michael R; Moritz, Robert L

    2013-02-01

    Peptide-based proteomic data sets are ever increasing in size and complexity. These data sets provide computational challenges when attempting to quickly analyze spectra and obtain correct protein identifications. Database search and de novo algorithms must consider high-resolution MS/MS spectra and alternative fragmentation methods. Protein inference is a tricky problem when analyzing large data sets of degenerate peptide identifications. Combining multiple algorithms for improved peptide identification puts significant strain on computational systems when investigating large data sets. This review highlights some of the recent developments in peptide and protein identification algorithms for analyzing shotgun mass spectrometry data when encountering the aforementioned hurdles. Also explored are the roles that analytical pipelines, public spectral libraries, and cloud computing play in the evolution of peptide-based proteomics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Cazymes Analysis Toolkit (CAT): Webservice for searching and analyzing carbohydrateactive enzymes in a newly sequenced organism using CAZy database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpinets, Tatiana V; Park, Byung; Syed, Mustafa H

    2010-01-01

    The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire non-redundant sequences of the CAZy database. Themore » second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains (DUF) and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit (CAT), and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.« less

  8. CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database.

    PubMed

    Park, Byung H; Karpinets, Tatiana V; Syed, Mustafa H; Leuze, Michael R; Uberbacher, Edward C

    2010-12-01

    The Carbohydrate-Active Enzyme (CAZy) database provides a rich set of manually annotated enzymes that degrade, modify, or create glycosidic bonds. Despite rich and invaluable information stored in the database, software tools utilizing this information for annotation of newly sequenced genomes by CAZy families are limited. We have employed two annotation approaches to fill the gap between manually curated high-quality protein sequences collected in the CAZy database and the growing number of other protein sequences produced by genome or metagenome sequencing projects. The first approach is based on a similarity search against the entire nonredundant sequences of the CAZy database. The second approach performs annotation using links or correspondences between the CAZy families and protein family domains. The links were discovered using the association rule learning algorithm applied to sequences from the CAZy database. The approaches complement each other and in combination achieved high specificity and sensitivity when cross-evaluated with the manually curated genomes of Clostridium thermocellum ATCC 27405 and Saccharophagus degradans 2-40. The capability of the proposed framework to predict the function of unknown protein domains and of hypothetical proteins in the genome of Neurospora crassa is demonstrated. The framework is implemented as a Web service, the CAZymes Analysis Toolkit, and is available at http://cricket.ornl.gov/cgi-bin/cat.cgi.

  9. Identification of Functionally Related Enzymes by Learning-to-Rank Methods.

    PubMed

    Stock, Michiel; Fober, Thomas; Hüllermeier, Eyke; Glinca, Serghei; Klebe, Gerhard; Pahikkala, Tapio; Airola, Antti; De Baets, Bernard; Waegeman, Willem

    2014-01-01

    Enzyme sequences and structures are routinely used in the biological sciences as queries to search for functionally related enzymes in online databases. To this end, one usually departs from some notion of similarity, comparing two enzymes by looking for correspondences in their sequences, structures or surfaces. For a given query, the search operation results in a ranking of the enzymes in the database, from very similar to dissimilar enzymes, while information about the biological function of annotated database enzymes is ignored. In this work, we show that rankings of that kind can be substantially improved by applying kernel-based learning algorithms. This approach enables the detection of statistical dependencies between similarities of the active cleft and the biological function of annotated enzymes. This is in contrast to search-based approaches, which do not take annotated training data into account. Similarity measures based on the active cleft are known to outperform sequence-based or structure-based measures under certain conditions. We consider the Enzyme Commission (EC) classification hierarchy for obtaining annotated enzymes during the training phase. The results of a set of sizeable experiments indicate a consistent and significant improvement for a set of similarity measures that exploit information about small cavities in the surface of enzymes.

  10. Crescendo: A Protein Sequence Database Search Engine for Tandem Mass Spectra.

    PubMed

    Wang, Jianqi; Zhang, Yajie; Yu, Yonghao

    2015-07-01

    A search engine that discovers more peptides reliably is essential to the progress of the computational proteomics. We propose two new scoring functions (L- and P-scores), which aim to capture similar characteristics of a peptide-spectrum match (PSM) as Sequest and Comet do. Crescendo, introduced here, is a software program that implements these two scores for peptide identification. We applied Crescendo to test datasets and compared its performance with widely used search engines, including Mascot, Sequest, and Comet. The results indicate that Crescendo identifies a similar or larger number of peptides at various predefined false discovery rates (FDR). Importantly, it also provides a better separation between the true and decoy PSMs, warranting the future development of a companion post-processing filtering algorithm.

  11. Raising the IQ in full-text searching via intelligent querying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kero, R.; Russell, L.; Swietlik, C.

    1994-11-01

    Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less

  12. PANDA: Protein function prediction using domain architecture and affinity propagation.

    PubMed

    Wang, Zheng; Zhao, Chenguang; Wang, Yiheng; Sun, Zheng; Wang, Nan

    2018-02-22

    We developed PANDA (Propagation of Affinity and Domain Architecture) to predict protein functions in the format of Gene Ontology (GO) terms. PANDA at first executes profile-profile alignment algorithm to search against PfamA, KOG, COG, and SwissProt databases, and then launches PSI-BLAST against UniProt for homologue search. PANDA integrates a domain architecture inference algorithm based on the Bayesian statistics that calculates the probability of having a GO term. All the candidate GO terms are pooled and filtered based on Z-score. After that, the remaining GO terms are clustered using an affinity propagation algorithm based on the GO directed acyclic graph, followed by a second round of filtering on the clusters of GO terms. We benchmarked the performance of all the baseline predictors PANDA integrates and also for every pooling and filtering step of PANDA. It can be found that PANDA achieves better performances in terms of area under the curve for precision and recall compared to the baseline predictors. PANDA can be accessed from http://dna.cs.miami.edu/PANDA/ .

  13. Consolidating Russia and Eurasia Antibiotic Resistance Data for 1992-2014 Using Search Engine.

    PubMed

    Bedenkov, Alexander; Shpinev, Vitaly; Suvorov, Nikolay; Sokolov, Evgeny; Riabenko, Evgeniy

    2016-01-01

    The World Health Organization recognizes the antibiotic resistance problem as a major health threat in the twenty first century. The paper describes an effort to fight it undertaken at the verge of two industries-healthcare and Data Science. One of the major difficulties in monitoring antibiotic resistance is low availability of comprehensive research data. Our aim is to develop a nation-wide antibiotic resistance database using Internet search and data processing algorithms using Russian language publications. An interdisciplinary team built an intelligent Internet search filter to locate all publicly available research data on antibiotic resistance in Russia and Eurasia countries, extracted it, and collated it for analysis. A database was constructed using data from 850 original studies conducted at 153 locations in 12 countries between 1992 and 2014. The studies contained susceptibility and resistance rates of 156 microorganisms to 157 antibiotic drugs. The applied search methodology was highly robust in that it yielded search precision of 58 vs. 20% in a typical Internet search. It allowed finding and collating within the database the following data items (among many others): publication details including title, source, date, authors, etc.; study details: time period, locations, research organization, therapy area, etc.; microorganisms and antibiotic drugs included in the study along with prevalence values of resistant and susceptible strains, and numbers of isolates. The next stage in project development will try to validate the data by matching it to major benchmark studies; in addition, a panel of experts will be convened to evaluate the outcomes. The work provides a supplementary tool to national surveillance systems in antibiotic resistance, and consolidates fragmented research data available for 12 countries for a period of more than 20 years.

  14. P185-M Protein Identification and Validation of Results in Workflows that Integrate over Various Instruments, Datasets, Search Engines

    PubMed Central

    Hufnagel, P.; Glandorf, J.; Körting, G.; Jabs, W.; Schweiger-Hufnagel, U.; Hahner, S.; Lubeck, M.; Suckau, D.

    2007-01-01

    Analysis of complex proteomes often results in long protein lists, but falls short in measuring the validity of identification and quantification results on a greater number of proteins. Biological and technical replicates are mandatory, as is the combination of the MS data from various workflows (gels, 1D-LC, 2D-LC), instruments (TOF/TOF, trap, qTOF or FTMS), and search engines. We describe a database-driven study that combines two workflows, two mass spectrometers, and four search engines with protein identification following a decoy database strategy. The sample was a tryptically digested lysate (10,000 cells) of a human colorectal cancer cell line. Data from two LC-MALDI-TOF/TOF runs and a 2D-LC-ESI-trap run using capillary and nano-LC columns were submitted to the proteomics software platform ProteinScape. The combined MALDI data and the ESI data were searched using Mascot (Matrix Science), Phenyx (GeneBio), ProteinSolver (Bruker and Protagen), and Sequest (Thermo) against a decoy database generated from IPI-human in order to obtain one protein list across all workflows and search engines at a defined maximum false-positive rate of 5%. ProteinScape combined the data to one LC-MALDI and one LC-ESI dataset. The initial separate searches from the two combined datasets generated eight independent peptide lists. These were compiled into an integrated protein list using the ProteinExtractor algorithm. An initial evaluation of the generated data led to the identification of approximately 1200 proteins. Result integration on a peptide level allowed discrimination of protein isoforms that would not have been possible with a mere combination of protein lists.

  15. Consolidating Russia and Eurasia Antibiotic Resistance Data for 1992–2014 Using Search Engine

    PubMed Central

    Bedenkov, Alexander; Shpinev, Vitaly; Suvorov, Nikolay; Sokolov, Evgeny; Riabenko, Evgeniy

    2016-01-01

    Background: The World Health Organization recognizes the antibiotic resistance problem as a major health threat in the twenty first century. The paper describes an effort to fight it undertaken at the verge of two industries—healthcare and Data Science. One of the major difficulties in monitoring antibiotic resistance is low availability of comprehensive research data. Our aim is to develop a nation-wide antibiotic resistance database using Internet search and data processing algorithms using Russian language publications. Materials and Methods: An interdisciplinary team built an intelligent Internet search filter to locate all publicly available research data on antibiotic resistance in Russia and Eurasia countries, extracted it, and collated it for analysis. A database was constructed using data from 850 original studies conducted at 153 locations in 12 countries between 1992 and 2014. The studies contained susceptibility and resistance rates of 156 microorganisms to 157 antibiotic drugs. Results: The applied search methodology was highly robust in that it yielded search precision of 58 vs. 20% in a typical Internet search. It allowed finding and collating within the database the following data items (among many others): publication details including title, source, date, authors, etc.; study details: time period, locations, research organization, therapy area, etc.; microorganisms and antibiotic drugs included in the study along with prevalence values of resistant and susceptible strains, and numbers of isolates. The next stage in project development will try to validate the data by matching it to major benchmark studies; in addition, a panel of experts will be convened to evaluate the outcomes. Conclusions: The work provides a supplementary tool to national surveillance systems in antibiotic resistance, and consolidates fragmented research data available for 12 countries for a period of more than 20 years. PMID:27014217

  16. SpolSimilaritySearch - A web tool to compare and search similarities between spoligotypes of Mycobacterium tuberculosis complex.

    PubMed

    Couvin, David; Zozio, Thierry; Rastogi, Nalin

    2017-07-01

    Spoligotyping is one of the most commonly used polymerase chain reaction (PCR)-based methods for identification and study of genetic diversity of Mycobacterium tuberculosis complex (MTBC). Despite its known limitations if used alone, the methodology is particularly useful when used in combination with other methods such as mycobacterial interspersed repetitive units - variable number of tandem DNA repeats (MIRU-VNTRs). At a worldwide scale, spoligotyping has allowed identification of information on 103,856 MTBC isolates (corresponding to 98049 clustered strains plus 5807 unique isolates from 169 countries of patient origin) contained within the SITVIT2 proprietary database of the Institut Pasteur de la Guadeloupe. The SpolSimilaritySearch web-tool described herein (available at: http://www.pasteur-guadeloupe.fr:8081/SpolSimilaritySearch) incorporates a similarity search algorithm allowing users to get a complete overview of similar spoligotype patterns (with information on presence or absence of 43 spacers) in the aforementioned worldwide database. This tool allows one to analyze spread and evolutionary patterns of MTBC by comparing similar spoligotype patterns, to distinguish between widespread, specific and/or confined patterns, as well as to pinpoint patterns with large deleted blocks, which play an intriguing role in the genetic epidemiology of M. tuberculosis. Finally, the SpolSimilaritySearch tool also provides with the country distribution patterns for each queried spoligotype. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fast parallel tandem mass spectral library searching using GPU hardware acceleration

    PubMed Central

    Baumgardner, Lydia Ashleigh; Shanmugam, Avinash Kumar; Lam, Henry; Eng, Jimmy K.; Martin, Daniel B.

    2011-01-01

    Mass spectrometry-based proteomics is a maturing discipline of biologic research that is experiencing substantial growth. Instrumentation has steadily improved over time with the advent of faster and more sensitive instruments collecting ever larger data files. Consequently, the computational process of matching a peptide fragmentation pattern to its sequence, traditionally accomplished by sequence database searching and more recently also by spectral library searching, has become a bottleneck in many mass spectrometry experiments. In both of these methods, the main rate limiting step is the comparison of an acquired spectrum with all potential matches from a spectral library or sequence database. This is a highly parallelizable process because the core computational element can be represented as a simple but arithmetically intense multiplication of two vectors. In this paper we present a proof of concept project taking advantage of the massively parallel computing available on graphics processing units (GPUs) to distribute and accelerate the process of spectral assignment using spectral library searching. This program, which we have named FastPaSS (for Fast Parallelized Spectral Searching) is implemented in CUDA (Compute Unified Device Architecture) from NVIDIA which allows direct access to the processors in an NVIDIA GPU. Our efforts demonstrate the feasibility of GPU computing for spectral assignment, through implementation of the validated spectral searching algorithm SpectraST in the CUDA environment. PMID:21545112

  18. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.

    PubMed

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-11-27

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.

  19. Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome

    PubMed Central

    Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad

    2010-01-01

    MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs. PMID:21364831

  20. Automated detection of hospital outbreaks: A systematic review of methods.

    PubMed

    Leclère, Brice; Buckeridge, David L; Boëlle, Pierre-Yves; Astagneau, Pascal; Lepelletier, Didier

    2017-01-01

    Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results.

  1. SpecOMS: A Full Open Modification Search Method Performing All-to-All Spectra Comparisons within Minutes.

    PubMed

    David, Matthieu; Fertin, Guillaume; Rogniaux, Hélène; Tessier, Dominique

    2017-08-04

    The analysis of discovery proteomics experiments relies on algorithms that identify peptides from their tandem mass spectra. The almost exhaustive interpretation of these spectra remains an unresolved issue. At present, an important number of missing interpretations is probably due to peptides displaying post-translational modifications and variants that yield spectra that are particularly difficult to interpret. However, the emergence of a new generation of mass spectrometers that provide high fragment ion accuracy has paved the way for more efficient algorithms. We present a new software, SpecOMS, that can handle the computational complexity of pairwise comparisons of spectra in the context of large volumes. SpecOMS can compare a whole set of experimental spectra generated by a discovery proteomics experiment to a whole set of theoretical spectra deduced from a protein database in a few minutes on a standard workstation. SpecOMS can ingeniously exploit those capabilities to improve the peptide identification process, allowing strong competition between all possible peptides for spectrum interpretation. Remarkably, this software resolves the drawbacks (i.e., efficiency problems and decreased sensitivity) that usually accompany open modification searches. We highlight this promising approach using results obtained from the analysis of a public human data set downloaded from the PRIDE (PRoteomics IDEntification) database.

  2. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    PubMed

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  3. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Hoynck, Michael

    2005-01-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  4. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Höynck, Michael

    2004-12-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  5. Diagnostic Evaluation of Nontraumatic Chest Pain in Athletes.

    PubMed

    Moran, Byron; Bryan, Sean; Farrar, Ted; Salud, Chris; Visser, Gary; Decuba, Raymond; Renelus, Deborah; Buckley, Tyler; Dressing, Michael; Peterkin, Nicholas; Coris, Eric

    This article is a clinically relevant review of the existing medical literature relating to the assessment and diagnostic evaluation for athletes complaining of nontraumatic chest pain. The literature was searched using the following databases for the years 1975 forward: Cochrane Database of Systematic Reviews; CINAHL; PubMed (MEDLINE); and SportDiscus. The general search used the keywords chest pain and athletes. The search was revised to include subject headings and subheadings, including chest pain and prevalence and athletes. Cross-referencing published articles from the databases searched discovered additional articles. No dissertations, theses, or meeting proceedings were reviewed. The authors discuss the scope of this complex problem and the diagnostic dilemma chest pain in athletes can provide. Next, the authors delve into the vast differential and attempt to simplify this process for the sports medicine physician by dividing potential etiologies into cardiac and noncardiac conditions. Life-threatening causes of chest pain in athletes may be cardiac or noncardiac in origin, which highlights the need for the sports medicine physician to consider pathology in multiple organ systems simultaneously. This article emphasizes the importance of ruling out immediately life threatening diagnoses, while acknowledging the most common causes of noncardiac chest pain in young athletes are benign. The authors propose a practical algorithm the sports medicine physician can use as a guide for the assessment and diagnostic work-up of the athlete with chest pain designed to help the physician arrive at the correct diagnosis in a clinically efficient and cost-effective manner.

  6. Search prefilters to assist in library searching of infrared spectra of automotive clear coats.

    PubMed

    Lavine, Barry K; Fasasi, Ayuba; Mirjankar, Nikhil; White, Collin; Sandercock, Mark

    2015-01-01

    Clear coat searches of the infrared (IR) spectral library of the paint data query (PDQ) forensic database often generate an unusable number of hits that span multiple manufacturers, assembly plants, and years. To improve the accuracy of the hit list, pattern recognition methods have been used to develop search prefilters (i.e., principal component models) that differentiate between similar but non-identical IR spectra of clear coats on the basis of manufacturer (e.g., General Motors, Ford, Chrysler) or assembly plant. A two step procedure to develop these search prefilters was employed. First, the discrete wavelet transform was used to decompose each IR spectrum into wavelet coefficients to enhance subtle but significant features in the spectral data. Second, a genetic algorithm for IR spectral pattern recognition was employed to identify wavelet coefficients characteristic of the manufacturer or assembly plant of the vehicle. Even in challenging trials where the paint samples evaluated were all from the same manufacturer (General Motors) within a limited production year range (2000-2006), the respective assembly plant of the vehicle was correctly identified. Search prefilters to identify assembly plants were successfully validated using 10 blind samples provided by the Royal Canadian Mounted Police (RCMP) as part of a study to populate PDQ to current production years, whereas the search prefilter to discriminate among automobile manufacturers was successfully validated using IR spectra obtained directly from the PDQ database. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Information mining in remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Li, Jiang

    The volume of remotely sensed imagery continues to grow at an enormous rate due to the advances in sensor technology, and our capability for collecting and storing images has greatly outpaced our ability to analyze and retrieve information from the images. This motivates us to develop image information mining techniques, which is very much an interdisciplinary endeavor drawing upon expertise in image processing, databases, information retrieval, machine learning, and software design. This dissertation proposes and implements an extensive remote sensing image information mining (ReSIM) system prototype for mining useful information implicitly stored in remote sensing imagery. The system consists of three modules: image processing subsystem, database subsystem, and visualization and graphical user interface (GUI) subsystem. Land cover and land use (LCLU) information corresponding to spectral characteristics is identified by supervised classification based on support vector machines (SVM) with automatic model selection, while textural features that characterize spatial information are extracted using Gabor wavelet coefficients. Within LCLU categories, textural features are clustered using an optimized k-means clustering approach to acquire search efficient space. The clusters are stored in an object-oriented database (OODB) with associated images indexed in an image database (IDB). A k-nearest neighbor search is performed using a query-by-example (QBE) approach. Furthermore, an automatic parametric contour tracing algorithm and an O(n) time piecewise linear polygonal approximation (PLPA) algorithm are developed for shape information mining of interesting objects within the image. A fuzzy object-oriented database based on the fuzzy object-oriented data (FOOD) model is developed to handle the fuzziness and uncertainty. Three specific applications are presented: integrated land cover and texture pattern mining, shape information mining for change detection of lakes, and fuzzy normalized difference vegetation index (NDVI) pattern mining. The study results show the effectiveness of the proposed system prototype and the potentials for other applications in remote sensing.

  8. Parameter estimation for chaotic systems using a hybrid adaptive cuckoo search with simulated annealing algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, Zheng, E-mail: 19994035@sina.com; Wang, Jun; Zhou, Bihua

    2014-03-15

    This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented tomore » tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.« less

  9. ESTuber db: an online database for Tuber borchii EST sequences.

    PubMed

    Lazzari, Barbara; Caprera, Andrea; Cosentino, Cristian; Stella, Alessandra; Milanesi, Luciano; Viotti, Angelo

    2007-03-08

    The ESTuber database (http://www.itb.cnr.it/estuber) includes 3,271 Tuber borchii expressed sequence tags (EST). The dataset consists of 2,389 sequences from an in-house prepared cDNA library from truffle vegetative hyphae, and 882 sequences downloaded from GenBank and representing four libraries from white truffle mycelia and ascocarps at different developmental stages. An automated pipeline was prepared to process EST sequences using public software integrated by in-house developed Perl scripts. Data were collected in a MySQL database, which can be queried via a php-based web interface. Sequences included in the ESTuber db were clustered and annotated against three databases: the GenBank nr database, the UniProtKB database and a third in-house prepared database of fungi genomic sequences. An algorithm was implemented to infer statistical classification among Gene Ontology categories from the ontology occurrences deduced from the annotation procedure against the UniProtKB database. Ontologies were also deduced from the annotation of more than 130,000 EST sequences from five filamentous fungi, for intra-species comparison purposes. Further analyses were performed on the ESTuber db dataset, including tandem repeats search and comparison of the putative protein dataset inferred from the EST sequences to the PROSITE database for protein patterns identification. All the analyses were performed both on the complete sequence dataset and on the contig consensus sequences generated by the EST assembly procedure. The resulting web site is a resource of data and links related to truffle expressed genes. The Sequence Report and Contig Report pages are the web interface core structures which, together with the Text search utility and the Blast utility, allow easy access to the data stored in the database.

  10. Lynx: a database and knowledge extraction engine for integrative medicine

    PubMed Central

    Sulakhe, Dinanath; Balasubramanian, Sandhya; Xie, Bingqing; Feng, Bo; Taylor, Andrew; Wang, Sheng; Berrocal, Eduardo; Dave, Utpal; Xu, Jinbo; Börnigen, Daniela; Gilliam, T. Conrad; Maltsev, Natalia

    2014-01-01

    We have developed Lynx (http://lynx.ci.uchicago.edu)—a web-based database and a knowledge extraction engine, supporting annotation and analysis of experimental data and generation of weighted hypotheses on molecular mechanisms contributing to human phenotypes and disorders of interest. Its underlying knowledge base (LynxKB) integrates various classes of information from >35 public databases and private collections, as well as manually curated data from our group and collaborators. Lynx provides advanced search capabilities and a variety of algorithms for enrichment analysis and network-based gene prioritization to assist the user in extracting meaningful knowledge from LynxKB and experimental data, whereas its service-oriented architecture provides public access to LynxKB and its analytical tools via user-friendly web services and interfaces. PMID:24270788

  11. Improvements in the Protein Identifier Cross-Reference service.

    PubMed

    Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A

    2012-07-01

    The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.

  12. [Scientometrics and bibliometrics of biomedical engineering periodicals and papers].

    PubMed

    Zhao, Ping; Xu, Ping; Li, Bingyan; Wang, Zhengrong

    2003-09-01

    This investigation was made to reveal the current status, research trend and research level of biomedical engineering in Chinese mainland by means of scientometrics and to assess the quality of the four domestic publications by bibliometrics. We identified all articles of four related publications by searching Chinese and foreign databases from 1997 to 2001. All articles collected or cited by these databases were searched and statistically analyzed for finding out the relevant distributions, including databases, years, authors, institutions, subject headings and subheadings. The source of sustentation funds and the related articles were analyzed too. The results showed that two journals were cited by two foreign databases and five Chinese databases simultaneously. The output of Journal of Biomedical Engineering was the highest. Its quantity of original papers cited by EI, CA and the totality of papers sponsored by funds were higher than those of the others, but the quantity and percentage per year of biomedical articles cited by EI were decreased in all. Inland core authors and institutions had come into being in the field of biomedical engineering. Their research topics were mainly concentrated on ten subject headings which included biocompatible materials, computer-assisted signal processing, electrocardiography, computer-assisted image processing, biomechanics, algorithms, electroencephalography, automatic data processing, mechanical stress, hemodynamics, mathematical computing, microcomputers, theoretical models, etc. The main subheadings were concentrated on instrumentation, physiopathology, diagnosis, therapy, ultrasonography, physiology, analysis, surgery, pathology, method, etc.

  13. A systematic review of validated methods for identifying erythema multiforme major/minor/not otherwise specified, Stevens-Johnson Syndrome, or toxic epidermal necrolysis using administrative and claims data.

    PubMed

    Schneider, Gary; Kachroo, Sumesh; Jones, Natalie; Crean, Sheila; Rotella, Philip; Avetisyan, Ruzan; Reynolds, Matthew W

    2012-01-01

    The Food and Drug Administration's (FDA) Mini-Sentinel pilot program aims to conduct active surveillance to refine safety signals that emerge for marketed medical products. A key facet of this surveillance is to develop and understand the validity of algorithms for identifying health outcomes of interest (HOIs) from administrative and claims data. This paper summarizes the process and findings of the algorithm review of erythema multiforme and related conditions. PubMed and Iowa Drug Information Service searches were conducted to identify citations applicable to the erythema multiforme HOI. Level 1 abstract reviews and Level 2 full-text reviews were conducted to find articles that used administrative and claims data to identify erythema multiforme, Stevens-Johnson syndrome, or toxic epidermal necrolysis and that included validation estimates of the coding algorithms. Our search revealed limited literature focusing on erythema multiforme and related conditions that provided administrative and claims data-based algorithms and validation estimates. Only four studies provided validated algorithms and all studies used the same International Classification of Diseases code, 695.1. Approximately half of cases subjected to expert review were consistent with erythema multiforme and related conditions. Updated research needs to be conducted on designing validation studies that test algorithms for erythema multiforme and related conditions and that take into account recent changes in the diagnostic coding of these diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Generalized Jaynes-Cummings model as a quantum search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanelli, A.

    2009-07-15

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  15. Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis.

    PubMed

    Lee, Junghye; Sun, Jimeng; Wang, Fei; Wang, Shuang; Jun, Chi-Hyuck; Jiang, Xiaoqian

    2018-04-13

    There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner. ©Junghye Lee, Jimeng Sun, Fei Wang, Shuang Wang, Chi-Hyuck Jun, Xiaoqian Jiang. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 13.04.2018.

  16. Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis

    PubMed Central

    Sun, Jimeng; Wang, Fei; Wang, Shuang; Jun, Chi-Hyuck; Jiang, Xiaoqian

    2018-01-01

    Background There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. Objective The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. Methods We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. Results We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. Conclusions The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner. PMID:29653917

  17. Practical and Efficient Searching in Proteomics: A Cross Engine Comparison

    PubMed Central

    Paulo, Joao A.

    2014-01-01

    Background Analysis of large datasets produced by mass spectrometry-based proteomics relies on database search algorithms to sequence peptides and identify proteins. Several such scoring methods are available, each based on different statistical foundations and thereby not producing identical results. Here, the aim is to compare peptide and protein identifications using multiple search engines and examine the additional proteins gained by increasing the number of technical replicate analyses. Methods A HeLa whole cell lysate was analyzed on an Orbitrap mass spectrometer for 10 technical replicates. The data were combined and searched using Mascot, SEQUEST, and Andromeda. Comparisons were made of peptide and protein identifications among the search engines. In addition, searches using each engine were performed with incrementing number of technical replicates. Results The number and identity of peptides and proteins differed across search engines. For all three search engines, the differences in proteins identifications were greater than the differences in peptide identifications indicating that the major source of the disparity may be at the protein inference grouping level. The data also revealed that analysis of 2 technical replicates can increase protein identifications by up to 10-15%, while a third replicate results in an additional 4-5%. Conclusions The data emphasize two practical methods of increasing the robustness of mass spectrometry data analysis. The data show that 1) using multiple search engines can expand the number of identified proteins (union) and validate protein identifications (intersection), and 2) analysis of 2 or 3 technical replicates can substantially expand protein identifications. Moreover, information can be extracted from a dataset by performing database searching with different engines and performing technical repeats, which requires no additional sample preparation and effectively utilizes research time and effort. PMID:25346847

  18. Practical and Efficient Searching in Proteomics: A Cross Engine Comparison.

    PubMed

    Paulo, Joao A

    2013-10-01

    Analysis of large datasets produced by mass spectrometry-based proteomics relies on database search algorithms to sequence peptides and identify proteins. Several such scoring methods are available, each based on different statistical foundations and thereby not producing identical results. Here, the aim is to compare peptide and protein identifications using multiple search engines and examine the additional proteins gained by increasing the number of technical replicate analyses. A HeLa whole cell lysate was analyzed on an Orbitrap mass spectrometer for 10 technical replicates. The data were combined and searched using Mascot, SEQUEST, and Andromeda. Comparisons were made of peptide and protein identifications among the search engines. In addition, searches using each engine were performed with incrementing number of technical replicates. The number and identity of peptides and proteins differed across search engines. For all three search engines, the differences in proteins identifications were greater than the differences in peptide identifications indicating that the major source of the disparity may be at the protein inference grouping level. The data also revealed that analysis of 2 technical replicates can increase protein identifications by up to 10-15%, while a third replicate results in an additional 4-5%. The data emphasize two practical methods of increasing the robustness of mass spectrometry data analysis. The data show that 1) using multiple search engines can expand the number of identified proteins (union) and validate protein identifications (intersection), and 2) analysis of 2 or 3 technical replicates can substantially expand protein identifications. Moreover, information can be extracted from a dataset by performing database searching with different engines and performing technical repeats, which requires no additional sample preparation and effectively utilizes research time and effort.

  19. SING: Subgraph search In Non-homogeneous Graphs

    PubMed Central

    2010-01-01

    Background Finding the subgraphs of a graph database that are isomorphic to a given query graph has practical applications in several fields, from cheminformatics to image understanding. Since subgraph isomorphism is a computationally hard problem, indexing techniques have been intensively exploited to speed up the process. Such systems filter out those graphs which cannot contain the query, and apply a subgraph isomorphism algorithm to each residual candidate graph. The applicability of such systems is limited to databases of small graphs, because their filtering power degrades on large graphs. Results In this paper, SING (Subgraph search In Non-homogeneous Graphs), a novel indexing system able to cope with large graphs, is presented. The method uses the notion of feature, which can be a small subgraph, subtree or path. Each graph in the database is annotated with the set of all its features. The key point is to make use of feature locality information. This idea is used to both improve the filtering performance and speed up the subgraph isomorphism task. Conclusions Extensive tests on chemical compounds, biological networks and synthetic graphs show that the proposed system outperforms the most popular systems in query time over databases of medium and large graphs. Other specific tests show that the proposed system is effective for single large graphs. PMID:20170516

  20. ASTER cloud coverage reassessment using MODIS cloud mask products

    NASA Astrophysics Data System (ADS)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  1. Alchemist multimodal workflows for diabetic retinopathy research, disease prevention and investigational drug discovery.

    PubMed

    Riposan, Adina; Taylor, Ian; Owens, David R; Rana, Omer; Conley, Edward C

    2007-01-01

    In this paper we present mechanisms for imaging and spectral data discovery, as applied to the early detection of pathologic mechanisms underlying diabetic retinopathy in research and clinical trial scenarios. We discuss the Alchemist framework, built using a generic peer-to-peer architecture, supporting distributed database queries and complex search algorithms based on workflow. The Alchemist is a domain-independent search mechanism that can be applied to search and data discovery scenarios in many areas. We illustrate Alchemist's ability to perform complex searches composed as a collection of peer-to-peer overlays, Grid-based services and workflows, e.g. applied to image and spectral data discovery, as applied to the early detection and prevention of retinal disease and investigational drug discovery. The Alchemist framework is built on top of decentralised technologies and uses industry standards such as Web services and SOAP for messaging.

  2. BIRAM: a content-based image retrieval framework for medical images

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; Furuie, Sergio S.

    2006-03-01

    In the medical field, digital images are becoming more and more important for diagnostics and therapy of the patients. At the same time, the development of new technologies has increased the amount of image data produced in a hospital. This creates a demand for access methods that offer more than text-based queries for retrieval of the information. In this paper is proposed a framework for the retrieval of medical images that allows the use of different algorithms for the search of medical images by similarity. The framework also enables the search for textual information from an associated medical report and DICOM header information. The proposed system can be used for support of clinical decision making and is intended to be integrated with an open source picture, archiving and communication systems (PACS). The BIRAM has the following advantages: (i) Can receive several types of algorithms for image similarity search; (ii) Allows the codification of the report according to a medical dictionary, improving the indexing of the information and retrieval; (iii) The algorithms can be selectively applied to images with the appropriated characteristics, for instance, only in magnetic resonance images. The framework was implemented in Java language using a MS Access 97 database. The proposed framework can still be improved, by the use of regions of interest (ROI), indexing with slim-trees and integration with a PACS Server.

  3. When drug discovery meets web search: Learning to Rank for ligand-based virtual screening.

    PubMed

    Zhang, Wei; Ji, Lijuan; Chen, Yanan; Tang, Kailin; Wang, Haiping; Zhu, Ruixin; Jia, Wei; Cao, Zhiwei; Liu, Qi

    2015-01-01

    The rapid increase in the emergence of novel chemical substances presents a substantial demands for more sophisticated computational methodologies for drug discovery. In this study, the idea of Learning to Rank in web search was presented in drug virtual screening, which has the following unique capabilities of 1). Applicable of identifying compounds on novel targets when there is not enough training data available for these targets, and 2). Integration of heterogeneous data when compound affinities are measured in different platforms. A standard pipeline was designed to carry out Learning to Rank in virtual screening. Six Learning to Rank algorithms were investigated based on two public datasets collected from Binding Database and the newly-published Community Structure-Activity Resource benchmark dataset. The results have demonstrated that Learning to rank is an efficient computational strategy for drug virtual screening, particularly due to its novel use in cross-target virtual screening and heterogeneous data integration. To the best of our knowledge, we have introduced here the first application of Learning to Rank in virtual screening. The experiment workflow and algorithm assessment designed in this study will provide a standard protocol for other similar studies. All the datasets as well as the implementations of Learning to Rank algorithms are available at http://www.tongji.edu.cn/~qiliu/lor_vs.html. Graphical AbstractThe analogy between web search and ligand-based drug discovery.

  4. A Node Linkage Approach for Sequential Pattern Mining

    PubMed Central

    Navarro, Osvaldo; Cumplido, René; Villaseñor-Pineda, Luis; Feregrino-Uribe, Claudia; Carrasco-Ochoa, Jesús Ariel

    2014-01-01

    Sequential Pattern Mining is a widely addressed problem in data mining, with applications such as analyzing Web usage, examining purchase behavior, and text mining, among others. Nevertheless, with the dramatic increase in data volume, the current approaches prove inefficient when dealing with large input datasets, a large number of different symbols and low minimum supports. In this paper, we propose a new sequential pattern mining algorithm, which follows a pattern-growth scheme to discover sequential patterns. Unlike most pattern growth algorithms, our approach does not build a data structure to represent the input dataset, but instead accesses the required sequences through pseudo-projection databases, achieving better runtime and reducing memory requirements. Our algorithm traverses the search space in a depth-first fashion and only preserves in memory a pattern node linkage and the pseudo-projections required for the branch being explored at the time. Experimental results show that our new approach, the Node Linkage Depth-First Traversal algorithm (NLDFT), has better performance and scalability in comparison with state of the art algorithms. PMID:24933123

  5. Structure and weights optimisation of a modified Elman network emotion classifier using hybrid computational intelligence algorithms: a comparative study

    NASA Astrophysics Data System (ADS)

    Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood

    2015-10-01

    Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.

  6. Fast protein tertiary structure retrieval based on global surface shape similarity.

    PubMed

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  7. Automated detection of hospital outbreaks: A systematic review of methods

    PubMed Central

    Buckeridge, David L.; Lepelletier, Didier

    2017-01-01

    Objectives Several automated algorithms for epidemiological surveillance in hospitals have been proposed. However, the usefulness of these methods to detect nosocomial outbreaks remains unclear. The goal of this review was to describe outbreak detection algorithms that have been tested within hospitals, consider how they were evaluated, and synthesize their results. Methods We developed a search query using keywords associated with hospital outbreak detection and searched the MEDLINE database. To ensure the highest sensitivity, no limitations were initially imposed on publication languages and dates, although we subsequently excluded studies published before 2000. Every study that described a method to detect outbreaks within hospitals was included, without any exclusion based on study design. Additional studies were identified through citations in retrieved studies. Results Twenty-nine studies were included. The detection algorithms were grouped into 5 categories: simple thresholds (n = 6), statistical process control (n = 12), scan statistics (n = 6), traditional statistical models (n = 6), and data mining methods (n = 4). The evaluation of the algorithms was often solely descriptive (n = 15), but more complex epidemiological criteria were also investigated (n = 10). The performance measures varied widely between studies: e.g., the sensitivity of an algorithm in a real world setting could vary between 17 and 100%. Conclusion Even if outbreak detection algorithms are useful complementary tools for traditional surveillance, the heterogeneity in results among published studies does not support quantitative synthesis of their performance. A standardized framework should be followed when evaluating outbreak detection methods to allow comparison of algorithms across studies and synthesis of results. PMID:28441422

  8. Inferring Gene Regulatory Networks by Singular Value Decomposition and Gravitation Field Algorithm

    PubMed Central

    Zheng, Ming; Wu, Jia-nan; Huang, Yan-xin; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms. PMID:23226565

  9. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  10. Stride search: A general algorithm for storm detection in high resolution climate data

    DOE PAGES

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; ...

    2015-09-08

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  11. Optimal Path Planning Program for Autonomous Speed Sprayer in Orchard Using Order-Picking Algorithm

    NASA Astrophysics Data System (ADS)

    Park, T. S.; Park, S. J.; Hwang, K. Y.; Cho, S. I.

    This study was conducted to develop a software program which computes optimal path for autonomous navigation in orchard, especially for speed sprayer. Possibilities of autonomous navigation in orchard were shown by other researches which have minimized distance error between planned path and performed path. But, research of planning an optimal path for speed sprayer in orchard is hardly founded. In this study, a digital map and a database for orchard which contains GPS coordinate information (coordinates of trees and boundary of orchard) and entity information (heights and widths of trees, radius of main stem of trees, disease of trees) was designed. An orderpicking algorithm which has been used for management of warehouse was used to calculate optimum path based on the digital map. Database for digital map was created by using Microsoft Access and graphic interface for database was made by using Microsoft Visual C++ 6.0. It was possible to search and display information about boundary of an orchard, locations of trees, daily plan for scattering chemicals and plan optimal path on different orchard based on digital map, on each circumstance (starting speed sprayer in different location, scattering chemicals for only selected trees).

  12. Annotations of Mexican bullfighting videos for semantic index

    NASA Astrophysics Data System (ADS)

    Montoya Obeso, Abraham; Oropesa Morales, Lester Arturo; Fernando Vázquez, Luis; Cocolán Almeda, Sara Ivonne; Stoian, Andrei; García Vázquez, Mireya Saraí; Zamudio Fuentes, Luis Miguel; Montiel Perez, Jesús Yalja; de la O Torres, Saul; Ramírez Acosta, Alejandro Alvaro

    2015-09-01

    The video annotation is important for web indexing and browsing systems. Indeed, in order to evaluate the performance of video query and mining techniques, databases with concept annotations are required. Therefore, it is necessary generate a database with a semantic indexing that represents the digital content of the Mexican bullfighting atmosphere. This paper proposes a scheme to make complex annotations in a video in the frame of multimedia search engine project. Each video is partitioned using our segmentation algorithm that creates shots of different length and different number of frames. In order to make complex annotations about the video, we use ELAN software. The annotations are done in two steps: First, we take note about the whole content in each shot. Second, we describe the actions as parameters of the camera like direction, position and deepness. As a consequence, we obtain a more complete descriptor of every action. In both cases we use the concepts of the TRECVid 2014 dataset. We also propose new concepts. This methodology allows to generate a database with the necessary information to create descriptors and algorithms capable to detect actions to automatically index and classify new bullfighting multimedia content.

  13. Low Cost, Scalable Proteomics Data Analysis Using Amazon's Cloud Computing Services and Open Source Search Algorithms

    PubMed Central

    Halligan, Brian D.; Geiger, Joey F.; Vallejos, Andrew K.; Greene, Andrew S.; Twigger, Simon N.

    2009-01-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step by step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center website (http://proteomics.mcw.edu/vipdac). PMID:19358578

  14. Low cost, scalable proteomics data analysis using Amazon's cloud computing services and open source search algorithms.

    PubMed

    Halligan, Brian D; Geiger, Joey F; Vallejos, Andrew K; Greene, Andrew S; Twigger, Simon N

    2009-06-01

    One of the major difficulties for many laboratories setting up proteomics programs has been obtaining and maintaining the computational infrastructure required for the analysis of the large flow of proteomics data. We describe a system that combines distributed cloud computing and open source software to allow laboratories to set up scalable virtual proteomics analysis clusters without the investment in computational hardware or software licensing fees. Additionally, the pricing structure of distributed computing providers, such as Amazon Web Services, allows laboratories or even individuals to have large-scale computational resources at their disposal at a very low cost per run. We provide detailed step-by-step instructions on how to implement the virtual proteomics analysis clusters as well as a list of current available preconfigured Amazon machine images containing the OMSSA and X!Tandem search algorithms and sequence databases on the Medical College of Wisconsin Proteomics Center Web site ( http://proteomics.mcw.edu/vipdac ).

  15. A general method for generating bathymetric data for hydrodynamic computer models

    USGS Publications Warehouse

    Burau, J.R.; Cheng, R.T.

    1989-01-01

    To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)

  16. A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.

    PubMed

    Halloran, John T; Rocke, David M

    2018-05-04

    Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .

  17. PANTHER. Trajectory Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, Mark Daniel; Wilson, Andrew T.; Valicka, Christopher G.

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generallymore » be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.« less

  18. Protein Identification Using Top-Down Spectra*

    PubMed Central

    Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon; Tsai, Yihsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.

    2012-01-01

    In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set. PMID:22027200

  19. Earthquake detection through computationally efficient similarity search

    PubMed Central

    Yoon, Clara E.; O’Reilly, Ossian; Bergen, Karianne J.; Beroza, Gregory C.

    2015-01-01

    Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes. PMID:26665176

  20. Automated Construction of Coverage Catalogues of Aster Satellite Image for Urban Areas of the World

    NASA Astrophysics Data System (ADS)

    Miyazaki, H.; Iwao, K.; Shibasaki, R.

    2012-07-01

    We developed an algorithm to determine a combination of satellite images according to observation extent and image quality. The algorithm was for testing necessity for completing coverage of the search extent. The tests excluded unnecessary images with low quality and preserve necessary images with good quality. The search conditions of the satellite images could be extended, indicating the catalogue could be constructed with specified periods required for time series analysis. We applied the method to a database of metadata of ASTER satellite images archived in GEO Grid of National Institute of Advanced Industrial Science and Technology (AIST), Japan. As indexes of populated places with geographical coordinates, we used a database of 3372 populated place of more than 0.1 million populations retrieved from GRUMP Settlement Points, a global gazetteer of cities, which has geographical names of populated places associated with geographical coordinates and population data. From the coordinates of populated places, 3372 extents were generated with radiuses of 30 km, a half of swath of ASTER satellite images. By merging extents overlapping each other, they were assembled into 2214 extents. As a result, we acquired combinations of good quality for 1244 extents, those of low quality for 96 extents, incomplete combinations for 611 extents. Further improvements would be expected by introducing pixel-based cloud assessment and pixel value correction over seasonal variations.

  1. ProtaBank: A repository for protein design and engineering data.

    PubMed

    Wang, Connie Y; Chang, Paul M; Ary, Marie L; Allen, Benjamin D; Chica, Roberto A; Mayo, Stephen L; Olafson, Barry D

    2018-03-25

    We present ProtaBank, a repository for storing, querying, analyzing, and sharing protein design and engineering data in an actively maintained and updated database. ProtaBank provides a format to describe and compare all types of protein mutational data, spanning a wide range of properties and techniques. It features a user-friendly web interface and programming layer that streamlines data deposition and allows for batch input and queries. The database schema design incorporates a standard format for reporting protein sequences and experimental data that facilitates comparison of results across different data sets. A suite of analysis and visualization tools are provided to facilitate discovery, to guide future designs, and to benchmark and train new predictive tools and algorithms. ProtaBank will provide a valuable resource to the protein engineering community by storing and safeguarding newly generated data, allowing for fast searching and identification of relevant data from the existing literature, and exploring correlations between disparate data sets. ProtaBank invites researchers to contribute data to the database to make it accessible for search and analysis. ProtaBank is available at https://protabank.org. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  2. Linguistic measures of chemical diversity and the "keywords" of molecular collections.

    PubMed

    Woźniak, Michał; Wołos, Agnieszka; Modrzyk, Urszula; Górski, Rafał L; Winkowski, Jan; Bajczyk, Michał; Szymkuć, Sara; Grzybowski, Bartosz A; Eder, Maciej

    2018-05-15

    Computerized linguistic analyses have proven of immense value in comparing and searching through large text collections ("corpora"), including those deposited on the Internet - indeed, it would nowadays be hard to imagine browsing the Web without, for instance, search algorithms extracting most appropriate keywords from documents. This paper describes how such corpus-linguistic concepts can be extended to chemistry based on characteristic "chemical words" that span more than traditional functional groups and, instead, look at common structural fragments molecules share. Using these words, it is possible to quantify the diversity of chemical collections/databases in new ways and to define molecular "keywords" by which such collections are best characterized and annotated.

  3. Identifying duplicate content using statistically improbable phrases

    PubMed Central

    Errami, Mounir; Sun, Zhaohui; George, Angela C.; Long, Tara C.; Skinner, Michael A.; Wren, Jonathan D.; Garner, Harold R.

    2010-01-01

    Motivation: Document similarity metrics such as PubMed's ‘Find related articles’ feature, which have been primarily used to identify studies with similar topics, can now also be used to detect duplicated or potentially plagiarized papers within literature reference databases. However, the CPU-intensive nature of document comparison has limited MEDLINE text similarity studies to the comparison of abstracts, which constitute only a small fraction of a publication's total text. Extending searches to include text archived by online search engines would drastically increase comparison ability. For large-scale studies, submitting short phrases encased in direct quotes to search engines for exact matches would be optimal for both individual queries and programmatic interfaces. We have derived a method of analyzing statistically improbable phrases (SIPs) for assistance in identifying duplicate content. Results: When applied to MEDLINE citations, this method substantially improves upon previous algorithms in the detection of duplication citations, yielding a precision and recall of 78.9% (versus 50.3% for eTBLAST) and 99.6% (versus 99.8% for eTBLAST), respectively. Availability: Similar citations identified by this work are freely accessible in the Déjà vu database, under the SIP discovery method category at http://dejavu.vbi.vt.edu/dejavu/ Contact: merrami@collin.edu PMID:20472545

  4. Warfarin Dosing Algorithms Underpredict Dose Requirements in Patients Requiring ≥7 mg Daily: A Systematic Review and Meta-analysis.

    PubMed

    Saffian, S M; Duffull, S B; Wright, Dfb

    2017-08-01

    There is preliminary evidence to suggest that some published warfarin dosing algorithms produce biased maintenance dose predictions in patients who require higher than average doses. We conducted a meta-analysis of warfarin dosing algorithms to determine if there exists a systematic under- or overprediction of dose requirements for patients requiring ≥7 mg/day across published algorithms. Medline and Embase databases were searched up to September 2015. We quantified the proportion of over- and underpredicted doses in patients whose observed maintenance dose was ≥7 mg/day. The meta-analysis included 47 evaluations of 22 different warfarin dosing algorithms from 16 studies. The meta-analysis included data from 1,492 patients who required warfarin doses of ≥7 mg/day. All 22 algorithms were found to underpredict warfarin dosing requirements in patients who required ≥7 mg/day by an average of 2.3 mg/day with a pooled estimate of underpredicted doses of 92.3% (95% confidence interval 90.3-94.1, I 2 = 24%). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  5. Dynamic programming algorithms for biological sequence comparison.

    PubMed

    Pearson, W R; Miller, W

    1992-01-01

    Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.

  6. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  7. Stride search: A general algorithm for storm detection in high-resolution climate data

    DOE PAGES

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.; ...

    2016-04-13

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

  8. Literature searches on Ayurveda: An update.

    PubMed

    Aggithaya, Madhur G; Narahari, Saravu R

    2015-01-01

    The journals that publish on Ayurveda are increasingly indexed by popular medical databases in recent years. However, many Eastern journals are not indexed biomedical journal databases such as PubMed. Literature searches for Ayurveda continue to be challenging due to the nonavailability of active, unbiased dedicated databases for Ayurvedic literature. In 2010, authors identified 46 databases that can be used for systematic search of Ayurvedic papers and theses. This update reviewed our previous recommendation and identified current and relevant databases. To update on Ayurveda literature search and strategy to retrieve maximum publications. Author used psoriasis as an example to search previously listed databases and identify new. The population, intervention, control, and outcome table included keywords related to psoriasis and Ayurvedic terminologies for skin diseases. Current citation update status, search results, and search options of previous databases were assessed. Eight search strategies were developed. Hundred and five journals, both biomedical and Ayurveda, which publish on Ayurveda, were identified. Variability in databases was explored to identify bias in journal citation. Five among 46 databases are now relevant - AYUSH research portal, Annotated Bibliography of Indian Medicine, Digital Helpline for Ayurveda Research Articles (DHARA), PubMed, and Directory of Open Access Journals. Search options in these databases are not uniform, and only PubMed allows complex search strategy. "The Researches in Ayurveda" and "Ayurvedic Research Database" (ARD) are important grey resources for hand searching. About 44/105 (41.5%) journals publishing Ayurvedic studies are not indexed in any database. Only 11/105 (10.4%) exclusive Ayurveda journals are indexed in PubMed. AYUSH research portal and DHARA are two major portals after 2010. It is mandatory to search PubMed and four other databases because all five carry citations from different groups of journals. The hand searching is important to identify Ayurveda publications that are not indexed elsewhere. Availability information of citations in Ayurveda libraries from National Union Catalogue of Scientific Serials in India if regularly updated will improve the efficacy of hand searching. A grey database (ARD) contains unpublished PG/Ph.D. theses. The AYUSH portal, DHARA (funded by Ministry of AYUSH), and ARD should be merged to form single larger database to limit Ayurveda literature searches.

  9. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    PubMed

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://www.biocarian.com . We have developed a search engine to explore RDF databases that can be used by both novice and advanced users.

  10. APADB: a database for alternative polyadenylation and microRNA regulation events

    PubMed Central

    Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M.; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn

    2014-01-01

    Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/ PMID:25052703

  11. Adjacency and Proximity Searching in the Science Citation Index and Google

    DTIC Science & Technology

    2005-01-01

    major database search engines , including commercial S&T database search engines (e.g., Science Citation Index (SCI), Engineering Compendex (EC...PubMed, OVID), Federal agency award database search engines (e.g., NSF, NIH, DOE, EPA, as accessed in Federal R&D Project Summaries), Web search Engines (e.g...searching. Some database search engines allow strict constrained co- occurrence searching as a user option (e.g., OVID, EC), while others do not (e.g., SCI

  12. An algorithm of discovering signatures from DNA databases on a computer cluster.

    PubMed

    Lee, Hsiao Ping; Sheu, Tzu-Fang

    2014-10-05

    Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.

  13. Comet: an open-source MS/MS sequence database search tool.

    PubMed

    Eng, Jimmy K; Jahan, Tahmina A; Hoopmann, Michael R

    2013-01-01

    Proteomics research routinely involves identifying peptides and proteins via MS/MS sequence database search. Thus the database search engine is an integral tool in many proteomics research groups. Here, we introduce the Comet search engine to the existing landscape of commercial and open-source database search tools. Comet is open source, freely available, and based on one of the original sequence database search tools that has been widely used for many years. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Database Search Engines: Paradigms, Challenges and Solutions.

    PubMed

    Verheggen, Kenneth; Martens, Lennart; Berven, Frode S; Barsnes, Harald; Vaudel, Marc

    2016-01-01

    The first step in identifying proteins from mass spectrometry based shotgun proteomics data is to infer peptides from tandem mass spectra, a task generally achieved using database search engines. In this chapter, the basic principles of database search engines are introduced with a focus on open source software, and the use of database search engines is demonstrated using the freely available SearchGUI interface. This chapter also discusses how to tackle general issues related to sequence database searching and shows how to minimize their impact.

  15. Peptide reranking with protein-peptide correspondence and precursor peak intensity information.

    PubMed

    Yang, Chao; He, Zengyou; Yang, Can; Yu, Weichuan

    2012-01-01

    Searching tandem mass spectra against a protein database has been a mainstream method for peptide identification. Improving peptide identification results by ranking true Peptide-Spectrum Matches (PSMs) over their false counterparts leads to the development of various reranking algorithms. In peptide reranking, discriminative information is essential to distinguish true PSMs from false PSMs. Generally, most peptide reranking methods obtain discriminative information directly from database search scores or by training machine learning models. Information in the protein database and MS1 spectra (i.e., single stage MS spectra) is ignored. In this paper, we propose to use information in the protein database and MS1 spectra to rerank peptide identification results. To quantitatively analyze their effects to peptide reranking results, three peptide reranking methods are proposed: PPMRanker, PPIRanker, and MIRanker. PPMRanker only uses Protein-Peptide Map (PPM) information from the protein database, PPIRanker only uses Precursor Peak Intensity (PPI) information, and MIRanker employs both PPM information and PPI information. According to our experiments on a standard protein mixture data set, a human data set and a mouse data set, PPMRanker and MIRanker achieve better peptide reranking results than PetideProphet, PeptideProphet+NSP (number of sibling peptides) and a score regularization method SRPI. The source codes of PPMRanker, PPIRanker, and MIRanker, and all supplementary documents are available at our website: http://bioinformatics.ust.hk/pepreranking/. Alternatively, these documents can also be downloaded from: http://sourceforge.net/projects/pepreranking/.

  16. SIMAP—the database of all-against-all protein sequence similarities and annotations with new interfaces and increased coverage

    PubMed Central

    Arnold, Roland; Goldenberg, Florian; Mewes, Hans-Werner; Rattei, Thomas

    2014-01-01

    The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith–Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads. PMID:24165881

  17. Exploring Site-Specific N-Glycosylation Microheterogeneity of Haptoglobin using Glycopeptide CID Tandem Mass Spectra and Glycan Database Search

    PubMed Central

    Chandler, Kevin Brown; Pompach, Petr; Goldman, Radoslav

    2013-01-01

    Glycosylation is a common protein modification with a significant role in many vital cellular processes and human diseases, making the characterization of protein-attached glycan structures important for understanding cell biology and disease processes. Direct analysis of protein N-glycosylation by tandem mass spectrometry of glycopeptides promises site-specific elucidation of N-glycan microheterogeneity, something which detached N-glycan and de-glycosylated peptide analyses cannot provide. However, successful implementation of direct N-glycopeptide analysis by tandem mass spectrometry remains a challenge. In this work, we consider algorithmic techniques for the analysis of LC-MS/MS data acquired from glycopeptide-enriched fractions of enzymatic digests of purified proteins. We implement a computational strategy which takes advantage of the properties of CID fragmentation spectra of N-glycopeptides, matching the MS/MS spectra to peptide-glycan pairs from protein sequences and glycan structure databases. Significantly, we also propose a novel false-discovery-rate estimation technique to estimate and manage the number of false identifications. We use a human glycoprotein standard, haptoglobin, digested with trypsin and GluC, enriched for glycopeptides using HILIC chromatography, and analyzed by LC-MS/MS to demonstrate our algorithmic strategy and evaluate its performance. Our software, GlycoPeptideSearch (GPS), assigned glycopeptide identifications to 246 of the spectra at false-discovery-rate 5.58%, identifying 42 distinct haptoglobin peptide-glycan pairs at each of the four haptoglobin N-linked glycosylation sites. We further demonstrate the effectiveness of this approach by analyzing plasma-derived haptoglobin, identifying 136 N-linked glycopeptide spectra at false-discovery-rate 0.4%, representing 15 distinct glycopeptides on at least three of the four N-linked glycosylation sites. The software, GlycoPeptideSearch, is available for download from http://edwardslab.bmcb.georgetown.edu/GPS. PMID:23829323

  18. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines

    PubMed Central

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J.; Li, Ming

    2013-01-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables. PMID:22552787

  19. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines.

    PubMed

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J; Li, Ming; Tabb, David L

    2012-09-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables.

  20. searchSCF: Using MongoDB to Enable Richer Searches of Locally Hosted Science Data Repositories

    NASA Astrophysics Data System (ADS)

    Knosp, B.

    2016-12-01

    Science teams today are in the unusual position of almost having too much data available to them. Modern sensors and models are capable of outputting terabytes of data per day, which can make it difficult to find specific subsets of data. The sheer size of files can also make it time consuming to retrieve this big data from national data archive centers. Thus, many science teams choose to store what data they can on their local systems, but they are not always equipped with tools to help them intelligently organize and search their data. In its local data repository, the Aura Microwave Limb Sounder (MLS) science team at NASA's Jet Propulsion Laboratory has collected over 300TB of atmospheric science data from 71 missions/models that aid in validation, algorithm development, and research activities. When the project began, the team developed a MySQL database to aid in data queries, but this database was only designed to keep track of MLS and a few ancillary data sets, leving much of the data uncatalogued. The team has also seen database query time rise over the life of the mission. Even though the MLS science team's data holdings are not the size of a national data center's, team members still need tools to help them discover and utilize the data that they have on-hand. Over the past year, members of the science team have been looking for solutions to (1) store information on all the data sets they have collected in a single database, (2) store more metadata about each data file, (3) develop queries that can find relationships among these disparate data types, and (4) plug any new functions developed around this database into existing analysis, visualization, and web tools, transparently to users. In this presentation, I will discuss the searchSCF package that is currently under development. This package includes a NoSQL database management system (MongoDB) and a set of Python tools that both ingests data into the database and supports user queries. I will also highlight case studies of how this system could be used by the MLS science team, and how it could be implemented by other science teams with local data repositories.

  1. 41. DISCOVERY, SEARCH, AND COMMUNICATION OF TEXTUAL KNOWLEDGE RESOURCES IN DISTRIBUTED SYSTEMS a. Discovering and Utilizing Knowledge Sources for Metasearch Knowledge Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Antonio

    Advanced Natural Language Processing Tools for Web Information Retrieval, Content Analysis, and Synthesis. The goal of this SBIR was to implement and evaluate several advanced Natural Language Processing (NLP) tools and techniques to enhance the precision and relevance of search results by analyzing and augmenting search queries and by helping to organize the search output obtained from heterogeneous databases and web pages containing textual information of interest to DOE and the scientific-technical user communities in general. The SBIR investigated 1) the incorporation of spelling checkers in search applications, 2) identification of significant phrases and concepts using a combination of linguisticmore » and statistical techniques, and 3) enhancement of the query interface and search retrieval results through the use of semantic resources, such as thesauri. A search program with a flexible query interface was developed to search reference databases with the objective of enhancing search results from web queries or queries of specialized search systems such as DOE's Information Bridge. The DOE ETDE/INIS Joint Thesaurus was processed to create a searchable database. Term frequencies and term co-occurrences were used to enhance the web information retrieval by providing algorithmically-derived objective criteria to organize relevant documents into clusters containing significant terms. A thesaurus provides an authoritative overview and classification of a field of knowledge. By organizing the results of a search using the thesaurus terminology, the output is more meaningful than when the results are just organized based on the terms that co-occur in the retrieved documents, some of which may not be significant. An attempt was made to take advantage of the hierarchy provided by broader and narrower terms, as well as other field-specific information in the thesauri. The search program uses linguistic morphological routines to find relevant entries regardless of whether terms are stored in singular or plural form. Implementation of additional inflectional morphology processes for verbs can enhance retrieval further, but this has to be balanced by the possibility of broadening the results too much. In addition to the DOE energy thesaurus, other sources of specialized organized knowledge such as the Medical Subject Headings (MeSH), the Unified Medical Language System (UMLS), and Wikipedia were investigated. The supporting role of the NLP thesaurus search program was enhanced by incorporating spelling aid and a part-of-speech tagger to cope with misspellings in the queries and to determine the grammatical roles of the query words and identify nouns for special processing. To improve precision, multiple modes of searching were implemented including Boolean operators, and field-specific searches. Programs to convert a thesaurus or reference file into searchable support files can be deployed easily, and the resulting files are immediately searchable to produce relevance-ranked results with builtin spelling aid, morphological processing, and advanced search logic. Demonstration systems were built for several databases, including the DOE energy thesaurus.« less

  2. Optimal Fungal Space Searching Algorithms.

    PubMed

    Asenova, Elitsa; Lin, Hsin-Yu; Fu, Eileen; Nicolau, Dan V; Nicolau, Dan V

    2016-10-01

    Previous experiments have shown that fungi use an efficient natural algorithm for searching the space available for their growth in micro-confined networks, e.g., mazes. This natural "master" algorithm, which comprises two "slave" sub-algorithms, i.e., collision-induced branching and directional memory, has been shown to be more efficient than alternatives, with one, or the other, or both sub-algorithms turned off. In contrast, the present contribution compares the performance of the fungal natural algorithm against several standard artificial homologues. It was found that the space-searching fungal algorithm consistently outperforms uninformed algorithms, such as Depth-First-Search (DFS). Furthermore, while the natural algorithm is inferior to informed ones, such as A*, this under-performance does not importantly increase with the increase of the size of the maze. These findings suggest that a systematic effort of harvesting the natural space searching algorithms used by microorganisms is warranted and possibly overdue. These natural algorithms, if efficient, can be reverse-engineered for graph and tree search strategies.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter A.; Roesler, Erika L.; Taylor, Mark A.

    This study discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared: the commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. The Stride Search algorithm is defined independently of the spatial discretization associated with a particular data set. Results from the two algorithms are compared for the application of tropical cyclonemore » detection, and shown to produce similar results for the same set of storm identification criteria. Differences between the two algorithms arise for some storms due to their different definition of search regions in physical space. The physical space associated with each Stride Search region is constant, regardless of data resolution or latitude, and Stride Search is therefore capable of searching all regions of the globe in the same manner. Stride Search's ability to search high latitudes is demonstrated for the case of polar low detection. Wall clock time required for Stride Search is shown to be smaller than a grid point search of the same data, and the relative speed up associated with Stride Search increases as resolution increases.« less

  4. A comparison of accuracy and computational feasibility of two record linkage algorithms in retrieving vital status information from HIV/AIDS patients registered in Brazilian public databases.

    PubMed

    de Paula, Adelzon Assis; Pires, Denise Franqueira; Filho, Pedro Alves; de Lemos, Kátia Regina Valente; Barçante, Eduardo; Pacheco, Antonio Guilherme

    2018-06-01

    While cross-referencing information from people living with HIV/AIDS (PLWHA) to the official mortality database is a critical step in monitoring the HIV/AIDS epidemic in Brazil, the accuracy of the linkage routine may compromise the validity of the final database, yielding to biased epidemiological estimates. We compared the accuracy and the total runtime of two linkage algorithms applied to retrieve vital status information from PLWHA in Brazilian public databases. Nominally identified records from PLWHA were obtained from three distinct government databases. Linkage routines included an algorithm in Python language (PLA) and Reclink software (RlS), a probabilistic software largely utilized in Brazil. Records from PLWHA 1 known to be alive were added to those from patients reported as deceased. Data were then searched into the mortality system. Scenarios where 5% and 50% of patients actually dead were simulated, considering both complete cases and 20% missing maternal names. When complete information was available both algorithms had comparable accuracies. In the scenario of 20% missing maternal names, PLA 2 and RlS 3 had sensitivities of 94.5% and 94.6% (p > 0.5), respectively; after manual reviewing, PLA sensitivity increased to 98.4% (96.6-100.0) exceeding that for RlS (p < 0.01). PLA had higher positive predictive value in 5% death proportion. Manual reviewing was intrinsically required by RlS in up to 14% register for people actually dead, whereas the corresponding proportion ranged from 1.5% to 2% for PLA. The lack of manual inspection did not alter PLA sensitivity when complete information was available. When incomplete data was available PLA sensitivity increased from 94.5% to 98.4%, thus exceeding that presented by RlS (94.6%, p < 0.05). RlS spanned considerably less processing time compared to PLA. Both linkage algorithms presented interchangeable accuracies in retrieving vital status data from PLWHA. RlS had a considerably lesser runtime but intrinsically required manually reviewing a fastidious proportion of the matched registries. On the other hand, PLA spent quite more runtime but spared manual reviewing at no expense of accuracy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  6. The Impact of Online Bibliographic Databases on Teaching and Research in Political Science.

    ERIC Educational Resources Information Center

    Reichel, Mary

    The availability of online bibliographic databases greatly facilitates literature searching in political science. The advantages to searching databases online include combination of concepts, comprehensiveness, multiple database searching, free-text searching, currency, current awareness services, document delivery service, and convenience.…

  7. Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.

    PubMed

    Matthé, Maximilian; Sannolo, Marco; Winiarski, Kristopher; Spitzen-van der Sluijs, Annemarieke; Goedbloed, Daniel; Steinfartz, Sebastian; Stachow, Ulrich

    2017-08-01

    Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.

  8. Efficient blind search for similar-waveform earthquakes in years of continuous seismic data

    NASA Astrophysics Data System (ADS)

    Yoon, C. E.; Bergen, K.; Rong, K.; Elezabi, H.; Bailis, P.; Levis, P.; Beroza, G. C.

    2017-12-01

    Cross-correlating an earthquake waveform template with continuous seismic data has proven to be a sensitive, discriminating detector of small events missing from earthquake catalogs, but a key limitation of this approach is that it requires advance knowledge of the earthquake signals we wish to detect. To overcome this limitation, we can perform a blind search for events with similar waveforms, comparing waveforms from all possible times within the continuous data (Brown et al., 2008). However, the runtime for naive blind search scales quadratically with the duration of continuous data, making it impractical to process years of continuous data. The Fingerprint And Similarity Thresholding (FAST) detection method (Yoon et al., 2015) enables a comprehensive blind search for similar-waveform earthquakes in a fast, scalable manner by adapting data-mining techniques originally developed for audio and image search within massive databases. FAST converts seismic waveforms into compact "fingerprints", which are efficiently organized and searched within a database. In this way, FAST avoids the unnecessary comparison of dissimilar waveforms. To date, the longest duration of continuous data used for event detection with FAST was 3 months at a single station near Guy-Greenbrier, Arkansas, which revealed microearthquakes closely correlated with stages of hydraulic fracturing (Yoon et al., 2017). In this presentation we introduce an optimized, parallel version of the FAST software with improvements to the fingerprinting algorithm and the ability to detect events using continuous data from a network of stations (Bergen et al., 2016). We demonstrate its ability to detect low-magnitude earthquakes within several years of continuous data at locations of interest in California.

  9. Towards de novo identification of metabolites by analyzing tandem mass spectra.

    PubMed

    Böcker, Sebastian; Rasche, Florian

    2008-08-15

    Mass spectrometry is among the most widely used technologies in proteomics and metabolomics. Being a high-throughput method, it produces large amounts of data that necessitates an automated analysis of the spectra. Clearly, database search methods for protein analysis can easily be adopted to analyze metabolite mass spectra. But for metabolites, de novo interpretation of spectra is even more important than for protein data, because metabolite spectra databases cover only a small fraction of naturally occurring metabolites: even the model plant Arabidopsis thaliana has a large number of enzymes whose substrates and products remain unknown. The field of bio-prospection searches biologically diverse areas for metabolites which might serve as pharmaceuticals. De novo identification of metabolite mass spectra requires new concepts and methods since, unlike proteins, metabolites possess a non-linear molecular structure. In this work, we introduce a method for fully automated de novo identification of metabolites from tandem mass spectra. Mass spectrometry data is usually assumed to be insufficient for identification of molecular structures, so we want to estimate the molecular formula of the unknown metabolite, a crucial step for its identification. The method first calculates all molecular formulas that explain the parent peak mass. Then, a graph is build where vertices correspond to molecular formulas of all peaks in the fragmentation mass spectra, whereas edges correspond to hypothetical fragmentation steps. Our algorithm afterwards calculates the maximum scoring subtree of this graph: each peak in the spectra must be scored at most once, so the subtree shall contain only one explanation per peak. Unfortunately, finding this subtree is NP-hard. We suggest three exact algorithms (including one fixed parameter tractable algorithm) as well as two heuristics to solve the problem. Tests on real mass spectra show that the FPT algorithm and the heuristics solve the problem suitably fast and provide excellent results: for all 32 test compounds the correct solution was among the top five suggestions, for 26 compounds the first suggestion of the exact algorithm was correct. http://www.bio.inf.uni-jena.de/tandemms

  10. A Hybrid Search Algorithm for Swarm Robots Searching in an Unknown Environment

    PubMed Central

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency. PMID:25386855

  11. A hybrid search algorithm for swarm robots searching in an unknown environment.

    PubMed

    Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao

    2014-01-01

    This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.

  12. A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding

    NASA Astrophysics Data System (ADS)

    Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae

    2017-12-01

    High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.

  13. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Improved Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.; hide

    2006-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5 -resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%-80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5deg resolution is relatively small (less than 6% at 5 mm day.1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%-35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%-15% at 5 mm day.1, with proportionate reductions in latent heating sampling errors.

  14. Identification of RNA molecules by specific enzyme digestion and mass spectrometry: software for and implementation of RNA mass mapping

    PubMed Central

    Matthiesen, Rune; Kirpekar, Finn

    2009-01-01

    The idea of identifying or characterizing an RNA molecule based on a mass spectrum of specifically generated RNA fragments has been used in various forms for well over a decade. We have developed software—named RRM for ‘RNA mass mapping’—which can search whole prokaryotic genomes or RNA FASTA sequence databases to identify the origin of a given RNA based on a mass spectrum of RNA fragments. As input, the program uses the masses of specific RNase cleavage of the RNA under investigation. RNase T1 digestion is used here as a demonstration of the usability of the method for RNA identification. The concept for identification is that the masses of the digestion products constitute a specific fingerprint, which characterize the given RNA. The search algorithm is based on the same principles as those used in peptide mass fingerprinting, but has here been extended to work for both RNA sequence databases and for genome searches. A simple and powerful probability model for ranking RNA matches is proposed. We demonstrate viability of the entire setup by identifying the DNA template of a series of RNAs of biological and of in vitro transcriptional origin in complete microbial genomes and by identifying authentic 16S ribosomal RNAs in a ‘small ribosomal subunit RNA’ database. Thus, we present a new tool for a rapid identification of unknown RNAs using only a few picomoles of starting material. PMID:19264806

  15. PSI/TM-Coffee: a web server for fast and accurate multiple sequence alignments of regular and transmembrane proteins using homology extension on reduced databases.

    PubMed

    Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming

    2016-07-08

    The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Improved orthologous databases to ease protozoan targets inference.

    PubMed

    Kotowski, Nelson; Jardim, Rodrigo; Dávila, Alberto M R

    2015-09-29

    Homology inference helps on identifying similarities, as well as differences among organisms, which provides a better insight on how closely related one might be to another. In addition, comparative genomics pipelines are widely adopted tools designed using different bioinformatics applications and algorithms. In this article, we propose a methodology to build improved orthologous databases with the potential to aid on protozoan target identification, one of the many tasks which benefit from comparative genomics tools. Our analyses are based on OrthoSearch, a comparative genomics pipeline originally designed to infer orthologs through protein-profile comparison, supported by an HMM, reciprocal best hits based approach. Our methodology allows OrthoSearch to confront two orthologous databases and to generate an improved new one. Such can be later used to infer potential protozoan targets through a similarity analysis against the human genome. The protein sequences of Cryptosporidium hominis, Entamoeba histolytica and Leishmania infantum genomes were comparatively analyzed against three orthologous databases: (i) EggNOG KOG, (ii) ProtozoaDB and (iii) Kegg Orthology (KO). That allowed us to create two new orthologous databases, "KO + EggNOG KOG" and "KO + EggNOG KOG + ProtozoaDB", with 16,938 and 27,701 orthologous groups, respectively. Such new orthologous databases were used for a regular OrthoSearch run. By confronting "KO + EggNOG KOG" and "KO + EggNOG KOG + ProtozoaDB" databases and protozoan species we were able to detect the following total of orthologous groups and coverage (relation between the inferred orthologous groups and the species total number of proteins): Cryptosporidium hominis: 1,821 (11 %) and 3,254 (12 %); Entamoeba histolytica: 2,245 (13 %) and 5,305 (19 %); Leishmania infantum: 2,702 (16 %) and 4,760 (17 %). Using our HMM-based methodology and the largest created orthologous database, it was possible to infer 13 orthologous groups which represent potential protozoan targets; these were found because of our distant homology approach. We also provide the number of species-specific, pair-to-pair and core groups from such analyses, depicted in Venn diagrams. The orthologous databases generated by our HMM-based methodology provide a broader dataset, with larger amounts of orthologous groups when compared to the original databases used as input. Those may be used for several homology inference analyses, annotation tasks and protozoan targets identification.

  17. High-Reproducibility and High-Accuracy Method for Automated Topic Classification

    NASA Astrophysics Data System (ADS)

    Lancichinetti, Andrea; Sirer, M. Irmak; Wang, Jane X.; Acuna, Daniel; Körding, Konrad; Amaral, Luís A. Nunes

    2015-01-01

    Much of human knowledge sits in large databases of unstructured text. Leveraging this knowledge requires algorithms that extract and record metadata on unstructured text documents. Assigning topics to documents will enable intelligent searching, statistical characterization, and meaningful classification. Latent Dirichlet allocation (LDA) is the state of the art in topic modeling. Here, we perform a systematic theoretical and numerical analysis that demonstrates that current optimization techniques for LDA often yield results that are not accurate in inferring the most suitable model parameters. Adapting approaches from community detection in networks, we propose a new algorithm that displays high reproducibility and high accuracy and also has high computational efficiency. We apply it to a large set of documents in the English Wikipedia and reveal its hierarchical structure.

  18. Crystal Structure Predictions Using Adaptive Genetic Algorithm and Motif Search methods

    NASA Astrophysics Data System (ADS)

    Ho, K. M.; Wang, C. Z.; Zhao, X.; Wu, S.; Lyu, X.; Zhu, Z.; Nguyen, M. C.; Umemoto, K.; Wentzcovitch, R. M. M.

    2017-12-01

    Material informatics is a new initiative which has attracted a lot of attention in recent scientific research. The basic strategy is to construct comprehensive data sets and use machine learning to solve a wide variety of problems in material design and discovery. In pursuit of this goal, a key element is the quality and completeness of the databases used. Recent advance in the development of crystal structure prediction algorithms has made it a complementary and more efficient approach to explore the structure/phase space in materials using computers. In this talk, we discuss the importance of the structural motifs and motif-networks in crystal structure predictions. Correspondingly, powerful methods are developed to improve the sampling of the low-energy structure landscape.

  19. Automatically finding relevant citations for clinical guideline development.

    PubMed

    Bui, Duy Duc An; Jonnalagadda, Siddhartha; Del Fiol, Guilherme

    2015-10-01

    Literature database search is a crucial step in the development of clinical practice guidelines and systematic reviews. In the age of information technology, the process of literature search is still conducted manually, therefore it is costly, slow and subject to human errors. In this research, we sought to improve the traditional search approach using innovative query expansion and citation ranking approaches. We developed a citation retrieval system composed of query expansion and citation ranking methods. The methods are unsupervised and easily integrated over the PubMed search engine. To validate the system, we developed a gold standard consisting of citations that were systematically searched and screened to support the development of cardiovascular clinical practice guidelines. The expansion and ranking methods were evaluated separately and compared with baseline approaches. Compared with the baseline PubMed expansion, the query expansion algorithm improved recall (80.2% vs. 51.5%) with small loss on precision (0.4% vs. 0.6%). The algorithm could find all citations used to support a larger number of guideline recommendations than the baseline approach (64.5% vs. 37.2%, p<0.001). In addition, the citation ranking approach performed better than PubMed's "most recent" ranking (average precision +6.5%, recall@k +21.1%, p<0.001), PubMed's rank by "relevance" (average precision +6.1%, recall@k +14.8%, p<0.001), and the machine learning classifier that identifies scientifically sound studies from MEDLINE citations (average precision +4.9%, recall@k +4.2%, p<0.001). Our unsupervised query expansion and ranking techniques are more flexible and effective than PubMed's default search engine behavior and the machine learning classifier. Automated citation finding is promising to augment the traditional literature search. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Automated search of control points in surface-based morphometry.

    PubMed

    Canna, Antonietta; Russo, Andrea G; Ponticorvo, Sara; Manara, Renzo; Pepino, Alessandro; Sansone, Mario; Di Salle, Francesco; Esposito, Fabrizio

    2018-04-16

    Cortical surface-based morphometry is based on a semi-automated analysis of structural MRI images. In FreeSurfer, a widespread tool for surface-based analyses, a visual check of gray-white matter borders is followed by the manual placement of control points to drive the topological correction (editing) of segmented data. A novel algorithm combining radial sampling and machine learning is presented for the automated control point search (ACPS). Four data sets with 3 T MRI structural images were used for ACPS validation, including raw data acquired twice in 36 healthy subjects and both raw and FreeSurfer preprocessed data of 125 healthy subjects from public databases. The unedited data from a subgroup of subjects were submitted to manual control point search and editing. The ACPS algorithm was trained on manual control points and tested on new (unseen) unedited data. Cortical thickness (CT) and fractal dimensionality (FD) were estimated in three data sets by reconstructing surfaces from both unedited and edited data, and the effects of editing were compared between manual and automated editing and versus no editing. The ACPS-based editing improved the surface reconstructions similarly to manual editing. Compared to no editing, ACPS-based and manual editing significantly reduced CT and FD in consistent regions across different data sets. Despite the extra processing of control point driven reconstructions, CT and FD estimates were highly reproducible in almost all cortical regions, albeit some problematic regions (e.g. entorhinal cortex) may benefit from different editing. The use of control points improves the surface reconstruction and the ACPS algorithm can automate their search reducing the burden of manual editing. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Reprocessing Microflare Data

    NASA Technical Reports Server (NTRS)

    Ryan, James M.

    1999-01-01

    The report concerns work on detecting and cataloging solar microflares using an automated. An accompanying figure represents the solar microflare distribution during the period of April 1991 to November 1992, the height of solar activity after the launch of CGRO. It also shows the distribution extending below the distribution obtained at GSFC by manual means. We have implemented significant refinements in the search algorithm. The algorithm in its simplest form searches for transient events and based upon the distribution of the signal among the different BATSE detectors, we can assign it to be of solar origin if the signal distribution conforms to what one expects from a burst or transient from that direction. One of the major problems in an earlier effort was to search for microflares and large flares simultaneously. The requirement for a dynamic range of almost 10(exp 4) resulted in ambiguous identifications at the low side of the distribution. We have since restricted the search to events with peak count rates under 2000/s. Larger events are easily identified in the manual search, so we have chosen not to duplicate that work. The second problem was that missing counts existed below channel 0 in the BATSE Large Area Detector (LAD) data. These have been recovered and are now included in the search process. This provides data below 20 keV, and as we get closer to the thermal part of the spectrum, it provides greater sensitivity. The third problem was that too many BATSE detectors were used in the search. Detectors with pointing directions far from the Sun, although detecting the event, had poorly known responses. Detectors greater than approximately 60 degrees off the Sun are no longer included in the search process. By reducing the systematic errors with the large off-axis detectors we can conduct more rigorous statistical tests of a candidate event to ascertain whether it originated from the solar direction. We have reprocessed the period in the early mission that covers solar maximum and constructed the microflare distribution shown in the figure. The results of the automated search start to deviate from the manual search results below about 1000/s. Not only do we now have this distribution but we have a database of solar microflares that was used to construct the distribution. This database contains the signal at higher energy channels as well as that in channel zero (and below). From this one can, using software at GSFC, construct a photon spectrum for some of the larger microflares. It can also be used in other solar studies, especially those that correlate the X-ray flux with emission at other wavelengths. With some additional effort we hope to integrate this database into the corresponding one residing at the Solar Data Analysis Center at GSFC. The entire CGRO mission's data can now be reprocessed to obtain the microflare distribution at all phases of the solar cycle. This work is in progress. The results of this work will be presented in forthcoming scientific workshops and conferences.

  2. Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.

    PubMed

    Lin, Lanny; Goodrich, Michael A

    2014-12-01

    During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.

  3. Literature searches on Ayurveda: An update

    PubMed Central

    Aggithaya, Madhur G.; Narahari, Saravu R.

    2015-01-01

    Introduction: The journals that publish on Ayurveda are increasingly indexed by popular medical databases in recent years. However, many Eastern journals are not indexed biomedical journal databases such as PubMed. Literature searches for Ayurveda continue to be challenging due to the nonavailability of active, unbiased dedicated databases for Ayurvedic literature. In 2010, authors identified 46 databases that can be used for systematic search of Ayurvedic papers and theses. This update reviewed our previous recommendation and identified current and relevant databases. Aims: To update on Ayurveda literature search and strategy to retrieve maximum publications. Methods: Author used psoriasis as an example to search previously listed databases and identify new. The population, intervention, control, and outcome table included keywords related to psoriasis and Ayurvedic terminologies for skin diseases. Current citation update status, search results, and search options of previous databases were assessed. Eight search strategies were developed. Hundred and five journals, both biomedical and Ayurveda, which publish on Ayurveda, were identified. Variability in databases was explored to identify bias in journal citation. Results: Five among 46 databases are now relevant – AYUSH research portal, Annotated Bibliography of Indian Medicine, Digital Helpline for Ayurveda Research Articles (DHARA), PubMed, and Directory of Open Access Journals. Search options in these databases are not uniform, and only PubMed allows complex search strategy. “The Researches in Ayurveda” and “Ayurvedic Research Database” (ARD) are important grey resources for hand searching. About 44/105 (41.5%) journals publishing Ayurvedic studies are not indexed in any database. Only 11/105 (10.4%) exclusive Ayurveda journals are indexed in PubMed. Conclusion: AYUSH research portal and DHARA are two major portals after 2010. It is mandatory to search PubMed and four other databases because all five carry citations from different groups of journals. The hand searching is important to identify Ayurveda publications that are not indexed elsewhere. Availability information of citations in Ayurveda libraries from National Union Catalogue of Scientific Serials in India if regularly updated will improve the efficacy of hand searching. A grey database (ARD) contains unpublished PG/Ph.D. theses. The AYUSH portal, DHARA (funded by Ministry of AYUSH), and ARD should be merged to form single larger database to limit Ayurveda literature searches. PMID:27313409

  4. Brute-Force Approach for Mass Spectrometry-Based Variant Peptide Identification in Proteogenomics without Personalized Genomic Data

    NASA Astrophysics Data System (ADS)

    Ivanov, Mark V.; Lobas, Anna A.; Levitsky, Lev I.; Moshkovskii, Sergei A.; Gorshkov, Mikhail V.

    2018-02-01

    In a proteogenomic approach based on tandem mass spectrometry analysis of proteolytic peptide mixtures, customized exome or RNA-seq databases are employed for identifying protein sequence variants. However, the problem of variant peptide identification without personalized genomic data is important for a variety of applications. Following the recent proposal by Chick et al. (Nat. Biotechnol. 33, 743-749, 2015) on the feasibility of such variant peptide search, we evaluated two available approaches based on the previously suggested "open" search and the "brute-force" strategy. To improve the efficiency of these approaches, we propose an algorithm for exclusion of false variant identifications from the search results involving analysis of modifications mimicking single amino acid substitutions. Also, we propose a de novo based scoring scheme for assessment of identified point mutations. In the scheme, the search engine analyzes y-type fragment ions in MS/MS spectra to confirm the location of the mutation in the variant peptide sequence.

  5. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  6. SNPdbe: constructing an nsSNP functional impacts database.

    PubMed

    Schaefer, Christian; Meier, Alice; Rost, Burkhard; Bromberg, Yana

    2012-02-15

    Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. http://www.rostlab.org/services/snpdbe.

  7. Are Bibliographic Management Software Search Interfaces Reliable?: A Comparison between Search Results Obtained Using Database Interfaces and the EndNote Online Search Function

    ERIC Educational Resources Information Center

    Fitzgibbons, Megan; Meert, Deborah

    2010-01-01

    The use of bibliographic management software and its internal search interfaces is now pervasive among researchers. This study compares the results between searches conducted in academic databases' search interfaces versus the EndNote search interface. The results show mixed search reliability, depending on the database and type of search…

  8. Ascertainment of acute liver injury in two European primary care databases.

    PubMed

    Ruigómez, A; Brauer, R; Rodríguez, L A García; Huerta, C; Requena, G; Gil, M; de Abajo, Francisco; Downey, G; Bate, A; Tepie, M Feudjo; de Groot, M; Schlienger, R; Reynolds, R; Klungel, O

    2014-10-01

    The purpose of this study was to ascertain acute liver injury (ALI) in primary care databases using different computer algorithms. The aim of this investigation was to study and compare the incidence of ALI in different primary care databases and using different definitions of ALI. The Clinical Practice Research Datalink (CPRD) in UK and the Spanish "Base de datos para la Investigación Farmacoepidemiológica en Atención Primaria" (BIFAP) were used. Both are primary care databases from which we selected individuals of all ages registered between January 2004 and December 2009. We developed two case definitions of idiopathic ALI using computer algorithms: (i) restrictive definition (definite cases) and (ii) broad definition (definite and probable cases). Patients presenting prior liver conditions were excluded. Manual review of potential cases was performed to confirm diagnosis, in a sample in CPRD (21%) and all potential cases in BIFAP. Incidence rates of ALI by age, sex and calendar year were calculated. In BIFAP, all cases considered definite after manual review had been detected with the computer algorithm as potential cases, and none came from the non-cases group. The restrictive definition of ALI had a low sensitivity but a very high specificity (95% in BIFAP) and showed higher rates of agreement between computer search and manual review compared to the broad definition. Higher incidence rates of definite ALI in 2008 were observed in BIFAP (3.01 (95% confidence interval (CI) 2.13-4.25) per 100,000 person-years than CPRD (1.35 (95% CI 1.03-1.78)). This study shows that it is feasible to identify ALI cases if restrictive selection criteria are used and the possibility to review additional information to rule out differential diagnoses. Our results confirm that idiopathic ALI is a very rare disease in the general population. Finally, the construction of a standard definition with predefined criteria facilitates the timely comparison across databases.

  9. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection

    PubMed Central

    Bhaumik, Basabi

    2016-01-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm2. The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system. PMID:27284458

  10. An Energy efficient application specific integrated circuit for electrocardiogram feature detection and its potential for ambulatory cardiovascular disease detection.

    PubMed

    Jain, Sanjeev Kumar; Bhaumik, Basabi

    2016-03-01

    A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.

  11. Search Parameter Optimization for Discrete, Bayesian, and Continuous Search Algorithms

    DTIC Science & Technology

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CONTINUOUS SEARCH ALGORITHMS by...to 09-22-2017 4. TITLE AND SUBTITLE SEARCH PARAMETER OPTIMIZATION FOR DISCRETE , BAYESIAN, AND CON- TINUOUS SEARCH ALGORITHMS 5. FUNDING NUMBERS 6...simple search and rescue acts to prosecuting aerial/surface/submersible targets on mission. This research looks at varying the known discrete and

  12. Google Scholar is not enough to be used alone for systematic reviews.

    PubMed

    Giustini, Dean; Boulos, Maged N Kamel

    2013-01-01

    Google Scholar (GS) has been noted for its ability to search broadly for important references in the literature. Gehanno et al. recently examined GS in their study: 'Is Google scholar enough to be used alone for systematic reviews?' In this paper, we revisit this important question, and some of Gehanno et al.'s other findings in evaluating the academic search engine. The authors searched for a recent systematic review (SR) of comparable size to run search tests similar to those in Gehanno et al. We selected Chou et al. (2013) contacting the authors for a list of publications they found in their SR on social media in health. We queried GS for each of those 506 titles (in quotes "), one by one. When GS failed to retrieve a paper, or produced too many results, we used the allintitle: command to find papers with the same title. Google Scholar produced records for ~95% of the papers cited by Chou et al. (n=476/506). A few of the 30 papers that were not in GS were later retrieved via PubMed and even regular Google Search. But due to its different structure, we could not run searches in GS that were originally performed by Chou et al. in PubMed, Web of Science, Scopus and PsycINFO®. Identifying 506 papers in GS was an inefficient process, especially for papers using similar search terms. Has Google Scholar improved enough to be used alone in searching for systematic reviews? No. GS' constantly-changing content, algorithms and database structure make it a poor choice for systematic reviews. Looking for papers when you know their titles is a far different issue from discovering them initially. Further research is needed to determine when and how (and for what purposes) GS can be used alone. Google should provide details about GS' database coverage and improve its interface (e.g., with semantic search filters, stored searching, etc.). Perhaps then it will be an appropriate choice for systematic reviews.

  13. Demonstration of two-qubit algorithms with a superconducting quantum processor.

    PubMed

    DiCarlo, L; Chow, J M; Gambetta, J M; Bishop, Lev S; Johnson, B R; Schuster, D I; Majer, J; Blais, A; Frunzio, L; Girvin, S M; Schoelkopf, R J

    2009-07-09

    Quantum computers, which harness the superposition and entanglement of physical states, could outperform their classical counterparts in solving problems with technological impact-such as factoring large numbers and searching databases. A quantum processor executes algorithms by applying a programmable sequence of gates to an initialized register of qubits, which coherently evolves into a final state containing the result of the computation. Building a quantum processor is challenging because of the need to meet simultaneously requirements that are in conflict: state preparation, long coherence times, universal gate operations and qubit readout. Processors based on a few qubits have been demonstrated using nuclear magnetic resonance, cold ion trap and optical systems, but a solid-state realization has remained an outstanding challenge. Here we demonstrate a two-qubit superconducting processor and the implementation of the Grover search and Deutsch-Jozsa quantum algorithms. We use a two-qubit interaction, tunable in strength by two orders of magnitude on nanosecond timescales, which is mediated by a cavity bus in a circuit quantum electrodynamics architecture. This interaction allows the generation of highly entangled states with concurrence up to 94 per cent. Although this processor constitutes an important step in quantum computing with integrated circuits, continuing efforts to increase qubit coherence times, gate performance and register size will be required to fulfil the promise of a scalable technology.

  14. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    PubMed

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  15. Analysis of human serum phosphopeptidome by a focused database searching strategy.

    PubMed

    Zhu, Jun; Wang, Fangjun; Cheng, Kai; Song, Chunxia; Qin, Hongqiang; Hu, Lianghai; Figeys, Daniel; Ye, Mingliang; Zou, Hanfa

    2013-01-14

    As human serum is an important source for early diagnosis of many serious diseases, analysis of serum proteome and peptidome has been extensively performed. However, the serum phosphopeptidome was less explored probably because the effective method for database searching is lacking. Conventional database searching strategy always uses the whole proteome database, which is very time-consuming for phosphopeptidome search due to the huge searching space resulted from the high redundancy of the database and the setting of dynamic modifications during searching. In this work, a focused database searching strategy using an in-house collected human serum pro-peptidome target/decoy database (HuSPep) was established. It was found that the searching time was significantly decreased without compromising the identification sensitivity. By combining size-selective Ti (IV)-MCM-41 enrichment, RP-RP off-line separation, and complementary CID and ETD fragmentation with the new searching strategy, 143 unique endogenous phosphopeptides and 133 phosphorylation sites (109 novel sites) were identified from human serum with high reliability. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. An interactive system for computer-aided diagnosis of breast masses.

    PubMed

    Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin

    2012-10-01

    Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.

  17. Focusing attention on objects of interest using multiple matched filters.

    PubMed

    Stough, T M; Brodley, C E

    2001-01-01

    In order to be of use to scientists, large image databases need to be analyzed to create a catalog of the objects of interest. One approach is to apply a multiple tiered search algorithm that uses reduction techniques of increasing computational complexity to select the desired objects from the database. The first tier of this type of algorithm, often called a focus of attention (FOA) algorithm, selects candidate regions from the image data and passes them to the next tier of the algorithm. In this paper we present a new approach to FOA that employs multiple matched filters (MMF), one for each object prototype, to detect the regions of interest. The MMFs are formed using k-means clustering on a set of image patches identified by domain experts as positive examples of objects of interest. An innovation of the approach is to radically reduce the dimensionality of the feature space, used by the k-means algorithm, by taking block averages (spoiling) the sample image patches. The process of spoiling is analyzed and its applicability to other domains is discussed. The combination of the output of the MMFs is achieved through the projection of the detections back into an empty image and then thresholding. This research was motivated by the need to detect small volcanos in the Magellan probe data from Venus. An empirical evaluation of the approach illustrates that a combination of the MMF plus the average filter results in a higher likelihood of 100% detection of the objects of interest at a lower false positive rate than a single matched filter alone.

  18. Defining asthma and assessing asthma outcomes using electronic health record data: a systematic scoping review.

    PubMed

    Al Sallakh, Mohammad A; Vasileiou, Eleftheria; Rodgers, Sarah E; Lyons, Ronan A; Sheikh, Aziz; Davies, Gwyneth A

    2017-06-01

    There is currently no consensus on approaches to defining asthma or assessing asthma outcomes using electronic health record-derived data. We explored these approaches in the recent literature and examined the clarity of reporting.We systematically searched for asthma-related articles published between January 1, 2014 and December 31, 2015, extracted the algorithms used to identify asthma patients and assess severity, control and exacerbations, and examined how the validity of these outcomes was justified.From 113 eligible articles, we found significant heterogeneity in the algorithms used to define asthma (n=66 different algorithms), severity (n=18), control (n=9) and exacerbations (n=24). For the majority of algorithms (n=106), validity was not justified. In the remaining cases, approaches ranged from using algorithms validated in the same databases to using nonvalidated algorithms that were based on clinical judgement or clinical guidelines. The implementation of these algorithms was suboptimally described overall.Although electronic health record-derived data are now widely used to study asthma, the approaches being used are significantly varied and are often underdescribed, rendering it difficult to assess the validity of studies and compare their findings. Given the substantial growth in this body of literature, it is crucial that scientific consensus is reached on the underlying definitions and algorithms. Copyright ©ERS 2017.

  19. General Quantum Meet-in-the-Middle Search Algorithm Based on Target Solution of Fixed Weight

    NASA Astrophysics Data System (ADS)

    Fu, Xiang-Qun; Bao, Wan-Su; Wang, Xiang; Shi, Jian-Hong

    2016-10-01

    Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is \\sumj = 0d {(O(\\sqrt {Cn - k + 1d - j }) + O(C_kj log C_k^j))} with Σd i =0 Ck i memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm. Supported by the National Basic Research Program of China under Grant No. 2013CB338002 and the National Natural Science Foundation of China under Grant No. 61502526

  20. Oral disease-modifying therapies for multiple sclerosis in the Middle Eastern and North African (MENA) region: an overview.

    PubMed

    Deleu, Dirk; Mesraoua, Boulenouar; Canibaño, Beatriz; Melikyan, Gayane; Al Hail, Hassan; El-Sheikh, Lubna; Ali, Musab; Al Hussein, Hassan; Ibrahim, Faiza; Hanssens, Yolande

    2018-06-18

    The introduction of new disease-modifying therapies (DMTs) for remitting-relapsing multiple sclerosis (RRMS) has considerably transformed the landscape of therapeutic opportunities for this chronic disabling disease. Unlike injectable drugs, oral DMTs promote patient satisfaction and increase therapeutic adherence. This article reviews the salient features about the mode of action, efficacy, safety, and tolerability profile of approved oral DMTs in RRMS, and reviews their place in clinical algorithms in the Middle East and North Africa (MENA) region. A systematic review was conducted using a comprehensive search of MEDLINE, PubMed, Cochrane Database of Systematic Reviews (period January 1, 1995-January 31, 2018). Additional searches of the American Academy of Neurology and European Committee for Treatment and Research in Multiple Sclerosis abstracts from 2012-2017 were performed, in addition to searches of the Food and Drug Administration and European Medicines Agency websites, to obtain relevant safety information on these DMTs. Four oral DMTs: fingolimod, teriflunomide, dimethyl fumarate, and cladribine have been approved by the regulatory agencies. Based on the number needed to treat (NNT), the potential role of these DMTs in the management of active and highly active or rapidly evolving RRMS is assessed. Finally, the place of the oral DMTs in clinical algorithms in the MENA region is reviewed.

  1. Evaluating the effect of database inflation in proteogenomic search on sensitive and reliable peptide identification.

    PubMed

    Li, Honglan; Joh, Yoon Sung; Kim, Hyunwoo; Paek, Eunok; Lee, Sang-Won; Hwang, Kyu-Baek

    2016-12-22

    Proteogenomics is a promising approach for various tasks ranging from gene annotation to cancer research. Databases for proteogenomic searches are often constructed by adding peptide sequences inferred from genomic or transcriptomic evidence to reference protein sequences. Such inflation of databases has potential of identifying novel peptides. However, it also raises concerns on sensitive and reliable peptide identification. Spurious peptides included in target databases may result in underestimated false discovery rate (FDR). On the other hand, inflation of decoy databases could decrease the sensitivity of peptide identification due to the increased number of high-scoring random hits. Although several studies have addressed these issues, widely applicable guidelines for sensitive and reliable proteogenomic search have hardly been available. To systematically evaluate the effect of database inflation in proteogenomic searches, we constructed a variety of real and simulated proteogenomic databases for yeast and human tandem mass spectrometry (MS/MS) data, respectively. Against these databases, we tested two popular database search tools with various approaches to search result validation: the target-decoy search strategy (with and without a refined scoring-metric) and a mixture model-based method. The effect of separate filtering of known and novel peptides was also examined. The results from real and simulated proteogenomic searches confirmed that separate filtering increases the sensitivity and reliability in proteogenomic search. However, no one method consistently identified the largest (or the smallest) number of novel peptides from real proteogenomic searches. We propose to use a set of search result validation methods with separate filtering, for sensitive and reliable identification of peptides in proteogenomic search.

  2. Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization

    PubMed Central

    Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di

    2015-01-01

    In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164

  3. Q-Learning-Based Adjustable Fixed-Phase Quantum Grover Search Algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Shi, Wensha; Wang, Yijun; Hu, Jiankun

    2017-02-01

    We demonstrate that the rotation phase can be suitably chosen to increase the efficiency of the phase-based quantum search algorithm, leading to a dynamic balance between iterations and success probabilities of the fixed-phase quantum Grover search algorithm with Q-learning for a given number of solutions. In this search algorithm, the proposed Q-learning algorithm, which is a model-free reinforcement learning strategy in essence, is used for performing a matching algorithm based on the fraction of marked items λ and the rotation phase α. After establishing the policy function α = π(λ), we complete the fixed-phase Grover algorithm, where the phase parameter is selected via the learned policy. Simulation results show that the Q-learning-based Grover search algorithm (QLGA) enables fewer iterations and gives birth to higher success probabilities. Compared with the conventional Grover algorithms, it avoids the optimal local situations, thereby enabling success probabilities to approach one.

  4. ATtRACT-a database of RNA-binding proteins and associated motifs.

    PubMed

    Giudice, Girolamo; Sánchez-Cabo, Fátima; Torroja, Carlos; Lara-Pezzi, Enrique

    2016-01-01

    RNA-binding proteins (RBPs) play a crucial role in key cellular processes, including RNA transport, splicing, polyadenylation and stability. Understanding the interaction between RBPs and RNA is key to improve our knowledge of RNA processing, localization and regulation in a global manner. Despite advances in recent years, a unified non-redundant resource that includes information on experimentally validated motifs, RBPs and integrated tools to exploit this information is lacking. Here, we developed a database named ATtRACT (available athttp://attract.cnic.es) that compiles information on 370 RBPs and 1583 RBP consensus binding motifs, 192 of which are not present in any other database. To populate ATtRACT we (i) extracted and hand-curated experimentally validated data from CISBP-RNA, SpliceAid-F, RBPDB databases, (ii) integrated and updated the unavailable ASD database and (iii) extracted information from Protein-RNA complexes present in Protein Data Bank database through computational analyses. ATtRACT provides also efficient algorithms to search a specific motif and scan one or more RNA sequences at a time. It also allows discoveringde novomotifs enriched in a set of related sequences and compare them with the motifs included in the database.Database URL:http:// attract. cnic. es. © The Author(s) 2016. Published by Oxford University Press.

  5. Graph Databases for Large-Scale Healthcare Systems: A Framework for Efficient Data Management and Data Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yubin; Shankar, Mallikarjun; Park, Byung H.

    Designing a database system for both efficient data management and data services has been one of the enduring challenges in the healthcare domain. In many healthcare systems, data services and data management are often viewed as two orthogonal tasks; data services refer to retrieval and analytic queries such as search, joins, statistical data extraction, and simple data mining algorithms, while data management refers to building error-tolerant and non-redundant database systems. The gap between service and management has resulted in rigid database systems and schemas that do not support effective analytics. We compose a rich graph structure from an abstracted healthcaremore » RDBMS to illustrate how we can fill this gap in practice. We show how a healthcare graph can be automatically constructed from a normalized relational database using the proposed 3NF Equivalent Graph (3EG) transformation.We discuss a set of real world graph queries such as finding self-referrals, shared providers, and collaborative filtering, and evaluate their performance over a relational database and its 3EG-transformed graph. Experimental results show that the graph representation serves as multiple de-normalized tables, thus reducing complexity in a database and enhancing data accessibility of users. Based on this finding, we propose an ensemble framework of databases for healthcare applications.« less

  6. FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.

    PubMed

    Shapiro, Jessica; Brutlag, Douglas

    2004-07-01

    The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.

  7. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert M.

    2013-01-01

    A new regression model search algorithm was developed that may be applied to both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The algorithm is a simplified version of a more complex algorithm that was originally developed for the NASA Ames Balance Calibration Laboratory. The new algorithm performs regression model term reduction to prevent overfitting of data. It has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a regression model search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression model. Therefore, the simplified algorithm is not intended to replace the original algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new search algorithm.

  8. Heterogeneous Ensemble Combination Search Using Genetic Algorithm for Class Imbalanced Data Classification.

    PubMed

    Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo

    2016-01-01

    Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble's output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) - k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer's disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases.

  9. Heterogeneous Ensemble Combination Search Using Genetic Algorithm for Class Imbalanced Data Classification

    PubMed Central

    Haque, Mohammad Nazmul; Noman, Nasimul; Berretta, Regina; Moscato, Pablo

    2016-01-01

    Classification of datasets with imbalanced sample distributions has always been a challenge. In general, a popular approach for enhancing classification performance is the construction of an ensemble of classifiers. However, the performance of an ensemble is dependent on the choice of constituent base classifiers. Therefore, we propose a genetic algorithm-based search method for finding the optimum combination from a pool of base classifiers to form a heterogeneous ensemble. The algorithm, called GA-EoC, utilises 10 fold-cross validation on training data for evaluating the quality of each candidate ensembles. In order to combine the base classifiers decision into ensemble’s output, we used the simple and widely used majority voting approach. The proposed algorithm, along with the random sub-sampling approach to balance the class distribution, has been used for classifying class-imbalanced datasets. Additionally, if a feature set was not available, we used the (α, β) − k Feature Set method to select a better subset of features for classification. We have tested GA-EoC with three benchmarking datasets from the UCI-Machine Learning repository, one Alzheimer’s disease dataset and a subset of the PubFig database of Columbia University. In general, the performance of the proposed method on the chosen datasets is robust and better than that of the constituent base classifiers and many other well-known ensembles. Based on our empirical study we claim that a genetic algorithm is a superior and reliable approach to heterogeneous ensemble construction and we expect that the proposed GA-EoC would perform consistently in other cases. PMID:26764911

  10. Pharmit: interactive exploration of chemical space.

    PubMed

    Sunseri, Jocelyn; Koes, David Ryan

    2016-07-08

    Pharmit (http://pharmit.csb.pitt.edu) provides an online, interactive environment for the virtual screening of large compound databases using pharmacophores, molecular shape and energy minimization. Users can import, create and edit virtual screening queries in an interactive browser-based interface. Queries are specified in terms of a pharmacophore, a spatial arrangement of the essential features of an interaction, and molecular shape. Search results can be further ranked and filtered using energy minimization. In addition to a number of pre-built databases of popular compound libraries, users may submit their own compound libraries for screening. Pharmit uses state-of-the-art sub-linear algorithms to provide interactive screening of millions of compounds. Queries typically take a few seconds to a few minutes depending on their complexity. This allows users to iteratively refine their search during a single session. The easy access to large chemical datasets provided by Pharmit simplifies and accelerates structure-based drug design. Pharmit is available under a dual BSD/GPL open-source license. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Development of Elevation and Relief Databases for ICESat-2/ATLAS Receiver Algorithms

    NASA Astrophysics Data System (ADS)

    Leigh, H. W.; Magruder, L. A.; Carabajal, C. C.; Saba, J. L.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    The Advanced Topographic Laser Altimeter System (ATLAS) is planned to launch onboard NASA's ICESat-2 spacecraft in 2016. ATLAS operates at a wavelength of 532 nm with a laser repeat rate of 10 kHz and 6 individual laser footprints. The satellite will be in a 500 km, 91-day repeat ground track orbit at an inclination of 92°. A set of onboard Receiver Algorithms has been developed to reduce the data volume and data rate to acceptable levels while still transmitting the relevant ranging data. The onboard algorithms limit the data volume by distinguishing between surface returns and background noise and selecting a small vertical region around the surface return to be included in telemetry. The algorithms make use of signal processing techniques, along with three databases, the Digital Elevation Model (DEM), the Digital Relief Map (DRM), and the Surface Reference Mask (SRM), to find the signal and determine the appropriate dynamic range of vertical data surrounding the surface for downlink. The DEM provides software-based range gating for ATLAS. This approach allows the algorithm to limit the surface signal search to the vertical region between minimum and maximum elevations provided by the DEM (plus some margin to account for uncertainties). The DEM is constructed in a nested, three-tiered grid to account for a hardware constraint limiting the maximum vertical range to 6 km. The DRM is used to select the vertical width of the telemetry band around the surface return. The DRM contains global values of relief calculated along 140 m and 700 m ground track segments consistent with a 92° orbit. The DRM must contain the maximum value of relief seen in any given area, but must be as close to truth as possible as the DRM directly affects data volume. The SRM, which has been developed independently from the DEM and DRM, is used to set parameters within the algorithm and select telemetry bands for downlink. Both the DEM and DRM are constructed from publicly available digital elevation models. No elevation models currently exist that provide global coverage at a sufficient resolution, so several regional models have been mosaicked together to produce global databases. In locations where multiple data sets are available, evaluations have been made to determine the optimal source for the databases, primarily based on resolution and accuracy. Separate procedures for calculating relief were developed for high latitude (>60N/S) regions in order to take advantage of polar stereographic projections. An additional method for generating the databases was developed for use over Antarctica, such that high resolution, regional elevation models can be easily incorporated as they become available in the future. The SRM is used to facilitate DEM and DRM production by defining those regions that are ocean and sea ice. Ocean and sea ice elevation values are defined by the geoid, while relief is set to a constant value. Results presented will include the details of data source selection, the methodologies used to create the databases, and the final versions of both the DEM and DRM databases. Companion presentations by McGarry, et al. and Carabajal, et al. describe the ATLAS onboard Receiver Algorithms and the database verification, respectively.

  12. An Improved Cuckoo Search Optimization Algorithm for the Problem of Chaotic Systems Parameter Estimation

    PubMed Central

    Wang, Jun; Zhou, Bihua; Zhou, Shudao

    2016-01-01

    This paper proposes an improved cuckoo search (ICS) algorithm to establish the parameters of chaotic systems. In order to improve the optimization capability of the basic cuckoo search (CS) algorithm, the orthogonal design and simulated annealing operation are incorporated in the CS algorithm to enhance the exploitation search ability. Then the proposed algorithm is used to establish parameters of the Lorenz chaotic system and Chen chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the algorithm can estimate parameters with high accuracy and reliability. Finally, the results are compared with the CS algorithm, genetic algorithm, and particle swarm optimization algorithm, and the compared results demonstrate the method is energy-efficient and superior. PMID:26880874

  13. EasyKSORD: A Platform of Keyword Search Over Relational Databases

    NASA Astrophysics Data System (ADS)

    Peng, Zhaohui; Li, Jing; Wang, Shan

    Keyword Search Over Relational Databases (KSORD) enables casual users to use keyword queries (a set of keywords) to search relational databases just like searching the Web, without any knowledge of the database schema or any need of writing SQL queries. Based on our previous work, we design and implement a novel KSORD platform named EasyKSORD for users and system administrators to use and manage different KSORD systems in a novel and simple manner. EasyKSORD supports advanced queries, efficient data-graph-based search engines, multiform result presentations, and system logging and analysis. Through EasyKSORD, users can search relational databases easily and read search results conveniently, and system administrators can easily monitor and analyze the operations of KSORD and manage KSORD systems much better.

  14. Searching Process with Raita Algorithm and its Application

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Saleh Ahmar, Ansari; Abdullah, Dahlan; Hartama, Dedy; Napitupulu, Darmawan; Putera Utama Siahaan, Andysah; Hasan Siregar, Muhammad Noor; Nasution, Nurliana; Sundari, Siti; Sriadhi, S.

    2018-04-01

    Searching is a common process performed by many computer users, Raita algorithm is one algorithm that can be used to match and find information in accordance with the patterns entered. Raita algorithm applied to the file search application using java programming language and the results obtained from the testing process of the file search quickly and with accurate results and support many data types.

  15. Time-optimal trajectory planning for underactuated spacecraft using a hybrid particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhuang, Yufei; Huang, Haibin

    2014-02-01

    A hybrid algorithm combining particle swarm optimization (PSO) algorithm with the Legendre pseudospectral method (LPM) is proposed for solving time-optimal trajectory planning problem of underactuated spacecrafts. At the beginning phase of the searching process, an initialization generator is constructed by the PSO algorithm due to its strong global searching ability and robustness to random initial values, however, PSO algorithm has a disadvantage that its convergence rate around the global optimum is slow. Then, when the change in fitness function is smaller than a predefined value, the searching algorithm is switched to the LPM to accelerate the searching process. Thus, with the obtained solutions by the PSO algorithm as a set of proper initial guesses, the hybrid algorithm can find a global optimum more quickly and accurately. 200 Monte Carlo simulations results demonstrate that the proposed hybrid PSO-LPM algorithm has greater advantages in terms of global searching capability and convergence rate than both single PSO algorithm and LPM algorithm. Moreover, the PSO-LPM algorithm is also robust to random initial values.

  16. A hybrid artificial bee colony algorithm for numerical function optimization

    NASA Astrophysics Data System (ADS)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  17. A coarse to fine minutiae-based latent palmprint matching.

    PubMed

    Liu, Eryun; Jain, Anil K; Tian, Jie

    2013-10-01

    With the availability of live-scan palmprint technology, high resolution palmprint recognition has started to receive significant attention in forensics and law enforcement. In forensic applications, latent palmprints provide critical evidence as it is estimated that about 30 percent of the latents recovered at crime scenes are those of palms. Most of the available high-resolution palmprint matching algorithms essentially follow the minutiae-based fingerprint matching strategy. Considering the large number of minutiae (about 1,000 minutiae in a full palmprint compared to about 100 minutiae in a rolled fingerprint) and large area of foreground region in full palmprints, novel strategies need to be developed for efficient and robust latent palmprint matching. In this paper, a coarse to fine matching strategy based on minutiae clustering and minutiae match propagation is designed specifically for palmprint matching. To deal with the large number of minutiae, a local feature-based minutiae clustering algorithm is designed to cluster minutiae into several groups such that minutiae belonging to the same group have similar local characteristics. The coarse matching is then performed within each cluster to establish initial minutiae correspondences between two palmprints. Starting with each initial correspondence, a minutiae match propagation algorithm searches for mated minutiae in the full palmprint. The proposed palmprint matching algorithm has been evaluated on a latent-to-full palmprint database consisting of 446 latents and 12,489 background full prints. The matching results show a rank-1 identification accuracy of 79.4 percent, which is significantly higher than the 60.8 percent identification accuracy of a state-of-the-art latent palmprint matching algorithm on the same latent database. The average computation time of our algorithm for a single latent-to-full match is about 141 ms for genuine match and 50 ms for impostor match, on a Windows XP desktop system with 2.2-GHz CPU and 1.00-GB RAM. The computation time of our algorithm is an order of magnitude faster than a previously published state-of-the-art-algorithm.

  18. Using SQL Databases for Sequence Similarity Searching and Analysis.

    PubMed

    Pearson, William R; Mackey, Aaron J

    2017-09-13

    Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  19. Towards automated visual flexible endoscope navigation.

    PubMed

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  20. Searching for statistically significant regulatory modules.

    PubMed

    Bailey, Timothy L; Noble, William Stafford

    2003-10-01

    The regulatory machinery controlling gene expression is complex, frequently requiring multiple, simultaneous DNA-protein interactions. The rate at which a gene is transcribed may depend upon the presence or absence of a collection of transcription factors bound to the DNA near the gene. Locating transcription factor binding sites in genomic DNA is difficult because the individual sites are small and tend to occur frequently by chance. True binding sites may be identified by their tendency to occur in clusters, sometimes known as regulatory modules. We describe an algorithm for detecting occurrences of regulatory modules in genomic DNA. The algorithm, called mcast, takes as input a DNA database and a collection of binding site motifs that are known to operate in concert. mcast uses a motif-based hidden Markov model with several novel features. The model incorporates motif-specific p-values, thereby allowing scores from motifs of different widths and specificities to be compared directly. The p-value scoring also allows mcast to only accept motif occurrences with significance below a user-specified threshold, while still assigning better scores to motif occurrences with lower p-values. mcast can search long DNA sequences, modeling length distributions between motifs within a regulatory module, but ignoring length distributions between modules. The algorithm produces a list of predicted regulatory modules, ranked by E-value. We validate the algorithm using simulated data as well as real data sets from fruitfly and human. http://meme.sdsc.edu/MCAST/paper

  1. Knowledge-guided mutation in classification rules for autism treatment efficacy.

    PubMed

    Engle, Kelley; Rada, Roy

    2017-03-01

    Data mining methods in biomedical research might benefit by combining genetic algorithms with domain-specific knowledge. The objective of this research is to show how the evolution of treatment rules for autism might be guided. The semantic distance between two concepts in the taxonomy is measured by the number of relationships separating the concepts in the taxonomy. The hypothesis is that replacing a concept in a treatment rule will change the accuracy of the rule in direct proportion to the semantic distance between the concepts. The method uses a patient database and autism taxonomies. Treatment rules are developed with an algorithm that exploits the taxonomies. The results support the hypothesis. This research should both advance the understanding of autism data mining in particular and of knowledge-guided evolutionary search in biomedicine in general.

  2. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  3. Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting

    DOE PAGES

    Azad, Ariful; Buluc, Aydn; Pothen, Alex

    2016-03-24

    It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less

  4. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range

    USDA-ARS?s Scientific Manuscript database

    The primary advantage of Dynamically Dimensioned Search algorithm (DDS) is that it outperforms many other optimization techniques in both convergence speed and the ability in searching for parameter sets that satisfy statistical guidelines while requiring only one algorithm parameter (perturbation f...

  5. Native Health Research Database

    MedlinePlus

    ... Indian Health Board) Welcome to the Native Health Database. Please enter your search terms. Basic Search Advanced ... To learn more about searching the Native Health Database, click here. Tutorial Video The NHD has made ...

  6. A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.

    PubMed

    Zhang, Geng; Li, Yangmin

    2016-06-01

    It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems.

  7. Novel search algorithms for a mid-infrared spectral library of cotton contaminants.

    PubMed

    Loudermilk, J Brian; Himmelsbach, David S; Barton, Franklin E; de Haseth, James A

    2008-06-01

    During harvest, a variety of plant based contaminants are collected along with cotton lint. The USDA previously created a mid-infrared, attenuated total reflection (ATR), Fourier transform infrared (FT-IR) spectral library of cotton contaminants for contaminant identification as the contaminants have negative impacts on yarn quality. This library has shown impressive identification rates for extremely similar cellulose based contaminants in cases where the library was representative of the samples searched. When spectra of contaminant samples from crops grown in different geographic locations, seasons, and conditions and measured with a different spectrometer and accessories were searched, identification rates for standard search algorithms decreased significantly. Six standard algorithms were examined: dot product, correlation, sum of absolute values of differences, sum of the square root of the absolute values of differences, sum of absolute values of differences of derivatives, and sum of squared differences of derivatives. Four categories of contaminants derived from cotton plants were considered: leaf, stem, seed coat, and hull. Experiments revealed that the performance of the standard search algorithms depended upon the category of sample being searched and that different algorithms provided complementary information about sample identity. These results indicated that choosing a single standard algorithm to search the library was not possible. Three voting scheme algorithms based on result frequency, result rank, category frequency, or a combination of these factors for the results returned by the standard algorithms were developed and tested for their capability to overcome the unpredictability of the standard algorithms' performances. The group voting scheme search was based on the number of spectra from each category of samples represented in the library returned in the top ten results of the standard algorithms. This group algorithm was able to identify correctly as many test spectra as the best standard algorithm without relying on human choice to select a standard algorithm to perform the searches.

  8. Genetic Algorithms and Local Search

    NASA Technical Reports Server (NTRS)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  9. Flight plan optimization

    NASA Astrophysics Data System (ADS)

    Dharmaseelan, Anoop; Adistambha, Keyne D.

    2015-05-01

    Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.

  10. WS-BP: An efficient wolf search based back-propagation algorithm

    NASA Astrophysics Data System (ADS)

    Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah

    2015-05-01

    Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.

  11. Validity of breast, lung and colorectal cancer diagnoses in administrative databases: a systematic review protocol.

    PubMed

    Abraha, Iosief; Giovannini, Gianni; Serraino, Diego; Fusco, Mario; Montedori, Alessandro

    2016-03-18

    Breast, lung and colorectal cancers constitute the most common cancers worldwide and their epidemiology, related health outcomes and quality indicators can be studied using administrative healthcare databases. To constitute a reliable source for research, administrative healthcare databases need to be validated. The aim of this protocol is to perform the first systematic review of studies reporting the validation of International Classification of Diseases 9th and 10th revision codes to identify breast, lung and colorectal cancer diagnoses in administrative healthcare databases. This review protocol has been developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocol (PRISMA-P) 2015 statement. We will search the following databases: MEDLINE, EMBASE, Web of Science and the Cochrane Library, using appropriate search strategies. We will include validation studies that used administrative data to identify breast, lung and colorectal cancer diagnoses or studies that evaluated the validity of breast, lung and colorectal cancer codes in administrative data. The following inclusion criteria will be used: (1) the presence of a reference standard case definition for the disease of interest; (2) the presence of at least one test measure (eg, sensitivity, positive predictive values, etc) and (3) the use of data source from an administrative database. Pairs of reviewers will independently abstract data using standardised forms and will assess quality using a checklist based on the Standards for Reporting of Diagnostic accuracy (STARD) criteria. Ethics approval is not required. We will submit results of this study to a peer-reviewed journal for publication. The results will serve as a guide to identify appropriate case definitions and algorithms of breast, lung and colorectal cancers for researchers involved in validating administrative healthcare databases as well as for outcome research on these conditions that used administrative healthcare databases. CRD42015026881. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  13. Library Instruction and Online Database Searching.

    ERIC Educational Resources Information Center

    Mercado, Heidi

    1999-01-01

    Reviews changes in online database searching in academic libraries. Topics include librarians conducting all searches; the advent of end-user searching and the need for user instruction; compact disk technology; online public catalogs; the Internet; full text databases; electronic information literacy; user education and the remote library user;…

  14. An improved harmony search algorithm for emergency inspection scheduling

    NASA Astrophysics Data System (ADS)

    Kallioras, Nikos A.; Lagaros, Nikos D.; Karlaftis, Matthew G.

    2014-11-01

    The ability of nature-inspired search algorithms to efficiently handle combinatorial problems, and their successful implementation in many fields of engineering and applied sciences, have led to the development of new, improved algorithms. In this work, an improved harmony search (IHS) algorithm is presented, while a holistic approach for solving the problem of post-disaster infrastructure management is also proposed. The efficiency of IHS is compared with that of the algorithms of particle swarm optimization, differential evolution, basic harmony search and the pure random search procedure, when solving the districting problem that is the first part of post-disaster infrastructure management. The ant colony optimization algorithm is employed for solving the associated routing problem that constitutes the second part. The comparison is based on the quality of the results obtained, the computational demands and the sensitivity on the algorithmic parameters.

  15. Escalated convergent artificial bee colony

    NASA Astrophysics Data System (ADS)

    Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu

    2016-03-01

    Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.

  16. HOWDY: an integrated database system for human genome research

    PubMed Central

    Hirakawa, Mika

    2002-01-01

    HOWDY is an integrated database system for accessing and analyzing human genomic information (http://www-alis.tokyo.jst.go.jp/HOWDY/). HOWDY stores information about relationships between genetic objects and the data extracted from a number of databases. HOWDY consists of an Internet accessible user interface that allows thorough searching of the human genomic databases using the gene symbols and their aliases. It also permits flexible editing of the sequence data. The database can be searched using simple words and the search can be restricted to a specific cytogenetic location. Linear maps displaying markers and genes on contig sequences are available, from which an object can be chosen. Any search starting point identifies all the information matching the query. HOWDY provides a convenient search environment of human genomic data for scientists unsure which database is most appropriate for their search. PMID:11752279

  17. Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data.

    PubMed

    Kumar, Dhirendra; Yadav, Amit Kumar; Dash, Debasis

    2017-01-01

    Database searching is the preferred method for protein identification from digital spectra of mass to charge ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the major influencing factors in discovering proteins present in the sample and thus in deriving biological conclusions. In most cases the choice of search database is arbitrary. Here we describe common search databases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon factors like composition and size of the search database that can influence the protein identification process. In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from proteomics data. However, making additional efforts to build a compact and concise database for a targeted question should generally be rewarding in achieving confident protein identifications.

  18. Towards computational improvement of DNA database indexing and short DNA query searching.

    PubMed

    Stojanov, Done; Koceski, Sašo; Mileva, Aleksandra; Koceska, Nataša; Bande, Cveta Martinovska

    2014-09-03

    In order to facilitate and speed up the search of massive DNA databases, the database is indexed at the beginning, employing a mapping function. By searching through the indexed data structure, exact query hits can be identified. If the database is searched against an annotated DNA query, such as a known promoter consensus sequence, then the starting locations and the number of potential genes can be determined. This is particularly relevant if unannotated DNA sequences have to be functionally annotated. However, indexing a massive DNA database and searching an indexed data structure with millions of entries is a time-demanding process. In this paper, we propose a fast DNA database indexing and searching approach, identifying all query hits in the database, without having to examine all entries in the indexed data structure, limiting the maximum length of a query that can be searched against the database. By applying the proposed indexing equation, the whole human genome could be indexed in 10 hours on a personal computer, under the assumption that there is enough RAM to store the indexed data structure. Analysing the methodology proposed by Reneker, we observed that hits at starting positions [Formula: see text] are not reported, if the database is searched against a query shorter than [Formula: see text] nucleotides, such that [Formula: see text] is the length of the DNA database words being mapped and [Formula: see text] is the length of the query. A solution of this drawback is also presented.

  19. Improving GPU-accelerated adaptive IDW interpolation algorithm using fast kNN search.

    PubMed

    Mei, Gang; Xu, Nengxiong; Xu, Liangliang

    2016-01-01

    This paper presents an efficient parallel Adaptive Inverse Distance Weighting (AIDW) interpolation algorithm on modern Graphics Processing Unit (GPU). The presented algorithm is an improvement of our previous GPU-accelerated AIDW algorithm by adopting fast k-nearest neighbors (kNN) search. In AIDW, it needs to find several nearest neighboring data points for each interpolated point to adaptively determine the power parameter; and then the desired prediction value of the interpolated point is obtained by weighted interpolating using the power parameter. In this work, we develop a fast kNN search approach based on the space-partitioning data structure, even grid, to improve the previous GPU-accelerated AIDW algorithm. The improved algorithm is composed of the stages of kNN search and weighted interpolating. To evaluate the performance of the improved algorithm, we perform five groups of experimental tests. The experimental results indicate: (1) the improved algorithm can achieve a speedup of up to 1017 over the corresponding serial algorithm; (2) the improved algorithm is at least two times faster than our previous GPU-accelerated AIDW algorithm; and (3) the utilization of fast kNN search can significantly improve the computational efficiency of the entire GPU-accelerated AIDW algorithm.

  20. Rapid identification of anonymous subjects in large criminal databases: problems and solutions in IAFIS III/FBI subject searches

    NASA Astrophysics Data System (ADS)

    Kutzleb, C. D.

    1997-02-01

    The high incidence of recidivism (repeat offenders) in the criminal population makes the use of the IAFIS III/FBI criminal database an important tool in law enforcement. The problems and solutions employed by IAFIS III/FBI criminal subject searches are discussed for the following topics: (1) subject search selectivity and reliability; (2) the difficulty and limitations of identifying subjects whose anonymity may be a prime objective; (3) database size, search workload, and search response time; (4) techniques and advantages of normalizing the variability in an individual's name and identifying features into identifiable and discrete categories; and (5) the use of database demographics to estimate the likelihood of a match between a search subject and database subjects.

  1. Adiabatic quantum computation along quasienergies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Atushi; Nemoto, Kae; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430

    2010-02-15

    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M.more » Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.« less

  2. Two-voice fundamental frequency estimation

    NASA Astrophysics Data System (ADS)

    de Cheveigné, Alain

    2002-05-01

    An algorithm is presented that estimates the fundamental frequencies of two concurrent voices or instruments. The algorithm models each voice as a periodic function of time, and jointly estimates both periods by cancellation according to a previously proposed method [de Cheveigné and Kawahara, Speech Commun. 27, 175-185 (1999)]. The new algorithm improves on the old in several respects; it allows an unrestricted search range, effectively avoids harmonic and subharmonic errors, is more accurate (it uses two-dimensional parabolic interpolation), and is computationally less costly. It remains subject to unavoidable errors when periods are in certain simple ratios and the task is inherently ambiguous. The algorithm is evaluated on a small database including speech, singing voice, and instrumental sounds. It can be extended in several ways; to decide the number of voices, to handle amplitude variations, and to estimate more than two voices (at the expense of increased processing cost and decreased reliability). It makes no use of instrument models, learned or otherwise, although it could usefully be combined with such models. [Work supported by the Cognitique programme of the French Ministry of Research and Technology.

  3. Can genetic algorithms help virus writers reshape their creations and avoid detection?

    NASA Astrophysics Data System (ADS)

    Abu Doush, Iyad; Al-Saleh, Mohammed I.

    2017-11-01

    Different attack and defence techniques have been evolved over time as actions and reactions between black-hat and white-hat communities. Encryption, polymorphism, metamorphism and obfuscation are among the techniques used by the attackers to bypass security controls. On the other hand, pattern matching, algorithmic scanning, emulation and heuristic are used by the defence team. The Antivirus (AV) is a vital security control that is used against a variety of threats. The AV mainly scans data against its database of virus signatures. Basically, it claims a virus if a match is found. This paper seeks to find the minimal possible changes that can be made on the virus so that it will appear normal when scanned by the AV. Brute-force search through all possible changes can be a computationally expensive task. Alternatively, this paper tries to apply a Genetic Algorithm in solving such a problem. Our proposed algorithm is tested on seven different malware instances. The results show that in all the tested malware instances only a small change in each instance was good enough to bypass the AV.

  4. What is lost when searching only one literature database for articles relevant to injury prevention and safety promotion?

    PubMed

    Lawrence, D W

    2008-12-01

    To assess what is lost if only one literature database is searched for articles relevant to injury prevention and safety promotion (IPSP) topics. Serial textword (keyword, free-text) searches using multiple synonym terms for five key IPSP topics (bicycle-related brain injuries, ethanol-impaired driving, house fires, road rage, and suicidal behaviors among adolescents) were conducted in four of the bibliographic databases that are most used by IPSP professionals: EMBASE, MEDLINE, PsycINFO, and Web of Science. Through a systematic procedure, an inventory of articles on each topic in each database was conducted to identify the total unduplicated count of all articles on each topic, the number of articles unique to each database, and the articles available if only one database is searched. No single database included all of the relevant articles on any topic, and the database with the broadest coverage differed by topic. A search of only one literature database will return 16.7-81.5% (median 43.4%) of the available articles on any of five key IPSP topics. Each database contributed unique articles to the total bibliography for each topic. A literature search performed in only one database will, on average, lead to a loss of more than half of the available literature on a topic.

  5. Evaluation of the performance of existing non-laboratory based cardiovascular risk assessment algorithms

    PubMed Central

    2013-01-01

    Background The high burden and rising incidence of cardiovascular disease (CVD) in resource constrained countries necessitates implementation of robust and pragmatic primary and secondary prevention strategies. Many current CVD management guidelines recommend absolute cardiovascular (CV) risk assessment as a clinically sound guide to preventive and treatment strategies. Development of non-laboratory based cardiovascular risk assessment algorithms enable absolute risk assessment in resource constrained countries. The objective of this review is to evaluate the performance of existing non-laboratory based CV risk assessment algorithms using the benchmarks for clinically useful CV risk assessment algorithms outlined by Cooney and colleagues. Methods A literature search to identify non-laboratory based risk prediction algorithms was performed in MEDLINE, CINAHL, Ovid Premier Nursing Journals Plus, and PubMed databases. The identified algorithms were evaluated using the benchmarks for clinically useful cardiovascular risk assessment algorithms outlined by Cooney and colleagues. Results Five non-laboratory based CV risk assessment algorithms were identified. The Gaziano and Framingham algorithms met the criteria for appropriateness of statistical methods used to derive the algorithms and endpoints. The Swedish Consultation, Framingham and Gaziano algorithms demonstrated good discrimination in derivation datasets. Only the Gaziano algorithm was externally validated where it had optimal discrimination. The Gaziano and WHO algorithms had chart formats which made them simple and user friendly for clinical application. Conclusion Both the Gaziano and Framingham non-laboratory based algorithms met most of the criteria outlined by Cooney and colleagues. External validation of the algorithms in diverse samples is needed to ascertain their performance and applicability to different populations and to enhance clinicians’ confidence in them. PMID:24373202

  6. Multiple-variable neighbourhood search for the single-machine total weighted tardiness problem

    NASA Astrophysics Data System (ADS)

    Chung, Tsui-Ping; Fu, Qunjie; Liao, Ching-Jong; Liu, Yi-Ting

    2017-07-01

    The single-machine total weighted tardiness (SMTWT) problem is a typical discrete combinatorial optimization problem in the scheduling literature. This problem has been proved to be NP hard and thus provides a challenging area for metaheuristics, especially the variable neighbourhood search algorithm. In this article, a multiple variable neighbourhood search (m-VNS) algorithm with multiple neighbourhood structures is proposed to solve the problem. Special mechanisms named matching and strengthening operations are employed in the algorithm, which has an auto-revising local search procedure to explore the solution space beyond local optimality. Two aspects, searching direction and searching depth, are considered, and neighbourhood structures are systematically exchanged. Experimental results show that the proposed m-VNS algorithm outperforms all the compared algorithms in solving the SMTWT problem.

  7. The Research and Test of Fast Radio Burst Real-time Search Algorithm Based on GPU Acceleration

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chen, M. Z.; Pei, X.; Wang, Z. Q.

    2017-03-01

    In order to satisfy the research needs of Nanshan 25 m radio telescope of Xinjiang Astronomical Observatory (XAO) and study the key technology of the planned QiTai radio Telescope (QTT), the receiver group of XAO studied the GPU (Graphics Processing Unit) based real-time FRB searching algorithm which developed from the original FRB searching algorithm based on CPU (Central Processing Unit), and built the FRB real-time searching system. The comparison of the GPU system and the CPU system shows that: on the basis of ensuring the accuracy of the search, the speed of the GPU accelerated algorithm is improved by 35-45 times compared with the CPU algorithm.

  8. Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces

    DTIC Science & Technology

    2011-02-28

    Final Report for AFOSR #FA9550-08-1-0422 Landscape Analysis and Algorithm Development for Plateau Plagued Search Spaces August 1, 2008 to November 30...focused on developing high level general purpose algorithms , such as Tabu Search and Genetic Algorithms . However, understanding of when and why these... algorithms perform well still lags. Our project extended the theory of certain combi- natorial optimization problems to develop analytical

  9. Recent progress and future directions in protein-protein docking.

    PubMed

    Ritchie, David W

    2008-02-01

    This article gives an overview of recent progress in protein-protein docking and it identifies several directions for future research. Recent results from the CAPRI blind docking experiments show that docking algorithms are steadily improving in both reliability and accuracy. Current docking algorithms employ a range of efficient search and scoring strategies, including e.g. fast Fourier transform correlations, geometric hashing, and Monte Carlo techniques. These approaches can often produce a relatively small list of up to a few thousand orientations, amongst which a near-native binding mode is often observed. However, despite the use of improved scoring functions which typically include models of desolvation, hydrophobicity, and electrostatics, current algorithms still have difficulty in identifying the correct solution from the list of false positives, or decoys. Nonetheless, significant progress is being made through better use of bioinformatics, biochemical, and biophysical information such as e.g. sequence conservation analysis, protein interaction databases, alanine scanning, and NMR residual dipolar coupling restraints to help identify key binding residues. Promising new approaches to incorporate models of protein flexibility during docking are being developed, including the use of molecular dynamics snapshots, rotameric and off-rotamer searches, internal coordinate mechanics, and principal component analysis based techniques. Some investigators now use explicit solvent models in their docking protocols. Many of these approaches can be computationally intensive, although new silicon chip technologies such as programmable graphics processor units are beginning to offer competitive alternatives to conventional high performance computer systems. As cryo-EM techniques improve apace, docking NMR and X-ray protein structures into low resolution EM density maps is helping to bridge the resolution gap between these complementary techniques. The use of symmetry and fragment assembly constraints are also helping to make possible docking-based predictions of large multimeric protein complexes. In the near future, the closer integration of docking algorithms with protein interface prediction software, structural databases, and sequence analysis techniques should help produce better predictions of protein interaction networks and more accurate structural models of the fundamental molecular interactions within the cell.

  10. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment

    PubMed Central

    Manavski, Svetlin A; Valle, Giorgio

    2008-01-01

    Background Searching for similarities in protein and DNA databases has become a routine procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than 25 years. It is based on a dynamic programming approach that explores all the possible alignments between two sequences; as a result it returns the optimal local alignment. Unfortunately, the computational cost is very high, requiring a number of operations proportional to the product of the length of two sequences. Furthermore, the exponential growth of protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of sequences. For these reasons heuristic approaches such as those implemented in FASTA and BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The main motivation of our work is to exploit the huge computational power of commonly available graphic cards, to develop high performance solutions for sequence alignment. Results In this paper we present what we believe is the fastest solution of the exact Smith-Waterman algorithm running on commodity hardware. It is implemented in the recently released CUDA programming environment by NVidia. CUDA allows direct access to the hardware primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5 GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800 GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST, running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These tests show that our implementation performs from 2 to 30 times faster than any other previous attempt available on commodity hardware. Conclusions The results show that graphic cards are now sufficiently advanced to be used as efficient hardware accelerators for sequence alignment. Their performance is better than any alternative available on commodity hardware platforms. The solution presented in this paper allows large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm instead of the largely adopted heuristic approaches. PMID:18387198

  11. A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms.

    PubMed

    Caldas, Rafael; Mundt, Marion; Potthast, Wolfgang; Buarque de Lima Neto, Fernando; Markert, Bernd

    2017-09-01

    The conventional methods to assess human gait are either expensive or complex to be applied regularly in clinical practice. To reduce the cost and simplify the evaluation, inertial sensors and adaptive algorithms have been utilized, respectively. This paper aims to summarize studies that applied adaptive also called artificial intelligence (AI) algorithms to gait analysis based on inertial sensor data, verifying if they can support the clinical evaluation. Articles were identified through searches of the main databases, which were encompassed from 1968 to October 2016. We have identified 22 studies that met the inclusion criteria. The included papers were analyzed due to their data acquisition and processing methods with specific questionnaires. Concerning the data acquisition, the mean score is 6.1±1.62, what implies that 13 of 22 papers failed to report relevant outcomes. The quality assessment of AI algorithms presents an above-average rating (8.2±1.84). Therefore, AI algorithms seem to be able to support gait analysis based on inertial sensor data. Further research, however, is necessary to enhance and standardize the application in patients, since most of the studies used distinct methods to evaluate healthy subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A Clustering Algorithm for Ecological Stream Segment Identification from Spatially Extensive Digital Databases

    NASA Astrophysics Data System (ADS)

    Brenden, T. O.; Clark, R. D.; Wiley, M. J.; Seelbach, P. W.; Wang, L.

    2005-05-01

    Remote sensing and geographic information systems have made it possible to attribute variables for streams at increasingly detailed resolutions (e.g., individual river reaches). Nevertheless, management decisions still must be made at large scales because land and stream managers typically lack sufficient resources to manage on an individual reach basis. Managers thus require a method for identifying stream management units that are ecologically similar and that can be expected to respond similarly to management decisions. We have developed a spatially-constrained clustering algorithm that can merge neighboring river reaches with similar ecological characteristics into larger management units. The clustering algorithm is based on the Cluster Affinity Search Technique (CAST), which was developed for clustering gene expression data. Inputs to the clustering algorithm are the neighbor relationships of the reaches that comprise the digital river network, the ecological attributes of the reaches, and an affinity value, which identifies the minimum similarity for merging river reaches. In this presentation, we describe the clustering algorithm in greater detail and contrast its use with other methods (expert opinion, classification approach, regular clustering) for identifying management units using several Michigan watersheds as a backdrop.

  13. The research of network database security technology based on web service

    NASA Astrophysics Data System (ADS)

    Meng, Fanxing; Wen, Xiumei; Gao, Liting; Pang, Hui; Wang, Qinglin

    2013-03-01

    Database technology is one of the most widely applied computer technologies, its security is becoming more and more important. This paper introduced the database security, network database security level, studies the security technology of the network database, analyzes emphatically sub-key encryption algorithm, applies this algorithm into the campus-one-card system successfully. The realization process of the encryption algorithm is discussed, this method is widely used as reference in many fields, particularly in management information system security and e-commerce.

  14. Comparison Study of Overlap among 21 Scientific Databases in Searching Pesticide Information.

    ERIC Educational Resources Information Center

    Meyer, Daniel E.; And Others

    1983-01-01

    Evaluates overlapping coverage of 21 scientific databases used in 10 online pesticide searches in an attempt to identify minimum number of databases needed to generate 90 percent of unique, relevant citations for given search. Comparison of searches combined under given pesticide usage (herbicide, fungicide, insecticide) is discussed. Nine…

  15. PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface.

    PubMed

    Uszkoreit, Julian; Maerkens, Alexandra; Perez-Riverol, Yasset; Meyer, Helmut E; Marcus, Katrin; Stephan, Christian; Kohlbacher, Oliver; Eisenacher, Martin

    2015-07-02

    Protein inference connects the peptide spectrum matches (PSMs) obtained from database search engines back to proteins, which are typically at the heart of most proteomics studies. Different search engines yield different PSMs and thus different protein lists. Analysis of results from one or multiple search engines is often hampered by different data exchange formats and lack of convenient and intuitive user interfaces. We present PIA, a flexible software suite for combining PSMs from different search engine runs and turning these into consistent results. PIA can be integrated into proteomics data analysis workflows in several ways. A user-friendly graphical user interface can be run either locally or (e.g., for larger core facilities) from a central server. For automated data processing, stand-alone tools are available. PIA implements several established protein inference algorithms and can combine results from different search engines seamlessly. On several benchmark data sets, we show that PIA can identify a larger number of proteins at the same protein FDR when compared to that using inference based on a single search engine. PIA supports the majority of established search engines and data in the mzIdentML standard format. It is implemented in Java and freely available at https://github.com/mpc-bioinformatics/pia.

  16. Tele-operated search robot for human detection using histogram of oriented objects

    NASA Astrophysics Data System (ADS)

    Cruz, Febus Reidj G.; Avendaño, Glenn O.; Manlises, Cyrel O.; Avellanosa, James Jason G.; Abina, Jyacinth Camille F.; Masaquel, Albert M.; Siapno, Michael Lance O.; Chung, Wen-Yaw

    2017-02-01

    Disasters such as typhoons, tornadoes, and earthquakes are inevitable. Aftermaths of these disasters include the missing people. Using robots with human detection capabilities to locate the missing people, can dramatically reduce the harm and risk to those who work in such circumstances. This study aims to: design and build a tele-operated robot; implement in MATLAB an algorithm for the detection of humans; and create a database of human identification based on various positions, angles, light intensity, as well as distances from which humans will be identified. Different light intensities were made by using Photoshop to simulate smoke, dust and water drops conditions. After processing the image, the system can indicate either a human is detected or not detected. Testing with bodies covered was also conducted to test the algorithm's robustness. Based on the results, the algorithm can detect humans with full body shown. For upright and lying positions, detection can happen from 8 feet to 20 feet. For sitting position, detection can happen from 2 feet to 20 feet with slight variances in results because of different lighting conditions. The distances greater than 20 feet, no humans can be processed or false negatives can occur. For bodies covered, the algorithm can detect humans in cases made under given circumstances. On three positions, humans can be detected from 0 degrees to 180 degrees under normal, with smoke, with dust, and with water droplet conditions. This study was able to design and build a tele-operated robot with MATLAB algorithm that can detect humans with an overall precision of 88.30%, from which a database was created for human identification based on various conditions, where humans will be identified.

  17. Content based information retrieval in forensic image databases.

    PubMed

    Geradts, Zeno; Bijhold, Jurrien

    2002-03-01

    This paper gives an overview of the various available image databases and ways of searching these databases on image contents. The developments in research groups of searching in image databases is evaluated and compared with the forensic databases that exist. Forensic image databases of fingerprints, faces, shoeprints, handwriting, cartridge cases, drugs tablets, and tool marks are described. The developments in these fields appear to be valuable for forensic databases, especially that of the framework in MPEG-7, where the searching in image databases is standardized. In the future, the combination of the databases (also DNA-databases) and possibilities to combine these can result in stronger forensic evidence.

  18. Time Series Discord Detection in Medical Data using a Parallel Relational Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodbridge, Diane; Rintoul, Mark Daniel; Wilson, Andrew T.

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less

  19. Time Series Discord Detection in Medical Data using a Parallel Relational Database [PowerPoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodbridge, Diane; Wilson, Andrew T.; Rintoul, Mark Daniel

    Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less

  20. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  1. A novel directional asymmetric sampling search algorithm for fast block-matching motion estimation

    NASA Astrophysics Data System (ADS)

    Li, Yue-e.; Wang, Qiang

    2011-11-01

    This paper proposes a novel directional asymmetric sampling search (DASS) algorithm for video compression. Making full use of the error information (block distortions) of the search patterns, eight different direction search patterns are designed for various situations. The strategy of local sampling search is employed for the search of big-motion vector. In order to further speed up the search, early termination strategy is adopted in procedure of DASS. Compared to conventional fast algorithms, the proposed method has the most satisfactory PSNR values for all test sequences.

  2. Physiological closed-loop control in intelligent oxygen therapy: A review.

    PubMed

    Sanchez-Morillo, Daniel; Olaby, Osama; Fernandez-Granero, Miguel Angel; Leon-Jimenez, Antonio

    2017-07-01

    Oxygen therapy has become a standard care for the treatment of patients with chronic obstructive pulmonary disease and other hypoxemic chronic lung diseases. In current systems, manually continuous adjustment of O 2 flow rate is a time-consuming task, often unsuccessful, that requires experienced staff. The primary aim of this systematic review is to collate and report on the principles, algorithms and accuracy of autonomous physiological close-loop controlled oxygen devices as well to present recommendations for future research and studies in this area. A literature search was performed on medical database MEDLINE, engineering database IEEE-Xplore and wide-raging scientific databases Scopus and Web of Science. A narrative synthesis of the results was carried out. A summary of the findings of this review suggests that when compared to the conventional manual practice, the closed-loop controllers maintain higher saturation levels, spend less time below the target saturation, and save oxygen resources. Nonetheless, despite of their potential, autonomous oxygen therapy devices are scarce in real clinical applications. Robustness of control algorithms, fail-safe mechanisms, limited reliability of sensors, usability issues and the need for standardized evaluating methods of assessing risks can be among the reasons for this lack of matureness and need to be addressed before the wide spreading of a new generation of automatic oxygen devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quality, language, subdiscipline and promotion were associated with article accesses on Physiotherapy Evidence Database (PEDro).

    PubMed

    Yamato, Tiê P; Arora, Mohit; Stevens, Matthew L; Elkins, Mark R; Moseley, Anne M

    2018-03-01

    To quantify the relationship between the number of times articles are accessed on the Physiotherapy Evidence Database (PEDro) and the article characteristics. A secondary aim was to examine the relationship between accesses and the number of citations of articles. The study was conducted to derive prediction models for the number of accesses of articles indexed on PEDro from factors that may influence an article's accesses. All articles available on PEDro from August 2014 to January 2015 were included. We extracted variables relating to the algorithm used to present PEDro search results (research design, year of publication, PEDro score, source of systematic review (Cochrane or non-Cochrane)) plus language, subdiscipline of physiotherapy, and whether articles were promoted to PEDro users. Three predictive models were examined using multiple regression analysis. Citation and journal impact factor were downloaded. There were 29,313 articles indexed in this period. We identified seven factors that predicted the number of accesses. More accesses were noted for factors related to the algorithm used to present PEDro search results (synthesis research (i.e., guidelines and reviews), recent articles, Cochrane reviews, and higher PEDro score) plus publication in English and being promoted to PEDro users. The musculoskeletal, neurology, orthopaedics, sports, and paediatrics subdisciplines were associated with more accesses. We also found that there was no association between number of accesses and citations. The number of times an article is accessed on PEDro is partly predicted by how condensed and high quality the evidence it contains is. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  4. Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis.

    PubMed

    García Arroyo, Jose Luis; García Zapirain, Begoña

    2014-01-01

    By means of this study, a detection algorithm for the "pigment network" in dermoscopic images is presented, one of the most relevant indicators in the diagnosis of melanoma. The design of the algorithm consists of two blocks. In the first one, a machine learning process is carried out, allowing the generation of a set of rules which, when applied over the image, permit the construction of a mask with the pixels candidates to be part of the pigment network. In the second block, an analysis of the structures over this mask is carried out, searching for those corresponding to the pigment network and making the diagnosis, whether it has pigment network or not, and also generating the mask corresponding to this pattern, if any. The method was tested against a database of 220 images, obtaining 86% sensitivity and 81.67% specificity, which proves the reliability of the algorithm. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

  5. Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing

    NASA Astrophysics Data System (ADS)

    Li-Chee-Ming, J.; Armenakis, C.

    2017-05-01

    This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.

  6. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.

    PubMed

    Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine

    2011-03-10

    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de.

  7. HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition

    PubMed Central

    Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine

    2011-01-01

    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de. PMID:21423752

  8. Integrating unified medical language system and association mining techniques into relevance feedback for biomedical literature search.

    PubMed

    Ji, Yanqing; Ying, Hao; Tran, John; Dews, Peter; Massanari, R Michael

    2016-07-19

    Finding highly relevant articles from biomedical databases is challenging not only because it is often difficult to accurately express a user's underlying intention through keywords but also because a keyword-based query normally returns a long list of hits with many citations being unwanted by the user. This paper proposes a novel biomedical literature search system, called BiomedSearch, which supports complex queries and relevance feedback. The system employed association mining techniques to build a k-profile representing a user's relevance feedback. More specifically, we developed a weighted interest measure and an association mining algorithm to find the strength of association between a query and each concept in the article(s) selected by the user as feedback. The top concepts were utilized to form a k-profile used for the next-round search. BiomedSearch relies on Unified Medical Language System (UMLS) knowledge sources to map text files to standard biomedical concepts. It was designed to support queries with any levels of complexity. A prototype of BiomedSearch software was made and it was preliminarily evaluated using the Genomics data from TREC (Text Retrieval Conference) 2006 Genomics Track. Initial experiment results indicated that BiomedSearch increased the mean average precision (MAP) for a set of queries. With UMLS and association mining techniques, BiomedSearch can effectively utilize users' relevance feedback to improve the performance of biomedical literature search.

  9. Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.

    PubMed

    Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao

    2017-11-17

    The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.

  10. Searching for religion and mental health studies required health, social science, and grey literature databases.

    PubMed

    Wright, Judy M; Cottrell, David J; Mir, Ghazala

    2014-07-01

    To determine the optimal databases to search for studies of faith-sensitive interventions for treating depression. We examined 23 health, social science, religious, and grey literature databases searched for an evidence synthesis. Databases were prioritized by yield of (1) search results, (2) potentially relevant references identified during screening, (3) included references contained in the synthesis, and (4) included references that were available in the database. We assessed the impact of databases beyond MEDLINE, EMBASE, and PsycINFO by their ability to supply studies identifying new themes and issues. We identified pragmatic workload factors that influence database selection. PsycINFO was the best performing database within all priority lists. ArabPsyNet, CINAHL, Dissertations and Theses, EMBASE, Global Health, Health Management Information Consortium, MEDLINE, PsycINFO, and Sociological Abstracts were essential for our searches to retrieve the included references. Citation tracking activities and the personal library of one of the research teams made significant contributions of unique, relevant references. Religion studies databases (Am Theo Lib Assoc, FRANCIS) did not provide unique, relevant references. Literature searches for reviews and evidence syntheses of religion and health studies should include social science, grey literature, non-Western databases, personal libraries, and citation tracking activities. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Non-Coding RNA Analysis Using the Rfam Database.

    PubMed

    Kalvari, Ioanna; Nawrocki, Eric P; Argasinska, Joanna; Quinones-Olvera, Natalia; Finn, Robert D; Bateman, Alex; Petrov, Anton I

    2018-06-01

    Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature-based curation and a custom software pipeline, Rfam converts descriptions of RNA families found in the scientific literature into computational models that can be used to annotate RNAs belonging to those families in any DNA or RNA sequence. Valuable research outputs that are often locked up in figures and supplementary information files are encapsulated in Rfam entries and made accessible through the Rfam Web site. The data produced by Rfam have a broad application, from genome annotation to providing training sets for algorithm development. This article gives an overview of how to search and navigate the Rfam Web site, and how to annotate sequences with RNA families. The Rfam database is freely available at http://rfam.org. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  12. Double hashing technique in closed hashing search process

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Zulkarnain, Iskandar; Jaya, Hendra

    2017-09-01

    The search process is used in various activities performed both online and offline, many algorithms that can be used to perform the search process one of which is a hash search algorithm, search process with hash search algorithm used in this study using double hashing technique where the data will be formed into the table with same length and then search, the results of this study indicate that the search process with double hashing technique allows faster searching than the usual search techniques, this research allows to search the solution by dividing the value into the main table and overflow table so that the search process is expected faster than the data stacked in the form of one table and collision data could avoided.

  13. A rate-constrained fast full-search algorithm based on block sum pyramid.

    PubMed

    Song, Byung Cheol; Chun, Kang-Wook; Ra, Jong Beom

    2005-03-01

    This paper presents a fast full-search algorithm (FSA) for rate-constrained motion estimation. The proposed algorithm, which is based on the block sum pyramid frame structure, successively eliminates unnecessary search positions according to rate-constrained criterion. This algorithm provides the identical estimation performance to a conventional FSA having rate constraint, while achieving considerable reduction in computation.

  14. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  15. Seismic Search Engine: A distributed database for mining large scale seismic data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  16. Molecule database framework: a framework for creating database applications with chemical structure search capability

    PubMed Central

    2013-01-01

    Background Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Results Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes: • Support for multi-component compounds (mixtures) • Import and export of SD-files • Optional security (authorization) For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures). Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. Conclusions By using a simple web application it was shown that Molecule Database Framework successfully abstracts chemical structure searches and SD-File import and export to simple method calls. The framework offers good search performance on a standard laptop without any database tuning. This is also due to the fact that chemical structure searches are paged and cached. Molecule Database Framework is available for download on the projects web page on bitbucket: https://bitbucket.org/kienerj/moleculedatabaseframework. PMID:24325762

  17. Molecule database framework: a framework for creating database applications with chemical structure search capability.

    PubMed

    Kiener, Joos

    2013-12-11

    Research in organic chemistry generates samples of novel chemicals together with their properties and other related data. The involved scientists must be able to store this data and search it by chemical structure. There are commercial solutions for common needs like chemical registration systems or electronic lab notebooks. However for specific requirements of in-house databases and processes no such solutions exist. Another issue is that commercial solutions have the risk of vendor lock-in and may require an expensive license of a proprietary relational database management system. To speed up and simplify the development for applications that require chemical structure search capabilities, I have developed Molecule Database Framework. The framework abstracts the storing and searching of chemical structures into method calls. Therefore software developers do not require extensive knowledge about chemistry and the underlying database cartridge. This decreases application development time. Molecule Database Framework is written in Java and I created it by integrating existing free and open-source tools and frameworks. The core functionality includes:•Support for multi-component compounds (mixtures)•Import and export of SD-files•Optional security (authorization)For chemical structure searching Molecule Database Framework leverages the capabilities of the Bingo Cartridge for PostgreSQL and provides type-safe searching, caching, transactions and optional method level security. Molecule Database Framework supports multi-component chemical compounds (mixtures).Furthermore the design of entity classes and the reasoning behind it are explained. By means of a simple web application I describe how the framework could be used. I then benchmarked this example application to create some basic performance expectations for chemical structure searches and import and export of SD-files. By using a simple web application it was shown that Molecule Database Framework successfully abstracts chemical structure searches and SD-File import and export to simple method calls. The framework offers good search performance on a standard laptop without any database tuning. This is also due to the fact that chemical structure searches are paged and cached. Molecule Database Framework is available for download on the projects web page on bitbucket: https://bitbucket.org/kienerj/moleculedatabaseframework.

  18. A review of parameters and heuristics for guiding metabolic pathfinding.

    PubMed

    Kim, Sarah M; Peña, Matthew I; Moll, Mark; Bennett, George N; Kavraki, Lydia E

    2017-09-15

    Recent developments in metabolic engineering have led to the successful biosynthesis of valuable products, such as the precursor of the antimalarial compound, artemisinin, and opioid precursor, thebaine. Synthesizing these traditionally plant-derived compounds in genetically modified yeast cells introduces the possibility of significantly reducing the total time and resources required for their production, and in turn, allows these valuable compounds to become cheaper and more readily available. Most biosynthesis pathways used in metabolic engineering applications have been discovered manually, requiring a tedious search of existing literature and metabolic databases. However, the recent rapid development of available metabolic information has enabled the development of automated approaches for identifying novel pathways. Computer-assisted pathfinding has the potential to save biochemists time in the initial discovery steps of metabolic engineering. In this paper, we review the parameters and heuristics used to guide the search in recent pathfinding algorithms. These parameters and heuristics capture information on the metabolic network structure, compound structures, reaction features, and organism-specificity of pathways. No one metabolic pathfinding algorithm or search parameter stands out as the best to use broadly for solving the pathfinding problem, as each method and parameter has its own strengths and shortcomings. As assisted pathfinding approaches continue to become more sophisticated, the development of better methods for visualizing pathway results and integrating these results into existing metabolic engineering practices is also important for encouraging wider use of these pathfinding methods.

  19. An analytical study of composite laminate lay-up using search algorithms for maximization of flexural stiffness and minimization of springback angle

    NASA Astrophysics Data System (ADS)

    Singh, Ranjan Kumar; Rinawa, Moti Lal

    2018-04-01

    The residual stresses arising in fiber-reinforced laminates during their curing in closed molds lead to changes in the composites after their removal from the molds and cooling. One of these dimensional changes of angle sections is called springback. The parameters such as lay-up, stacking sequence, material system, cure temperature, thickness etc play important role in it. In present work, it is attempted to optimize lay-up and stacking sequence for maximization of flexural stiffness and minimization of springback angle. The search algorithms are employed to obtain best sequence through repair strategy such as swap. A new search algorithm, termed as lay-up search algorithm (LSA) is also proposed, which is an extension of permutation search algorithm (PSA). The efficacy of PSA and LSA is tested on the laminates with a range of lay-ups. A computer code is developed on MATLAB implementing the above schemes. Also, the strategies for multi objective optimization using search algorithms are suggested and tested.

  20. A new effective operator for the hybrid algorithm for solving global optimisation problems

    NASA Astrophysics Data System (ADS)

    Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac

    2018-04-01

    Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.

  1. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  2. Insertion algorithms for network model database management systems

    NASA Astrophysics Data System (ADS)

    Mamadolimov, Abdurashid; Khikmat, Saburov

    2017-12-01

    The network model is a database model conceived as a flexible way of representing objects and their relationships. Its distinguishing feature is that the schema, viewed as a graph in which object types are nodes and relationship types are arcs, forms partial order. When a database is large and a query comparison is expensive then the efficiency requirement of managing algorithms is minimizing the number of query comparisons. We consider updating operation for network model database management systems. We develop a new sequantial algorithm for updating operation. Also we suggest a distributed version of the algorithm.

  3. Large-scale feature searches of collections of medical imagery

    NASA Astrophysics Data System (ADS)

    Hedgcock, Marcus W.; Karshat, Walter B.; Levitt, Tod S.; Vosky, D. N.

    1993-09-01

    Large scale feature searches of accumulated collections of medical imagery are required for multiple purposes, including clinical studies, administrative planning, epidemiology, teaching, quality improvement, and research. To perform a feature search of large collections of medical imagery, one can either search text descriptors of the imagery in the collection (usually the interpretation), or (if the imagery is in digital format) the imagery itself. At our institution, text interpretations of medical imagery are all available in our VA Hospital Information System. These are downloaded daily into an off-line computer. The text descriptors of most medical imagery are usually formatted as free text, and so require a user friendly database search tool to make searches quick and easy for any user to design and execute. We are tailoring such a database search tool (Liveview), developed by one of the authors (Karshat). To further facilitate search construction, we are constructing (from our accumulated interpretation data) a dictionary of medical and radiological terms and synonyms. If the imagery database is digital, the imagery which the search discovers is easily retrieved from the computer archive. We describe our database search user interface, with examples, and compare the efficacy of computer assisted imagery searches from a clinical text database with manual searches. Our initial work on direct feature searches of digital medical imagery is outlined.

  4. Citation searches are more sensitive than keyword searches to identify studies using specific measurement instruments.

    PubMed

    Linder, Suzanne K; Kamath, Geetanjali R; Pratt, Gregory F; Saraykar, Smita S; Volk, Robert J

    2015-04-01

    To compare the effectiveness of two search methods in identifying studies that used the Control Preferences Scale (CPS), a health care decision-making instrument commonly used in clinical settings. We searched the literature using two methods: (1) keyword searching using variations of "Control Preferences Scale" and (2) cited reference searching using two seminal CPS publications. We searched three bibliographic databases [PubMed, Scopus, and Web of Science (WOS)] and one full-text database (Google Scholar). We report precision and sensitivity as measures of effectiveness. Keyword searches in bibliographic databases yielded high average precision (90%) but low average sensitivity (16%). PubMed was the most precise, followed closely by Scopus and WOS. The Google Scholar keyword search had low precision (54%) but provided the highest sensitivity (70%). Cited reference searches in all databases yielded moderate sensitivity (45-54%), but precision ranged from 35% to 75% with Scopus being the most precise. Cited reference searches were more sensitive than keyword searches, making it a more comprehensive strategy to identify all studies that use a particular instrument. Keyword searches provide a quick way of finding some but not all relevant articles. Goals, time, and resources should dictate the combination of which methods and databases are used. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Citation searches are more sensitive than keyword searches to identify studies using specific measurement instruments

    PubMed Central

    Linder, Suzanne K.; Kamath, Geetanjali R.; Pratt, Gregory F.; Saraykar, Smita S.; Volk, Robert J.

    2015-01-01

    Objective To compare the effectiveness of two search methods in identifying studies that used the Control Preferences Scale (CPS), a healthcare decision-making instrument commonly used in clinical settings. Study Design & Setting We searched the literature using two methods: 1) keyword searching using variations of “control preferences scale” and 2) cited reference searching using two seminal CPS publications. We searched three bibliographic databases [PubMed, Scopus, Web of Science (WOS)] and one full-text database (Google Scholar). We report precision and sensitivity as measures of effectiveness. Results Keyword searches in bibliographic databases yielded high average precision (90%), but low average sensitivity (16%). PubMed was the most precise, followed closely by Scopus and WOS. The Google Scholar keyword search had low precision (54%) but provided the highest sensitivity (70%). Cited reference searches in all databases yielded moderate sensitivity (45–54%), but precision ranged from 35–75% with Scopus being the most precise. Conclusion Cited reference searches were more sensitive than keyword searches, making it a more comprehensive strategy to identify all studies that use a particular instrument. Keyword searches provide a quick way of finding some but not all relevant articles. Goals, time and resources should dictate the combination of which methods and databases are used. PMID:25554521

  6. Gene annotation from scientific literature using mappings between keyword systems.

    PubMed

    Pérez, Antonio J; Perez-Iratxeta, Carolina; Bork, Peer; Thode, Guillermo; Andrade, Miguel A

    2004-09-01

    The description of genes in databases by keywords helps the non-specialist to quickly grasp the properties of a gene and increases the efficiency of computational tools that are applied to gene data (e.g. searching a gene database for sequences related to a particular biological process). However, the association of keywords to genes or protein sequences is a difficult process that ultimately implies examination of the literature related to a gene. To support this task, we present a procedure to derive keywords from the set of scientific abstracts related to a gene. Our system is based on the automated extraction of mappings between related terms from different databases using a model of fuzzy associations that can be applied with all generality to any pair of linked databases. We tested the system by annotating genes of the SWISS-PROT database with keywords derived from the abstracts linked to their entries (stored in the MEDLINE database of scientific references). The performance of the annotation procedure was much better for SWISS-PROT keywords (recall of 47%, precision of 68%) than for Gene Ontology terms (recall of 8%, precision of 67%). The algorithm can be publicly accessed and used for the annotation of sequences through a web server at http://www.bork.embl.de/kat

  7. Short term load forecasting using a self-supervised adaptive neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, H.; Pimmel, R.L.

    The authors developed a self-supervised adaptive neural network to perform short term load forecasts (STLF) for a large power system covering a wide service area with several heavy load centers. They used the self-supervised network to extract correlational features from temperature and load data. In using data from the calendar year 1993 as a test case, they found a 0.90 percent error for hour-ahead forecasting and 1.92 percent error for day-ahead forecasting. These levels of error compare favorably with those obtained by other techniques. The algorithm ran in a couple of minutes on a PC containing an Intel Pentium --more » 120 MHz CPU. Since the algorithm included searching the historical database, training the network, and actually performing the forecasts, this approach provides a real-time, portable, and adaptable STLF.« less

  8. Robotic disaster recovery efforts with ad-hoc deployable cloud computing

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Marsh, Ronald; Mohammad, Atif F.

    2013-06-01

    Autonomous operations of search and rescue (SaR) robots is an ill posed problem, which is complexified by the dynamic disaster recovery environment. In a typical SaR response scenario, responder robots will require different levels of processing capabilities during various parts of the response effort and will need to utilize multiple algorithms. Placing these capabilities onboard the robot is a mediocre solution that precludes algorithm specific performance optimization and results in mediocre performance. Architecture for an ad-hoc, deployable cloud environment suitable for use in a disaster response scenario is presented. Under this model, each service provider is optimized for the task and maintains a database of situation-relevant information. This service-oriented architecture (SOA 3.0) compliant framework also serves as an example of the efficient use of SOA 3.0 in an actual cloud application.

  9. Use of model organism and disease databases to support matchmaking for human disease gene discovery.

    PubMed

    Mungall, Christopher J; Washington, Nicole L; Nguyen-Xuan, Jeremy; Condit, Christopher; Smedley, Damian; Köhler, Sebastian; Groza, Tudor; Shefchek, Kent; Hochheiser, Harry; Robinson, Peter N; Lewis, Suzanna E; Haendel, Melissa A

    2015-10-01

    The Matchmaker Exchange application programming interface (API) allows searching a patient's genotypic or phenotypic profiles across clinical sites, for the purposes of cohort discovery and variant disease causal validation. This API can be used not only to search for matching patients, but also to match against public disease and model organism data. This public disease data enable matching known diseases and variant-phenotype associations using phenotype semantic similarity algorithms developed by the Monarch Initiative. The model data can provide additional evidence to aid diagnosis, suggest relevant models for disease mechanism and treatment exploration, and identify collaborators across the translational divide. The Monarch Initiative provides an implementation of this API for searching multiple integrated sources of data that contextualize the knowledge about any given patient or patient family into the greater biomedical knowledge landscape. While this corpus of data can aid diagnosis, it is also the beginning of research to improve understanding of rare human diseases. © 2015 WILEY PERIODICALS, INC.

  10. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1992-01-01

    One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.

  11. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  12. Plantar fasciitis in athletes: diagnostic and treatment strategies. A systematic review

    PubMed Central

    Petraglia, Federica; Ramazzina, Ileana; Costantino, Cosimo

    2017-01-01

    Summary Background: Plantar fasciitis (PF) is reported in different sports mainly in running and soccer athletes. Purpose of this study is to conduct a systematic review of published literature concerning the diagnosis and treatment of PF in both recreational and élite athletes. The review was conducted and reported in accordance with the PRISMA statement. Methods: The following electronic databases were searched: PubMed, Cochrane Library and Scopus. As far as PF diagnosis, we investigated the electronic databases from January 2006 to June 2016, whereas in considering treatments all data in literature were investigated. Results: For both diagnosis and treatment, 17 studies matched inclusion criteria. The results have highlighted that the most frequently used diagnostic techniques were Ultrasonography and Magnetic Resonance Imaging. Conventional, complementary, and alternative treatment approaches were assessed. Conclusions: In reviewing literature, we were unable to find any specific diagnostic algorithm for PF in athletes, due to the fact that no different diagnostic strategies were used for athletes and non-athletes. As for treatment, a few literature data are available and it makes difficult to suggest practice guidelines. Specific studies are necessary to define the best treatment algorithm for both recreational and élite athletes. Level of evidence: Ib. PMID:28717618

  13. Optimization and stratification of multiple sclerosis treatment in fast developing economic countries: a perspective from Qatar.

    PubMed

    Deleu, Dirk; Mesraoua, Boulenouar; El Khider, Hisham; Canibano, Beatriz; Melikyan, Gayane; Al Hail, Hassan; Mhjob, Noha; Bhagat, Anjushri; Ibrahim, Faiza; Hanssens, Yolande

    2017-03-01

    The introduction of disease-modifying therapies (DMTs) - with varying degrees of efficacy for reducing annual relapse rate and disability progression - has considerably transformed the therapeutic landscape of relapsing-remitting multiple sclerosis (RRMS). We aim to develop rational evidence-based treatment recommendations and algorithms for the management of clinically isolated syndrome (CIS) and RRMS that conform to the healthcare system in a fast-developing economic country such as Qatar. We conducted a systematic review using a comprehensive search of MEDLINE, PubMed, and Cochrane Database of Systematic Reviews (1 January 1990 through 30 September 2016). Additional searches of the American Academy of Neurology and European Committee for Treatment and Research in Multiple Sclerosis abstracts from 2012 through 2016 were performed, in addition to searches of the Food and Drug Administration and European Medicines Agency websites to obtain relevant safety information on these DMTs. For each of the DMTs, the mode of action, efficacy, safety and tolerability are briefly discussed. To facilitate the interpretation, the efficacy data of the pivotal phase III trials are expressed by their most clinically useful measure of therapeutic efficacy, the number needed to treat (NNT). In addition, an overview of head-to-head trials in RRMS is provided as well as a summary of the several different RRMS management strategies (lateral switching, escalation, induction, maintenance and combination therapy) and the potential role of each DMT. Finally, algorithms were developed for CIS, active and highly active or rapidly evolving RRMS and subsequent breakthrough disease or suboptimal treatment response while on DMTs. The benefit-to-risk profiles of the DMTs, taking into account patient preference, allowed the provision of rational and safe patient-tailored treatment algorithms. Recommendations and algorithms for the management of CIS and RRMS have been developed relevant to the healthcare system of this fast-developing economic country.

  14. Evaluation of Federated Searching Options for the School Library

    ERIC Educational Resources Information Center

    Abercrombie, Sarah E.

    2008-01-01

    Three hosted federated search tools, Follett One Search, Gale PowerSearch Plus, and WebFeat Express, were configured and implemented in a school library. Databases from five vendors and the OPAC were systematically searched. Federated search results were compared with each other and to the results of the same searches in the database's native…

  15. Development of a Dependency Theory Toolbox for Database Design.

    DTIC Science & Technology

    1987-12-01

    published algorithms and theorems , and hand simulating these algorithms can be a tedious and error prone chore. Additionally, since the process of...to design and study relational databases exists in the form of published algorithms and theorems . However, hand simulating these algorithms can be a...published algorithms and theorems . Hand simulating these algorithms can be a tedious and error prone chore. Therefore, a toolbox of algorithms and

  16. Expert searching in public health

    PubMed Central

    Alpi, Kristine M.

    2005-01-01

    Objective: The article explores the characteristics of public health information needs and the resources available to address those needs that distinguish it as an area of searching requiring particular expertise. Methods: Public health searching activities from reference questions and literature search requests at a large, urban health department library were reviewed to identify the challenges in finding relevant public health information. Results: The terminology of the information request frequently differed from the vocabularies available in the databases. Searches required the use of multiple databases and/or Web resources with diverse interfaces. Issues of the scope and features of the databases relevant to the search questions were considered. Conclusion: Expert searching in public health differs from other types of expert searching in the subject breadth and technical demands of the databases to be searched, the fluidity and lack of standardization of the vocabulary, and the relative scarcity of high-quality investigations at the appropriate level of geographic specificity. Health sciences librarians require a broad exposure to databases, gray literature, and public health terminology to perform as expert searchers in public health. PMID:15685281

  17. Online Patent Searching: The Realities.

    ERIC Educational Resources Information Center

    Kaback, Stuart M.

    1983-01-01

    Considers patent subject searching capabilities of major online databases, noting patent claims, "deep-indexed" files, test searches, retrieval of related references, multi-database searching, improvements needed in indexing of chemical structures, full text searching, improvements needed in handling numerical data, and augmenting a…

  18. Rapid code acquisition algorithms employing PN matched filters

    NASA Technical Reports Server (NTRS)

    Su, Yu T.

    1988-01-01

    The performance of four algorithms using pseudonoise matched filters (PNMFs), for direct-sequence spread-spectrum systems, is analyzed. They are: parallel search with fix dwell detector (PL-FDD), parallel search with sequential detector (PL-SD), parallel-serial search with fix dwell detector (PS-FDD), and parallel-serial search with sequential detector (PS-SD). The operation characteristic for each detector and the mean acquisition time for each algorithm are derived. All the algorithms are studied in conjunction with the noncoherent integration technique, which enables the system to operate in the presence of data modulation. Several previous proposals using PNMF are seen as special cases of the present algorithms.

  19. Efficient Fingercode Classification

    NASA Astrophysics Data System (ADS)

    Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang

    In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.

  20. A Search Algorithm for Generating Alternative Process Plans in Flexible Manufacturing System

    NASA Astrophysics Data System (ADS)

    Tehrani, Hossein; Sugimura, Nobuhiro; Tanimizu, Yoshitaka; Iwamura, Koji

    Capabilities and complexity of manufacturing systems are increasing and striving for an integrated manufacturing environment. Availability of alternative process plans is a key factor for integration of design, process planning and scheduling. This paper describes an algorithm for generation of alternative process plans by extending the existing framework of the process plan networks. A class diagram is introduced for generating process plans and process plan networks from the viewpoint of the integrated process planning and scheduling systems. An incomplete search algorithm is developed for generating and searching the process plan networks. The benefit of this algorithm is that the whole process plan network does not have to be generated before the search algorithm starts. This algorithm is applicable to large and enormous process plan networks and also to search wide areas of the network based on the user requirement. The algorithm can generate alternative process plans and to select a suitable one based on the objective functions.

  1. Using "Reader's Guide to Periodical Literature" on CD-Rom To Teach Database Searching to High School Students.

    ERIC Educational Resources Information Center

    Kern, Joanne F.

    The lack of opportunity for high school sophomores to learn database searching was addressed by the implementation of a computerized magazine article search program. "Reader's Guide to Periodical Literature" on CD-ROM was used to train students in database searching during the time they were assigned to the library to do research papers…

  2. Arabidopsis Gene Family Profiler (aGFP)--user-oriented transcriptomic database with easy-to-use graphic interface.

    PubMed

    Dupl'áková, Nikoleta; Renák, David; Hovanec, Patrik; Honysová, Barbora; Twell, David; Honys, David

    2007-07-23

    Microarray technologies now belong to the standard functional genomics toolbox and have undergone massive development leading to increased genome coverage, accuracy and reliability. The number of experiments exploiting microarray technology has markedly increased in recent years. In parallel with the rapid accumulation of transcriptomic data, on-line analysis tools are being introduced to simplify their use. Global statistical data analysis methods contribute to the development of overall concepts about gene expression patterns and to query and compose working hypotheses. More recently, these applications are being supplemented with more specialized products offering visualization and specific data mining tools. We present a curated gene family-oriented gene expression database, Arabidopsis Gene Family Profiler (aGFP; http://agfp.ueb.cas.cz), which gives the user access to a large collection of normalised Affymetrix ATH1 microarray datasets. The database currently contains NASC Array and AtGenExpress transcriptomic datasets for various tissues at different developmental stages of wild type plants gathered from nearly 350 gene chips. The Arabidopsis GFP database has been designed as an easy-to-use tool for users needing an easily accessible resource for expression data of single genes, pre-defined gene families or custom gene sets, with the further possibility of keyword search. Arabidopsis Gene Family Profiler presents a user-friendly web interface using both graphic and text output. Data are stored at the MySQL server and individual queries are created in PHP script. The most distinguishable features of Arabidopsis Gene Family Profiler database are: 1) the presentation of normalized datasets (Affymetrix MAS algorithm and calculation of model-based gene-expression values based on the Perfect Match-only model); 2) the choice between two different normalization algorithms (Affymetrix MAS4 or MAS5 algorithms); 3) an intuitive interface; 4) an interactive "virtual plant" visualizing the spatial and developmental expression profiles of both gene families and individual genes. Arabidopsis GFP gives users the possibility to analyze current Arabidopsis developmental transcriptomic data starting with simple global queries that can be expanded and further refined to visualize comparative and highly selective gene expression profiles.

  3. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.

    PubMed

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.

  4. Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models

    PubMed Central

    Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou

    2015-01-01

    Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409

  5. A Multistrategy Optimization Improved Artificial Bee Colony Algorithm

    PubMed Central

    Liu, Wen

    2014-01-01

    Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster. PMID:24982924

  6. Block Architecture Problem with Depth First Search Solution and Its Application

    NASA Astrophysics Data System (ADS)

    Rahim, Robbi; Abdullah, Dahlan; Simarmata, Janner; Pranolo, Andri; Saleh Ahmar, Ansari; Hidayat, Rahmat; Napitupulu, Darmawan; Nurdiyanto, Heri; Febriadi, Bayu; Zamzami, Z.

    2018-01-01

    Searching is a common process performed by many computer users, Raita algorithm is one algorithm that can be used to match and find information in accordance with the patterns entered. Raita algorithm applied to the file search application using java programming language and the results obtained from the testing process of the file search quickly and with accurate results and support many data types.

  7. Application of kernel functions for accurate similarity search in large chemical databases.

    PubMed

    Wang, Xiaohong; Huan, Jun; Smalter, Aaron; Lushington, Gerald H

    2010-04-29

    Similarity search in chemical structure databases is an important problem with many applications in chemical genomics, drug design, and efficient chemical probe screening among others. It is widely believed that structure based methods provide an efficient way to do the query. Recently various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models, graph kernel functions can not be applied to large chemical compound database due to the high computational complexity and the difficulties in indexing similarity search for large databases. To bridge graph kernel function and similarity search in chemical databases, we applied a novel kernel-based similarity measurement, developed in our team, to measure similarity of graph represented chemicals. In our method, we utilize a hash table to support new graph kernel function definition, efficient storage and fast search. We have applied our method, named G-hash, to large chemical databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Moreover, the similarity measurement and the index structure is scalable to large chemical databases with smaller indexing size, and faster query processing time as compared to state-of-the-art indexing methods such as Daylight fingerprints, C-tree and GraphGrep. Efficient similarity query processing method for large chemical databases is challenging since we need to balance running time efficiency and similarity search accuracy. Our previous similarity search method, G-hash, provides a new way to perform similarity search in chemical databases. Experimental study validates the utility of G-hash in chemical databases.

  8. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    PubMed

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  9. DNA profiles, computer searches, and the Fourth Amendment.

    PubMed

    Kimel, Catherine W

    2013-01-01

    Pursuant to federal statutes and to laws in all fifty states, the United States government has assembled a database containing the DNA profiles of over eleven million citizens. Without judicial authorization, the government searches each of these profiles one-hundred thousand times every day, seeking to link database subjects to crimes they are not suspected of committing. Yet, courts and scholars that have addressed DNA databasing have focused their attention almost exclusively on the constitutionality of the government's seizure of the biological samples from which the profiles are generated. This Note fills a gap in the scholarship by examining the Fourth Amendment problems that arise when the government searches its vast DNA database. This Note argues that each attempt to match two DNA profiles constitutes a Fourth Amendment search because each attempted match infringes upon database subjects' expectations of privacy in their biological relationships and physical movements. The Note further argues that database searches are unreasonable as they are currently conducted, and it suggests an adaptation of computer-search procedures to remedy the constitutional deficiency.

  10. NABIC: A New Access Portal to Search, Visualize, and Share Agricultural Genomics Data.

    PubMed

    Seol, Young-Joo; Lee, Tae-Ho; Park, Dong-Suk; Kim, Chang-Kug

    2016-01-01

    The National Agricultural Biotechnology Information Center developed an access portal to search, visualize, and share agricultural genomics data with a focus on South Korean information and resources. The portal features an agricultural biotechnology database containing a wide range of omics data from public and proprietary sources. We collected 28.4 TB of data from 162 agricultural organisms, with 10 types of omics data comprising next-generation sequencing sequence read archive, genome, gene, nucleotide, DNA chip, expressed sequence tag, interactome, protein structure, molecular marker, and single-nucleotide polymorphism datasets. Our genomic resources contain information on five animals, seven plants, and one fungus, which is accessed through a genome browser. We also developed a data submission and analysis system as a web service, with easy-to-use functions and cutting-edge algorithms, including those for handling next-generation sequencing data.

  11. Adversarial search by evolutionary computation.

    PubMed

    Hong, T P; Huang, K Y; Lin, W Y

    2001-01-01

    In this paper, we consider the problem of finding good next moves in two-player games. Traditional search algorithms, such as minimax and alpha-beta pruning, suffer great temporal and spatial expansion when exploring deeply into search trees to find better next moves. The evolution of genetic algorithms with the ability to find global or near global optima in limited time seems promising, but they are inept at finding compound optima, such as the minimax in a game-search tree. We thus propose a new genetic algorithm-based approach that can find a good next move by reserving the board evaluation values of new offspring in a partial game-search tree. Experiments show that solution accuracy and search speed are greatly improved by our algorithm.

  12. LETTER TO THE EDITOR: Constant-time solution to the global optimization problem using Brüschweiler's ensemble search algorithm

    NASA Astrophysics Data System (ADS)

    Protopopescu, V.; D'Helon, C.; Barhen, J.

    2003-06-01

    A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.

  13. A SYSTEMATIC SEARCH FOR THE SPECTRA WITH FEATURES OF CRYSTALLINE SILICATES IN THE SPITZER IRS ENHANCED PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rui; Luo, Ali; Liu, Jiaming

    2016-06-01

    The crystalline silicate features are mainly reflected in infrared bands. The Spitzer Infrared Spectrograph (IRS) collected numerous spectra of various objects and provided a big database to investigate crystalline silicates in a wide range of astronomical environments. We apply the manifold ranking algorithm to perform a systematic search for the spectra with crystalline silicate features in the Spitzer IRS Enhanced Products available. In total, 868 spectra of 790 sources are found to show the features of crystalline silicates. These objects are cross-matched with the SIMBAD database as well as with the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST)/DR2. Themore » average spectrum of young stellar objects shows a variety of features dominated either by forsterite or enstatite or neither, while the average spectrum of evolved objects consistently present dominant features of forsterite in AGB, OH/IR, post-AGB, and planetary nebulae. They are identified optically as early-type stars, evolved stars, galaxies and so on. In addition, the strength of spectral features in typical silicate complexes is calculated. The results are available through CDS for the astronomical community to further study crystalline silicates.« less

  14. Chapter 51: How to Build a Simple Cone Search Service Using a Local Database

    NASA Astrophysics Data System (ADS)

    Kent, B. R.; Greene, G. R.

    The cone search service protocol will be examined from the server side in this chapter. A simple cone search service will be setup and configured locally using MySQL. Data will be read into a table, and the Java JDBC will be used to connect to the database. Readers will understand the VO cone search specification and how to use it to query a database on their local systems and return an XML/VOTable file based on an input of RA/DEC coordinates and a search radius. The cone search in this example will be deployed as a Java servlet. The resulting cone search can be tested with a verification service. This basic setup can be used with other languages and relational databases.

  15. A high-performance spatial database based approach for pathology imaging algorithm evaluation

    PubMed Central

    Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.

    2013-01-01

    Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905

  16. Content-based video retrieval by example video clip

    NASA Astrophysics Data System (ADS)

    Dimitrova, Nevenka; Abdel-Mottaleb, Mohamed

    1997-01-01

    This paper presents a novel approach for video retrieval from a large archive of MPEG or Motion JPEG compressed video clips. We introduce a retrieval algorithm that takes a video clip as a query and searches the database for clips with similar contents. Video clips are characterized by a sequence of representative frame signatures, which are constructed from DC coefficients and motion information (`DC+M' signatures). The similarity between two video clips is determined by using their respective signatures. This method facilitates retrieval of clips for the purpose of video editing, broadcast news retrieval, or copyright violation detection.

  17. A new generation of intelligent trainable tools for analyzing large scientific image databases

    NASA Technical Reports Server (NTRS)

    Fayyad, Usama M.; Smyth, Padhraic; Atkinson, David J.

    1994-01-01

    The focus of this paper is on the detection of natural, as opposed to human-made, objects. The distinction is important because, in the context of image analysis, natural objects tend to possess much greater variability in appearance than human-made objects. Hence, we shall focus primarily on the use of algorithms that 'learn by example' as the basis for image exploration. The 'learn by example' approach is potentially more generally applicable compared to model-based vision methods since domain scientists find it relatively easier to provide examples of what they are searching for versus describing a model.

  18. Identifying Psoriasis and Psoriatic Arthritis Patients in Retrospective Databases When Diagnosis Codes Are Not Available: A Validation Study Comparing Medication/Prescriber Visit-Based Algorithms with Diagnosis Codes.

    PubMed

    Dobson-Belaire, Wendy; Goodfield, Jason; Borrelli, Richard; Liu, Fei Fei; Khan, Zeba M

    2018-01-01

    Using diagnosis code-based algorithms is the primary method of identifying patient cohorts for retrospective studies; nevertheless, many databases lack reliable diagnosis code information. To develop precise algorithms based on medication claims/prescriber visits (MCs/PVs) to identify psoriasis (PsO) patients and psoriatic patients with arthritic conditions (PsO-AC), a proxy for psoriatic arthritis, in Canadian databases lacking diagnosis codes. Algorithms were developed using medications with narrow indication profiles in combination with prescriber specialty to define PsO and PsO-AC. For a 3-year study period from July 1, 2009, algorithms were validated using the PharMetrics Plus database, which contains both adjudicated medication claims and diagnosis codes. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the developed algorithms were assessed using diagnosis code as the reference standard. Chosen algorithms were then applied to Canadian drug databases to profile the algorithm-identified PsO and PsO-AC cohorts. In the selected database, 183,328 patients were identified for validation. The highest PPVs for PsO (85%) and PsO-AC (65%) occurred when a predictive algorithm of two or more MCs/PVs was compared with the reference standard of one or more diagnosis codes. NPV and specificity were high (99%-100%), whereas sensitivity was low (≤30%). Reducing the number of MCs/PVs or increasing diagnosis claims decreased the algorithms' PPVs. We have developed an MC/PV-based algorithm to identify PsO patients with a high degree of accuracy, but accuracy for PsO-AC requires further investigation. Such methods allow researchers to conduct retrospective studies in databases in which diagnosis codes are absent. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  19. Alternative Databases for Anthropology Searching.

    ERIC Educational Resources Information Center

    Brody, Fern; Lambert, Maureen

    1984-01-01

    Examines online search results of sample questions in several databases covering linguistics, cultural anthropology, and physical anthropology in order to determine if and where any overlap in results might occur, and which files have greatest number of relevant hits. Search results by database are given for each subject area. (EJS)

  20. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  1. When is a search not a search? A comparison of searching the AMED complementary health database via EBSCOhost, OVID and DIALOG.

    PubMed

    Younger, Paula; Boddy, Kate

    2009-06-01

    The researchers involved in this study work at Exeter Health library and at the Complementary Medicine Unit, Peninsula School of Medicine and Dentistry (PCMD). Within this collaborative environment it is possible to access the electronic resources of three institutions. This includes access to AMED and other databases using different interfaces. The aim of this study was to investigate whether searching different interfaces to the AMED allied health and complementary medicine database produced the same results when using identical search terms. The following Internet-based AMED interfaces were searched: DIALOG DataStar; EBSCOhost and OVID SP_UI01.00.02. Search results from all three databases were saved in an endnote database to facilitate analysis. A checklist was also compiled comparing interface features. In our initial search, DIALOG returned 29 hits, OVID 14 and Ebsco 8. If we assume that DIALOG returned 100% of potential hits, OVID initially returned only 48% of hits and EBSCOhost only 28%. In our search, a researcher using the Ebsco interface to carry out a simple search on AMED would miss over 70% of possible search hits. Subsequent EBSCOhost searches on different subjects failed to find between 21 and 86% of the hits retrieved using the same keywords via DIALOG DataStar. In two cases, the simple EBSCOhost search failed to find any of the results found via DIALOG DataStar. Depending on the interface, the number of hits retrieved from the same database with the same simple search can vary dramatically. Some simple searches fail to retrieve a substantial percentage of citations. This may result in an uninformed literature review, research funding application or treatment intervention. In addition to ensuring that keywords, spelling and medical subject headings (MeSH) accurately reflect the nature of the search, database users should include wildcards and truncation and adapt their search strategy substantially to retrieve the maximum number of appropriate citations possible. Librarians should be aware of these differences when making purchasing decisions, carrying out literature searches and planning user education.

  2. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes.

    PubMed

    Danso, Dominik; Schmeisser, Christel; Chow, Jennifer; Zimmermann, Wolfgang; Wei, Ren; Leggewie, Christian; Li, Xiangzhen; Hazen, Terry; Streit, Wolfgang R

    2018-04-15

    Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria , Proteobacteria , and Bacteroidetes Within the Proteobacteria , the Betaproteobacteria , Deltaproteobacteria , and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria , as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. Copyright © 2018 Danso et al.

  3. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes

    PubMed Central

    Danso, Dominik; Schmeisser, Christel; Chow, Jennifer; Wei, Ren; Leggewie, Christian; Li, Xiangzhen

    2018-01-01

    ABSTRACT Polyethylene terephthalate (PET) is one of the most important synthetic polymers used today. Unfortunately, the polymers accumulate in nature and to date no highly active enzymes are known that can degrade it at high velocity. Enzymes involved in PET degradation are mainly α- and β-hydrolases, like cutinases and related enzymes (EC 3.1.1). Currently, only a small number of such enzymes are well characterized. In this work, a search algorithm was developed that identified 504 possible PET hydrolase candidate genes from various databases. A further global search that comprised more than 16 Gb of sequence information within 108 marine and 25 terrestrial metagenomes obtained from the Integrated Microbial Genome (IMG) database detected 349 putative PET hydrolases. Heterologous expression of four such candidate enzymes verified the function of these enzymes and confirmed the usefulness of the developed search algorithm. In this way, two novel and thermostable enzymes with high potential for downstream application were partially characterized. Clustering of 504 novel enzyme candidates based on amino acid similarities indicated that PET hydrolases mainly occur in the phyla of Actinobacteria, Proteobacteria, and Bacteroidetes. Within the Proteobacteria, the Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were the main hosts. Remarkably enough, in the marine environment, bacteria affiliated with the phylum Bacteroidetes appear to be the main hosts of PET hydrolase genes, rather than Actinobacteria or Proteobacteria, as observed for the terrestrial metagenomes. Our data further imply that PET hydrolases are truly rare enzymes. The highest occurrence of 1.5 hits/Mb was observed in sequences from a sample site containing crude oil. IMPORTANCE Polyethylene terephthalate (PET) accumulates in our environment without significant microbial conversion. Although a few PET hydrolases are already known, it is still unknown how frequently they appear and with which main bacterial phyla they are affiliated. In this study, deep sequence mining of protein databases and metagenomes demonstrated that PET hydrolases indeed occur at very low frequencies in the environment. Furthermore, it was possible to link them to phyla that were previously not known to harbor such enzymes. This work contributes novel knowledge on the phylogenetic relationships, the recent evolution, and the global distribution of PET hydrolases. Finally, we describe the biochemical traits of four novel PET hydrolases. PMID:29427431

  4. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1993-01-01

    One of the biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental data base access method, VIEWCACHE, provides such an interface for accessing distributed datasets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image datasets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate database search.

  5. A capacitated vehicle routing problem with order available time in e-commerce industry

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Li, Kunpeng; Liu, Zhixue

    2017-03-01

    In this article, a variant of the well-known capacitated vehicle routing problem (CVRP) called the capacitated vehicle routing problem with order available time (CVRPOAT) is considered, which is observed in the operations of the current e-commerce industry. In this problem, the orders are not available for delivery at the beginning of the planning period. CVRPOAT takes all the assumptions of CVRP, except the order available time, which is determined by the precedent order picking and packing stage in the warehouse of the online grocer. The objective is to minimize the sum of vehicle completion times. An efficient tabu search algorithm is presented to tackle the problem. Moreover, a Lagrangian relaxation algorithm is developed to obtain the lower bounds of reasonably sized problems. Based on the test instances derived from benchmark data, the proposed tabu search algorithm is compared with a published related genetic algorithm, as well as the derived lower bounds. Also, the tabu search algorithm is compared with the current operation strategy of the online grocer. Computational results indicate that the gap between the lower bounds and the results of the tabu search algorithm is small and the tabu search algorithm is superior to the genetic algorithm. Moreover, the CVRPOAT formulation together with the tabu search algorithm performs much better than the current operation strategy of the online grocer.

  6. Ringed Seal Search for Global Optimization via a Sensitive Search Model.

    PubMed

    Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar

    2016-01-01

    The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.

  7. Algorithm for detection the QRS complexes based on support vector machine

    NASA Astrophysics Data System (ADS)

    Van, G. V.; Podmasteryev, K. V.

    2017-11-01

    The efficiency of computer ECG analysis depends on the accurate detection of QRS-complexes. This paper presents an algorithm for QRS complex detection based of support vector machine (SVM). The proposed algorithm is evaluated on annotated standard databases such as MIT-BIH Arrhythmia database. The QRS detector obtained a sensitivity Se = 98.32% and specificity Sp = 95.46% for MIT-BIH Arrhythmia database. This algorithm can be used as the basis for the software to diagnose electrical activity of the heart.

  8. Automatic diagnosis of malaria based on complete circle-ellipse fitting search algorithm.

    PubMed

    Sheikhhosseini, M; Rabbani, H; Zekri, M; Talebi, A

    2013-12-01

    Diagnosis of malaria parasitemia from blood smears is a subjective and time-consuming task for pathologists. The automatic diagnostic process will reduce the diagnostic time. Also, it can be worked as a second opinion for pathologists and may be useful in malaria screening. This study presents an automatic method for malaria diagnosis from thin blood smears. According to this fact that malaria life cycle is started by forming a ring around the parasite nucleus, the proposed approach is mainly based on curve fitting to detect parasite ring in the blood smear. The method is composed of six main phases: stain object extraction step, which extracts candidate objects that may be infected by malaria parasites. This phase includes stained pixel extraction step based on intensity and colour, and stained object segmentation by defining stained circle matching. Second step is preprocessing phase which makes use of nonlinear diffusion filtering. The process continues with detection of parasite nucleus from resulted image of previous step according to image intensity. Fourth step introduces a complete search process in which the circle search step identifies the direction and initial points for direct least-square ellipse fitting algorithm. Furthermore in the ellipse searching process, although parasite shape is completed undesired regions with high error value are removed and ellipse parameters are modified. Features are extracted from the parasite candidate region instead of whole candidate object in the fifth step. By employing this special feature extraction way, which is provided by special searching process, the necessity of employing clump splitting methods is removed. Also, defining stained circle matching process in the first step speeds up the whole procedure. Finally, a series of decision rules are applied on the extracted features to decide on the positivity or negativity of malaria parasite presence. The algorithm is applied on 26 digital images which are provided from thin blood smear films. The images are contained 1274 objects which may be infected by parasite or healthy. Applying the automatic identification of malaria on provided database showed a sensitivity of 82.28% and specificity of 98.02%. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  9. Database Searching by Managers.

    ERIC Educational Resources Information Center

    Arnold, Stephen E.

    Managers and executives need the easy and quick access to business and management information that online databases can provide, but many have difficulty articulating their search needs to an intermediary. One possible solution would be to encourage managers and their immediate support staff members to search textual databases directly as they now…

  10. Constructing Effective Search Strategies for Electronic Searching.

    ERIC Educational Resources Information Center

    Flanagan, Lynn; Parente, Sharon Campbell

    Electronic databases have grown tremendously in both number and popularity since their development during the 1960s. Access to electronic databases in academic libraries was originally offered primarily through mediated search services by trained librarians; however, the advent of CD-ROM and end-user interfaces for online databases has shifted the…

  11. Subject searching of monographs online in the medical literature.

    PubMed

    Brahmi, F A

    1988-01-01

    Searching by subject for monographic information online in the medical literature is a challenging task. The NLM database of choice is CATLINE. Other NLM databases of interest are BIOTHICSLINE, CANCERLIT, HEALTH, POPLINE, and TOXLINE. Ten BRS databases are also discussed. Of these, Books in Print, Bookinfo, and OCLC are explored further. The databases are compared as to number of total records and number and percentage of monographs. Three topics were searched on CROSS to compare hits on BBIP, BOOK, and OCLC. The same searches were run on CATLINE. The parameters of time coverage and language were equalized and the resulting citations were compared and analyzed for duplication and uniqueness. With the input of CATLINE tapes into OCLC, OCLC has become the database of choice for searching by subject for medical monographs.

  12. Cryptanalysis of Password Protection of Oracle Database Management System (DBMS)

    NASA Astrophysics Data System (ADS)

    Koishibayev, Timur; Umarova, Zhanat

    2016-04-01

    This article discusses the currently available encryption algorithms in the Oracle database, also the proposed upgraded encryption algorithm, which consists of 4 steps. In conclusion we make an analysis of password encryption of Oracle Database.

  13. Beam-steering efficiency optimization method based on a rapid-search algorithm for liquid crystal optical phased array.

    PubMed

    Xiao, Feng; Kong, Lingjiang; Chen, Jian

    2017-06-01

    A rapid-search algorithm to improve the beam-steering efficiency for a liquid crystal optical phased array was proposed and experimentally demonstrated in this paper. This proposed algorithm, in which the value of steering efficiency is taken as the objective function and the controlling voltage codes are considered as the optimization variables, consisted of a detection stage and a construction stage. It optimized the steering efficiency in the detection stage and adjusted its search direction adaptively in the construction stage to avoid getting caught in a wrong search space. Simulations had been conducted to compare the proposed algorithm with the widely used pattern-search algorithm using criteria of convergence rate and optimized efficiency. Beam-steering optimization experiments had been performed to verify the validity of the proposed method.

  14. Search Fermilab Plant Database

    Science.gov Websites

    Select the characteristics of the plant you want to find below and click the Search button. To see Plants to see all the prairie plants in the database. Click Search All Plants at Fermilab to search for reflects observations at Fermilab. If you need a more sophisticated search, try the Advanced Search. Search

  15. An Algorithm of Association Rule Mining for Microbial Energy Prospection

    PubMed Central

    Shaheen, Muhammad; Shahbaz, Muhammad

    2017-01-01

    The presence of hydrocarbons beneath earth’s surface produces some microbiological anomalies in soils and sediments. The detection of such microbial populations involves pure bio chemical processes which are specialized, expensive and time consuming. This paper proposes a new algorithm of context based association rule mining on non spatial data. The algorithm is a modified form of already developed algorithm which was for spatial database only. The algorithm is applied to mine context based association rules on microbial database to extract interesting and useful associations of microbial attributes with existence of hydrocarbon reserve. The surface and soil manifestations caused by the presence of hydrocarbon oxidizing microbes are selected from existing literature and stored in a shared database. The algorithm is applied on the said database to generate direct and indirect associations among the stored microbial indicators. These associations are then correlated with the probability of hydrocarbon’s existence. The numerical evaluation shows better accuracy for non-spatial data as compared to conventional algorithms at generating reliable and robust rules. PMID:28393846

  16. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    NASA Technical Reports Server (NTRS)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  17. Building a medical image processing algorithm verification database

    NASA Astrophysics Data System (ADS)

    Brown, C. Wayne

    2000-06-01

    The design of a database containing head Computed Tomography (CT) studies is presented, along with a justification for the database's composition. The database will be used to validate software algorithms that screen normal head CT studies from studies that contain pathology. The database is designed to have the following major properties: (1) a size sufficient for statistical viability, (2) inclusion of both normal (no pathology) and abnormal scans, (3) inclusion of scans due to equipment malfunction, technologist error, and uncooperative patients, (4) inclusion of data sets from multiple scanner manufacturers, (5) inclusion of data sets from different gender and age groups, and (6) three independent diagnosis of each data set. Designed correctly, the database will provide a partial basis for FDA (United States Food and Drug Administration) approval of image processing algorithms for clinical use. Our goal for the database is the proof of viability of screening head CT's for normal anatomy using computer algorithms. To put this work into context, a classification scheme for 'computer aided diagnosis' systems is proposed.

  18. Searching Harvard Business Review Online. . . Lessons in Searching a Full Text Database.

    ERIC Educational Resources Information Center

    Tenopir, Carol

    1985-01-01

    This article examines the Harvard Business Review Online (HBRO) database (bibliographic description fields, abstracts, extracted information, full text, subject descriptors) and reports on 31 sample HBRO searches conducted in Bibliographic Retrieval Services to test differences between searching full text and searching bibliographic record. Sample…

  19. Branching Search

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2017-12-01

    Search processes play key roles in various scientific fields. A widespread and effective search-process scheme, which we term Restart Search, is based on the following restart algorithm: i) set a timer and initiate a search task; ii) if the task was completed before the timer expired, then stop; iii) if the timer expired before the task was completed, then go back to the first step and restart the search process anew. In this paper a branching feature is added to the restart algorithm: at every transition from the algorithm's third step to its first step branching takes place, thus multiplying the search effort. This branching feature yields a search-process scheme which we term Branching Search. The running time of Branching Search is analyzed, closed-form results are established, and these results are compared to the coresponding running-time results of Restart Search.

  20. Key features for ATA / ATR database design in missile systems

    NASA Astrophysics Data System (ADS)

    Özertem, Kemal Arda

    2017-05-01

    Automatic target acquisition (ATA) and automatic target recognition (ATR) are two vital tasks for missile systems, and having a robust detection and recognition algorithm is crucial for overall system performance. In order to have a robust target detection and recognition algorithm, an extensive image database is required. Automatic target recognition algorithms use the database of images in training and testing steps of algorithm. This directly affects the recognition performance, since the training accuracy is driven by the quality of the image database. In addition, the performance of an automatic target detection algorithm can be measured effectively by using an image database. There are two main ways for designing an ATA / ATR database. The first and easy way is by using a scene generator. A scene generator can model the objects by considering its material information, the atmospheric conditions, detector type and the territory. Designing image database by using a scene generator is inexpensive and it allows creating many different scenarios quickly and easily. However the major drawback of using a scene generator is its low fidelity, since the images are created virtually. The second and difficult way is designing it using real-world images. Designing image database with real-world images is a lot more costly and time consuming; however it offers high fidelity, which is critical for missile algorithms. In this paper, critical concepts in ATA / ATR database design with real-world images are discussed. Each concept is discussed in the perspective of ATA and ATR separately. For the implementation stage, some possible solutions and trade-offs for creating the database are proposed, and all proposed approaches are compared to each other with regards to their pros and cons.

  1. The Footprint Database and Web Services of the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Dobos, László; Varga-Verebélyi, Erika; Verdugo, Eva; Teyssier, David; Exter, Katrina; Valtchanov, Ivan; Budavári, Tamás; Kiss, Csaba

    2016-10-01

    Data from the Herschel Space Observatory is freely available to the public but no uniformly processed catalogue of the observations has been published so far. To date, the Herschel Science Archive does not contain the exact sky coverage (footprint) of individual observations and supports search for measurements based on bounding circles only. Drawing on previous experience in implementing footprint databases, we built the Herschel Footprint Database and Web Services for the Herschel Space Observatory to provide efficient search capabilities for typical astronomical queries. The database was designed with the following main goals in mind: (a) provide a unified data model for meta-data of all instruments and observational modes, (b) quickly find observations covering a selected object and its neighbourhood, (c) quickly find every observation in a larger area of the sky, (d) allow for finding solar system objects crossing observation fields. As a first step, we developed a unified data model of observations of all three Herschel instruments for all pointing and instrument modes. Then, using telescope pointing information and observational meta-data, we compiled a database of footprints. As opposed to methods using pixellation of the sphere, we represent sky coverage in an exact geometric form allowing for precise area calculations. For easier handling of Herschel observation footprints with rather complex shapes, two algorithms were implemented to reduce the outline. Furthermore, a new visualisation tool to plot footprints with various spherical projections was developed. Indexing of the footprints using Hierarchical Triangular Mesh makes it possible to quickly find observations based on sky coverage, time and meta-data. The database is accessible via a web site http://herschel.vo.elte.hu and also as a set of REST web service functions, which makes it readily usable from programming environments such as Python or IDL. The web service allows downloading footprint data in various formats including Virtual Observatory standards.

  2. In search of the emotional face: anger versus happiness superiority in visual search.

    PubMed

    Savage, Ruth A; Lipp, Ottmar V; Craig, Belinda M; Becker, Stefanie I; Horstmann, Gernot

    2013-08-01

    Previous research has provided inconsistent results regarding visual search for emotional faces, yielding evidence for either anger superiority (i.e., more efficient search for angry faces) or happiness superiority effects (i.e., more efficient search for happy faces), suggesting that these results do not reflect on emotional expression, but on emotion (un-)related low-level perceptual features. The present study investigated possible factors mediating anger/happiness superiority effects; specifically search strategy (fixed vs. variable target search; Experiment 1), stimulus choice (Nimstim database vs. Ekman & Friesen database; Experiments 1 and 2), and emotional intensity (Experiment 3 and 3a). Angry faces were found faster than happy faces regardless of search strategy using faces from the Nimstim database (Experiment 1). By contrast, a happiness superiority effect was evident in Experiment 2 when using faces from the Ekman and Friesen database. Experiment 3 employed angry, happy, and exuberant expressions (Nimstim database) and yielded anger and happiness superiority effects, respectively, highlighting the importance of the choice of stimulus materials. Ratings of the stimulus materials collected in Experiment 3a indicate that differences in perceived emotional intensity, pleasantness, or arousal do not account for differences in search efficiency. Across three studies, the current investigation indicates that prior reports of anger or happiness superiority effects in visual search are likely to reflect on low-level visual features associated with the stimulus materials used, rather than on emotion. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  3. Self-adaptive multi-objective harmony search for optimal design of water distribution networks

    NASA Astrophysics Data System (ADS)

    Choi, Young Hwan; Lee, Ho Min; Yoo, Do Guen; Kim, Joong Hoon

    2017-11-01

    In multi-objective optimization computing, it is important to assign suitable parameters to each optimization problem to obtain better solutions. In this study, a self-adaptive multi-objective harmony search (SaMOHS) algorithm is developed to apply the parameter-setting-free technique, which is an example of a self-adaptive methodology. The SaMOHS algorithm attempts to remove some of the inconvenience from parameter setting and selects the most adaptive parameters during the iterative solution search process. To verify the proposed algorithm, an optimal least cost water distribution network design problem is applied to three different target networks. The results are compared with other well-known algorithms such as multi-objective harmony search and the non-dominated sorting genetic algorithm-II. The efficiency of the proposed algorithm is quantified by suitable performance indices. The results indicate that SaMOHS can be efficiently applied to the search for Pareto-optimal solutions in a multi-objective solution space.

  4. Exploratory power of the harmony search algorithm: analysis and improvements for global numerical optimization.

    PubMed

    Das, Swagatam; Mukhopadhyay, Arpan; Roy, Anwit; Abraham, Ajith; Panigrahi, Bijaya K

    2011-02-01

    The theoretical analysis of evolutionary algorithms is believed to be very important for understanding their internal search mechanism and thus to develop more efficient algorithms. This paper presents a simple mathematical analysis of the explorative search behavior of a recently developed metaheuristic algorithm called harmony search (HS). HS is a derivative-free real parameter optimization algorithm, and it draws inspiration from the musical improvisation process of searching for a perfect state of harmony. This paper analyzes the evolution of the population-variance over successive generations in HS and thereby draws some important conclusions regarding the explorative power of HS. A simple but very useful modification to the classical HS has been proposed in light of the mathematical analysis undertaken here. A comparison with the most recently published variants of HS and four other state-of-the-art optimization algorithms over 15 unconstrained and five constrained benchmark functions reflects the efficiency of the modified HS in terms of final accuracy, convergence speed, and robustness.

  5. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch

    PubMed Central

    Karthikeyan, M.; Sree Ranga Raja, T.

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods. PMID:26491710

  6. Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch.

    PubMed

    Karthikeyan, M; Raja, T Sree Ranga

    2015-01-01

    Economic load dispatch (ELD) problem is an important issue in the operation and control of modern control system. The ELD problem is complex and nonlinear with equality and inequality constraints which makes it hard to be efficiently solved. This paper presents a new modification of harmony search (HS) algorithm named as dynamic harmony search with polynomial mutation (DHSPM) algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR) and pitch adjusting rate (PAR) are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods.

  7. Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.

    PubMed

    Li, Guang; Wang, Yadong; Su, Xiaohong

    2012-10-01

    When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Genetic Testing Registry

    MedlinePlus

    ... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...

  9. Teaching AI Search Algorithms in a Web-Based Educational System

    ERIC Educational Resources Information Center

    Grivokostopoulou, Foteini; Hatzilygeroudis, Ioannis

    2013-01-01

    In this paper, we present a way of teaching AI search algorithms in a web-based adaptive educational system. Teaching is based on interactive examples and exercises. Interactive examples, which use visualized animations to present AI search algorithms in a step-by-step way with explanations, are used to make learning more attractive. Practice…

  10. Diagnostic accuracy of administrative data algorithms in the diagnosis of osteoarthritis: a systematic review.

    PubMed

    Shrestha, Swastina; Dave, Amish J; Losina, Elena; Katz, Jeffrey N

    2016-07-07

    Administrative health care data are frequently used to study disease burden and treatment outcomes in many conditions including osteoarthritis (OA). OA is a chronic condition with significant disease burden affecting over 27 million adults in the US. There are few studies examining the performance of administrative data algorithms to diagnose OA. The purpose of this study is to perform a systematic review of administrative data algorithms for OA diagnosis; and, to evaluate the diagnostic characteristics of algorithms based on restrictiveness and reference standards. Two reviewers independently screened English-language articles published in Medline, Embase, PubMed, and Cochrane databases that used administrative data to identify OA cases. Each algorithm was classified as restrictive or less restrictive based on number and type of administrative codes required to satisfy the case definition. We recorded sensitivity and specificity of algorithms and calculated positive likelihood ratio (LR+) and positive predictive value (PPV) based on assumed OA prevalence of 0.1, 0.25, and 0.50. The search identified 7 studies that used 13 algorithms. Of these 13 algorithms, 5 were classified as restrictive and 8 as less restrictive. Restrictive algorithms had lower median sensitivity and higher median specificity compared to less restrictive algorithms when reference standards were self-report and American college of Rheumatology (ACR) criteria. The algorithms compared to reference standard of physician diagnosis had higher sensitivity and specificity than those compared to self-reported diagnosis or ACR criteria. Restrictive algorithms are more specific for OA diagnosis and can be used to identify cases when false positives have higher costs e.g. interventional studies. Less restrictive algorithms are more sensitive and suited for studies that attempt to identify all cases e.g. screening programs.

  11. On the use of harmony search algorithm in the training of wavelet neural networks

    NASA Astrophysics Data System (ADS)

    Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline

    2015-10-01

    Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.

  12. Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis

    DOE PAGES

    Thomaz, Lucas A.; Jardim, Eric; da Silva, Allan F.; ...

    2017-10-16

    This study presents a family of algorithms based on sparse decompositions that detect anomalies in video sequences obtained from slow moving cameras. These algorithms start by computing the union of subspaces that best represents all the frames from a reference (anomaly free) video as a low-rank projection plus a sparse residue. Then, they perform a low-rank representation of a target (possibly anomalous) video by taking advantage of both the union of subspaces and the sparse residue computed from the reference video. Such algorithms provide good detection results while at the same time obviating the need for previous video synchronization. However,more » this is obtained at the cost of a large computational complexity, which hinders their applicability. Another contribution of this paper approaches this problem by using intrinsic properties of the obtained data representation in order to restrict the search space to the most relevant subspaces, providing computational complexity gains of up to two orders of magnitude. The developed algorithms are shown to cope well with videos acquired in challenging scenarios, as verified by the analysis of 59 videos from the VDAO database that comprises videos with abandoned objects in a cluttered industrial scenario.« less

  13. Anomaly Detection in Moving-Camera Video Sequences Using Principal Subspace Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomaz, Lucas A.; Jardim, Eric; da Silva, Allan F.

    This study presents a family of algorithms based on sparse decompositions that detect anomalies in video sequences obtained from slow moving cameras. These algorithms start by computing the union of subspaces that best represents all the frames from a reference (anomaly free) video as a low-rank projection plus a sparse residue. Then, they perform a low-rank representation of a target (possibly anomalous) video by taking advantage of both the union of subspaces and the sparse residue computed from the reference video. Such algorithms provide good detection results while at the same time obviating the need for previous video synchronization. However,more » this is obtained at the cost of a large computational complexity, which hinders their applicability. Another contribution of this paper approaches this problem by using intrinsic properties of the obtained data representation in order to restrict the search space to the most relevant subspaces, providing computational complexity gains of up to two orders of magnitude. The developed algorithms are shown to cope well with videos acquired in challenging scenarios, as verified by the analysis of 59 videos from the VDAO database that comprises videos with abandoned objects in a cluttered industrial scenario.« less

  14. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis.

    PubMed

    Song, Lele; Jia, Jia; Peng, Xiumei; Xiao, Wenhua; Li, Yuemin

    2017-06-08

    The SEPT9 gene methylation assay is the first FDA-approved blood assay for colorectal cancer (CRC) screening. Fecal immunochemical test (FIT), FIT-DNA test and CEA assay are also in vitro diagnostic (IVD) tests used in CRC screening. This meta-analysis aims to review the SEPT9 assay performance and compare it with other IVD CRC screening tests. By searching the Ovid MEDLINE, EMBASE, CBMdisc and CJFD database, 25 out of 180 studies were identified to report the SEPT9 assay performance. 2613 CRC cases and 6030 controls were included, and sensitivity and specificity were used to evaluate its performance at various algorithms. 1/3 algorithm exhibited the best sensitivity while 2/3 and 1/1 algorithm exhibited the best balance between sensitivity and specificity. The performance of the blood SEPT9 assay is superior to that of the serum protein markers and the FIT test in symptomatic population, while appeared to be less potent than FIT and FIT-DNA tests in asymptomatic population. In conclusion, 1/3 algorithm is recommended for CRC screening, and 2/3 or 1/1 algorithms are suitable for early detection for diagnostic purpose. The SEPT9 assay exhibited better performance in symptomatic population than in asymptomatic population.

  15. Comparison and Evaluation of Clustering Algorithms for Tandem Mass Spectra.

    PubMed

    Rieder, Vera; Schork, Karin U; Kerschke, Laura; Blank-Landeshammer, Bernhard; Sickmann, Albert; Rahnenführer, Jörg

    2017-11-03

    In proteomics, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is established for identifying peptides and proteins. Duplicated spectra, that is, multiple spectra of the same peptide, occur both in single MS/MS runs and in large spectral libraries. Clustering tandem mass spectra is used to find consensus spectra, with manifold applications. First, it speeds up database searches, as performed for instance by Mascot. Second, it helps to identify novel peptides across species. Third, it is used for quality control to detect wrongly annotated spectra. We compare different clustering algorithms based on the cosine distance between spectra. CAST, MS-Cluster, and PRIDE Cluster are popular algorithms to cluster tandem mass spectra. We add well-known algorithms for large data sets, hierarchical clustering, DBSCAN, and connected components of a graph, as well as the new method N-Cluster. All algorithms are evaluated on real data with varied parameter settings. Cluster results are compared with each other and with peptide annotations based on validation measures such as purity. Quality control, regarding the detection of wrongly (un)annotated spectra, is discussed for exemplary resulting clusters. N-Cluster proves to be highly competitive. All clustering results benefit from the so-called DISMS2 filter that integrates additional information, for example, on precursor mass.

  16. ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data.

    PubMed

    Wu, Song; Wang, Jianmin; Zhao, Wei; Pounds, Stanley; Cheng, Cheng

    2010-06-03

    ChIP-Seq is a powerful tool for identifying the interaction between genomic regulators and their bound DNAs, especially for locating transcription factor binding sites. However, high cost and high rate of false discovery of transcription factor binding sites identified from ChIP-Seq data significantly limit its application. Here we report a new algorithm, ChIP-PaM, for identifying transcription factor target regions in ChIP-Seq datasets. This algorithm makes full use of a protein-DNA binding pattern by capitalizing on three lines of evidence: 1) the tag count modelling at the peak position, 2) pattern matching of a specific tag count distribution, and 3) motif searching along the genome. A novel data-based two-step eFDR procedure is proposed to integrate the three lines of evidence to determine significantly enriched regions. Our algorithm requires no technical controls and efficiently discriminates falsely enriched regions from regions enriched by true transcription factor (TF) binding on the basis of ChIP-Seq data only. An analysis of real genomic data is presented to demonstrate our method. In a comparison with other existing methods, we found that our algorithm provides more accurate binding site discovery while maintaining comparable statistical power.

  17. New algorithms to represent complex pseudoknotted RNA structures in dot-bracket notation.

    PubMed

    Antczak, Maciej; Popenda, Mariusz; Zok, Tomasz; Zurkowski, Michal; Adamiak, Ryszard W; Szachniuk, Marta

    2018-04-15

    Understanding the formation, architecture and roles of pseudoknots in RNA structures are one of the most difficult challenges in RNA computational biology and structural bioinformatics. Methods predicting pseudoknots typically perform this with poor accuracy, often despite experimental data incorporation. Existing bioinformatic approaches differ in terms of pseudoknots' recognition and revealing their nature. A few ways of pseudoknot classification exist, most common ones refer to a genus or order. Following the latter one, we propose new algorithms that identify pseudoknots in RNA structure provided in BPSEQ format, determine their order and encode in dot-bracket-letter notation. The proposed encoding aims to illustrate the hierarchy of RNA folding. New algorithms are based on dynamic programming and hybrid (combining exhaustive search and random walk) approaches. They evolved from elementary algorithm implemented within the workflow of RNA FRABASE 1.0, our database of RNA structure fragments. They use different scoring functions to rank dissimilar dot-bracket representations of RNA structure. Computational experiments show an advantage of new methods over the others, especially for large RNA structures. Presented algorithms have been implemented as new functionality of RNApdbee webserver and are ready to use at http://rnapdbee.cs.put.poznan.pl. mszachniuk@cs.put.poznan.pl. Supplementary data are available at Bioinformatics online.

  18. Generic Entity Resolution in Relational Databases

    NASA Astrophysics Data System (ADS)

    Sidló, Csaba István

    Entity Resolution (ER) covers the problem of identifying distinct representations of real-world entities in heterogeneous databases. We consider the generic formulation of ER problems (GER) with exact outcome. In practice, input data usually resides in relational databases and can grow to huge volumes. Yet, typical solutions described in the literature employ standalone memory resident algorithms. In this paper we utilize facilities of standard, unmodified relational database management systems (RDBMS) to enhance the efficiency of GER algorithms. We study and revise the problem formulation, and propose practical and efficient algorithms optimized for RDBMS external memory processing. We outline a real-world scenario and demonstrate the advantage of algorithms by performing experiments on insurance customer data.

  19. Database Search Strategies & Tips. Reprints from the Best of "ONLINE" [and]"DATABASE."

    ERIC Educational Resources Information Center

    Online, Inc., Weston, CT.

    Reprints of 17 articles presenting strategies and tips for searching databases online appear in this collection, which is one in a series of volumes of reprints from "ONLINE" and "DATABASE" magazines. Edited for information professionals who use electronically distributed databases, these articles address such topics as: (1)…

  20. An improved harmony search algorithm with dynamically varying bandwidth

    NASA Astrophysics Data System (ADS)

    Kalivarapu, J.; Jain, S.; Bag, S.

    2016-07-01

    The present work demonstrates a new variant of the harmony search (HS) algorithm where bandwidth (BW) is one of the deciding factors for the time complexity and the performance of the algorithm. The BW needs to have both explorative and exploitative characteristics. The ideology is to use a large BW to search in the full domain and to adjust the BW dynamically closer to the optimal solution. After trying a series of approaches, a methodology inspired by the functioning of a low-pass filter showed satisfactory results. This approach was implemented in the self-adaptive improved harmony search (SIHS) algorithm and tested on several benchmark functions. Compared to the existing HS algorithm and its variants, SIHS showed better performance on most of the test functions. Thereafter, the algorithm was applied to geometric parameter optimization of a friction stir welding tool.

Top