Sample records for database shock physics

  1. (BARS) -- Bibliographic Retrieval System Sandia Shock Compression (SSC) database Shock Physics Index (SPHINX) database. Volume 1: UNIX version query guide customized application for INGRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, W.; von Laven, G.M.; Parker, T.

    1993-09-01

    The Bibliographic Retrieval System (BARS) is a data base management system specially designed to retrieve bibliographic references. Two databases are available, (i) the Sandia Shock Compression (SSC) database which contains over 5700 references to the literature related to stress waves in solids and their applications, and (ii) the Shock Physics Index (SPHINX) which includes over 8000 further references to stress waves in solids, material properties at intermediate and low rates, ballistic and hypervelocity impact, and explosive or shock fabrication methods. There is some overlap in the information in the two data bases.

  2. Blunt-Body Aerothermodynamic Database from High-Enthalpy CO2 Testing in an Expansion Tunnel

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Prabhu, Dinesh K.; Maclean, Matthew; Dufrene, Aaron

    2016-01-01

    An extensive database of heating, pressure, and flow field measurements on a 70-deg sphere-cone blunt body geometry in high-enthalpy, CO2 flow has been generated through testing in an expansion tunnel. This database is intended to support development and validation of computational tools and methods to be employed in the design of future Mars missions. The test was conducted in an expansion tunnel in order to avoid uncertainties in the definition of free stream conditions noted in previous studies performed in reflected shock tunnels. Data were obtained across a wide range of test velocity/density conditions that produced various physical phenomena of interest, including laminar and transitional/turbulent boundary layers, non-reacting to completely dissociated post-shock gas composition and shock-layer radiation. Flow field computations were performed at the test conditions and comparisons were made with the experimental data. Based on these comparisons, it is recommended that computational uncertainties on surface heating and pressure, for laminar, reacting-gas environments can be reduced to +/-10% and +/-5%, respectively. However, for flows with turbulence and shock-layer radiation, there were not sufficient validation-quality data obtained in this study to make any conclusions with respect to uncertainties, which highlights the need for further research in these areas.

  3. The Influence of IMF By on the Bow Shock: Observation Result

    NASA Astrophysics Data System (ADS)

    Wang, M.; Lu, J. Y.; Kabin, K.; Yuan, H. Z.; Liu, Z.-Q.; Zhao, J. S.; Li, G.

    2018-03-01

    In this study we use the bow shock crossings contained in the Space Physics Data Facility database, collected by four spacecraft (IMP 8, Geotail, Magion-4, and Cluster1) to analyze the effect of the interplanetary magnetic field (IMF) By component on the bow shock position and shape. Although the IMF Bz component is usually considered much more geoeffective than By, we find that the dayside bow shock is more responsive to the eastward component of the IMF than the north-south one. We believe that the explanation lies in the changes that the Bz component induces on the magnetopause location and shape, which largely compensate the corresponding changes in the dayside bow shock location. In the tail, we find that the bow shock cross section is elongated roughly in the direction perpendicular to the IMF direction, which agrees with earlier modeling studies.

  4. Experimental Database with Baseline CFD Solutions: 2-D and Axisymmetric Hypersonic Shock-Wave/Turbulent-Boundary-Layer Interactions

    NASA Technical Reports Server (NTRS)

    Marvin, Joseph G.; Brown, James L.; Gnoffo, Peter A.

    2013-01-01

    A database compilation of hypersonic shock-wave/turbulent boundary layer experiments is provided. The experiments selected for the database are either 2D or axisymmetric, and include both compression corner and impinging type SWTBL interactions. The strength of the interactions range from attached to incipient separation to fully separated flows. The experiments were chosen based on criterion to ensure quality of the datasets, to be relevant to NASA's missions and to be useful for validation and uncertainty assessment of CFD Navier-Stokes predictive methods, both now and in the future. An emphasis on datasets selected was on surface pressures and surface heating throughout the interaction, but include some wall shear stress distributions and flowfield profiles. Included, for selected cases, are example CFD grids and setup information, along with surface pressure and wall heating results from simulations using current NASA real-gas Navier-Stokes codes by which future CFD investigators can compare and evaluate physics modeling improvements and validation and uncertainty assessments of future CFD code developments. The experimental database is presented tabulated in the Appendices describing each experiment. The database is also provided in computer-readable ASCII files located on a companion DVD.

  5. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forward-forward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  6. The Advanced Composition Explorer Shock Database and Application to Particle Acceleration Theory

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2015-01-01

    The theory of particle acceleration via diffusive shock acceleration (DSA) has been studied in depth by Gosling et al. (1981), van Nes et al. (1984), Mason (2000), Desai et al. (2003), Zank et al. (2006), among many others. Recently, Parker and Zank (2012, 2014) and Parker et al. (2014) using the Advanced Composition Explorer (ACE) shock database at 1 AU explored two questions: does the upstream distribution alone have enough particles to account for the accelerated downstream distribution and can the slope of the downstream accelerated spectrum be explained using DSA? As was shown in this research, diffusive shock acceleration can account for a large population of the shocks. However, Parker and Zank (2012, 2014) and Parker et al. (2014) used a subset of the larger ACE database. Recently, work has successfully been completed that allows for the entire ACE database to be considered in a larger statistical analysis. We explain DSA as it applies to single and multiple shocks and the shock criteria used in this statistical analysis. We calculate the expected injection energy via diffusive shock acceleration given upstream parameters defined from the ACE Solar Wind Electron, Proton, and Alpha Monitor (SWEPAM) data to construct the theoretical upstream distribution. We show the comparison of shock strength derived from diffusive shock acceleration theory to observations in the 50 keV to 5 MeV range from an instrument on ACE. Parameters such as shock velocity, shock obliquity, particle number, and time between shocks are considered. This study is further divided into single and multiple shock categories, with an additional emphasis on forward-forward multiple shock pairs. Finally with regard to forwardforward shock pairs, results comparing injection energies of the first shock, second shock, and second shock with previous energetic population will be given.

  7. International Shock-Wave Database: Current Status

    NASA Astrophysics Data System (ADS)

    Levashov, Pavel

    2013-06-01

    Shock-wave and related dynamic material response data serve for calibrating, validating, and improving material models over very broad regions of the pressure-temperature-density phase space. Since the middle of the 20th century vast amount of shock-wave experimental information has been obtained. To systemize it a number of compendiums of shock-wave data has been issued by LLNL, LANL (USA), CEA (France), IPCP and VNIIEF (Russia). In mid-90th the drawbacks of the paper handbooks became obvious, so the first version of the online shock-wave database appeared in 1997 (http://www.ficp.ac.ru/rusbank). It includes approximately 20000 experimental points on shock compression, adiabatic expansion, measurements of sound velocity behind the shock front and free-surface-velocity for more than 650 substances. This is still a useful tool for the shock-wave community, but it has a number of serious disadvantages which can't be easily eliminated: (i) very simple data format for points and references; (ii) minimalistic user interface for data addition; (iii) absence of history of changes; (iv) bad feedback from users. The new International Shock-Wave database (ISWdb) is intended to solve these and some other problems. The ISWdb project objectives are: (i) to develop a database on thermodynamic and mechanical properties of materials under conditions of shock-wave and other dynamic loadings, selected related quantities of interest, and the meta-data that describes the provenance of the measurements and material models; and (ii) to make this database available internationally through the Internet, in an interactive form. The development and operation of the ISWdb is guided by an advisory committee. The database will be installed on two mirrored web-servers, one in Russia and the other in USA (currently only one server is available). The database provides access to original experimental data on shock compression, non-shock dynamic loadings, isentropic expansion, measurements of sound speed in the Hugoniot state, and time-dependent free-surface or window-interface velocity profiles. Users are able to search the information in the database and obtain the experimental points in tabular or plain text formats directly via the Internet using common browsers. It is also possible to plot the experimental points for comparison with different approximations and results of equation-of-state calculations. The user can present the results of calculations in text or graphical forms and compare them with any experimental data available in the database. A short history of the shock-wave database will be presented and current possibilities of ISWdb will be demonstrated. Web-site of the project: http://iswdb.info. This work is supported by SNL contracts # 1143875, 1196352.

  8. A database of aerothermal measurements in hypersonic flow for CFD validation

    NASA Technical Reports Server (NTRS)

    Holden, M. S.; Moselle, J. R.

    1992-01-01

    This paper presents an experimental database selected and compiled from aerothermal measurements obtained on basic model configurations on which fundamental flow phenomena could be most easily examined. The experimental studies were conducted in hypersonic flows in 48-inch, 96-inch, and 6-foot shock tunnels. A special computer program was constructed to provide easy access to the measurements in the database as well as the means to plot the measurements and compare them with imported data. The database contains tabulations of model configurations, freestream conditions, and measurements of heat transfer, pressure, and skin friction for each of the studies selected for inclusion. The first segment contains measurements in laminar flow emphasizing shock-wave boundary-layer interaction. In the second segment, measurements in transitional flows over flat plates and cones are given. The third segment comprises measurements in regions of shock-wave/turbulent-boundary-layer interactions. Studies of the effects of surface roughness of nosetips and conical afterbodies are presented in the fourth segment of the database. Detailed measurements in regions of shock/shock boundary layer interaction are contained in the fifth segment. Measurements in regions of wall jet and transpiration cooling are presented in the final two segments.

  9. The Universal Role of Tubulence in the Propagation of Strong Shocks and Detonation Waves

    NASA Astrophysics Data System (ADS)

    Lee, John H.

    2001-06-01

    The passage of a strong shock wave usually results in irreversible physical and chemical changes in the medium. If the chemical reactions are sufficiently exothermic, the shock wave can be self-propagating, i.e., sustained by the chemical energy release via the expansion work of the reaction products. Although shocks and detonations can be globally stable and propagate at constant velocities (in the direction of motion), their structure may be highly unstable and exhibit large hydrodynamic fluctuations, i.e., turbulence. Recent investigations on plastic deformation of polycrystalline material behind shock waves have revealed particle velocity dispersion at the mesoscopic level, a result of vortical rotational motion similar to that of turbulent fluid flows at high Reynolds number.1 Strong ionizing shocks in noble gases2, as well as dissociating shock waves in carbon dioxide,3 also demonstrate a turbulent density fluctuation in the non-equilibrium shock transition zone. Perhaps the most thoroughly investigated unstable structure is that of detonation waves in gaseous explosives.4 Detonation waves in liquid explosives such as nitromethane also take on similar unstable structure as gaseous detonations.5 There are also indications that detonations in solid explosives have a similar unsteady structure under certain conditions. Thus, it appears that it is more of a rule than an exception that the structure of strong shocks and detonations are unstable and exhibit turbulent-like fluctuations as improved diagnostics now permit us to look more closely at the meso- and micro-levels. Increasing attention is now devoted to the understanding of the shock waves at the micro-scale level in recent years. This is motivated by the need to formulate physical and chemical models that contain the correct physics capable of describing quantitatively the shock transition process. It should be noted that, in spite of its unstable 3-D structure, the steady 1-D conservation laws (in the direction of propagation) apply across the shock transition zone if the downstream equilibrium plane is taken far enough away to ensure the decay of the turbulent fluctuations. Thus, the Hugoniot properties of one-dimensional propagation of shock and detonation waves remain valid. However, the conservation laws do not describe the important propagation mechanisms (i.e., the physical and chemical processes that effect the transition from initial to the final state) in the wave structure. Since gaseous detonations enjoy the advantage of being able to be observed experimentally in great detail, its complex turbulent structure is now quite well established. Furthermore, the equation of state for perfect gases is well known and the chemistry of most gas phase reactions is also sufficiently understood quantitatively to permit detailed numerical simulation of the complex detonation structure. Thus, a good database of information exists for gaseous detonation, and in this paper we shall explore the turbulent structure of gaseous detonation with the aim of answering the question as to "why nature prefers to evoke such a complicated manner to effect its propagation." We will then attempt to generalize the discussion to the "terra incognita" of condensed phase materials where the structure is much less understood. 1. Meshcheryakov, Yu.I., and Atroshenko, S.A., Izv. Vyssh. Uchebn. Zaved. Fiz., 4, 105-123 (1992). 2. Glass, I.I, and Liu, W.S., J. Fluid Mech., 84(1), 55-77 (1978). 3. Griffiths, R.W., Sanderman, R.J., and Hornung, H.G., J. Phys. D., 8, 1681-1691 (1975). 4. Lee, J.H.S., Ann. Rev. Fluid Mech., 16, 311-336 (1984). 5. Mallory, H.D., J. Appl. Physics, 38, 5302-5306 (1967).

  10. Sensitivity of shock boundary-layer interactions to weak geometric perturbations

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Eaton, John K.

    2016-11-01

    Shock-boundary layer interactions can be sensitive to small changes in the inlet flow and boundary conditions. Robust computational models must capture this sensitivity, and validation of such models requires a suitable experimental database with well-defined inlet and boundary conditions. To that end, the purpose of this experiment is to systematically document the effects of small geometric perturbations on a SBLI flow to investigate the flow physics and establish an experimental dataset tailored for CFD validation. The facility used is a Mach 2.1, continuous operation wind tunnel. The SBLI is generated using a compression wedge; the region of interest is the resulting reflected shock SBLI. The geometric perturbations, which are small spanwise rectangular prisms, are introduced ahead of the compression ramp on the opposite wall. PIV is used to study the SBLI for 40 different perturbation geometries. Results show that the dominant effect of the perturbations is a global shift of the SBLI itself. In addition, the bumps introduce weaker shocks of varying strength and angles, depending on the bump height and location. Various scalar validation metrics, including a measure of shock unsteadiness, and their uncertainties are also computed to better facilitate CFD validation. Ji Hoon Kim is supported by an OTR Stanford Graduate Fellowship.

  11. Hepatic Shock Differential Diagnosis and Risk Factors: A Review Article.

    PubMed

    Soleimanpour, Hassan; Safari, Saeid; Rahmani, Farzad; Nejabatian, Arezu; Alavian, Seyed Moayed

    2015-10-01

    Liver as an important organ has a vital role in physiological processes in the body. Different causes can disrupt normal function of liver. Factors such as hypo-perfusion, hypoxemia, infections and some others can cause hepatic injury and hepatic shock. Published research resources from 2002 to May 2015 in some databases (PubMed, Scopus, Index Copernicus, DOAJ, EBSCO-CINAHL, Science direct, Cochrane library and Google scholar and Iranian search database like SID and Iranmedex) were investigated for the present study. Different causes can lead to hepatic shock. Most of these causes can be prevented by early resuscitation and treatment of underlying factors. Hepatic shock is detected in ill patients, especially those with hemodynamic disorders. It can be prevented by early treatment of underlying disease. There is no definite treatment for hepatic shock and should be managed conservatively. Hepatic shock in patients can increase the mortality rate.

  12. Hepatic Shock Differential Diagnosis and Risk Factors: A Review Article

    PubMed Central

    Soleimanpour, Hassan; Safari, Saeid; Rahmani, Farzad; Nejabatian, Arezu; Alavian, Seyed Moayed

    2015-01-01

    Context: Liver as an important organ has a vital role in physiological processes in the body. Different causes can disrupt normal function of liver. Factors such as hypo-perfusion, hypoxemia, infections and some others can cause hepatic injury and hepatic shock. Evidence Acquisition: Published research resources from 2002 to May 2015 in some databases (PubMed, Scopus, Index Copernicus, DOAJ, EBSCO-CINAHL, Science direct, Cochrane library and Google scholar and Iranian search database like SID and Iranmedex) were investigated for the present study. Results: Different causes can lead to hepatic shock. Most of these causes can be prevented by early resuscitation and treatment of underlying factors. Conclusions: Hepatic shock is detected in ill patients, especially those with hemodynamic disorders. It can be prevented by early treatment of underlying disease. There is no definite treatment for hepatic shock and should be managed conservatively. Hepatic shock in patients can increase the mortality rate. PMID:26587034

  13. The role of distinct parameters of interplanetary shocks in their propagation into and within the Earth's dayside magnetosphere, and their impact on magnetospheric particle populations

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.

    2016-12-01

    Interplanetary (IP) shocks are abrupt changes in the solar wind velocity and/or magnetic field. When an IP shock impacts the Earth's magnetosphere, it can trigger a number of responses including geomagnetic storms and substorms that affect radiation to satellites and aircraft, and ground currents that disrupt the power grid. There are a wide variety of IP shocks, and they interact with the magnetosphere in different ways depending on their orientation, speed and other factors. The distinct individual characteristics of IP shocks can have a dramatic effect on their impact on the near-earth environment. While some research has been done on the impact of shock parameters on their geo-effectiveness, these studies primarily utilized ground magnetometer derived indices such as Dst, AE and SME or signals at geosynchronous satellites. The current unprecedented satellite coverage of the magnetosphere, particularly on the dayside, presents an opportunity to directly measure how different shocks propagate into and within the magnetosphere, and how they affect the various particle populations therein. Initial case studies reveal that smaller shocks can have unexpected impacts in the dayside magnetosphere, including unusual particle and electric field signatures, depending on shock parameters. We have recently compiled a database of sudden impulses from 2012-2016, and the location of satellites in the dayside magnetosphere at the impulse times. We are currently combining and comparing this with existing databases compiled at UNH, Harvard and others, as well as solar wind data from ACE, Wind and other solar wind monitors, to generate a complete and accurate list of IP shocks, cataloguing parameters such as the type of shock (CME, CIR etc.), strength (Mach number, solar wind velocity etc.) and shock normal angle. We are investigating the magnetospheric response to these shocks using GOES, ARTEMIS and Cluster data, augmented with RBSP and MMS data where available, to determine what effect the various shock parameters have on their propagation through and impact on the magnetosphere. We will present several case studies from our database that show how different parameters affect how shocks propagate in the dayside and how they affect the particles therein.

  14. Modeling shock-driven reaction in low density PMDI foam

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron; Alexander, C. Scott; Reinhart, William; Peterson, David

    Shock experiments on low density polyurethane foams reveal evidence of reaction at low impact pressures. However, these reaction thresholds are not evident over the low pressures reported for historical Hugoniot data of highly distended polyurethane at densities below 0.1 g/cc. To fill this gap, impact data given in a companion paper for polymethylene diisocyanate (PMDI) foam with a density of 0.087 g/cc were acquired for model validation. An equation of state (EOS) was developed to predict the shock response of these highly distended materials over the full range of impact conditions representing compaction of the inert material, low-pressure decomposition, and compression of the reaction products. A tabular SESAME EOS of the reaction products was generated using the JCZS database in the TIGER equilibrium code. In particular, the Arrhenius Burn EOS, a two-state model which transitions from an unreacted to a reacted state using single step Arrhenius kinetics, as implemented in the shock physics code CTH, was modified to include a statistical distribution of states. Hence, a single EOS is presented that predicts the onset to reaction due to shock loading in PMDI-based polyurethane foams. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  15. Interplanetary shocks, Plasma waves and turbulence, Kinetic waves and instabilities, STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (∼ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  16. STEREO Observations of Waves in the Ramp Regions of Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Cohen, Z.; Breneman, A. W.; Cattell, C. A.; Davis, L.; Grul, P.; Kersten, K.; Wilson, L. B., III

    2017-12-01

    Determining the role of plasma waves in providing energy dissipation at shock waves is of long-standing interest. Interplanetary (IP) shocks serve as a large database of low Mach number shocks. We examine electric field waveforms captured by the Time Domain Sampler (TDS) on the STEREO spacecraft during the ramps of IP shocks, with emphasis on captures lasting 2.1 seconds. Previous work has used captures of shorter duration (66 and 131 ms on STEREO, and 17 ms on WIND), which allowed for observation of waves with maximum (minimum) frequencies of 125 kHz (15 Hz), 62.5 kHz (8 Hz), and 60 kHz (59 Hz), respectively. The maximum frequencies are comparable to 2-8 times the plasma frequency in the solar wind, enabling observation of Langmuir waves, ion acoustic, and some whistler-mode waves. The 2 second captures resolve lower frequencies ( few Hz), which allows us to analyze packet structure of the whistler-mode waves and some ion acoustic waves. The longer capture time also improves the resolvability of simultaneous wave modes and of waves with frequencies on the order of 10s of Hz. Langmuir waves, however, cannot be identified at this sampling rate, since the plasma frequency is usually higher than 3.9 kHz. IP shocks are identified from multiple databases (Helsinki heliospheric shock database at http://ipshocks.fi, and the STEREO level 3 shock database at ftp://stereoftp.nascom.nasa.gov/pub/ins_data/impact/level3/). Our analysis focuses on TDS captures in shock ramp regions, with ramp durations determined from magnetic field data taken at 8 Hz. Software is used to identify multiple wave modes in any given capture and classify waves as Langmuir, ion acoustic, whistler, lower hybrid, electron cyclotron drift instability, or electrostatic solitary waves. Relevant frequencies are determined from density and magnetic field data collected in situ. Preliminary results suggest that large amplitude (≥ 5 mV/m) ion acoustic waves are most prevalent in the ramp, in agreement with Wilson, et al. Other modes are also observed. Statistical results will be presented and compared with previous studies and theoretical predictions.

  17. The microphysics of collisionless shock waves.

    PubMed

    Marcowith, A; Bret, A; Bykov, A; Dieckman, M E; Drury, L O'C; Lembège, B; Lemoine, M; Morlino, G; Murphy, G; Pelletier, G; Plotnikov, I; Reville, B; Riquelme, M; Sironi, L; Novo, A Stockem

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  18. The microphysics of collisionless shock waves

    NASA Astrophysics Data System (ADS)

    Marcowith, A.; Bret, A.; Bykov, A.; Dieckman, M. E.; O'C Drury, L.; Lembège, B.; Lemoine, M.; Morlino, G.; Murphy, G.; Pelletier, G.; Plotnikov, I.; Reville, B.; Riquelme, M.; Sironi, L.; Stockem Novo, A.

    2016-04-01

    Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.

    This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K andmore » ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.« less

  20. The physics of interstellar shock waves

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Draine, Bruce T.

    1987-01-01

    This review discusses the observations and theoretical models of interstellar shock waves, in both diffuse cloud and molecular cloud environments. It summarizes the relevant gas dynamics, atomic, molecular and grain processes, radiative transfer, and physics of radiative and magnetic precursors in shock models. It then describes the importance of shocks for observations, diagnostics, and global interstellar dynamics. It concludes with current research problems and data needs for atomic, molecular and grain physics.

  1. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  2. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  3. Supersonic and hypersonic shock/boundary-layer interaction database

    NASA Technical Reports Server (NTRS)

    Settles, Gary S.; Dodson, Lori J.

    1994-01-01

    An assessment is given of existing shock wave/tubulent boundary-layer interaction experiments having sufficient quality to guide turbulence modeling and code validation efforts. Although the focus of this work is hypersonic, experiments at Mach numbers as low as 3 were considered. The principal means of identifying candidate studies was a computerized search of the AIAA Aerospace Database. Several hundred candidate studies were examined and over 100 of these were subjected to a rigorous set of acceptance criteria for inclusion in the data-base. Nineteen experiments were found to meet these criteria, of which only seven were in the hypersonic regime (M is greater than 5).

  4. The effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis.

    PubMed

    Lee, Ji-Hyun; Lee, Sangyong; Choi, SeokJoo; Choi, Yoon-Hee; Lee, Kwansub

    2017-03-01

    [Purpose] The purpose of this study was to identify the effects of extracorporeal shock wave therapy on the pain and function of patients with degenerative knee arthritis. [Subjects and Methods] Twenty patients with degenerative knee arthritis were divided into a conservative physical therapy group (n=10) and an extracorporeal shock wave therapy group (n=10). Both groups received general conservative physical therapy, and the extracorporeal shock wave therapy was additionally treated with extracorporeal shock wave therapy after receiving conservative physical therapy. Both groups were treated three times a week over a four-week period. The visual analogue scale was used to evaluate pain in the knee joints of the subjects, and the Korean Western Ontario and McMaster Universities Osteoarthritis Index was used to evaluate the function of the subjects. [Results] The comparison of the visual analogue scale and Korean Western Ontario and McMaster Universities Osteoarthritis Index scores within each group before and after the treatment showed statistically significant declines in scores in both the conservative physical therapy group and extracorporeal shock wave therapy group. A group comparison after the treatment showed statistically significant differences in these scores in the extracorporeal shock wave therapy group and the conservative physical therapy group. [Conclusion] extracorporeal shock wave therapy may be a useful nonsurgical intervention for reducing the pain of patients with degenerative knee arthritis and improving these patients' function.

  5. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNSmore » databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.« less

  6. Probing the underlying physics of ejecta production from shocked Sn samples

    NASA Astrophysics Data System (ADS)

    Zellner, M. B.; McNeil, W. Vogan; Hammerberg, J. E.; Hixson, R. S.; Obst, A. W.; Olson, R. T.; Payton, J. R.; Rigg, P. A.; Routley, N.; Stevens, G. D.; Turley, W. D.; Veeser, L.; Buttler, W. T.

    2008-06-01

    This effort investigates the underlying physics of ejecta production for high explosive (HE) shocked Sn surfaces prepared with finishes typical to those roughened by tool marks left from machining processes. To investigate the physical mechanisms of ejecta production, we compiled and re-examined ejecta data from two experimental campaigns [W. S. Vogan et al., J. Appl. Phys. 98, 113508 (1998); M. B. Zellner et al., ibid. 102, 013522 (2007)] to form a self-consistent data set spanning a large parameter space. In the first campaign, ejecta created upon shock release at the back side of HE shocked Sn samples were characterized for samples with varying surface finishes but at similar shock-breakout pressures PSB. In the second campaign, ejecta were characterized for HE shocked Sn samples with a constant surface finish but at varying PSB.

  7. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  8. Collisionless Weibel shocks: Full formation mechanism and timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real; Stockem, A.

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2Dmore » and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.« less

  9. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  10. Differential expression of the Nrf2-linked genes in pediatric septic shock.

    PubMed

    Grunwell, Jocelyn R; Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R

    2015-09-17

    Experimental data from animal models of sepsis support a role for a transcription factor, nuclear erythroid-related factor 2 p45-related factor 2 (Nrf2), as a master regulator of antioxidant and detoxifying genes and intermediary metabolism during stress. Prior analysis of a pediatric septic shock transcriptomic database showed that the Nrf2 response is a top 5 upregulated signaling pathway in early pediatric septic shock. We conducted a focused analysis of 267 Nrf2-linked genes using a multicenter, genome-wide expression database of 180 children with septic shock 10 years of age or younger and 53 healthy controls. The analysis involved RNA isolated from whole blood within 24 h of pediatric intensive care unit admission for septic shock and a false discovery rate of 5 %. We compared differentially expressed genes from (1) patients with septic shock and healthy controls and (2) across validated gene expression-based subclasses of pediatric septic shock (endotypes A and B) using several bioinformatic methods. We found upregulation of 123 Nrf2-linked genes in children with septic shock. The top gene network represented by these genes contained primarily enzymes with oxidoreductase activity involved in cellular lipid metabolism that were highly connected to the peroxisome proliferator activated receptor and the retinoic acid receptor families. Endotype A, which had higher organ failure burden and mortality, exhibited a greater downregulation of Nrf2-linked genes than endotype B, with 92 genes differentially regulated between endotypes. Our findings indicate that Nrf2-linked genes may contribute to alterations in oxidative signaling and intermediary metabolism in pediatric septic shock.

  11. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  12. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Astrophysics Data System (ADS)

    Bershader, D.; Hanson, R.

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  13. Physical Conditions in Shocked Interstellar Gas Interacting with the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam M.; Federman, Steven Robert; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2018-06-01

    We present the results of a detailed investigation into the physical conditions in interstellar material interacting with the supernova remnant IC 443. Our analysis is based on an examination of high-resolution HST/STIS spectra of two stars probing predominantly neutral gas located both ahead of and behind the supernova shock front. The pre-shock neutral gas is characterized by densities and temperatures typical of diffuse interstellar clouds, while the post-shock material exhibits a range of more extreme physical conditions, including high temperatures (>104 K) in some cases, which may require a sudden heating event to explain. The ionization level is enhanced in the high-temperature post-shock material, which could be the result of enhanced radiation from shocks or from an increase in cosmic-ray ionization. The gas-phase abundances of refractory elements are also enhanced in the high-pressure gas, suggesting efficient destruction of dust grains by shock sputtering. Observations of highly-ionized species at very high velocity indicate a post-shock temperature of 107 K for the hot X-ray emitting plasma of the remnant’s interior, in agreement with studies of thermal X-ray emission from IC 443.

  14. First results of transcritical magnetized collisionless shock studies on MSX

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hutchinson, T. M.; Taylor, S. F.; Hsu, S. C.

    2014-10-01

    Magnetized collisionless shocks exhibit transitional length and time scales much shorter than can be created through collisional processes. They are common throughout the cosmos, but have historically proven difficult to create in the laboratory. The Magnetized Shock Experiment (MSX) at LANL produces super-Alfvénic shocks through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a strong magnetic mirror and flux-conserving vacuum boundary. Plasma flows have been produced with sonic and Alfvén Mach numbers up to ~10 over a wide range of plasma beta with embedded perpendicular, oblique, and parallel magnetic field. Macroscopic ion skin-depth and long ion-gyroperiod enable diagnostic access to relevant shock physics using common methods. Variable plasmoid velocity, density, temperature, and magnetic field provide access to a wide range of shock conditions, and a campaign to study the physics of transcritical and supercritical shocks within the FRC plasmoid is currently underway. An overview of the experimental design, diagnostics suite, physics objectives, and recent results will be presented. Supported by DOE Office of Fusion Energy Sciences under DOE Contract DE-AC52-06NA25369.

  15. The Physics of Molecular Shocks in Star-Forming Regions

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    Molecular shocks are produced by the impact of the supersonic infall of gas and dust onto protostars and by the interaction of the supersonic outflow from the protostar with the circumstellar material. Infalling gas creates an accretion shock around the circumstellar disk which emits a unique infrared spectrum and which processes the interstellar dust as it enters the disk. The winds and jets from protostars also impact the disk, the infalling material, and the ambient molecular cloud core creating shocks whose spectrum and morphology diagnose the mass loss processes of the protostar and the orientation and structure of the star forming system. We discuss the physics of these shocks, the model spectra derived from theoretical models, and comparisons with observations of H2O masers, H2 emission, as well as other shocks tracers. We show the strong effect of magnetic fields on molecular shock structure, and elucidate the chemical changes induced by the shock heating and compression.

  16. A Experimental Study of Fluctuating Pressure Loads Beneath Swept Shock Wave/boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Garg, Sanjay

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.

  17. Invariant Functional Forms for K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Group Theoretic Methods, as defined by Lie were applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Group parameter ratios were linked to the physical quantities (i.e., KT, K'T, and K''T) specified for the various order Birch-Murnaghan approximations. This technique has now been generalized to provide a mathematical formalism applicable to a wide class of forms (i.e., K(r,P)) for the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Illustrative examples include the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. The results of this study will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. (2) (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Physical Interpretation of Mathematically Invariant K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  18. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema

    None

    2018-01-16

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  19. Measurement and Analysis of the Extreme Physical Shock Environment Experienced by Crane-Mounted Radiation Detection Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, M; Erchinger, J; Marianno, C

    Potentially, radiation detectors at ports of entry could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical environment experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship with two Lansmont SAVER 9X30 units (with padding) and two PCB Piezotronics model 340A50 accelerometers (hard mounted). Physical shocks in the form of rapid acceleration were observed in all accelerometer units with values ranging from 0.20 g’s tomore » 199.99 g’s. The majority of the shocks for all the Lansmont and PCB accelerometers were below 50 g’s. The Lansmont recorded mean shocks of 21.83 ± 13.62 g’s and 24.78 ± 11.49 g’s while the PCB accelerometers experienced mean shocks of 34.39 ± 25.51 g’s and 41.77 ± 22.68 g’s for the landside and waterside units, respectively. Encased detector units with external padding should be designed to withstand at least 200 g’s of acceleration without padding and typical shocks of 30 g’s with padding for mounting on a spreader.« less

  20. Global climate shocks to agriculture from 1950 - 2015

    NASA Astrophysics Data System (ADS)

    Jackson, N. D.; Konar, M.; Debaere, P.; Sheffield, J.

    2016-12-01

    Climate shocks represent a major disruption to crop yields and agricultural production, yet a consistent and comprehensive database of agriculturally relevant climate shocks does not exist. To this end, we conduct a spatially and temporally disaggregated analysis of climate shocks to agriculture from 1950-2015 using a new gridded dataset. We quantify the occurrence and magnitude of climate shocks for all global agricultural areas during the growing season using a 0.25-degree spatial grid and daily time scale. We include all major crops and both temperature and precipitation extremes in our analysis. Critically, we evaluate climate shocks to all potential agricultural areas to improve projections within our time series. To do this, we use Global Agro-Ecological Zones maps from the Food and Agricultural Organization, the Princeton Global Meteorological Forcing dataset, and crop calendars from Sacks et al. (2010). We trace the dynamic evolution of climate shocks to agriculture, evaluate the spatial heterogeneity in agriculturally relevant climate shocks, and identify the crops and regions that are most prone to climate shocks.

  1. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  2. Emissivity measurements of shocked tin using a multi-wavelength integrating sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seifter, A; Holtkamp, D B; Iverson, A J

    Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper we describe a multi-wavelength (1.6–5.0 μm) integrating sphere system that utilizes a “reversed”more » scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12° from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock stress values between 17 and 33 GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24–25 GPa, a shock stress that partially melts the sample. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems.« less

  3. Overview and recent progress of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Intrator, T. P.; Smith, R. J.; Hutchinson, T. M.; Boguski, J. C.; Sears, J. A.; Swan, H. O.; Gao, K. W.; Chapdelaine, L. J.; Winske, D.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) has been constructed to study the physics of super-Alfvènic, supercritical, magnetized shocks. Exhibiting transitional length and time scales much smaller than can be produced through collisional processes, these shocks are observed to create non-thermal distributions, amplify magnetic fields, and accelerate particles to relativistic velocities. Shocks are produced through the acceleration and subsequent stagnation of Field Reversed Configuration (FRC) plasmoids against a high-flux magnetic mirror with a conducting boundary or a plasma target with embedded field. Adjustable shock velocity, density, and magnetic geometry (B parallel, perpendicular, or oblique to k) provide unique access to a wide range of dimensionless parameters relevant to astrophysical shocks. Information regarding the experimental configuration, diagnostics suite, recent simulations, experimental results, and physics goals will be presented. This work is supported by DOE OFES and NNSA under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-13-24859.

  4. The History of the APS Topical Group on Shock Compression of Condensed Matter

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry W.

    2002-07-01

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  5. Shock-darkening in ordinary chondrites: Determination of the pressure-temperature conditions by shock physics mesoscale modeling

    NASA Astrophysics Data System (ADS)

    Moreau, J.; Kohout, T.; Wünnemann, K.

    2017-11-01

    We determined the shock-darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post-shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock-darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not-shock-related triggers for iron melt.

  6. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  7. Exposure to whole-body vibration and mechanical shock: a field study of quad bike use in agriculture.

    PubMed

    Milosavljevic, Stephan; McBride, David I; Bagheri, Nasser; Vasiljev, Radivoj M; Mani, Ramakrishnan; Carman, Allan B; Rehn, Borje

    2011-04-01

    The purpose of this study was to determine exposure to whole-body vibration (WBV) and mechanical shock in rural workers who use quad bikes and to explore how personal, physical, and workplace characteristics influence exposure. A seat pad mounted triaxial accelerometer and data logger recorded full workday vibration and shock data from 130 New Zealand rural workers. Personal, physical, and workplace characteristics were gathered using a modified version of the Whole Body Vibration Health Surveillance Questionnaire. WBVs and mechanical shocks were analysed in accordance with the International Standardization for Organization (ISO 2631-1 and ISO 2631-5) standards and are presented as vibration dose value (VDV) and mechanical shock (S(ed)) exposures. VDV(Z) consistently exceeded European Union (Guide to good practice on whole body vibration. Directive 2002/44/EC on minimum health and safety, European Commission Directorate General Employment, Social Affairs and Equal Opportunities. 2006) guideline exposure action thresholds with some workers exceeding exposure limit thresholds. Exposure to mechanical shock was also evident. Increasing age had the strongest (negative) association with vibration and shock exposure with body mass index (BMI) having a similar but weaker effect. Age, daily driving duration, dairy farming, and use of two rear shock absorbers created the strongest multivariate model explaining 33% of variance in VDV(Z). Only age and dairy farming combined to explain 17% of the variance for daily mechanical shock. Twelve-month prevalence for low back pain was highest at 57.7% and lowest for upper back pain (13.8%). Personal (age and BMI), physical (shock absorbers and velocity), and workplace characteristics (driving duration and dairy farming) suggest that a mix of engineered workplace and behavioural interventions is required to reduce this level of exposure to vibration and shock.

  8. A review of recent developments in the understanding of transonic shock buffet

    NASA Astrophysics Data System (ADS)

    Giannelis, Nicholas F.; Vio, Gareth A.; Levinski, Oleg

    2017-07-01

    Within a narrow band of flight conditions in the transonic regime, interactions between shock-waves and intermittently separated shear layers result in large amplitude, self-sustained shock oscillations. This phenomenon, known as transonic shock buffet, limits the flight envelope and is detrimental to both platform handling quality and structural integrity. The severity of this instability has incited a plethora of research to ascertain an underlying physical mechanism, and yet, with over six decades of investigation, aspects of this complex phenomenon remain inexplicable. To promote continual progress in the understanding of transonic shock buffet, this review presents a consolidation of recent investigations in the field. The paper begins with a conspectus of the seminal literature on shock-induced separation and modes of shock oscillation. The currently prevailing theories for the governing physics of transonic shock buffet are then detailed. This is followed by an overview of computational studies exploring the phenomenon, where the results of simulation are shown to be highly sensitive to the specific numerical methods employed. Wind tunnel investigations on two-dimensional aerofoils at shock buffet conditions are then outlined and the importance of these experiments for the development of physical models stressed. Research considering dynamic structural interactions in the presence of shock buffet is also highlighted, with a particular emphasis on the emergence of a frequency synchronisation phenomenon. An overview of three-dimensional buffet is provided next, where investigations suggest the governing mechanism may differ significantly from that of two-dimensional sections. Subsequently, a number of buffet suppression technologies are described and their efficacy in mitigating shock oscillations is assessed. To conclude, recommendations for the direction of future research efforts are given.

  9. Predictive Analytical Model for Isolator Shock-Train Location in a Mach 2.2 Direct-Connect Supersonic Combustion Tunnel

    NASA Astrophysics Data System (ADS)

    Lingren, Joe; Vanstone, Leon; Hashemi, Kelley; Gogineni, Sivaram; Donbar, Jeffrey; Akella, Maruthi; Clemens, Noel

    2016-11-01

    This study develops an analytical model for predicting the leading shock of a shock-train in the constant area isolator section in a Mach 2.2 direct-connect scramjet simulation tunnel. The effective geometry of the isolator is assumed to be a weakly converging duct owing to boundary-layer growth. For some given pressure rise across the isolator, quasi-1D equations relating to isentropic or normal shock flows can be used to predict the normal shock location in the isolator. The surface pressure distribution through the isolator was measured during experiments and both the actual and predicted locations can be calculated. Three methods of finding the shock-train location are examined, one based on the measured pressure rise, one using a non-physics-based control model, and one using the physics-based analytical model. It is shown that the analytical model performs better than the non-physics-based model in all cases. The analytic model is less accurate than the pressure threshold method but requires significantly less information to compute. In contrast to other methods for predicting shock-train location, this method is relatively accurate and requires as little as a single pressure measurement. This makes this method potentially useful for unstart control applications.

  10. Physical Intrepretation of Mathematically Invariant K(r,P) Type Equations of State for Hydrodynamically Driven Flow

    NASA Astrophysics Data System (ADS)

    Hrbek, George

    2001-06-01

    At SCCM Shock 99, Lie Group Theory was applied to the problem of temperature independent, hydrodynamic shock in a Birch-Murnaghan continuum. (1) Ratios of the group parameters were shown to be linked to the physical parameters specified in the second, third, and fourth order BM-EOS approximations. This effort has subsequently been extended to provide a general formalism for a wide class of mathematical forms (i.e., K(r,P)) of the equation of state. Variations in material expansion and resistance (i.e., counter pressure) are shown to be functions of compression and material variation ahead of the expanding front. Specific examples included the Birch-Murnaghan, Vinet, Brennan-Stacey, Shanker, Tait, Poirier, and Jones-Wilkins-Lee (JWL) forms. (2) With these ratios defined, the next step is to predict the behavior of these K(r,P) type solids. To do this, one must introduce the group ratios into a numerical simulation for the flow and generate the density, pressure, and particle velocity profiles as the shock moves through the material. This will allow the various equations of state, and their respective fitting coefficients, to be compared with experiments, and additionally, allow the empirical coefficients for these EOS forms to be adjusted accordingly. (1) Hrbek, G. M., Invariant Functional Forms For The Second, Third, And Fourth Order Birch-Murnaghan Equation of State For Materials Subject to Hydrodynamic Shock, Proceedings of the 11th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 99), Snowbird, Utah (2) Hrbek, G. M., Invariant Functional Forms For K(r,P) Type Equations Of State For Hydrodynamically Driven Flows, Submitted to the 12th American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter (SCCM Shock 01), Atlanta, Georgia

  11. Mesoscale Computational Investigation of Shocked Heterogeneous Materials with Application to Large Impact Craters

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.

    2003-01-01

    The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.

  12. Nonholonomic Hamiltonian Method for Meso-macroscale Simulations of Reacting Shocks

    NASA Astrophysics Data System (ADS)

    Fahrenthold, Eric; Lee, Sangyup

    2015-06-01

    The seamless integration of macroscale, mesoscale, and molecular scale models of reacting shock physics has been hindered by dramatic differences in the model formulation techniques normally used at different scales. In recent research the authors have developed the first unified discrete Hamiltonian approach to multiscale simulation of reacting shock physics. Unlike previous work, the formulation employs reacting themomechanical Hamiltonian formulations at all scales, including the continuum. Unlike previous work, the formulation employs a nonholonomic modeling approach to systematically couple the models developed at all scales. Example applications of the method show meso-macroscale shock to detonation simulations in nitromethane and RDX. Research supported by the Defense Threat Reduction Agency.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3more » Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.« less

  14. Mineralogy, Reflectance Spectra, and Physical Properties of the Chelyabinsk LL5 Chondrite - Insight Into Shock Induced Changes in Asteroid Regoliths

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Muinonen, Karri; Kohout, Tomas; Grokhovsky, Victor; Yakovlev, Grigoriy; Haloda, Jakub; Halodova, Patricie; Michallik, Radoslaw; Penttilä, Antti

    On February 15, 2013, at 9:22 am, an exceptionally bright and long duration fireball was observed by many eyewitnesses in the Chelyabinsk region, Russia. Two days later the first fragments of the Chelyabinsk meteorite were reported to be found in the area, located approximately 40 km south of Chelyabinsk. We have examined a large number of the recovered Chelyabinsk meteorite fragments. Three lithologies, the light-colored, dark-colored, and impact melt, were found within the recovered meteorites. The light colored lithology is a LL5 ordinary chondrite (Fa 28, Fs 23) shocked to S4 level. The dark colored lithology is of identical LL5 composition (Fa 28, Fs 23). However, it is shocked to higher level (shock-darkened) with fine grained metal and sulfide-rich melt forming a dense network of fine veins impregnating the inter- and intra-granular pore space within crushed silicate grains. The impact melt lithology is a whole-rock melt derived from the same LL5 source material and is present within the light-colored and dark-colored lithology as inter-granular veins. The measured bulk and grain densities and the porosity closely resemble other LL chondrites. Based on the magnetic susceptibility, the Chelyabinsk meteorites are richer in metallic iron as compared to database of other LL chondrites. All three Chelyabinsk lithologies are of identical LL5 composition and origin. Both impact melting and shock darkening cause a decrease in reflectance and a suppression of the silicate absorption bands in the reflectance spectra. Such spectral changes are similar to the space weathering effects observed on asteroids. However, space weathering of chondritic materials is often accompanied with a significant spectral slope change (reddening). In our case, only negligible to minor change in the spectral slope is observed. Thus, it is possible that some dark asteroids with invisible silicate absorption bands may be composed of relatively fresh shock-darkened chondritic material. The main spectral difference of chondritic asteroid surfaces dominated by impact melt, shock darkening, or space weathering, is a significant spectral slope change in the latter case. Thus, shock does not have significant effect on meteorite properties, but causes spectral darkening and suppression of silicate absorption bands.

  15. Accretion shock geometries in the magnetic variables

    NASA Technical Reports Server (NTRS)

    Stockman, H. S.

    1988-01-01

    The first self consistent shock models for the AM Herculis-type systems successfully identified the dominant physical processes and their signatures. These homogenous shock models predict unpolarized, Rayleigh-Jeans optical spectra with sharp cutoffs and rising polarizations as the shocks become optically thin in the ultraviolet. However, the observed energy distributions are generally flat with intermediate polarizations over a broad optical band. These and other observational evidence support a non-homogenous accretion profile which may extend over a considerable fraction of the stellar surface. Both the fundamental assumptions underlying the canonical 1-D shock model and the extension of this model to inhomogenous accretion shocks were identified, for both radial and linear structures. The observational evidence was also examined for tall shocks and little evidence was found for relative shock heights in excess of h/R(1) greater than or equal to 0.1. For several systems, upper limits to the shock height can be obtained from either x ray or optical data. These lie in the region h/R(1) is approximately 0.01 and are in general agreement with the current physical picture for these systems. The quasi-periodic optical variations observed in several magnetic variables may eventually prove to be a major aid in further understanding their accretion shock geometries.

  16. The Los Alamos Supernova Light Curve Project: Current Projects and Future Directions

    NASA Astrophysics Data System (ADS)

    Wiggins, Brandon Kerry; Los Alamos Supernovae Research Group

    2015-01-01

    The Los Alamos Supernova Light Curve Project models supernovae in the ancient and modern universe to determine the luminosities of observability of certain supernovae events and to explore the physics of supernovae in the local universe. The project utilizes RAGE, Los Alamos' radiation hydrodynamics code to evolve the explosions of progenitors prepared in well-established stellar evolution codes. RAGE allows us to capture events such as shock breakout and collisions of ejecta with shells of material which cannot be modeled well in other codes. RAGE's dumps are then ported to LANL's SPECTRUM code which uses LANL's OPLIB opacities database to calculate light curves and spectra. In this paper, we summarize our recent work in modeling supernovae.

  17. Physical mechanisms in shock-induced turbulent separated flow

    NASA Astrophysics Data System (ADS)

    Dolling, D. S.

    1987-12-01

    It has been demonstrated that the flow downstream of the moving shock is separated and that the foot of the shock is effectively the instantaneous separation point. The shock induced turbulent separation is an intermittant process and the separation line indicated by surface tracer methods, such as kerosene-lampblack, is a downstream boundary of a region of intermittent separation.

  18. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock.

    PubMed

    Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Banschbach, Sharon; Beckman, Eileen; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R

    2014-11-19

    Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.

  19. On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle

    NASA Astrophysics Data System (ADS)

    Golomazov, M. M.; Ivankov, A. A.

    2013-12-01

    Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.

  20. Transmission of singularities through a shock wave and the sound generation

    NASA Technical Reports Server (NTRS)

    Ting, L.

    1974-01-01

    The interaction of a plane shock wave of finite strength with a vortex line, point vortex, doublet or quadrupole of weak strength is studied. Based upon the physical condition that a free vortex line cannot support a pressure difference, rules are established which define the change of the linear intensity of the segment of the vortex line after its passage through the shock. The rules for point vortex, doublet, and quadrupole are then established as limiting cases. These rules can be useful for the construction of the solution of the entire flow field and for its physical interpretation. However, the solution can be obtained directly by the technique developed for shock diffraction problems. Explicit solutions and the associated sound generation are obtained for the passage of a point vortex through the shock wave.

  1. Mortality Prediction Model of Septic Shock Patients Based on Routinely Recorded Data

    PubMed Central

    Carrara, Marta; Baselli, Giuseppe; Ferrario, Manuela

    2015-01-01

    We studied the problem of mortality prediction in two datasets, the first composed of 23 septic shock patients and the second composed of 73 septic subjects selected from the public database MIMIC-II. For each patient we derived hemodynamic variables, laboratory results, and clinical information of the first 48 hours after shock onset and we performed univariate and multivariate analyses to predict mortality in the following 7 days. The results show interesting features that individually identify significant differences between survivors and nonsurvivors and features which gain importance only when considered together with the others in a multivariate regression model. This preliminary study on two small septic shock populations represents a novel contribution towards new personalized models for an integration of multiparameter patient information to improve critical care management of shock patients. PMID:26557154

  2. Shock Waves in Supernova Ejecta

    NASA Astrophysics Data System (ADS)

    Raymond, J. C.

    2018-02-01

    Astrophysical shock waves are a major mechanism for dissipating energy, and by heating and ionizing the gas they produce emission spectra that provide valuable diagnostics for the shock parameters, for the physics of collisionless shocks, and for the composition of the shocked material. Shocks in SN ejecta in which H and He have been burned to heavier elements behave differently than shocks in ordinary astrophysical gas because of their very large radiative cooling rates. In particular, extreme departures from thermal equilibrium among ions and electrons and from ionization equilibrium may arise. This paper discusses the consequences of the enhanced metal abundances for the structure and emission spectra of those shocks.

  3. Laser-driven shock compression of gold foam in the terapascal pressure range

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo

    2018-06-01

    Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.

  4. Does distraction reduce the alcohol-aggression relation? A cognitive and behavioral test of the attention-allocation model.

    PubMed

    Gallagher, Kathryn E; Parrott, Dominic J

    2011-06-01

    This study provided the first direct test of the cognitive underpinnings of the attention-allocation model and attempted to replicate and extend past behavioral findings for this model as an explanation for alcohol-related aggression. A diverse community sample (55% African American) of men (N = 159) between 21 and 35 years of age (M = 25.80) were randomly assigned to 1 of 2 beverage conditions (i.e., alcohol, no-alcohol control) and 1 of 2 distraction conditions (i.e., distraction, no-distraction). Following beverage consumption, participants were provoked via reception of electric shocks and a verbal insult from a fictitious male opponent. Participants' attention allocation to aggression words (i.e., aggression bias) and physical aggression were measured using a dot probe task and a shock-based aggression task, respectively. Intoxicated men whose attention was distracted displayed significantly lower levels of aggression bias and enacted significantly less physical aggression than intoxicated men whose attention was not distracted. However, aggression bias did not account for the lower levels of alcohol-related aggression in the distraction, relative to the no-distraction, condition. These results replicated and extended past evidence that cognitive distraction is associated with lower levels of alcohol-related aggression in highly provoked males and provide the first known cognitive data to support the attentional processes posited by the attention-allocation model. Discussion focused on how these data inform intervention programming for alcohol-related aggression. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  5. Consolidation of Bimetallic Nanosized Particles and Formation of Nanocomposites Depending on Conditions of Shock Wave Compaction

    NASA Astrophysics Data System (ADS)

    Vorozhtsov, S. A.; Kudryashova, O. B.; Lerner, M. I.; Vorozhtsov, A. B.; Khrustalyov, A. P.; Pervikov, A. V.

    2017-11-01

    The authors consider and evaluate the physical parameters and regularities of the process of consolidation of Fe-Cu, Cu-Nb, Ag-Ni, Fe-Pb nanoparticles when creating composite materials by means of shock wave compaction. As a result of theoretical consideration of explosive compaction process, researchers established and discussed the physical process conditions, established a number of threshold pressure values corresponding to different target indicators of the state of the compact. The time of shock wave impact on powders for powder consolidation was estimated.

  6. Transient bow shock around a cylinder in a supersonic dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, John K.; Merlino, Robert L.

    2013-07-15

    Visual observations of the formation of a bow shock in the transient supersonic flow of a dusty plasma incident on a biased cylinder are presented. The bow shock formed when the advancing front of a streaming dust cloud was reflected by the obstacle. After its formation, the density jump of the bow shock increased as it moved upstream of the obstacle. A physical picture for the formation of the electrohydrodynamic bow shock is discussed.

  7. Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft.

    PubMed

    Johlander, A; Schwartz, S J; Vaivads, A; Khotyaintsev, Yu V; Gingell, I; Peng, I B; Markidis, S; Lindqvist, P-A; Ergun, R E; Marklund, G T; Plaschke, F; Magnes, W; Strangeway, R J; Russell, C T; Wei, H; Torbert, R B; Paterson, W R; Gershman, D J; Dorelli, J C; Avanov, L A; Lavraud, B; Saito, Y; Giles, B L; Pollock, C J; Burch, J L

    2016-10-14

    Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

  8. Rippled Quasiperpendicular Shock Observed by the Magnetospheric Multiscale Spacecraft

    NASA Technical Reports Server (NTRS)

    Johlander, A.; Schwartz, S. J.; Vaivads, A.; Khotyaintsev, Yu. V.; Gingell, I.; Peng, I. B.; Markidis, S.; Lindqvist, P.-A.; Ergun, R. E.; Marklund, G. T.; hide

    2016-01-01

    Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earths quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMSs high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

  9. A Computational Examination of Detonation Physics and Blast Chemistry

    DTIC Science & Technology

    2011-08-01

    State 5 3 Detonation and Shock Hugoniots for TNT using the JWL Equation of State 6 4 Detonation and Shock Hugoniots for HMX using the JWL ...Equation of State 6 5 Detonation and Shock Hugoniots for Composition C-4 using the JWL Equation of State 7 6 Detonation and Shock...Hugoniots for PBX-9502 using the JWL Equation of State 7 7 Detonation and Shock Hugoniots for PETN using the JWL Equation of State 8 8

  10. A Computational Examination of Detonation Physics and Blast Chemistry

    DTIC Science & Technology

    2011-08-01

    Equation of State 5 3 Detonation and Shock Hugoniots for TNT using the JWL Equation of State 6 4 Detonation and Shock Hugoniots for HMX using the... JWL Equation of State 6 5 Detonation and Shock Hugoniots for Composition C-4 using the JWL Equation of State 7 6 Detonation and...Shock Hugoniots for PBX-9502 using the JWL Equation of State 7 7 Detonation and Shock Hugoniots for PETN using the JWL Equation of State 8

  11. Healthcare Utilization and Expenditures Associated With Appropriate and Inappropriate Implantable Defibrillator Shocks.

    PubMed

    Turakhia, Mintu P; Zweibel, Steven; Swain, Andrea L; Mollenkopf, Sarah A; Reynolds, Matthew R

    2017-02-01

    In patients with implantable cardioverter-defibrillators, healthcare utilization (HCU) and expenditures related to shocks have not been quantified. We performed a retrospective cohort study of patients with implantable cardioverter-defibrillators identified from commercial and Medicare supplemental claims databases linked to adjudicated shock events from remote monitoring data. A shock event was defined as ≥1 spontaneous shocks delivered by an implanted device. Shock-related HCU was ascertained from inpatient and outpatient claims within 7 days following a shock event. Shock events were adjudicated and classified as inappropriate or appropriate, and HCU and expenditures, stratified by shock type, were quantified. Of 10 266 linked patients, 963 (9.4%) patients (61.3±13.6 years; 81% male) had 1885 shock events (56% appropriate, 38% inappropriate, and 6% indeterminate). Of these events, 867 (46%) had shock-related HCU (14% inpatient and 32% outpatient). After shocks, inpatient cardiovascular procedures were common, including echocardiography (59%), electrophysiology study or ablation (34%), stress testing (16%), and lead revision (11%). Cardiac catheterization was common (71% and 51%), but percutaneous coronary intervention was low (6.5% and 5.0%) after appropriate and inappropriate shocks. Expenditures related to appropriate and inappropriate shocks were not significantly different. After implantable cardioverter-defibrillator shock, related HCU was common, with 1 in 3 shock events followed by outpatient HCU and 1 in 7 followed by hospitalization. Use of invasive cardiovascular procedures was substantial, even after inappropriate shocks, which comprised 38% of all shocks. Implantable cardioverter-defibrillator shocks seem to trigger a cascade of health care. Strategies to reduce shocks could result in cost savings. © 2017 American Heart Association, Inc.

  12. Dust Ion-Acoustic Shock Waves in a Multicomponent Magnetorotating Plasma

    NASA Astrophysics Data System (ADS)

    Kaur, Barjinder; Saini, N. S.

    2018-02-01

    The nonlinear properties of dust ion-acoustic (DIA) shock waves in a magnetorotating plasma consisting of inertial ions, nonextensive electrons and positrons, and immobile negatively charged dust are examined. The effects of dust charge fluctuations are not included in the present investigation, but the ion kinematic viscosity (collisions) is a source of dissipation, leading to the formation of stable shock structures. The Zakharov-Kuznetsov-Burgers (ZKB) equation is derived using the reductive perturbation technique, and from its solution the effects of different physical parameters, i.e. nonextensivity of electrons and positrons, kinematic viscosity, rotational frequency, and positron and dust concentrations, on the characteristics of shock waves are examined. It is observed that physical parameters play a very crucial role in the formation of DIA shocks. This study could be useful in understanding the electrostatic excitations in dusty plasmas in space (e.g. interstellar medium).

  13. Simulating Shock Triggered Star Formation with AstroBEAR2.0

    NASA Astrophysics Data System (ADS)

    Li, Shule; Frank, Adam; Blackman, Eric

    2013-07-01

    Star formation can be triggered by the compression from shocks running over stable clouds. Triggered star formation is a favored explanation for the traces of SLRI's in our solar system. Previous research has shown that when parameters such as shock speed are within a certain range, the gravitational collapse of otherwise stable, dense cloud cores is possible. However, these studies usually focus on the precursors of star formation, and the conditions for the triggering. We use AstroBEAR2.0 code to simulate the collapse and subsequent evolution of a stable Bonnor-Ebert cloud by an incoming shock. Through our simulations, we show that interesting physics happens when the newly formed star interacts with the cloud residue and the post-shock flow. We identify these interactions as controlled by the initial conditions of the triggering and study the flow pattern as well as the evolution of important physics quantities such as accretion rate and angular momentum.

  14. Physical activity, muscle, and the HSP70 response.

    PubMed

    Kilgore, J L; Musch, T I; Ross, C R

    1998-06-01

    Selye (1936) described how organisms react to various external stimuli (i.e., stressors). These reactions generally follow a programmed series of events and help the organism adapt to the imposed stress. The heat shock response is a common cellular reaction to external stressors, including physical activity. A characteristic set of proteins is synthesised shortly after the organism is exposed to stress. Researchers have not determined how heat shock proteins affect the exercise response. However, their role in adaptation to exercise and training might be inferred, since the synthetic patterns correlate well with the stress adaptation syndrome that Selye described. This review addresses the 70 kilodalton heat shock protein family (HSP70), the most strongly induced heat shock proteins. This paper provides an overview of the general heat shock response and a brief review of literature on HSP70 function, structure, regulation, and potential applications. Potential applications in health, exercise, and medicine are provided.

  15. Initial Results from the Variable Intensity Sonic Boom Propagation Database

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Bunce, Thomas J.; Gabrielson, Thomas B.; Sparrow, Victor W.; Locey, Lance L.

    2008-01-01

    An extensive sonic boom propagation database with low- to normal-intensity booms (overpressures of 0.08 lbf/sq ft to 2.20 lbf/sq ft) was collected for propagation code validation, and initial results and flight research techniques are presented. Several arrays of microphones were used, including a 10 m tall tower to measure shock wave directionality and the effect of height above ground on acoustic level. A sailplane was employed to measure sonic booms above and within the atmospheric turbulent boundary layer, and the sailplane was positioned to intercept the shock waves between the supersonic airplane and the ground sensors. Sailplane and ground-level sonic boom recordings were used to generate atmospheric turbulence filter functions showing excellent agreement with ground measurements. The sonic boom prediction software PCBoom4 was employed as a preflight planning tool using preflight weather data. The measured data of shock wave directionality, arrival time, and overpressure gave excellent agreement with the PCBoom4-calculated results using the measured aircraft and atmospheric data as inputs. C-weighted acoustic levels generally decreased with increasing height above the ground. A-weighted and perceived levels usually were at a minimum for a height where the elevated microphone pressure rise time history was the straightest, which is a result of incident and ground-reflected shock waves interacting.

  16. Professor Thomas J. Ahrens and Shock Wave Physics in Russia

    NASA Astrophysics Data System (ADS)

    Fortov, Vladimir E.; Kanel, Gennady I.

    2011-06-01

    Since his earlier works on the equations of state and dynamic mechanical properties of rocks and other materials Prof. T.J. Ahrens furnished large influence on development of the shock wave physics in Russia. He always demonstrates a choice of excellent problems and a level of productivity in the field of shock compression science which is unparalleled. In recognition of his great contribution into science and international scientific collaboration Prof. Ahrens has been elected in Russian Academy of Sciences as its foreign member. In the presentation, emphasis will be done on the Comet Shoemaker-Levy project in which we had fruitful informal collaboration, on the problem of wide-range equations of state, and on stress relaxation at shock compression of solids.

  17. The Saturnian Environment as a Unique Laboratory for Collisionless Shock Waves

    NASA Astrophysics Data System (ADS)

    Sulaiman, Ali; Masters, Adam; Dougherty, Michele; Burgess, David; Fujimoto, Masaki; Hospodarsky, George

    2016-04-01

    Collisionless shock waves are ubiquitous in the universe and fundamental to understanding the nature of collisionless plasmas. The interplay between particles (ions and electrons) and fields (electromagnetic) introduces a variety of both physical and geometrical parameters such as Mach numbers (e.g. MA, Mf), β, and θBn. These vary drastically from terrestrial to astrophysical regimes resulting in radically different characteristics of shocks. This poses two complexities. Firstly, separating the influences of these parameters on physical mechanisms such as energy dissipation. Secondly, correlating observations of shock waves over a wide range of each parameter, enough to span across different regimes. Investigating the latter has been restricted since the majority of studies on shocks at exotic regimes (such as supernova remnants) have been achieved either remotely or via simulations, but rarely by means of in-situ observations. It is not clear what happens in the higher MA regime. Here we show the parameter space of MA for all bow shock crossings from 2004-2012 as measured by the Cassini spacecraft. We found that the Saturnian bow shock exhibits characteristics akin to both terrestrial and astrophysical regimes (MA of order 100), which is principally controlled by the upstream magnetic field strength. Moreover, we estimated the θbn of each crossing and were able to further constrain the sample into categories of similar features. Our results demonstrate how MA plays a central role in controlling the onset of physical mechanisms in collisionless shocks, particularly reformation. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. We show conclusive evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted timescale of ˜0.3 τc, where τc is the ion gyroperiod. In addition, we experimentally underpin the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming. We anticipate our comprehensive assessment to give deeper insight to high MA collisionless shocks and provide a broader scope for understanding the structures and mechanisms of collisionless shocks. This can potentially bridge the gap between more modest MA observed in near-Earth space and more exotic astrophysical regimes where shock processes play central roles.

  18. Shock response of nanoporous Cu--A molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    2015-06-01

    Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.

  19. THE ROLE OF PICKUP IONS ON THE STRUCTURE OF THE VENUSIAN BOW SHOCK AND ITS IMPLICATIONS FOR THE TERMINATION SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Quanming; Shan Lican; Zhang Tielong

    2013-08-20

    The recent crossing of the termination shock by Voyager 2 has demonstrated the important role of pickup ions (PUIs) in the physics of collisionless shocks. The Venus Express (VEX) spacecraft orbits Venus in a 24 hr elliptical orbit that crosses the bow shock twice a day. VEX provides a unique opportunity to investigate the role of PUIs on the structure of collisionless shocks more generally. Using VEX observations, we find that the strength of the Venusian bow shock is weaker when solar activity is strong. We demonstrate that this surprising anti-correlation is due to PUIs mediating the Venusian bow shock.

  20. Effects of heat conduction on artificial viscosity methods for shock capturing

    DOE PAGES

    Cook, Andrew W.

    2013-12-01

    Here we investigate the efficacy of artificial thermal conductivity for shock capturing. The conductivity model is derived from artificial bulk and shear viscosities, such that stagnation enthalpy remains constant across shocks. By thus fixing the Prandtl number, more physical shock profiles are obtained, only on a larger scale. The conductivity model does not contain any empirical constants. It increases the net dissipation of a computational algorithm but is found to better preserve symmetry and produce more robust solutions for strong-shock problems.

  1. Predictions of Supersonic Jet Mixing and Shock-Associated Noise Compared With Measured Far-Field Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2010-01-01

    Codes for predicting supersonic jet mixing and broadband shock-associated noise were assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. Two types of codes were used to make predictions. Fast running codes containing empirical models were used to compute both the mixing noise component and the shock-associated noise component of the jet noise spectrum. One Reynolds-averaged, Navier-Stokes-based code was used to compute only the shock-associated noise. To enable the comparisons of the predicted component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise components. Comparisons were made for 1/3-octave spectra and some power spectral densities using data from jets operating at 24 conditions covering essentially 6 fully expanded Mach numbers with 4 total temperature ratios.

  2. Comparative safety and efficacy of vasopressors for mortality in septic shock: A network meta-analysis.

    PubMed

    Nagendran, Myura; Maruthappu, Mahiben; Gordon, Anthony C; Gurusamy, Kurinchi S

    2016-05-01

    Septic shock is a life-threatening condition requiring vasopressor agents to support the circulatory system. Several agents exist with choice typically guided by the specific clinical scenario. We used a network meta-analysis approach to rate the comparative efficacy and safety of vasopressors for mortality and arrhythmia incidence in septic shock patients. We performed a comprehensive electronic database search including Medline, Embase, Science Citation Index Expanded and the Cochrane database. Randomised trials investigating vasopressor agents in septic shock patients and specifically assessing 28-day mortality or arrhythmia incidence were included. A Bayesian network meta-analysis was performed using Markov chain Monte Carlo methods. Thirteen trials of low to moderate risk of bias in which 3146 patients were randomised were included. There was no pairwise evidence to suggest one agent was superior over another for mortality. In the network meta-analysis, vasopressin was significantly superior to dopamine (OR 0.68 (95% CI 0.5 to 0.94)) for mortality. For arrhythmia incidence, standard pairwise meta-analyses confirmed that dopamine led to a higher incidence of arrhythmias than norepinephrine (OR 2.69 (95% CI 2.08 to 3.47)). In the network meta-analysis, there was no evidence of superiority of one agent over another. In this network meta-analysis, vasopressin was superior to dopamine for 28-day mortality in septic shock. Existing pairwise information supports the use of norepinephrine over dopamine. Our findings suggest that dopamine should be avoided in patients with septic shock and that other vasopressor agents should continue to be based on existing guidelines and clinical judgement of the specific presentation of the patient.

  3. Recent developments in shock tube research; Proceedings of the Ninth International Symposium, Stanford University, Stanford, Calif., July 16-19, 1973

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Griffith, W.

    1973-01-01

    Recent advances in shock tube research are described in papers dealing with the design and performance features of new devices as well as applications in aerodynamic, chemical, and physics experiments. Topics considered include a cryogenic shock tube for studying liquid helium fluid mechanics, studies of shock focusing and nonlinear resonance in shock tubes, applications in gas laser studies, very-low and very-high temperature chemical kinetic measurements, shock tube studies of ionization and recombination phenomena, applications in bioacoustic research, shock-tube simulation studies of sonic booms, and plasma research. Individual items are announced in this issue.

  4. Shock wave physics and detonation physics — a stimulus for the emergence of numerous new branches in science and engineering

    NASA Astrophysics Data System (ADS)

    Krehl, Peter O. K.

    2011-07-01

    In the period of the Cold War (1945-1991), Shock Wave Physics and Detonation Physics (SWP&DP) — until the beginning of WWII mostly confined to gas dynamics, high-speed aerodynamics, and military technology (such as aero- and terminal ballistics, armor construction, chemical explosions, supersonic gun, and other firearms developments) — quickly developed into a large interdisciplinary field by its own. This rapid expansion was driven by an enormous financial support and two efficient feedbacks: the Terminal Ballistic Cycleand the Research& Development Cycle. Basic knowledge in SWP&DP, initially gained in the Classic Period(from 1808) and further extended in the Post-Classic Period(from the 1930s to present), is now increasingly used also in other branches of Science and Engineering (S&E). However, also independent S&E branches developed, based upon the fundamentals of SWP&DP, many of those developments will be addressed (see Tab. 2). Thus, shock wave and detonation phenomena are now studied within an enormous range of dimensions, covering microscopic, macroscopic, and cosmic dimensions as well as enormous time spans ranging from nano-/picosecond shock durations (such as produced by ultra-short laser pulses) to shock durations that continue for centuries (such as blast waves emitted from ancient supernova explosions). This paper reviews these developments from a historical perspective.

  5. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Burch, J. L.; Fuselier, S. A.; Genestreti, K. J.; Torbert, R. B.; Ergun, R.; Russell, C.; Wei, H.; Phan, T.; Giles, B. L.; Chen, L. J.; Mauk, B.

    2016-12-01

    Collisionless shocks are a major producer of suprathermal and energetic particles throughout space and astrophysical plasma environments. Theoretical studies combined with in-situ observations during the space age have significantly advanced our understanding of how such shocks are formed, the manner in which they evolve and dissipate their energy, and the physical mechanisms by which they heat the local plasma and accelerate the energetic particles. Launched in March 2015, NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft separated between 10-40 km and equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. Serendipitously, during Phase 1a, the MMS mission also encountered and crossed the Earth's bow shock more than 300 times. In this paper, we combine and analyze the highest available time resolution MMS burst data during 140 bow shock crossings from October 2015 through December 31, 2015 to shed new light on key open questions regarding the formation, evolution, dissipation, and particle injection and energization at collisionless shocks. In particular, we compare and contrast the differences in shock dissipation and particle acceleration mechanisms at quasi-parallel and quasi-perpendicular shocks.

  6. Pseudo-shock waves and their interactions in high-speed intakes

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  7. Molecule formation and infrared emission in fast interstellar shocks. I Physical processes

    NASA Technical Reports Server (NTRS)

    Hollenbach, D.; Mckee, C. F.

    1979-01-01

    The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.

  8. Biomechanics of stair walking and jumping.

    PubMed

    Loy, D J; Voloshin, A S

    1991-01-01

    Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.

  9. Review and assessment of turbulence models for hypersonic flows

    NASA Astrophysics Data System (ADS)

    Roy, Christopher J.; Blottner, Frederick G.

    2006-10-01

    Accurate aerodynamic prediction is critical for the design and optimization of hypersonic vehicles. Turbulence modeling remains a major source of uncertainty in the computational prediction of aerodynamic forces and heating for these systems. The first goal of this article is to update the previous comprehensive review of hypersonic shock/turbulent boundary-layer interaction experiments published in 1991 by Settles and Dodson (Hypersonic shock/boundary-layer interaction database. NASA CR 177577, 1991). In their review, Settles and Dodson developed a methodology for assessing experiments appropriate for turbulence model validation and critically surveyed the existing hypersonic experiments. We limit the scope of our current effort by considering only two-dimensional (2D)/axisymmetric flows in the hypersonic flow regime where calorically perfect gas models are appropriate. We extend the prior database of recommended hypersonic experiments (on four 2D and two 3D shock-interaction geometries) by adding three new geometries. The first two geometries, the flat plate/cylinder and the sharp cone, are canonical, zero-pressure gradient flows which are amenable to theory-based correlations, and these correlations are discussed in detail. The third geometry added is the 2D shock impinging on a turbulent flat plate boundary layer. The current 2D hypersonic database for shock-interaction flows thus consists of nine experiments on five different geometries. The second goal of this study is to review and assess the validation usage of various turbulence models on the existing experimental database. Here we limit the scope to one- and two-equation turbulence models where integration to the wall is used (i.e., we omit studies involving wall functions). A methodology for validating turbulence models is given, followed by an extensive evaluation of the turbulence models on the current hypersonic experimental database. A total of 18 one- and two-equation turbulence models are reviewed, and results of turbulence model assessments for the six models that have been extensively applied to the hypersonic validation database are compiled and presented in graphical form. While some of the turbulence models do provide reasonable predictions for the surface pressure, the predictions for surface heat flux are generally poor, and often in error by a factor of four or more. In the vast majority of the turbulence model validation studies we review, the authors fail to adequately address the numerical accuracy of the simulations (i.e., discretization and iterative error) and the sensitivities of the model predictions to freestream turbulence quantities or near-wall y+ mesh spacing. We recommend new hypersonic experiments be conducted which (1) measure not only surface quantities but also mean and fluctuating quantities in the interaction region and (2) provide careful estimates of both random experimental uncertainties and correlated bias errors for the measured quantities and freestream conditions. For the turbulence models, we recommend that a wide-range of turbulence models (including newer models) be re-examined on the current hypersonic experimental database, including the more recent experiments. Any future turbulence model validation efforts should carefully assess the numerical accuracy and model sensitivities. In addition, model corrections (e.g., compressibility corrections) should be carefully examined for their effects on a standard, low-speed validation database. Finally, as new experiments or direct numerical simulation data become available with information on mean and fluctuating quantities, they should be used to improve the turbulence models and thus increase their predictive capability.

  10. Application of Micro-ramp Flow Control Devices to an Oblique Shock Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie; Anderson, Bernhard

    2007-01-01

    Tests are planned in the 15cm x 15cm supersonic wind tunnel at NASA Glenn to demonstrate the applicability of micro-ramp flow control to the management of shock wave boundary layer interactions. These tests will be used as a database for computational fluid dynamics (CFD) validation and Design of Experiments (DoE) design information. Micro-ramps show potential for mechanically simple and fail-safe boundary layer control.

  11. Collisionless Shocks and Particle Acceleration.

    NASA Astrophysics Data System (ADS)

    Malkov, M.

    2016-12-01

    Collisionless shocks emerged in the 50s and 60s of the last century as an important branch of plasma physics and have remained ever since. New applications pose new challenges to our understanding of collisionless shock mechanisms. Particle acceleration in astrophysical settings, primarily studied concerning the putative origin of cosmic rays (CR) in supernova remnant (SNR) shocks, stands out with the collisionless shock mechanism being the key. Among recent laboratory applications, a laser-based tabletop proton accelerator is an affordable compact alternative to big synchrotron accelerators. The much-anticipated proof of cosmic ray (CR) acceleration in supernova remnants is hindered by our limited understanding of collisionless shock mechanisms. Over the last decade, dramatically improved observations were puzzling the theorists with unexpected discoveries. The difference between the helium/carbon and proton CR rigidity (momentum to charge ratio) spectra, seemingly inconsistent with the acceleration and propagation theories, and the perplexing positron excess in the 10-300 GeV range are just two recent examples. The latter is now also actively discussed in the particle physics and CR communities as a possible signature of decay or annihilation of hypothetical dark matter particles. By considering an initial (injection) phase of a diffusive shock acceleration mechanism, including particle reflection off the shock front - where an elemental similarity of particle dynamics does not apply - I will discuss recent suggestions of how to address the new data from the collisionless shock perspective. The backreaction of accelerated particles on the shock structure, its environment, and visibility across the electromagnetic spectrum from radio to gamma rays is another key aspect of collisionless shock that will be discussed.

  12. Fragmentation of Solid Materials Using Shock Tubes. Part 1: First Test Series in a Small Diameter Shock Tube

    DTIC Science & Technology

    2017-01-01

    time histories with peak pressures of approximately 250 psi and 500 psi. 1.2 TESTING OBJECTIVES The first goal of this test series was to explore how...finally the late- time at-rest fragments were physically collected and analyzed post-test. Because this test series physically collected over 50,000...for a single fragmenting object. Comparing the three measurement techniques used in this test series , the late- time physically- collected mass

  13. Shock Wave Technology and Application: An Update☆

    PubMed Central

    Rassweiler, Jens J.; Knoll, Thomas; Köhrmann, Kai-Uwe; McAteer, James A.; Lingeman, James E.; Cleveland, Robin O.; Bailey, Michael R.; Chaussy, Christian

    2012-01-01

    Context The introduction of new lithotripters has increased problems associated with shock wave application. Recent studies concerning mechanisms of stone disintegration, shock wave focusing, coupling, and application have appeared that may address some of these problems. Objective To present a consensus with respect to the physics and techniques used by urologists, physicists, and representatives of European lithotripter companies. Evidence acquisition We reviewed recent literature (PubMed, Embase, Medline) that focused on the physics of shock waves, theories of stone disintegration, and studies on optimising shock wave application. In addition, we used relevant information from a consensus meeting of the German Society of Shock Wave Lithotripsy. Evidence synthesis Besides established mechanisms describing initial fragmentation (tear and shear forces, spallation, cavitation, quasi-static squeezing), the model of dynamic squeezing offers new insight in stone comminution. Manufacturers have modified sources to either enlarge the focal zone or offer different focal sizes. The efficacy of extracorporeal shock wave lithotripsy (ESWL) can be increased by lowering the pulse rate to 60–80 shock waves/min and by ramping the shock wave energy. With the water cushion, the quality of coupling has become a critical factor that depends on the amount, viscosity, and temperature of the gel. Fluoroscopy time can be reduced by automated localisation or the use of optical and acoustic tracking systems. There is a trend towards larger focal zones and lower shock wave pressures. Conclusions New theories for stone disintegration favour the use of shock wave sources with larger focal zones. Use of slower pulse rates, ramping strategies, and adequate coupling of the shock wave head can significantly increase the efficacy and safety of ESWL. PMID:21354696

  14. Shock initiation of nitromethane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, C.S.; Holmes, N.C.

    1994-07-10

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. A broad, but strong emission has been observed in a spectral range between 350 nm and 700 nm from the shocked nitromethane above 9 GPa. The temporal profile suggests that the shocked nitromethane detonates through three characteristic periods, namely an induction period, a shock initiation period, and a thermal explosion period. In this paper we will discuss the temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15more » GPa. [copyright]American Institute of Physics« less

  15. Microenergetic Shock Initiation Studies on Deposited Films of PETN

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.

    2009-06-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  16. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    DOE PAGES

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; ...

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnifiedmore » x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.« less

  17. Imaging Shock Waves in Diamond with Both High Temporal and Spatial Resolution at an XFEL.

    PubMed

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G; Beckwith, Martha A; Collins, Gilbert W; Higginbotham, Andrew; Wark, Justin S; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B; Schroer, Christian G

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  18. X-ray emission from reverse-shocked ejecta in supernova remnants

    NASA Technical Reports Server (NTRS)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  19. The big bang as a higher-dimensional shock wave

    NASA Astrophysics Data System (ADS)

    Wesson, P. S.; Liu, H.; Seahra, S. S.

    2000-06-01

    We give an exact solution of the five-dimensional field equations which describes a shock wave moving in time and the extra (Kaluza-Klein) coordinate. The matter in four-dimensional spacetime is a cosmology with good physical properties. The solution suggests to us that the 4D big bang was a 5D shock wave.

  20. Catching the radio flare in CTA 102. I. Light curve analysis

    NASA Astrophysics Data System (ADS)

    Fromm, C. M.; Perucho, M.; Ros, E.; Savolainen, T.; Lobanov, A. P.; Zensus, J. A.; Aller, M. F.; Aller, H. D.; Gurwell, M. A.; Lähteenmäki, A.

    2011-07-01

    Context. The blazar CTA 102 (z = 1.037) underwent a historical radio outburst in April 2006. This event offered a unique chance to study the physical properties of the jet. Aims: We used multifrequency radio and mm observations to analyze the evolution of the spectral parameters during the flare as a test of the shock-in-jet model under these extreme conditions. Methods: For the analysis of the flare we took into account that the flaring spectrum is superimposed on a quiescent spectrum. We reconstructed the latter from archival data and fitted a synchrotron self-absorbed distribution of emission. The uncertainties of the derived spectral parameters were calculated using Monte Carlo simulations. The spectral evolution is modeled by the shock-in-jet model, and the derived results are discussed in the context of a geometrical model (varying viewing angle) and shock-shock interaction Results: The evolution of the flare in the turnover frequency-turnover flux density (νm - Sm) plane shows a double peak structure. The nature of this evolution is dicussed in the frame of shock-in-jet models. We discard the generation of the double peak structure in the νm - Sm plane purely based on geometrical changes (variation of the Doppler factor). The detailed modeling of the spectral evolution favors a shock-shock interaction as a possible physical mechanism behind the deviations from the standard shock-in-jet model.

  1. Nature of the wiggle instability of galactic spiral shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gasmore » in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.« less

  2. Non-equilibrium effects of diatomic and polyatomic gases on the shock-vortex interaction based on the second-order constitutive model of the Boltzmann-Curtiss equation

    NASA Astrophysics Data System (ADS)

    Singh, S.; Karchani, A.; Myong, R. S.

    2018-01-01

    The rotational mode of molecules plays a critical role in the behavior of diatomic and polyatomic gases away from equilibrium. In order to investigate the essence of the non-equilibrium effects, the shock-vortex interaction problem was investigated by employing an explicit modal discontinuous Galerkin method. In particular, the first- and second-order constitutive models for diatomic and polyatomic gases derived rigorously from the Boltzmann-Curtiss kinetic equation were solved in conjunction with the physical conservation laws. As compared with a monatomic gas, the non-equilibrium effects result in a substantial change in flow fields in both macroscale and microscale shock-vortex interactions. Specifically, the computational results showed three major effects of diatomic and polyatomic gases on the shock-vortex interaction: (i) the generation of the third sound waves and additional reflected shock waves with strong and enlarged expansion, (ii) the dominance of viscous vorticity generation, and (iii) an increase in enstrophy with increasing bulk viscosity, related to the rotational mode of gas molecules. Moreover, it was shown that there is a significant discrepancy in flow fields between the microscale and macroscale shock-vortex interactions in diatomic and polyatomic gases. The quadrupolar acoustic wave source structures, which are typically observed in macroscale shock-vortex interactions, were not found in any microscale shock-vortex interactions. The physics of the shock-vortex interaction was also investigated in detail to examine vortex deformation and evolution dynamics over an incident shock wave. A comparative study of first- and second-order constitutive models was also conducted for the enstrophy and dissipation rate. Finally, the study was extended to the shock-vortex pair interaction case to examine the effects of pair interaction on vortex deformation and evolution dynamics.

  3. PHYSICAL CONDITIONS OF CORONAL PLASMA AT THE TRANSIT OF A SHOCK DRIVEN BY A CORONAL MASS EJECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susino, R.; Bemporad, A.; Mancuso, S., E-mail: susino@oato.inaf.it

    2015-10-20

    We report here on the determination of plasma physical parameters across a shock driven by a coronal mass ejection using white light (WL) coronagraphic images and radio dynamic spectra (RDS). The event analyzed here is the spectacular eruption that occurred on 2011 June 7, a fast CME followed by the ejection of columns of chromospheric plasma, part of them falling back to the solar surface, associated with a M2.5 flare and a type-II radio burst. Images acquired by the Solar and Heliospheric Observatory/LASCO coronagraphs (C2 and C3) were employed to track the CME-driven shock in the corona between 2–12 R{submore » ⊙} in an angular interval of about 110°. In this interval we derived two-dimensional (2D) maps of electron density, shock velocity, and shock compression ratio, and we measured the shock inclination angle with respect to the radial direction. Under plausible assumptions, these quantities were used to infer 2D maps of shock Mach number M{sub A} and strength of coronal magnetic fields at the shock's heights. We found that in the early phases (2–4 R{sub ⊙}) the whole shock surface is super-Alfvénic, while later on (i.e., higher up) it becomes super-Alfvénic only at the nose. This is in agreement with the location for the source of the observed type-II burst, as inferred from RDS combined with the shock kinematic and coronal densities derived from WL. For the first time, a coronal shock is used to derive a 2D map of the coronal magnetic field strength over intervals of 10 R{sub ⊙} altitude and ∼110° latitude.« less

  4. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  5. An experimental study of fluctuating pressure loads beneath swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Settles, Gary S.

    1991-01-01

    A database is established on the fluctuating pressure loads produced on aerodynamic surfaces beneath 3-D shock wave/boundary layer interactions. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 5 to 25 deg at freestream Mach numbers between 2.5 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers mounted in the flat plate were used to measure interaction-induced wall pressure fluctuations. These data will be correlated with proposed new optical data on the fluctuations of the interaction structure, especially that of the lambda-shock system and its associated high-speed jet impingement.

  6. Shocks and Molecules in Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Arce, Héctor

    2014-06-01

    As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.

  7. Nonlinear theory of diffusive acceleration of particles by shock waves

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Drury, L. O'C.

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data.

  8. Shatter cones - An outstanding problem in shock mechanics. [geological impact fracture surface in cratering

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1977-01-01

    Shatter cone characteristics are surveyed. Shatter cones, a form of rock fracture in impact structures, apparently form as a shock front interacts with inhomogeneities or discontinuities in the rock. Topics discussed include morphology, conditions of formation, shock pressure of formation, and theories of formation. It is thought that shatter cones are produced within a limited range of shock pressures extending from about 20 to perhaps 250 kbar. Apical angles range from less than 70 deg to over 120 deg. Tentative hypotheses concerning the physical process of shock coning are considered. The range in shock pressures which produce shatter cones might correspond to the range in which shock waves decompose into elastic and deformational fronts.

  9. Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry.

    PubMed

    Lampert, Rachel; Olshansky, Brian; Heidbuchel, Hein; Lawless, Christine; Saarel, Elizabeth; Ackerman, Michael; Calkins, Hugh; Estes, N A Mark; Link, Mark S; Maron, Barry J; Marcus, Frank; Scheinman, Melvin; Wilkoff, Bruce L; Zipes, Douglas P; Berul, Charles I; Cheng, Alan; Law, Ian; Loomis, Michele; Barth, Cheryl; Brandt, Cynthia; Dziura, James; Li, Fangyong; Cannom, David

    2013-05-21

    The risks of sports participation for implantable cardioverter-defibrillator (ICD) patients are unknown. Athletes with ICDs (age, 10-60 years) participating in organized (n=328) or high-risk (n=44) sports were recruited. Sports-related and clinical data were obtained by phone interview and medical records. Follow-up occurred every 6 months. ICD shock data and clinical outcomes were adjudicated by 2 electrophysiologists. Median age was 33 years (89 subjects <20 years of age); 33% were female. Sixty were competitive athletes (varsity/junior varsity/traveling team). A pre-ICD history of ventricular arrhythmia was present in 42%. Running, basketball, and soccer were the most common sports. Over a median 31-month (interquartile range, 21-46 months) follow-up, there were no occurrences of either primary end point-death or resuscitated arrest or arrhythmia- or shock-related injury-during sports. There were 49 shocks in 37 participants (10% of study population) during competition/practice, 39 shocks in 29 participants (8%) during other physical activity, and 33 shocks in 24 participants (6%) at rest. In 8 ventricular arrhythmia episodes (device defined), multiple shocks were received: 1 at rest, 4 during competition/practice, and 3 during other physical activity. Ultimately, the ICD terminated all episodes. Freedom from lead malfunction was 97% at 5 years (from implantation) and 90% at 10 years. Many athletes with ICDs can engage in vigorous and competitive sports without physical injury or failure to terminate the arrhythmia despite the occurrence of both inappropriate and appropriate shocks. These data provide a basis for more informed physician and patient decision making in terms of sports participation for athletes with ICDs.

  10. The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma

    NASA Astrophysics Data System (ADS)

    Hillier, A.; Takasao, S.; Nakamura, N.

    2016-06-01

    The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.

  11. Update on Phelix Pulsed-Power Hydrodynamics Experiments and Modeling

    DTIC Science & Technology

    2013-06-01

    underway to assess the feasibility of using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. I. INTRODUCTION...inductance loads. Cylindrical liners or planer flyer plates can achieve km/s velocities and kbar pressures. A schematic of PHELIX is shown in Figure 1. Each...using the PHELIX driver as an electromagnetic launcher for planer shock-physics experiments. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17

  12. Evolution of the shock front and turbulence structures in the shock/turbulence interaction

    NASA Technical Reports Server (NTRS)

    Kevlahan, N.; Mahesh, K.; Lee, S.

    1992-01-01

    The interaction of a weak shock front with isotropic turbulence has been investigated using Direct Numerical Simulation (DNS). Two problems were considered: the ability of the field equation (the equation for a propagating surface) to model the shock; and a quantitative study of the evolution of turbulence structure using the database generated by Lee et al. Field equation model predictions for front shape have been compared with DNS results; good agreement is found for shock wave interaction with 2D turbulence and for a single steady vorticity wave. In the interaction of 3D isotropic turbulence with a normal shock, strong alignment of vorticity with the intermediate eigenvector of the rate of strain tensor (S(sup *)(sub ij) = S(sub ij) - (1/3)(delta(sub ij))(S(sub kk))) is seen to develop upstream of the shock and to be further amplified on passage through the shock. Vorticity tends to align at 90 deg to the largest eigenvector, but there is no preferred alignment with the smallest eigenvector. Upstream of the shock, the alignments continue to develop even after the velocity derivative skewness saturates. There is a significant tendency, which increases with time throughout the computational domain, for velocity to align with vorticity. The alignment between velocity and vorticity is strongest in eddy regions and weakest in convergence regions.

  13. Exploration of the fragmentation of laser shock-melted aluminum using x-ray backlighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin, E-mail: zhanglinbox@263.net, E-mail: zhanglinbox@caep.cn; Li, Ying-Hua; Li, Xue-Mei

    The fragmentation of shock-melted metal material is an important scientific problem in shock physics and is suitable for experimentally investigating by the laser-driven x-ray backlighting technique. This letter reports on the exploration of laser shock-melted aluminum fragmentation by means of x-ray backlighting at the SGII high energy facility in China. High-quality and high-resolution radiographs with negligible motion blur were obtained and these images enabled analysis of the mass distribution of the fragmentation product.

  14. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  15. Numerical and Experimental Investigation of Multiple Shock Wave/Turbulent Boundary Layer Interactions in a Rectangular Duct

    DTIC Science & Technology

    1988-01-06

    the bottom % kall followin,, the interaction. At 6Wuh = 0.35 the shock train would not stay attached to a single wall long enough for the surface...Interaction of a Shock Wave with a Laminar Boundary Layer," Lecture Notes in Physics, Vol. 8, Springer-Verlag, 1971 , pp. 151-163. 51 MacCormack, R. W

  16. Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Gastaldello, F.; Brunetti, G.

    2018-06-01

    A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have M< 2 derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.

  17. A Study of Fundamental Shock Noise Mechanisms

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1997-01-01

    This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.

  18. Epidemiology and Clinical Relevance of Toxic Shock Syndrome in US Children.

    PubMed

    Gaensbauer, James T; Birkholz, Meghan; Smit, Michael A; Garcia, Roger; Todd, James K

    2018-03-27

    It is important for clinicians to recognize the contribution of toxic shock syndrome (TSS) to the overall burden of pediatric septic shock because the clinical features, optimal therapy and prognosis differ from non-TSS septic shock. We analyzed cases of pediatric septic shock reported to the Pediatric Health Information Systems (PHIS) database between 2009 and 2013 to define the clinical and demographic characteristics of pediatric TSS in the US. Using a validated ICD-9 coding strategy we identified patients with infectious shock among inpatients age 1 to 18 years, and classified cases of staphylococcal and streptococcal TSS for comparison with non-TSS cases. Of 8,226 cases of pediatric septic shock, 909 (11.1%) were classified as TSS and 562 (6.8%) were possible TSS cases. Staphylococcal TSS represented the majority (83%) of TSS cases, and occurred more commonly in females and at an older age. Compared with non-TSS septic shock, TSS had significantly lower fatality rates, disease severity, and length of hospital stay, and was present more often at the time of admission (p<0.001 for each). Streptococcal TSS was associated with poorer outcomes than staphylococcal TSS. Treatment for TSS differed from non-TSS septic shock in use of more clindamycin, vancomycin and IVIG, and less need for vasopressors. Results demonstrate a significant contribution of TSS to the burden of pediatric septic shock in the US. The findings emphasize the importance of inclusion of TSS diagnostic and therapeutic considerations in sepsis treatment protocols for children.

  19. The ability of ewes with lambs to learn a virtual fencing system.

    PubMed

    Brunberg, E I; Bergslid, I K; Bøe, K E; Sørheim, K M

    2017-11-01

    The Nofence technology is a GPS-based virtual fencing system designed to keep sheep within predefined borders, without using physical fences. Sheep wearing a Nofence collar receive a sound signal when crossing the virtual border and a weak electric shock if continuing to walk out from the virtual enclosure. Two experiments testing the functionality of the Nofence system and a new learning protocol is described. In Experiment 1, nine ewes with their lambs were divided into groups of three and placed in an experimental enclosure with one Nofence border. During 2 days, there was a physical fence outside the border, during Day 3 the physical fence was removed and on Day 4, the border was moved to the other end of the enclosure. The sheep received between 6 and 20 shocks with an average of 10.9±2.0 (mean±SE) per ewe during all 4 days. The number of shocks decreased from 4.38±0.63 on Day 3 (when the physical fence was removed) to 1.5±0.71 on Day 4 (when the border was moved). The ewes spent on average 3%, 6%, 46% and 9% of their time outside the border on Days 1, 2, 3 and 4, respectively. In Experiment 2, 32 ewes, with and without lambs, were divided into groups of eight and placed in an experimental enclosure. On Day 1, the enclosure was fenced with three physical fences and one virtual border, which was then increased to two virtual borders on Day 2. To continue to Day 3, when there was supposed to be three virtual borders on the enclosure, at least 50% of the ewes in a group should have received a maximum of four shocks on Day 2. None of the groups reached this learning criterion and the experiment ended after Day 2. The sheep received 4.1±0.32 shocks on Day 1 and 4.7±0.28 shocks on Day 2. In total, 71% of the ewes received the maximum number of five shocks on Day 1 and 77% on Day 2. The individual ewes spent between 0% and 69.5% of Day 1 in the exclusion zone and between 0% and 64% on Day 2. In conclusion, it is too challenging to ensure an efficient learning and hence, animal welfare cannot be secured. There were technical challenges with the collars that may have affected the results. The Nofence prototype was unable to keep the sheep within the intended borders, and thus cannot replace physical fencing for sheep.

  20. Microenergetic Shock Initiation Studies on Deposited Films of Petn

    NASA Astrophysics Data System (ADS)

    Tappan, Alexander S.; Wixom, Ryan R.; Trott, Wayne M.; Long, Gregory T.; Knepper, Robert; Brundage, Aaron L.; Jones, David A.

    2009-12-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-μm thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the out-of-plane and in-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult. Initiation was possible with an explosively-driven 0.13-mm thick Kapton flyer and direct observation of initiation behavior was examined using streak camera photography at different flyer velocities. Models of this configuration were created using the shock physics code CTH.

  1. New Evidence for Efficient Collisionless Heating of Electrons at the Reverse Shock of a Young Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Hiroya; Eriksen, Kristoffer A.; Badenes, Carles; Hughes, John P.; Brickhouse, Nancy S.; Foster, Adam R.; Patnaude, Daniel J.; Petre, Robert; Slane, Patrick O.; Smith, Randall K.

    2013-01-01

    Although collisionless shocks are ubiquitous in astrophysics, certain key aspects of them are not well understood. In particular, the process known as collisionless electron heating, whereby electrons are rapidly energized at the shock front, is one of the main open issues in shock physics. Here, we present the first clear evidence for efficient collisionless electron heating at the reverse shock of Tycho's supernova remnant (SNR), revealed by Fe K diagnostics using high-quality X-ray data obtained by the Suzaku satellite. We detect K beta (3p yields 1s) fluorescence emission from low-ionization Fe ejecta excited by energetic thermal electrons at the reverse shock front, which peaks at a smaller radius than Fe K alpha (2p yields 1s) emission dominated by a relatively highly ionized component. Comparisons with our hydrodynamical simulations imply instantaneous electron heating to a temperature 1000 times higher than expected from Coulomb collisions alone. The unique environment of the reverse shock, which is propagating with a high Mach number into rarefied ejecta with a low magnetic field strength, puts strong constraints on the physical mechanism responsible for this heating and favors a cross-shock potential created by charge deflection at the shock front. Our sensitive observation also reveals that the reverse shock radius of this SNR is about 10% smaller than the previous measurement using the Fe K alpha morphology from the Chandra observations. Since strong Fe K beta fluorescence is expected only from low-ionization plasma where Fe ions still have many 3p electrons, this feature is key to diagnosing the plasma state and distribution of the immediate postshock ejecta in a young SNR.

  2. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  3. Online Databases in Physics.

    ERIC Educational Resources Information Center

    Sievert, MaryEllen C.; Verbeck, Alison F.

    1984-01-01

    This overview of 47 online sources for physics information available in the United States--including sub-field databases, transdisciplinary databases, and multidisciplinary databases-- notes content, print source, language, time coverage, and databank. Two discipline-specific databases (SPIN and PHYSICS BRIEFS) are also discussed. (EJS)

  4. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  5. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  6. Remote shock sensing and notification system

    DOEpatents

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  7. An investigation of bleed configurations and their effect on shock wave/boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, Awatef

    1995-01-01

    The design of high efficiency supersonic inlets is a complex task involving the optimization of a number of performance parameters such as pressure recovery, spillage, drag, and exit distortion profile, over the flight Mach number range. Computational techniques must be capable of accurately simulating the physics of shock/boundary layer interactions, secondary corner flows, flow separation, and bleed if they are to be useful in the design. In particular, bleed and flow separation, play an important role in inlet unstart, and the associated pressure oscillations. Numerical simulations were conducted to investigate some of the basic physical phenomena associated with bleed in oblique shock wave boundary layer interactions that affect the inlet performance.

  8. The 86-kilodalton antigen from Schistosoma mansoni is a heat-shock protein homologous to yeast HSP-90.

    PubMed

    Johnson, K S; Wells, K; Bock, J V; Nene, V; Taylor, D W; Cordingley, J S

    1989-08-01

    We report the sequence of a cDNA clone encoding an 86-kDa polypeptide antigen (p86) from Schistosoma mansoni. Fusion proteins made in Escherichia coli are recognized by human infection sera. The reading frame of this antigen is highly homologous to those of the large heat-shock proteins of Saccharomyces cerevisiae (HSP90) and Drosophila melanogaster (HSP83). mRNA encoding p86 increases in response to heat shock of adult worms, as does HSP70. Comparisons of the sequences of HSP70 and HSP83 homologues show that these two families of heat-shock proteins are not significantly related except for the last four amino acid residues, which are Glu-Glu-Val-Asp in every case. This sequence is not found at the carboxy terminus of any other protein in the current databases.

  9. The Biermann Catastrophe in Numerical Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Graziani, Carlo; Tzeferacos, Petros; Lee, Dongwook; Lamb, Donald Q.; Weide, Klaus; Fatenejad, Milad; Miller, Joshua

    2015-03-01

    The Biermann battery effect is frequently invoked in cosmic magnetogenesis and studied in high-energy density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to misaligned density and temperature gradients in smooth flow behind shocks is well known. We show that a Biermann-effect magnetic field is also generated within shocks. Direct implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, it produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note two novel physical effects: a resistive magnetic precursor, in which a Biermann-generated field in the shock “leaks” resistively upstream, and a thermal magnetic precursor, in which a field is generated by the Biermann effect ahead of the shock front owing to gradients created by the shock’s electron thermal conduction precursor. Both effects appear to be potentially observable in experiments at laser facilities. We reexamine published studies of magnetogenesis in galaxy cluster formation and conclude that the simulations in question had inadequate resolution to reliably estimate the field generation rate. Corrected estimates suggest primordial field values in the range B˜ {{10}-22}-10-19 G by z = 3.

  10. Machine learning to analyze images of shocked materials for precise and accurate measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresselhaus-Cooper, Leora; Howard, Marylesa; Hock, Margaret C.

    A supervised machine learning algorithm, called locally adaptive discriminant analysis (LADA), has been developed to locate boundaries between identifiable image features that have varying intensities. LADA is an adaptation of image segmentation, which includes techniques that find the positions of image features (classes) using statistical intensity distributions for each class in the image. In order to place a pixel in the proper class, LADA considers the intensity at that pixel and the distribution of intensities in local (nearby) pixels. This paper presents the use of LADA to provide, with statistical uncertainties, the positions and shapes of features within ultrafast imagesmore » of shock waves. We demonstrate the ability to locate image features including crystals, density changes associated with shock waves, and material jetting caused by shock waves. This algorithm can analyze images that exhibit a wide range of physical phenomena because it does not rely on comparison to a model. LADA enables analysis of images from shock physics with statistical rigor independent of underlying models or simulations.« less

  11. Density Shock Waves in Confined Microswimmers

    NASA Astrophysics Data System (ADS)

    Tsang, Alan Cheng Hou; Kanso, Eva

    2016-01-01

    Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior, from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from "subsonic" with compression at the back to "supersonic" with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a nontrivial interplay between hydrodynamic interactions and geometric confinement, and it is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechanisms for controlling the emergent density distribution and the average population speed, with potentially profound implications on various processes in industry and biotechnology, such as the transport and sorting of cells in flow channels.

  12. Increased Risk of New-Onset Hypertension After Shock Wave Lithotripsy in Urolithiasis: A Nationwide Cohort Study.

    PubMed

    Huang, Shi-Wei; Tsai, Chung-You; Wang, Jui; Pu, Yeong-Shiau; Chen, Pei-Chun; Huang, Chao-Yuan; Chien, Kuo-Liong

    2017-10-01

    Although shock wave lithotripsy is minimally invasive, earlier studies argued that it may increase patients' subsequent risk of hypertension and diabetes mellitus. This study evaluated the association between shock wave lithotripsy and new-onset hypertension or diabetes mellitus. The Taiwanese National Health Insurance Research Database was used to identify 20 219 patients aged 18 to 65 years who underwent the first stone surgical treatment (shock wave lithotripsy or ureterorenoscopic lithotripsy) between January 1999 and December 2011. A Cox proportional model was applied to evaluate associations. Time-varying Cox models were applied to evaluate the association between the number of shock wave lithotripsy sessions and the incidence of hypertension or diabetes mellitus. After a median follow-up of 74.9 and 82.6 months, 2028 and 688 patients developed hypertension in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups, respectively. Patients who underwent shock wave lithotripsy had a higher probability of developing hypertension than patients who underwent ureterorenoscopic lithotripsy, with a hazard ratio of 1.20 (95% confidence interval, 1.10-1.31) after adjusting for covariates. The risk increased as the number of shock wave lithotripsy sessions increased. However, the diabetes mellitus risk was similar in the shock wave lithotripsy and ureterorenoscopic lithotripsy groups. Furthermore, the hazard ratio did not increase as the number of shock wave lithotripsy sessions increased. Shock wave lithotripsy consistently increased the incidence of hypertension on long-term follow-up. Therefore, alternatives to urolithiasis treatment (eg, endoscopic surgery or medical expulsion therapy) could avoid the hypertension risk. Furthermore, avoiding multiple sessions of shock wave lithotripsy could also evade the hypertension risk. © 2017 American Heart Association, Inc.

  13. Shock Structure Analysis and Aerodynamics in a Weakly Ionized Gas Flow

    NASA Technical Reports Server (NTRS)

    Saeks, R.; Popovic, S.; Chow, A. S.

    2006-01-01

    The structure of a shock wave propagating through a weakly ionized gas is analyzed using an electrofluid dynamics model composed of classical conservation laws and Gauss Law. A viscosity model is included to correctly model the spatial scale of the shock structure, and quasi-neutrality is not assumed. A detailed analysis of the structure of a shock wave propagating in a weakly ionized gas is presented, together with a discussion of the physics underlying the key features of the shock structure. A model for the flow behind a shock wave propagating through a weakly ionized gas is developed and used to analyze the effect of the ionization on the aerodynamics and performance of a two-dimensional hypersonic lifting body.

  14. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  15. Sepsis in general surgery: a deadly complication.

    PubMed

    Moore, Laura J; Moore, Frederick A; Jones, Stephen L; Xu, Jiaqiong; Bass, Barbara L

    2009-12-01

    Sepsis is a deadly and potentially preventable complication. A better understanding of sepsis in general surgery patients is needed to help direct resources to those patients at highest risk for death from sepsis. We identified risk factors for sepsis in general surgery patients by using the National Surgical Quality Improvement Project database. Analysis of the database identified 3 major risk factors for both the development of sepsis and death from sepsis in general surgery patients. These risk factors are age older than 60 years, need for emergency surgery, and the presence of comorbid conditions. Risk factors for death from sepsis or septic shock in general surgery patients include age older than 60 years, need for emergency surgery, and the presence of preexisting comorbidities. These findings emphasize the need for early recognition through aggressive sepsis screening and rapid implementation of evidence-based interventions for sepsis and septic shock in general surgery patients with these risk factors.

  16. Hot spot formation from shock reflections

    NASA Astrophysics Data System (ADS)

    Menikoff, R.

    2011-04-01

    Heterogeneities sensitize an explosive to shock initiation. This is due to hot-spot formation and the sensitivity of chemical reaction rates to temperature. Here, we describe a numerical experiment aimed at elucidating a mechanism for hot-spot formation that occurs when a shock wave passes over a high-density impurity. The simulation performed is motivated by a physical experiment in which glass beads are added to liquid nitromethane. The impedance mismatch between the beads and the nitromethane results in shock reflections. These, in turn, give rise to transverse waves along the lead shock front. Hot spots arise on local portions of the lead front with a higher shock strength, rather than on the reflected shocks behind the beads. Moreover, the interactions generated by reflected waves from neighboring beads can significantly increase the peak hot-spot temperature when the beads are suitably spaced.

  17. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  18. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  19. Observation and Control of Shock Waves in Individual Nanoplasmas

    DTIC Science & Technology

    2014-03-18

    Observation and Control of Shock Waves in Individual Nanoplasmas Daniel D. Hickstein,1 Franklin Dollar,1 Jim A. Gaffney,2 Mark E. Foord,2 George M...distribution of individual, isolated 100-nm-scale plasmas, we make the first experimental observation of shock waves in nanoplasmas . We demonstrate that...i Nanoscale plasmas ( nanoplasmas ) offer enhanced laser absorption compared to solid or gas targets [1], enabling high-energy physics with tabletop

  20. Temperature maxima in stable two-dimensional shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kum, O.; Hoover, W.G.; Hoover, C.G.

    1997-07-01

    We use molecular dynamics to study the structure of moderately strong shock waves in dense two-dimensional fluids, using Lucy{close_quote}s pair potential. The stationary profiles show relatively broad temperature maxima, for both the longitudinal and the average kinetic temperatures, just as does Mott-Smith{close_quote}s model for strong shock waves in dilute three-dimensional gases. {copyright} {ital 1997} {ital The American Physical Society}

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelsen, Nicholas H.; Kolb, James D.; Kulkarni, Akshay G.

    Mechanical component response to shock environments must be predictable in order to ensure reliability and safety. Whether the shock input results from accidental drops during transportation to projectile impact scenarios, the system must irreversibly transition into a safe state that is incapable of triggering the component . With this critical need in mind, the 2017 Nuclear Weapons Summer Product Realization Institute (NW SPRINT) program objective sought the design of a passive shock failsafe with emphasis on additively manufactured (AM) components. Team Advanced and Exploratory (A&E) responded to the challenge by designing and delivering multiple passive shock sensing mech anisms thatmore » activate within a prescribed mechanical shock threshold. These AM failsafe designs were tuned and validated using analytical and computational techniques including the shock response spectrum (SRS) and finite element analysis (FEA). After rapid prototyping, the devices experienced physical shock tests conducted on Sandia drop tables to experimentally verify performance. Keywords: Additive manufacturing, dynamic system, failsafe, finite element analysis, mechanical shock, NW SPRINT, shock respon se spectrum« less

  2. Shock interactions with heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  3. Shock interactions with heterogeneous energetic materials

    DOE PAGES

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-14

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  4. OT2_pbjerkel_1: Herschel observations of the shocked gas in HH54

    NASA Astrophysics Data System (ADS)

    Bjerkeli, P.

    2011-09-01

    A shock that can be studied in detail, using a very limited amount of Herschel time, is the Herbig-Haro object HH54 located in the nearby Chamaeleon II cloud at a distance of 180 pc. The shocked region has an angular extent of roughly 30'' and is not contaminated with emission from other nearby objects. The gas, traced by H2O and CO, emits radiation predominantly in the far-infrared regime. For that reason, this program can only be executed using the instruments aboard the Herschel Space Observatory. We propose spectroscopy of rotational H2O and CO transitions, falling in the wavelength range covered by SPIRE and PACS. These observations will allow us to stratify the shocked region in different physical/kinematical components. We will also improve our understanding of the mechanisms responsible for water production and destruction. Given the relatively large angular extent of the region, we will determine the types of shock responsible for the emission in different positions along the shocked surface. We also propose HIFI observations of selected CO and H2O transitions. A bullet feature has previously been observed in several CO line profiles. Using HIFI, we will constrain the origin and physical properties of the region responsible for this emission.

  5. The CHESS survey of the L1157-B1 bow-shock: Dissecting the water content

    NASA Astrophysics Data System (ADS)

    Busquet, Gemma; Lefloch, Bertrand; Benedettini, Milena; Ceccarelli, Cecilia; Codella, Claudio; Cabrit, Sylvie; Nisini, Brunella; Viti, Serena; Gómez-Ruiz, Arturo; Gusdorf, Antoine; Di Giorgio, Anna Maria; Wiesenfeld, Laurent

    2013-07-01

    Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks, resulting in an increase of the abundance of several species. In particular, water is a powerful tracer of shocked material due to its sensitivity to both physical conditions and chemical processes. The observations of the "Chemical Herschel Survey of Star forming regions" (CHESS) key program towards the shock region L1157-B1 offered a unique and comprehensive view of the water emission in a typical protostellar bow shock across the submillimeter and far-infrared window. A grand total of 13 water lines have been detected with the PACS and HIFI instruments, probing a wide range of excitation conditions and providing us with a detailed picture on both the kinematics and the spatial distribution of water emission. Several gas components have been identified coexisting in the L1157-B1 shock region. Large Velocity Gradient (LVG) analysis reveals that these components have different excitation conditions: i) a warm (T~250 K) and dense (n(H2)~10^6 cm-3) gas component seen also with the CO lines and associated with the partly dissociative shock produced by the impact of the protostellar jet against the bow shock; ii) a compact (size~5''), hot (T~700 K), and less dense (n(H2)~10^4 cm-3) gas component, and iii) an extended component associated with the B1 outflow cavity. These three components present clear differences in terms of water enrichment. Finally, we confront the physical and chemical properties of the H2O emission to the predictions of current shock models.

  6. Development and Realization of a Shock Wave Test on Expert Flap Qualification Model

    NASA Astrophysics Data System (ADS)

    De Fruytier, C.; Dell'Orco, F.; Ullio, R.; Gomiero, F.

    2012-07-01

    This paper presents the methodology and the results of the shock test campaign conducted by TAS-I and TAS ETCA to qualify the EXPERT Flap in regards of shock wave and acoustic load generated by pyrocord detonation at stages 2/3 separation phase of the EXPERT vehicle. The design concept of the open flap (manufactured by MT AEROSPACE) is a fully integral manufactured, four sided control surface, with an additional stiffening rib and flanges to meet the first eigenfrequency and the allowable deformation requirement with a minimum necessary mass. The objectives were to reproduce equivalent loading at test article level in terms of pulse duration, front pressure, front velocity and acoustic emission. The Thales Alenia Space ETCA pyrotechnic shock test device is usually used to produce high level shocks by performing a shock on a test fixture supporting the unit under test. In this case, the facility has been used to produce a shock wave, with different requested physical characteristics, directed to the unit under test. Different configurations have been tried on a dummy of the unit to test, following an empirical process. This unusual work has lead to the definition of a nominal set- up meeting the requested physical parameters. Two blast sensors have been placed to acquire the pressure around the flap. The distance between the two sensors has allowed estimating the front pressure velocity. Then, several locations have been selected to acquire the acceleration responses on the unit when it was submitted to this environment. Additionally, a “standard” shock test has been performed on this model. The qualification of the flap, in regards of shock environment, has been successfully conducted.

  7. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    NASA Astrophysics Data System (ADS)

    Robinson, I. M.; Simnett, G. M.

    2005-07-01

    We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003) and Li et al. (2003) which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons. Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections) Space plasma physics (Transport processes)

  8. Pulsar H(alpha) Bowshocks probe Neutron Star Physics

    NASA Astrophysics Data System (ADS)

    Romani, Roger W.

    2014-08-01

    We propose a KOALA/AAOmega study of southern pulsar bow shocks. These rare, Balmer-dominated, non-radiative shocks provide an ideal laboratory to study the interaction of the relativistic pulsar wind with the ISM. We will cover H(alpha) at high spectral resolution to measure the kinematics of the upstream ISM and the post-shock flow, while the blue channel measures the Balmer decrement and probes for a faint cooling component. These data, with MHD models, allow us to extract the 3D flow geometry and the orientation and asymmetry of the pulsar wind. These data can also measure the pulsar spindown power, thus estimating the neutron star moment of inertia and effecting a fundamental test of dense matter physics.

  9. Pavlovian conditioning of shock-induced suppression of lymphocyte reactivity: acquisition, extinction, and preexposure effects.

    PubMed

    Lysle, D T; Cunnick, J E; Fowler, H; Rabin, B S

    1988-01-01

    Recent research has indicated that physical stressors, such as electric shock, can suppress immune function in rats. The present study investigated whether a nonaversive stimulus that had been associated with electric shock would also impair immune function. Presentation of that conditioned stimulus (CS) by itself produced a pronounced suppression of lymphocyte proliferation in response to the nonspecific mitogens, Concanavalin-A (ConA) and Phytohemagglutinin (PHA). In further evidence of a conditioning effect, the suppression was attenuated by extinction and preexposure manipulations that degraded the associative value of the CS. These results indicate that a psychological or learned stressor can suppress immune reactivity independently of the direct effect of physically aversive stimulation or of ancillary changes in dietary and health-related habits.

  10. A new facility for studying shock-wave passage over dust layers

    NASA Astrophysics Data System (ADS)

    Chowdhury, A. Y.; Marks, B. D.; Johnston, H. Greg; Mannan, M. Sam; Petersen, E. L.

    2016-03-01

    Dust explosion hazards in areas where coal and other flammable materials are found have caused unnecessary loss of life and halted business operations in some instances. The elimination of secondary dust explosion hazards, i.e., reducing dust dispersion, can be characterized in shock tubes to understand shock-dust interactions. For this reason, a new shock-tube test section was developed and integrated into an existing shock-tube facility. The test section has large windows to allow for the use of the shadowgraph technique to track dust-layer growth behind a passing normal shock wave, and it is designed to handle an initial pressure of 1 atm with an incident shock wave Mach number as high as 2 to mimic real-world conditions. The test section features an easily removable dust pan with inserts to allow for adjustment of the dust-layer thickness. The design also allows for changing the experimental variables such as initial pressure, shock Mach number (Ms), dust-layer thickness, and the characteristics of the dust itself. The characterization experiments presented herein demonstrate the advantages of the authors' test techniques toward providing new physical insights over a wider range of data than what have been available heretofore in the literature. Limestone dust with a layer thickness of 3.2 mm was subjected to Ms = 1.23, 1.32, and 1.6 shock waves, and dust-layer rise height was mapped with respect to time after shock passage. Dust particles subjected to a Ms = 1.6 shock wave rose more rapidly and to a greater height with respect to shock wave propagation than particles subjected to Ms = 1.23 and 1.32 shock waves. Although these results are in general agreement with the literature, the new data also highlight physical trends for dust-layer growth that have not been recorded previously, to the best of the authors' knowledge. For example, the dust-layer height rises linearly until a certain time where the growth rate is dramatically reduced, and in this second regime there is clear evidence of surface vertical structures at the dust-air interface.

  11. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks aremore » the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.« less

  12. Explicit evaluation of discontinuities in 2-D unsteady flows solved by the method of characteristics

    NASA Astrophysics Data System (ADS)

    Osnaghi, C.

    When shock waves appear in the numerical solution of flows, a choice is necessary between shock capturing techniques, possible when equations are written in conservative form, and shock fitting techniques. If the second one is preferred, e.g. in order to obtain better definition and more physical description of the shock evolution in time, the method of characteristics is advantageous in the vicinity of the shock and it seems natural to use this method everywhere. This choice requires to improve the efficiency of the numerical scheme in order to produce competitive codes, preserving accuracy and flexibility, which are intrinsic features of the method: this is the goal of the present work.

  13. Investigation of shock-induced combustion past blunt projectiles

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.

    1996-01-01

    A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. The study has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model.

  14. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  15. Molecular-level Analysis of Shock-wave Physics and Derivation of the Hugoniot Relations for Soda-lime Glass

    DTIC Science & Technology

    2011-06-17

    based glasses like fused silica and soda - lime glass , the polyhedral central cation is silicon. In this case, each silicon is surrounded by four oxygen...to two network forming cations) oxygen atoms per network polyhedron. The equilibrium values for this parameter in fused silica and soda - lime glass ...Molecular-level analysis of shock-wave physics and derivation of the Hugoniot relations for soda - lime glass M. Grujicic • B. Pandurangan • W. C. Bell

  16. Ionizing Shocks in Argon. Part 2: Transient and Multi-Dimensional Effects (Preprint)

    DTIC Science & Technology

    2010-09-09

    stability in ionizing monatomic gases. Part 1. Argon ,” J. Fluid Mech., 84, 55 (1978). 2M. P. F. Bristow and I. I. Glass, “ Polarizability of singly...Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Ionizing Shocks in Argon . Part 2: Transient...Physics. 14. ABSTRACT We extend the computations of ionizing shocks in argon to unsteady and multi-dimensional, using a collisional-radiative

  17. Quantifying the Hydrodynamic Performance of an Explosively-Driven Two-Shock Source

    NASA Astrophysics Data System (ADS)

    Furlanetto, Michael; Bauer, Amy; King, Robert; Buttler, William; Olson, Russell; Hagelberg, Carl

    2015-06-01

    An explosively-driven experimental package capable of generating a tunable two-shock drive would enable a host of experiments in shock physics. To make the best use of such a platform, though, its symmetry, reproducibility, and performance must be characterized thoroughly. We report on a series of experiments on a particular two-shock design that used shock reverberation between the sample and a heavy anvil to produce a second shock. Drive package diameters were varied between 50 and 76 mm in order to investigate release wave propagation. We used proton radiography to characterize the detonation and reverberation fronts within the high explosive elements of the packages, as well as surface velocimetry to measure the resulting shock structure in the sample under study. By fielding more than twenty channels of velocimetry per shot, we were able to quantify the symmetry and reproducibility of the drive.

  18. Measurements of Sound Speed and Grüneisen Parameter in Polystyrene Shocked to 8.5 Mbar

    NASA Astrophysics Data System (ADS)

    Boehly, T. R.; Rygg, J. R.; Zaghoo, M.; Hu, S. X.; Collins, G. W.; Fratanduono, D. E.; Celliers, P. M.; McCoy, C. A.

    2017-10-01

    The high-pressure behavior of polymers is important to fundamental high-energy-density studies and inertial confinement fusion experiments. The sound speed affects shock timing and determines the amplitude of modulations in unstable shocks. The Grüneisen parameter provides a means to model off-Hugoniot behavior, especially release physics. We use laser-driven shocks and a nonsteady wave analysis to infer sound speed in shocked material from the arrival times of drive-pressure perturbations at the shock front. Data are presented for CH shocked to 8.5 Mbar and compared to models. The Grüneisen parameter is observed to drop significantly near the insulator-conductor transition-a behavior not predicted by tabular models but is observed in quantum molecular dynamic simulations. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. Rarefaction shock waves and Hugoniot curve in the presence of free and trapped particles

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Hashemzadeh, M.; Shokri, B.; Rouhani, M. R.

    2009-12-01

    The effects of the relativistic ponderomotive force and trapped particles in the presence of ponderomotive force on the rarefaction shock waves are investigated. The ponderomotive force alters the electron density distribution. This force and relativistic mass affect the plasma frequency. These physical parameters modify the total pressure and the existence condition of the rarefaction shock wave. Furthermore, the trapping of particles by the high frequency electromagnetic field considerably changes the existence condition of the rarefaction shock wave. The total pressure and Hugoniot curve are obtained by considering the relativistic ponderomotive force and trapped particles.

  20. Generalized Sagdeev potential theory for shock waves modeling

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.

    2017-05-01

    In this paper, we develop an innovative approach to study the shock wave propagation using the Sagdeev potential method. We also present an analytical solution for Korteweg de Vries Burgers (KdVB) and modified KdVB equation families with a generalized form of the nonlinearity term which agrees well with the numerical one. The novelty of the current approach is that it is based on a simple analogy of the particle in a classical potential with the variable particle energy providing one with a deeper physical insight into the problem and can easily be extended to more complex physical situations. We find that the current method well describes both monotonic and oscillatory natures of the dispersive-diffusive shock structures in different viscous fluid configurations. It is particularly important that all essential parameters of the shock structure can be deduced directly from the Sagdeev potential in small and large potential approximation regimes. Using the new method, we find that supercnoidal waves can decay into either compressive or rarefactive shock waves depending on the initial wave amplitude. Current investigation provides a general platform to study a wide range of phenomena related to nonlinear wave damping and interactions in diverse fluids including plasmas.

  1. Influence of hot spot features on the shock initiation of heterogenous nitromethane

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana; Sheffield, Stephen; Stahl, David; Dattelbaum, Andrew

    2009-06-01

    The shock initiation sensitivity of heterogeneous explosives is known to be strongly related to the confluence of ``hot spots'' or localized regions of high pressure and temperature. Physical origins of hot spots within a material include dynamic pore collapse, friction from motion along closed cracks, and wave reflections from other in situ interfaces. A complex interplay among numerous physical and chemical factors, spanning several length scales, determines whether or not a hot spot will quench or lead to initiation. To further elucidate key features of hot spots on energetic materials sensitivity and initiation mechanisms, we have intentionally introduced well-defined particles into the homogeneous liquid explosive nitromethane which has been gelled so the particles are somewhat stationary. Gas-gun driven shock initiation experiments using embedded electromagnetic gauging methods have been performed on these materials, revealing new insights into the role of heterogeneities on the sensitivity of the explosives through shock input-to-run distance relationships (Pop-plots), and reactive chemistry growth in and behind the incident shock front. By logically mapping out these relationships, the data provide a scientific foundation for the development of predictive capabilities for modeling new formulations, and designing next-generation energetic materials.

  2. The Equation of State and Optical Conductivity of Warm Dense He and H2

    NASA Astrophysics Data System (ADS)

    Brygoo, Stephanie; Eggert, Jon H.; Loubeyre, Paul; McWilliams, Ryan S.; Hicks, Damien G.; Celliers, Peter M.; Boehly, Tom R.; Jeanloz, Raymond; Collins, Gilbert W.

    2007-06-01

    The determination of the equations of state of helium and hydrogen at very high density is an important problem at the frontier between condensed matter physics and plasma physics with important implications for planetary physics. Due to the limitations of the conventional techniques for reaching extreme densities(static or single shock compression), there are almost no data for the deep interior states of Jupiter. We present here shock compression measurements of helium and hydrogen, precompressed in diamond anvil cells up to 3ρliquid. We report the shock pressure, density and reflectivity up to 2 Mbar for helium and up to 1 Mbar for hydrogen. The data are compared to equations of state models used for astrophysical applications and to recent first principles calculations. This work was performed under the auspices of the U.S. Department of Energy (DOE) by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

  3. Modelling of proton acceleration in application to a ground level enhancement

    NASA Astrophysics Data System (ADS)

    Afanasiev, A.; Vainio, R.; Rouillard, A. P.; Battarbee, M.; Aran, A.; Zucca, P.

    2018-06-01

    Context. The source of high-energy protons (above 500 MeV) responsible for ground level enhancements (GLEs) remains an open question in solar physics. One of the candidates is a shock wave driven by a coronal mass ejection, which is thought to accelerate particles via diffusive-shock acceleration. Aims: We perform physics-based simulations of proton acceleration using information on the shock and ambient plasma parameters derived from the observation of a real GLE event. We analyse the simulation results to find out which of the parameters are significant in controlling the acceleration efficiency and to get a better understanding of the conditions under which the shock can produce relativistic protons. Methods: We use the results of the recently developed technique to determine the shock and ambient plasma parameters, applied to the 17 May 2012 GLE event, and carry out proton acceleration simulations with the Coronal Shock Acceleration (CSA) model. Results: We performed proton acceleration simulations for nine individual magnetic field lines characterised by various plasma conditions. Analysis of the simulation results shows that the acceleration efficiency of the shock, i.e. its ability to accelerate particles to high energies, tends to be higher for those shock portions that are characterised by higher values of the scattering-centre compression ratio rc and/or the fast-mode Mach number MFM. At the same time, the acceleration efficiency can be strengthened by enhanced plasma density in the corresponding flux tube. The simulations show that protons can be accelerated to GLE energies in the shock portions characterised by the highest values of rc. Analysis of the delays between the flare onset and the production times of protons of 1 GV rigidity for different field lines in our simulations, and a subsequent comparison of those with the observed values indicate a possibility that quasi-perpendicular portions of the shock play the main role in producing relativistic protons.

  4. A Prospective Randomized Controlled Trial of the Efficacy of External Physical Vibration Lithecbole after Extracorporeal Shock Wave Lithotripsy for a Lower Pole Renal Stone Less Than 2 cm.

    PubMed

    Long, Qilai; Zhang, Jian; Xu, Zhibing; Zhu, Yanjun; Liu, Li; Wang, Hang; Guo, Jianming; Wang, Guomin

    2016-04-01

    We evaluate the efficacy and safety of external physical vibration lithecbole in improving the clearance rates of lower pole renal stones after shock wave lithotripsy. A total of 71 patients with lower pole renal stones (6 to 20 mm) were prospectively randomized into 2 groups. In the treatment group 34 patients were treated with external physical vibration lithecbole after shock wave lithotripsy. In the control group 37 patients underwent shock wave lithotripsy only. External physical vibration lithecbole was performed without anesthesia by the same team using the Friend-I External Physical Vibration Lithecbole (Fu Jian Da Medical Instrument Co., Ltd, Zhengzhou, China). The stone-free rate, stone expulsion rate, stone expulsion time and incidence of complications were monitored. External physical vibration lithecbole was successful in assisting the discharge of stone fragments. The stone-free status was 76.5% in the treatment group and 48.6% in the control group (p=0.008). Stone expulsion rates at day 1, week 1 and week 3 were 76.5% (26), 94.1% (32) and 94.1% (32) in the treatment group vs 43.2% (16), 73.0% (27) and 89.2% (33) in the control group, respectively. Mean stone fragment expulsion time was 11.2 minutes in the treatment group and 9.17 hours in the control group (p=0.016). There was no significant difference in complications between the 2 groups (p >0.05). External physical vibration lithecbole was efficacious in assisting the discharge of lower pole renal stone fragments and can be used as an adjunctive method of minimally invasive stone treatment. However, additional investigations are needed to confirm the efficacy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Risk factors and pathogenic significance of severe sepsis and septic shock in 2286 patients with gram-negative bacteremia.

    PubMed

    Kang, Cheol-In; Song, Jae-Hoon; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Yeom, Joon-Sup; Ki, Hyun Kyun; Son, Jun Seong; Lee, Seung Soon; Kim, Yeon-Sook; Jung, Sook-In; Kim, Shin-Woo; Chang, Hyun-Ha; Ryu, Seong Yeol; Kwon, Ki Tae; Lee, Hyuck; Moon, Chisook

    2011-01-01

    The aim of this study was to identify risk factors for development of severe sepsis or septic shock and to evaluate the clinical impact of severe sepsis on outcome in patients with gram-negative bacteremia (GNB). From the database of a nationwide surveillance for bacteremia, patients with GNB were analyzed. Data of patients with severe sepsis or septic shock were compared with those of patient with sepsis. Of 2286 patients with GNB, 506 (22.1%) fulfilled the criteria of severe sepsis or septic shock. Factors associated with severe sepsis or septic shock in the multivariate analysis included renal disease, indwelling urinary catheter, hematologic malignancy, and neutropenia. The 30-day mortality of patients with severe sepsis or septic shock was significantly higher than that of patients with sepsis (39.5% [172/435] vs. 7.4% [86/1170]; P < 0.001). Multivariable analysis revealed that solid tumor, liver disease, pulmonary disease, pneumonia, and pathogens other than Escherichia coli, which were risk factors of development of severe sepsis or septic shock, were also found to be strong predictors of mortality. Severe sepsis or septic shock was a significant factor associated with mortality (OR, 3.34; 95% CI, 2.35-4.74), after adjustment for other variables predicting poor prognosis. Severe sepsis or septic shock was a common finding in patients with GNB, predicting a higher mortality rate. Renal disease and indwelling urinary catheter were the most important risk factors significantly associated with severe sepsis or septic shock among patients with GNB. Copyright © 2010 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  6. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

    PubMed Central

    Steinhauser, Martin O.; Hiermaier, Stefan

    2009-01-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  7. Overview and recent results of the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Weber, T. E.; Smith, R. J.; Hsu, S. C.; Omelchenko, Y.

    2015-11-01

    Recent machine and diagnostics upgrades to the Magnetized Shock Experiment (MSX) at LANL have enabled unprecedented access to the physical processes arising from stagnating magnetized (β ~ 1), collisionless, highly supersonic (M ,MA ~ 10) flows, similar in dimensionless parameters to those found in both space and astrophysical shocks. Hot (100s of eV during translation), dense (1022 - 1023 m-3) Field Reversed Configuration (FRC) plasmoids are accelerated to high velocities (100s of km/s) and subsequently impact against a static target such as a strong parallel or anti-parallel (reconnection-wise) magnetic mirror, a solid obstacle, or neutral gas cloud to recreate the physics of interest with characteristic length and time scales that are both large enough to observe yet small enough to fit within the experiment. Long-lived (>50 μs) stagnated plasmas with density enhancement much greater than predicted by fluid theory (>4x) are observed, accompanied by discontinuous plasma structures indicating shocks and jetting (visible emission and interferometry) and copious >1 keV x-ray emission. An overview of the experimental program will be presented, including machine design and capabilities, diagnostics, and an examination of the physical processes that occur during stagnation against a variety of targets. Supported by the DOE Office of Fusion Energy Sciences under contract DE-AC52-06NA25369.

  8. Nonstandard Analysis and Shock Wave Jump Conditions in a One-Dimensional Compressible Gas

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Hargreaves, John

    2007-01-01

    Nonstandard analysis is a relatively new area of mathematics in which infinitesimal numbers can be defined and manipulated rigorously like real numbers. This report presents a fairly comprehensive tutorial on nonstandard analysis for physicists and engineers with many examples applicable to generalized functions. To demonstrate the power of the subject, the problem of shock wave jump conditions is studied for a one-dimensional compressible gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. To use conservations laws, smooth pre-distributions of the Dirac delta measure are applied whose supports are contained within the shock thickness. Furthermore, smooth pre-distributions of the Heaviside function are applied which vary from zero to one across the shock wave. It is shown that if the equations of motion are expressed in nonconservative form then the relationships between the jump functions for the flow parameters may be found unambiguously. The analysis yields the classical Rankine-Hugoniot jump conditions for an inviscid shock wave. Moreover, non-monotonic entropy jump conditions are obtained for both inviscid and viscous flows. The report shows that products of generalized functions may be defined consistently using nonstandard analysis; however, physically meaningful products of generalized functions must be determined from the physics of the problem and not the mathematical form of the governing equations.

  9. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Ivy Bo, E-mail: bopeng@kth.se; Markidis, Stefano; Laure, Erwin

    2015-09-15

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has beenmore » identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration.« less

  10. Fluid dynamic modeling and numerical simulation of low-density hypersonic flow

    NASA Astrophysics Data System (ADS)

    Cheng, H. K.; Wong, Eric Y.

    1988-06-01

    The concept of a viscous shock-layer and several related versions of continuum theories/methods are examined for their adequacy as a viable framework to study flow physics and aerothermodynamics of relevance to sustained hypersonic flights. Considering the flat plate at angle of attack, or the wedge, as a generic example for the major aerodynamic component of a hypersonic vehicle, the relative importance of the molecular-transport effects behind the shock (in the form of the 'shock slip') and the wall-slip effects are studied. In the flow regime where the shock-transition-zone thickness remains small compared to the shock radius of curvature, a quasi-one-dimensional shock structure under the Burnett/thirteen-moment approximation, as well as particulate/collisional models, can be consistently developed. The fully viscous version of the shock-layer model is shown to provide the crucial boundary condition downstream the shock in this case. The gas-kinetic basis of the continuum description for the flow behind the bow shock, and certain features affecting the non-equilibrium flow chemistry, are also discussed.

  11. Fluid dynamic modeling and numerical simulation of low-density hypersonic flow

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Wong, Eric Y.

    1988-01-01

    The concept of a viscous shock-layer and several related versions of continuum theories/methods are examined for their adequacy as a viable framework to study flow physics and aerothermodynamics of relevance to sustained hypersonic flights. Considering the flat plate at angle of attack, or the wedge, as a generic example for the major aerodynamic component of a hypersonic vehicle, the relative importance of the molecular-transport effects behind the shock (in the form of the 'shock slip') and the wall-slip effects are studied. In the flow regime where the shock-transition-zone thickness remains small compared to the shock radius of curvature, a quasi-one-dimensional shock structure under the Burnett/thirteen-moment approximation, as well as particulate/collisional models, can be consistently developed. The fully viscous version of the shock-layer model is shown to provide the crucial boundary condition downstream the shock in this case. The gas-kinetic basis of the continuum description for the flow behind the bow shock, and certain features affecting the non-equilibrium flow chemistry, are also discussed.

  12. Modeling of Shock Waves with Multiple Phase Transitions in Condensed Materials

    NASA Astrophysics Data System (ADS)

    Missonnier, Marc; Heuzé, Olivier

    2006-07-01

    When a shock wave crosses a solid material and subjects it to solid-solid or solid-liquid phase transition, related phenomena occur: shock splitting, and the corresponding released shock wave after reflection. Modelling of these phenomena raises physical and numerical issues. After shock loading, such materials can reach different kinds of states: single-phase states, binary-phase states, and triple points. The thermodynamic path can be studied and easily understood in the (V,E) or (V,S) planes. In the case of 3 phase tin (β,γ, and liquid) submitted to shock waves, seven states can occur: β,γ, liquid, β-γ, β-liquid, γ-liquid, and β-γ-liquid. After studying the thermodynamic properties with a complete 3-phase Equation of State, we show the existence of these seven states with a hydrodynamic simulation.

  13. Heating the polar corona by collisionless shocks: an example of cross-fertilization in space physics

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano; Nistico, Giuseppe

    We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ T , in agreement with observations. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. Results of numerical simulations reproducing the heavy ion reflection will be presented. This work is an interesting example of cross-fertilization in space plasma physics: the non adiabatic heating of heavy ions comes from Speiser orbits in the magnetotail, observations of preferential heating of heavy ions at shocks comes from Ulysses data on corotating interaction regions shocks, heavy ion reflecton from a magnetic barrier is akin to the ion orbits in the Ferraro-Rosenbluth sheath considered for the magnetopause, the formation of shocks in the reconnection outflow regions comes from solar flare models, and evidence of reconnection and fast flows in the polar corona comes from Hinode and STEREO observations of coronal hole jets.

  14. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  15. Grid-converged solution and analysis of the unsteady viscous flow in a two-dimensional shock tube

    NASA Astrophysics Data System (ADS)

    Zhou, Guangzhao; Xu, Kun; Liu, Feng

    2018-01-01

    The flow in a shock tube is extremely complex with dynamic multi-scale structures of sharp fronts, flow separation, and vortices due to the interaction of the shock wave, the contact surface, and the boundary layer over the side wall of the tube. Prediction and understanding of the complex fluid dynamics are of theoretical and practical importance. It is also an extremely challenging problem for numerical simulation, especially at relatively high Reynolds numbers. Daru and Tenaud ["Evaluation of TVD high resolution schemes for unsteady viscous shocked flows," Comput. Fluids 30, 89-113 (2001)] proposed a two-dimensional model problem as a numerical test case for high-resolution schemes to simulate the flow field in a square closed shock tube. Though many researchers attempted this problem using a variety of computational methods, there is not yet an agreed-upon grid-converged solution of the problem at the Reynolds number of 1000. This paper presents a rigorous grid-convergence study and the resulting grid-converged solutions for this problem by using a newly developed, efficient, and high-order gas-kinetic scheme. Critical data extracted from the converged solutions are documented as benchmark data. The complex fluid dynamics of the flow at Re = 1000 are discussed and analyzed in detail. Major phenomena revealed by the numerical computations include the downward concentration of the fluid through the curved shock, the formation of the vortices, the mechanism of the shock wave bifurcation, the structure of the jet along the bottom wall, and the Kelvin-Helmholtz instability near the contact surface. Presentation and analysis of those flow processes provide important physical insight into the complex flow physics occurring in a shock tube.

  16. Potential applications of low-energy shock waves in functional urology.

    PubMed

    Wang, Hung-Jen; Cheng, Jai-Hong; Chuang, Yao-Chi

    2017-08-01

    A shock wave, which carries energy and can propagate through a medium, is a type of continuous transmitted sonic wave with a frequency of 16 Hz-20 MHz. It is accompanied by processes involving rapid energy transformations. The energy associated with shock waves has been harnessed and used for various applications in medical science. High-energy extracorporeal shock wave therapy is the most successful application of shock waves, and has been used to disintegrate urolithiasis for 30 years. At lower energy levels, however, shock waves have enhanced expression of vascular endothelial growth factor, endothelial nitric oxide synthase, proliferating cell nuclear antigen, chemoattractant factors and recruitment of progenitor cells; shock waves have also improved tissue regeneration. Low-energy shock wave therapy has been used clinically with musculoskeletal disorders, ischemic cardiovascular disorders and erectile dysfunction, through the mechanisms of neovascularization, anti-inflammation and tissue regeneration. Furthermore, low-energy shock waves have been proposed to temporarily increase tissue permeability and facilitate intravesical drug delivery. The present review article provides information on the basics of shock wave physics, mechanisms of action on the biological system and potential applications in functional urology. © 2017 The Japanese Urological Association.

  17. Modeling Solar Atmospheric Phenomena with AtomDB and PyAtomDB

    NASA Astrophysics Data System (ADS)

    Dupont, Marcus; Foster, Adam

    2018-01-01

    Taking advantage of the modeling tools made available by PyAtomDB (Foster 2015), we evaluated the impact of changing atomic data on solar phenomena, in particular their effects on models of coronal mass ejections (CME). Intitially, we perform modifications to the canonical SunNEI code (Murphy et al. 2011) in order to include non-equilibrium ionization (NEI) processes that occur in the CME modeled in SunNEI. The methods used involve the consideration of radiaitive cooling as well as ion balance calculations. These calculations were subsequently implemented within the SunNEI simulation. The insertion of aforementioned processes and parameter customizaton produced quite similar results of the original except for the case of iron. These differences were traced to inconsistencies in the recombination rates for Argon-like iron ions between the CHIANTI and AtomDB databases, even though they in theory use the same data. The key finding was that theoretical models are greatly impacted by the relative atomic database update cycles.Following the SunNEI comparison, we then use the AtomDB database to model the time depedencies of intensity flux spikes produced by a coronal shock wave (Ma et al. 2011). We produced a theretical representation for an ionizing plasma that interpolated over the intensity in four Astronomical Imaging Assembly (AIA) filters. Specifically, the 171 A (Fe IX) ,193 A (Fe XII, FeXXIV),211 A (Fe XIV),and 335 A (Fe XVI) wavelengths in order to assess the comparative spectral emissions between AtomDB and the observed data. The results of the theoretical model, in principle, shine light on both the equilibrium conditions before the shock and the non-equilibrium response to the shock front, as well as discrepancies introduced by changing the atomic data.

  18. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, William T.; Lamoreaux, Steven K.

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  19. Shock-wave flow regimes at entry into the diffuser of a hypersonic ramjet engine: Influence of physical properties of the gas medium

    NASA Astrophysics Data System (ADS)

    Tarnavskii, G. A.

    2006-07-01

    The physical aspects of the effective-adiabatic-exponent model making it possible to decompose the total problem on modeling of high-velocity gas flows into individual subproblems (“physicochemical processes” and “ aeromechanics”), which ensures the creation of a universal and efficient computer complex divided into a number of independent units, have been analyzed. Shock-wave structures appearing at entry into the duct of a hypersonic aircraft have been investigated based on this methodology, and the influence of the physical properties of the gas medium in a wide range of variations of the effective adiabatic exponent has been studied.

  20. Effects of initial condition spectral content on shock-driven turbulent mixing.

    PubMed

    Nelson, Nicholas J; Grinstein, Fernando F

    2015-07-01

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.

  1. Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing

    DOE PAGES

    Nelson, Nicholas James; Grinstein, Fernando F.

    2015-07-15

    The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band ofmore » high density gas (SF 6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF 6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF 6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.« less

  2. CENTRAL, PEDro, PubMed, and EMBASE are the most comprehensive databases indexing randomized controlled trials of physical therapy interventions.

    PubMed

    Michaleff, Zoe A; Costa, Leonardo O P; Moseley, Anne M; Maher, Christopher G; Elkins, Mark R; Herbert, Robert D; Sherrington, Catherine

    2011-02-01

    Many bibliographic databases index research studies evaluating the effects of health care interventions. One study has concluded that the Physiotherapy Evidence Database (PEDro) has the most complete indexing of reports of randomized controlled trials of physical therapy interventions, but the design of that study may have exaggerated estimates of the completeness of indexing by PEDro. The purpose of this study was to compare the completeness of indexing of reports of randomized controlled trials of physical therapy interventions by 8 bibliographic databases. This study was an audit of bibliographic databases. Prespecified criteria were used to identify 400 reports of randomized controlled trials from the reference lists of systematic reviews published in 2008 that evaluated physical therapy interventions. Eight databases (AMED, CENTRAL, CINAHL, EMBASE, Hooked on Evidence, PEDro, PsycINFO, and PubMed) were searched for each trial report. The proportion of the 400 trial reports indexed by each database was calculated. The proportions of the 400 trial reports indexed by the databases were as follows: CENTRAL, 95%; PEDro, 92%; PubMed, 89%; EMBASE, 88%; CINAHL, 53%; AMED, 50%; Hooked on Evidence, 45%; and PsycINFO, 6%. Almost all of the trial reports (99%) were found in at least 1 database, and 88% were indexed by 4 or more databases. Four trial reports were uniquely indexed by a single database only (2 in CENTRAL and 1 each in PEDro and PubMed). The results are only applicable to searching for English-language published reports of randomized controlled trials evaluating physical therapy interventions. The 4 most comprehensive databases of trial reports evaluating physical therapy interventions were CENTRAL, PEDro, PubMed, and EMBASE. Clinicians seeking quick answers to clinical questions could search any of these databases knowing that all are reasonably comprehensive. PEDro, unlike the other 3 most complete databases, is specific to physical therapy, so studies not relevant to physical therapy are less likely to be retrieved. Researchers could use CENTRAL, PEDro, PubMed, and EMBASE in combination to conduct exhaustive searches for randomized trials in physical therapy.

  3. Two-Fluid Description of Collisionless Perpendicular Shocks

    NASA Astrophysics Data System (ADS)

    Gomez, D. O.; Morales, L. F.; Dmitruk, P.; Bertucci, C.

    2017-12-01

    Collisionless shocks are ubiquitous in space physics and astrophysics, such as the bow shocks formed by the solar wind in front of planets, the termination shock at the heliospheric boundary or the supernova shock fronts expanding in the interstellar plasma. Although the one-fluid magnetohydrodynamic framework provides a reasonable description of the large scale structures of the upstream and downstream plasmas, it falls short of providing an adequate description of the internal structure of the shock. A more comprehensive description of the inner and outer features of collisionless shocks would require the use of kinetic theory. Nonetheless, in the present work we show that a complete two-fluid framework (considering the role of both ions and electrons in the dynamics) can properly capture some of the features observed in real shocks. For the specific case of perpendicular shocks, i.e. cases in which the magnetic field is perpendicular to the shock normal, we integrate the one-dimensional two-fluid MHD equations numerically, to describe the generation of shocks and their spatial structure along the shock normal. Starting from finite amplitude fast-magnetosonic waves, our simulations show the generation of a stationary fast-magnetosonic shock. More importantly, we show that the ramp thickness is of the order of a few electron inertial lengths. The parallel and perpendicular components of the self-consistent electric field are derived, and their role in accelerating particles is discussed.

  4. Shock-free configurations in two-and three-dimensional transonic flow

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.

    1981-01-01

    Efforts to replace Sobieczky's complicated analog computations of solutions to the hodograph equations by a fast elliptic solver in order to generate shock-free airfoil designs more effectively are described. The indirect design of airfoil and wing shapes that are free from shock waves even though the local flow velocity exceeds the speed of sound is described. The problem of finding an airfoil in two dimensional, irrotational flow that has a prescribed pressure distribution is as addressed. Sobieczky's suggestion to use a fictitious gas for finding shock-free airfoils directly in the physical plane was the basis for a more efficient procedure for achieving the same end.

  5. Ongoing data reduction, theoretical studies and supporting research in magnetospheric physics

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.; Greenstadt, E. W.

    1984-01-01

    Data from ISEE-3, Pioneer Venus Orbiter, and Voyager 1 and 2 were analyzed. The predictability of local shock macrostructure at ISEE-1, at the Earth's bow shock, from solar wind measurements made up-stream by ISEE-3, was conducted using computer graphic format. Morphology of quasi-parallel shock was reviewed. The review attempted to interrelate various measurements and computations involving the q-parallel structure and foreshock elements connected to it. A new classification for q-parallel morphology was suggested.

  6. Monte Carlo study of neutrino acceleration in supernova shocks

    NASA Technical Reports Server (NTRS)

    Kazanas, D.; Ellison, D. C.

    1981-01-01

    The first order Fermi acceleration mechanism of cosmic rays in shocks may be at work for neutrinos in supernova shocks when the latter are at densities greater than 10 to the 13th g/cu cm, at which the core material is opaque to neutrinos. A Monte Carlo approach to study this effect is employed, and the emerging neutrino power law spectra are presented. The increased energy acquired by the neutrinos may facilitate their detection in supernova explosions and provide information about the physics of collapse.

  7. Stationary Shock Waves with Oscillating Front in Dislocation Systems of Semiconductors

    NASA Astrophysics Data System (ADS)

    Gestrin, S. G.; Shchukina, E. V.

    2018-05-01

    The paper presents a study of weakly nonlinear wave processes in the cylindrical region of a hole gas surrounding a negatively charged dislocation in an n-type semiconductor crystal. It is shown that shock waves propagating along the dislocation are the solutions of the Korteweg-de Vries-Burgers equation when the dispersion and dissipation of medium are taken into account. Estimates are obtained for the basic physical parameters characterizing the shock wave and the region inside the Reed cylinder.

  8. The Chemistry of Shocked High-energy Materials: Connecting Atomistic Simulations to Experiments

    NASA Astrophysics Data System (ADS)

    Islam, Md Mahbubul; Strachan, Alejandro

    2017-06-01

    A comprehensive atomistic-level understanding of the physics and chemistry of shocked high energy (HE) materials is crucial for designing safe and efficient explosives. Advances in the ultrafast spectroscopy and laser shocks enabled the study of shock-induced chemistry at extreme conditions occurring at picosecond timescales. Despite this progress experiments are not without limitations and do not enable a direct characterization of chemical reactions. At the same time, large-scale reactive molecular dynamics (MD) simulations are capable of providing description of the shocked-induced chemistry but the uncertainties resulting from the use of approximate descriptions of atomistic interactions remain poorly quantified. We use ReaxFF MD simulations to investigate the shock and temperature induced chemical decomposition mechanisms of polyvinyl nitrate, RDX, and nitromethane. The effect of various shock pressures on reaction initiation mechanisms is investigated for all three materials. We performed spectral analysis from atomistic velocities at different shock pressures to enable direct comparison with experiments. The simulations predict volume-increasing reactions at the shock-to-detonation transitions and the shock vs. particle velocity data are in good agreement with available experimental data. The ReaxFF MD simulations validated against experiments enabled prediction of reaction kinetics of shocked materials, and interpretation of experimental spectroscopy data via assignment of the spectral peaks to dictate various reaction pathways at extreme conditions.

  9. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation.

    PubMed

    Zhu, Feng; Wagner, Christina; Dal Cengio Leonardi, Alessandra; Jin, Xin; Vandevord, Pamela; Chou, Clifford; Yang, King H; King, Albert I

    2012-03-01

    A combined experimental and numerical study was conducted to determine a method to elucidate the biomechanical response of a head surrogate physical model under air shock loading. In the physical experiments, a gel-filled egg-shaped skull/brain surrogate was exposed to blast overpressure in a shock tube environment, and static pressures within the shock tube and the surrogate were recorded throughout the event. A numerical model of the shock tube was developed using the Eulerian approach and validated against experimental data. An arbitrary Lagrangian-Eulerian (ALE) fluid-structure coupling algorithm was then utilized to simulate the interaction of the shock wave and the head surrogate. After model validation, a comprehensive series of parametric studies was carried out on the egg-shaped surrogate FE model to assess the effect of several key factors, such as the elastic modulus of the shell, bulk modulus of the core, head orientation, and internal sensor location, on pressure and strain responses. Results indicate that increasing the elastic modulus of the shell within the range simulated in this study led to considerable rise of the overpressures. Varying the bulk modulus of the core from 0.5 to 2.0 GPa, the overpressure had an increase of 7.2%. The curvature of the surface facing the shock wave significantly affected both the peak positive and negative pressures. Simulations of the head surrogate with the blunt end facing the advancing shock front had a higher pressure compared to the simulations with the pointed end facing the shock front. The influence of an opening (possibly mimicking anatomical apertures) on the peak pressures was evaluated using a surrogate head with a hole on the shell of the blunt end. It was revealed that the presence of the opening had little influence on the positive pressures but could affect the negative pressure evidently.

  10. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  11. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  12. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    DOE PAGES

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; ...

    2018-04-13

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically v aried the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔE FWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-rampmore » width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.« less

  13. Transit Time and Normal Orientation of ICME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Case, A. W.; Spence, H.; Owens, M.; Riley, P.; Linker, J.; Odstrcil, D.

    2006-12-01

    Interplanetary Coronal Mass Ejections (ICMEs) can drive shocks that accelerate particles to great energies. It is important to understand the acceleration, transport, and spectra of these particles in order to quantify this fundamental physical process operating throughout the cosmos. This understanding also helps to better protect astronauts and spacecraft in upcoming missions. We show that the ambient solar wind is crucial in determining characteristics of ICME-driven shocks, which in turn affect energetic particle production. We use a coupled 3-D MHD code of the corona and heliosphere to simulate ICME propagation from 30 solar radii to 1AU. ICMEs of different velocities are injected into a realistic solar wind to determine how the initial speed affects the shape and deceleration of the ICME-driven shock. We use shock transit time and shock normal orientation to quantify these dependencies. We also inject identical ICMEs into different ambient solar winds to quantify the effective drag force on an ICME.

  14. Control of quasi-monoenergetic electron beams from laser-plasma accelerators with adjustable shock density profile

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Swanson, Kelly K.; Barber, Sam K.; Lehe, Remi; Mao, Hann-Shin; Mittelberger, Daniel E.; Steinke, Sven; Nakamura, Kei; van Tilborg, Jeroen; Schroeder, Carl; Esarey, Eric; Geddes, Cameron G. R.; Leemans, Wim

    2018-04-01

    The injection physics in a shock-induced density down-ramp injector was characterized, demonstrating precise control of a laser-plasma accelerator (LPA). Using a jet-blade assembly, experiments systematically varied the shock injector profile, including shock angle, shock position, up-ramp width, and acceleration length. Our work demonstrates that beam energy, energy spread, and pointing can be controlled by adjusting these parameters. As a result, an electron beam that was highly tunable from 25 to 300 MeV with 8% energy spread (ΔEFWHM/E), 1.5 mrad divergence, and 0.35 mrad pointing fluctuation was produced. Particle-in-cell simulation characterized how variation in the shock angle and up-ramp width impacted the injection process. This highly controllable LPA represents a suitable, compact electron beam source for LPA applications such as Thomson sources and free-electron lasers.

  15. The Biermann catastrophe of numerical MHD

    NASA Astrophysics Data System (ADS)

    Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.

    2016-05-01

    The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.

  16. Bubbles, shocks and elementary technical trading strategies

    NASA Astrophysics Data System (ADS)

    Fry, John

    2014-01-01

    In this paper we provide a unifying framework for a set of seemingly disparate models for bubbles, shocks and elementary technical trading strategies in financial markets. Markets operate by balancing intrinsic levels of risk and return. This seemingly simple observation is commonly over-looked by academics and practitioners alike. Our model shares its origins in statistical physics with others. However, under our approach, changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. This structure leads to an improved physical and econometric model. We develop models for bubbles, shocks and elementary technical trading strategies. The list of empirical applications is both interesting and topical and includes real-estate bubbles and the on-going Eurozone crisis. We close by comparing the results of our model with purely qualitative findings from the finance literature.

  17. Physics of Shock Compression and Release: NEMD Simulations of Tantalum and Silicon

    NASA Astrophysics Data System (ADS)

    Hahn, Eric; Meyers, Marc; Zhao, Shiteng; Remington, Bruce; Bringa, Eduardo; Germann, Tim; Ravelo, Ramon; Hammerberg, James

    2015-06-01

    Shock compression and release allow us to evaluate physical deformation and damage mechanisms occurring in extreme environments. SPaSM and LAMMPS molecular dynamics codes were employed to simulate single and polycrystalline tantalum and silicon at strain rates above 108 s-1. Visualization and analysis was accomplished using OVITO, Crystal Analysis Tool, and a redesigned orientation imaging function implemented into SPaSM. A comparison between interatomic potentials for both Si and Ta (as pertaining to shock conditions) is conducted and the influence on phase transformation and plastic relaxation is discussed. Partial dislocations, shear induced disordering, and metastable phase changes are observed in compressed silicon. For tantalum, the role of grain boundary and twin intersections are evaluated for their role in ductile spallation. Finally, the temperature dependent response of both Ta and Si is investigated.

  18. Entropy in self-similar shock profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.

    In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less

  19. Using phase contrast imaging to measure the properties of shock compressed aerogel

    NASA Astrophysics Data System (ADS)

    Hawreliak, James; Erskine, Dave; Schropp, Andres; Galtier, Eric C.; Heimann, Phil

    2017-01-01

    The Hugoniot states of low density materials, such as silica aerogel, are used in high energy density physics research because they can achieve a range of high temperature and pressure states through shock compression. The shock properties of 100mg/cc silica aerogel were studied at the Materials in Extreme Conditions end station using x-ray phase contrast imaging of spherically expanding shock waves. The shockwaves were generated by focusing a high power 532nm laser to a 50μm focal spot on a thin aluminum ablator. The shock speed was measured in separate experiments using line-VISAR measurements from the reflecting shock front. The relative timing between the x-ray probe and the optical laser pump was varied so x-ray PCI images were taken at pressures between 10GPa and 30GPa. Modeling the compression of the foam in the strong shock limit uses a Gruneisen parameter of 0.49 to fit the data rather than a value of 0.66 that would correspond to a plasma state.

  20. On the generation of magnetized collisionless shocks in the large plasma device

    NASA Astrophysics Data System (ADS)

    Schaeffer, D. B.; Winske, D.; Larson, D. J.; Cowee, M. M.; Constantin, C. G.; Bondarenko, A. S.; Clark, S. E.; Niemann, C.

    2017-04-01

    Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, background magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. The results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.

  1. Simulation of Interaction of Strong Shocks with Gas Bubbles using the Direct Simulation Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra

    2016-11-01

    The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.

  2. Entropy in self-similar shock profiles

    DOE PAGES

    Margolin, Len G.; Reisner, Jon Michael; Jordan, Pedro M.

    2017-07-16

    In this paper, we study the structure of a gaseous shock, and in particular the distribution of entropy within, in both a thermodynamics and a statistical mechanics context. The problem of shock structure has a long and distinguished history that we review. We employ the Navier–Stokes equations to construct a self–similar version of Becker’s solution for a shock assuming a particular (physically plausible) Prandtl number; that solution reproduces the well–known result of Morduchow & Libby that features a maximum of the equilibrium entropy inside the shock profile. We then construct an entropy profile, based on gas kinetic theory, that ismore » smooth and monotonically increasing. The extension of equilibrium thermodynamics to irreversible processes is based in part on the assumption of local thermodynamic equilibrium. We show that this assumption is not valid except for the weakest shocks. Finally, we conclude by hypothesizing a thermodynamic nonequilibrium entropy and demonstrating that it closely estimates the gas kinetic nonequilibrium entropy within a shock.« less

  3. On the generation of magnetized collisionless shocks in the large plasma device

    DOE PAGES

    Schaeffer, D. B.; Winske, D.; Larson, D. J.; ...

    2017-03-22

    Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less

  4. Culture shock and healthcare workers in remote Indigenous communities of Australia: what do we know and how can we measure it?

    PubMed

    Muecke, A; Lenthall, S; Lindeman, M

    2011-01-01

    Culture shock or cultural adaptation is a significant issue confronting non-Indigenous health professionals working in remote Indigenous communities in Australia. This article is presented in two parts. The first part provides a thorough background in the theory of culture shock and cultural adaptation, and a comprehensive analysis of the consequences, causes, and current issues around the phenomenon in the remote Australian healthcare context. Second, the article presents the results of a comprehensive literature review undertaken to determine if existing studies provide tools which may measure the cultural adaptation of remote health professionals. A comprehensive literature review was conducted utilising the meta-databases CINAHL and Ovid Medline. While there is a plethora of descriptive literature about culture shock and cultural adaptation, empirical evidence is lacking. In particular, no empirical evidence was found relating to the cultural adaptation of non-Indigenous health professionals working in Indigenous communities in Australia. In all, 15 international articles were found that provided empirical evidence to support the concept of culture shock. Of these, only 2 articles contained tools that met the pre-determined selection criteria to measure the stages of culture shock. The 2 instruments identified were the Culture Shock Profile (CSP) by Zapf and the Culture Shock Adaptation Inventory (CSAI) by Juffer. There is sufficient evidence to determine that culture shock is a significant issue for non-Indigenous health professionals working in Indigenous communities in Australia. However, further research in this area is needed. The available empirical evidence indicates that a measurement tool is possible but needs further development to be suitable for use in remote Indigenous communities in Australia.

  5. Electron temperature and de Hoffmann-Teller potential change across the Earth's bow shock: New results from ISEE 1

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Scudder, J. D.; Fitzenreiter, R. J.; Ogilvie, K. W.; Newbury, J. A.; Russell, C. T.

    We present a survey of the trends between the electron temperature increase ΔTe and the de Hoffmann-Teller frame (HTF) electrostatic potential jump ΔΦHT and their correlation with other parameters that characterize the shock transition using a new ISEE 1 database of 129 Earth bow shock crossings. A fundamental understanding of the HTF potential is central to distinguishing the reversible and irreversible changes to electron temperature across collisionless shocks. The HTF potential is estimated using three different techniques: (1) integrating the steady state, electron fluid momentum equation across the shock layer using high time resolution plasma and field data from ISEE 1, (2) using the steady state, electron fluid energy equation, and (3) using an electron polytrope approximation. We find that ΔΦHT and ΔTe are strongly and positively correlated with |Δ(mpUn2/2)|, which is in good qualitative agreement with earlier experimental surveys [Thomsen et al., 1987b; Schwartz et al., 1988] that used bow shock model normals and used the flow in the spacecraft frame. There is a strong linear organization of the ΔTe with ΔΦHT, which suggests an average effective electron polytropic index of <γe>~2. In addition, ΔTe and ΔΦHT are organized by βe, although our results may be biased by our limited sampling of shock conditions. Comparisons indicate that the differentials in the HTF potential δΦHT are proportional to the differentials in the magnetic field intensity δB across the shock, with a proportionality constant κ that is a fixed constant for a given shock crossing.

  6. True versus apparent shapes of bow shocks

    NASA Astrophysics Data System (ADS)

    Tarango-Yong, Jorge A.; Henney, William J.

    2018-06-01

    Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow's apex, which we term planitude, and the openness of its wings, which we term alatude. We calculate the expected distribution in the planitude-alatude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models. We present an algorithm that can determine the planitude and alatude from observed bow shock emission maps with a precision of 10 to 20 per cent.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  8. Burnett-Cattaneo continuum theory for shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2011-02-01

    We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society

  9. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  10. On the maximum energy achievable in the first order Fermi acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Grozny, I.; Diamond, P.; Malkov, M.

    2002-11-01

    Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.

  11. Effect of back-pressure forcing on shock train structures in rectangular channels

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; White, C.; Kontis, K.

    2018-04-01

    The deceleration of a supersonic flow to the subsonic regime inside a high-speed engine occurs through a series of shock waves, known as a shock train. The generation of such a flow structure is due to the interaction between the shock waves and the boundary layer inside a long and narrow duct. The understanding of the physics governing the shock train is vital for the improvement of the design of high-speed engines and the development of flow control strategies. The present paper analyses the sensitivity of the shock train configuration to a back-pressure variation. The complex characteristics of the shock train at an inflow Mach number M = 2 in a channel of constant height are investigated with two-dimensional RANS equations closed by the Wilcox k-ω turbulence model. Under a sinusoidal back-pressure variation, the simulated results indicate that the shock train executes a motion around its mean position that deviates from a perfect sinusoidal profile with variation in oscillation amplitude, frequency, and whether the pressure is first increased or decreased.

  12. Shocks and finite-time singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan; Wiegmann, P; Lee, S-y

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most genericmore » (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.« less

  13. Non-linear shipboard shock analysis of the Tomahawk missile shock isolation system

    NASA Technical Reports Server (NTRS)

    Leifer, Joel; Gross, Michael

    1987-01-01

    The identification, quantification, computer modeling and verification of the Tomahawk nonlinear liquid spring shock isolation system in a surface ship Vertical Launch System (VLS) are discussed. The isolation system hardware and mode of operation is detailed in an effort to understand the nonlinearities. These nonlinearities are then quantified and modeled using the MSC/NASTRAN finite element code. The model was verified using experimental data from the Navel Ordnance Systems Center MIL-S-901 medium weight shock tests of August 1986. The model was then used to predict the Tomahawk response to the CG-53 USS Mobile Bay shock trials of May-June 1987. Results indicate that the model is an accurate mathematical representation of the physical system either functioning as designed or in an impaired condition due to spring failure.

  14. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  15. Selection and Characterization of Dunaliella salina Mutants Defective in Haloadaptation 1

    PubMed Central

    Chitlaru, Edith; Pick, Uri

    1989-01-01

    A technique for selection of Dunaliella mutants defective in their capacity to recover from osmotic shocks has been developed. The selection is based on physical separation of mutants on density gradients. This technique takes advantage of the fact that Dunaliella cells, when exposed to osmotic shocks, initially change volume and density due to water gain or loss and subsequently recover their volume and density by readjusting their intracellular glycerol. Eight mutants that do not recover their original density following hyperosmotic shocks have been isolated. The mutants grow similar to wild type cells in 1 molar NaCl, and recover like the wild type from hypotonic shocks but are defective in recovering from hypertonic shocks. A partial characterization of one of the mutants is described. Images Figure 1 PMID:16667101

  16. The Dynamic Quasiperpendicular Shock: Cluster Discoveries

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, V.; Balikhin, M.; Walker, S. N.; Schwartz, S.; Sundkvist, D.; Lobzin, V.; Gedalin, M.; Bale, S. D.; Mozer, F.; Soucek, J.; Hobara, Y.; Comisel, H.

    The physics of collisionless shocks is a very broad topic which has been studied for more than five decades. However, there are a number of important issues which remain unresolved. The energy repartition amongst particle populations in quasiperpendicular shocks is a multi-scale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. The most important processes take place in the close vicinity of the major magnetic transition or ramp region. The distribution of electromagnetic fields in this region determines the characteristics of ion reflection and thus defines the conditions for ion heating and energy dissipation for supercritical shocks and also the region where an important part of electron heating takes place. In other words, the ramp region determines the main characteristics of energy repartition. All these processes are crucially dependent upon the characteristic spatial scales of the ramp and foot region provided that the shock is stationary. The process of shock formation consists of the steepening of a large amplitude nonlinear wave. At some point in its evolution the steepening is arrested by processes occurring within the shock transition. From the earliest studies of collisionless shocks these processes were identified as nonlinearity, dissipation, and dispersion. Their relative role determines the scales of electric and magnetic fields, and so control the characteristics of processes such as ion reflection, electron heating and particle acceleration. The determination of the scales of the electric and magnetic field is one of the key issues in the physics of collisionless shocks. Moreover, it is well known that under certain conditions shocks manifest a nonstationary dynamic behaviour called reformation. It was suggested that the transition from stationary to nonstationary quasiperiodic dynamics is related to gradients, e.g. scales of the ramp region and its associated whistler waves that form a precursor wave train. This implies that the ramp region should be considered as the source of these waves. All these questions have been studied making use observations from the Cluster satellites. The Cluster project continues to provide a unique viewpoint from which to study the scales of shocks. During its lifetime the inter-satellite distance between the Cluster satellites has varied from 100 km to 10000 km allowing scientists to use the data best adapted for the given scientific objective.

  17. On high explosive launching of projectiles for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Forest, Charles A.; Clark, David A.; Buttler, William T.; Marr-Lyon, Mark; Rightley, Paul

    2007-06-01

    The hydrodynamic operation of the "Forest Flyer" type of explosive launching system for shock physics projectiles was investigated in detail using one and two dimensional continuum dynamics simulations. The simulations were numerically converged and insensitive to uncertainties in the material properties; they reproduced the speed of the projectile and the shape of its rear surface. The most commonly used variant, with an Al alloy case, was predicted to produce a slightly curved projectile, subjected to some shock heating and likely exhibiting some porosity from tensile damage. The curvature is caused by a shock reflected from the case; tensile damage is caused by the interaction of the Taylor wave pressure profile from the detonation wave with the free surface of the projectile. The simulations gave only an indication of tensile damage in the projectile, as damage is not understood well enough for predictions in this loading regime. The flatness can be improved by using a case of lower shock impedance, such as polymethyl methacrylate. High-impedance cases, including Al alloys but with denser materials improving the launching efficiency, can be used if designed according to the physics of oblique shock reflection, which indicates an appropriate case taper for any combination of explosive and case material. The tensile stress induced in the projectile depends on the relative thickness of the explosive, expansion gap, and projectile. The thinner the projectile with respect to the explosive, the smaller the tensile stress. Thus if the explosive is initiated with a plane wave lens, the tensile stress is lower than that for initiation with multiple detonators over a plane. The previous plane wave lens designs did, however, induce a tensile stress close to the spall strength of the projectile. The tensile stress can be reduced by changes in the component thicknesses. Experiments verifying the operation of explosively launched projectiles should attempt to measure porosity induced in the projectile: arrival time measurements are likely to be insensitive to porous regions caused by damaged or recollected material.

  18. Permeability enhancement by shock cooling

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Reuschlé, Thierry; Baud, Patrick; Schmittbuhl, Jean

    2015-04-01

    The permeability of an efficient reservoir, e.g. a geothermal reservoir, should be sufficient to permit the circulation of fluids. Generally speaking, permeability decreases over the life cycle of the geothermal system. As a result, is usually necessary to artificially maintain and enhance the natural permeability of these systems. One of the methods of enhancement -- studied here -- is thermal stimulation (injecting cold water at low pressure). This goal of this method is to encourage new thermal cracks within the reservoir host rocks, thereby increasing reservoir permeability. To investigate the development of thermal microcracking in the laboratory we selected two granites: a fine-grained (Garibaldi Grey granite, grain size = 0.5 mm) and a course-grained granite (Lanhelin granite, grain size = 2 mm). Both granites have an initial porosity of about 1%. Our samples were heated to a range of temperatures (100-1000 °C) and were either cooled slowly (1 °C/min) or shock cooled (100 °C/s). A systematic microstructural (2D crack area density, using standard stereological techniques, and 3D BET specific surface area measurements) and rock physical property (porosity, P-wave velocity, uniaxial compressive strength, and permeability) analysis was undertaken to understand the influence of slow and shock cooling on our reservoir granites. Microstructurally, we observe that the 2D crack surface area per unit volume and the specific surface area increase as a result of thermal stressing, and, for the same maximum temperature, crack surface area is higher in the shock cooled samples. This observation is echoed by our rock physical property measurements: we see greater changes for the shock cooled samples. We can conclude that shock cooling is an extremely efficient method of generating thermal microcracks and modifying rock physical properties. Our study highlights that thermal treatments are likely to be an efficient method for the "matrix" permeability enhancement of granitic geothermal reservoirs.

  19. Impact of Source Control in Patients With Severe Sepsis and Septic Shock.

    PubMed

    Martínez, María Luisa; Ferrer, Ricard; Torrents, Eva; Guillamat-Prats, Raquel; Gomà, Gemma; Suárez, David; Álvarez-Rocha, Luis; Pozo Laderas, Juan Carlos; Martín-Loeches, Ignacio; Levy, Mitchell M; Artigas, Antonio

    2017-01-01

    Time to clearance of pathogens is probably critical to outcome in septic shock. Current guidelines recommend intervention for source control within 12 hours after diagnosis. We aimed to determine the epidemiology of source control in the management of sepsis and to analyze the impact of timing to source control on mortality. Prospective observational analysis of the Antibiotic Intervention in Severe Sepsis study, a Spanish national multicenter educational intervention to improve antibiotherapy in sepsis. Ninety-nine medical-surgical ICUs in Spain. We enrolled 3,663 patients with severe sepsis or septic shock during three 4-month periods between 2011 and 2013. Source control and hospital mortality. A total of 1,173 patients (32%) underwent source control, predominantly for abdominal, urinary, and soft-tissue infections. Compared with patients who did not require source control, patients who underwent source control were older, with a greater prevalence of shock, major organ dysfunction, bacteremia, inflammatory markers, and lactic acidemia. In addition, compliance with the resuscitation bundle was worse in those undergoing source control. In patients who underwent source control, crude ICU mortality was lower (21.2% vs 25.1%; p = 0.010); after adjustment for confounding factors, hospital mortality was also lower (odds ratio, 0.809 [95% CI, 0.658-0.994]; p = 0.044). In this observational database analysis, source control after 12 hours was not associated with higher mortality (27.6% vs 26.8%; p = 0.789). Despite greater severity and worse compliance with resuscitation bundles, mortality was lower in septic patients who underwent source control than in those who did not. The time to source control could not be linked to survival in this observational database.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cada, G.F.; Solomon, J.A.; Loar, J.M.

    This report provides a review of literature concerning the effects of sublethal stresses on predator-prey interactions in aquatic systems. In addition, the results of a preliminary laboratory study of the susceptibility of entrainment-stressed juvenile bluegill to striped bass predation are presented. Juvenile bluegill were exposed to thermal and physical entrainment stresses in the ORNL Power Plant Simulator and subsequently to predation by juvenile striped bass in a susceptibility to predation experimental design. None of the entrainment stresses tested (thermal shock, physical effects of pump and condenser passage, and combination of thermal and physical shock) was found to significantly increase predationmore » rates as compared to controls, and no significant interactions between thermal and physical stresses were detected. The validity of laboratory predator-prey studies and the application of indirect mortality information for setting protective standards and predicting environmental impacts are discussed.« less

  1. Determining the standoff distance of the bow shock: Mach number dependence and use of models

    NASA Technical Reports Server (NTRS)

    Farris, M. H.; Russell, C. T.

    1994-01-01

    We explore the factors that determine the bow shock standoff distance. These factors include the parameters of the solar wind, as well as the size and shape of the obstacle. In this report we develop a semiempirical Mach number relation for the bow shock standoff distance in order to take into account the shock's behavior at low Mach numbers. This is done by determining which properties of the shock are most important in controlling the standoff distance and using this knowledge to modify the current Mach number relation. While the present relation has proven useful at higher Mach numbers, it has lacked effectiveness at the low Mach number limit. We also analyze the bow shock dependence upon the size and shape of the obstacle, noting that it is most appropriate to compare the standoff distance of the bow shock to the radius of curvature of the obstacle, as opposed to the distance from the focus of the object to the nose. Last, we focus our attention on the use of bow shock models in determining the standoff distance. We note that the physical behavior of the shock must correctly be taken into account, specifically the behavior as a function of solar wind dynamic pressure; otherwise, erroneous results can be obtained for the bow shock standoff distance.

  2. On improvement to the Shock Propagation Model (SPM) applied to interplanetary shock transit time forecasting

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Wei, F. S.; Feng, X. S.; Xie, Y. Q.

    2008-09-01

    This paper investigates methods to improve the predictions of Shock Arrival Time (SAT) of the original Shock Propagation Model (SPM). According to the classical blast wave theory adopted in the SPM, the shock propagating speed is determined by the total energy of the original explosion together with the background solar wind speed. Noting that there exists an intrinsic limit to the transit times computed by the SPM predictions for a specified ambient solar wind, we present a statistical analysis on the forecasting capability of the SPM using this intrinsic property. Two facts about SPM are found: (1) the error in shock energy estimation is not the only cause of the prediction errors and we should not expect that the accuracy of SPM to be improved drastically by an exact shock energy input; and (2) there are systematic differences in prediction results both for the strong shocks propagating into a slow ambient solar wind and for the weak shocks into a fast medium. Statistical analyses indicate the physical details of shock propagation and thus clearly point out directions of the future improvement of the SPM. A simple modification is presented here, which shows that there is room for improvement of SPM and thus that the original SPM is worthy of further development.

  3. [Methylene blue in the treatment of vasodilatory shock: a Meta-analysis].

    PubMed

    Zhang, Xiongfeng; Gao, Yun; Pan, Pengfei; Wang, Yi; Li, Wenzhe; Yu, Xiangyou

    2017-11-01

    To investigate the clinical efficacy of methylene blue in the treatment of refractory hypotension caused by vascular paralysis during the course of vasodilatory shock. The related articles were searched by retrieving the terms using methylene blue, vascular paralysis, hemodynamics, hypotension, vasodilatory shock in CNKI, China Biomedical Literature database, Wanfang database, PubMed, Springer Link, and BIOSIS Previews database. The retrieval time was from January 1994 to June 2017. The randomized clinical trials (RCTs) which using methylene blue as the experimental group, normal saline or catecholamine as the control in the treatment of refractory hypotension caused by vascular paralysis during the course of vasodilatory shock were collected. The primary end points were mean arterial pressure (MAP) immediately or 1 hour after the methylene blue administration, and the mortality at the longest follow-up available; the secondary end point was serum lactic acid (Lac) 1 hour after the methylene blue administration. Literature screening, data extraction and quality evaluation were carried out by two researchers. Meta analysis was performed using RevMan 5.3 software. The sensitivity analysis was performed in two trials with low risk of bias. The funnel plot for MAP was performed in five relative trials to analyze the research and publication bias. Totally 269 relative articles were collected, according to the inclusion and exclusion criteria, finally 6 RCTs with 214 patients were enrolled, 108 in methylene blue group, and 106 in control group. Four of the studies were considered to have mild to moderate risk of bias, two studies of high risk of bias. The Meta-analysis demonstrated that compared with the control group, methylene blue could significantly improve MAP [mean difference (MD) = 4.87, 95% confidence interval (95%CI) = 2.61 to 7.13, P < 0.000 1], reduce the serum Lac levels (MD = -1.06, 95%CI = -1.98 to -0.14, P = 0.02), and the mortality was decreased without statistical difference [odds ratio (OR) = 0.58, 95%CI = 0.25 to 1.31, P = 0.19]. Sensitivity analysis was performed in two trials with low risk of bias, which demonstrated methylene blue could exactly increase MAP (MD = 8.93, 95%CI = 1.55 to 16.32, P = 0.02). Funnel plot for MAP was performed in five relative trials which found no obvious publication bias. Methylene blue could significantly increase MAP in the patients with refractory hypotension caused by vascular paralysis during the course of vasodilatory shock, decrease the Lac levels, and does not increase the risk of death. Therefore, methylene blue should be a potential and safe vasoconstrictor.

  4. On the possible effect of round-the-world surface seismic waves in the dynamics of repeated shocks after strong earthquakes

    NASA Astrophysics Data System (ADS)

    Zotov, O. D.; Zavyalov, A. D.; Guglielmi, A. V.; Lavrov, I. P.

    2018-01-01

    Based on the observation data for hundreds of the main shocks and thousands of aftershocks, the existence of effect of round-the-world surface seismic waves is demonstrated (let us conditionally refer to them as a round-the-world seismic echo) and the manifestations of this effect in the dynamics of the repeated shocks of strong earthquakes are analyzed. At the same time, we by no means believe this effect has been fully proven. We only present a version of our own understanding of the physical causes of the observed phenomenon and analyze the regularities in its manifestation. The effect is that the surface waves excited in the Earth by the main shock make a full revolution around the Earth and excite a strong aftershock in the epicentral zone of the main shock. In our opinion, the physical nature of this phenomenon consists in the fact that the superposition leads to a concentration of wave energy when the convergent surface waves reach the epicentral zone (cumulative effect). The effect of the first seismic echo is most manifest. Thus, the present work supports our hypothesis of the activation of rock failure under the cumulative impact of an round-the-world seismic echo on the source area which is releasing ("cooling") after the main shock. The spatial regularities in the manifestations of this effect are established, and the independence of the probability of its occurrence on the main shock magnitude is revealed. The effect of a round-the-world seismic echo can be used to improve the reliability of the forecasts of strong aftershocks in determining the scenario for the seismic process developing in the epicentral zone of a strong earthquake that has taken place.

  5. A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao

    2017-09-01

    An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.

  6. Principles underlying the Fourth Power Nature of Structured Shock Waves

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2017-06-01

    Steady structured shock waves in materials including metals, glasses, compounds and solid mixtures, when represented through plots of Hugoniot stress against a measure of the strain rate through which the Hugoniot state is achieved, have consistently demonstrated a dependence to the fourth power. A perhaps deeper observation is that the product of the energy dissipated through the transition to the Hugoniot state and the time duration of the Hugoniot state event exhibits invariance independent of the Hugoniot amplitude. Invariance of the energy-time product and the fourth-power trend are to first order equivalent. Further, constancy of this energy-time product is observed in other dynamic critical state failure events including spall fracture, dynamic compaction and adiabatic shear failure. The presentation pursues the necessary background exposing the foregoing shock physics observations and explores possible statistical physics principals that may underlie the collective dynamic observations.

  7. Derivation of an applied nonlinear Schroedinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  8. Gain curves and hydrodynamic modeling for shock ignition

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-05-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  9. Structures and properties of materials recovered from high shock pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be comparedmore » with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.« less

  10. Plasma physics. Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave.

    PubMed

    Matsumoto, Y; Amano, T; Kato, T N; Hoshino, M

    2015-02-27

    Explosive phenomena such as supernova remnant shocks and solar flares have demonstrated evidence for the production of relativistic particles. Interest has therefore been renewed in collisionless shock waves and magnetic reconnection as a means to achieve such energies. Although ions can be energized during such phenomena, the relativistic energy of the electrons remains a puzzle for theory. We present supercomputer simulations showing that efficient electron energization can occur during turbulent magnetic reconnection arising from a strong collisionless shock. Upstream electrons undergo first-order Fermi acceleration by colliding with reconnection jets and magnetic islands, giving rise to a nonthermal relativistic population downstream. These results shed new light on magnetic reconnection as an agent of energy dissipation and particle acceleration in strong shock waves. Copyright © 2015, American Association for the Advancement of Science.

  11. On Parametric Sensitivity of Reynolds-Averaged Navier-Stokes SST Turbulence Model: 2D Hypersonic Shock-Wave Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Brown, James L.

    2014-01-01

    Examined is sensitivity of separation extent, wall pressure and heating to variation of primary input flow parameters, such as Mach and Reynolds numbers and shock strength, for 2D and Axisymmetric Hypersonic Shock Wave Turbulent Boundary Layer interactions obtained by Navier-Stokes methods using the SST turbulence model. Baseline parametric sensitivity response is provided in part by comparison with vetted experiments, and in part through updated correlations based on free interaction theory concepts. A recent database compilation of hypersonic 2D shock-wave/turbulent boundary layer experiments extensively used in a prior related uncertainty analysis provides the foundation for this updated correlation approach, as well as for more conventional validation. The primary CFD method for this work is DPLR, one of NASA's real-gas aerothermodynamic production RANS codes. Comparisons are also made with CFL3D, one of NASA's mature perfect-gas RANS codes. Deficiencies in predicted separation response of RANS/SST solutions to parametric variations of test conditions are summarized, along with recommendations as to future turbulence approach.

  12. Genome-wide expression profiling in pediatric septic shock

    PubMed Central

    Wong, Hector R.

    2013-01-01

    For nearly a decade, our research group has had the privilege of developing and mining a multi-center, microarray-based, genome-wide expression database of critically ill children (≤ 10 years of age) with septic shock. Using bioinformatic and systems biology approaches, the expression data generated through this discovery-oriented, exploratory approach have been leveraged for a variety of objectives, which will be reviewed. Fundamental observations include wide spread repression of gene programs corresponding to the adaptive immune system, and biologically significant differential patterns of gene expression across developmental age groups. The data have also identified gene expression-based subclasses of pediatric septic shock having clinically relevant phenotypic differences. The data have also been leveraged for the discovery of novel therapeutic targets, and for the discovery and development of novel stratification and diagnostic biomarkers. Almost a decade of genome-wide expression profiling in pediatric septic shock is now demonstrating tangible results. The studies have progressed from an initial discovery-oriented and exploratory phase, to a new phase where the data are being translated and applied to address several areas of clinical need. PMID:23329198

  13. Temporal-difference prediction errors and Pavlovian fear conditioning: role of NMDA and opioid receptors.

    PubMed

    Cole, Sindy; McNally, Gavan P

    2007-10-01

    Three experiments studied temporal-difference (TD) prediction errors during Pavlovian fear conditioning. In Stage I, rats received conditioned stimulus A (CSA) paired with shock. In Stage II, they received pairings of CSA and CSB with shock that blocked learning to CSB. In Stage III, a serial overlapping compound, CSB --> CSA, was followed by shock. The change in intratrial durations supported fear learning to CSB but reduced fear of CSA, revealing the operation of TD prediction errors. N-methyl- D-aspartate (NMDA) receptor antagonism prior to Stage III prevented learning, whereas opioid receptor antagonism selectively affected predictive learning. These findings support a role for TD prediction errors in fear conditioning. They suggest that NMDA receptors contribute to fear learning by acting on the product of predictive error, whereas opioid receptors contribute to predictive error. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  14. Terlipressin: vasopressin analog and novel drug for septic shock.

    PubMed

    Pesaturo, Adam B; Jennings, Heath R; Voils, Stacy A

    2006-12-01

    To review and assess available literature on chemistry, pharmacology, pharmacodynamics, pharmacokinetics, clinical studies, adverse events, drug interactions, and dosing and administration of terlipressin in septic shock. A literature search of MEDLINE (1966-September 2006), International Pharmaceutical Abstracts (1970-September 2006), and Cochrane database (third quarter 2006) was conducted, using key terms of terlipressin, lypressin, triglycyl-lysine vasopressin, hemodynamic support, septic shock, vasopressor, and V1 receptor agonist. Bibliographies of relevant articles were reviewed for additional references. Available English-language literature, including abstracts, animal studies, preclinical studies, clinical trials, and review articles, were examined. Because of potentially favorable pharmacokinetics versus vasopressin and limited availability of vasopressin in some countries, the effects of terlipressin, a vasopressin analog, have been studied recently for the treatment of septic shock. When administered as a 1-2 mg intravenous dose in patients with septic shock, terlipressin increases mean arterial pressure, urine output, systemic vascular resistance index, pulmonary vascular resistance index, and left and right ventricular stroke work index while decreasing heart rate, cardiac output, lactate, and oxygen delivery and consumption index. It is unclear whether lower doses of terlipressin would produce a similar vasopressor response with fewer cardiopulmonary effects and whether the effects of the drug on oxygen transport indices are detrimental. Terlipressin is a promising investigational medication for treatment of septic shock. Small trials have shown terlipressin to have favorable effects on hemodynamics in patients with septic shock refractory to conventional vasopressor treatment. It should be used with extreme caution in patients with underlying cardiac or pulmonary dysfunction. Further studies are needed to verify safety, efficacy, and dosing of terlipressin in patients with septic shock, and its use cannot be recommended in lieu of vasopressin at this time.

  15. Impact of remote monitoring on reducing the burden of inappropriate shocks related to implantable cardioverter-defibrillator lead fractures: insights from a French single-centre registry.

    PubMed

    Souissi, Zouheir; Guédon-Moreau, Laurence; Boulé, Stéphane; Kouakam, Claude; Finat, Loïc; Marquié, Christelle; Brigadeau, François; Wissocque, Ludivine; Mouton, Stéphanie; Montaigne, David; Klug, Didier; Kacet, Salem; Lacroix, Dominique

    2016-06-01

    Lead fractures in implantable cardioverter-defibrillator (ICD) patients may cause inappropriate shocks (ISs). An early diagnosis is essential to prevent adverse clinical events. Implantable cardioverter-defibrillator remote monitoring (RM) permits prompt detection of lead fracture. Limited data define the impact of RM on ISs specifically related to lead fracture. We sought to compare the number of ISs related to lead fracture in patients with vs. without RM follow-up. We checked the registry of our institution and collected, between July 2007 and June 2014, 115 cases of right ventricular lead fractures. All relevant data were documented from patients' files, device-interrogation printouts and electronic records, and remote transmissions databases when applicable. We assessed the ISs that were related to lead fracture. The first study endpoint was the number of ISs per shocked patient. Among the 82 patients with conventional follow-up (CFU) and the 33 patients with RM, a first IS occurred to 32.9% (n = 27) and 30.3% (n = 10, P = 0.83) of the patients, respectively. Shocked patients in the RM group underwent significantly fewer ISs with a mean of 6 ± 2 shocks per patient [median of 3.5 shocks (2-8)] than those in the CFU group with a mean of 18 ± 5 shocks per patient [median of 10 shocks (5-22), P = 0.03]. Remote monitoring helps to reduce the burden of ISs related to ICD lead fractures. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  16. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  17. Mesoscale simulations of shock compaction of a granular ceramic: effects of mesostructure and mixed-cell strength treatment

    NASA Astrophysics Data System (ADS)

    Derrick, J. G.; LaJeunesse, J. W.; Davison, T. M.; Borg, J. P.; Collins, G. S.

    2018-04-01

    The shock response of granular materials is important in a variety of contexts but the precise dynamics of grains during compaction is poorly understood. Here we use 2D mesoscale numerical simulations of the shock compaction of granular tungsten carbide to investigate the effect of internal structure within the particle bed and ‘stiction’ between grains on the shock response. An increase in the average number of contacts with other particles, per particle, tends to shift the Hugoniot to higher shock velocities, lower particle velocities and lower densities. This shift is sensitive to inter-particle shear resistance. Eulerian shock physics codes approximate friction between, and interlocking of, grains with their treatment of mixed cell strength (stiction) and here we show that this has a significant effect on the shock response. When studying the compaction of particle beds it is not common to quantify the pre-compaction internal structure, yet our results suggest that such differences should be taken into account, either by using identical beds or by averaging results over multiple experiments.

  18. Computational Analysis of the Effect of Porosity on Shock Cell Strength at Cruise

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Elmiligui, Alaa A.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Hunter, Craig A.

    2006-01-01

    A computational flow field analysis is presented of the effect of core cowl porosity on shock cell strength for a modern separate flow nozzle at cruise conditions. The goal of this study was to identify the primary physical mechanisms by which the application of porosity can reduce shock cell strength and hence the broadband shock associated noise. The flow is simulated by solving the asymptotically steady, compressible, Reynoldsaveraged Navier-Stokes equations on a structured grid using an implicit, up-wind, flux-difference splitting finite volume scheme. The standard two-equation k - epsilon turbulence model with a linear stress representation is used with the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. Specific issues addressed in this study were the optimal area required to weaken a shock impinging on the core cowl surface and the optimal level of porosity and placement of porous areas for reduction of the overall shock cell strength downstream. Two configurations of porosity were found to reduce downstream shock strength by approximately 50%.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    EL-Shamy, E. F., E-mail: emadel-shamy@hotmail.com; Department of Physics, College of Science, King Khalid University, P.O. 9004, Abha; Al-Asbali, A. M., E-mail: aliaa-ma@hotmail.com

    A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended Poincaré–Lighthill–Kuo method, a couple of Korteweg–deVries–Burgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dustmore » temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.« less

  20. Magnetized Collisionless Shock Studies Using High Velocity Plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Intrator, T.

    2013-04-01

    Magnetized collisionless shocks are ubiquitous throughout the cosmos and are observed to accelerate particles to relativistic velocities, amplify magnetic fields, transport energy, and create non-thermal distributions. They exhibit transitional scale lengths much shorter than the collisional mean free path and are mediated by collective interactions rather than Coulomb collisions. The Magnetized Shock Experiment (MSX) leverages advances in Field Reversed Configuration (FRC) plasmoid formation and acceleration to produce highly supersonic and super-Alfvénic supercritical shocks with pre-existing magnetic field at perpendicular, parallel or oblique angles to the direction of propagation. Adjustable shock speed, density, and magnetic field provide unique access to a range of parameter space relevant to a variety of naturally occurring shocks. This effort examines experimentally, analytically, and numerically the physics of collisionless shock formation, structure, and kinetic effects in a laboratory setting and draw comparisons between experimental data and astronomical observations. Supported by DOE Office of Fusion Energy Sciences and National Nuclear Security Administration under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-12-22886

  1. An analysis of artificial viscosity effects on reacting flows using a spectral multi-domain technique

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.; Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Standard techniques used to model chemically-reacting flows require an artificial viscosity for stability in the presence of strong shocks. The resulting shock is smeared over at least three computational cells, so that the thickness of the shock is dictated by the structure of the overall mesh and not the shock physics. A gas passing through a strong shock is thrown into a nonequilibrium state and subsequently relaxes down over some finite distance to an equilibrium end state. The artificial smearing of the shock envelops this relaxation zone which causes the chemical kinetics of the flow to be altered. A method is presented which can investigate these issues by following the chemical kinetics and flow kinetics of a gas passing through a fully resolved shock wave at hypersonic Mach numbers. A nonequilibrium chemistry model for air is incorporated into a spectral multidomain Navier-Stokes solution method. Since no artificial viscosity is needed for stability of the multidomain technique, the precise effect of this artifice on the chemical kinetics and relevant flow features can be determined.

  2. Two examples of industrial applications of shock physics research

    NASA Astrophysics Data System (ADS)

    Sanai, Mohsen

    1996-05-01

    An in-depth understanding of shock physics phenomena has led to many industrial applications. Two recent applications discussed in this paper are a method for assessing explosion safety in industrial plants and a bomb-resistant luggage container for widebody aircraft. Our explosion safety assessment is based on frequent use of computer simulation of postulated accidents to model in detail the detonation of energetic materials, the formation and propagation of the resulting airblast, and the projection of fragments of known material and mass. Using a general load-damage analysis technique referred to as the pressure-impulse (PI) method, we have developed a PC-based computer algorithm that includes a continually expanding library of PI load and damage curves, which can predict and graphically display common structural damage modes and the response of humans to postulated explosion accidents. A second commercial application of shock physics discussed here is a bomb-resistant luggage container for widebody aircraft that can protect the aircraft from a terrorist bomb hidden inside the luggage. This hardened luggage container (HLC) relies on blast management and debris containment provided by a flexible flow-through blanket woven from threads made with a strong lightweight material, such as Spectra or Kevlar. This mitigation blanket forms a continuous and seamless shell around the sides of the luggage container that are parallel to the aircraft axis, leaving the two ends of the container unprotected. When an explosion occurs, the mitigation blanket expands into a nearly circular shell that contains the flying debris while directing the flow into the adjacent containers. The HLC concept has been demonstrated through full-scale experiments conducted at SRI. We believe that these two examples represent a broad class of potential industrial hazard applications of the experimental, analytical, and computational tools possessed by the shock physics community.

  3. Physics of intermediate shocks: A review

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.

    1995-01-01

    Intermediate shocks (ISs) lead to a transition from super-Alfvenic to sub-Alfvenic flow and are different from slow and fast shocks in that an IS rotates the component of the magnetic field tangent to the shock plane by 180 deg. Another peculiarity of ISs is that for the same upstream conditions an IS can have two different downstream states. There also exist a second class of ISs which rotate the magnetic field by an angle other than 180 deg. Due to their noncoplanar nature they cannot be time-stationary and are referred to as time-dependent intermediate shocks (TDIS). The existence of ISs has been the subject of much controversy over the years. Early studies questioned the physical reality of ISs. However, the studies of ISs found a new impetus when C.C. Wu showed that ISs do exist and are stable within the resistive MHD framework. In this paper, after a brief historical overview of the subject, we will review the latest developments in the study of ISs. In particular, we will address the questions of stability and structure of ISs and the relationship between ISs and other discontinuities. One of the recent developments has been the finding that ISs can be unsteady, reforming in time. Details of this process will be discussed. Finally, we examine the effect of anisotropy on the resolutions and discuss the relevance of ISs to the observed field rotations at the Earth's magnetopause.

  4. Advances in NIF Shock Timing Experiments

    NASA Astrophysics Data System (ADS)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  5. Constitutive modeling of shock response of PTFE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eric N; Reanyansky, Anatoly D; Bourne, Neil K

    2009-01-01

    The PTFE (polytetrafluoroethylene) material is complex and attracts attention of the shock physics researchers because it has amorphous and crystalline components. In turn, the crystalline component has four known phases with the high pressure transition to phase III. At the same time, as has been recently studied using spectrometry, the crystalline region is growing with load. Stress and velocity shock-wave profiles acquired recently with embedded gauges demonstrate feature that may be related to impedance mismatches between the regions subjected to some transitions resulting in density and modulus variations. We consider the above mentioned amorphous-to-crystalline transition and the high pressure Phasemore » II-to-III transitions as possible candidates for the analysis. The present work utilizes a multi-phase rate sensitive model to describe shock response of the PTFE material. One-dimensional experimental shock wave profiles are compared with calculated profiles with the kinetics describing the transitions. The objective of this study is to understand the role of the various transitions in the shock response of PTFE.« less

  6. Optical diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Boguski, J. C.; Weber, T. E.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.; Hutchinson, T. M.; Gao, K. W.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high Alfvén Mach number, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. A suite of optical diagnostics has recently been fielded on MSX to characterize plasma conditions during the formation, acceleration, and stagnation phases of the experiment. CCD-backed streak and framing cameras, and a fiber-based visible light array, provide information regarding FRC shape, velocity, and instability growth. Time-resolved narrow and broadband spectroscopy provides information on pre-shock plasma temperature, impurity levels, shock location, and non-thermal ion distributions within the shock region. Details of the diagnostic design, configuration, and characterization will be presented along with initial results. This work is supported by the Center for Magnetic Self Organization, DoE OFES and NNSA under LANS contract DE-AC52-06NA25369. Approved for public release: LA-UR- 13-25190.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, D. B.; Winske, D.; Larson, D. J.

    Collisionless shocks are common phenomena in space and astrophysical systems, and in many cases, the shocks can be modeled as the result of the expansion of a magnetic piston though a magnetized ambient plasma. Only recently, however, have laser facilities and diagnostic capabilities evolved sufficiently to allow the detailed study in the laboratory of the microphysics of piston-driven shocks. We review experiments on collisionless shocks driven by a laser-produced magnetic piston undertaken with the Phoenix laser laboratory and the Large Plasma Device at the University of California, Los Angeles. The experiments span a large parameter space in laser energy, backgroundmore » magnetic field, and ambient plasma properties that allow us to probe the physics of piston-ambient energy coupling, the launching of magnetosonic solitons, and the formation of subcritical shocks. Here, the results indicate that piston-driven magnetized collisionless shocks in the laboratory can be characterized with a small set of dimensionless formation parameters that place the formation process in an organized and predictive framework.« less

  8. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, Margie P.; Cantelli, Valentina; Mathon, Olivier; Pascarelli, Sakura; Grenzer, Joerg; Pelka, Alexander; Roedel, Melanie; Prencipe, Irene; Laso Garcia, Alejandro; Helbig, Uwe; Kraus, Dominik; Schramm, Ulrich; Cowan, Tom; Scheel, Mario; Pradel, Pierre; De Resseguier, Thibaut; Rack, Alexander

    2018-02-01

    A high-power, nanosecond pulsed laser impacting the surface of a material can generate an ablation plasma that drives a shock wave into it; while in situ x-ray imaging can provide a time-resolved probe of the shock-induced material behaviour on macroscopic length scales. Here, we report on an investigation into laser-driven shock compression of a polyurethane foam and a graphite rod by means of single-pulse synchrotron x-ray phase-contrast imaging with MHz frame rate. A 6 J, 10 ns pulsed laser was used to generate shock compression. Physical processes governing the laser-induced dynamic response such as elastic compression, compaction, pore collapse, fracture, and fragmentation have been imaged; and the advantage of exploiting the partial spatial coherence of a synchrotron source for studying low-density, carbon-based materials is emphasized. The successful combination of a high-energy laser and ultra high-speed x-ray imaging using synchrotron light demonstrates the potentiality of accessing complementary information from scientific studies of laser-driven shock compression.

  9. Shock wave attenuation by water droplets

    NASA Astrophysics Data System (ADS)

    Eliasson, Veronica; Wan, Qian; Deiterding, Ralf

    2017-11-01

    The ongoing research on shock wave attenuation is fueled by the desire to predict and avoid damage caused by shock and blast waves. For example, during an explosion in an underground mine or subway tunnel, the shock front is forced to propagate in the direction of the channel. In this work, numerical simulations using water droplets in a 2D channel are conducted to study shock wave attenuation. Four different droplet configurations (1x1, 2x2, 3x3, and 4x4) are considered, where the total volume of water is kept constant throughout all the cases. Meanwhile, the incident shock Mach number was varied from 1.1 to 1.4 with increments of 0.1. The physical motion of the water droplets, such as the center-of-mass drift and velocity, and the energy exchange between air and water are quantitatively studied. Results for center-of-mass velocity, maximum peak pressure and impulse will be presented for all different cases that were studied. NSF CBET-1437412.

  10. Shell shock, trauma, and the First World War: the making of a diagnosis and its histories.

    PubMed

    Loughran, Tracey

    2012-01-01

    During the First World War, thousands of soldiers were treated for "shell shock," a condition which encompassed a range of physical and psychological symptoms. Shell shock has most often been located within a "genealogy of trauma," and identified as an important marker in the gradual recognition of the psychological afflictions caused by combat. In recent years, shell shock has increasingly been viewed as a powerful emblem of the suffering of war. This article, which focuses on Britain, extends scholarly analyses which question characterizations of shell shock as an early form of post-traumatic stress disorder. It also considers some of the methodological problems raised by recasting shell shock as a wartime medical construction rather than an essentially timeless manifestation of trauma. It argues that shell shock must be analyzed as a diagnosis shaped by a specific set of contemporary concerns, knowledges, and practices. Such an analysis challenges accepted understandings of what shell shock "meant" in the First World War, and also offers new perspectives on the role of shell shock in shaping the emergence of psychology and psychiatry in the early part of the twentieth century. The article also considers what relation, if any, might exist between intellectual and other histories, literary approaches, and perceptions of trauma as timeless and unchanging.

  11. Quantitative understanding of Forbush decrease drivers based on shock-only and CME-only models using global signature of February 14, 1978 event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghav, Anil; Lotekar, Ajay; Bhaskar, Ankush

    We have studied the Forbush decrease (FD) event that occurred on February 14, 1978 using 43 neutron monitor observatories to understand the global signature of FD. We have studied rigidity dependence of shock amplitude and total FD amplitude. We have found almost the same power law index for both shock phase amplitude and total FD amplitude. Local time variation of shock phase amplitude and maximum depression time of FD have been investigated which indicate possible effect of shock/CME orientation. We have analyzed rigidity dependence of time constants of two phase recovery. Time constants of slow component of recovery phase showmore » rigidity dependence and imply possible effect of diffusion. Solar wind speed was observed to be well correlated with slow component of FD recovery phase. This indicates solar wind speed as possible driver of recovery phase. To investigate the contribution of interplanetary drivers, shock and CME in FD, we have used shock-only and CME-only models. We have applied these models separately to shock phase and main phase amplitudes respectively. This confirms presently accepted physical scenario that the first step of FD is due to propagating shock barrier and second step is due to flux rope of CME/magnetic cloud.« less

  12. Recovery of Stishovite-Structure at Ambient Conditions out of Shock-Generated Amorphous Silica

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Tschauner, O.; Asimow, P. D.; Ahrens, T. J.

    2006-12-01

    We show that bulk amorphous silica recovered from shock wave experiments on quartz to 56 GPa is not a true glass but rather keeps a large degree of long range structural information that can be recovered by static cold recompression to 13 GPa. At this pressure shock-retrieved silica assumes the structure of crystalline stishovite. This amorphous-crystal transition is characterized by long coherence length, resulting in formation of large crystallites. Therefore, the shock-recovered amorphous material studied here is a slightly disordered six-fold coordinated silica phase but not a glass, which possesses only medium range order [1]. It is therefore most likely that stishovite or a structurally closely related solid phase represent the state this material had assumed during shock, while post-shock heating to 500 -1000 K [2-4] induces the observed slight disorder. This probable memory-effect allows for physically more precise characterization of diaplectic silica `glass' and may be extended to other diaplectic `glasses' [1] O.Tschauner, S.N. Luo, P.D.Asimow, T.J. Ahrens, Am. Min. in print (2006) [2] J. Wackerle, Journal of Applied Physics, 33, 922 - 937 (1962) [3] M.B. Boslough, Journal of Geophysical Research, 93, 6477 - 9484 (1988) [4] S.N. Luo, T.J. Ahrens, P.D. Asimow, Journal of Geophysical Research, 108, 2421- 2434 (2003) Supported under the NNSA Cooperative Agreement DE-FC88-01NV14049 and under NASA PGG Grant NNG04G107G and Contribution # 9144, Division of Geological and Planetary Sciences, California Institute of Technology.

  13. Particle Acceleration at the Sun and in the Heliosphere

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.

    1999-01-01

    Energetic particles are accelerated in rich profusion at sites throughout the heliosphere. They come from solar flares in the low corona, from shock waves driven outward by coronal mass ejections (CMEs), from planetary magnetospheres and bow shocks. They come from corotating interaction regions (CIRs) produced by high-speed streams in the solar wind, and from the heliospheric termination shock at the outer edge of the heliospheric cavity. We sample all these populations near Earth, but can distinguish them readily by their element and isotope abundances, ionization states, energy spectra, angular distributions and time behavior. Remote spacecraft have probed the spatial distributions of the particles and examined new sources in situ. Most acceleration sources can be "seen" only by direct observation of the particles; few photons are produced at these sites. Wave-particle interactions are an essential feature in acceleration sources and, for shock acceleration, new evidence of energetic-proton-generated waves has come from abundance variations and from local cross-field scattering. Element abundances often tell us the physics the source plasma itself, prior to acceleration. By comparing different populations, we learn more about the sources, and about the physics of acceleration and transport, than we can possibly learn from one source alone.

  14. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  15. A physically-based Mie–Gruneisen equation of state to determine hot spot temperature distributions

    DOE PAGES

    Kittell, David Erik; Yarrington, Cole Davis

    2016-07-14

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapsemore » using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.« less

  16. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    PubMed

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Shocks in the Early Universe.

    PubMed

    Pen, Ue-Li; Turok, Neil

    2016-09-23

    We point out a surprising consequence of the usually assumed initial conditions for cosmological perturbations. Namely, a spectrum of Gaussian, linear, adiabatic, scalar, growing mode perturbations not only creates acoustic oscillations of the kind observed on very large scales today, it also leads to the production of shocks in the radiation fluid of the very early Universe. Shocks cause departures from local thermal equilibrium as well as create vorticity and gravitational waves. For a scale-invariant spectrum and standard model physics, shocks form for temperatures 1  GeV

  18. Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa

    NASA Astrophysics Data System (ADS)

    Root, S.

    2005-07-01

    Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.

  19. Modeling the Plasma Flow in the Inner Heliosheath with a Spatially Varying Compression Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolaou, G.; Livadiotis, G.

    2017-03-20

    We examine a semi-analytical non-magnetic model of the termination shock location previously developed by Exarhos and Moussas. In their study, the plasma flow beyond the shock is considered incompressible and irrotational, thus the flow potential is analytically derived from the Laplace equation. Here we examine the characteristics of the downstream flow in the heliosheath in order to resolve several inconsistencies existing in the Exarhos and Moussas model. In particular, the model is modified in order to be consistent with the Rankine–Hugoniot jump conditions and the geometry of the termination shock. It is shown that a shock compression ratio varying alongmore » the latitude can lead to physically correct results. We describe the new model and present several simplified examples for a nearly spherical, strong termination shock. Under those simplifications, the upstream plasma is nearly adiabatic for large (∼100 AU) heliosheath thickness.« less

  20. On the acceleration of charged particles at relativistic shock fronts

    NASA Technical Reports Server (NTRS)

    Kirk, J. G.; Schneider, P.

    1987-01-01

    The diffusive acceleration of highly relativistic particles at a shock is reconsidered. Using the same physical assumptions as Blandford and Ostriker (1978), but dropping the restriction to nonrelativistic shock velocities, the authors find approximate solutions of the particle kinetic equation by generalizing the diffusion approximation to higher order terms in the anisotropy of the particle distribution. The general solution of the transport equation on either side of the shock is constructed, which involves the solution of an eigenvalue problem. By matching the two solutions at the shock, the spectral index of the resulting power law is found by taking into account a sufficiently large number of eigenfunctions. Low-order truncation corresponds to the standard diffusion approximation and to a somewhat more general method described by Peacock (1981). In addition to the energy spectrum, the method yields the angular distribution of the particles and its spatial dependence.

  1. Anomalous Shocks on the Measured Near-Field Pressure Signatures of Low-Boom Wind-Tunnel Models

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    2006-01-01

    Unexpected shocks on wind-tunnel-measured pressure signatures prompted questions about design methods, pressure signature measurement techniques, and the quality of measurements in the flow fields near lifting models. Some of these unexpected shocks were the result of component integration methods. Others were attributed to the three-dimension nature of the flow around a lifting model, to inaccuracies in the prediction of the area-ruled lift, or to wing-tip stall effects. This report discusses the low-boom model wind-tunnel data where these unexpected shocks were initially observed, the physics of the lifting wing/body model's flow field, the wind-tunnel data used to evaluate the applicability of methods for calculating equivalent areas due to lift, the performance of lift prediction codes, and tip stall effects so that the cause of these shocks could be determined.

  2. Comparative study of predicted and experimentally detected interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Grigorov, K. G.; Smith, Z.; Dryer, M.; Fry, C. D.; Sun, Wei; Deehr, C. S.

    2002-03-01

    We compare the real time space weather prediction shock arrival times at 1 AU made by the USAF/NOAA Shock Time of Arrival (STOA) and Interplanetary Shock Propagation Model (ISPM) models, and the Exploration Physics International/University of Alaska Hakamada-Akasofu-Fry Solar Wind Model (HAF-v2) to a real time analysis analysis of plasma and field ACE data. The comparison is made using an algorithm that was developed on the basis of wavelet data analysis and MHD identification procedure. The shock parameters are estimated for selected "candidate events". An appropriate automatically performing Web-based interface periodically utilizes solar wind observations made by the ACE at L1. Near real time results as well an archive of the registered interesting events are available on a specially developed web site. A number of events are considered. These studies are essential for the validation of real time space weather forecasts made from solar data.

  3. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, H.; Osada, A.; Itoh, S.; Kato, Y.

    2007-12-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  4. Low Velocity Detonation of Nitromethane Affected by Precursor Shock Waves Propagating in Various Container Materials

    NASA Astrophysics Data System (ADS)

    Hamashima, Hideki; Osada, Akinori; Kato, Yukio; Itoh, Shigeru

    2007-06-01

    It is well known that some liquid explosives have two detonation behaviors, high velocity detonation (HVD) or low velocity detonation (LVD) can propagate. A physical model to describe the propagation mechanism of LVD in liquid explosives was proposed that LVD is not a self-reactive detonation, but rather a supported-reactive detonation from the cavitation field generated by precursor shock waves. However, the detailed structure of LVD in liquid explosives has not yet been clarified. In this study, high-speed photography was used to investigate the effects of the precursor shock waves propagating in various container materials for LVD in nitromethane (NM). Stable LVD was not observed in all containers, although transient LVD was observed. A very complicated structure of LVD was observed: the interaction of multiple precursor shock waves, multiple oblique shock waves, and the cavitation field.

  5. Planar Reflection of Detonations Waves

    NASA Astrophysics Data System (ADS)

    Damazo, Jason; Shepherd, Joseph

    2012-11-01

    An experimental study examining normally reflected gaseous detonation waves is undertaken so that the physics of reflected detonations may be understood. Focused schlieren visualization is used to describe the boundary layer development behind the incident detonation wave and the nature of the reflected shock wave. Reflected shock wave bifurcation-which has received extensive study as it pertains to shock tube performance-is predicted by classical bifurcation theory, but is not observed in the present study for undiluted hydrogen-oxygen and ethylene-oxygen detonation waves. Pressure and thermocouple gauges are installed in the floor of the detonation tube so as to examine both the wall pressure and heat flux. From the pressure results, we observe an inconsistency between the measured reflected shock speed and the measured reflected shock strength with one dimensional flow predictions confirming earlier experiments performed in our laboratory. This research is sponsored by the DHS through the University of Rhode Island, Center of Excellence for Explosives Detection.

  6. Sound velocities in shocked liquid D2 to 28 GPa

    NASA Astrophysics Data System (ADS)

    Holmes, N. C.; Ross, M.; Nellis, W. J.

    1999-06-01

    Recent measurements of shock temperatures(N. C. Holmes, W. J. Nellis, and M. Ross, Phys. Rev.) B52, 15835 (1995). and laser-driven Hugoniot measurements(L. B. Da Silva, et al.), Phys. Rev. Lett. 78, 483 (1997). of shocked liquid deuterium strongly indicate that molecular dissociation is important above 20 GPa. Since the amount of expected dissociation is small on the Hugoniot at the 30 GPa limit of conventional impact experiments, other methods must be used to test our understanding of the physics of highly compressed deuterium in this regime. We have recently performed experiments to measure the sound velocity of deuterium which test the isentropic compressibility, c^2 = (partial P/partial ρ)_S. We used the shock overtake method to measure sound velocities at several shock pressures between 10--28 GPa. These data provide support for recently developed molecular dissociation models.

  7. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    NASA Astrophysics Data System (ADS)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  8. Structure in Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul; Visco, A.; Doss, F.; Reighard, A.; Froula, D.; Glenzer, S.; Knauer, J.

    2008-05-01

    Radiative shocks are shock waves fast enough that radiation from the shock-heated matter alters the structure of the shock. They are of fundamental interest to high-energy-density physics and also have applications throughout astrophysics. This poster will review the dimensionless parameters that determine structure in these shocks and will discuss recent experiments to measure such structure for strongly radiative shocks that are optically thin upstream and optically thick downstream. The shock transition itself heats mainly the ions. Immediately downstream of the shock, the ions heat the electrons and the electrons radiate, producing an optically thin cooling layer, followed by the downstream layer of warm, shocked material. The axial structure of these systems is of interest, because the transition from precursor through the cooling layer to the final state is complex and difficult to calculate. Their lateral structure is also of interest, as they seem likely to be subject to some variation on the Vishniac instability of thin layers. In our experiments to produce such shocks, laser ablation launches a Be plasma into a tube of Xe or Ar gas, at a velocity above 100 km/s. This drives a shock down the tube. Radiography provides fundamental information about the structure and evolution of the shocked material in Xe. Thomson scattering and pyrometry have provided data in Ar. We will summarize the available evidence regarding the properties of these shocks, and will discuss their connections to astrophysical cases. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064, and other grants and contracts.

  9. Water in star-forming regions with Herschel (WISH). V. The physical conditions in low-mass protostellar outflows revealed by multi-transition water observations

    NASA Astrophysics Data System (ADS)

    Mottram, J. C.; Kristensen, L. E.; van Dishoeck, E. F.; Bruderer, S.; San José-García, I.; Karska, A.; Visser, R.; Santangelo, G.; Benz, A. O.; Bergin, E. A.; Caselli, P.; Herpin, F.; Hogerheijde, M. R.; Johnstone, D.; van Kempen, T. A.; Liseau, R.; Nisini, B.; Tafalla, M.; van der Tak, F. F. S.; Wyrowski, F.

    2014-12-01

    Context. Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance for the conditions expected in various parts of the protostar, particularly the outflow. Aims: We constrain and quantify the physical conditions probed by water in the outflow-jet system for Class 0 and I sources. Methods: We present velocity-resolved Herschel HIFI spectra of multiple water-transitions observed towards 29 nearby Class 0/I protostars as part of the WISH guaranteed time key programme. The lines are decomposed into different Gaussian components, with each component related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then use non-LTE radex models to constrain the excitation conditions present in the two outflow-related components. Results: Water emission at the source position is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H2 densities of order 105 - 108 cm-3 and H2O column densities of order 1016 - 1018 cm-2. H2O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200 AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30 AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. The similarity of the physical conditions is in contrast to off-source determinations which show similar densities but lower column densities and larger filling factors. We propose that this is due to the differences in shock properties and geometry between these positions. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H2O intensity between Class 0 and I sources. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.orgReduced spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A21

  10. "A Shock of Electricity Just Sort of Goes through My Body": Physical Activity and Embodied Reflexive Practices in Young Female Ballet Dancers

    ERIC Educational Resources Information Center

    Wellard, Ian; Pickard, Angela; Bailey, Richard

    2007-01-01

    Participation in physical activities, in and out of school, remains heavily influenced by social constructions of gendered behaviour. In addition, the body plays a significant part in the presentation of legitimate performances of physical practice and the construction of a physical "identity". The consequence is that in formalized…

  11. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  12. Measurements of the principal Hugoniots of dense gaseous deuterium-helium mixtures: Combined multi-channel optical pyrometry, velocity interferometry, and streak optical pyrometry measurements

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Guo; Chen, Qi-Feng; Gu, Yun-Jun; Zheng, Jun; Chen, Xiang-Rong

    2016-10-01

    The accurate hydrodynamic description of an event or system that addresses the equations of state, phase transitions, dissociations, ionizations, and compressions, determines how materials respond to a wide range of physical environments. To understand dense matter behavior in extreme conditions requires the continual development of diagnostic methods for accurate measurements of the physical parameters. Here, we present a comprehensive diagnostic technique that comprises optical pyrometry, velocity interferometry, and time-resolved spectroscopy. This technique was applied to shock compression experiments of dense gaseous deuterium-helium mixtures driven via a two-stage light gas gun. The advantage of this approach lies in providing measurements of multiple physical parameters in a single experiment, such as light radiation histories, particle velocity profiles, and time-resolved spectra, which enables simultaneous measurements of shock velocity, particle velocity, pressure, density, and temperature and expands understanding of dense high pressure shock situations. The combination of multiple diagnostics also allows different experimental observables to be measured and cross-checked. Additionally, it implements an accurate measurement of the principal Hugoniots of deuterium-helium mixtures, which provides a benchmark for the impedance matching measurement technique.

  13. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database

    PubMed Central

    Schmitz, Christoph; Császár, Nikolaus B. M.; Milz, Stefan; Schieker, Matthias; Maffulli, Nicola; Rompe, Jan-Dirk; Furia, John P.

    2015-01-01

    Background Extracorporeal shock wave therapy (ESWT) is an effective and safe non-invasive treatment option for tendon and other pathologies of the musculoskeletal system. Sources of data This systematic review used data derived from the Physiotherapy Evidence Database (PEDro; www.pedro.org.au, 23 October 2015, date last accessed). Areas of agreement ESWT is effective and safe. An optimum treatment protocol for ESWT appears to be three treatment sessions at 1-week intervals, with 2000 impulses per session and the highest energy flux density the patient can tolerate. Areas of controversy The distinction between radial ESWT as ‘low-energy ESWT’ and focused ESWT as ‘high-energy ESWT’ is not correct and should be abandoned. Growing points There is no scientific evidence in favour of either radial ESWT or focused ESWT with respect to treatment outcome. Areas timely for developing research Future randomized controlled trials should primarily address systematic tests of the aforementioned optimum treatment protocol and direct comparisons between radial and focused ESWT. PMID:26585999

  14. [Staphylococcal toxin of toxic shock syndrome].

    PubMed

    Fluer, F S

    2007-01-01

    Literature data on toxic shock syndrome staphylococcal toxin (TSST-1) are summarized; properties of Staphylococcus aureus strains producing TSST-1, nutrient media, and factors influencing on production of TSST-1 are reviewed. Physical and chemical properties of the toxin, its molecular characteristics, genetic regulation of its production, mechanism of action, and diseases which it causes are also discussed. Clinical and histologic signs of toxic shock syndrome (TSS), its diagnostic criteria, susceptibility of people to TSS, antigenic and serologic properties of the toxin, epidemiology of the infection caused by TSST-1-producing strains of staphylococci, methods of TSST-1 extraction and identification are described.

  15. Note on the single-shock solutions of the Korteweg-de Vries-Burgers equation

    NASA Astrophysics Data System (ADS)

    Kourakis, Ioannis; Sultana, Sharmin; Verheest, Frank

    2012-04-01

    The well-known shock solutions of the Korteweg-de Vries-Burgers equation are revisited, together with their limitations in the context of plasma (astro)physical applications. Although available in the literature for a long time, it seems to have been forgotten in recent papers that such shocks are monotonic and unique, for a given plasma configuration, and cannot show oscillatory or bell-shaped features. This uniqueness is contrasted to solitary wave solutions of the two parent equations (Korteweg-de Vries and Burgers), which form a family of curves parameterized by the excess velocity over the linear phase speed.

  16. Even the best laid plans sometimes go askew: career self-management processes, career shocks, and the decision to pursue graduate education.

    PubMed

    Seibert, Scott E; Kraimer, Maria L; Holtom, Brooks C; Pierotti, Abigail J

    2013-01-01

    Drawing on career self-management frameworks as well as image theory and the unfolding model of turnover, we developed a model predicting early career employees' decisions to pursue graduate education. Using a sample of 337 alumni from 2 universities, we found that early career individuals with intrinsic career goals, who engaged in career planning, who were less satisfied with their career, or who experienced impactful positive career shocks were more likely to intend to go to graduate school. In contrast, individuals with extrinsic career goals who were highly satisfied with their careers were less likely to intend to go to graduate school. Graduate education intentions, career planning, and the impact of having one's mentor leave the organization positively related to actual applications to graduate school. However, having extrinsic career goals, an impactful sooner than expected raise or promotion (a positive career shock), and a negative organizational change (a negative career shock) negatively related to the likelihood of applying. The career shocks' direct relationship to applications to graduate school, regardless of one's intentions, suggests that "the best laid plans" can sometimes be altered by unplanned events. This study contributes to the literatures on career self-management and graduate education and extends the application of the shock construct from the unfolding model of turnover to other career-related decisions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. Narrative theory: II. Self-generated and experimenter-provided negative income shock narratives increase delay discounting.

    PubMed

    Mellis, Alexandra M; Snider, Sarah E; Bickel, Warren K

    2018-04-01

    Reading experimenter-provided narratives of negative income shock has been previously demonstrated to increase impulsivity, as measured by discounting of delayed rewards. We hypothesized that writing these narratives would potentiate their effects of negative income shock on decision-making more than simply reading them. In the current study, 193 cigarette-smoking individuals from Amazon Mechanical Turk were assigned to either read an experimenter-provided narrative or self-generate a narrative describing either the negative income shock of job loss or a neutral condition of job transfer. Individuals then completed a task of delay discounting and measures of affective response to narratives, as well as rating various narrative qualities such as personal relevance and vividness. Consistent with past research, narratives of negative income shock increased delay discounting compared to control narratives. No significant differences existed in delay discounting after self-generating compared to reading experimenter-provided narratives. Positive affect was lower and negative affect was higher in response to narratives of job loss, but affect measures did not differ based on whether narratives were experimenter-provided or self-generated. All narratives were rated as equally realistic, but self-generated narratives (whether negative or neutral) were rated as more vivid and relevant than experimenter-provided narratives. These results indicate that the content of negative income shock narratives, regardless of source, consistently drives short-term choices. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  19. ELECTRON ACCELERATION AT A CORONAL SHOCK PROPAGATING THROUGH A LARGE-SCALE STREAMER-LIKE MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Xiangliang; Chen, Yao; Feng, Shiwei

    2016-04-10

    Using a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featuring a partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of the magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of the efficient electron acceleration region along the shock front during its propagation. We also find that, in general, the electron acceleration at the shock flank is not as efficient as that at the top of the closed field because a collapsing magnetic trap can be formed at the top. In addition, we find that the energy spectra of electrons are power-law-like, first hardening then softening with the spectral index varying in a range of −3 to −6. Physical interpretations of the results and implications for the study of solar radio bursts are discussed.« less

  20. Electron acceleration at a coronal shock propagating through a large-scale streamer-like magnetic field

    DOE PAGES

    Kong, Xiangliang; Chen, Yao; Guo, Fan; ...

    2016-04-05

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature ismore » larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front during its propagation. We also found that in general the electron acceleration at the shock flank is not so efficient as that at the top of closed field since at the top a collapsing magnetic trap can be formed. In addition, we find that the energy spectra of electrons is power-law like, first hardening then softening with the spectral index varying in a range of -3 to -6. In conclusion, physical interpretations of the results and implications on the study of solar radio bursts are discussed.« less

  1. Physical therapies for Achilles tendinopathy: systematic review and meta-analysis

    PubMed Central

    2012-01-01

    Background Achilles tendinopathy (AT) is a common condition, causing considerable morbidity in athletes and non-athletes alike. Conservative or physical therapies are accepted as first-line management of AT; however, despite a growing volume of research, there remains a lack of high quality studies evaluating their efficacy. Previous systematic reviews provide preliminary evidence for non-surgical interventions for AT, but lack key quality components as outlined in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Statement. The aim of this study was to conduct a systematic review and meta-analysis (where possible) of the evidence for physical therapies for AT management. Methods A comprehensive strategy was used to search 11 electronic databases from inception to September 2011. Search terms included Achilles, tendinopathy, pain, physical therapies, electrotherapy and exercise (English language full-text publications, human studies). Reference lists of eligible papers were hand-searched. Randomised controlled trials (RCTs) were included if they evaluated at least one non-pharmacological, non-surgical intervention for AT using at least one outcome of pain and/or function. Two independent reviewers screened 2852 search results, identifying 23 suitable studies, and assessed methodological quality and risk of bias using a modified PEDro scale. Effect size calculation and meta-analyses were based on fixed and random effects models respectively. Results Methodological quality ranged from 2 to 12 (/14). Four studies were excluded due to high risk of bias, leaving 19 studies, the majority of which evaluated midportion AT. Effect sizes from individual RCTs support the use of eccentric exercise. Meta-analyses identified significant effects favouring the addition of laser therapy to eccentric exercise at 12 weeks (pain VAS: standardised mean difference −0.59, 95% confidence interval −1.11 to −0.07), as well as no differences in effect between eccentric exercise and shock wave therapy at 16 weeks (VISA-A:–0.55,–2.21 to 1.11). Pooled data did not support the addition of night splints to eccentric exercise at 12 weeks (VISA-A:–0.35,–1.44 to 0.74). Limited evidence from an individual RCT suggests microcurrent therapy to be an effective intervention. Conclusions Practitioners can consider eccentric exercise as an initial intervention for AT, with the addition of laser therapy as appropriate. Shock wave therapy may represent an effective alternative. High-quality RCTs following CONSORT guidelines are required to further evaluate the efficacy of physical therapies and determine optimal clinical pathways for AT. PMID:22747701

  2. Sandia 25-meter compressed helium/air gun

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.

    1982-04-01

    For nearly twenty years the Sandia 25-meter compressed gas gun has been an important tool for studying condensed materials subjected to transient shock compression. Major system modifications are now in progress to provide new control, instrumentation, and data acquisition capabilities. These features will ensure that the facility can continue as an effective means of investigating a variety of physical and chemical processes in shock-compressed solids.

  3. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation

    NASA Astrophysics Data System (ADS)

    Bellemans, Aurélie; Parente, Alessandro; Magin, Thierry

    2018-04-01

    The present work introduces a novel approach for obtaining reduced chemistry representations of large kinetic mechanisms in strong non-equilibrium conditions. The need for accurate reduced-order models arises from compression of large ab initio quantum chemistry databases for their use in fluid codes. The method presented in this paper builds on existing physics-based strategies and proposes a new approach based on the combination of a simple coarse grain model with Principal Component Analysis (PCA). The internal energy levels of the chemical species are regrouped in distinct energy groups with a uniform lumping technique. Following the philosophy of machine learning, PCA is applied on the training data provided by the coarse grain model to find an optimally reduced representation of the full kinetic mechanism. Compared to recently published complex lumping strategies, no expert judgment is required before the application of PCA. In this work, we will demonstrate the benefits of the combined approach, stressing its simplicity, reliability, and accuracy. The technique is demonstrated by reducing the complex quantum N2(g+1Σ) -N(S4u ) database for studying molecular dissociation and excitation in strong non-equilibrium. Starting from detailed kinetics, an accurate reduced model is developed and used to study non-equilibrium properties of the N2(g+1Σ) -N(S4u ) system in shock relaxation simulations.

  4. Shock Energy in Merging Systems: The Elephant in the Room.

    NASA Astrophysics Data System (ADS)

    Kewley, Lisa

    2011-10-01

    The relationship between shocks, star formation and the evolution of merging galaxies is not well understood. We are now poised to gain major insight in this area, thanks to the high resolution narrow-band imaging capabilities of WFC3 and recent major advances in theoretical shock and and photoionization models. Shocks and star formation in merging galaxies are regulated by fundamental physical properties of the ISM such as dust, gas density, ionized gas structure, and the presence of galactic winds and outflows. We aim to uncover the relationship between shocks, galactic winds, and the fundamental ISM properties in two famous mergers NGC 6240 and Arp 220. These two galaxies are currently transitioning from disk galaxies into spheroids and they are close enough to achieve the spatial scales required to resolve individual supernova remnants with WFC3 imaging. We propose to image NGC 6240 and Arp 220 in key shock and photoionization sensitive diagnostic lines [OII], [OIII], H-beta, [NII]+H-alpha, [SII], and {where possible} [OI] to {1} resolve the source of the ionizing radiation field {shocks versus photoionization by hot stars} at spatial scales of 25-35 pc, and {2} map the distribution of the star formation and ionized gas to search for links with merger-driven shocks and large-scale gas flows.

  5. Effects of porosity on shock-induced melting of honeycomb-shaped Cu nanofoams

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    Metallic foams are of fundamental and applied interests in various areas, including structure engineering (e.g., lightweight structural members and energy absorbers), and shock physics (e.g., as laser ablators involving shock-induced melting and vaporization).Honeycomb-shaped metallic foams consist of regular array of hexagonal cells in two dimensions and have extensive applications and represent a unique, simple yet useful model structure for exploring mechanisms and making quantitative assessment. We investigate shock-induced melting in honeycomb-shaped Cu nanofoams with extensive molecular dynamics simulations. A total of ten porosities (phi) are explored, ranging from 0 to 0.9 at an increment of 0.1. Upon shock compression, void collapse induces local melting followed by supercooling for sufficiently high porosity at low shock strengths. While superheating of solid remnants occurs for sufficiently strong shocks at phi<0.1. Both supercooling of melts and superheating of solid remnants are transient, and the equilibrated shock states eventually fall on the equilibrium melting curve for partial melting. However, phase equilibrium has not been achieved on the time scale of simulations in supercooled Cu liquid (from completely melted nanofoams). The temperatures for incipient and complete melting are related to porosity via a power law and approach the melting temperature at zero pressure as phi tends to 1.

  6. Dust acoustic shock waves in magnetized dusty plasma

    NASA Astrophysics Data System (ADS)

    Yashika, GHAI; Nimardeep, KAUR; Kuldeep, SINGH; N, S. SAINI

    2018-07-01

    We have presented a theoretical study of the dust acoustic (DA) shock structures in a magnetized, electron depleted dusty plasma in the presence of two temperature superthermal ions. By deriving a Korteweg–de Vries–Burgers equation and studying its shock solution, we aim to highlight the effects of magnetic field and obliqueness on various properties of the DA shock structures in the presence of kappa-distributed two temperature ion population. The present model is motivated by the observations of Geotail spacecraft in the Earth's magnetotail and it is seen that the different physical parameters such as superthermality of the cold and hot ions, the cold to hot ion temperature ratio, the magnetic field strength, obliqueness and the dust kinematic viscosity greatly influence the dynamics of the shock structures so formed. The results suggest that the variation of superthermalities of the cold and hot ions have contrasting effects on both positive and negative polarity shock structures. Moreover, it is noted that the presence of the ambient magnetic field affects the dispersive properties of the medium and tends to make the shock structures less wide and more abrupt. The findings of present investigation may be useful in understanding the dynamics of shock waves in dusty plasma environments containing two temperature ions where the electrons are significantly depleted.

  7. On the peculiar shapes of some pulsar bow-shock nebulae

    NASA Astrophysics Data System (ADS)

    Bandiera, Rino

    Pulsar bow-shock nebulae are pulsar-wind nebulae formed by the direct interaction of pulsar relativistic winds with the interstellar medium. The bow-shock morphology, well outlined in Hα for some objects, is an effect of the supersonic pulsar motion with respect to the ambient medium. However, in a considerable fraction of cases (e.g. the nebulae associated to PSR B2224+65, PSR B0740-28, PSR J2124-3358) clear deviations from the classical bow shock shape are observed. Such deviations are usually interpreted as due to ambient density gradients and/or to pulsar-wind anisotropies. Here I present a different interpretation, aiming at explaining deviations from the standard morphology as signs of the peculiar physical conditions present in these objects. Using dimensional arguments, I show that, unlike normal pulsar-wind nebulae, in pulsar bow-shock nebulae the mean free path of the highest-energy particles may be comparable with the bow-shock head. I then investigate whether this may affect the shape of the bow-shock; for instance, whether a conical bow shock (like that observed in the "Guitar", the nebula associated to PSR B2224+65) does really imply an ambient density gradient. Finally, I discuss some other possible signatures of these high-energy, long mean-free-path particles.

  8. Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters

    PubMed Central

    Krimmel, Jeff; Colonius, Tim; Tanguay, Michel

    2011-01-01

    We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counter-productive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue. PMID:21063697

  9. SHOCKFIND - an algorithm to identify magnetohydrodynamic shock waves in turbulent clouds

    NASA Astrophysics Data System (ADS)

    Lehmann, Andrew; Federrath, Christoph; Wardle, Mark

    2016-11-01

    The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetized turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks - fast, intermediate and slow - distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here, we introduce the publicly available algorithm, SHOCKFIND, to extract and characterize the mixture of shock families in MHD turbulence. The algorithm is applied to a three-dimensional simulation of a magnetized turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of sonic and Alfvénic Mach numbers. Using subgrid one-dimensional models of MHD shocks we estimate that ˜0.03 per cent of the volume of a typical molecular cloud in the Milky Way will be shock heated above 50 K, at any time during the lifetime of the cloud. We discuss the impact of this shock heating on the dynamical evolution of molecular clouds.

  10. Study on miss distance based on projectile shock wave sensor

    NASA Astrophysics Data System (ADS)

    Gu, Guohua; Cheng, Gang; Zhang, Chenjun; Zhou, Lei

    2017-05-01

    The paper establishes miss distance models based on physical characteristic of shock-wave. The aerodynamic theory shows that the shock-wave of flying super-sonic projectile is generated for the projectile compressing and expending its ambient atmosphere. It advances getting miss distance according to interval of the first sensors, which first catches shock-wave, to solve the problem such as noise filtering on severe background, and signals of amplifier vibration dynamic disposal and electromagnetism compatibility, in order to improves the precision and reliability of gathering wave N signals. For the first time, it can identify the kinds of pills and firing units automatically, measure miss distance and azimuth when pills are firing. Application shows that the tactics and technique index is advanced all of the world.

  11. Shock timing measurements in DT ice layers

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Behavior of Materials Under Conditions of Thermal Stress

    NASA Technical Reports Server (NTRS)

    Manson, S S

    1954-01-01

    A review is presented of available information on the behavior of brittle and ductile materials under conditions of thermal stress and thermal shock. For brittle materials, a simple formula relating physical properties to thermal-shock resistance is derived and used to determine the relative significance of two indices currently in use for rating materials. For ductile materials, thermal-shock resistance depends upon the complex interrelation among several metallurgical variables which seriously affect strength and ductility. These variables are briefly discussed and illustrated from literature sources. The importance of simulating operating conditions in tests for rating materials is especially to be emphasized because of the importance of testing conditions in metallurgy. A number of practical methods that have been used to minimize the deleterious effects of thermal stress and thermal shock are outlined.

  13. Molecular emission in chemically active protostellar outflows

    NASA Astrophysics Data System (ADS)

    Lefloch, B.

    2011-12-01

    Protostellar outflows play an important role in the dynamical and chemical evolution of cloud through shocks. The Herschel Space Observatory (HSO) brings new insight both on the molecular content and the physical conditions in protostellar shocks through high spectral and angular resolution studies of the emission of major gas cooling agents and hydrides. The Herschel/CHESS key-program is carrying out an in depth study of the prototypical shock region L1157-B1. Analysis of the line profiles detected allows to constrain the formation/destruction route of various molecular species, in relation with the predictions of MHD shock models. The Herschel/WISH key-program investigates the properties and origin of water emission in a broad sample of protostellar outflows and envelopes. Implications of the first results for future studies on mass-loss phenomena are discussed.

  14. On the 'flip-flop' instability of Bondi-Hoyle accretion flows

    NASA Technical Reports Server (NTRS)

    Livio, Mario; Soker, Noam; Matsuda, Takuya; Anzer, Ulrich

    1991-01-01

    A simple physical interpretation is advanced by means of an analysis of the shock cone in the accretion flows past a compact object and with an examination of the accretion-line stability analyses. The stability of the conical shock is examined against small angular deflections with attention given to several simplifying assumptions. A line instability is identified in the Bondi-Hoyle accretion flows that leads to the formation of a large opening-angle shock. When the opening angle becomes large the instability becomes irregular oscillation. The analytical methodology is compared to previous numerical configurations that demonstrate different shock morphologies. The Bondi-Hoyle accretion onto a compact object is concluded to generate a range of nonlinear instabilities in both homogeneous and inhomogeneous cases with a quasiperiodic oscillation in the linear regime.

  15. Nonlinear reflection of shock shear waves in soft elastic media.

    PubMed

    Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël

    2010-02-01

    For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.

  16. Regularization method for large eddy simulations of shock-turbulence interactions

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2018-05-01

    The rapid change in scales over a shock has the potential to introduce unique difficulties in Large Eddy Simulations (LES) of compressible shock-turbulence flows if the governing model does not sufficiently capture the spectral distribution of energy in the upstream turbulence. A method for the regularization of LES of shock-turbulence interactions is presented which is constructed to enforce that the energy content in the highest resolved wavenumbers decays as k - 5 / 3, and is computed locally in physical-space at low computational cost. The application of the regularization to an existing subgrid scale model is shown to remove high wavenumber errors while maintaining agreement with Direct Numerical Simulations (DNS) of forced and decaying isotropic turbulence. Linear interaction analysis is implemented to model the interaction of a shock with isotropic turbulence from LES. Comparisons to analytical models suggest that the regularization significantly improves the ability of the LES to predict amplifications in subgrid terms over the modeled shockwave. LES and DNS of decaying, modeled post shock turbulence are also considered, and inclusion of the regularization in shock-turbulence LES is shown to improve agreement with lower Reynolds number DNS.

  17. Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite

    NASA Astrophysics Data System (ADS)

    Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.

    2018-03-01

    Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.

  18. Measurements of Amplified Magnetic Field and Cosmic-Ray Content in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yasunobu

    Supernova explosions drive collisionless shocks in the interstellar (or circumstellar) medium. Such shocks are mediated by plasma waves, resulting in the shock transition on a scale much smaller than the collisional mean free path. Galactic cosmic rays are widely considered to be accelerated at collisionless shocks in supernova remnants via diffusive shock acceleration. New high-energy data coming from the X-ray and gamma-ray satellites and from imaging air Cerenkov telescopes are making possible to study physics of particle acceleration at supernova shocks, such as magnetic field amplification which is considered to be realized as part of shock acceleration process and the energy content of cosmic-ray particles in the supernova shell. In particular, GeV observations with the Fermi Gamma-ray Space Telescope offer the prime means to establish the origin of the gamma-rays, and to measure the cosmic-ray content. Moreover they provide a new opportunity to learn about how particle acceleration responds to environ-mental effects. I will present recent observational results from the Chandra and Suzaku X-ray satellites and new results from the LAT onboard Fermi, and discuss their implications to the origin of galactic cosmic rays.

  19. A surge of light at the birth of a supernova.

    PubMed

    Bersten, M C; Folatelli, G; García, F; Van Dyk, S D; Benvenuto, O G; Orellana, M; Buso, V; Sánchez, J L; Tanaka, M; Maeda, K; Filippenko, A V; Zheng, W; Brink, T G; Cenko, S B; de Jaeger, T; Kumar, S; Moriya, T J; Nomoto, K; Perley, D A; Shivvers, I; Smith, N

    2018-02-21

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  20. A surge of light at the birth of a supernova

    NASA Astrophysics Data System (ADS)

    Bersten, M. C.; Folatelli, G.; García, F.; van Dyk, S. D.; Benvenuto, O. G.; Orellana, M.; Buso, V.; Sánchez, J. L.; Tanaka, M.; Maeda, K.; Filippenko, A. V.; Zheng, W.; Brink, T. G.; Cenko, S. B.; de Jaeger, T.; Kumar, S.; Moriya, T. J.; Nomoto, K.; Perley, D. A.; Shivvers, I.; Smith, N.

    2018-02-01

    It is difficult to establish the properties of massive stars that explode as supernovae. The electromagnetic emission during the first minutes to hours after the emergence of the shock from the stellar surface conveys important information about the final evolution and structure of the exploding star. However, the unpredictable nature of supernova events hinders the detection of this brief initial phase. Here we report the serendipitous discovery of a newly born, normal type IIb supernova (SN 2016gkg), which reveals a rapid brightening at optical wavelengths of about 40 magnitudes per day. The very frequent sampling of the observations allowed us to study in detail the outermost structure of the progenitor of the supernova and the physics of the emergence of the shock. We develop hydrodynamical models of the explosion that naturally account for the complete evolution of the supernova over distinct phases regulated by different physical processes. This result suggests that it is appropriate to decouple the treatment of the shock propagation from the unknown mechanism that triggers the explosion.

  1. Shock Interaction of Metal Particles in Condensed Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2005-07-01

    For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.

  2. Geologic map of the eastern part of the Challis National Forest and vicinity, Idaho

    USGS Publications Warehouse

    Wilson, A.B.; Skipp, B.A.

    1994-01-01

    The paper version of the Geologic Map of the eastern part of the Challis National Forest and vicinity, Idaho was compiled by Anna Wilson and Betty Skipp in 1994. The geology was compiled on a 1:250,000 scale topographic base map. TechniGraphic System, Inc. of Fort Collins Colorado digitized this map under contract for N.Shock. G.Green edited and prepared the digital version for publication as a GIS database. The digital geologic map database can be queried in many ways to produce a variety of geologic maps.

  3. A Comprehensive Study of Chelyabinsk Meteorite: Physical, Mineralogical, Spectral Properties and Solar System Orbit

    NASA Astrophysics Data System (ADS)

    Gritsevich, Maria; Kohout, T.; Grokhovsky, V.; Yakovlev, G.; Lyytinen, E.; Vinnikov, V.; Haloda, J.; Halodova, P.; Michallik, R.; Penttilä, A.; Muinonen, K.; Peltoniemi, J.; Lupovka, V.; Dmitriev, V.

    2013-10-01

    On February 15, 2013, at 9:22 am, an exceptionally bright and long duration fireball was observed by many eyewitnesses in the Chelyabinsk region, Russia. A strong shock wave associated with the fireball caused significant damage such as destroyed windows and parts of buildings in Chelyabinsk and the surrounding territories. A number of video records of the event are available and have been used to reconstruct atmospheric trajectory, velocity, deceleration rate, and parent asteroid Apollo-type orbit in the Solar System. Two types of meteorite material are present among recovered fragments of the Chelyabinsk meteorite. These are described as the light-colored and dark-colored lithology. Both types are of LL5 composition with the dark-colored one being an impact-melt shocked to a higher level. Based on the magnetic susceptibility measurements, the Chelyabinsk meteorite is richer in metallic iron as compared to other LL chondrites. The measured bulk and grain densities and the porosity closely resemble other LL chondrites. Shock darkening does not have a significant effect on the material physical properties, but causes a decrease of reflectance and decrease in silicate absorption bands in the reflectance spectra. This is similar to the space weathering effects observed on asteroids. However, no spectral slope change similar to space weathering is observed as a result of shock-darkening. Thus, it is possible that some dark asteroids with invisible silicate absorption bands may be composed of relatively fresh shock darkened chondritic material.

  4. The radiopurity.org material database

    NASA Astrophysics Data System (ADS)

    Cooley, J.; Loach, J. C.; Poon, A. W. P.

    2018-01-01

    The database at http://www.radiopurity.org is the world's largest public database of material radio-purity mea-surements. These measurements are used by members of the low-background physics community to build experiments that search for neutrinos, neutrinoless double-beta decay, WIMP dark matter, and other exciting physics. This paper summarizes the current status and the future plan of this database.

  5. Low-dose hydrocortisone therapy attenuates septic shock in adult patients but does not reduce 28-day mortality: a meta-analysis of randomized controlled trials.

    PubMed

    Wang, Changsong; Sun, Jiaxiao; Zheng, Juanjuan; Guo, Lei; Ma, Hongyan; Zhang, Yang; Zhang, Fengmin; Li, Enyou

    2014-02-01

    The role of low-dose hydrocortisone in attenuating septic shock and reducing short-term mortality in adult patients with septic shock is unclear. We conducted a meta-analysis of previous studies to determine whether hydrocortisone could ameliorate the effects of septic shock at 7 and 28 days and reduce 28-day morality. Randomized controlled trials (RCTs) of corticosteroids versus placebo (or supportive treatment alone) were retrieved from electronic searches (Medline, Embase, and Cochrane Library databases; LILACS; and Web of Knowledge) and manual searches (up to May 2012). From a pool of 1949 potentially relevant articles, duplicate independent review identified 10 relevant, RCTs of low-dose hydrocortisone therapy in septic shock. Four pairs of reviewers agreed on the criteria for trial eligibility. One reviewer entered the data into the computer, and 3 reviewers checked the data. Missing data were obtained from the authors of the relevant trials. The primary outcome analyzed was an estimate of 28-day mortality. Eight publications were included in the meta-analysis. Low-dose hydrocortisone therapy did not reduce 28-day mortality (N = 1063; odds ratio (OR) = 0.891, 95% confidence interval (CI), 0.69-1.15). Low-dose hydrocortisone therapy ameliorated shock at 7 days (6 RCTs, N = 964, OR = 2.078, 95% CI, 1.58-2.73, P < 0.0001, and I = 26.9%) and 28 days (6 RCTs, N = 947, OR = 1.495, 95% CI, 1.12-1.99, P = 0.006, and I = 0.0%). Although low-dose hydrocortisone therapy ameliorates septic shock at 7 and 28 days, it does not reduce 28-day mortality.

  6. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare example in which simplicity emerges from the complexity present in the plasma state.

  7. An FDTD-based computer simulation platform for shock wave propagation in electrohydraulic lithotripsy.

    PubMed

    Yılmaz, Bülent; Çiftçi, Emre

    2013-06-01

    Extracorporeal Shock Wave Lithotripsy (ESWL) is based on disintegration of the kidney stone by delivering high-energy shock waves that are created outside the body and transmitted through the skin and body tissues. Nowadays high-energy shock waves are also used in orthopedic operations and investigated to be used in the treatment of myocardial infarction and cancer. Because of these new application areas novel lithotriptor designs are needed for different kinds of treatment strategies. In this study our aim was to develop a versatile computer simulation environment which would give the device designers working on various medical applications that use shock wave principle a substantial amount of flexibility while testing the effects of new parameters such as reflector size, material properties of the medium, water temperature, and different clinical scenarios. For this purpose, we created a finite-difference time-domain (FDTD)-based computational model in which most of the physical system parameters were defined as an input and/or as a variable in the simulations. We constructed a realistic computational model of a commercial electrohydraulic lithotriptor and optimized our simulation program using the results that were obtained by the manufacturer in an experimental setup. We, then, compared the simulation results with the results from an experimental setup in which oxygen level in water was varied. Finally, we studied the effects of changing the input parameters like ellipsoid size and material, temperature change in the wave propagation media, and shock wave source point misalignment. The simulation results were consistent with the experimental results and expected effects of variation in physical parameters of the system. The results of this study encourage further investigation and provide adequate evidence that the numerical modeling of a shock wave therapy system is feasible and can provide a practical means to test novel ideas in new device design procedures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes

    PubMed Central

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  9. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  10. Unifying role of dissipative action in the dynamic failure of solids

    NASA Astrophysics Data System (ADS)

    Grady, Dennis E.

    2015-04-01

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.

  11. Physical Roles of Interstellar-origin Pickup Ions at the Heliospheric Termination Shock: Impact on the Shock Front Microstructures and Nonstationarity

    NASA Astrophysics Data System (ADS)

    Lembège, Bertrand; Yang, Zhongwei

    2016-08-01

    The nonstationary dynamics of the heliospheric termination shock in the presence of pickup ions (PUI) is analyzed by using a one-dimensional particle-in-cell simulation code. This work initially stimulated by Voyager 2 data focusses on this nonstationarity for different percentages of PUIs and for different Alfvén Mach numbers M A. Solar wind ions (SWIs) and PUIs are described, respectively, as Maxwellian and shell distributions (with a zero/finite thickness). For a moderate M A, present results show that (1) the shock front is still nonstationary even in the presence of 25% of PUIs; its instantaneous velocity varies, which is in favor for shock multicrossing; (2) the presence of PUIs tends to smooth out the time fluctuations of field amplitude and of microstructure widths at the front and overshoot; (3) the shock has a multiple overshoot, which is analyzed by identifying the contributions of SWIs and the PUIs; (4) as the PUI percentage increases, the shock moves faster and the downstream compression becomes weaker, which is explained by a Rankine-Hugoniot model; (5) the reflection rate of SWIs and PUIs decreases as the PUI percentage increases; (6) the shock structure is almost insensitive to the shell thickness and (7) for the PUIs dominated shock case (PUI = 55%), the shock becomes stationary. However, for higher M A regime, the front nonstationarity persists even in the PUI = 55% case. In summary, high M A regime allows to compensate the smoothing of the microstructures and the time fluctuations of the shock front brought by the presence of PUIs.

  12. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy.

    PubMed

    Freund, Jonathan B; Colonius, Tim; Evan, Andrew P

    2007-09-01

    Evidence suggests that inertial cavitation plays an important role in the renal injury incurred during shock-wave lithotripsy. However, it is unclear how tissue damage is initiated, and significant injury typically occurs only after a sufficient dose of shock waves. Although it has been suggested that shock-induced shearing might initiate injury, estimates indicate that individual shocks do not produce sufficient shear to do so. In this paper, we hypothesize that the cumulative shear of the many shocks is damaging. This mechanism depends on whether there is sufficient time between shocks for tissue to relax to its unstrained state. We investigate the mechanism with a physics-based simulation model, wherein the basement membranes that define the tubules and vessels in the inner medulla are represented as elastic shells surrounded by viscous fluid. Material properties are estimated from in-vitro tests of renal basement membranes and documented mechanical properties of cells and extracellular gels. Estimates for the net shear deformation from a typical lithotripter shock (approximately 0.1%) are found from a separate dynamic shock simulation. The results suggest that the larger interstitial volume (approximately 40%) near the papilla tip gives the tissue there a relaxation time comparable to clinical shock delivery rates (approximately 1 Hz), thus allowing shear to accumulate. Away from the papilla tip, where the interstitial volume is smaller (approximately 20%), the model tissue relaxes completely before the next shock would be delivered. Implications of the model are that slower delivery rates and broader focal zones should both decrease injury, consistent with some recent observations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grady, Dennis E.

    A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less

  14. Electric foot shock stress adaptation: Does it exist or not?

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-06-01

    Stress adaptation is a protective phenomenon against repeated stress exposure and is characterized by a decreased responsiveness to a repeated stress stimulus. The adaptation is associated with a complex cascade of events, including the changes in behavior, neurotransmitter and gene expression levels. The non-adaptation or maladaptation to stress may underlie the affective disorders, such as anxiety, depression and post-traumatic stress disorder (PTSD). Electric foot shock is a complex stressor, which includes both physical and emotional components. Unlike immobilization, restraint and cold immersion stress, the phenomenon of stress adaptation is not very well defined in response to electric foot shock. A number of preclinical studies have reported the development of adaptation to electric foot shock stress. However, evidence also reveals the non-adaptive behavior in response to foot shocks. The distinct adaptive/non-adaptive responses may be possibly influenced by the type, intensity, and duration of the stress. The present review discusses the existence or non-existence of adaptation to electric foot shock stress along with possible mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. MMS Observations of Parallel Electric Fields During a Quasi-Perpendicular Bow Shock Crossing

    NASA Astrophysics Data System (ADS)

    Goodrich, K.; Schwartz, S. J.; Ergun, R.; Wilder, F. D.; Holmes, J.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Le Contel, O.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C.; Torbert, R. B.

    2016-12-01

    Previous observations of the terrestrial bow shock have frequently shown large-amplitude fluctuations in the parallel electric field. These parallel electric fields are seen as both nonlinear solitary structures, such as double layers and electron phase-space holes, and short-wavelength waves, which can reach amplitudes greater than 100 mV/m. The Magnetospheric Multi-Scale (MMS) Mission has crossed the Earth's bow shock more than 200 times. The parallel electric field signatures observed in these crossings are seen in very discrete packets and evolve over time scales of less than a second, indicating the presence of a wealth of kinetic-scale activity. The high time resolution of the Fast Particle Instrument (FPI) available on MMS offers greater detail of the kinetic-scale physics that occur at bow shocks than ever before, allowing greater insight into the overall effect of these observed electric fields. We present a characterization of these parallel electric fields found in a single bow shock event and how it reflects the kinetic-scale activity that can occur at the terrestrial bow shock.

  16. Electron acceleration by wave turbulence in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Rigby, A.; Cruz, F.; Albertazzi, B.; Bamford, R.; Bell, A. R.; Cross, J. E.; Fraschetti, F.; Graham, P.; Hara, Y.; Kozlowski, P. M.; Kuramitsu, Y.; Lamb, D. Q.; Lebedev, S.; Marques, J. R.; Miniati, F.; Morita, T.; Oliver, M.; Reville, B.; Sakawa, Y.; Sarkar, S.; Spindloe, C.; Trines, R.; Tzeferacos, P.; Silva, L. O.; Bingham, R.; Koenig, M.; Gregori, G.

    2018-05-01

    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ1-3. Strong shocks are expected to accelerate particles to very high energies4-6; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool7,8. Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind9, a setting where electron acceleration via lower-hybrid waves is possible.

  17. Development of Laser-induced Grating Spectroscopy for Underwater Temperature Measurement in Shock Wave Focusing Regions

    NASA Technical Reports Server (NTRS)

    Gojani, Ardian B.; Danehy, Paul M.; Alderfer, David W.; Saito, Tsutomu; Takayama, Kazuyoshi

    2003-01-01

    In Extracorporeal Shock Wave Lithotripsy (ESWL) underwater shock wave focusing generates high pressures at very short duration of time inside human body. However, it is not yet clear how high temperatures are enhanced at the spot where a shock wave is focused. The estimation of such dynamic temperature enhancements is critical for the evaluation of tissue damages upon shock loading. For this purpose in the Interdisciplinary Shock Wave Research Center a technique is developed which employs laser induced thermal acoustics or Laser Induced Grating Spectroscopy. Unlike most of gasdynamic methods of measuring physical quantities this provides a non-invasive one having spatial and temporal resolutions of the order of magnitude of 1.0 mm3 and 400 ns, respectively. Preliminary experiments in still water demonstrated that this method detected sound speed and hence temperature in water ranging 283 K to 333 K with errors of 0.5%. These results may be used to empirically establish the equation of states of water, gelatin or agar cells which will work as alternatives of human tissues.

  18. Thin metal thermistors for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Picard, A.; Cunningham, L. K.; Jardine, A. P.

    2015-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2 GPa shock pressure. The present authors previously presented an improved fabrication technique, to examine this outstanding issue. This technique made use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. By fabricating a thin metal thermistor gauge and measuring its change in resistance during a shock experiment of known pressure, its temperature can be recovered. Heat transfer into the gauge depends strongly on the gauge dimensions and the thermal conductivity of the shocked PMMA. Here we present several improvements to the technique. By varying the gauge thickness over the range 100 nm to 10 μ m we assess the heat transfer into the gauge.

  19. Qualification of a multi-diagnostic detonator-output characterization procedure utilizing PMMA witness blocks

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Murphy, Michael; Lieber, Mark

    2017-06-01

    Experiments were conducted in an effort to qualify a multi-diagnostic characterization procedure for the performance output of a detonator when fired into a poly(methyl methacrylate) (PMMA) witness block. A suite of optical diagnostics were utilized in combination to both bound the shock wave interaction state at the detonator/PMMA interface and characterize the nature of the shock wave decay in PMMA. The diagnostics included the Shock Wave Image Framing Technique (SWIFT), a photocathode tube streak camera, and photonic Doppler velocimetry (PDV). High-precision, optically clear witness blocks permitted dynamic flow visualization of the shock wave in PMMA via focused shadowgraphy. SWIFT- and streak-imaging diagnostics captured the spatiotemporally evolving shock wave, providing a two-dimensional temporally discrete image set and a one-dimensional temporally continuous image, respectively. PDV provided the temporal velocity history of the detonator output along the detonator axis. Through combination of the results obtained, a bound was able to be placed on the interface condition and a more-physical profile representing the shock wave decay in PMMA for an exploding-bridgewire detonator was achieved.

  20. SN 1987 A: A Unique Laboratory for Shock Physics

    NASA Technical Reports Server (NTRS)

    Sonneborn, George

    2012-01-01

    Supernova 1987 A has given us an unprecedented view of the evolution of the explosion debris and its interaction with circumstellar matter. The outer supernova debris, now expanding with velocities approx.8000 km/s, encountered the relatively dense circumstellar ring formed by presupernova mass loss in the early 1990s. The shock interaction is manifested by UV-optical "hotspots", an expanding X-ray ring, an expanding ring of knotty non-thermal radio emission, and a ring of thermal IR emission from silicate dust Recent ultraviolet observations of the emissions from the reverse shock and the ring with the HST/COS reveal new details about the shock interaction. Lyman alpha emission from the reverse shock is much stronger than H alpha and they have different emission morphologies, pointing to different emission mechanisms. The reverse shock was detected for the first time in C IV 1550. The N V to C IV brightness ratio indicates the N/C abundance ratio in the expanding debris is about 100X solar, about 3X N/C in the inner ring.

  1. Numerical Study of Richtmyer-Meshkov Instability with Re-Shock

    NASA Astrophysics Data System (ADS)

    Wong, Man Long; Livescu, Daniel; Lele, Sanjiva

    2017-11-01

    The interaction of a Mach 1.45 shock wave with a perturbed planar interface between two gases with an Atwood number 0.68 is studied through 2D and 3D shock-capturing adaptive mesh refinement (AMR) simulations with physical diffusive and viscous terms. The simulations have initial conditions similar to those in the actual experiment conducted by Poggi et al. [1998]. The development of the flow and evolution of mixing due to the interactions with the first shock and the re-shock are studied together with the sensitivity of various global parameters to the properties of the initial perturbation. Grid resolutions needed for fully resolved and 2D and 3D simulations are also evaluated. Simulations are conducted with an in-house AMR solver HAMeRS built on the SAMRAI library. The code utilizes the high-order localized dissipation weighted compact nonlinear scheme [Wong and Lele, 2017] for shock-capturing and different sensors including the wavelet sensor [Wong and Lele, 2016] to identify regions for grid refinement. First and third authors acknowledge the project sponsor LANL.

  2. Injection Efficiency of Low-energy Particles at Oblique Shocks with a Focused Transport Model

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Zhang, M.; Rassoul, H.

    2013-12-01

    There is strong evidence that a small portion of thermal and suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events (Desai et al. 2006). To build more powerful SEP models, it is necessary to model the detailed particle injection and acceleration process for source particles especially at lower energies. We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). The injection efficiency as a function of Mach number, obliquity, injection speed, shock strength, cross-shock potential and the degree of turbulence is calculated. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection. The results can be applied to modeling the SEP acceleration from source particles.

  3. Acceleration of low-energy ions at parallel shocks with a focused transport model

    DOE PAGES

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-04-10

    Here, we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of acceleratedmore » particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.« less

  4. Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations

    NASA Technical Reports Server (NTRS)

    Sjoegreen, B.; Yee, H. C.

    2001-01-01

    The recently developed essentially fourth-order or higher low dissipative shock-capturing scheme of Yee, Sandham and Djomehri (1999) aimed at minimizing nu- merical dissipations for high speed compressible viscous flows containing shocks, shears and turbulence. To detect non smooth behavior and control the amount of numerical dissipation to be added, Yee et al. employed an artificial compression method (ACM) of Harten (1978) but utilize it in an entirely different context than Harten originally intended. The ACM sensor consists of two tuning parameters and is highly physical problem dependent. To minimize the tuning of parameters and physical problem dependence, new sensors with improved detection properties are proposed. The new sensors are derived from utilizing appropriate non-orthogonal wavelet basis functions and they can be used to completely switch to the extra numerical dissipation outside shock layers. The non-dissipative spatial base scheme of arbitrarily high order of accuracy can be maintained without compromising its stability at all parts of the domain where the solution is smooth. Two types of redundant non-orthogonal wavelet basis functions are considered. One is the B-spline wavelet (Mallat & Zhong 1992) used by Gerritsen and Olsson (1996) in an adaptive mesh refinement method, to determine regions where re nement should be done. The other is the modification of the multiresolution method of Harten (1995) by converting it to a new, redundant, non-orthogonal wavelet. The wavelet sensor is then obtained by computing the estimated Lipschitz exponent of a chosen physical quantity (or vector) to be sensed on a chosen wavelet basis function. Both wavelet sensors can be viewed as dual purpose adaptive methods leading to dynamic numerical dissipation control and improved grid adaptation indicators. Consequently, they are useful not only for shock-turbulence computations but also for computational aeroacoustics and numerical combustion. In addition, these sensors are scheme independent and can be stand alone options for numerical algorithm other than the Yee et al. scheme.

  5. A Study of Premixed, Shock-Induced Combustion With Application to Hypervelocity Flight

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik L.

    2013-01-01

    One of the current goals of research in hypersonic, airbreathing propulsion is access to higher Mach numbers. A strong driver of this goal is the desire to integrate a scramjet engine into a transatmospheric vehicle airframe in order to improve performance to low Earth orbit (LEO) or the performance of a semiglobal transport. An engine concept designed to access hypervelocity speeds in excess of Mach 10 is the shock-induced combustion ramjet (i.e. shcramjet). This dissertation presents numerical studies simulating the physics of a shcramjet vehicle traveling at hypervelocity speeds with the goal of understanding the physics of fuel injection, wall autoignition mitigation, and combustion instability in this flow regime.

  6. Gas Evolution Dynamics in Godunov-Type Schemes and Analysis of Numerical Shock Instability

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1999-01-01

    In this paper we are going to study the gas evolution dynamics of the exact and approximate Riemann solvers, e.g., the Flux Vector Splitting (FVS) and the Flux Difference Splitting (FDS) schemes. Since the FVS scheme and the Kinetic Flux Vector Splitting (KFVS) scheme have the same physical mechanism and similar flux function, based on the analysis of the discretized KFVS scheme the weakness and advantage of the FVS scheme are closely observed. The subtle dissipative mechanism of the Godunov method in the 2D case is also analyzed, and the physical reason for shock instability, i.e., carbuncle phenomena and odd-even decoupling, is presented.

  7. Shock tubes and blast injury modeling.

    PubMed

    Ning, Ya-Lei; Zhou, Yuan-Guo

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks. The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments. Therefore, development of stable, reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research. The present review addresses the modeling of blast injury and applications of shock tubes.

  8. Solar Wind - Magnetosheath - Magnetopause Interactions in Global Hybrid-Vlasov Simulations

    NASA Astrophysics Data System (ADS)

    Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Hietala, H.; Cassak, P.; Walsh, B.; Juusola, L.; Jarvinen, R.; von Alfthan, S.; Palmroth, M.

    2017-12-01

    We present results of interactions of solar wind and Earth's magnetosphere in global hybrid-Vlasov simulations carried out using the Vlasiator model. Vlasiator propagates ions as velocity distribution functions by solving the Vlasov equation and electrons are treated as charge-neutralizing massless fluid. Vlasiator simulations show a strong coupling between the ion scale and global scale physics. Global scale phenomena affect the local physics and the local phenomena impact the global system. Our results have shown that mirror mode waves growing in the quasi-perpendicular magnetosheath have an impact on the local reconnection rates at the dayside magnetopause. Furthermore, multiple X-line reconnection at the dayside magnetopause leads to the formation of magnetic islands (2D flux transfer events), which launch bow waves upstream propagating through the magnetosheath. These steep bow waves have the ability to accelerate ions in the magnetosheath. When the bow waves reach the bow shock they are able to bulge the shock locally. The bulge in the shock decreases the angle between the interplanetary magnetic field and the shock normal and allows ions to be reflected back to the solar wind along the magnetic field lines. Consequently, Vlasiator simulations show that magnetosheath fluctuations affect magnetopause reconnection and reconnection may influence particle acceleration and reflection in the magnetosheath and solar wind.

  9. Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Thomas; Stergiou, Jonathan; Reese, Garth

    Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.

  10. Navy Enhanced Sierra Mechanics (NESM): Toolbox for predicting Navy shock and damage

    DOE PAGES

    Moyer, Thomas; Stergiou, Jonathan; Reese, Garth; ...

    2016-05-25

    Here, the US Navy is developing a new suite of computational mechanics tools (Navy Enhanced Sierra Mechanics) for the prediction of ship response, damage, and shock environments transmitted to vital systems during threat weapon encounters. NESM includes fully coupled Euler-Lagrange solvers tailored to ship shock/damage predictions. NESM is optimized to support high-performance computing architectures, providing the physics-based ship response/threat weapon damage predictions needed to support the design and assessment of highly survivable ships. NESM is being employed to support current Navy ship design and acquisition programs while being further developed for future Navy fleet needs.

  11. [Shock shape representation of sinus heart rate based on cloud model].

    PubMed

    Yin, Wenfeng; Zhao, Jie; Chen, Tiantian; Zhang, Junjian; Zhang, Chunyou; Li, Dapeng; An, Baijing

    2014-04-01

    The present paper is to analyze the trend of sinus heart rate RR interphase sequence after a single ventricular premature beat and to compare it with the two parameters, turbulence onset (TO) and turbulence slope (TS). Based on the acquisition of sinus rhythm concussion sample, we in this paper use a piecewise linearization method to extract its linear characteristics, following which we describe shock form with natural language through cloud model. In the process of acquisition, we use the exponential smoothing method to forecast the position where QRS wave may appear to assist QRS wave detection, and use template to judge whether current cardiac is sinus rhythm. And we choose some signals from MIT-BIH Arrhythmia Database to detect whether the algorithm is effective in Matlab. The results show that our method can correctly detect the changing trend of sinus heart rate. The proposed method can achieve real-time detection of sinus rhythm shocks, which is simple and easily implemented, so that it is effective as a supplementary method.

  12. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  13. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  14. Radiation induced precursor flow field ahead of a Jovian entry body

    NASA Technical Reports Server (NTRS)

    Tiwari, S.; Szema, K. Y.

    1977-01-01

    The change in flow properties ahead of the bow shock of a Jovian entry body, resulting from absorption of radiation from the shock layer, is investigated. Ultraviolet radiation is absorbed by the free stream gases, causing dissociation, ionization, and an increase in enthalpy of flow ahead of the shock wave. As a result of increased fluid enthalpy, the entire flow field in the precursor region is perturbed. The variation in flow properties is determined by employing the small perturbation technique of classical aerodynamics as well as the thin layer approximation for the preheating zone. By employing physically realistic models of radiative transfer, solutions are obtained for velocity, pressure, density, temperature, and enthalpy variations. The results indicate that the precursor flow effects, in general, are greater at higher altitudes. Just ahead of the shock, however, the effects are larger at lower altitudes. Pre-heating of the gas significantly increases the static pressure and temperature ahead of the shock for velocities exceeding 36 km/sec.

  15. Shock-turbulence interaction in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat

    2016-10-01

    Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.

  16. Fast molecular shocks. I - Reformation of molecules behind a dissociative shock

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Dalgarno, A.

    1989-01-01

    The physical and chemical processes that operate in the cooling gas behind a fast, dissociative, single-fluid shock propagating in a dense interstellar cloud are discussed. The treatment extends previous theoretical work on fast molecular shocks by including the effects of the conversion of Ly-alpha photons into radiation of the two-photon continuum and into H2 Lyman band emission lines, the effects of CO photodissociation following line absorption, and the formation and destruction of molecules containing the elements nitrogen, silicon, and sulphur, and of the complex hydrocarbons. Abundance profiles for the molecular species of interest are presented. After molecular hydrogen begins to reform, by means of gas phase and grain surface processes, the neutral species OH, H2O, O2, CO, CN, HCN, N2, NO, SO, and SiO reach substantial abundances. The molecular ions HeH(+), OH(+), SO(+), CH(+), H2(+), and H3(+), are produced while the gas is still hot and partially ionized. Emissions from them provide a possible diagnostic probe of fast molecular shocks.

  17. Nitromethane ignition observed with embedded PDV optical fibers

    NASA Astrophysics Data System (ADS)

    Mercier, P.; Bénier, J.; Frugier, P. A.; Debruyne, M.; Crouzet, B.

    For a long time, the nitromethane (NM) ignition has been observed with different means such as high-speed cameras, VISAR or optical pyrometry diagnostics. By 2000, David Goosmann (LLNL) studied solid high-explosive detonation and shock loaded metal plates by measuring velocity (Fabry-Pérot interferometry) in embedded optical fibers. For six years Photonic Doppler Velocimetry (PDV) has become a major tool to better understand the phenomena occurring in shock physics experiments. In 2006, we began to use in turn this technique and studied shock-to-detonation transition in NM. Different kinds of bare optical fibers were set in the liquid; they provided two types of velocity information; those coming from phenomena located in front of the fibers (interface velocity, shock waves, overdriven detonation wave) and those due to phenomena environing the fibers (shock or detonation waves). We achieved several shots; devices were composed of a high explosive plane wave generator ended by a metal barrier followed by a cylindrical vessel containing NM. We present results.

  18. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1983-12-16

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  19. Nonequilibrium radiation behind a strong shock wave in CO 2-N 2

    NASA Astrophysics Data System (ADS)

    Rond, C.; Boubert, P.; Félio, J.-M.; Chikhaoui, A.

    2007-11-01

    This work presents experiments reproducing plasma re-entry for one trajectory point of a Martian mission. The typical facility to investigate such hypersonic flow is shock tube; here we used the free-piston shock tube TCM2. Measurements of radiative flux behind the shock wave are realized thanks to time-resolved emission spectroscopy which is calibrated in intensity. As CN violet system is the main radiator in near UV-visible range, we have focused our study on its spectrum. Moreover a physical model, based on a multi-temperature kinetic code and a radiative code, for calculation of non equilibrium radiation behind a shock wave is developed for CO 2-N 2-Ar mixtures. Comparisons between experiments and calculations show that standard kinetic models (Park, McKenzie) are inefficient to reproduce our experimental results. Therefore we propose new rate coefficients in particular for the dissociation of CO 2, showing the way towards a better description of the chemistry of the mixture.

  20. Yield strength measurement of shock-loaded metal by flyer-impact perturbation method

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojuan; Shi, Zhan

    2018-06-01

    Yield strength is one of the most important physical properties of a solid material, especially far from its melting line. The flyer-impact perturbation method measures material yield strength on the basis of correlation between the yield strength under shock compression and the damping of oscillatory perturbations in the shape of a shock front passing through the material. We used flyer-impact experiments on targets with machined grooves on the impact surface of shock 6061-T6 aluminum to between 32 and 61 GPa and recorded the evolution of the shock front perturbation amplitude in the sample with electric pins. Simulations using the elastic-plastic model can be matched to the experiments, explaining well the form of the perturbation decay and constraining the yield strength of 6061-T6 aluminum to be 1.31-1.75 GPa. These results are in agreement with values obtained from reshock and release wave profiles. We conclude that the flyer-impact perturbation method is indeed a new means to measure material strength.

  1. High-resolution imaging of a shock front in plastic by phase contrast imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Jiang, S.; Zhao, Y.; Schropp, A.; Fernandez-Panella, A.; Rinderknecht, H. G.; Wilks, S.; Fournier, K.; Galtier, E.; Xing, Z.; Granados, E.; Gamboa, E.; Glenzer, S. H.; Heimann, P.; Zastrau, U.; Cho, B. I.; Eggert, J. H.; Collins, G. W.; Ping, Y.

    2017-10-01

    Understanding the propagation of shock waves is important for many areas of high energy density physics, including inertial confinement fusion (ICF) and shock compression science. In order to probe the shock front structures in detail, a diagnostic capable of detecting both the small spatial and temporal changes in the material is required. Here we show the experiment using hard X-ray phase contrast imaging (PCI) to probe the shock wave propagation in polyimide with submicron spatial resolution. The experiment was performed at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Lightsource (LCLS). PCI together with the femtosecond time scales of x-ray free electron lasers enables the imaging of optically opaque materials that undergo rapid temporal and spatial changes. The result reveals the evolution of the density profile with time. Work performed under DOE Contract No. DE-AC52-07NA27344 with support from OFES Early Career and LLNL LDRD program.

  2. On A Problem Of Propagation Of Shock Waves Generated By Explosive Volcanic Eruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, V. A.; Sobissevitch, A. L.

    2008-06-24

    Interdisciplinary study of flows of matter and energy in geospheres has become one of the most significant advances in Earth sciences. It is carried out by means of direct quantitative estimations based on detailed analysis of geological and geophysical observations and experimental data. The actual contribution is the interdisciplinary study of nonlinear acoustics and physical volcanology dedicated to shock wave propagation in a viscous and inhomogeneous medium. The equations governing evolution of shock waves with an arbitrary initial profile and an arbitrary cross-section of a beam are obtained. For the case of low viscous medium, the asymptotic solution meant tomore » calculate a profile of a shock wave in an arbitrary point has been derived. The analytical solution of the problem on propagation of shock pulses from atmosphere into a two-phase fluid-saturated geophysical medium is analysed. Quantitative estimations were carried out with respect to experimental results obtained in the course of real explosive volcanic eruptions.« less

  3. Ureteral wall thickness at the impacted ureteral stone site: a critical predictor for success rates after SWL.

    PubMed

    Sarica, Kemal; Kafkasli, Alper; Yazici, Özgür; Çetinel, Ali Cihangir; Demirkol, Mehmet Kutlu; Tuncer, Murat; Şahin, Cahit; Eryildirim, Bilal

    2015-02-01

    The aim of the study was to determine the possible predictive value of certain patient- and stone-related factors on the stone-free rates and auxiliary procedures after extracorporeal shock wave lithotripsy in patients with impacted proximal ureteral calculi. A total of 111 patients (86 male, 25 females M/F: 3.44/1) with impacted proximal ureteral stones treated with shock wave lithotripsy were evaluated. Cases were retrieved from a departmental shock wave lithotripsy database. Variables analyzed included BMI of the case, diameter of proximal ureter and renal pelvis, stone size and Hounsfield unit, ureteral wall thickness at the impacted stone site. Stone-free status on follow-up imaging at 3 months was considered a successful outcome. All patients had a single impacted proximal ureteral stone. While the mean age of the cases was 46 ± 13 years (range 26-79 years), mean stone size was 8.95 mm (5.3-15.1 mm). Following shock wave lithotripsy although 87 patients (78.4%) were completely stone-free at 3-month follow-up visit, 24 (21.6%) cases had residual fragments requiring further repeat procedures. Prediction of the final outcome of SWL in patients with impacted proximal ureteral stones is a challenging issue and our data did clearly indicate a highly significant relationship between ureteral wall thickness and the success rates of shock wave lithotripsy particularly in cases requiring additional procedures. Of all the evaluated stone- and patient-related factors, only ureteral wall thickness at the impacted stone site independently predicted shock wave lithotripsy success.

  4. Early outcome of early-goal directed therapy for patients with sepsis or septic shock: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Chen, Xiaofan; Zhu, Weifeng; Tan, Jing; Nie, Heyun; Liu, Liangming; Yan, Dongmei; Zhou, Xu; Sun, Xin

    2017-04-18

    Various trials and meta-analyses have reported conflicting results concerning the application of early goal-directed therapy (EGDT) for sepsis and septic shock. The aim of this study was to update the evidence by performing a systematic review and meta-analysis. Multiple databases were searched from initial through August, 2016 for randomized controlled trials (RCTs) which investigated the associations between the use of EGDT and mortality in patients with sepsis or septic shock. Meta-analysis was performed using random-effects model and heterogeneity was examined through subgroup analyses. The primary outcome of interest was patient all-cause mortality including hospital or ICU mortality. Seventeen RCTs including 6207 participants with 3234 in the EGDT group and 2973 in the control group were eligible for this study. Meta-analysis showed that EGDT did not significantly reduce hospital or intensive care unit (ICU) mortality (relative risk [RR] 0.89, 95% CI 0.78 to 1.02) compared with control group for patients with sepsis or septic shock. The findings of subgroup analyses stratified by study region, number of research center, year of enrollment, clinical setting, sample size, timing of EGDT almost remained constant with that of the primary analysis. Our findings provide evidence that EGDT offers neutral survival effects for patients with sepsis or septic shock. Further meta-analyses based on larger well-designed RCTs or individual patient data meta-analysis are required to explore the survival benefits of EDGT in patients with sepsis or septic shock.

  5. Phase Doppler Anemometry as an Ejecta Diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, David; Chapman, David

    2015-06-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from the surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the size and velocity of the individual shock induced ejecta particles. The measurements will provide an insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. The experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and the current state of the art of the technique are discussed along with the future improvements required to further improve performance and increase usability.

  6. Phase Doppler anemometry as an ejecta diagnostic

    NASA Astrophysics Data System (ADS)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  7. Shock-driven Rayleigh-Taylor / Richtmyer-Meshkov 2D multimode ripple evolution before and after re-shock

    NASA Astrophysics Data System (ADS)

    Nagel, Sabrina; Huntington, Channing; Bender, Jason; Raman, Kumar; Baumann, Ted; MacLaren, Stephan; Prisbrey, Shon; Zhou, Ye

    2017-10-01

    Laser-driven hydrodynamic experiments allow for the precise control over several important experimental parameters, including the timing of the laser irradiation delivered and the initial conditions of the laser-driven target. Our experimental platform at the National Ignition Facility enables the investigation of the physics of instability growth after the passage of a second shock (``reshock''). This is done by varying the laser to change the strength and timing of the secondary shock. Here we present x-ray images capturing the rapid post-reshock instability growth for a set of reshock strengths. The radiation hydrodynamics simulations used to design these experiments are also introduced. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734509.

  8. Shocked molecular gas and the origin of cosmic rays

    NASA Astrophysics Data System (ADS)

    Reach, William; Gusdorf, Antoine; Richter, Matthew

    2018-06-01

    When massive stars reach the end of their ability to remain stable with core nuclear fusion, they explode in supernovae that drive powerful shocks into their surroundings. Because massive stars form in and remain close to molecular clouds they often drive shocks into dense gas, which is now believed to be the origin of a significant fraction of galactic cosmic rays. The nature of the supernova-molecular cloud interaction is not well understood, though observations are gradually elucidating their nature. The range of interstellar densities, and the inclusion of circumstellar matter from the late-phase mass-loss of the stars before their explosions, leads to a wide range of possible appearances and outcomes. In particular, it is not even clear what speed or physical type of shocks are present: are they dense, magnetically-mediated shocks where H2 is not dissociated, or are they faster shocks that dissociate molecules and destroy some of the grains? SOFIA is observing some of the most significant (in terms of cosmic ray production potential and infrared energy output) supernova-molecular cloud interactions for measurement of the line widths of key molecular shocks tracers: H2, [OI], and CO. The presence of gas at speeds 100 km/s or greater would indicate dissociative shocks, while speeds 30 km/s and slower retain most molecules. The shock velocity is a key ingredient in modeling the interaction between supernovae and molecular clouds including the potential for formation of cosmic rays.

  9. Properties of Shocked Polymers: Mbar experiments on Z and multi-scale simulations

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2010-03-01

    Significant progress has been made over the last few years in understanding properties of matter subject to strong shocks and other extreme conditions. High-accuracy multi-Mbar experiments and first-principles theoretical studies together provide detailed insights into the physics and chemistry of high energy-density matter. While comprehensive advances have been made for pure elements like deuterium, helium, and carbon, progress has been slower for equally important, albeit more challenging, materials like molecular crystals, polymers, and foams. Hydrocarbon based polymer foams are common materials and in particular they are used in designing shock- and inertial confinement fusion experiments. Depending on their initial density, foams shock to relatively higher pressure and temperature compared to shocked dense polymers/plastics. As foams and polymers are shocked, they exhibit both structural and chemical transitions. We will present experimental and theoretical results for shocked polymers in the Mbar regime. By shock impact of magnetically launched flyer plates on poly(4-methyl-1-pentene) foams, we create multi-Mbar pressures in a dense plasma mixture of hydrogen, carbon, at temperatures of several eV. Concurrently with executing experiments, we analyze the system by multi-scale simulations, from density functional theory to continuum magneto-hydrodynamics simulations. In particular, density functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal shock Hugoniot will be presented in detail for two hydrocarbon polymers: polyethylene (PE) and poly(4-methyl-1-pentene) (PMP).

  10. Physical aspects of computing the flow of a viscous fluid

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.

    1984-01-01

    One of the main themes in fluid dynamics at present and in the future is going to be computational fluid dynamics with the primary focus on the determination of drag, flow separation, vortex flows, and unsteady flows. A computation of the flow of a viscous fluid requires an understanding and consideration of the physical aspects of the flow. This is done by identifying the flow regimes and the scales of fluid motion, and the sources of vorticity. Discussions of flow regimes deal with conditions of incompressibility, transitional and turbulent flows, Navier-Stokes and non-Navier-Stokes regimes, shock waves, and strain fields. Discussions of the scales of fluid motion consider transitional and turbulent flows, thin- and slender-shear layers, triple- and four-deck regions, viscous-inviscid interactions, shock waves, strain rates, and temporal scales. In addition, the significance and generation of vorticity are discussed. These physical aspects mainly guide computations of the flow of a viscous fluid.

  11. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    PubMed

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  12. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE PAGES

    Cao, D.; Boehly, T. R.; Gregor, M. C.; ...

    2018-05-16

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic on OMEGA. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (α ~ 3) implosions, but agreement degrades for lower-adiabat (α ~ 1) designs. Several possibilities for this difference are studied: errors in placing the target at the center of irradiation (target offset),more » variations in energy between the different incident beams (power imbalance), and errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging can be applied to the pulse shapes used in shock-timing experiments. In conclusion, this will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  13. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    PubMed Central

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  14. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    DOE PAGES

    Rodriguez, George; Gilbertson, Steve Michael

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  15. Experimental and numerical investigation of reactive shock-accelerated flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm 2). Specific goals were to quantify themore » effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.« less

  16. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  17. Searching for Spectroscopic Signs of Termination Shocks in Solar Flares

    NASA Astrophysics Data System (ADS)

    Galan, G.; Polito, V.; Reeves, K.

    2017-12-01

    The standard flare model predicts the presence of a termination shock located above the flare loop tops, however terminations shocks have not yet been well observed. We analyze flare observations by the Interface Region Imaging Spectrograph (IRIS), which provides cotemporal UV imaging and spectral data. Specifically, we study plasma emissions in the Fe XXI line, formed at the very hot plasma temperatures in flares (> 10 MK). Imaging observations that point to shocks include fast hot reconnection downflows above the loop tops and localized dense, bright plasma at the loop tops; spectral signatures that suggest shocks in the locality of the loop tops include redshifts and nonthermal broadening of the Fe XXI line. We identify possibly significant redshifts in some on-disk flare events observed by IRIS. Redshifts are observed in the vicinity of the bright loop top source that is thought to coincide with the site of the shock. In these events, the Fe XXI emissions at the time of the redshifted structures are dominated by at the at-rest components. The much more less intense redshifted components are broader, with velocities of 200 km/s. The spatial location of these shifts might indicate plasma motions and speeds indicative of termination shocks. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313, and by NASA Grant NNX15AJ93G. Keywords: Solar flares, Solar magnetic reconnection, Termination shocks

  18. ICPP: Charge and Density Coupling in Nonideal Plasmas

    NASA Astrophysics Data System (ADS)

    Fortov, V. E.

    2000-10-01

    Plasmas with Strong Coulomb Interaction (SCI) are found in astrophysics, planetary physics, inertial confinement fusion, advanced energetics and elsewhere[1]. SCI plasmas can be achieved in: I Dusty plasmas, II Shock-compressed plasmas. I. SCI in low-density dusty (colloidal) plasmas arises from the high charge of micron-size macroparticles[2]. Experiments use glow and inductive RF discharges, combustion flames of gas and solid propellant, ultraviolet light beams, and radioactive decay fluxes. Liquid- and solid-like structures are seen, and phase diagrams and transitions investigated by experiment and simulation. Zero-g experiments on space station Mir and in aircraft clarified the gravity effect on plasma crystal formation. II. Plasma SCI can arise in shock compression of solid and porous metals, noble gases, hydrogen, sulphur, and iodine at megabar pressures [3,4], using high explosive drive. Phase diagram regions were examined, where thermal and pressure ionization exist. Multiple-shock-compressed hydrogen can show metal-like conductivity from pressure ionization. The ``metal-to-dielectric" transition in shock-compressed lithium at 0.5 Mbar was detected and analyzed. Thermodynamics, equation of state, plasma composition, electrical and radiative properties show SCI suppression of discrete electron spectra and strong lowering of ionization potentials, evoking the ``confined-atom" model[5] for SCI and other models[6]. [1] V.E.Fortov, I.T.Yakubov, Physics of Nonideal Plasmas, Hemisphere, N.Y.-London (1989). [2] V.E.Fortov, A.P.Nefedov, O.F.Petrov, Soviet Physics-Uspekhy, 167(1997)1215. [3] V.Gryaznov, I.Iosilevsky, V.Fortov, Contrib. Plasma Physics, 39(1999)89. [4] V.Ya.Temovoi, A.S. Filimonov, V.E.Fortov et al. Proc. XXXVI EHPRG Meeting, Catania, Italy (1998). [5] V.K.Gryaznov, M.V.Zhernokletov et al. Zh. Exp. Teor. Fiz. (Soviet JETP) 78(1980) 573. [6] V.Ebeling, A.Foerster, V.Fortov et al. Thermodynamical Properties of Hot Dense Plasmas, Teubner Verlaggeselschaft , Berlin-Stuttgart, 1991.

  19. Nonrelativistic grey S n -transport radiative-shock solutions

    DOE PAGES

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-06-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that thismore » monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.« less

  20. Nonrelativistic grey S n -transport radiative-shock solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that thismore » monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2, 3], and also confirm his expectation that the precursor temperatures adjacent to the Zel’dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel’dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibriumdiffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Lastly, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.« less

  1. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 μm, 163.1 μm between the 2Π1/2 J = 1/2 states, and 119.2 μm, a ground transition between the 2Π3/2 J = 3/2 states), at angular resolutions of 16.̋3, 16.̋3, and 11.̋9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 μm are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 μm triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that all the observations might be consistently fitted by a J-type shock model with a high pre-shock density (nH> 105 cm-3), a high shock velocity (νs ≳ 25 km s-1), and with a filling factor of the order of unity. Such a high pre-shock density is generally found in shocks associated to high-mass protostars, contrary to low-mass ones.

  2. Mesenchymal Stem Cells for the Prevention of Acute Respiratory Distress Syndrome after Pulmonary Contusion and Hemorrhagic Shock

    DTIC Science & Technology

    2017-10-01

    Contusion and Hemorrhagic Shock PRINCIPAL INVESTIGATOR: Martin Schreiber, MD CONTRACTING ORGANIZATION: Oregon Health & Science University Portland, OR...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Oregon Health & Science University 3181 SW Sam Jackson Park Road, Portland, OR 97239 Blood Systems...extubated the animals was not logistically or physically feasible. To improve the welfare of the animal and consistency in the model, we revised our model

  3. Dust-gas Interactions in Dusty X-ray Emitting Plasmas

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    Dusty shocked plasmas cool primarily by infrared emission from dust that is collisionally heated by the ambient hot gas. The infrared emission provides therefore an excellent diagnostic of the conditions (density and temperature) of the shocked gas. In this review I will discuss the physical processes in these plasmas, with a particular emphasis on recent infrared observations of the interaction between the blast wave of SN1987a and its equatorial ring.

  4. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, George; Gilbertson, Steve Michael

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  6. Shockwave compression of Ar gas at several initial densities

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.

    2017-01-01

    Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.

  7. Ultrafast Kα x-ray Thomson scattering from shock compressed lithium hydride

    DOE PAGES

    Kritcher, A. L.; Neumayer, P.; Castor, J.; ...

    2009-04-13

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti Kα x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transitionmore » to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. Here, the conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.« less

  8. Evaluation of XHVRB for Capturing Explosive Shock Desensitization

    NASA Astrophysics Data System (ADS)

    Tuttle, Leah; Schmitt, Robert; Kittell, Dave; Harstad, Eric

    2017-06-01

    Explosive shock desensitization phenomena have been recognized for some time. It has been demonstrated that pressure-based reactive flow models do not adequately capture the basic nature of the explosive behavior. Historically, replacing the local pressure with a shock captured pressure has dramatically improved the numerical modeling approaches. Models based upon shock pressure or functions of entropy have recently been developed. A pseudo-entropy based formulation using the History Variable Reactive Burn model, as proposed by Starkenberg, was implemented into the Eulerian shock physics code CTH. Improvements in the shock capturing algorithm were made. The model is demonstrated to reproduce single shock behavior consistent with published pop plot data. It is also demonstrated to capture a desensitization effect based on available literature data, and to qualitatively capture dead zones from desensitization in 2D corner turning experiments. This models shows promise for use in modeling and simulation problems that are relevant to the desensitization phenomena. Issues are identified with the current implementation and future work is proposed for improving and expanding model capabilities. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. The Acceleration of Thermal Protons and Minor Ions at a Quasi-Parallel Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Giacalone, J.; Lario, D.; Lepri, S. T.

    2017-12-01

    We compare the results from self-consistent hybrid simulations (kinetic ions, massless fluid electrons) and spacecraft observations of a strong, quasi-parallel interplanetary shock that crossed the Advanced Composition Explorer (ACE) on DOY 94, 2001. In our simulations, the un-shocked plasma-frame ion distributions are Maxwellian. Our simulations include protons and minor ions (alphas, 3He++, and C5+). The interplanetary shock crossed both the ACE and the Wind spacecraft, and was associated with significant increases in the flux of > 50 keV/nuc ions. Our simulation uses parameters (ion densities, magnetic field strength, Mach number, etc.) consistent with those observed. Acceleration of the ions by the shock, in a manner similar to that expected from diffusive shock acceleration theory, leads to a high-energy tail in the distribution of the post-shock plasma for all ions we considered. The simulated distributions are directly compared to those observed by ACE/SWICS, EPAM, and ULEIS, and Wind/STICS and 3DP, covering the energy range from below the thermal peak to the suprathermal tail. We conclude from our study that the solar wind is the most significant source of the high-energy ions for this event. Our results have important implications for the physics of the so-called `injection problem', which will be discussed.

  10. Physical structure and dust reprocessing in a sample of HH jets

    NASA Astrophysics Data System (ADS)

    Podio, L.; Medves, S.; Bacciotti, F.; Eislöffel, J.; Ray, T.

    2009-11-01

    Context: Stellar jets are an essential ingredient of the star formation process and a wealth of information can be derived from their characteristic emission-line spectra. Aims: We investigate the physical structure and dust reprocessing in the shocks along the beam of a number of classical Herbig-Haro (HH) jets in the Orion and Lupus molecular clouds (HH 111, HH 1/2, HH 83, HH 24 M/A/E/C, and Sz68). Parameters describing plasma conditions, as well as dust content, are derived as a function of distance from the source and, for HH 111, of gas velocity. Methods: Spectral diagnostic techniques are applied to obtain the jet physical conditions (the electron and total density, ne and n_H, the ionisation fraction, x_e, and the temperature, T_e) from the ratios of selected forbidden lines. The presence of dust grains is investigated by estimating the gas-phase abundance of calcium with respect to its solar value. Results: We find the electron density varies between 0.05-4×103 cm-3, the ionisation fraction xe from 0.01-0.7, the temperature ranges between 0.6-3×104 K, and the hydrogen density between 0.01-6×104 cm-3. Interestingly, in the HH 111 jet, n_e, x_e, and Te peak in the high velocity interval (HVI) of the strongest working surfaces, confirming a prediction from shocks models. Calcium turns out to be depleted with respect to its solar value, but its gas-phase abundance is higher than estimates for the interstellar medium in Orion. The depletion is high (up to 80%) along the low-excited jets, while low or no depletion is measured in those jets which show higher excitation conditions. Moreover, for HH 111 the depletion is lower in the HVI of the fastest shock. Conclusions: Our results confirm the shock structure predicted by models and indicate that shocks occurring along jets, and presumably those present in the launch zone, only partially destroy dust grains and that the efficiency of dust reprocessing strongly depends on shock velocity. However, the high Ca gas-phase abundance estimated in some of the knots, is not well understood in terms of existing models of dust reprocessing in shocks, and indicates that the dust must have been partially reprocessed in the region where the flow originates. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO programmes 60.C-0398(A). Appendix A is only available in electronic form at http://www.aanda.org

  11. Optical Hydrogen Absorption Consistent with a Thin Bow Shock Leading the Hot Jupiter HD 189733b

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.; Barman, Travis; Endl, Michael; Cochran, William D.

    2015-09-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 Rp. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of Beq = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.

  12. Carbon stardust: From soot to diamonds

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.

    1990-01-01

    The formation of carbon dust in the outflow from stars and the subsequent evolution of this so called stardust in the interstellar medium is reviewed. The chemical and physical processes that play a role in carbon stardust formation are very similar to those occurring in sooting flames. Based upon extensive laboratory studies of the latter, the structure and physical and chemical properties of carbon soot are reviewed and possible chemical pathways towards carbon stardust are discussed. Grain-grain collisions behind strong interstellar shocks provide the high pressures required to transform graphite and amorphous carbon grains into diamond. This process is examined and the properties of shock-synthesized diamonds are reviewed. Finally, the interrelationship between carbon stardust and carbonaceous meteorites is briefly discussed.

  13. Dissipation Mechanisms and Particle Acceleration at the Earth's Bow Shock

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; Burch, J. L.; Broll, J. M.; Genestreti, K.; Torbert, R. B.; Ergun, R.; Wei, H.; Giles, B. L.; Russell, C. T.; Phan, T.; Chen, L. J.; Lai, H.; Wang, S.; Schwartz, S. J.; Allen, R. C.; Mauk, B.; Gingell, I.

    2017-12-01

    NASA's Magnetospheric Multiscale (MMS) mission has four spacecraft equipped with identical state-of-the-art instruments that acquire magnetic and electric field, plasma wave, and particle data at unprecedented temporal resolution to study the fundamental physics of magnetic reconnection in the Earth's magnetosphere. During Phase 1a, MMS also encountered and crossed the Earth's bow shock more than 300 times. We use burst data during 2 bow shock crossings to shed new light on key open questions regarding the formation, evolution, and dissipation mechanisms at collisionless shocks. Specifically, we focus on two events that exhibit clear differences in the ion and electron properties, the associated wave activity, and, therefore in the nature of the dissipation. In the case of a quasi-perpendicular, low beta shock crossing, we find that the dissipation processes are most likely associated with field-aligned electron beams that are coincident with high frequency electrostatic waves. On the other hand, the dissipation processes at an oblique, high beta shock crossing are largely governed by the quasi-static electric field and generation of magnetosonic whistler waves that result in perpendicular temperature anisotropy for the electrons. We also discuss the implications of these results for ion heating, reflection, and particle acceleration.

  14. Influence of matter geometry on shocked flows-I: Accretion in the Schwarzschild metric

    NASA Astrophysics Data System (ADS)

    Tarafdar, Pratik; Das, Tapas K.

    2018-07-01

    This work presents a comprehensive and extensive study to illustrate how the geometrical configurations of low angular momentum axially symmetric general relativistic matter flow in the Schwarzschild metric may influence the formation of energy-preserving shocks for adiabatic/polytropic accretion as well as of temperature-preserving dissipative shocks for the isothermal accretion onto non-rotating astrophysical black holes. The dynamical and thermodynamic states of post-shock polytropic and isothermal flow have been studied extensively for three possible matter geometries, and it has been thoroughly discussed about how such states depend on the flow structure, even when the self gravity and the back reaction on the metric are not taken into account. Main purpose of this paper is thus to mathematically demonstrate that for non-self gravitating accretion, various matter geometries, in addition to the corresponding space-time geometry, control the shock induced phenomena as observed within the black hole accretion discs. This work is expected to reveal how the shock generated phenomena (emergence of the outflows/flare in the associated light curves) observed at the close proximity of the horizon depend on the physical environment of the source harbouring a supermassive black hole.

  15. Screech Noise Generation From Supersonic Underexpanded Jets Investigated

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2000-01-01

    Many supersonic military aircraft and some of the modern civilian aircraft (such as the Boeing 777) produce shock-associated noise. This noise is generated from the jet engine plume when the engine nozzle is operated beyond the subsonic operation limit to gain additional thrust. At these underexpanded conditions, a series of shock waves appear in the plume. The turbulent vortices present in the jet interact with the shock waves and produce the additional shock-associated noise. Screech belongs to this noise category, where sound is generated in single or multiple pure tones. The high dynamic load associated with screech can damage the tailplane. One purpose of this study at the NASA Glenn Research Center at Lewis Field was to provide an accurate data base for validating various computational fluid dynamics (CFD) codes. These codes will be used to predict the frequency and amplitude of screech tones. A second purpose was to advance the fundamental physical understanding of how shock-turbulence interactions generate sound. Previously, experiments on shock-turbulence interaction were impossible to perform because no suitable technique was available. As one part of this program, an optical Rayleigh-scattering measurement technique was devised to overcome this difficulty.

  16. Reorganization of pathological control functions of memory-A neural model for tissue healing by shock waves

    NASA Astrophysics Data System (ADS)

    Wess, Othmar

    2005-04-01

    Since 1980 shock waves have proven effective in the field of extracorporeal lithotripsy. More than 10 years ago shock waves were successfully applied for various indications such as chronic pain, non-unions and, recently, for angina pectoris. These fields do not profit from the disintegration power but from stimulating and healing effects of shock waves. Increased metabolism and neo-vascularization are reported after shock wave application. According to C. J. Wang, a biological cascade is initiated, starting with a stimulating effect of physical energy resulting in increased circulation and metabolism. Pathological memory of neural control patterns is considered the reason for different pathologies characterized by insufficient metabolism. This paper presents a neural model for reorganization of pathological reflex patterns. The model acts on associative memory functions of the brain based on modification of synaptic junctions. Accordingly, pathological memory effects of the autonomous nervous system are reorganized by repeated application of shock waves followed by development of normal reflex patterns. Physiologic control of muscle and vascular tone is followed by increased metabolism and tissue repair. The memory model may explain hyper-stimulation effects in pain therapy.

  17. Numerical study on tailoring the shock sensitivity of TATB-based explosives using mesostructural features

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo

    2017-06-01

    Advanced manufacturing techniques offer control of explosive mesostructures necessary to tailor its shock sensitivity. However, structure-property relationships are not well established for explosives so there is little material design guidance for these techniques. The objective of this numerical study is to demonstrate how TATB-based explosives can be sensitized to shocks using mesostructural features. For this study, we use LX-17 (92.5%wt TATB, 7.5%wt Kel-F 800) as the prototypical TATB-based explosive. We employ features with different geometries and materials. HMX-based explosive features, high shock impedance features, and pores are used to sensitive the LX-17. Simulations are performed in the multi-physics hydrocode, ALE3D. A reactive flow model is used to simulate the shock initiation response of the explosives. Our metric for shock sensitivity in this study is run distance to detonation as a function of applied pressure. These numerical studies are important because they guide the design of novel energetic materials. This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-724986.

  18. Shock wave/turbulent boundary layer interaction in the flow field of a tri-dimension wind tunnel

    NASA Technical Reports Server (NTRS)

    Benay, R.; Pot, T.

    1986-01-01

    The first results of a thorough experimental analysis of a strong three-dimensional shock-wave/turbulent boundary-layer interaction occurring in a three dimensional transonic channel are presented. The aim of this experiment is to help in the physical understanding of a complex field, including several separations, and to provide a well documented case to test computational methods. The flowfield has been probed in many points by means of a three-component laser Doppler velocimeter. The results presented relate only to the mean velocity field. They clearly show the formation in the flow of a strong vortical motion resulting from the shock wave interaction.

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Measurement on Effective Shear Viscosity Coefficient of Iron under Shock Compression at 100 GPa

    NASA Astrophysics Data System (ADS)

    Li, Yi-Lei; Liu, Fu-Sheng; Zhang, Ming-Jian; Ma, Xiao-Juan; Li, Ying-Lei; Zhang, Ji-Chun

    2009-03-01

    The oscillatory damping curve of a shock front propagating in iron shocked to 103 GPa is measured by use of two-stage light-gas gun and electric pin techniques. The corresponding effective shear viscosity coefficient is deduced to be about 2000 Pa·s from Miller and Ahrens' formula. The result is consistent with that of Mineev's data at 31GPa, while it is higher by five orders than the predictions based on the static measurements at about 5 GPa and 2000 K and molecular dynamic simulation up to 135-375 GPa and 4300-6000 K, and the discussions are presented.

  20. Finite GUE Distribution with Cut-Off at a Shock

    NASA Astrophysics Data System (ADS)

    Ferrari, P. L.

    2018-03-01

    We consider the totally asymmetric simple exclusion process with initial conditions generating a shock. The fluctuations of particle positions are asymptotically governed by the randomness around the two characteristic lines joining at the shock. Unlike in previous papers, we describe the correlation in space-time without employing the mapping to the last passage percolation, which fails to exists already for the partially asymmetric model. We then consider a special case, where the asymptotic distribution is a cut-off of the distribution of the largest eigenvalue of a finite GUE matrix. Finally we discuss the strength of the probabilistic and physically motivated approach and compare it with the mathematical difficulties of a direct computation.

  1. Introduction to Shock Waves and Shock Wave Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, William Wyatt

    2017-02-02

    M-9 and a number of other organizations at LANL and elsewhere study materials in dynamic processes. Often, this is described as “shock wave research,” but in reality is broader than is implied by that term. Most of our work is focused on dynamic compression and associated phenomena, but you will find a wide variety of things we do that, while related, are not simple compression of materials, but involve a much richer variety of phenomena. This tutorial will introduce some of the underlying physics involved in this work, some of the more common types of phenomena we study, and commonmore » techniques. However, the list will not be exhaustive by any means.« less

  2. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. To isolate the relevant physics, the scaling of BBSAN peak intensity level at the sideline observer location is examined. The equivalent source within the framework of an acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green's function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for saturation of BBSAN with increasing stagnation temperature. The sources and vector Green's function have arguments involving the steady Reynolds- Averaged Navier-Stokes solution of the jet. It is proposed that saturation of BBSAN with increasing jet temperature occurs due to a balance between the amplication of the sound propagation through the shear layer and the source term scaling.

  3. Exact solutions of magnetohydrodynamics for describing different structural disturbances in solar wind

    NASA Astrophysics Data System (ADS)

    Grib, S. A.; Leora, S. N.

    2016-03-01

    We use analytical methods of magnetohydrodynamics to describe the behavior of cosmic plasma. This approach makes it possible to describe different structural fields of disturbances in solar wind: shock waves, direction discontinuities, magnetic clouds and magnetic holes, and their interaction with each other and with the Earth's magnetosphere. We note that the wave problems of solar-terrestrial physics can be efficiently solved by the methods designed for solving classical problems of mathematical physics. We find that the generalized Riemann solution particularly simplifies the consideration of secondary waves in the magnetosheath and makes it possible to describe in detail the classical solutions of boundary value problems. We consider the appearance of a fast compression wave in the Earth's magnetosheath, which is reflected from the magnetosphere and can nonlinearly overturn to generate a back shock wave. We propose a new mechanism for the formation of a plateau with protons of increased density and a magnetic field trough in the magnetosheath due to slow secondary shock waves. Most of our findings are confirmed by direct observations conducted on spacecrafts (WIND, ACE, Geotail, Voyager-2, SDO and others).

  4. New trends in laser shock wave physics and applications

    NASA Astrophysics Data System (ADS)

    Peyre, Patrice; Carboni, Christelle; Sollier, Arnault; Berthe, Laurent; Richard, Caroline; de Los Rios, E.; Fabbro, Remy

    2002-09-01

    Recent applications for laser-induced shock waves have been demonstrated in the aeronautical and nuclear industries, due to the development of new generations of lasers that enable high cadency rates with rather small designs. In this paper, we first aim at making an overview on basic physical processes involved in Laser Shock Processing, and a presentation of pressure loadings generated by different laser conditions. In a second part, a specific focus is given to new ranges of applications like wear resistance, uniform and localized corrosion or modeling of fatigue behaviour after LSP. For instance it is demonstrated that the pitting corrosion behaviour of 316L steel in saline medium can be improved by laser-induced pure mechanical effects surrounding inclusions. It is also shown that wear rates of a 100Cr6 tool steel can be reduced after LSP provided applied pressures are kept below a material deposit threshold. Last but not least, the fatigue cracking behaviour of 2024-T351 aluminum alloy after LSP was improved and calculated through a computed program taking into account work hardening together with residual stress effects.

  5. SHOCK EXCITED MOLECULES IN NGC 1266: ULIRG CONDITIONS AT THE CENTER OF A BULGE-DOMINATED GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellegrini, E. W.; Smith, J. D.; Crocker, A. F.

    We investigate the far infrared (IR) spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the Herschel Fourier Transform Spectrometer, we detect the {sup 12}CO ladder up to J = (13-12), [C I] and [N II] lines, and also strong water lines more characteristic of UltraLuminous IR Galaxies (ULIRGs). The {sup 12}CO line emission is modeled with a combination of a low-velocity C-shock and a photodissociation region. Shocks are required to produce the H{sub 2}O and most of the high-J CO emission. Despite having an IR luminosity 30 times less than a typicalmore » ULIRG, the spectral characteristics and physical conditions of the interstellar medium of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflows.« less

  6. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  7. Shock waves: a new physical principle in medicine.

    PubMed

    Brendel, W

    1986-01-01

    Shock wave therapy of kidney- and gallstones, i.e. extracorporeal shock wave lithotripsy (ESWL), is a new, noninvasive technique to destroy concrements in the kidney, the gallbladder and in the ductus choledochus. This method was developed by the Dornier Company, Friedrichshafen, FRG, and tested in animal experiments at the Institute for Surgical Research of the University of Munich. In the meantime, kidney lithotripsy has gained world-wide acceptance. More than 60,000 patients suffering from urolithiasis have been treated successfully, what made surgical removal of their kidney stones obsolete. Gallstone lithotripsy is, however, still at the very beginning of clinical trial. Lithotripsy of gallbladder stones will have to be applied in combination with urso- or chenodesoxycholic acid in order to obtain complete dissolution of the fragments. Potential hazards to living tissues are briefly mentioned. Since the lung is particularly susceptible, shock waves must enter the body at an angle which ensures that lung tissue is not affected.

  8. Real-time Interplanetary Shock Prediction System

    NASA Astrophysics Data System (ADS)

    Vandegriff, J. D.; Ho, G. C.; Plauger, J. M.

    2002-05-01

    We are creating a system to predict the arrival times and maximum intensities of energetic storm particle (ESP) events at the earth using particle fluxes measured by the EPAM instrument aboard NASA's ACE spacecraft. Real-time flux measurements, consisting of 5 minute averages made available 24 hours per day by the NOAA Space Environment Center, are fed into algorithms looking for characteristic changes in flux, velocity dispersion, and anisotropy. These quantities typically show changes up to 3 hours before shock passage, and thus we expect our system to deliver enhanced probabilities for shock arrival with approximately the same lead time. Forecasting information will be made publicly available through http://sd-www.jhuapl.edu/ACE/EPAM/, the Johns Hopkins University Applied Physics Lab web site for the ACE/EPAM instrument. Early results on the training of our algorithms and comparisons with past shock data will be presented.

  9. Empirical estimation of the arrival time of ICME Shocks

    NASA Astrophysics Data System (ADS)

    Shaltout, Mosalam

    Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.

  10. Cosmic Rays and Gamma-Rays in Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Inoue, Susumu; Nagashima, Masahiro; Suzuki, Takeru K.; Aoki, Wako

    2004-12-01

    During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.

  11. FE Line Diagnostics of Multiply Shocked Stellar Atmospheres: The Mira S. Carinae

    NASA Technical Reports Server (NTRS)

    Bookbinder, Jay

    1997-01-01

    Extensive LWP-HI spectra were obtained of the Mira S Car at a rapid time cadence as compared with the shock cycle time of S Car. These spectra were obtained in an attempt to understand the velocity structures in the shocked wind using the fluoresced iron lines. Data analysis of the IUE observations, which included the primary calibration of all of the IUE spectra obtained of S Car, was carried out. In addition, line identifications, flux calculations, background subtractions, and line profile analysis as a function of S Car's pulsational phase were performed. The database incorporated all line identifications as a function of pulsation phase for all IUE LWP-HI observations to date of S Car. At least 45 separate iron line features are identified in the S Car spectrum at one or more phases of the shock cycle, including those due to Fe II (UV 161) which is pumped by three different iron lines; Fe I(UV 44) which is pumped by the Mg II k line. Other strong multiplets that have been identified include UV(1), UV(2), UV(5), UV(32), UV(60), UV(63), UV(161), UV(207), and UV(399). Over 300 weaker lines have also been tentatively identified with Fe line transitions.

  12. Cloning and characterization of carboxyl terminus of heat shock cognate 70-interacting protein gene from the silkworm, Bombyx mori.

    PubMed

    Ohsawa, Takeshi; Fujimoto, Shota; Tsunakawa, Akane; Shibano, Yuka; Kawasaki, Hideki; Iwanaga, Masashi

    2016-11-01

    Carboxyl terminus of heat shock cognate 70-interacting protein (CHIP) is an evolutionarily conserved E3 ubiquitin ligase across different eukaryotic species and is known to play a key role in protein quality control. CHIP has two distinct functional domains, an N-terminal tetratricopeptide repeat (TPR) and a C-terminal U-box domain, which are required for the ubiquitination of numerous labile client proteins that are chaperoned by heat shock proteins (HSPs) and heat shock cognate proteins (HSCs). During our screen for CHIP-like proteins in the Bombyx mori databases, we found a novel silkworm gene, Bombyx mori CHIP. Phylogenetic analysis showed that BmCHIP belongs to Lepidopteran lineages. Quantitative reverse transcription-PCR analysis indicated that BmCHIP was relatively highly expressed in the gonad and fat body. A pull-down experiment and auto-ubiquitination assay showed that BmCHIP interacted with BmHSC70 and had E3 ligase activity. Additionally, immunohistochemical analysis revealed that BmCHIP was partially co-localized with ubiquitin in BmN4 cells. These data support that BmCHIP plays an important role in the ubiquitin proteasome system as an E3 ubiquitin ligase in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. An Alternative Approach to Combination Vaccines: Intradermal Administration of Isolated Components for Control of Anthrax, Botulism, Plague and Staphylococcal Toxic Shock

    DTIC Science & Technology

    2008-09-03

    shock were biocompatible in vivo, retained potent antibody responses, and were well tolerated by rhesus macaques. Vaccinated primates were completely...results indicate that the vaccines were biocompatible by i.d. administration and physical separation. Seroconversion also occurred after the primary...the vaccinated animals, suggesting that the potency of this vaccine was maintained. Cellular immu- nity , not addressed in our study, may also be

  14. Chinese research on shock physics. Studies in Chinese Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, N.H.

    1992-07-01

    Shock wave research encompasses many different disciplines. This monograph limits the scope to Chinese research on solids and is based on available open literature sources. For the purpose of this monograph, the papers are divided into seven groups, i.e. review and tutorial; equations of state; phase transitions; geological materials; modeling and simulations; experimental techniques; and mechanical properties. The largest group of papers is experimental techniques and numbers 22, or about 40% of the total sources.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittell, David Erik; Yarrington, Cole Davis

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapsemore » using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.« less

  16. Global Properties of the Heliospheric Termination Shock as inferred from Energetic Neutral Atoms measured by the Interstellar Boundary Explorer (IBEX)

    NASA Astrophysics Data System (ADS)

    Desai, Mihir; Heerikhuisen, Jacob; McComas, David; Pogorelov, Nikolai; Zank, Gary; Dayeh, Maher; Schwadron, Nathan; Allegrini, Frederic; Zirnstein, Eric

    Energetic Neutral Atoms (ENAs) observed by the Interstellar Boundary Explorer (IBEX) provide powerful diagnostics about the origin of the progenitor ion populations and the physical mechanisms responsible for their production. Desai et al. (2012; 2013) combined and compared ENA spectra from the first three years of observations by the IBEX-Hi and -Lo ENA imagers along the lines-of-sights (LOS) from the inner heliosphere through to the locations of Voyager 1 and 2 with results from an updated physics-based model of the 3D heliosphere and its constituent ion populations. These results showed that (1) IBEX ENA fluxes and spectra above ˜0.7 keV measured along the LOS of the Voyagers are consistent with several models in which the parent pickup (PUI) populations originate in the inner heliosheath, and (2) a significant fraction of lower-energy ENAs between ˜0.1-0.5 keV may originate from interstellar neutral gas charge-exchanging with a non-thermalized (hot) population of PUIs in the outer heliosheath beyond the heliopause. We use these results and model the full sky IBEX-Hi energy spectra to probe the microphysical processes occurring in the inner heliospheath near the termination shock and then infer the global properties (e.g., latitudinal and longitudinal variations of the shock compression ratio) of the termination shock.

  17. Dependence of the aftershock flow on the main shock magnitude

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Zavyalov, A. D.; Zotov, O. D.; Lavrov, I. P.

    2017-01-01

    Previously, we predicted and then observed in practice the property of aftershocks which consists in the statistically regular clustering of events in time during the first hours after the main shock. The characteristic quasi-period of clustering is three hours. This property is associated with the cumulative action of the surface waves converging to the epicenter, whereas the quasi-period is mainly determined by the time delay of the round-the-world seismic echo. The quasi-period varies from case to case. In the attempt to find the cause of this variability, we have statistically explored the probable dependence of quasi-period on the magnitude of the main shock. In this paper, we present the corresponding result of analyzing global seismicity from the USGS/NEIC earthquake catalog. We succeeded in finding a significant reduction in the quasiperiod of the strong earthquakes clustering with growth in the magnitude of the main shock. We suggest the interpretation of this regularity from the standpoint of the phenomenological theory of explosive instability. It is noted that the phenomenon of explosive instability is fairly common in the geophysical media. The examples of explosive instability in the radiation belt and magnetospheric tail are presented. The search for the parallels in the evolution of explosive instability in the lithosphere and magnetosphere of the Earth will enrich both the physics of the earthquakes and physics of the magnetospheric pulsations.

  18. Early reversible acute kidney injury is associated with improved survival in septic shock.

    PubMed

    Sood, Manish M; Shafer, Leigh Anne; Ho, Julie; Reslerova, Martina; Martinka, Greg; Keenan, Sean; Dial, Sandra; Wood, Gordon; Rigatto, Claudio; Kumar, Anand

    2014-10-01

    The fact that acute kidney injury (AKI) is associated with worse clinical outcomes forms the basis of most AKI prognostic scoring systems. However, early reversibility of renal dysfunction in acute illness is not considered in such systems. We sought to determine whether early (≤24 hours after shock documentation) reversibility of AKI was independently associated with in-hospital mortality in septic shock. Patient information was derived from an international database of septic shock cases from 28 different institutions in Canada, the United States and Saudi Arabia. Data from a final cohort of 5443 patients admitted with septic shock between Jan 1996 and Dec 2009 was analyzed. The following 4 definitions were used in regards to AKI status: (1) reversible AKI = AKI of any RIFLE severity prevalent at shock diagnosis or incident at 6 hours post-diagnosis that reverses by 24 hours, (2) persistent AKI = AKI prevalent at shock diagnosis and persisting during the entire 24 hours post-shock diagnosis, (3) new AKI = AKI incident between 6 and 24 hours post-shock diagnosis, and (4) improved AKI = AKI prevalent at shock diagnosis or incident at 6 hours post followed by improvement of AKI severity across at least one RIFLE category over the first 24 hours. Cox proportional hazards were used to determine the association between AKI status and in-hospital mortality. During the first 24 hours, reversible AKI occurred in 13.0%, persistent AKI in 54.9%, new AKI in 11.7%, and no AKI in 22.4%. In adjusted analyses, reversible AKI was associated with improved survival (HR, 0.64; 95% CI, 0.53-0.77) compared to no AKI (referent), persistent AKI (HR, 0.99; 95% CI, 0.88-1.11), and new AKI (HR, 1.41; 95% CI, 1.22-1.62). Improved AKI occurred in 19.1% with improvement across any RIFLE category associated with a significant decrease in mortality (HR, 0.53; 95% CI, 0.45-0.63). More rapid antimicrobial administration, lower Acute Physiology and Chronic Health Evaluation II score, lower age, and a smaller number of failed organs (excluding renal) on the day of shock as well as community-acquired infection were independently associated with reversible AKI. In septic shock, reversible AKI within the first 24 hours of admission confers a survival benefit compared to no, new, or persistent AKI. Prognostic AKI classification schemes should consider integration of early AKI reversibility into the scoring system. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Nonrelativistic Perpendicular Shocks Modeling Young Supernova Remnants: Nonstationary Dynamics and Particle Acceleration at Forward and Reverse Shocks

    NASA Astrophysics Data System (ADS)

    Wieland, Volkmar; Pohl, Martin; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi

    2016-03-01

    For parameters that are applicable to the conditions at young supernova remnants, we present results of two-dimensional, three-vector (2D3V) particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at a 45^\\circ angle to the simulation plane to approximate three-dimensional (3D) physics. We developed an improved clean setup that uses the collision of two plasma slabs with different densities and velocities, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations due to shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales produced by the gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but is commensurate with {\\boldsymbol{E}}× {\\boldsymbol{B}} drift. We observe a stable supra-thermal tail in the ion spectra, but no electron acceleration because the amplitude of the Buneman modes in the shock foot is insufficient for trapping relativistic electrons. We see no evidence of turbulent reconnection. A comparison with other two-dimensional (2D) simulation results suggests that the plasma beta and the ion-to-electron mass ratio are not decisive for efficient electron acceleration, but the pre-acceleration efficacy might be reduced with respect to the 2D results once 3D effects are fully accounted for. Other microphysical factors may also play a part in limiting the amplitude of the Buneman waves or preventing the return of electrons to the foot region.

  20. Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California

    USGS Publications Warehouse

    Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.

    2006-01-01

    The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.

  1. The Acceleration of Charged Particles at a Spherical Shock Moving through an Irregular Magnetic Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacalone, J.

    We investigate the physics of charged-particle acceleration at spherical shocks moving into a uniform plasma containing a turbulent magnetic field with a uniform mean. This has applications to particle acceleration at astrophysical shocks, most notably, to supernovae blast waves. We numerically integrate the equations of motion of a large number of test protons moving under the influence of electric and magnetic fields determined from a kinematically defined plasma flow associated with a radially propagating blast wave. Distribution functions are determined from the positions and velocities of the protons. The unshocked plasma contains a magnetic field with a uniform mean andmore » an irregular component having a Kolmogorov-like power spectrum. The field inside the blast wave is determined from Maxwell’s equations. The angle between the average magnetic field and unit normal to the shock varies with position along its surface. It is quasi-perpendicular to the unit normal near the sphere’s equator, and quasi-parallel to it near the poles. We find that the highest intensities of particles, accelerated by the shock, are at the poles of the blast wave. The particles “collect” at the poles as they approximately adhere to magnetic field lines that move poleward from their initial encounter with the shock at the equator, as the shock expands. The field lines at the poles have been connected to the shock the longest. We also find that the highest-energy protons are initially accelerated near the equator or near the quasi-perpendicular portion of the shock, where the acceleration is more rapid.« less

  2. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  3. Analysis of Mixing Layer LES Data with Convective Mach Number 0.9 to 1.3

    NASA Astrophysics Data System (ADS)

    Helm, Clara M.; Martin, M. Pino

    2017-11-01

    The study of compressible mixing layers is essential to gaining a fundamental physical understanding of the global effects of compressibility on the development of turbulence in shear (Smits & Dussauge 2006). Research on compressible mixing layers is particularly difficult mainly because of the sensitivity of the mixing layer to initial conditions. A mixing layer occurs naturally in separated shock turbulent boundary layer interactions (STBLIs). We use our STBLI database to study the properties of mixing layers with convective Mach numbers of 0.9, 1.1, and 1.3. We report on the spreading rate, turbulence stress level, vortex shedding frequency, vortex convection velocity, and differences in the three-dimensional form of the vortices. The results are compared with mixing layer data available in literature and evaluated using the various scaling laws that have been proposed over the years. We discuss to what extent the mixing layer in the STBLI represents the canonical case and what additional insight into the is research area it provides. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  4. X-Ray Measurements of the Particle Acceleration Properties at Inward Shocks in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Sato, Toshiki; Katsuda, Satoru; Morii, Mikio; Bamba, Aya; Hughes, John P.; Maeda, Yoshitomo; Ishida, Manabu; Fraschetti, Federico

    2018-01-01

    We present new evidence that the bright nonthermal X-ray emission features in the interior of the Cassiopeia A supernova remnant are caused by inward-moving shocks, based on Chandra and NuSTAR observations. Several bright inward-moving filaments were identified using monitoring data taken by Chandra in 2000–2014. These inward-moving shock locations are nearly coincident with hard X-ray (15–40 keV) hot spots seen by NuSTAR. From proper-motion measurements, the transverse velocities were estimated to be in the range of ∼2100–3800 km s‑1 for a distance of 3.4 kpc. The shock velocities in the frame of the expanding ejecta reach values of ∼5100–8700 km s‑1, which is slightly higher than the typical speed of the forward shock. Additionally, we find flux variations (both increasing and decreasing) on timescales of a few years in some of the inward-moving shock filaments. The rapid variability timescales are consistent with an amplified magnetic field of B ∼ 0.5–1 mG. The high speed and low photon cut-off energy of the inward-moving shocks are shown to imply a particle diffusion coefficient that departs from the Bohm regime (k 0 = D 0/D 0,Bohm ∼ 3–8) for the few simple physical configurations we consider in this study. The maximum electron energy at these shocks is estimated to be ∼8–11 TeV, which is smaller than the values of ∼15–34 TeV that were inferred for the forward shock. Cassiopeia A is dynamically too young for its reverse shock to appear to be moving inward in the observer frame. We propose instead that the inward-moving shocks are a consequence of the forward shock encountering a density jump of ≳5–8 in the surrounding material.

  5. Shock Wave Structure Mediated by Energetic Particles

    NASA Astrophysics Data System (ADS)

    Mostafavi, P.; Zank, G. P.; Webb, G. M.

    2016-12-01

    Energetic particles such as cosmic rays, Pick Up Ions (PUIs), and solar energetic particles can affect all facets of plasma physics and astrophysical plasma. Energetic particles play an especially significant role in the dissipative process at shocks and in determining their structure. The very interesting recent observations of shocks in the inner heliosphere found that many shocks appear to be significantly mediated by solar energetic particles which have a pressure that exceeds considerably both the thermal gas pressure and the magnetic field pressure. Energetic particles contribute an isotropic scalar pressure to the plasma system at the leading order, as well as introducing dissipation via a collisionless heat flux (diffusion) at the next order and a collisionless stress tensor (viscosity) at the second order. Cosmic-ray modified shocks were discussed by Axford et al. (1982), Drury (1983), and Webb (1983). Zank et al. (2014) investigated the incorporation of PUIs in the supersonic solar wind beyond 10AU, in the inner Heliosheath and in the Very Local Interstellar Medium. PUIs do not equilibrate collisionally with the background plasma in these regimes. In the absence of equilibration between plasma components, a separate coupled plasma description for the energetic particles is necessary. This model is used to investigate the structure of shock waves assuming that we can neglect the magnetic field. Specifically, we consider the dissipative role that both the energetic particle collisionless heat flux and viscosity play in determining the structure of collisionless shock waves. We show that the incorporation of both energetic particle collisionless heat flux and viscosity is sufficient to completely determine the structure of a shock. Moreover, shocks with three sub-shocks converge to the weak sub-shocks. This work differs from the investigation of Jokipii and Williams (1992) who restricted their attention to a cold thermal gas. For a cold thermal non-magnetized gas, all shocks are smoothed by cosmic ray diffusion and therefore viscosity is not an important process.

  6. The DISPARITY-II study: delays to antibiotic administration in women with severe sepsis or septic shock.

    PubMed

    Madsen, Tracy E; Napoli, Anthony M

    2014-12-01

    Early antibiotics reduce mortality in patients with severe sepsis and septic shock. Recent work demonstrated that women experience greater delays to antibiotic administration, but it is unknown if this relationship remains after adjusting for factors such as source of infection. The objective was to investigate whether gender and/or source of infection are associated with delays to antibiotics in patients with severe sepsis or septic shock. This was a retrospective, observational study in an urban academic emergency department and national Surviving Sepsis Campaign (SSC) database study site. Consecutive patients age 18 years and older admitted to intensive care with severe sepsis or septic shock and entered into the SSC database from October 2005 to March 2012 were included. Two trained research assistants, blinded to the primary outcome, used a standardized abstraction form to obtain patient demographic and clinical data, including the Sequential Organ Failure Assessment (SOFA) scores and comorbidities. Time to first antibiotic and presumed source of infection were extracted from the SSC database. Univariate analyses were performed with Pearson chi-square tests and t-tests. Linear regression was performed with time to first antibiotic as the primary outcome. Covariates, chosen a priori by study authors, included age, race, ethnicity, source of infection, SOFA score, and lactate. A total of 771 patients were included. Women were 45.3% of the sample, the mean age was 66 years (95% confidence interval [CI] = 65.1 to 67.5 years), 19.4% were nonwhite, and 8% were Hispanic. Mean time to first antibiotic was 153 minutes (95% CI = 143 to 163 minutes) for men and 184 minutes (95% CI = 171 to 197 minutes) for women (p < 0.001). The urinary tract was source of infection for 35.2% of women (95% CI = 30.2% to 40.3%) versus 23.7% (95% CI = 19.6% to 27.8%) of men. Pneumonia was present in 46.9% of men (95% CI = 42.1% to 51.7%) versus 35.8% (95% CI = 30.8% to 40.8%) of women. The mean time to antibiotics in women was longer than in men (adjusted odds ratio [aOR] = 1.18, 95% CI = 1.07 to 1.30), even after adjusting for age, race, ethnicity, presumed source of infection, SOFA score, and lactate (p = 0.001). Those with pneumonia compared to other infections received antibiotics faster (aOR = 0.73, 95% CI = 0.66 to 0.81). There was no significant association between other sources of infection and time to antibiotics in either univariate or multivariate analysis. Women experience longer delays to initial antibiotics among patients with severe sepsis or septic shock, even after adjusting for infectious source. Pneumonia was associated with shorter times to antibiotic administration. Future research is necessary to investigate contributors to delayed antibiotic administration in women. © 2014 by the Society for Academic Emergency Medicine.

  7. Simulating cosmic ray physics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Pfrommer, C.; Pakmor, R.; Schaal, K.; Simpson, C. M.; Springel, V.

    2017-03-01

    We discuss new methods to integrate the cosmic ray (CR) evolution equations coupled to magnetohydrodynamics on an unstructured moving mesh, as realized in the massively parallel AREPO code for cosmological simulations. We account for diffusive shock acceleration of CRs at resolved shocks and at supernova remnants in the interstellar medium (ISM) and follow the advective CR transport within the magnetized plasma, as well as anisotropic diffusive transport of CRs along the local magnetic field. CR losses are included in terms of Coulomb and hadronic interactions with the thermal plasma. We demonstrate the accuracy of our formalism for CR acceleration at shocks through simulations of plane-parallel shock tubes that are compared to newly derived exact solutions of the Riemann shock-tube problem with CR acceleration. We find that the increased compressibility of the post-shock plasma due to the produced CRs decreases the shock speed. However, CR acceleration at spherically expanding blast waves does not significantly break the self-similarity of the Sedov-Taylor solution; the resulting modifications can be approximated by a suitably adjusted, but constant adiabatic index. In first applications of the new CR formalism to simulations of isolated galaxies and cosmic structure formation, we find that CRs add an important pressure component to the ISM that increases the vertical scaleheight of disc galaxies and thus reduces the star formation rate. Strong external structure formation shocks inject CRs into the gas, but the relative pressure of this component decreases towards halo centres as adiabatic compression favours the thermal over the CR pressure.

  8. Understanding large SEP events with the PATH code: Modeling of the 13 December 2006 SEP event

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Li, G.; Zank, G. P.; Hu, Q.; Cohen, C. M. S.; Mewaldt, R. A.; Mason, G. M.; Haggerty, D. K.; von Rosenvinge, T. T.; Looper, M. D.

    2010-12-01

    The Particle Acceleration and Transport in the Heliosphere (PATH) numerical code was developed to understand solar energetic particle (SEP) events in the near-Earth environment. We discuss simulation results for the 13 December 2006 SEP event. The PATH code includes modeling a background solar wind through which a CME-driven oblique shock propagates. The code incorporates a mixed population of both flare and shock-accelerated solar wind suprathermal particles. The shock parameters derived from ACE measurements at 1 AU and observational flare characteristics are used as input into the numerical model. We assume that the diffusive shock acceleration mechanism is responsible for particle energization. We model the subsequent transport of particles originated at the flare site and particles escaping from the shock and propagating in the equatorial plane through the interplanetary medium. We derive spectra for protons, oxygen, and iron ions, together with their time-intensity profiles at 1 AU. Our modeling results show reasonable agreement with in situ measurements by ACE, STEREO, GOES, and SAMPEX for this event. We numerically estimate the Fe/O abundance ratio and discuss the physics underlying a mixed SEP event. We point out that the flare population is as important as shock geometry changes during shock propagation for modeling time-intensity profiles and spectra at 1 AU. The combined effects of seed population and shock geometry will be examined in the framework of an extended PATH code in future modeling efforts.

  9. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  10. Long-term outcomes after severe shock.

    PubMed

    Pratt, Cristina M; Hirshberg, Eliotte L; Jones, Jason P; Kuttler, Kathryn G; Lanspa, Michael J; Wilson, Emily L; Hopkins, Ramona O; Brown, Samuel M

    2015-02-01

    Severe shock is a life-threatening condition with very high short-term mortality. Whether the long-term outcomes among survivors of severe shock are similar to long-term outcomes of other critical illness survivors is unknown. We therefore sought to assess long-term survival and functional outcomes among 90-day survivors of severe shock and determine whether clinical predictors were associated with outcomes. Seventy-six patients who were alive 90 days after severe shock (received ≥1 μg/kg per minute of norepinephrine equivalent) were eligible for the study. We measured 3-year survival and long-term functional outcomes using the Medical Outcomes Study 36-Item Short-Form Health Survey, the EuroQOL 5-D-3L, the Hospital Anxiety and Depression Scale, the Impact of Event Scale-Revised, and an employment instrument. We also assessed the relationship between in-hospital predictors and long-term outcomes. The mean long-term survival was 5.1 years; 82% (62 of 76) of patients survived, of whom 49 were eligible for follow-up. Patients who died were older than patients who survived. Thirty-six patients completed a telephone interview a mean of 5 years after hospital admission. The patients' Physical Functioning scores were below U.S. population norms (P < 0.001), whereas mental health scores were similar to population norms. Nineteen percent of the patients had symptoms of depression, 39% had symptoms of anxiety, and 8% had symptoms of posttraumatic stress disorder. Thirty-six percent were disabled, and 17% were working full-time. Early survivors of severe shock had a high 3-year survival rate. Patients' long-term physical and psychological outcomes were similar to those reported for cohorts of less severely ill intensive care unit survivors. Anxiety and depression were relatively common, but only a few patients had symptoms of posttraumatic stress disorder. This study supports the observation that acute illness severity does not determine long-term outcomes. Even extremely critically ill patients have similar outcomes to general intensive care unit survivor populations.

  11. Lactobacilli require physical contact to reduce staphylococcal TSST-1 secretion and vaginal epithelial inflammatory response.

    PubMed

    Younes, Jessica A; Reid, Gregor; van der Mei, Henny C; Busscher, Henk J

    2016-06-01

    ITALIC! Staphylococcus aureusbiofilms can be found on vaginal epithelia, secreting toxins and causing inflammation. The co-vaginal species ITALIC! Lactobacilluscan alter staphylococcal-induced epithelial secretion of inflammatory cytokines and quench staphylococcal toxic shock syndrome toxin-1 secretion. It is hypothesized that these effects of lactobacilli require direct physical contact between lactobacilli, staphylococci and the epithelium. Indeed, lactobacilli only reduced ITALIC! S. aureus-induced inflammatory cytokine expression when allowed physical contact with vaginal epithelial cells. Furthermore, a reduction in toxic shock syndrome toxin-1 secretion only occurred when a probiotic ITALIC! Lactobacillusstrain was allowed contact, but not when being physically separated from ITALIC! S. aureus Bacterial-probe atomic force microscopy demonstrated that lactobacilli and staphylococci strongly adhere to epithelial cells, while lactobacilli adhere stronger to staphylococci than staphylococci to each other, giving lactobacilli opportunity to penetrate and reside in staphylococcal biofilms, as visualized using confocal laser scanning microscopy with fluorescence ITALIC! in situhybridization probes. These results identify that physical contact and biochemical signaling by lactobacilli are intrinsically linked mechanisms that reduce virulence of ITALIC! S. aureusbiofilm. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A Survivor's Perspective on the Power of Exercise Following a Cancer Diagnosis.

    PubMed

    Hope, Andrea

    2016-12-01

    This article describes one woman's experience with the shock and fear of a breast cancer diagnosis and the power of exercise in helping her cope, adjust, and regain her hope during treatment. Whenever appropriate, practitioners should encourage patients to be physically active to improve physical and psychosocial adjustment and outcomes.

  13. The distribution of density in supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2017-11-01

    We propose a model for the statistics of the mass density in supersonic turbulence, which plays a crucial role in star formation and the physics of the interstellar medium (ISM). The model is derived by considering the density to be arranged as a collection of strong shocks of width ˜ M^{-2}, where M is the turbulent Mach number. With two physically motivated parameters, the model predicts all density statistics for M>1 turbulence: the density probability distribution and its intermittency (deviation from lognormality), the density variance-Mach number relation, power spectra and structure functions. For the proposed model parameters, reasonable agreement is seen between model predictions and numerical simulations, albeit within the large uncertainties associated with current simulation results. More generally, the model could provide a useful framework for more detailed analysis of future simulations and observational data. Due to the simple physical motivations for the model in terms of shocks, it is straightforward to generalize to more complex physical processes, which will be helpful in future more detailed applications to the ISM. We see good qualitative agreement between such extensions and recent simulations of non-isothermal turbulence.

  14. Survival, quality of life and impact of right heart failure in patients with acute cardiogenic shock treated with ECMO.

    PubMed

    Schoenrath, Felix; Hoch, Dennis; Maisano, Francesco; Starck, Christoph T; Seifert, Burkhardt; Wenger, Urs; Ruschitzka, Frank; Wilhelm, Markus J

    2016-01-01

    Mechanical circulatory support is increasingly used in acute cardiogenic shock. To assess treatment strategies for cardiogenic shock. Data of 57 patients in acute intrinsic cardiogenic shock treated with ECMO were analyzed. Different subsequent strategies (weaning, VAD, transplantation) were followed.​ Overall 1, 2, and 4-year survival was 36.8 ± 6.4%, 32.2 ± 6.4%, 29.8 ± 6.3%. Elevated lactate and hemorrhagic complications (all p in patients with right heart failure prior to ECMO implantation, BVAD therapy showed a trend (p=0.058) towards superior survival compared with LVAD therapy. Seven of the BVAD patients received successful transplantation, with a 1-year survival of 71%. Among survivors Short Form 36 reported significantly lower combined physical scores (p=0.004). Right heart assessment prior to ECMO implantation may be beneficial to provide tailored therapy if ECMO weaning fails. Survival after cardiogenic shock requiring ECMO seems to be associated with impaired long-term quality of life. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    NASA Astrophysics Data System (ADS)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  16. Measuring the flexoelectric coefficient of bulk barium titanate from a shock wave experiment

    NASA Astrophysics Data System (ADS)

    Hu, Taotao; Deng, Qian; Liang, Xu; Shen, Shengping

    2017-08-01

    In this paper, a phenomenon of polarization introduced by shock waves is experimentally studied. Although this phenomenon has been reported previously in the community of physics, this is the first time to link it to flexoelectricity, the coupling between electric polarization and strain gradients in dielectrics. As the shock waves propagate in a dielectric material, electric polarization is thought to be induced by the strain gradient at the shock front. First, we control the first-order hydrogen gas gun to impact and generate shock waves in unpolarized bulk barium titanate (BT) samples. Then, a high-precision oscilloscope is used to measure the voltage generated by the flexoelectric effect. Based on experimental results, strain elastic wave theory, and flexoelectric theory, a longitudinal flexoelectric coefficient of the bulk BT sample is calculated to be μ 11 = 17.33 × 10 - 6 C/m, which is in accord with the published transverse flexoelectric coefficient. This method effectively suppresses the majority of drawbacks in the quasi-static and low frequency dynamic techniques and provides more reliable results of flexoelectric behaviors.

  17. Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72.

    PubMed

    Lancaster, Graeme I; Febbraio, Mark A

    2005-01-01

    The heat shock proteins are a family of highly conserved proteins with critical roles in maintaining cellular homeostasis and in protecting the cell from stressful conditions. While the critical intracellular roles of heat shock proteins are undisputed, evidence suggests that the cell possess the necessary machinery to actively secrete specific heat shock proteins in response to cellular stress. In this review, we firstly discuss the evidence that physical exercise induces the release of heat shock protein 72 from specific tissues in humans. Importantly, it appears as though this release is the result of an active secretory process, as opposed to non-specific processes such as cell lysis. Next we discuss recent in vitro evidence that has identified a mechanistic basis for the observation that cellular stress induces the release of a specific subset of heat shock proteins. Importantly, while the classical protein secretory pathway does not seem to be involved in the stress-induced release of HSP72, we discuss the evidence that lipid-rafts and exosomes are important mediators of the stress-induced release of HSP72.

  18. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  19. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A.

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger themore » onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.« less

  20. Shock tube Multiphase Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  1. Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; Ahmed, Kareem

    2016-11-01

    Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.

  2. Shock Corrugation by Rayleigh-Taylor Instability in Gamma-Ray Burst Afterglow Jets

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2014-08-01

    Afterglow jets are Rayleigh-Taylor unstable and therefore turbulent during the early part of their deceleration. There are also several processes which actively cool the jet. In this Letter, we demonstrate that if cooling significantly increases the compressibility of the flow, the turbulence collides with the forward shock, destabilizing and corrugating it. In this case, the forward shock is turbulent enough to produce the magnetic fields responsible for synchrotron emission via small-scale turbulent dynamo. We calculate light curves assuming the magnetic field is in energy equipartition with the turbulent kinetic energy and discover that dynamic magnetic fields are well approximated by a constant magnetic-to-thermal energy ratio of 1%, though there is a sizeable delay in the time of peak flux as the magnetic field turns on only after the turbulence has activated. The reverse shock is found to be significantly more magnetized than the forward shock, with a magnetic-to-thermal energy ratio of the order of 10%. This work motivates future Rayleigh-Taylor calculations using more physical cooling models.

  3. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  4. Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks

    NASA Astrophysics Data System (ADS)

    Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.

    2011-11-01

    Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.

  5. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without coupling to a sonic boom propagation analysis code, from the stagnation chamber of the nozzle to the far field external flow, taking into account all nonisentropic effects in the shocks, boundary layers, and free shear layers, and their interactions at distances up to 30 times the nozzle exit diameter from the jet centerline. A CFD solution is shown in Figure 2. The flow field is very complicated and multi-dimensional, with shock-shock and shockplume interactions. At the time of this reporting, a full three-dimensional CFD study was being conducted to evaluate the effects of nozzle vectoring on the aircraft tail shock strength.

  6. Culture shock and travelers.

    PubMed

    Stewart, L; Leggat, P A

    1998-06-01

    As travel has become easier and more affordable, the number of people traveling has risen sharply. People travel for many and varied reasons, from the business person on an overseas assignment to backpackers seeking new and exotic destinations. Others may take up residence in different regions, states or countries for family, business or political reasons. Other people are fleeing religious or political persecution. Wherever they go and for whatever reason they go, people take their culture with them. Culture, like language, is acquired innately in early childhood and is then reinforced through formal and complex informal social education into adulthood. Culture provides a framework for interpersonal and social interactions. Therefore, the contact with a new culture is often not the exciting or pleasurable experience anticipated. When immersed in a different culture, people no longer know how to act when faced with disparate value systems. Contact with the unfamiliar culture can lead to anxiety, stress, mental illness and, in extreme cases, physical illness and suicide. "Culture shock" is a term coined by the anthropologist Oberg. It is the shock of the new. It implies that the experience of the new culture is an unpleasant surprise or shock, partly because it is unexpected and partly because it can lead to a negative evaluation of one's own culture. It is also known as cross-cultural adjustment, being that period of anxiety and confusion experienced when entering a new culture. It affects people intellectually, emotionally, behaviorally and physically and is characterized by symptoms of psychological distress. Culture shock affects both adults and children. In travelers or workers who have prolonged sojourns in foreign countries, culture shock may occur not only as they enter the new culture, but also may occur on their return to their original culture. Children may also experience readjustment problems after returning from leading sheltered lives in expatriate compounds. This readjustment back to their own culture after a period of time abroad has been termed "reverse culture shock, a condition which has been studied in both corporate managers and Peace Corps volunteers. With culture shock and many other processes of psychological adjustment, people tend to suffer alone, thinking that they are the only ones not coping well with their new circumstance. The objective of this paper was to bring the phenomenon of culture shock to the awareness of travel health advisors, who can in turn advise travelers, especially longer term travelers, about having realistic expectations of their travel and life in new cultures.

  7. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; ...

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  8. The Risk of Termination Shock From Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Parker, Andy; Irvine, Peter J.

    2018-03-01

    If solar geoengineering were to be deployed so as to mask a high level of global warming, and then stopped suddenly, there would be a rapid and damaging rise in temperatures. This effect is often referred to as termination shock, and it is an influential concept. Based on studies of its potential impacts, commentators often cite termination shock as one of the greatest risks of solar geoengineering. However, there has been little consideration of the likelihood of termination shock, so that conclusions about its risk are premature. This paper explores the physical characteristics of termination shock, then uses simple scenario analysis to plot out the pathways by which different driver events (such as terrorist attacks, natural disasters, or political action) could lead to termination. It then considers where timely policies could intervene to avert termination shock. We conclude that some relatively simple policies could protect a solar geoengineering system against most of the plausible drivers. If backup deployment hardware were maintained and if solar geoengineering were implemented by agreement among just a few powerful countries, then the system should be resilient against all but the most extreme catastrophes. If this analysis is correct, then termination shock should be much less likely, and therefore much less of a risk, than has previously been assumed. Much more sophisticated scenario analysis—going beyond simulations purely of worst-case scenarios—will be needed to allow for more insightful policy conclusions.

  9. Risk factors of shock in severe falciparum malaria.

    PubMed

    Arnold, Brendan J; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2013-07-04

    The objective of this study was to determine the risk factors for the development of shock in adult patients admitted with severe falciparum malaria. As an unmatched case-control study, the records of patients who were admitted to the Bangkok Hospital for Tropical Diseases, Thailand, between the years 2000-2010, were reviewed. One hundred patients with severe falciparum malaria and shock, and another 100 patients with severe malaria but without shock were studied. Demographics, presenting symptoms, physical observations, and laboratory data of these patients were analyzed. Five risk factors for the development of shock were identified: female gender (OR 6.16; 95% CI 3.17-11.97), red cell distribution width (RDW) >15% (adjusted OR 2.90; 95% CI 1.11-7.57), anorexia (adjusted OR 2.76; 95% CI 1.03-7.39), hypoalbuminemia (adjusted OR 2.19; 95% CI 1.10-4.34), and BUN-creatinine ratio >20 (adjusted OR 2.38; 95% CI 1.22-4.64). Diarrhea was found to be a protective factor (adjusted OR 0.33; 95% CI 0.14-0.78). Metabolic acidosis was only weakly correlated to mean arterial blood pressure on admission (r(s) = 0.23). Female gender was the strongest risk factor for the development of shock. We concluded that female gender, RDW >15%, anorexia, hypoalbuminemia, and BUN-creatinine ratio >20 were risk factors of shock development in severe falciparum malaria.

  10. Evolution of wave patterns and temperature field in shock-tube flow

    NASA Astrophysics Data System (ADS)

    Kiverin, A. D.; Yakovenko, I. S.

    2018-05-01

    The paper is devoted to the numerical analysis of wave patterns behind a shock wave propagating in a tube filled with a gaseous mixture. It is shown that the flow inside the boundary layer behind the shock wave is unstable, and the way the instability develops fully corresponds to the solution obtained for the boundary layer over a flat plate. Vortical perturbations inside the boundary layer determine the nonuniformity of the temperature field. In turn, exactly these nonuniformities define the way the ignition kernels arise in the combustible mixture after the reflected shock interaction with the boundary layer. In particular, the temperature nonuniformity determines the spatial limitations of probable ignition kernel position relative to the end wall and side walls of the tube. In the case of low-intensity incident shocks the ignition could start not farther than the point of first interaction between the reflected shock wave and roller vortices formed in the process of boundary layer development. Proposed physical mechanisms are formulated in general terms and can be used for interpretation of the experimental data in any systems with a delayed exothermal reaction start. It is also shown that contact surface thickening occurs due to its interaction with Tollmien-Schlichting waves. This conclusion is of importance for understanding the features of ignition in shock tubes operating in the over-tailored regime.

  11. Comparison of the effects of albumin and crystalloid on mortality in adult patients with severe sepsis and septic shock: a meta-analysis of randomized clinical trials.

    PubMed

    Xu, Jing-Yuan; Chen, Qi-Hong; Xie, Jian-Feng; Pan, Chun; Liu, Song-Qiao; Huang, Li-Wei; Yang, Cong-Shan; Liu, Ling; Huang, Ying-Zi; Guo, Feng-Mei; Yang, Yi; Qiu, Hai-Bo

    2014-12-15

    The aim of this study was to examine whether albumin reduced mortality when employed for the resuscitation of adult patients with severe sepsis and septic shock compared with crystalloid by meta-analysis. We searched for and gathered data from MEDLINE, Elsevier, Cochrane Central Register of Controlled Trials and Web of Science databases. Studies were eligible if they compared the effects of albumin versus crystalloid therapy on mortality in adult patients with severe sepsis and septic shock. Two reviewers extracted data independently. Disagreements were resolved by discussion with other two reviewers until a consensus was achieved. Data including mortality, sample size of the patients with severe sepsis, sample size of the patients with septic shock and resuscitation endpoints were extracted. Data were analyzed by the methods recommended by the Cochrane Collaboration Review Manager 4.2 software. A total of 5,534 records were identified through the initial search. Five studies compared albumin with crystalloid. In total, 3,658 severe sepsis and 2,180 septic shock patients were included in the meta-analysis. The heterogeneity was determined to be non-significant (P = 0.86, I(2) = 0%). Compared with crystalloid, a trend toward reduced 90-day mortality was observed in severe sepsis patients resuscitated with albumin (odds ratio (OR) 0.88; 95% CI, 0.76 to 1.01; P = 0.08). However, the use of albumin for resuscitation significantly decreased 90-day mortality in septic shock patients (OR 0.81; 95% CI, 0.67 to 0.97; P = 0.03). Compared with saline, the use of albumin for resuscitation slightly improved outcome in severe sepsis patients (OR 0.81; 95% CI, 0.64 to 1.08; P = 0.09). In this meta-analysis, a trend toward reduced 90-day mortality was observed in severe sepsis patients resuscitated with albumin compared with crystalloid and saline. Moreover, the 90-day mortality of patients with septic shock decreased significantly.

  12. Admission blood glucose predicted haemorrhagic shock in multiple trauma patients.

    PubMed

    Kreutziger, Janett; Rafetseder, Andreas; Mathis, Simon; Wenzel, Volker; El Attal, René; Schmid, Stefan

    2015-01-01

    Admission blood glucose is known to be a predictor for outcome in several disease patterns, especially in critically ill trauma patients. The underlying mechanisms for the association of hyperglycaemia and poor outcome are still not proven. It was hypothesised that hyperglycaemia upon hospital admission is associated with haemorrhagic shock and in-hospital mortality. Data was extracted from an observational trauma database of the level 1 trauma centre at Innsbruck Medical University hospital. Trauma patients (≥18 years) with multiple injuries and an Injury Severity Score ≥17 were included and analysed. In total, 279 patients were analysed, of which 42 patients (15.1%) died. With increasing blood glucose upon hospital admission, the rate of patients with haemorrhagic shock rose significantly [from 4.4% (glucose 4.1-5.5mmol/L) to 87.5% (glucose >15mmol/L), p<0.0001]. Mortality was also associated with initial blood glucose [≤5.50mmol/L 8.3%; 5.51-7.50mmol/L 10.9%, 7.51-10mmol/L 12.4%; 10.01-15mmol/L 32.0%; ≥15.01mmol/L 12.5%, p=0.008]. Admission blood glucose was a better indicator for haemorrhagic shock (cut-off 9.4mmol/L, sensitivity 67.1%, specificity 83.9%) than haemoglobin, base excess, bicarbonate, pH, lactate, or vital parameters. Regarding haemorrhagic shock, admission blood glucose is more valuable during initial patient assessment than the second best predictive parameter, which was admission haemoglobin (cut-off value 6.5mmol/L (10.4g/dL): sensitivity 61.3%, specificity 83.9%). In multiple trauma, non-diabetic patients, admission blood glucose predicted the incidence of haemorrhagic shock. Admission blood glucose is an inexpensive, rapidly and easily available laboratory value that might help to identify patients at risk for haemorrhagic shock during initial evaluation upon hospital admission. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1

    NASA Astrophysics Data System (ADS)

    Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.

    2015-11-01

    We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).

  14. OPTICAL HYDROGEN ABSORPTION CONSISTENT WITH A THIN BOW SHOCK LEADING THE HOT JUPITER HD 189733B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter (HJ) exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit absorption signature around the HJ exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the timeseries absorption provide the strongest constraints on themore » morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric Hα detection, although the absorption depth measured here is ∼50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 R{sub p}. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large planetary magnetic field strength of B{sub eq} = 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.« less

  15. The Synchrotron Shock Model Confronts a "Line of Death" in the BATSE Gamma-Ray Burst Data

    NASA Technical Reports Server (NTRS)

    Preece, Robert D.; Briggs, Michael S.; Mallozzi, Robert S.; Pendleton, Geoffrey N.; Paciesas, W. S.; Band, David L.

    1998-01-01

    The synchrotron shock model (SSM) for gamma-ray burst emission makes a testable prediction: that the observed low-energy power-law photon number spectral index cannot exceed -2/3 (where the photon model is defined with a positive index: $dN/dE \\propto E{alpha}$). We have collected time-resolved spectral fit parameters for over 100 bright bursts observed by the Burst And Transient Source Experiment on board the {\\it Compton Gamma Ray Observatory}. Using this database, we find 23 bursts in which the spectral index limit of the SSM is violated, We discuss elements of the analysis methodology that affect the robustness of this result, as well as some of the escape hatches left for the SSM by theory.

  16. Dynamic Terrin

    DTIC Science & Technology

    1991-12-30

    York, 1985. [ Serway 86]: Raymond Serway , Physics for Scientists and Engineers. 2nd Edition, Saunders College Publishing, Philadelphia, 1986. pp. 200... Physical Modeling System 3.4 Realtime Hydrology 3.5 Soil Dynamics and Kinematics 4. Database Issues 4.1 Goals 4.2 Object Oriented Databases 4.3 Distributed...Animation System F. Constraints and Physical Modeling G. The PM Physical Modeling System H. Realtime Hydrology I. A Simplified Model of Soil Slumping

  17. Fluid administration in severe sepsis and septic shock, patterns and outcomes: an analysis of a large national database.

    PubMed

    Marik, Paul E; Linde-Zwirble, Walter T; Bittner, Edward A; Sahatjian, Jennifer; Hansell, Douglas

    2017-05-01

    The optimal strategy of fluid resuscitation in the early hours of severe sepsis and septic shock is controversial, with both an aggressive and conservative approach being recommended. We used the 2013 Premier Hospital Discharge database to analyse the administration of fluids on the first ICU day, in 23,513 patients with severe sepsis and septic shock, who were admitted to an ICU from the emergency department. Day 1 fluid was grouped into categories 1 L wide, starting with 1-1.99 L up to ≥9 L, to examine the effect of day 1 fluids on patient mortality. We built binary response models for hospital mortality and the propensity for receiving more than 5 L of fluids on day 1, using patient age and acute conditions present on admission. Patients were grouped by the requirement for mechanical ventilation and the presence or absence of shock. We assessed trends in the difference between actual and expected mortality, in the low fluid range (1-5 L day 1 fluids) and the high fluid range (5 to ≥9 L day 1 fluids) categories, using weighted linear regression controlling for the effects of sample size and variation within the day 1 fluid category. Day 1 fluid administration averaged 4.4 L being lowest in the group with no mechanical ventilation and no shock (3.6 L) and highest (5.4 L) in the group receiving mechanical ventilation and in shock. The administration of day 1 fluids was remarkably consistent on the basis of hospital size, teaching status, rural/urban location, and region of the country. The hospital mortality in the entire cohort was 25.8%, with a mean ICU and hospital length of stay of 5.1 and 9.1 days, respectively. In the entire cohort, low volume resuscitation (1-4.99 L) was associated with a small but significant reduction in mortality, of -0.7% per litre (95% CI -1.0%, -0.4%; p = 0.02). However, in patients receiving high volume resuscitation (5 to ≥9 L), the mortality increased by 2.3% (95% CI 2.0, 2.5%; p = 0.0003) for each additional litre above 5 L. Total hospital cost increased by $999 for each litre of fluid above 5 L (adjusted R 2  = 92.7%, p = 0.005). The mean amount of fluid administered to patients with severe sepsis and septic shock in the USA during the first ICU day is less than that recommended by the Surviving Sepsis Campaign guidelines. The administration of more than 5 L of fluid during the first ICU day is associated with a significantly increased risk of death and significantly higher hospital costs.

  18. F-16XL Ship #2 during last flight viewed from below showing shock fence on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A special 'shock fence' installed beneath the leading edge of the left wing is visible in this underside aerial view of NASA's F-16XL #2 research aircraft. The small structure assisted researchers in NASA's Supersonic Laminar Flow Control (SLFC) program in controlling the shock wave coming off the F-16XL's engine air inlet when the craft flew at speeds above Mach 1, or the speed of sound. The two-seat F-16XL, one of two 'XLs' flown by NASA's Drdyen Flight Research Center, Edwards, California, flew 45 missions comprising over 90 flight hours during the SLFC project, much of it at supersonic speeds up to Mach 2 and altitudes up to 55,000 feet. The project demonstrated that laminar -- or smooth -- airflow could be achieved over a major portion of a wing at supersonic speeds by use of a suction system. Data acquired during the program will be used to develop a design code calibration database which could assist designers in reducing aerodynamic drag of a proposed second-generation supersonic transport.

  19. Contributions to the Fourth Solar Wind Conference. [interplanetary magnetic fields and medium

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Behannon, K. W.; Burlaga, L. F.; Lepping, R.; Ness, N.; Ogilvie, K.; Pizzo, J.

    1979-01-01

    Recent results in interplanetary physics are examined. These include observations of shock waves and post-shock magnetic fields made by Voyager 1, 2; observations of the electron temperature as a function of distance between 1.36 AU and 2.25 AU; and observations of the structure of sector boundaries observed by Helios 1. A theory of electron energy transport in the collisionless solar wind is presented, and compared with observations. Alfven waves and Alvenic fluctuations in the solar wind are also discussed.

  20. Physics and Chemistry of MW Laser-induced Discharge in Gas Flows and Plasma Jets

    DTIC Science & Technology

    2007-12-01

    with the large scaled flow pulsations . In 3.3 the results of numerical modeling of a thin low-density heated channel of limited length – shock layer...in Fig. 3.2.13. The red points correspond to the values of time moments for Fig. 3.2.11, 12. Mechanism of heated area boundary pulsations ...Mechanism of heated area boundary pulsations is analogical to described above mechanism of the bow shock position pulsations and is connected with

  1. Shock-Free Configurations in Two- and Three- Dimensional Transonic Flow,

    DTIC Science & Technology

    1981-05-01

    Sobieczky’s brilliant idea of a fictitious gas for finding shock-free airfoils directly in the physical plane. The aerodynamic efficiency of turbojet ...improvements to the Learjet Century series aircraft is given in Ref. 3. The GA(W)-2 airfoil used here is probably already superior to the present Learjet...AD-AIuG 261 ARIZONA UNIV TUCSON ENGINEERING EXPERIMENT STATION F/f 1/3 SH4OCK-FREE CONFIGURATIONS IN TWO- AND THREE- DIMENSIONAL TRANSO--ETC(U) MAY

  2. Design and analysis of a magneto-rheological damper for an all terrain vehicle

    NASA Astrophysics Data System (ADS)

    Krishnan Unni, R.; Tamilarasan, N.

    2018-02-01

    A shock absorber design intended to replace the existing conventional shock absorber with a controllable system using a Magneto-rheological damper is introduced for an All Terrain Vehicle (ATV) that was designed for Baja SAE competitions. Suspensions are a vital part of an All Terrain Vehicles as it endures various surfaces and requires utmost attention while designing. COMSOL multi-physics software is used for applications that have coupled physics problems and is a unique tool that is used for the designing and analysis phase of the Magneto-rheological damper for the considered application and the model is optimized based on Taguchi using DOE software. The magneto-rheological damper is designed to maximize the damping force with the measured geometric constraints for the All Terrain Vehicle.

  3. The epidemiology of adults with severe sepsis and septic shock in Scottish emergency departments.

    PubMed

    Gray, Alasdair; Ward, Kirsty; Lees, Fiona; Dewar, Colin; Dickie, Sarah; McGuffie, Crawford

    2013-05-01

    The Surviving Sepsis Campaign (SSC) promotes a bundle approach to the care of septic patients to improve outcome. Some have questioned the capability of delivering the bundle in emergency departments (EDs). The authors report the epidemiology and 6 h bundle compliance of patients with severe sepsis/septic shock presenting to Scottish EDs. Analysis of the previously reported Scottish Trauma Audit Group sepsis database was performed including 20 mainland Scottish EDs. A total of 308,910 attendances were screened (between 2 March and 31 May 2009), and 5285 of 27,046 patients were identified after case note review and included on the database. This analysis includes patients who had severe sepsis/septic shock before leaving the ED. Epidemiological, severity of illness criteria, and ED management data were analysed. 626 patients (median age 73; M/F ratio 1:1; 637 presentations) met entrance criteria. The median number of cases per site was 16 (range 3-103). 561 (88.1%) patients arrived by ambulance. The most common source of infection was the respiratory tract (n=411, 64.5%) The most common physiological derangements were heart rate (n=523, 82.1%), respiratory rate (n=452, 71%) and white cell count (n=432, 67.8%). The median hospital stay was 9 days (IQR 4-17 days). 201 (31.6%) patients were admitted to critical care within 2 days, 130 (20.4%) directly from the ED. 180 patients (28.3%) died. There was poor compliance with all aspect of the SSC resuscitation bundle. Sepsis presentations are of variable frequency but have typical epidemiology and clinical outcomes. SSC bundle resuscitation uptake is poor in Scottish EDs.

  4. Price regulation, new entry, and information shock on pharmaceutical market in Taiwan: a nationwide data-based study from 2001 to 2004

    PubMed Central

    2010-01-01

    Background Using non-steroidal anti-inflammatory drugs (NSAIDs) as a case, we used Taiwan's National Health Insurance (NHI) database, to empirically explore the association between policy interventions (price regulation, new drug entry, and an information shock) and drug expenditures, utilization, and market structure between 2001 and 2004. Methods All NSAIDs prescribed in ambulatory visits in the NHI system during our study period were included and aggregated quarterly. Segmented regression analysis for interrupted time series was used to examine the associations between two price regulations, two new drug entries (cyclooxygennase-2 inhibitors) and the rofecoxib safety signal and expenditures and utilization of all NSAIDs. Herfindahl index (HHI) was applied to further examine the association between these interventions and market structure of NSAIDs. Results New entry was the only variable that was significantly correlated with changes of expenditures (positive change, p = 0.02) and market structure of the NSAIDs market in the NHI system. The correlation between price regulation (first price regulation, p = 0.62; second price regulation, p = 0.26) and information shock (p = 0.31) and drug expenditure were not statistically significant. There was no significant change in the prescribing volume of NSAIDs per rheumatoid arthritis (RA) or osteoarthritis (OA) ambulatory visit during the observational period. The market share of NSAIDs had also been largely substituted by these new drugs up to 50%, in a three-year period and resulted in a more concentrated market structure (HHI 0.17). Conclusions Our empirical study found that new drug entry was the main driving force behind escalating drug spending, especially by altering the market share. PMID:20653979

  5. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  6. Effects of molecular dissociation on the hydrogen equation of state

    NASA Astrophysics Data System (ADS)

    Bonev, Stanimir; Schwegler, Eric; Galli, Giulia; Gygi, Francois

    2002-03-01

    It has been suggested recently(François Gygi and G. Galli, submitted to Phys. Rev. Lett.) that the physical mechanism behind the larger compressibility of liquid deuterium observed in laser shock experiments as compared to ab initio simulations may be related to shock-induced electronic excitations. A possible result of such non-adiabatic processes is hindering of the molecular dissociation. This has motivated us to study the importance of molecular dissociation on the hydrogen equation of state. To this end, we have carried out ab initio molecular dynamics simulations of liquid deuterium where intramolecular dissociation is prevented by the use of bond length contraints. Simulations at both fixed thermodynamic conditions and dynamical simulations of shocked deuterium will be discussed.

  7. Computational procedures for mixed equations with shock waves

    NASA Technical Reports Server (NTRS)

    Yu, N. J.; Seebass, R.

    1974-01-01

    This paper discusses the procedures we have developed to treat a canonical problem involving a mixed nonlinear equation with boundary data that imply a discontinuous solution. This equation arises in various physical contexts and is basic to the description of the nonlinear acoustic behavior of a shock wave near a caustic. The numerical scheme developed is of second order, treats discontinuities as such by applying the appropriate jump conditions across them, and eliminates the numerical dissipation and dispersion associated with large gradients. Our results are compared with the results of a first-order scheme and with those of a second-order scheme we have developed. The algorithm used here can easily be generalized to more complicated problems, including transonic flows with imbedded shocks.

  8. Bow shock data analysis

    NASA Astrophysics Data System (ADS)

    Zipf, Edward C.; Erdman, Peeter W.

    1994-08-01

    The University of Pittsburgh Space Physics Group in collaboration with the Army Research Office (ARO) modeling team has completed a systematic organization of the shock and plume spectral data and the electron temperature and density measurements obtained during the BowShock I and II rocket flights which have been submitted to the AEDC Data Center, has verified the presence of CO Cameron band emission during the Antares engine burn and for an extended period of time in the post-burn plume, and have adapted 3-D radiation entrapment codes developed by the University of Pittsburgh to study aurora and other atmospheric phenomena that involve significant spatial effects to investigate the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) envelope surrounding the re-entry that create an extensive plasma cloud by photoionization.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis alongmore » the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.« less

  10. Dust, ice and gas in time (DIGIT): Herschel and Spitzer spectro-imaging of SMM3 and SMM4 in Serpens

    NASA Astrophysics Data System (ADS)

    Dionatos, O.; Jørgensen, J. K.; Green, J. D.; Herczeg, G. J.; Evans, N. J.; Kristensen, L. E.; Lindberg, J. E.; van Dishoeck, E. F.

    2013-10-01

    Context. Mid- and far-infrared observations of the environment around embedded protostars reveal a plethora of high excitation molecular and atomic emission lines. Different mechanisms for the origin of these lines have been proposed, including shocks induced by protostellar jets and radiation or heating by the embedded protostar of its immediate surroundings. Aims: By studying of the most important molecular and atomic coolants, we aim at constraining the physical conditions around the embedded protostars SMM3 and SMM4 in the Serpens molecular cloud core and measuring the CO/H2 ratio in warm gas. Methods: Spectro-imaging observations from the Spitzer Infrared Spectrograph (IRS) and the Herschel Photodetector Array Camera and Spectrometer (PACS) provide an almost complete wavelength coverage between 5 and 200 μm. Within this range, emission from all major molecular (H2, CO, H2O and OH) and many atomic ([OI], [CII], [FeII], [SiII] and [SI]) coolants of excited gas are detected. Emission line maps reveal the morphology of the observed emission and indicate associations between the different species. The excitation conditions for molecular species are assessed through rotational diagrams. Emission lines from major coolants are compared to the results of steady-state C- and J-type shock models. Results: Line emission tends to peak at distances of ~10-20″ from the protostellar sources with all but [CII] peaking at the positions of outflow shocks seen in near-IR and sub-millimeter interferometric observations. The [CII] emission pattern suggests that it is most likely excited from energetic UV radiation originating from the nearby flat-spectrum source SMM6. Excitation analysis indicates that H2 and CO originate in gas at two distinct rotational temperatures of ~300 K and 1000 K, while the excitation temperature for H2O and OH is ~100-200 K. The morphological and physical association between CO and H2 suggests a common excitation mechanism, which allows direct comparisons between the two molecules. The CO/H2 abundance ratio varies from ~10-5 in the warmer gas up to ~10-4 in the hotter regions. Shock models indicate that C-shocks can account for the observed line intensities if a beam filling factor and a temperature stratification in the shock front are considered. C-type shocks can best explain the emission from H2O. The existence of J-shocks is suggested by the strong atomic/ionic (except for [CII]) emission and a number of line ratio diagnostics. Dissociative shocks can account for the CO and H2 emission in a single excitation temperature structure. Conclusions: The bulk of cooling from molecular and atomic lines is associated with gas excited in outflow shocks. The strong association between H2 and CO constrain their abundance ratio in warm gas. Both C- and J-type shocks can account for the observed molecular emission; however, J-shocks are strongly suggested by the atomic emission and provide simpler and more homogeneous solutions for CO and H2. The variations in the CO/H2 abundance ratio for gas at different temperatures can be interpreted by their reformation rates in dissociative J-type shocks, or the influence of both C and J shocks. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices A-C are available in electronic form at http://www.aanda.org

  11. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  12. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  13. Multitasking the three-dimensional shock wave code CTH on the Cray X-MP/416

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlaun, J.M.; Thompson, S.L.

    1988-01-01

    CTH is a software system under development at Sandia National Laboratories Albuquerque that models multidimensional, multi-material, large-deformation, strong shock wave physics. CTH was carefully designed to both vectorize and multitask on the Cray X-MP/416. All of the physics routines are vectorized except the thermodynamics and the interface tracer. All of the physics routines are multitasked except the boundary conditions. The Los Alamos National Laboratory multitasking library was used for the multitasking. The resulting code is easy to maintain, easy to understand, gives the same answers as the unitasked code, and achieves a measured speedup of approximately 3.5 on the fourmore » cpu Cray. This document discusses the design, prototyping, development, and debugging of CTH. It also covers the architecture features of CTH that enhances multitasking, granularity of the tasks, and synchronization of tasks. The utility of system software and utilities such as simulators and interactive debuggers are also discussed. 5 refs., 7 tabs.« less

  14. Radial extracorporeal shock wave treatment harms developing chicken embryos

    PubMed Central

    Kiessling, Maren C.; Milz, Stefan; Frank, Hans-Georg; Korbel, Rüdiger; Schmitz, Christoph

    2015-01-01

    Radial extracorporeal shock wave treatment (rESWT) has became one of the best investigated treatment modalities for cellulite, including the abdomen as a treatment site. Notably, pregnancy is considered a contraindication for rESWT, and concerns have been raised about possible harm to the embryo when a woman treated with rESWT for cellulite is not aware of her pregnancy. Here we tested the hypothesis that rESWT may cause serious physical harm to embryos. To this end, chicken embryos were exposed in ovo to various doses of radial shock waves on either day 3 or day 4 of development, resembling the developmental stage of four- to six-week-old human embryos. We found a dose-dependent increase in the number of embryos that died after radial shock wave exposure on either day 3 or day 4 of development. Among the embryos that survived the shock wave exposure a few showed severe congenital defects such as missing eyes. Evidently, our data cannot directly be used to draw conclusions about potential harm to the embryo of a pregnant woman treated for cellulite with rESWT. However, to avoid any risks we strongly recommend applying radial shock waves in the treatment of cellulite only if a pregnancy is ruled out. PMID:25655309

  15. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.

    PubMed

    Yuldashev, Petr V; Ollivier, Sébastien; Karzova, Maria M; Khokhlova, Vera A; Blanc-Benon, Philippe

    2017-12-01

    Linear and nonlinear propagation of high amplitude acoustic pulses through a turbulent layer in air is investigated using a two-dimensional KZK-type (Khokhlov-Zabolotskaya-Kuznetsov) equation. Initial waves are symmetrical N-waves with shock fronts of finite width. A modified von Kármán spectrum model is used to generate random wind velocity fluctuations associated with the turbulence. Physical parameters in simulations correspond to previous laboratory scale experiments where N-waves with 1.4 cm wavelength propagated through a turbulence layer with the outer scale of about 16 cm. Mean value and standard deviation of peak overpressure and shock steepness, as well as cumulative probabilities to observe amplified peak overpressure and shock steepness, are analyzed. Nonlinear propagation effects are shown to enhance pressure level in random foci for moderate initial amplitudes of N-waves thus increasing the probability to observe highly peaked waveforms. Saturation of the pressure level is observed for stronger nonlinear effects. It is shown that in the linear propagation regime, the turbulence mainly leads to the smearing of shock fronts, thus decreasing the probability to observe high values of steepness, whereas nonlinear effects dramatically increase the probability to observe steep shocks.

  16. Computational Meso-Scale Study of Representative Unit Cubes for Inert Spheres Subject to Intense Shocks

    NASA Astrophysics Data System (ADS)

    Stewart, Cameron; Najjar, Fady; Stewart, D. Scott; Bdzil, John

    2012-11-01

    Modern-engineered high explosive (HE) materials can consist of a matrix of solid, inert particles embedded into an HE charge. When this charge is detonated, intense shock waves are generated. As these intense shocks interact with the inert particles, large deformations occur in the particles while the incident shock diffracts around the particle interface. We will present results from a series of 3-D DNS of an intense shock interacting with unit-cube configurations of inert particles embedded into nitromethane. The LLNL multi-physics massively parallel hydrodynamics code ALE3D is used to carry out high-resolution (4 million nodes) simulations. Three representative unit-cube configurations are considered: primitive cubic, face-centered and body-centered cubic for two particle material types of varying impedance ratios. Previous work has only looked at in-line particles configurations. We investigate the time evolution of the unit cell configurations, vorticity being generated by the shock interaction, as well as the velocity and acceleration of the particles until they reach the quasi-steady regime. LLNL-ABS-567694. CSS was supported by a summer internship through the HEDP program at LLNL. FMN's work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Fatal streptococcal toxic shock syndrome from an intrauterine device.

    PubMed

    Cho, Elizabeth E; Fernando, Dinali

    2013-04-01

    The occurrence of toxic shock syndrome from an intrauterine device (IUD) is very rare. To raise awareness of the risk of toxic shock syndrome caused by an IUD, to educate others about when to suspect this complication, and to provide treatment recommendations. A 49-year-old woman presented to the Emergency Department in septic shock after complaining of 5 days of nausea, vomiting, and diarrhea. Physical examination findings included a diffusely tender and rigid abdomen with free fluid on bedside sonogram. She was found, on computed tomography of her abdomen and pelvis, to have an IUD with moderate ascites. The IUD was removed, and both her IUD and her blood cultures grew out group A Streptococcus. Despite aggressive medical management, which included multiple vasopressors and broad-spectrum antibiotics, she died from group A streptococcal sepsis, with the IUD as her most likely source. Her clinical presentation and laboratory findings meet the Centers for Disease Control and Prevention diagnostic criteria for streptococcal toxic shock syndrome. Her diagnosis was confirmed by autopsy. IUDs should be considered as a possible source of infection in patients with an IUD who present with symptoms consistent with toxic shock syndrome. These patients need to be aggressively managed with early surgical intervention. Copyright © 2013. Published by Elsevier Inc.

  18. Experimental and numerical investigations of shock wave propagation through a bifurcation

    NASA Astrophysics Data System (ADS)

    Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.

    2018-02-01

    The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

  19. Low-Energy Ions Injection and Acceleration at Oblique Shocks with Focused Transport Model

    NASA Astrophysics Data System (ADS)

    Zuo, P.; Zhang, M.; Feng, X. S.

    2017-12-01

    There is strong evidence that a small portion of suprathermal particles from hot coronal material or remnants of previous solar energetic particle (SEP) events serve as the source of large SEP events. Here we present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by Laminar nonrelativistic oblique shocks in the framework of the focused transport theory, which is proved to contain all necessary physics of shock acceleration, but avoid the limitation of diffusive shock acceleration (DSA). We first characterize the role of cross-shock potential (CSP) on pickup ions (PUIs) acceleration. The CSP can affect the shape of the spectrum segment at lower energies, but it does not change the spectral index of the final power-law spectrum at high energies. It is found that a stronger CSP jump results in a dramatically improved injection efficiency. Our simulation results also show that the injection efficiency of PUIs is mass-dependent, which is lower for species with a higher mass. The injection efficiency as the function of Mach number, obliquity, injection speed, and shock strength is also calculated. It can be proved that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of source particle injection.

  20. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  1. Kidney damage in extracorporeal shock wave lithotripsy: a numerical approach for different shock profiles.

    PubMed

    Weinberg, Kerstin; Ortiz, Michael

    2009-08-01

    In shock-wave lithotripsy--a medical procedure to fragment kidney stones--the patient is subjected to hypersonic waves focused at the kidney stone. Although this procedure is widely applied, the physics behind this medical treatment, in particular the question of how the injuries to the surrounding kidney tissue arise, is still under investigation. To contribute to the solution of this problem, two- and three-dimensional numerical simulations of a human kidney under shock-wave loading are presented. For this purpose a constitutive model of the bio-mechanical system kidney is introduced, which is able to map large visco-elastic deformations and, in particular, material damage. The specific phenomena of cavitation induced oscillating bubbles is modeled here as an evolution of spherical pores within the soft kidney tissue. By means of large scale finite element simulations, we study the shock-wave propagation into the kidney tissue, adapt unknown material parameters and analyze the resulting stress states. The simulations predict localized damage in the human kidney in the same regions as observed in animal experiments. Furthermore, the numerical results suggest that in first instance the pressure amplitude of the shock wave impulse (and not so much its exact time-pressure profile) is responsible for damaging the kidney tissue.

  2. The CHESS survey of the L1157-B1 bow-shock: high and low excitation water vapor

    NASA Astrophysics Data System (ADS)

    Busquet, G.; Lefloch, B.; Benedettini, M.; Ceccarelli, C.; Codella, C.; Cabrit, S.; Nisini, B.; Viti, S.; Gómez-Ruiz, A. I.; Gusdorf, A.; di Giorgio, A. M.; Wiesenfeld, L.

    2014-01-01

    Context. Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks. This results in substantial modifications of the abundance of several species. In particular, water is a powerful tracer of shocked material because of its sensitivity to both physical conditions and chemical processes. Aims: As part of the Chemical HErschel Surveys of Star-forming regions (CHESS) guaranteed time key program, we aim at investigating the physical and chemical conditions of H2O in the brightest shock region B1 of the L1157 molecular outflow. Methods: We observed several ortho- and para-H2O transitions using the HIFI and PACS instruments on board Herschel toward L1157-B1, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a large velocity gradient (LVG) analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. Results: We detected 13 H2O lines with both instruments probing a wide range of excitation conditions. This is the largest data set of water lines observed in a protostellar shock and it provides both the kinematics and the spatial information of the emitting gas. The PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10'') bright, higher excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin ≃ 200-300 K) and dense (n(H2) ≃ (1-3) × 106 cm-3) component with an assumed extent of 10'', and a compact (~2''-5'') and hot, tenuous (Tkin ≃ 900-1400 K, n(H2) ≃ 103-4 cm-3) gas component that is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2) × 10-6 and (1-3) × 10-4, respectively. Finally, we identified an additional component in absorption in the HIFI spectra of H2O lines that connect with the ground state level. This absorption probably arises from the photodesorption of icy mantles of a water-enriched layer at the edges of the cloud, driven by the external UV illumination of the interstellar radiation field. Based on Herschel HIFI and PACS observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. CFD on hypersonic flow geometries with aeroheating

    NASA Astrophysics Data System (ADS)

    Sohail, Muhammad Amjad; Chao, Yan; Hui, Zhang Hui; Ullah, Rizwan

    2012-11-01

    The hypersonic flowfield around a blunted cone and cone-flare exhibits some of the major features of the flows around space vehicles, e.g. a detached bow shock in the stagnation region and the oblique shock wave/boundary layer interaction at the cone-flare junction. The shock wave/boundary layer interaction can produce a region of separated flow. This phenomenon may occur, for example, at the upstream-facing corner formed by a deflected control surface on a hypersonic entry vehicle, where the length of separation has implications for control effectiveness. Computational fluid-dynamics results are presented to show the flowfield around a blunted cone and cone-flare configurations in hypersonic flow with separation. This problem is of particular interest since it features most of the aspects of the hypersonic flow around planetary entry vehicles. The region between the cone and the flare is particularly critical with respect to the evaluation of the surface pressure and heat flux with aeroheating. Indeed, flow separation is induced by the shock wave boundary layer interaction, with subsequent flow reattachment, that can dramatically enhance the surface heat transfer. The exact determination of the extension of the recirculation zone is a particularly delicate task for numerical codes. Laminar flow and turbulent computations have been carried out using a full Navier-Stokes solver, with freestream conditions provided by the experimental data obtained at Mach 6, 8, and 16.34 wind tunnel. The numerical results are compared with the measured pressure and surface heat flux distributions in the wind tunnel and a good agreement is found, especially on the length of the recirculation region and location of shock waves. The critical physics of entropy layer, boundary layers, boundary layers and shock wave interaction and flow behind shock are properly captured and elaborated.. Hypersonic flows are characterized by high Mach number and high total enthalpy. An elevated temperature often results in thermo-chemical reactions in the gas, which play a major role in aero thermodynamic characterization of high-speed aerospace vehicles. Computational simulation of such flows, therefore, needs to account for a range of physical phenomena. Further, the numerical challenges involved in resolving strong gradients and discontinuities add to the complexity of computational fluid dynamics (CFD) simulation. In this article, physical modeling and numerical methodology-related issues involved in hypersonic flow simulation are highlighted. State-of-the-art CFD challenges are discussed in the context of many prominent applications of hypersonic flows. In the first part of paper, hypersonic flow is simulated and aerodynamics characteristics are calculated. Then aero heating with chemical reactions are added in the simulations and in the end part heat transfer with turbulence modeling is simulated. Results are compared with available data.

  4. Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions

    DOE PAGES

    Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; ...

    2015-07-10

    Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight into the shock structure afforded by the numerical methods.« less

  5. Interaction of two glancing, crossing shock waves with a turbulent boundary-layer at various Mach numbers

    NASA Technical Reports Server (NTRS)

    Hingst, Warren R.; Williams, Kevin E.

    1991-01-01

    A preliminary experimental investigation was conducted to study two crossing, glancing shock waves of equal strengths, interacting with the boundary-layer developed on a supersonic wind tunnel wall. This study was performed at several Mach numbers between 2.5 and 4.0. The shock waves were created by fins (shock generators), spanning the tunnel test section, that were set at angles varying from 4 to 12 degrees. The data acquired are wall static pressure measurements, and qualitative information in the form of oil flow and schlieren visualizations. The principle aim is two-fold. First, a fundamental understanding of the physics underlying this flow phenomena is desired. Also, a comprehensive data set is needed for computational fluid dynamic code validation. Results indicate that for small shock generator angles, the boundary-layer remains attached throughout the flow field. However, with increasing shock strengths (increasing generator angles), boundary layer separation does occur and becomes progressively more severe as the generator angles are increased further. The location of the separation, which starts well downstream of the shock crossing point, moves upstream as shock strengths are increased. At the highest generator angles, the separation appears to begin coincident with the generator leading edges and engulfs most of the area between the generators. This phenomena occurs very near the 'unstart' limit for the generators. The wall pressures at the lower generator angles are nominally consistent with the flow geometries (i.e. shock patterns) although significantly affected by the boundary-layer upstream influence. As separation occurs, the wall pressures exhibit a gradient that is mainly axial in direction in the vicinity of the separation. At the limiting conditions the wall pressure gradients are primarily in the axial direction throughout.

  6. Non-radial instabilities and progenitor asphericities in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Müller, B.; Janka, H.-Th.

    2015-04-01

    Since core-collapse supernova simulations still struggle to produce robust neutrino-driven explosions in 3D, it has been proposed that asphericities caused by convection in the progenitor might facilitate shock revival by boosting the activity of non-radial hydrodynamic instabilities in the post-shock region. We investigate this scenario in depth using 42 relativistic 2D simulations with multigroup neutrino transport to examine the effects of velocity and density perturbations in the progenitor for different perturbation geometries that obey fundamental physical constraints (like the anelastic condition). As a framework for analysing our results, we introduce semi-empirical scaling laws relating neutrino heating, average turbulent velocities in the gain region, and the shock deformation in the saturation limit of non-radial instabilities. The squared turbulent Mach number, , reflects the violence of aspherical motions in the gain layer, and explosive runaway occurs for ≳ 0.3, corresponding to a reduction of the critical neutrino luminosity by ˜ 25 per cent compared to 1D. In the light of this theory, progenitor asphericities aid shock revival mainly by creating anisotropic mass flux on to the shock: differential infall efficiently converts velocity perturbations in the progenitor into density perturbations δρ/ρ at the shock of the order of the initial convective Mach number Maprog. The anisotropic mass flux and ram pressure deform the shock and thereby amplify post-shock turbulence. Large-scale (ℓ = 2, ℓ = 1) modes prove most conducive to shock revival, whereas small-scale perturbations require unrealistically high convective Mach numbers. Initial density perturbations in the progenitor are only of the order of Ma_prog^2 and therefore play a subdominant role.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Takuya, E-mail: takahashi@kwasan.kyoto-u.ac.jp

    Flare-associated coronal shock waves sometimes interact with solar prominences, leading to large-amplitude prominence oscillations (LAPOs). Such prominence activation gives us a unique opportunity to track the time evolution of shock–cloud interaction in cosmic plasmas. Although the dynamics of interstellar shock–cloud interaction has been extensively studied, coronal shock–solar prominence interaction is rarely studied in the context of shock–cloud interaction. Associated with the X5.4 class solar flare that occurred on 2012 March 7, a globally propagated coronal shock wave interacted with a polar prominence, leading to LAPO. In this paper, we studied bulk acceleration and excitation of the internal flow of themore » shocked prominence using three-dimensional magnetohydrodynamic (MHD) simulations. We studied eight MHD simulation runs, each with different mass density structure of the prominence, and one hydrodynamic simulation run, and we compared the result. In order to compare the observed motion of activated prominence with the corresponding simulation, we also studied prominence activation by injection of a triangular-shaped coronal shock. We found that the prominence is first accelerated mainly by magnetic tension force as well as direct transmission of the shock, and later decelerated mainly by magnetic tension force. The internal flow, on the other hand, is excited during the shock front sweeps through the prominence and damps almost exponentially. We construct a phenomenological model of bulk momentum transfer from the shock to the prominence, which agreed quantitatively with all the simulation results. Based on the phenomenological prominence activation model, we diagnosed physical parameters of the coronal shock wave. The estimated energy of the coronal shock is several percent of the total energy released during the X5.4 flare.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  9. An Overview of Promising Grades of Tool Materials Based on the Analysis of their Physical-Mechanical Characteristics

    NASA Astrophysics Data System (ADS)

    Kudryashov, E. A.; Smirnov, I. M.; Grishin, D. V.; Khizhnyak, N. A.

    2018-06-01

    The work is aimed at selecting a promising grade of a tool material, whose physical-mechanical characteristics would allow using it for processing the surfaces of discontinuous parts in the presence of shock loads. An analysis of the physical-mechanical characteristics of most common tool materials is performed and the data on a possible provision of the metal-working processes with promising composite grades are presented.

  10. The clinical effectiveness of permissive hypotension in blunt abdominal trauma with hemorrhagic shock but without head or spine injuries or burns: a systematic review

    PubMed Central

    Alsawadi, Abdulrahman

    2012-01-01

    Background Trauma is a major cause of death and disability. The current trend in trauma management is the rapid administration of fluid as per the Advanced Trauma Life Support guidelines, although there is no evidence to support this and even some to suggest it might be harmful. Some guidelines, protocols, and recommendations have been established for the use of permissive hypotension although there is reluctance concerning its application in blunt injuries. Objectives The aim of this review is to determine whether there is evidence of the use of permissive hypotension in the management of hemorrhagic shock in blunt trauma patients. This review also aims to search for any reason for the reluctance to apply permissive hypotension in blunt injuries. Methods This systematic review has followed the steps recommended in the Cochrane Handbook for Systematic Reviews of Interventions. It is also being reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement and checklist. Database searches of MEDLINE, EMBASE, the Centre for Reviews and Dissemination databases and the Cochrane Library were made for eligible studies as well as journal searches. Inclusion criteria included systematic reviews that have similar primary questions to this review and randomized controlled trials where patients with blunt torso injuries and hemorrhagic shock were not excluded. Rapid or early fluid administration was compared with controlled or delayed fluid resuscitation and a significant outcome was obtained. Results No systematic reviews attempting to answer similar questions were found. Two randomized controlled trials with mixed types of injuries in the included patients found no significant difference between the groups used in each study. Data concerning the question of this review was sought after these papers were appraised. Conclusion The limited available data are not conclusive. However, the supportive theoretical concept and laboratory evidence do not show any reason for treating blunt injuries differently from other traumatic injuries. Moreover, permissive hypotension is being used for some nontraumatic causes of hemorrhagic shock and in theater. Therefore, this should encourage interested researchers to continue clinical work in this important field. PMID:27147860

  11. Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, D.; Boehly, T. R.; Gregor, M. C.

    Using temporally shaped laser pulses, multiple shocks can be launched in direct-drive inertial confinement fusion implosion experiments to set the shell on a desired isentrope or adiabat. The velocity of the first shock and the times at which subsequent shocks catch up to it are measured through the VISAR diagnostic [T. R. Boehly et al., Phys. Plasmas 18, 092706 (2011)] on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Simulations reproduce these velocity and shock-merger time measurements when using laser pulses designed for setting mid-adiabat (alpha ~ 3) implosions, but agreement degrades for lower-adiabat (alpha ~ 1)more » designs. Several possibilities for this difference are studied: (1) errors in placing the target at the center of irradiation (target offset), (2) variations in energy between the different incident beams (power imbalance), and (3) errors in modeling the laser energy coupled into the capsule. Simulation results indicate that shock timing is most sensitive to details of the density and temperature profiles in the coronal plasma, which influences the laser energy coupled into the target, and only marginally sensitive to target offset and beam power imbalance. A new technique under development to infer coronal profiles using x-ray self-emission imaging [A. K. Davis et al., Bull. Am. Phys. Soc. 61, BAPS.2016.DPP.NO8.7 (2016)] can be applied to the pulse shapes used in shock-timing experiments. This will help identify improved physics models to implement in codes and consequently enhance shock-timing predictive capability for low-adiabat pulses.« less

  12. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Flanagan, Kathryn A.; Petre, Robert

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.

  13. Applications of statistical physics to the social and economic sciences

    NASA Astrophysics Data System (ADS)

    Petersen, Alexander M.

    2011-12-01

    This thesis applies statistical physics concepts and methods to quantitatively analyze socioeconomic systems. For each system we combine theoretical models and empirical data analysis in order to better understand the real-world system in relation to the complex interactions between the underlying human agents. This thesis is separated into three parts: (i) response dynamics in financial markets, (ii) dynamics of career trajectories, and (iii) a stochastic opinion model with quenched disorder. In Part I we quantify the response of U.S. markets to financial shocks, which perturb markets and trigger "herding behavior" among traders. We use concepts from earthquake physics to quantify the decay of volatility shocks after the "main shock." We also find, surprisingly, that we can make quantitative statements even before the main shock. In order to analyze market behavior before as well as after "anticipated news" we use Federal Reserve interest-rate announcements, which are regular events that are also scheduled in advance. In Part II we analyze the statistical physics of career longevity. We construct a stochastic model for career progress which has two main ingredients: (a) random forward progress in the career and (b) random termination of the career. We incorporate the rich-get-richer (Matthew) effect into ingredient (a), meaning that it is easier to move forward in the career the farther along one is in the career. We verify the model predictions analyzing data on 400,000 scientific careers and 20,000 professional sports careers. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience. In Part III we analyze a stochastic two-state spin model which represents a system of voters embedded on a network. We investigate the role in consensus formation of "zealots", which are agents with time-independent opinion. Our main result is the unexpected finding that it is the number and not the density of zealots which deter- mines the steady-state opinion polarization. We compare our findings with results for United States Presidential elections.

  14. Albumin in Burn Shock Resuscitation: A Meta-Analysis of Controlled Clinical Studies.

    PubMed

    Navickis, Roberta J; Greenhalgh, David G; Wilkes, Mahlon M

    2016-01-01

    Critical appraisal of outcomes after burn shock resuscitation with albumin has previously been restricted to small relatively old randomized trials, some with high risk of bias. Extensive recent data from nonrandomized studies assessing the use of albumin can potentially reduce bias and add precision. The objective of this meta-analysis was to determine the effect of burn shock resuscitation with albumin on mortality and morbidity in adult patients. Randomized and nonrandomized controlled clinical studies evaluating mortality and morbidity in adult patients receiving albumin for burn shock resuscitation were identified by multiple methods, including computer database searches and examination of journal contents and reference lists. Extracted data were quantitatively combined by random-effects meta-analysis. Four randomized and four nonrandomized studies with 688 total adult patients were included. Treatment effects did not differ significantly between the included randomized and nonrandomized studies. Albumin infusion during the first 24 hours showed no significant overall effect on mortality. However, significant statistical heterogeneity was present, which could be abolished by excluding two studies at high risk of bias. After those exclusions, albumin infusion was associated with reduced mortality. The pooled odds ratio was 0.34 with a 95% confidence interval of 0.19 to 0.58 (P < .001). Albumin administration was also accompanied by decreased occurrence of compartment syndrome (pooled odds ratio, 0.19; 95% confidence interval, 0.07-0.50; P < .001). This meta-analysis suggests that albumin can improve outcomes of burn shock resuscitation. However, the scope and quality of current evidence are limited, and additional trials are needed.

  15. Electrical and hydrodynamic characterization of a high current pulsed arc

    NASA Astrophysics Data System (ADS)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  16. Positive Effects of Extracorporeal Shock Wave Therapy on Spasticity in Poststroke Patients: A Meta-Analysis.

    PubMed

    Guo, Peipei; Gao, Fuqiang; Zhao, Tingting; Sun, Wei; Wang, Bailiang; Li, Zirong

    2017-11-01

    Spasticity is a common and serious complication following a stroke, and many clinical research have been conducted to evaluate the effect of extracorporeal shock wave therapy (ESWT) on muscle spasticity in poststroke patients. This meta-analysis aimed to evaluate the therapeutic effect on decreasing spasticity caused by a stroke immediately and 4 weeks after the application of shock wave therapy. We searched PubMed, Embase, Web of Science, and Cochrane Library databases for relevant studies through November 2016 using the following item: (Hypertonia OR Spasticity) and (Shock Wave or ESWT) and (Stroke). The outcomes were evaluated by Modified Ashworth Scale (MAS) grades and pooled by Stata 12.0 (Stata Corp, College Station, TX, USA). Six studies consisting of 9 groups were included in this meta-analysis. The MAS grades immediately after ESWT were significantly improved compared with the baseline values (standardized mean difference [SMD], -1.57; 95% confidence intervals [CIs], -2.20, -.94). Similarly, the MAS grades judged at 4 weeks after ESWT were also showed to be significantly lower than the baseline values (SMD, -1.93; 95% CIs, -2.71, -1.15). ESWT for the spasticity of patients after a stroke is effective, as measured by MAS grades. Moreover, no serious side effects were observed in any patients after shock wave therapy. Nevertheless, our current study with some limitations such as the limited sample size only provided limited quality of evidence; confirmation from a further systematic review or meta-analysis with large-scale, well-designed randomized control trials is required. Copyright © 2017. Published by Elsevier Inc.

  17. Medial tibial stress syndrome: evidence-based prevention.

    PubMed

    Craig, Debbie I

    2008-01-01

    Thacker SB, Gilchrist J, Stroup DF, Kimsey CD. The prevention of shin splints in sports: a systematic review of literature. Med Sci Sports Exerc. 2002;34(1):32-40. Among physically active individuals, which medial tibial stress syndrome (MTSS) prevention methods are most effective to decrease injury rates? Studies were identified by searching MEDLINE (1966-2000), Current Contents (1996-2000), Biomedical Collection (1993-1999), and Dissertation Abstracts. Reference lists of identified studies were searched manually until no further studies were identified. Experts in the field were contacted, including first authors of randomized controlled trials addressing prevention of MTSS. The Cochrane Collaboration (early stage of Cochrane Database of Systematic Reviews) was contacted. Inclusion criteria included randomized controlled trials or clinical trials comparing different MTSS prevention methods with control groups. Excluded were studies that did not provide primary research data or that addressed treatment and rehabilitation rather than prevention of incident MTSS. A total of 199 citations were identified. Of these, 4 studies compared prevention methods for MTSS. Three reviewers independently scored the 4 studies. Reviewers were blinded to the authors' names and affiliations but not the results. Each study was evaluated independently for methodologic quality using a 100-point checklist. Final scores were averages of the 3 reviewers' scores. Prevention methods studied were shock-absorbent insoles, foam heel pads, Achilles tendon stretching, footwear, and graduated running programs. No statistically significant results were noted for any of the prevention methods. Median quality scores ranged from 29 to 47, revealing flaws in design, control for bias, and statistical methods. No current evidence supports any single prevention method for MTSS. The most promising outcomes support the use of shock-absorbing insoles. Well-designed and controlled trials are critically needed to decrease the incidence of this common injury.

  18. Extracorporeal shock wave therapy as an adjunct wound treatment: a systematic review of the literature.

    PubMed

    Dymarek, Robert; Halski, Tomasz; Ptaszkowski, Kuba; Slupska, Lucyna; Rosinczuk, Joanna; Taradaj, Jakub

    2014-07-01

    Standard care procedures for complex wounds are sometimes supported and reinforced by physical treatment modalities such as extracorporeal shock wave therapy (ESWT). To evaluate available evidence of ESWT effectiveness in humans, a systematic review of the literature was conducted using MEDLINE, PubMed, Scopus, EBSCOhost, and PEDro databases. Of the 393 articles found, 13 met the publication date (year 2000-2013), study type (clinical study), language (English only), and abstract availability (yes) criteria. The 13 studies (n = 919 patients with wounds of varying etiologies) included seven randomized controlled trials that were evaluated using Cochrane Collaboration Group standards. Only studies with randomization, well prepared inclusion/exclusion criteria protocol, written in English, and full version available were analyzed. An additional six publications reporting results of other clinical studies including a total of 523patients were identified and summarized. ESWT was most commonly applied once or twice a week using used low or medium energy, focused or defocused generator heads (energy range 0.03 to 0.25 mJ/mm2; usually 0.1 mJ/mm2), and electrohydraulic or electromagnetic sources. Few safety concerns were reported, and in the controlled clinical studies statistically significant differences in rates of wound closure were reported compared to a variety of standard topical treatment modalities, sham ESWT treatment, and hyperbaric oxygen therapy. Based on this analysis, ESWT can be characterized as noninvasive, mostly painless, and safe. Controlled, randomized, multicenter, blind clinical trials still are required to evaluate the efficacy and cost-effectiveness of ESWT compared to sham control, other adjunctive treatments, and commonly used moisture-retentive dressings. In the future, ESWT may play an important role in wound care once evidence-based practice guidelines are developed.

  19. Driven waves in a two-fluid plasma

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.; Ciolek, Glenn E.

    2007-12-01

    We study the physics of wave propagation in a weakly ionized plasma, as it applies to the formation of multifluid, magnetohydrodynamics (MHD) shock waves. We model the plasma as separate charged and neutral fluids which are coupled by ion-neutral friction. At times much less than the ion-neutral drag time, the fluids are decoupled and so evolve independently. At later times, the evolution is determined by the large inertial mismatch between the charged and neutral particles. The neutral flow continues to evolve independently; the charged flow is driven by and slaved to the neutral flow by friction. We calculate this driven flow analytically by considering the special but realistic case where the charged fluid obeys linearized equations of motion. We carry out an extensive analysis of linear, driven, MHD waves. The physics of driven MHD waves is embodied in certain Green functions which describe wave propagation on short time-scales, ambipolar diffusion on long time-scales and transitional behaviour at intermediate times. By way of illustration, we give an approximate solution for the formation of a multifluid shock during the collision of two identical interstellar clouds. The collision produces forward and reverse J shocks in the neutral fluid and a transient in the charged fluid. The latter rapidly evolves into a pair of magnetic precursors on the J shocks, wherein the ions undergo force-free motion and the magnetic field grows monotonically with time. The flow appears to be self-similar at the time when linear analysis ceases to be valid.

  20. The use of laser-induced shock wave plasma spectroscopy (LISPS) for examining physical characteristics of pharmaceutical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdulmadjid, Syahrun Nur, E-mail: syahrun-madjid@yahoo.com; Lahna, Kurnia, E-mail: kurnialahna@gmail.com; Desiyana, Lydia Septa, E-mail: lydia-septa@yahoo.com

    2016-03-11

    An experimental study has been performed to examine the physical characteristics of pharmaceutical products, such as tablet, by employing an emission plasma induced by Nd-YAG laser at a low pressure of Helium gas. The hardness of tablet is one of the parameters that examined during the production process for standard quality of pharmaceutical products. In the Laser-Induced Shock Wave Plasma Spectroscopy (LISPS), the shock wave has a significant role in inducing atomic excitation. It was known that, the speed of the shock wavefront depends on the hardness of the sample, and it correlates with the ionization rate of the ablatedmore » atoms. The hardness of the tablet is examined using the intensity ratio between the ion of Mg (II) 275.2 nm and the neutral of Mg (I) 285.2 nm emission lines detected from the laser-induced plasma. It was observed that the ratio changes with respect to the change in the tablet hardness, namely the ratio is higher for the hard tablet. Besides the ratio measurements, we also measured the depth profile of a tablet by focusing 60 shots of irradiation of laser light at a fixed position on the surface of the tablet. It was found that the depth profile varies differently with the hardness of the tablet. These experiment results show that the technique of LISPS can be applied to examine the quality of pharmaceutical products.« less

  1. Thermal burn and electrical injuries among electric utility workers, 1995-2004.

    PubMed

    Fordyce, Tiffani A; Kelsh, Michael; Lu, Elizabeth T; Sahl, Jack D; Yager, Janice W

    2007-03-01

    This study describes the occurrence of work-related injuries from thermal-, electrical- and chemical-burns among electric utility workers. We describe injury trends by occupation, body part injured, age, sex, and circumstances surrounding the injury. This analysis includes all thermal, electric, and chemical injuries included in the Electric Power Research Institute (EPRI) Occupational Health and Safety Database (OHSD). There were a total of 872 thermal burn and electric shock injuries representing 3.7% of all injuries, but accounting for nearly 13% of all medical claim costs, second only to the medical costs associated with sprain- and strain-related injuries (38% of all injuries). The majority of burns involved less than 1 day off of work. The head, hands, and other upper extremities were the body parts most frequently injured by burns or electric shocks. For this industry, electric-related burns accounted for the largest percentage of burn injuries, 399 injuries (45.8%), followed by thermal/heat burns, 345 injuries (39.6%), and chemical burns, 51 injuries (5.8%). These injuries also represented a disproportionate number of fatalities; of the 24 deaths recorded in the database, contact with electric current or with temperature extremes was the source of seven of the fatalities. High-risk occupations included welders, line workers, electricians, meter readers, mechanics, maintenance workers, and plant and equipment operators.

  2. Prevalence of physical inactivity in Iran: a systematic review.

    PubMed

    Fakhrzadeh, Hossein; Djalalinia, Shirin; Mirarefin, Mojdeh; Arefirad, Tahereh; Asayesh, Hamid; Safiri, Saeid; Samami, Elham; Mansourian, Morteza; Shamsizadeh, Morteza; Qorbani, Mostafa

    2016-01-01

    Introduction: Physical inactivity is one of the most important risk factors for chronic diseases, including cardiovascular disease, cancer, and stroke. We aim to conduct a systematic review of the prevalence of physical inactivity in Iran. Methods: We searched international databases; ISI, PubMed/Medline, Scopus, and national databases Irandoc, Barakat knowledge network system, and Scientific Information Database (SID). We collected data for outcome measures of prevalence of physical inactivity by sex, age, province, and year. Quality assessment and data extraction has been conducted independently by two independent research experts. There were no limitations for time and language. Results: We analyzed data for prevalence of physical inactivity in Iranian population. According to our search strategy we found 254 records; of them 185 were from international databases and the remaining 69 were obtained from national databases after refining the data, 34 articles that met eligible criteria remained for data extraction. From them respectively; 9, 20, 2 and 3 studies were at national, provincial, regional and local levels. The estimates for inactivity ranged from approximately 30% to almost 70% and had considerable variation between sexes and studied sub-groups. Conclusion: In Iran, most of studies reported high prevalence of physical inactivity. Our findings reveal a heterogeneity of reported values, often from differences in study design, measurement tools and methods, different target groups and sub-population sampling. These data do not provide the possibility of aggregation of data for a comprehensive inference.

  3. Impact Cratering Physics al Large Planetary Scales

    NASA Astrophysics Data System (ADS)

    Ahrens, Thomas J.

    2007-06-01

    Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).

  4. Modeling Laboratory Astrophysics Experiments in the High-Energy-Density Regime Using the CRASH Radiation-Hydrodynamics Model

    NASA Astrophysics Data System (ADS)

    Grosskopf, M. J.; Drake, R. P.; Trantham, M. R.; Kuranz, C. C.; Keiter, P. A.; Rutter, E. M.; Sweeney, R. M.; Malamud, G.

    2012-10-01

    The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density physics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. CRASH model results have shown good agreement with a experimental results from a variety of applications, including: radiative shock, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL), collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.

  5. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  6. Ion kinetic dynamics in strongly-shocked plasmas relevant to ICF

    DOE PAGES

    Rinderknecht, H. G.; Amendt, P. A.; Rosenberg, M. J.; ...

    2017-04-20

    Implosions of thin-shell capsules produce strongly-shocked (M > 10), low-density (ρ ~1 mg/cc -1), high-temperature (T i ~keV) plasmas, comparable to those produced in the strongly-shocked DT-vapor in inertial confinement fusion (ICF) experiments. A series of thin-glass targets filled with mixtures of deuterium and Helium-3 gas ranging from 7% to 100% deuterium was imploded to investigate the impact of multi-species ion kinetic mechanisms in ICF-relevant plasmas over a wide range of Knudsen numbers (N K ≡ λ ii/R). Anomalous trends in nuclear yields and burn-averaged ion temperatures in implosions with N K > 0.5, which have been interpreted as signaturesmore » of ion species separation and ion thermal decoupling, are found not to be consistent with single-species ion kinetic effects alone. Experimentally inferred Knudsen numbers predict an opposite yield trend to those observed, confirming the dominance of multi-species physics in these experiments. In contrast, implosions with N K ~ 0.01 follow the expected yield trend, suggesting single-species kinetic effects are dominant. In conclusion, the impact of the observed kinetic physics mechanisms on the formation of the hotspot in ICF experiments is discussed.« less

  7. Thomas J. Ahrens (1936-2010)

    NASA Astrophysics Data System (ADS)

    Jeanloz, Raymond

    2011-03-01

    Thomas J. Ahrens, a leader in the study of high-pressure shock wave and planetary impact phenomena, died at his home in Pasadena, Calif., on 24 November 2010 at the age of 74. He was the California Institute of Technology's Fletcher Jones Professor of Geophysics, emeritus since 2005 but professionally active to the end. He had been president of AGU's Tectonophysics section, editor of Journal of Geophysical Research, founding member of both the Mineral and Rock Physics and Study of the Earth's Deep Interior focus groups, and editor—more like key driving force—for AGU's Handbook of Physical Constants. Tom was a pioneer in experimental and numerical studies of the effects of projectiles hitting a target at velocities exceeding the speed of sound (hypervelocity impact), arguably the most important geophysical process in the formation, growth, and, in many cases, surface evolution of planets. As a professor at Caltech, he established the foremost university laboratory for shock wave experiments, where students and research associates from around the world pursued basic research in geophysics, planetary science, and other disciplines. Previously, high-pressure shock experiments were conducted primarily in national laboratories, where they were initially associated with the development of nuclear weapons.

  8. Hormesis does not make sense except in the light of TOR-driven aging

    PubMed Central

    Blagosklonny, Mikhail V.

    2011-01-01

    Weak stresses (including weak oxidative stress, cytostatic agents, heat shock, hypoxia, calorie restriction) may extend lifespan. Known as hormesis, this is the most controversial notion in gerontology. For one, it is believed that aging is caused by accumulation of molecular damage. If so, hormetic stresses (by causing damage) must shorten lifespan. To solve the paradox, it was suggested that, by activating repair, hormetic stresses eventually decrease damage. Similarly, Baron Munchausen escaped from a swamp by pulling himself up by his own hair. Instead, I discuss that aging is not caused by accumulation of molecular damage. Although molecular damage accumulates, organisms do not live long enough to age from this accumulation. Instead, aging is driven by overactivated signal-transduction pathways including the TOR (Target of Rapamycin) pathway. A diverse group of hormetic conditions can be divided into two groups. “Hormesis A” inhibits the TOR pathway. “Hormesis B” increases aging-tolerance, defined as the ability to survive catastrophic complications of aging. Hormesis A includes calorie restriction, resveratrol, rapamycin, p53-inducing agents and, in part, physical exercise, heat shock and hypoxia. Hormesis B includes ischemic preconditioning and, in part, physical exercise, heat shock, hypoxia and medical interventions. PMID:22166724

  9. Turbulence interacting with chemical kinetics in airbreathing combustion of ducted rockets

    NASA Astrophysics Data System (ADS)

    Chung, T. J.; Yoon, W. S.

    1992-10-01

    Physical interactions between turbulence and shock waves are very complex phenomena. If these interactions take place in chemically reacting flows the degree of complexity increases dramatically. Examples of applications may be cited in the area of supersonic combustion, in which the controlled generation of turbulence and/or large scale vortices in the mixing and flame holding zones is crucial for efficient combustion. Equally important, shock waves interacting with turbulence and chemical reactions affect the combustor flowfield resulting in enhanced relaxation and chemical reaction rates. Chemical reactions in turn contribute to dispersion of shock waves and reduction of turbulent kinetic energies. Computational schemes to address these physical phenomena must be capable of resolving various length and time scales. These scales are widely disparate and the most optimum approach is found in explicit/ implicit adjustable schemes for the Navier-Stokes solver. This is accomplished by means of the generalized Taylor-Galerkin (GTG) finite element formulations. Adaptive meshes are used in order to assure efficiency and accuracy of solutions. Various benchmark problems are presented for illustration of the theory and applications. Geometries of ducted rockets, supersonic diffusers, flame holders, and hypersonic inlets are included. Merits of proposed schemes are demonstrated through these example problems.

  10. Blood glucose concentrations in prehospital trauma patients with traumatic shock: A retrospective analysis.

    PubMed

    Kreutziger, Janett; Lederer, Wolfgang; Schmid, Stefan; Ulmer, Hanno; Wenzel, Volker; Nijsten, Maarten W; Werner, Daniel; Schlechtriemen, Thomas

    2018-01-01

    Deranged glucose metabolism after moderate to severe trauma with either high or low concentrations of blood glucose is associated with poorer outcome. Data on prehospital blood glucose concentrations and trauma are scarce. The primary aim was to describe the relationship between traumatic shock and prehospital blood glucose concentrations. The secondary aim was to determine the additional predictive value of prehospital blood glucose concentration for traumatic shock when compared with vital parameters alone. Retrospective analysis of the predefined, observational database of a nationwide Helicopter Emergency Medical Service (34 bases). Emergency trauma patients treated by Helicopter Emergency Medical Service between 2005 and 2013 were investigated. All adult trauma patients (≥18 years) with recorded blood glucose concentrations were enrolled. Primary outcome: upper and lower thresholds of blood glucose concentration more commonly associated with traumatic shock. Secondary outcome: additional predictive value of prehospital blood glucose concentrations when compared with vital parameters alone. Of 51 936 trauma patients, 20 177 were included. In total, 220 (1.1%) patients died on scene. Hypoglycaemia (blood glucose concentration 2.8 mmol l or less) was observed in 132 (0.7%) patients, hyperglycaemia (blood glucose concentration exceeding 15 mmol l) was observed in 265 patients (1.3%). Blood glucose concentrations more than 10 mmol l (n = 1308 (6.5%)) and 2.8 mmol l or less were more common in patients with traumatic shock (P < 0.0001). The Youden index for traumatic shock ((sensitivity + specificity) - 1) was highest when blood glucose concentration was 3.35 mmol l (P < 0.001) for patients with low blood glucose concentrations and 7.75 mmol l (P < 0.001) for those with high blood glucose concentrations. In logistic regression analysis of patients with spontaneous circulation on scene, prehospital blood glucose concentrations (together with common vital parameters: Glasgow Coma Scale, heart rate, blood pressure, breathing frequency) significantly improved the prediction of traumatic shock in comparison with prediction by common vital parameters alone (P < 0.0001). In adult trauma patients, low and high blood glucose concentrations were more common in patients with traumatic shock. Prehospital blood glucose concentration measurements in addition to common vital parameters may help identify patients at risk of traumatic shock.

  11. A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic flows

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Wong, Eric Y.; Dogra, V. K.

    1991-01-01

    Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.

  12. Additive Effects of Threat-of-Shock and Picture Valence on Startle Reflex Modulation

    PubMed Central

    Bublatzky, Florian; Guerra, Pedro M.; Pastor, M. Carmen; Schupp, Harald T.; Vila, Jaime

    2013-01-01

    The present study examined the effects of sustained anticipatory anxiety on the affective modulation of the eyeblink startle reflex. Towards this end, pleasant, neutral and unpleasant pictures were presented as a continuous stream during alternating threat-of-shock and safety periods, which were cued by colored picture frames. Orbicularis-EMG to auditory startle probes and electrodermal activity were recorded. Previous findings regarding affective picture valence and threat-of-shock modulation were replicated. Of main interest, anticipating aversive events and viewing affective pictures additively modulated defensive activation. Specifically, despite overall potentiated startle blink magnitude in threat-of-shock conditions, the startle reflex remained sensitive to hedonic picture valence. Finally, skin conductance level revealed sustained sympathetic activation throughout the entire experiment during threat- compared to safety-periods. Overall, defensive activation by physical threat appears to operate independently from reflex modulation by picture media. The present data confirms the importance of simultaneously manipulating phasic-fear and sustained-anxiety in studying both normal and abnormal anxiety. PMID:23342060

  13. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolutions, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  14. DSMC Simulations of Hypersonic Flows With Shock Interactions and Validation With Experiments

    NASA Technical Reports Server (NTRS)

    Moss, James N.; Bird, Graeme A.

    2004-01-01

    The capabilities of a relatively new direct simulation Monte Carlo (DSMC) code are examined for the problem of hypersonic laminar shock/shock and shock/boundary layer interactions, where boundary layer separation is an important feature of the flow. Flow about two model configurations is considered, where both configurations (a biconic and a hollow cylinder-flare) have recent published experimental measurements. The computations are made by using the DS2V code of Bird, a general two-dimensional/axisymmetric time accurate code that incorporates many of the advances in DSMC over the past decade. The current focus is on flows produced in ground-based facilities at Mach 12 and 16 test conditions with nitrogen as the test gas and the test models at zero incidence. Results presented highlight the sensitivity of the calculations to grid resolution, sensitivity to physical modeling parameters, and comparison with experimental measurements. Information is provided concerning the flow structure and surface results for the extent of separation, heating, pressure, and skin friction.

  15. Refraction of dispersive shock waves

    NASA Astrophysics Data System (ADS)

    El, G. A.; Khodorovskii, V. V.; Leszczyszyn, A. M.

    2012-09-01

    We study a dispersive counterpart of the classical gas dynamics problem of the interaction of a shock wave with a counter-propagating simple rarefaction wave, often referred to as the shock wave refraction. The refraction of a one-dimensional dispersive shock wave (DSW) due to its head-on collision with the centred rarefaction wave (RW) is considered in the framework of the defocusing nonlinear Schrödinger (NLS) equation. For the integrable cubic nonlinearity case we present a full asymptotic description of the DSW refraction by constructing appropriate exact solutions of the Whitham modulation equations in Riemann invariants. For the NLS equation with saturable nonlinearity, whose modulation system does not possess Riemann invariants, we take advantage of the recently developed method for the DSW description in non-integrable dispersive systems to obtain main physical parameters of the DSW refraction. The key features of the DSW-RW interaction predicted by our modulation theory analysis are confirmed by direct numerical solutions of the full dispersive problem.

  16. An infrared flash contemporaneous with the gamma-rays of GRB 041219a.

    PubMed

    Blake, C H; Bloom, J S; Starr, D L; Falco, E E; Skrutskie, M; Fenimore, E E; Duchêne, G; Szentgyorgyi, A; Hornstein, S; Prochaska, J X; McCabe, C; Ghez, A; Konopacky, Q; Stapelfeldt, K; Hurley, K; Campbell, R; Kassis, M; Chaffee, F; Gehrels, N; Barthelmy, S; Cummings, J R; Hullinger, D; Krimm, H A; Markwardt, C B; Palmer, D; Parsons, A; McLean, K; Tueller, J

    2005-05-12

    The explosion that results in a cosmic gamma-ray burst (GRB) is thought to produce emission from two physical processes: the central engine gives rise to the high-energy emission of the burst through internal shocking, and the subsequent interaction of the flow with the external environment produces long-wavelength afterglows. Although observations of afterglows continue to refine our understanding of GRB progenitors and relativistic shocks, gamma-ray observations alone have not yielded a clear picture of the origin of the prompt emission nor details of the central engine. Only one concurrent visible-light transient has been found and it was associated with emission from an external shock. Here we report the discovery of infrared emission contemporaneous with a GRB, beginning 7.2 minutes after the onset of GRB 041219a (ref. 8). We acquired 21 images during the active phase of the burst, yielding early multi-colour observations. Our analysis of the initial infrared pulse suggests an origin consistent with internal shocks.

  17. Nonthermal X-ray emission from winds of OB supergiants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, W.; White, R.L.

    1991-01-01

    The mechanisms responsible for the hard X-ray emission of OB supergiants (OBSGs) are investigated theoretically, modifying the periodic-shock model of Lucy (1982). The physical processes discussed include (1) the particle acceleration (PA) mechanism and its effect on the structure of individual shocks, (2) the energy cutoff and spectral index of the relativistic electrons and ions, and (3) the efficiency of PA by shocks and its implications for the number densities of relativistic particles. The model is used to predict the spectrum and intensity of the dominant nonthermal X-ray emission source from OBSGs, and the results are shown to be inmore » good agreement with Einstein Observatory Solid-State Spectrometer observations of three OBSGs in Orion (Cassinelli and Swank, 1983). It is inferred that the surface magnetic fields of OBSGs are no greater than a few G, and that the PA rates are significantly lower than generally predicted for collisionless astrophysical shocks. 66 refs.« less

  18. A Physical Model for Mass Ejection in Failed Supernovae

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric Robert; Quataert, Eliot; Fernandez, Rodrigo; Kasen, Daniel

    2018-01-01

    During the core collapse of a massive star, the formation of the protoneutron star is accompanied by the emission of a significant amount of mass-energy (a few tenths of a Solar mass) in the form of neutrinos. This mass-energy loss generates an outward-propagating pressure wave that steepens into a shock near the stellar surface, potentially powering a weak transient associated with an otherwise-failed supernova -- where the shock associated with the original core collapse cannot unbind the envelope in a successful explosion. We provide both rough estimates of the energy contained in the shock that powers the transient and a general formalism for analyzing the propagation and steepening of the pressure wave, and we apply this formalism to polytropic stellar models. We compare our results to simulations, and we find excellent agreement in both the early evolution of the pressure wave and in the energy contained in the shock. Our estimates provide important constraints on the observational implications of failed supernovae.

  19. A k-ɛ model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Gauthier, Serge; Bonnet, Michel

    1990-09-01

    A k-ɛ model for turbulent mixing induced by Rayleigh-Taylor instability is described. The classical linear closure relations are supplemented with algebraic relations in order to be valid under strong gradients. Calibrations were made against two shock-tube experiments (Andronov et al. [Sov. Phys. JETP 44, 424 (1976); Sov. Phys. Dokl. 27, 393 (1982)] and Houas et al. [Proceedings of the 15th International Symposium on Shock Waves and Shock Tubes (Stanford U.P., Stanford, CA, 1986)]) using the same set of constants. The new interpretation of the experimental data of Brouillette and Sturtevant [Physica D 37, 248 (1989)], where the mixing length is discriminated from the wall jet, requires a different numerical value for the Rayleigh-Taylor source term coefficient. A detailed physical study is given in both cases. It turns out that the spectrum is narrower in the Brouillette and Sturtevant case than in the Andronov et al. case but the small length scales are of the same magnitude.

  20. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    NASA Astrophysics Data System (ADS)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

Top