Sample records for dataset global forecast

  1. High Spatial Resolution Forecasting of Long-Term Monthly Precipitation and Mean Temperature Trends in Data Scarce Regions

    NASA Astrophysics Data System (ADS)

    Mosier, T. M.; Hill, D. F.; Sharp, K. V.

    2013-12-01

    High spatial resolution time-series data are critical for many hydrological and earth science studies. Multiple groups have developed historical and forecast datasets of high-resolution monthly time-series for regions of the world such as the United States (e.g. PRISM for hindcast data and MACA for long-term forecasts); however, analogous datasets have not been available for most data scarce regions. The current work fills this data need by producing and freely distributing hindcast and forecast time-series datasets of monthly precipitation and mean temperature for all global land surfaces, gridded at a 30 arc-second resolution. The hindcast data are constructed through a Delta downscaling method, using as inputs 0.5 degree monthly time-series and 30 arc-second climatology global weather datasets developed by Willmott & Matsuura and WorldClim, respectively. The forecast data are formulated using a similar downscaling method, but with an additional step to remove bias from the climate variable's probability distribution over each region of interest. The downscaling package is designed to be compatible with a number of general circulation models (GCM) (e.g. with GCMs developed for the IPCC AR4 report and CMIP5), and is presently implemented using time-series data from the NCAR CESM1 model in conjunction with 30 arc-second future decadal climatologies distributed by the Consultative Group on International Agricultural Research. The resulting downscaled datasets are 30 arc-second time-series forecasts of monthly precipitation and mean temperature available for all global land areas. As an example of these data, historical and forecast 30 arc-second monthly time-series from 1950 through 2070 are created and analyzed for the region encompassing Pakistan. For this case study, forecast datasets corresponding to the future representative concentration pathways 45 and 85 scenarios developed by the IPCC are presented and compared. This exercise highlights a range of potential meteorological trends for the Pakistan region and more broadly serves to demonstrate the utility of the presented 30 arc-second monthly precipitation and mean temperature datasets for use in data scarce regions.

  2. DAPAGLOCO - A global daily precipitation dataset from satellite and rain-gauge measurements

    NASA Astrophysics Data System (ADS)

    Spangehl, T.; Danielczok, A.; Dietzsch, F.; Andersson, A.; Schroeder, M.; Fennig, K.; Ziese, M.; Becker, A.

    2017-12-01

    The BMBF funded project framework MiKlip(Mittelfristige Klimaprognosen) develops a global climate forecast system on decadal time scales for operational applications. Herein, the DAPAGLOCO project (Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized) provides a global precipitation dataset as a combination of microwave-based satellite measurements over ocean and rain gauge measurements over land on daily scale. The DAPAGLOCO dataset is created for the evaluation of the MiKlip forecast system in the first place. The HOAPS dataset (Hamburg Ocean Atmosphere Parameter and Fluxes from Satellite data) is used for the derivation of precipitation rates over ocean and is extended by the use of measurements from TMI, GMI, and AMSR-E, in addition to measurements from SSM/I and SSMIS. A 1D-Var retrieval scheme is developed to retrieve rain rates from microwave imager data, which also allows for the determination of uncertainty estimates. Over land, the GPCC (Global Precipitation Climatology Center) Full Data Daily product is used. It consists of rain gauge measurements that are interpolated on a regular grid by ordinary Kriging. The currently available dataset is based on a neuronal network approach, consists of 21 years of data from 1988 to 2008 and is currently extended until 2015 using the 1D-Var scheme and with improved sampling. Three different spatial resolved dataset versions are available with 1° and 2.5° global, and 0.5° for Europe. The evaluation of the MiKlip forecast system by DAPAGLOCO is based on ETCCDI (Expert Team on Climate Change and Detection Indices). Hindcasts are used for the index-based comparison between model and observations. These indices allow for the evaluation of precipitation extremes, their spatial and temporal distribution as well as for the duration of dry and wet spells, average precipitation amounts and percentiles on global scale. Besides, an ETCCDI-based climatology of the DAPAGLOCO precipitation dataset has been derived.

  3. A unified high-resolution wind and solar dataset from a rapidly updating numerical weather prediction model

    DOE PAGES

    James, Eric P.; Benjamin, Stanley G.; Marquis, Melinda

    2016-10-28

    A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents anmore » initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.« less

  4. A three-dimensional multivariate representation of atmospheric variability

    NASA Astrophysics Data System (ADS)

    Žagar, Nedjeljka; Jelić, Damjan; Blaauw, Marten; Jesenko, Blaž

    2016-04-01

    A recently developed MODES software has been applied to the ECMWF analyses and forecasts and to several reanalysis datasets to describe the global variability of the balanced and inertio-gravity (IG) circulation across many scales by considering both mass and wind field and the whole model depth. In particular, the IG spectrum, which has only recently become observable in global datasets, can be studied simultaneously in the mass field and wind field and considering the whole model depth. MODES is open-access software that performs the normal-mode function decomposition of the 3D global datasets. Its application to the ERA Interim dataset reveals several aspects of the large-scale circulation after it has been partitioned into the linearly balanced and IG components. The global energy distribution is dominated by the balanced energy while the IG modes contribute around 8% of the total wave energy. However, on subsynoptic scales IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally-averaged and equatorial circulation provide a reference for the intercomparison of several reanalysis datasets and for the validation of climate models. Features of the global IG circulation are compared in ERA Interim, MERRA and JRA reanalysis datasets and in several CMIP5 models. Since October 2014 the operational medium-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been analyzed by MODES daily and an online archive of all the outputs is available at http://meteo.fmf.uni-lj.si/MODES. New outputs are made available daily based on the 00 UTC run and subsequent 12-hour forecasts up to 240-hour forecast. In addition to the energy spectra and horizontal circulation on selected levels for the balanced and IG components, the equatorial Kelvin waves are presented in time and space as the most energetic tropical IG modes propagating vertically and along the equator from its main generation regions in the upper troposphere over the Indian and Pacific region. The validation of the 10-day ECMWF forecasts with analyses in the modal space suggests a lack of variability in the tropics in the medium range. Reference: Žagar, N. et al., 2015: Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community. Geosci. Model Dev., 8, 1169-1195, doi:10.5194/gmd-8-1169-2015 Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444 The MODES software is available from http://meteo.fmf.uni-lj.si/MODES.

  5. Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Srivastava, Prashant K.; Han, Dawei; Islam, Tanvir; Petropoulos, George P.; Gupta, Manika; Dai, Qiang

    2016-04-01

    Reference evapotranspiration (ETo) is an important variable in hydrological modeling, which is not always available, especially for ungauged catchments. Satellite data, such as those available from the MODerate Resolution Imaging Spectroradiometer (MODIS), and global datasets via the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis (ERA) interim and National Centers for Environmental Prediction (NCEP) reanalysis are important sources of information for ETo. This study explored the seasonal performances of MODIS (MOD16) and Weather Research and Forecasting (WRF) model downscaled global reanalysis datasets, such as ERA interim and NCEP-derived ETo, against ground-based datasets. Overall, on the basis of the statistical metrics computed, ETo derived from ERA interim and MODIS were more accurate in comparison to the estimates from NCEP for all the seasons. The pooled datasets also revealed a similar performance to the seasonal assessment with higher agreement for the ERA interim (r = 0.96, RMSE = 2.76 mm/8 days; bias = 0.24 mm/8 days), followed by MODIS (r = 0.95, RMSE = 7.66 mm/8 days; bias = -7.17 mm/8 days) and NCEP (r = 0.76, RMSE = 11.81 mm/8 days; bias = -10.20 mm/8 days). The only limitation with downscaling ERA interim reanalysis datasets using WRF is that it is time-consuming in contrast to the readily available MODIS operational product for use in mesoscale studies and practical applications.

  6. Efforts in assimilating Indian satellite data in the NGFS and monitoring of their quality

    NASA Astrophysics Data System (ADS)

    Prasad, V. S.; Singh, Sanjeev Kumar

    2016-05-01

    Megha-Tropiques (MT) is an Indo-French Joint Satellite Mission, launched on 12 October 2011. MT-SAPHIR is a sounding instrument with 6 channels near the absorption band of water vapor at 183 GHz, for studying the water cycle and energy exchanges in the tropics. The main objective of this mission is to understand the life cycle of convective systems that influence the tropical weather and climate and their role in associated energy and moisture budget of the atmosphere in tropical regions. India also has a prestigious space programme and has launched the INSAT-3D satellite on 26 July 2013 which has an atmospheric sounder for the first time along with improved VHRR imager. NCMRWF (National Centre for Medium Range Weather Forecasting) is regularly receiving these new datasets and also making changes to its Global Data Assimilation Forecasting (GDAF) system from time-to-time to assimilate these new datasets. A well planned strategy involving various steps such as monitoring of data quality, development of observation operator and quality control procedures, and finally then studying its impact on forecasts is developed to include new observations in global data analysis system. By employing this strategy observations having positive impact on forecast quality such as MT-SAPHIR, and INSAT-3D Clear Sky Radiance (CSR) products are identified and being assimilated in the Global Data Assimilation and Forecasting (GDAF) system.

  7. Advances in air quality prediction with the use of integrated systems

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.

    2017-12-01

    Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.

  8. Time series modelling of global mean temperature for managerial decision-making.

    PubMed

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  9. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  10. Crash forecasting in the Korean stock market based on the log-periodic structure and pattern recognition

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Song, Jae Wook; Chang, Woojin

    2018-02-01

    The aim of this research is to propose an alarm index to forecast the crash of the Korean financial market in extension to the idea of Johansen-Ledoit-Sornette model, which uses the log-periodic functions and pattern recognition algorithm. We discover that the crashes of the Korean financial market can be classified into domestic and global crises where each category requires different window length of fitted datasets. Therefore, we add the window length as a new parameter to enhance the performance of alarm index. Distinguishing the domestic and global crises separately, our alarm index demonstrates more robust forecasting than previous model by showing the error diagram and the results of trading performance.

  11. Soundscapes

    DTIC Science & Technology

    2014-09-30

    Soundscapes ...global oceanographic models to provide hindcasts, nowcasts, and forecasts of the time-evolving soundscape . In terms of the types of sound sources, we...other types of sources. APPROACH The research has two principle thrusts: 1) the modeling of the soundscape , and 2) verification using datasets that

  12. Monitoring and seasonal forecasting of meteorological droughts

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Pozzi, Will; Wetterhall, Fredrik; Di Giuseppe, Francesca; Magnusson, Linus; Naumann, Gustavo; Barbosa, Paulo; Vogt, Jurgen; Pappenberger, Florian

    2015-04-01

    Near-real time drought monitoring can provide decision makers valuable information for use in several areas, such as water resources management, or international aid. Unfortunately, a major constraint in current drought outlooks is the lack of reliable monitoring capability for observed precipitation globally in near-real time. Furthermore, drought monitoring systems requires a long record of past observations to provide mean climatological conditions. We address these constraints by developing a novel drought monitoring approach in which monthly mean precipitation is derived from short-range using ECMWF probabilistic forecasts and then merged with the long term precipitation climatology of the Global Precipitation Climatology Centre (GPCC) dataset. Merging the two makes available a real-time global precipitation product out of which the Standardized Precipitation Index (SPI) can be estimated and used for global or regional drought monitoring work. This approach provides stability in that by-passes problems of latency (lags) in having local rain-gauge measurements available in real time or lags in satellite precipitation products. Seasonal drought forecasts can also be prepared using the common methodology and based upon two data sources used to provide initial conditions (GPCC and the ECMWF ERA-Interim reanalysis (ERAI) combined with either the current ECMWF seasonal forecast or a climatology based upon ensemble forecasts. Verification of the forecasts as a function of lead time revealed a reduced impact on skill for: (i) long lead times using different initial conditions, and (ii) short lead times using different precipitation forecasts. The memory effect of initial conditions was found to be 1 month lead time for the SPI-3, 3 to 4 months for the SPI-6 and 5 months for the SPI-12. Results show that dynamical forecasts of precipitation provide added value, a skill similar to or better than climatological forecasts. In some cases, particularly for long SPI time scales, it is very difficult to improve on the use of climatological forecasts. However, results presented regionally and globally pinpoint several regions in the world where drought onset forecasting is feasible and skilful.

  13. Verifying Operational and Developmental Air Force Weather Cloud Analysis and Forecast Products Using Lidar Data from Department of Energy Atmospheric Radiation Measurement (ARM) Sites

    NASA Astrophysics Data System (ADS)

    Hildebrand, E. P.

    2017-12-01

    Air Force Weather has developed various cloud analysis and forecast products designed to support global Department of Defense (DoD) missions. A World-Wide Merged Cloud Analysis (WWMCA) and short term Advected Cloud (ADVCLD) forecast is generated hourly using data from 16 geostationary and polar-orbiting satellites. Additionally, WWMCA and Numerical Weather Prediction (NWP) data are used in a statistical long-term (out to five days) cloud forecast model known as the Diagnostic Cloud Forecast (DCF). The WWMCA and ADVCLD are generated on the same polar stereographic 24 km grid for each hemisphere, whereas the DCF is generated on the same grid as its parent NWP model. When verifying the cloud forecast models, the goal is to understand not only the ability to detect cloud, but also the ability to assign it to the correct vertical layer. ADVCLD and DCF forecasts traditionally have been verified using WWMCA data as truth, but this might over-inflate the performance of those models because WWMCA also is a primary input dataset for those models. Because of this, in recent years, a WWMCA Reanalysis product has been developed, but this too is not a fully independent dataset. This year, work has been done to incorporate data from external, independent sources to verify not only the cloud forecast products, but the WWMCA data itself. One such dataset that has been useful for examining the 3-D performance of the cloud analysis and forecast models is Atmospheric Radiation Measurement (ARM) data from various sites around the globe. This presentation will focus on the use of the Department of Energy (DoE) ARM data to verify Air Force Weather cloud analysis and forecast products. Results will be presented to show relative strengths and weaknesses of the analyses and forecasts.

  14. Fire danger assessment using ECMWF weather prediction system

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca; Pappemberger, Florian; Wetterhall, Fredrik

    2015-04-01

    Weather plays a major role in the birth, growth and death of a wildfire wherever there is availability of combustible vegetation and suitable terrain topography. Prolonged dry periods creates favourable conditions for ignitions, wind can then increase the fire spread, while higher relative humidity, and precipitation (rain or snow) may decrease or extinguish it altogether. The European Forest Fire Information System (EFFIS), started in 2011 under the lead of the European Joint Research Centre (JRC) to monitor and forecast fire danger and fire behaviour in Europe. In 2012 a collaboration with the European Centre for Medium range Weather Forecast (ECMWF) was established to explore the potential of using state of the art weather forecast systems as driving forcing for the calculations of fire risk indices. From this collaboration in 2013 the EC-fire system was born. It implements the three most commonly used fire danger rating systems (NFDRS, FWI and MARK-5) and it is both initialised and forced by gridded atmospheric fields provided either by ECMWF re-analysis or ECMWF ensemble prediction systems. For consistency invariant fields (i.e fuel maps, vegetation cover, topogarphy) and real-time weather information are all provided on the same grid. Similarly global climatological vegetation stage conditions for each day of the year are provided by remote satellite observations. These climatological static maps substitute the traditional man judgement in an effort to create an automated procedure that can work in places where local observations are not available. The system has been in operation for the last year providing an ensemble of daily forecasts for fire indices with lead-times up to 10 days over Europe and Globally. An important part of the system is provided by its (re)-analysis dataset obtained by using the (re)-analysis forcings as drivers to calculate the fire risk indices. This is a crucial part of the whole chain since these fields are used to establish the initial conditions from which the forecast is subsequently run. The reanalysis dataset goes back to year 1980 (the starting year of ERA-Interim integrations) and is updated in quasi real time. In addition of providing the staring point for the operational forecasts it is a very useful dataset for the scope of calibration and verification of the system. Assuming reanalysis fields are good proxies for observations then, by comparison with fire events which really occurred, this dataset can be used to assess the potential predictability of fire risk indices. In this work we will introduce the EC-fire system. Then the reanalysis dataset will be used to identify regions of high fire risk predictability and where the system might be in need of further refinement.

  15. A Comparison of the Forecast Skills among Three Numerical Models

    NASA Astrophysics Data System (ADS)

    Lu, D.; Reddy, S. R.; White, L. J.

    2003-12-01

    Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.

  16. Impact assessment of GPS radio occultation data on Antarctic analysis and forecast using WRF 3DVAR

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wee, T. K.; Liu, Z.; Lin, H. C.; Kuo, Y. H.

    2016-12-01

    This study assesses the impact of Global Positioning System (GPS) Radio Occultation (RO) refractivity data on the analysis and forecast in the Antarctic region. The RO data are continuously assimilated into the Weather Research and Forecasting (WRF) Model using the WRF 3DVAR along with other observations that were operationally available to the National Center for Environmental Prediction (NCEP) during a month period, October 2010, including the Advance Microwave Sounding Unit (AMSU) radiance data. For the month-long data assimilation experiments, three RO datasets are used: 1) The actual operational dataset, which was produced by the near real-time RO processing at that time and provided to weather forecasting centers; 2) a post-processed dataset with posterior clock and orbit estimates, and with improved RO processing algorithms; and, 3) another post-processed dataset, produced with a variational RO processing. The data impact is evaluated with comparing the forecasts and analyses to independent driftsonde observations that are made available through the Concordiasi field campaign, in addition to utilizing other traditional means of verification. A denial of RO data (while keeping all other observations) resulted in a remarkable quality degradation of analysis and forecast, indicating the high value of RO data over the Antarctic area. The post-processed RO data showed a significantly larger positive impact compared to the near real-time data, due to extra RO data from the TerraSAR-X satellite (unavailable at the time of the near real-time processing) as well as the supposedly improved data quality as a result of the post-processing. This strongly suggests that the future polar constellation of COSMIC-2 is vital. The variational RO processing further reduced the systematic and random errors in both analysis and forecasts, for instance, leading to a smaller background departure of AMSU radiance. This indicates that the variational RO processing provides an improved reference for the bias correction of satellite radiance, making the bias correction more effective. This study finds that advanced RO data processing algorithms may further enhance the high quality of RO data in high Southern latitudes.

  17. Generation of an empirical soil moisture initialization and its potential impact on subseasonal forecasting skill of continental precipitation and air temperature

    NASA Astrophysics Data System (ADS)

    Boisserie, Marie

    The goal of this dissertation research is to produce empirical soil moisture initial conditions (soil moisture analysis) and investigate its impact on the short-term (2 weeks) to subseasonal (2 months) forecasting skill of 2-m air temperature and precipitation. Because of soil moisture has a long memory and plays a role in controlling the surface water and energy budget, an accurate soil moisture analysis is today widely recognized as having the potential to increase summertime climate forecasting skill. However, because of a lack of global observations of soil moisture, there has been no scientific consensus on the importance of the contribution of a soil moisture initialization as close to the truth as possible to climate forecasting skill. In this study, the initial conditions are generated using a Precipitation Assimilation Reanalysis (PAR) technique to produce a soil moisture analysis. This technique consists mainly of nudging precipitation in the atmosphere component of a land-atmosphere model by adjusting the vertical air humidity profile based on the difference between the rate of the model-derived precipitation rate and the observed rate. The unique aspects of the PAR technique are the following: (1) based on the PAR technique, the soil moisture analysis is generated using a coupled land-atmosphere forecast model; therefore, no bias between the initial conditions and the forecast model (spinup problem) is encountered; and (2) the PAR technique is physically consistent; the surface and radiative fluxes remains in conjunction with the soil moisture analysis. To our knowledge, there has been no attempt to use a physically consistent soil moisture land assimilation system into a land-atmosphere model in a coupled mode. The effect of the PAR technique on the model soil moisture estimates is evaluated using the Global Soil Wetness Project Phase 2 (GSWP-2) multimodel analysis product (used as a proxy for global soil moisture observations) and actual in-situ observations from the state of Illinois. The results show that overall the PAR technique is effective; across most of the globe, the seasonal and anomaly variability of the model soil moisture estimates well reproduce the values of GSWP-2 in the top 1.5 m soil layer; by comparing to in-situ observations in Illinois, we find that the seasonal and anomaly soil moisture variability is also well represented deep into the soil. Therefore, in this study, we produce a new global soil moisture analysis dataset that can be used for many land surface studies (crop modeling, water resource management, soil erosion, etc.). Then, the contribution of the resulting soil moisture analysis (used as initial conditions) on air temperature and precipitation forecasts are investigated. For this, we follow the experimental set up of a model intercomparison study over the time period 1986-1995, the Global Land-Atmosphere Coupling Experiment second phase (GLACE-2), in which the FSU/COAPS climate model has participated. The results of the summertime air temperature forecasts show a significant increase in skill across most of the U.S. at short-term to subseasonal time scales. No increase in summertime precipitation forecasting skill is found at short-term to subseasonal time scales between 1986 and 1995, except for the anomalous drought year of 1988. We also analyze the forecasts of two extreme hydrological events, the 1988 U.S. drought and the 1993 U.S. flood. In general, the comparison of these two extreme hydrological event forecasts shows greater improvement for the summertime of 1988 than that of 1993, suggesting that soil moisture contributes more to the development of a drought than a flood. This result is consistent with Dirmeyer and Brubaker [1999] and Weaver et al. [2009]. By analyzing the evaporative sources of these two extreme events using the back-trajectory methodology of Dirmeyer and Brubaker [1999], we find similar results as this latter paper; the soil moisture-precipitation feedback mechanism seems to play a greater role during the drought year of 1988 than the flood year of 1993. Finally, the accuracy of this soil moisture initialization depends upon the quality of the precipitation dataset that is assimilated. Because of the lack of observed precipitation at a high temporal resolution (3-hourly) for the study period (1986-1995), a reanalysis product is used for precipitation assimilation in this study. It is important to keep in mind that precipitation data in reanalysis sometimes differ significantly from observations since precipitation is often not assimilated into the reanalysis model. In order to investigate that aspect, a similar analysis to that we performed in this study could be done using the 3-hourly Tropical Rainfall Measuring Mission (TRMM) dataset available for a the time period 1998-present. Then, since the TRMM dataset is a fully observational dataset, we expect the soil moisture initialization to be improved over that obtained in this study, which, in turn, may further increase the forecast skill.

  18. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with assimilation and the runs without assimilation demonstrates the importance of SIZRS dropsonde data to the improvement of atmospheric analysis and reanalysis such as GFS and ERA-Interim, and consequently to the improvement of weather forecast in this region.

  19. Analysis of Multiple Precipitation Products and Preliminary Assessment of Their Impact on Global Land Data Assimilation System (GLDAS) Land Surface States

    NASA Technical Reports Server (NTRS)

    Gottschalck, Jon; Meng, Jesse; Rodel, Matt; Houser, paul

    2005-01-01

    Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth's water cycle and climate variability. NASA's Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type). Precipitation is arguably the most important input to LSMs. Many precipitation datasets have been produced using satellite and rain gauge observations and weather forecast models. In this study, seven different global precipitation datasets were evaluated over the United States, where dense rain gauge networks contribute to reliable precipitation maps. We then used the seven datasets as inputs to GLDAS simulations, so that we could diagnose their impacts on output stocks and fluxes of water. In terms of totals, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) had the closest agreement with the US rain gauge dataset for all seasons except winter. The CMAP precipitation was also the most closely correlated in time with the rain gauge data during spring, fall, and winter, while the satellitebased estimates performed best in summer. The GLDAS simulations revealed that modeled soil moisture is highly sensitive to precipitation, with differences in spring and summer as large as 45% depending on the choice of precipitation input.

  20. The potential predictability of fire danger provided by ECMWF forecast

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca

    2017-04-01

    The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.

  1. Forecasting daily streamflow using online sequential extreme learning machines

    NASA Astrophysics Data System (ADS)

    Lima, Aranildo R.; Cannon, Alex J.; Hsieh, William W.

    2016-06-01

    While nonlinear machine methods have been widely used in environmental forecasting, in situations where new data arrive continually, the need to make frequent model updates can become cumbersome and computationally costly. To alleviate this problem, an online sequential learning algorithm for single hidden layer feedforward neural networks - the online sequential extreme learning machine (OSELM) - is automatically updated inexpensively as new data arrive (and the new data can then be discarded). OSELM was applied to forecast daily streamflow at two small watersheds in British Columbia, Canada, at lead times of 1-3 days. Predictors used were weather forecast data generated by the NOAA Global Ensemble Forecasting System (GEFS), and local hydro-meteorological observations. OSELM forecasts were tested with daily, monthly or yearly model updates. More frequent updating gave smaller forecast errors, including errors for data above the 90th percentile. Larger datasets used in the initial training of OSELM helped to find better parameters (number of hidden nodes) for the model, yielding better predictions. With the online sequential multiple linear regression (OSMLR) as benchmark, we concluded that OSELM is an attractive approach as it easily outperformed OSMLR in forecast accuracy.

  2. Possible sources of forecast errors generated by the global/regional assimilation and prediction system for landfalling tropical cyclones. Part I: Initial uncertainties

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Yamaguchi, Munehiko; Qin, Xiaohao

    2016-07-01

    This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfalling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required.

  3. Examining the value of global seasonal reference evapotranspiration forecasts to support FEWS NET’s food insecurity outlooks

    USGS Publications Warehouse

    Shukla, Shraddhanand; McEvoy, Daniel; Hobbins, Michael; Husak, Gregory; Huntington, Justin; Funk, Chris; Macharia, Denis; Verdin, James P.

    2017-01-01

    The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several developing countries in Africa, Central Asia, and Central America. This study describes development of a new global reference evapotranspiration (ETo) seasonal reforecast and skill evaluation with a particular emphasis on the potential use of this dataset by the FEWS NET to support food insecurity early warning. The ETo reforecasts span the 1982-2009 period and are calculated following ASCE’s formulation of Penman-Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind speed, and solar radiation from NCEP’s CFSv2 and NASA’s GEOS-5 models. The skill evaluation using deterministic and probabilistic scores, focuses on the December-February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) seasons. The results indicate that ETo forecasts are a promising tool for early warning of drought and food insecurity. Globally, the regions where forecasts are most skillful (correlation >0.35 at lead-2) include Western U.S., northern parts of South America, parts of Sahel region and Southern Africa. The FEWS NET regions where forecasts are most skillful (correlation >0.35 at lead-3) include Northern Sub-Saharan Africa (DJF, dry season), Central America (DJF, dry season), parts of East Africa (JJA, wet Season), Southern Africa (JJA, dry season), and Central Asia (MAM, wet season). A case study over parts of East Africa for the JJA season shows that ETo forecasts in combination with the precipitation forecasts could have provided early warning of recent severe drought events (e.g., 2002, 2004, 2009) that contributed to substantial food insecurity in the region.

  4. High-Resolution Hydrological Sub-Seasonal Forecasting for Water Resources Management Over Europe

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Wanders, N.; Pan, M.; Sheffield, J.; Samaniego, L. E.; Thober, S.; Kumar, R.; Prudhomme, C.; Houghton-Carr, H.

    2017-12-01

    For decision-making at the sub-seasonal and seasonal time scale, hydrological forecasts with a high temporal and spatial resolution are required by water managers. So far such forecasts have been unavailable due to 1) lack of availability of meteorological seasonal forecasts, 2) coarse temporal resolution of meteorological seasonal forecasts, requiring temporal downscaling, 3) lack of consistency between observations and seasonal forecasts, requiring bias-correction. The EDgE (End-to-end Demonstrator for improved decision making in the water sector in Europe) project commissioned by the ECMWF (C3S) created a unique dataset of hydrological seasonal forecasts derived from four global climate models (CanCM4, FLOR-B01, ECMF, LFPW) in combination with four global hydrological models (PCR-GLOBWB, VIC, mHM, Noah-MP), resulting in 208 forecasts for any given day. The forecasts provide a daily temporal and 5-km spatial resolution, and are bias corrected against E-OBS meteorological observations. The forecasts are communicated to stakeholders via Sectoral Climate Impact Indicators (SCIIs), created in collaboration with the end-user community of the EDgE project (e.g. the percentage of ensemble realizations above the 10th percentile of monthly river flow, or below the 90th). Results show skillful forecasts for discharge from 3 months to 6 months (latter for N Europe due to snow); for soil moisture up to three months due precipitation forecast skill and short initial condition memory; and for groundwater greater than 6 months (lowest skill in western Europe.) The SCIIs are effective in communicating both forecast skill and uncertainty. Overall the new system provides an unprecedented ensemble for seasonal forecasts with significant skill over Europe to support water management. The consistency in both the GCM forecasts and the LSM parameterization ensures a stable and reliable forecast framework and methodology, even if additional GCMs or LSMs are added in the future.

  5. Characterization of Transport Errors in Chemical Forecasts from a Global Tropospheric Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Bey, I.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Sachse, G. W.

    2004-01-01

    We propose a new methodology to characterize errors in the representation of transport processes in chemical transport models. We constrain the evaluation of a global three-dimensional chemical transport model (GEOS-CHEM) with an extended dataset of carbon monoxide (CO) concentrations obtained during the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft campaign. The TRACEP mission took place over the western Pacific, a region frequently impacted by continental outflow associated with different synoptic-scale weather systems (such as cold fronts) and deep convection, and thus provides a valuable dataset. for our analysis. Model simulations using both forecast and assimilated meteorology are examined. Background CO concentrations are computed as a function of latitude and altitude and subsequently subtracted from both the observed and the model datasets to focus on the ability of the model to simulate variability on a synoptic scale. Different sampling strategies (i.e., spatial displacement and smoothing) are applied along the flight tracks to search for systematic model biases. Statistical quantities such as correlation coefficient and centered root-mean-square difference are computed between the simulated and the observed fields and are further inter-compared using Taylor diagrams. We find no systematic bias in the model for the TRACE-P region when we consider the entire dataset (i.e., from the surface to 12 km ). This result indicates that the transport error in our model is globally unbiased, which has important implications for using the model to conduct inverse modeling studies. Using the First-Look assimilated meteorology only provides little improvement of the correlation, in comparison with the forecast meteorology. These general statements can be refined when the entire dataset is divided into different vertical domains, i.e., the lower troposphere (less than 2 km), the middle troposphere (2-6 km), and the upper troposphere (greater than 6 km). The best agreement between the observations and the model is found in the lower and middle troposphere. Downward displacements in the lower troposphere provide a better fit with the observed value, which could indicate a problem in the representation of boundary layer height in the model. Significant improvement is also found for downward and southward displacements in the upper troposphere. There are several potential sources of errors in our simulation of the continental outflow in the upper troposphere which could lead to such biases, including the location and/or the strength of deep convective cells as well as that of wildfires in Southeast Asia.

  6. Diagnostic Evaluation of Nmme Precipitation and Temperature Forecasts for the Continental United States

    NASA Astrophysics Data System (ADS)

    Karlovits, G. S.; Villarini, G.; Bradley, A.; Vecchi, G. A.

    2014-12-01

    Forecasts of seasonal precipitation and temperature can provide information in advance of potentially costly disruptions caused by flood and drought conditions. The consequences of these adverse hydrometeorological conditions may be mitigated through informed planning and response, given useful and skillful forecasts of these conditions. However, the potential value and applicability of these forecasts is unavoidably linked to their forecast quality. In this work we evaluate the skill of four global circulation models (GCMs) part of the North American Multi-Model Ensemble (NMME) project in forecasting seasonal precipitation and temperature over the continental United States. The GCMs we consider are the Geophysical Fluid Dynamics Laboratory (GFDL)-CM2.1, NASA Global Modeling and Assimilation Office (NASA-GMAO)-GEOS-5, The Center for Ocean-Land-Atmosphere Studies - Rosenstiel School of Marine & Atmospheric Science (COLA-RSMAS)-CCSM3, Canadian Centre for Climate Modeling and Analysis (CCCma) - CanCM4. These models are available at a resolution of 1-degree and monthly, with a minimum forecast lead time of nine months, up to one year. These model ensembles are compared against gridded monthly temperature and precipitation data created by the PRISM Climate Group, which represent the reference observation dataset in this work. Aspects of forecast quality are quantified using a diagnostic skill score decomposition that allows the evaluation of the potential skill and conditional and unconditional biases associated with these forecasts. The evaluation of the decomposed GCM forecast skill over the continental United States, by season and by lead time allows for a better understanding of the utility of these models for flood and drought predictions. Moreover, it also represents a diagnostic tool that could provide model developers feedback about strengths and weaknesses of their models.

  7. Portals for Real-Time Earthquake Data and Forecasting: Challenge and Promise (Invited)

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Feltstykket, R.; Donnellan, A.; Glasscoe, M. T.

    2013-12-01

    Earthquake forecasts have been computed by a variety of countries world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. However, recent events clearly demonstrate that mitigating personal risk is becoming the responsibility of individual members of the public. Open access to a variety of web-based forecasts, tools, utilities and information is therefore required. Portals for data and forecasts present particular challenges, and require the development of both apps and the client/server architecture to deliver the basic information in real time. The basic forecast model we consider is the Natural Time Weibull (NTW) method (JBR et al., Phys. Rev. E, 86, 021106, 2012). This model uses small earthquakes (';seismicity-based models') to forecast the occurrence of large earthquakes, via data-mining algorithms combined with the ANSS earthquake catalog. This method computes large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Localizing these forecasts in space so that global forecasts can be computed in real time presents special algorithmic challenges, which we describe in this talk. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we compute real-time global forecasts at a grid scale of 0.1o. We analyze and monitor the performance of these models using the standard tests, which include the Reliability/Attributes and Receiver Operating Characteristic (ROC) tests. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges of serving up these datasets over the web on web-based platforms such as those at www.quakesim.org , www.e-decider.org , and www.openhazards.com.

  8. Developing Global Building Exposure for Disaster Forecasting, Mitigation, and Response

    NASA Astrophysics Data System (ADS)

    Huyck, C. K.

    2016-12-01

    Nongovernmental organizations and governments are recognizing the importance of insurance penetration in developing countries to mitigate the tremendous setbacks that follow natural disasters., but to effectively manage risk stakeholders must accurately quantify the built environment. Although there are countless datasets addressing elements of buildings, there are surprisingly few that are directly applicable to assessing vulnerability to natural disasters without skewing the spatial distribution of risk towards known assets. Working with NASA center partners Center for International Earth Science Information Network (CIESIN) at Columbia University in New York (http://www.ciesin.org), ImageCat have developed a novel method of developing Global Exposure Data (GED) from EO sources. The method has been applied to develop exposure datasets for GFDRR, CAT modelers, and aid in post-earthquake allocation of resources for UNICEF.

  9. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks.

    PubMed

    Liu, Da; Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012.

  10. Forecast Modelling via Variations in Binary Image-Encoded Information Exploited by Deep Learning Neural Networks

    PubMed Central

    Xu, Ming; Niu, Dongxiao; Wang, Shoukai; Liang, Sai

    2016-01-01

    Traditional forecasting models fit a function approximation from dependent invariables to independent variables. However, they usually get into trouble when date are presented in various formats, such as text, voice and image. This study proposes a novel image-encoded forecasting method that input and output binary digital two-dimensional (2D) images are transformed from decimal data. Omitting any data analysis or cleansing steps for simplicity, all raw variables were selected and converted to binary digital images as the input of a deep learning model, convolutional neural network (CNN). Using shared weights, pooling and multiple-layer back-propagation techniques, the CNN was adopted to locate the nexus among variations in local binary digital images. Due to the computing capability that was originally developed for binary digital bitmap manipulation, this model has significant potential for forecasting with vast volume of data. The model was validated by a power loads predicting dataset from the Global Energy Forecasting Competition 2012. PMID:27281032

  11. Evaluation of reanalysis datasets against observational soil temperature data over China

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Jingyong

    2018-01-01

    Soil temperature is a key land surface variable, and is a potential predictor for seasonal climate anomalies and extremes. Using observational soil temperature data in China for 1981-2005, we evaluate four reanalysis datasets, the land surface reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA-Interim/Land), the second modern-era retrospective analysis for research and applications (MERRA-2), the National Center for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), and version 2 of the Global Land Data Assimilation System (GLDAS-2.0), with a focus on 40 cm soil layer. The results show that reanalysis data can mainly reproduce the spatial distributions of soil temperature in summer and winter, especially over the east of China, but generally underestimate their magnitudes. Owing to the influence of precipitation on soil temperature, the four datasets perform better in winter than in summer. The ERA-Interim/Land and GLDAS-2.0 produce spatial characteristics of the climatological mean that are similar to observations. The interannual variability of soil temperature is well reproduced by the ERA-Interim/Land dataset in summer and by the CFSR dataset in winter. The linear trend of soil temperature in summer is well rebuilt by reanalysis datasets. We demonstrate that soil heat fluxes in April-June and in winter are highly correlated with the soil temperature in summer and winter, respectively. Different estimations of surface energy balance components can contribute to different behaviors in reanalysis products in terms of estimating soil temperature. In addition, reanalysis datasets can mainly rebuild the northwest-southeast gradient of soil temperature memory over China.

  12. Forecasting the magnitude and onset of El Niño based on climate network

    NASA Astrophysics Data System (ADS)

    Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo

    2018-04-01

    El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

  13. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    NASA Astrophysics Data System (ADS)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a global distribution of urban parameters for later incorporation into a weather model, thus allowing us to acquire a global understanding of urban climate (Global Urban Climatology). Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.

  14. Comparative assessment of several post-processing methods for correcting evapotranspiration forecasts derived from TIGGE datasets.

    NASA Astrophysics Data System (ADS)

    Tian, D.; Medina, H.

    2017-12-01

    Post-processing of medium range reference evapotranspiration (ETo) forecasts based on numerical weather prediction (NWP) models has the potential of improving the quality and utility of these forecasts. This work compares the performance of several post-processing methods for correcting ETo forecasts over the continental U.S. generated from The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) database using data from Europe (EC), the United Kingdom (MO), and the United States (NCEP). The pondered post-processing techniques are: simple bias correction, the use of multimodels, the Ensemble Model Output Statistics (EMOS, Gneitting et al., 2005) and the Bayesian Model Averaging (BMA, Raftery et al., 2005). ETo estimates based on quality-controlled U.S. Regional Climate Reference Network measurements, and computed with the FAO 56 Penman Monteith equation, are adopted as baseline. EMOS and BMA are generally the most efficient post-processing techniques of the ETo forecasts. Nevertheless, the simple bias correction of the best model is commonly much more rewarding than using multimodel raw forecasts. Our results demonstrate the potential of different forecasting and post-processing frameworks in operational evapotranspiration and irrigation advisory systems at national scale.

  15. Advancing land surface model development with satellite-based Earth observations

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Trigo, Isabel F.; Balsamo, Gianpaolo

    2017-04-01

    The land surface forms an essential part of the climate system. It interacts with the atmosphere through the exchange of water and energy and hence influences weather and climate, as well as their predictability. Correspondingly, the land surface model (LSM) is an essential part of any weather forecasting system. LSMs rely on partly poorly constrained parameters, due to sparse land surface observations. With the use of newly available land surface temperature observations, we show in this study that novel satellite-derived datasets help to improve LSM configuration, and hence can contribute to improved weather predictability. We use the Hydrology Tiled ECMWF Scheme of Surface Exchanges over Land (HTESSEL) and validate it comprehensively against an array of Earth observation reference datasets, including the new land surface temperature product. This reveals satisfactory model performance in terms of hydrology, but poor performance in terms of land surface temperature. This is due to inconsistencies of process representations in the model as identified from an analysis of perturbed parameter simulations. We show that HTESSEL can be more robustly calibrated with multiple instead of single reference datasets as this mitigates the impact of the structural inconsistencies. Finally, performing coupled global weather forecasts we find that a more robust calibration of HTESSEL also contributes to improved weather forecast skills. In summary, new satellite-based Earth observations are shown to enhance the multi-dataset calibration of LSMs, thereby improving the representation of insufficiently captured processes, advancing weather predictability and understanding of climate system feedbacks. Orth, R., E. Dutra, I. F. Trigo, and G. Balsamo (2016): Advancing land surface model development with satellite-based Earth observations. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-628

  16. Surface Current Skill Assessment of Global and Regional forecast models.

    NASA Astrophysics Data System (ADS)

    Allen, A. A.

    2016-02-01

    The U.S. Coast Guard has been using SAROPS since January 2007 at all fifty of its operational centers to plan search and rescue missions. SAROPS relies on an Environmental Data Server (EDS) that integrates global, national, and regional ocean and meteorological observation and forecast data. The server manages spatial and temporal aggregation of hindcast, nowcast, and forecast data so the SAROPS controller has the best available data for search planning. The EDS harvests a wide range of global and regional forecasts and data, including NOAA NCEP's global HYCOM model (RTOFS), the U.S. Navy's Global HYCOM model, the 5 NOAA NOS Great Lakes models and a suite of other reginal forecasts from NOS and IOOS Regional Associations. The EDS also integrates surface drifter data as the U.S. Coast Guard regularly deploys Self-Locating Datum Marker Buoys (SLDMBs) during SAR cases and a significant set of drifter data has been collected and the archive continues to grow. This data is critically useful during real-time SAR planning, but also represents a valuable scientific dataset for analyzing surface currents. In 2014, a new initiative was started by the U.S. Coast Guard to evaluate the skill of the various models to support the decision making process during search and rescue planning. This analysis falls into 2 categories: historical analysis of drifter tracks and model predictions to provide skill assessment of models in different regions and real-time analysis of models and drifter tracks during a SAR incident. The EDS, using Liu and Wiesberg's (2014) autonomously determines surface skill measurements of the co-located models' simulated surface trajectories versus the actual drift of the SLDMBs (CODE/Davis style surface drifters GPS positioned at 30min intervals). Surface skill measurements are archived in a database and are user retrieval by lat/long/time cubes. This paper will focus on the comparison of models from in the period from 23 August to 21 September 2015. Surface Skill was determined for the following regions: California Coast, Gulf of Mexico, South and Mid Atlantic Bights. Skill was determined for the two version of the NCEP Global RTOFS, Navy's Global HYCOM model, and where appropriated the local regional models

  17. Advances in Landslide Hazard Forecasting: Evaluation of Global and Regional Modeling Approach

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia B.; Adler, Robert; Hone, Yang; Kumar, Sujay; Peters-Lidard, Christa; Lerner-Lam, Arthur

    2010-01-01

    A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that exhibit a high potential for landslide activity by combining a calculation of landslide susceptibility with satellite-derived rainfall estimates. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale landslide forecasting efforts, it requires several modifications before it can be fully realized as an operational tool. The evaluation finds that the landslide forecasting may be more feasible at a regional scale. This study draws upon a prior work's recommendations to develop a new approach for considering landslide susceptibility and forecasting at the regional scale. This case study uses a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America: Guatemala, Honduras, EI Salvador and Nicaragua. A regional susceptibility map is calculated from satellite and surface datasets using a statistical methodology. The susceptibility map is tested with a regional rainfall intensity-duration triggering relationship and results are compared to global algorithm framework for the Hurricane Mitch event. The statistical results suggest that this regional investigation provides one plausible way to approach some of the data and resolution issues identified in the global assessment, providing more realistic landslide forecasts for this case study. Evaluation of landslide hazards for this extreme event helps to identify several potential improvements of the algorithm framework, but also highlights several remaining challenges for the algorithm assessment, transferability and performance accuracy. Evaluation challenges include representation errors from comparing susceptibility maps of different spatial resolutions, biases in event-based landslide inventory data, and limited nonlandslide event data for more comprehensive evaluation. Additional factors that may improve algorithm performance accuracy include incorporating additional triggering factors such as tectonic activity, anthropogenic impacts and soil moisture into the algorithm calculation. Despite these limitations, the methodology presented in this regional evaluation is both straightforward to calculate and easy to interpret, making results transferable between regions and allowing findings to be placed within an inter-comparison framework. The regional algorithm scenario represents an important step in advancing regional and global-scale landslide hazard assessment and forecasting.

  18. A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.

    PubMed

    Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan

    2017-01-01

    Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.

  19. Characterizing Time Series Data Diversity for Wind Forecasting: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Chartan, Erol Kevin; Feng, Cong

    Wind forecasting plays an important role in integrating variable and uncertain wind power into the power grid. Various forecasting models have been developed to improve the forecasting accuracy. However, it is challenging to accurately compare the true forecasting performances from different methods and forecasters due to the lack of diversity in forecasting test datasets. This paper proposes a time series characteristic analysis approach to visualize and quantify wind time series diversity. The developed method first calculates six time series characteristic indices from various perspectives. Then the principal component analysis is performed to reduce the data dimension while preserving the importantmore » information. The diversity of the time series dataset is visualized by the geometric distribution of the newly constructed principal component space. The volume of the 3-dimensional (3D) convex polytope (or the length of 1D number axis, or the area of the 2D convex polygon) is used to quantify the time series data diversity. The method is tested with five datasets with various degrees of diversity.« less

  20. Reforecasting the ENSO Events in the Past Fifty-Seven Years (1958-2014)

    NASA Astrophysics Data System (ADS)

    Huang, B.; Shin, C. S.; Shukla, J.; Marx, L.; Balmaseda, M.; Halder, S.; Dirmeyer, P.; Kinter, J. L.

    2016-12-01

    A set of ensemble seasonal reforecasts for 1958-2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), initialized with observation-based ocean, atmosphere, land and sea ice reanalyses, including the Eu­ropean Centre for Medium-Range Weather Forecasts (ECMWF) global ocean reanalysis version 4, the ERA-40 atmospheric reanalysis, the NCEP CFS Reanalysis for atmosphere, land and sea ice, and the NASA Global Land Data Assimilation System reanalysis version 2.0 for land. The purpose is to examine a long and continuous seasonal reforecast dataset from a modern seasonal forecast system to be used by the research community. In comparison with other current reforecasts, this dataset allows us to evaluate the degree to which El Niño and Southern Oscillation (ENSO) events can be predicted, using a larger sample of events. Furthermore, we can directly compare the predictability of the ENSO events in 1960s-70s with the more widely studied ENSO events occurring since the 1980s to examine the state-of-the-art seasonal forecast system's capability at different phases of global climate change and multidecadal variability. A major concern is whether the seasonal reforecasts before 1979 have useful skill when there were fewer ocean observations. Our preliminary examination of the reforecasts shows that, although the reforecasts have lower skill in predicting the SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the ENSO onset and development for 1958-1978 is comparable to that for 1979-2014. The skill of the earlier predictions declines faster in the ENSO decaying phase because the reforecasts initialized after the summer season persistently predict lingering wind and SST anomalies in the eastern equatorial Pacific during the decaying phase of several major ENSO events in the 1960s-70s. Since the 1980s, the reforecasts initialized in fall overestimate the peak SST anomalies in strong El Niño events. Both facts imply that the model air-sea feedback is overly active in the eastern Pacific before ENSO termination, likely induced by the model warm bias in the eastern Pacific during boreal winter and spring.

  1. Short-Term Forecasts Using NU-WRF for the Winter Olympics 2018

    NASA Technical Reports Server (NTRS)

    Srikishen, Jayanthi; Case, Jonathan L.; Petersen, Walter A.; Iguchi, Takamichi; Tao, Wei-Kuo; Zavodsky, Bradley T.; Molthan, Andrew

    2017-01-01

    The NASA Unified-Weather Research and Forecasting model (NU-WRF) will be included for testing and evaluation in the forecast demonstration project (FDP) of the International Collaborative Experiment -PyeongChang 2018 Olympic and Paralympic (ICE-POP) Winter Games. An international array of radar and supporting ground based observations together with various forecast and now-cast models will be operational during ICE-POP. In conjunction with personnel from NASA's Goddard Space Flight Center, the NASA Short-term Prediction Research and Transition (SPoRT) Center is developing benchmark simulations for a real-time NU-WRF configuration to run during the FDP. ICE-POP observational datasets will be used to validate model simulations and investigate improved model physics and performance for prediction of snow events during the research phase (RDP) of the project The NU-WRF model simulations will also support NASA Global Precipitation Measurement (GPM) Mission ground-validation physical and direct validation activities in relation to verifying, testing and improving satellite-based snowfall retrieval algorithms over complex terrain.

  2. UV Remote Sensing Data Products - Turning Data Into Knowledge

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Paxton, L.; Schaefer, R. K.; Comberiate, J.; Hsieh, S. W.; Romeo, G.; Wolven, B. C.; Zhang, Y.

    2013-12-01

    The DMSP/SSUSI instruments have been taking UV images of the upper atmosphere for more than a decade. Each of the SSUSI instruments takes complete global UV images on a daily basis. Although this scientific data is very valuable, it is not actionable information. Perhaps the simplest use of SSUSI data is the assimilation of radiances into the GAIM ionospheric forecast model; even then, the data must be massaged to get it into a GAIM-ingestable form. We describe a development effort funded by the DMSP program and the Air Force Weather Agency to turn the raw data into actionable information in the form of SSUSI environmental data parameters and other derived information. We will describe current nowcasts, forecasts, and other related actionable information (e.g. auroral oval forecasts) that is currently generated by the SSUSI ground processing system for AFWA, and also concepts we have for future tools (e.g., geomagnetic storm alerts, scintillation forecasts, HF radio propagation information, auroral radar clutter) to turn more of the SSUSI dataset into actionable knowledge.

  3. Interoperability challenges in river discharge modelling: A cross domain application scenario

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Andres, Volker; Jirka, Simon; Koike, Toshio; Looser, Ulrich; Nativi, Stefano; Pappenberger, Florian; Schlummer, Manuela; Strauch, Adrian; Utech, Michael; Zsoter, Ervin

    2018-06-01

    River discharge is a critical water cycle variable, as it integrates all the processes (e.g. runoff and evapotranspiration) occurring within a river basin and provides a hydrological output variable that can be readily measured. Its prediction is of invaluable help for many water-related tasks including water resources assessment and management, flood protection, and disaster mitigation. Observations of river discharge are important to calibrate and validate hydrological or coupled land, atmosphere and ocean models. This requires using datasets from different scientific domains (Water, Weather, etc.). Typically, such datasets are provided using different technological solutions. This complicates the integration of new hydrological data sources into application systems. Therefore, a considerable effort is often spent on data access issues instead of the actual scientific question. This paper describes the work performed to address multidisciplinary interoperability challenges related to river discharge modeling and validation. This includes definition and standardization of domain specific interoperability standards for hydrological data sharing and their support in global frameworks such as the Global Earth Observation System of Systems (GEOSS). The research was developed in the context of the EU FP7-funded project GEOWOW (GEOSS Interoperability for Weather, Ocean and Water), which implemented a "River Discharge" application scenario. This scenario demonstrates the combination of river discharge observations data from the Global Runoff Data Centre (GRDC) database and model outputs produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) predicting river discharge based on weather forecast information in the context of the GEOSS.

  4. Appraisal of Weather Research and Forecasting Model Downscaling of Hydro-meteorological Variables and their Applicability for Discharge Prediction: Prognostic Approach for Ungauged Basin

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Han, D.; Rico-Ramirez, M. A.; Bray, M.; Islam, T.; Petropoulos, G.; Gupta, M.

    2015-12-01

    Hydro-meteorological variables such as Precipitation and Reference Evapotranspiration (ETo) are the most important variables for discharge prediction. However, it is not always possible to get access to them from ground based measurements, particularly in ungauged catchments. The mesoscale model WRF (Weather Research & Forecasting model) can be used for prediction of hydro-meteorological variables. However, hydro-meteorologists would like to know how well the downscaled global data products are as compared to ground based measurements and whether it is possible to use the downscaled data for ungauged catchments. Even with gauged catchments, most of the stations have only rain and flow gauges installed. Measurements of other weather hydro-meteorological variables such as solar radiation, wind speed, air temperature, and dew point are usually missing and thus complicate the problems. In this study, for downscaling the global datasets, the WRF model is setup over the Brue catchment with three nested domains (D1, D2 and D3) of horizontal grid spacing of 81 km, 27 km and 9 km are used. The hydro-meteorological variables are downscaled using the WRF model from the National Centers for Enviromental Prediction (NCEP) reanalysis datasets and subsequently used for the ETo estimation using the Penman Monteith equation. The analysis of weather variables and precipitation are compared against the ground based datasets, which indicate that the datasets are in agreement with the observed datasets for complete monitoring period as well as during the seasons except precipitation whose performance is poorer in comparison to the measured rainfall. After a comparison, the WRF estimated precipitation and ETo are then used as a input parameter in the Probability Distributed Model (PDM) for discharge prediction. The input data and model parameter sensitivity analysis and uncertainty estimation are also taken into account for the PDM calibration and prediction following the Generalised Likelihood Uncertainty Estimation (GLUE) approach. The overall analysis suggests that the uncertainty estimates in predicted discharge using WRF downscaled ETo have comparable performance to ground based observed datasets and hence is promising for discharge prediction in the absence of ground based measurements.

  5. Fuzzy neural network technique for system state forecasting.

    PubMed

    Li, Dezhi; Wang, Wilson; Ismail, Fathy

    2013-10-01

    In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.

  6. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    NASA Astrophysics Data System (ADS)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  7. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Bedka, Kristopher M.; Nguyen, Louis; Palikonda, Rabindra; Hong, Gang; Trepte, Qing Z.; Chee, Thad; Scarino, Benjamin; Spangenberg, Douglas A.; hide

    2014-01-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-­-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-­-real time globally from both geostationary (GEO) and low-­-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  8. Near-Real Time Satellite-Retrieved Cloud and Surface Properties for Weather and Aviation Safety Applications

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Smith, W., Jr.; Bedka, K. M.; Nguyen, L.; Palikonda, R.; Hong, G.; Trepte, Q.; Chee, T.; Scarino, B. R.; Spangenberg, D.; Sun-Mack, S.; Fleeger, C.; Ayers, J. K.; Chang, F. L.; Heck, P. W.

    2014-12-01

    Cloud properties determined from satellite imager radiances provide a valuable source of information for nowcasting and weather forecasting. In recent years, it has been shown that assimilation of cloud top temperature, optical depth, and total water path can increase the accuracies of weather analyses and forecasts. Aircraft icing conditions can be accurately diagnosed in near-real time (NRT) retrievals of cloud effective particle size, phase, and water path, providing valuable data for pilots. NRT retrievals of surface skin temperature can also be assimilated in numerical weather prediction models to provide more accurate representations of solar heating and longwave cooling at the surface, where convective initiation. These and other applications are being exploited more frequently as the value of NRT cloud data become recognized. At NASA Langley, cloud properties and surface skin temperature are being retrieved in near-real time globally from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for weather model assimilation and nowcasting for hazards such as aircraft icing. Cloud data from GEO satellites over North America are disseminated through NCEP, while those data and global LEO and GEO retrievals are disseminated from a Langley website. This paper presents an overview of the various available datasets, provides examples of their application, and discusses the use of the various datasets downstream. Future challenges and areas of improvement are also presented.

  9. Providing Access to a Diverse Set of Global Reanalysis Dataset Collections

    NASA Astrophysics Data System (ADS)

    Schuster, D.; Worley, S. J.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA, http://rda.ucar.edu) provides open access to a variety of global reanalysis dataset collections to support atmospheric and related sciences research worldwide. These include products from the European Centre for Medium-Range Weather Forecasts (ECMWF), Japan Meteorological Agency (JMA), National Centers for Environmental Prediction (NCEP), National Oceanic and Atmospheric Administration (NOAA), and NCAR.All RDA hosted reanalysis collections are freely accessible to registered users through a variety of methods. Standard access methods include traditional browser and scripted HTTP file download. Enhanced downloads are available through the Globus GridFTP "fire and forget" data transfer service, which provides an efficient, reliable, and preferred alternative to traditional HTTP-based methods. For those that favor interoperable access using compatible tools, the Unidata THREDDS Data server provides remote access to complete reanalysis collections by virtual dataset aggregation "files". Finally, users can request data subsets and format conversions to be prepared for them through web interface form requests or web service API batch requests. This approach uses NCAR HPC and central file systems to effectively prepare products from the high-resolution and very large reanalyses archives. The presentation will include a detailed inventory of all RDA reanalysis dataset collection holdings, and highlight access capabilities to these collections through use case examples.

  10. GLEAM v3: updated land evaporation and root-zone soil moisture datasets

    NASA Astrophysics Data System (ADS)

    Martens, Brecht; Miralles, Diego; Lievens, Hans; van der Schalie, Robin; de Jeu, Richard; Fernández-Prieto, Diego; Verhoest, Niko

    2016-04-01

    Evaporation determines the availability of surface water resources and the requirements for irrigation. In addition, through its impacts on the water, carbon and energy budgets, evaporation influences the occurrence of rainfall and the dynamics of air temperature. Therefore, reliable estimates of this flux at regional to global scales are of major importance for water management and meteorological forecasting of extreme events. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to the limited global coverage of in situ measurements. Remote sensing techniques can help to overcome the lack of ground data. However, evaporation is not directly observable from satellite systems. As a result, recent efforts have focussed on combining the observable drivers of evaporation within process-based models. The Global Land Evaporation Amsterdam Model (GLEAM, www.gleam.eu) estimates terrestrial evaporation based on daily satellite observations of meteorological drivers of terrestrial evaporation, vegetation characteristics and soil moisture. Since the publication of the first version of the model in 2011, GLEAM has been widely applied for the study of trends in the water cycle, interactions between land and atmosphere and hydrometeorological extreme events. A third version of the GLEAM global datasets will be available from the beginning of 2016 and will be distributed using www.gleam.eu as gateway. The updated datasets include separate estimates for the different components of the evaporative flux (i.e. transpiration, bare-soil evaporation, interception loss, open-water evaporation and snow sublimation), as well as variables like the evaporative stress, potential evaporation, root-zone soil moisture and surface soil moisture. A new dataset using SMOS-based input data of surface soil moisture and vegetation optical depth will also be distributed. The most important updates in GLEAM include the revision of the soil moisture data assimilation system, the evaporative stress functions and the infiltration of rainfall. In this presentation, we will highlight the changes of the methodology and present the new datasets, their validation against in situ observations and the comparisons against alternative datasets of terrestrial evaporation, such as GLDAS-Noah, ERA-Interim and previous GLEAM datasets. Preliminary results indicate that the magnitude and the spatio-temporal variability of the evaporation estimates have been slightly improved upon previous versions of the datasets.

  11. Examining the value of global seasonal reference evapotranspiration forecasts tosupport FEWS NET's food insecurity outlooks

    NASA Astrophysics Data System (ADS)

    Shukla, S.; McEvoy, D.; Hobbins, M.; Husak, G. J.; Huntington, J. L.; Funk, C.; Verdin, J.; Macharia, D.

    2017-12-01

    The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several developing countries in Africa, Central Asia, and Central America. Thus far in terms of agroclimatic conditions that influence food insecurity, FEWS NET's primary focus has been on the seasonal precipitation forecasts while not adequately accounting for the atmospheric evaporative demand, which is also directly related to agricultural production and hence food insecurity, and is most often estimated by reference evapotranspiration (ETo). This presentation reports on the development of a new global ETo seasonal reforecast and skill evaluation with a particular emphasis on the potential use of this dataset by the FEWS NET to support food insecurity early warning. The ETo reforecasts span the 1982-2009 period and are calculated following ASCE's formulation of Penman-Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind speed, and solar radiation from NCEP's CFSv2 and NASA's GEOS-5 models. The skill evaluation using deterministic and probabilistic scores focuses on the December-February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) seasons. The results indicate that ETo forecasts are a promising tool for early warning of drought and food insecurity. The FEWS NET regions with promising level of skill (correlation >0.35 at lead times of 3 months) include Northern Sub-Saharan Africa (DJF, dry season), Central America (DJF, dry season), parts of East Africa (JJA, wet Season), Southern Africa (JJA, dry season), and Central Asia (MAM, wet season). A case study over parts of East Africa for the JJA season shows that, in combination with the precipitation forecasts, ETo forecasts could have provided early warning of recent severe drought events (e.g., 2002, 2004, 2009) that contributed to substantial food insecurity in the region.

  12. Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities

    USGS Publications Warehouse

    Marks, F.D.; Shay, L.K.; Barnes, G.; Black, P.; Demaria, M.; McCaul, B.; Mounari, J.; Montgomery, M.; Powell, M.; Smith, J.D.; Tuleya, B.; Tripoli, G.; Xie, Lingtian; Zehr, R.

    1998-01-01

    The Fifth Prospectus Development Team of the U.S. Weather Research Program was charged to identify and delineate emerging research opportunities relevant to the prediction of local weather, flooding, and coastal ocean currents associated with landfalling U.S. hurricanes specifically, and tropical cyclones in general. Central to this theme are basic and applied research topics, including rapid intensity change, initialization of and parameterization in dynamical models, coupling of atmospheric and oceanic models, quantitative use of satellite information, and mobile observing strategies to acquire observations to evaluate and validate predictive models. To improve the necessary understanding of physical processes and provide the initial conditions for realistic predictions, a focused, comprehensive mobile observing system in a translating storm-coordinate system is required. Given the development of proven instrumentation and improvement of existing systems, three-dimensional atmospheric and oceanic datasets need to be acquired whenever major hurricanes threaten the United States. The spatial context of these focused three-dimensional datasets over the storm scales is provided by satellites, aircraft, expendable probes released from aircraft, and coastal (both fixed and mobile), moored, and drifting surface platforms. To take full advantage of these new observations, techniques need to be developed to objectively analyze these observations, and initialize models aimed at improving prediction of hurricane track and intensity from global-scale to mesoscale dynamical models. Multinested models allow prediction of all scales from the global, which determine long- term hurricane motion to the convective scale, which affect intensity. Development of an integrated analysis and model forecast system optimizing the use of three-dimensional observations and providing the necessary forecast skill on all relevant spatial scales is required. Detailed diagnostic analyses of these datasets will lead to improved understanding of the physical processes of hurricane motion, intensity change, the atmospheric and oceanic boundary layers, and the air- sea coupling mechanisms. The ultimate aim of this effort is the construction of real-time analyses of storm surge, winds, and rain, prior to and during landfall, to improve warnings and provide local officials with the comprehensive information required for recovery efforts in the hardest hit areas as quickly as possible.

  13. The value of the North American Multi Model Ensemble phase 2 for sub-seasonal hydrological forecasting

    NASA Astrophysics Data System (ADS)

    Wanders, Niko; Wood, Eric

    2016-04-01

    Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. For example, seasonal forecasts of drought risk can enable farmers to make adaptive choices on crop varieties, labour usage, and technology investments. Seasonal and sub-seasonal predictions can increase preparedness to hydrological extremes that regularly occur in all regions of the world with large impacts on society. We investigated the skill of six seasonal forecast models from the NMME-2 ensemble coupled to two global hydrological models (VIC and PCRGLOBWB) for the period 1982-2012. The 31 years of NNME-2 hindcast data is used in combination with an ensemble mean and ESP forecast, to forecast important hydrological variables (e.g. soil moisture, groundwater storage, snow, reservoir levels and river discharge). By using two global hydrological models we are able to quantify both the uncertainty in the meteorological input and the uncertainty created by the different hydrological models. We show that the NMME-2 forecast outperforms the ESP forecasts in terms of anomaly correlation and brier skill score for all forecasted hydrological variables, with a low uncertainty in the performance amongst the hydrological models. However, the continuous ranked probability score (CRPS) of the NMME-2 ensemble is inferior to the ESP due to a large spread between the individual ensemble members. We use a cost analysis to show that the damage caused by floods and droughts in large scale rivers can globally be reduced by 48% (for leads from 1-2 months) to 20% (for leads between 6-9 months) when precautions are taken based on the NMME-2 ensemble instead of an ESP forecast. In collaboration with our local partner in West Africa (AGHRYMET), we looked at the performance of the sub-seasonal forecasts for crop planting dates and high flow season in West Africa. We show that the uncertainty in the optimal planting date is reduced from 30 days to 12 days (2.5 month lead) and an increased predictability of the high flow season from 45 days to 20 days (3-4 months lead). Additionally, we show that snow accumulation and melt onset in the Northern hemisphere can be forecasted with an uncertainty of 10 days (2.5 months lead). Both the overall skill, and the skill found in these last two examples, indicates that the new NMME-2 forecast dataset is valuable for sub-seasonal forecast applications. The high temporal resolution (daily), long leads (one year leads) and large hindcast archive enable new sub-seasonal forecasting applications to be explored. We show that the NMME-2 has a large potential for sub-seasonal hydrological forecasting and other potential hydrological applications (e.g. reservoir management), which could benefit from these new forecasts.

  14. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  15. Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.

    2008-01-01

    In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.

  16. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Case, Jonathan; Kozlowski, Danielle; Molthan, Andrew

    2012-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting entities, including a number of National Weather Service offices. SPoRT transitions real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One challenge that forecasters face is applying convection-allowing numerical models to predict mesoscale convective weather. In order to address this specific forecast challenge, SPoRT produces real-time mesoscale model forecasts using the Weather Research and Forecasting (WRF) model that includes unique NASA products and capabilities. Currently, the SPoRT configuration of the WRF model (SPoRT-WRF) incorporates the 4-km Land Information System (LIS) land surface data, 1-km SPoRT sea surface temperature analysis and 1-km Moderate resolution Imaging Spectroradiometer (MODIS) greenness vegetation fraction (GVF) analysis, and retrieved thermodynamic profiles from the Atmospheric Infrared Sounder (AIRS). The LIS, SST, and GVF data are all integrated into the SPoRT-WRF through adjustments to the initial and boundary conditions, and the AIRS data are assimilated into a 9-hour SPoRT WRF forecast each day at 0900 UTC. This study dissects the overall impact of the NASA datasets and the individual surface and atmospheric component datasets on daily mesoscale forecasts. A case study covering the super tornado outbreak across the Ce ntral and Southeastern United States during 25-27 April 2011 is examined. Three different forecasts are analyzed including the SPoRT-WRF (NASA surface and atmospheric data), the SPoRT WRF without AIRS (NASA surface data only), and the operational National Severe Storms Laboratory (NSSL) WRF (control with no NASA data). The forecasts are compared qualitatively by examining simulated versus observed radar reflectivity. Differences between the simulated reflectivity are further investigated using convective parameters along with model soundings to determine the impacts of the various NASA datasets. Additionally, quantitative evaluation of select meteorological parameters is performed using the Meteorological Evaluation Tools model verification package to compare forecasts to in situ surface and upper air observations.

  17. Estimating Global Precipitation for Science and Application

    NASA Technical Reports Server (NTRS)

    Huffman, George J.

    2013-01-01

    Over the past two decades there has been vigorous development in the satellite assets and the algorithms necessary to estimate precipitation around the globe. In particular the highly successful joint NASAJAXA Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission, also joint between NASA and JAXA, have driven these issues. At the same time, the long-running Global Precipitation Climatology Project (GPCP) continues to extend a stable, climate-oriented view of global precipitation. This talk will provide an overview of these projects and the wider international community of precipitation datasets, sketch plans for next-generation products, and provide some examples of the best use for the different products. One key lesson learned is that different data sets are needed to address the variety of issues that need precipitation data, including detailed 3-D views of hurricanes, flash flood forecasting, drought analysis, and global change.

  18. Wavelet data compression for archiving high-resolution icosahedral model data

    NASA Astrophysics Data System (ADS)

    Wang, N.; Bao, J.; Lee, J.

    2011-12-01

    With the increase of the resolution of global circulation models, it becomes ever more important to develop highly effective solutions to archive the huge datasets produced by those models. While lossless data compression guarantees the accuracy of the restored data, it can only achieve limited reduction of data size. Wavelet transform based data compression offers significant potentials in data size reduction, and it has been shown very effective in transmitting data for remote visualizations. However, for data archive purposes, a detailed study has to be conducted to evaluate its impact to the datasets that will be used in further numerical computations. In this study, we carried out two sets of experiments for both summer and winter seasons. An icosahedral grid weather model and a highly efficient wavelet data compression software were used for this study. Initial conditions were compressed and input to the model to run to 10 days. The forecast results were then compared to those forecast results from the model run with the original uncompressed initial conditions. Several visual comparisons, as well as the statistics of numerical comparisons are presented. These results indicate that with specified minimum accuracy losses, wavelet data compression achieves significant data size reduction, and at the same time, it maintains minimum numerical impacts to the datasets. In addition, some issues are discussed to increase the archive efficiency while retaining a complete set of meta data for each archived file.

  19. Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2)

    NASA Astrophysics Data System (ADS)

    Rai, Archana; Saha, Subodh Kumar

    2018-01-01

    The energy fluxes at the surface and top of the atmosphere (TOA) from a long free run by the NCEP climate forecast system version 2.0 (CFSv2) are validated against several observation and reanalysis datasets. This study focuses on the annual mean energy fluxes and tries to link it with the systematic cold biases in the 2 m air temperature, particularly over the land regions. The imbalance in the long term mean global averaged energy fluxes are also evaluated. The global averaged imbalance at the surface and at the TOA is found to be 0.37 and 6.43 Wm-2, respectively. It is shown that CFSv2 overestimates the land surface albedo, particularly over the snow region, which in turn contributes to the cold biases in 2 m air temperature. On the other hand, surface albedo is highly underestimated over the coastal region around Antarctica and that may have contributed to the warm bias over that oceanic region. This study highlights the need for improvements in the parameterization of snow/sea-ice albedo scheme for a realistic simulation of surface temperature and that may have implications on the global energy imbalance in the model.

  20. Improving Satellite Observation Utilization for Model Initialization with Machine Learning: An Introduction and Tackling the "Labeled Dataset" Challenge for Cyclones Around the World

    NASA Astrophysics Data System (ADS)

    Bonfanti, C. E.; Stewart, J.; Lee, Y. J.; Govett, M.; Trailovic, L.; Etherton, B.

    2017-12-01

    One of the National Oceanic and Atmospheric Administration (NOAA) goals is to provide timely and reliable weather forecasts to support important decisions when and where people need it for safety, emergencies, planning for day-to-day activities. Satellite data is essential for areas lacking in-situ observations for use as initial conditions in Numerical Weather Prediction (NWP) Models, such as spans of the ocean or remote areas of land. Currently only about 7% of total received satellite data is selected for use and from that, an even smaller percentage ever are assimilated into NWP models. With machine learning, the computational and time costs needed for satellite data selection can be greatly reduced. We study various machine learning approaches to process orders of magnitude more satellite data in significantly less time allowing for a greater quantity and more intelligent selection of data to be used for assimilation purposes. Given the future launches of satellites in the upcoming years, machine learning is capable of being applied for better selection of Regions of Interest (ROI) in the magnitudes more of satellite data that will be received. This paper discusses the background of machine learning methods as applied to weather forecasting and the challenges of creating a "labeled dataset" for training and testing purposes. In the training stage of supervised machine learning, labeled data are important to identify a ROI as either true or false so that the model knows what signatures in satellite data to identify. Authors have selected cyclones, including tropical cyclones and mid-latitude lows, as ROI for their machine learning purposes and created a labeled dataset of true or false for ROI from Global Forecast System (GFS) reanalysis data. A dataset like this does not yet exist and given the need for a high quantity of samples, is was decided this was best done with automation. This process was done by developing a program similar to the National Center for Environmental Prediction (NCEP) tropical cyclone tracker by Marchok that was used to identify cyclones based off its physical characteristics. We will discuss the methods and challenges to creating this dataset and the dataset's use for our current supervised machine learning model as well as use for future work on events such as convection initiation.

  1. Assimilation of neural network soil moisture in land surface models

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio; de Rosnay, Patricia; Albergel, Clement; Aires, Filipe; Prigent, Catherine; Kerr, Yann; Richaume, Philippe; Muñoz-Sabater, Joaquin; Drusch, Matthias

    2017-04-01

    In this study a set of land surface data assimilation (DA) experiments making use of satellite derived soil moisture (SM) are presented. These experiments have two objectives: (1) to test the information content of satellite remote sensing of soil moisture for numerical weather prediction (NWP) models, and (2) to test a simplified assimilation of these data through the use of a Neural Network (NN) retrieval. Advanced Scatterometer (ASCAT) and Soil Moisture and Ocean Salinity (SMOS) data were used. The SMOS soil moisture dataset was obtained specifically for this project training a NN using SMOS brightness temperatures as input and using as reference for the training European Centre for Medium-Range Weather Forecasts (ECMWF) H-TESSEL SM fields. In this way, the SMOS NN SM dataset has a similar climatology to that of the model and it does not present a global bias with respect to the model. The DA experiments are computed using a surface-only Land Data Assimilation System (so-LDAS) based on the HTESSEL land surface model. This system is very computationally efficient and allows to perform long surface assimilation experiments (one whole year, 2012). SMOS NN SM DA experiments are compared to ASCAT SM DA experiments. In both cases, experiments with and without 2 m air temperature and relative humidity DA are discussed using different observation errors for the ASCAT and SMOS datasets. Seasonal, geographical and soil-depth-related differences between the results of those experiments are presented and discussed. The different SM analysed fields are evaluated against a large number of in situ measurements of SM. On average, the SM analysis gives in general similar results to the model open loop with no assimilation even if significant differences can be seen for specific sites with in situ measurements. The sensitivity to observation errors to the SM dataset slightly differs depending on the networks of in situ measurements, however it is relatively low for the tests conducted here. Finally, the effect of the soil moisture analysis on the NWP is evaluated comparing experiments for different configurations of the system, with and without (Open Loop) soil moisture data assimilation. ssimilation of ASCAT soil moisture improves the forecast in the tropics and adds information with respect to the near surface conventional observations. In contrast, SMOS degrades the forecast in the Tropics in July-September. In the Southern hemisphere ASCAT degrades the forecast in July-September both alone and using 2m air temperature and relative humidity. On the other hand, experiments using SMOS (even without screen level variables) improve the forecast for all the seasons, in particular, in July-December. In the northern hemisphere both with ASCAT and SMOS, the experiments using 2m air temperature and relative humidity improve the forecast in April-September. SMOS alone has a significant positive effect in July-September for experiments with low observation error. Maps of the forecast skill with respect to the open loop experiment show that SMOS improves the forecast in North America and to a lesser extent in northern Asia for up to 72 hours.

  2. Application of a deep-learning method to the forecast of daily solar flare occurrence using Convolution Neural Network

    NASA Astrophysics Data System (ADS)

    Shin, Seulki; Moon, Yong-Jae; Chu, Hyoungseok

    2017-08-01

    As the application of deep-learning methods has been succeeded in various fields, they have a high potential to be applied to space weather forecasting. Convolutional neural network, one of deep learning methods, is specialized in image recognition. In this study, we apply the AlexNet architecture, which is a winner of Imagenet Large Scale Virtual Recognition Challenge (ILSVRC) 2012, to the forecast of daily solar flare occurrence using the MatConvNet software of MATLAB. Our input images are SOHO/MDI, EIT 195Å, and 304Å from January 1996 to December 2010, and output ones are yes or no of flare occurrence. We select training dataset from Jan 1996 to Dec 2000 and from Jan 2003 to Dec 2008. Testing dataset is chosen from Jan 2001 to Dec 2002 and from Jan 2009 to Dec 2010 in order to consider the solar cycle effect. In training dataset, we randomly select one fifth of training data for validation dataset to avoid the overfitting problem. Our model successfully forecasts the flare occurrence with about 0.90 probability of detection (POD) for common flares (C-, M-, and X-class). While POD of major flares (M- and X-class) forecasting is 0.96, false alarm rate (FAR) also scores relatively high(0.60). We also present several statistical parameters such as critical success index (CSI) and true skill statistics (TSS). Our model can immediately be applied to automatic forecasting service when image data are available.

  3. Global retrieval of soil moisture and vegetation properties using data-driven methods

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio; Richaume, Philippe; Kerr, Yann

    2017-04-01

    Data-driven methods such as neural networks (NNs) are a powerful tool to retrieve soil moisture from multi-wavelength remote sensing observations at global scale. In this presentation we will review a number of recent results regarding the retrieval of soil moisture with the Soil Moisture and Ocean Salinity (SMOS) satellite, either using SMOS brightness temperatures as input data for the retrieval or using SMOS soil moisture retrievals as reference dataset for the training. The presentation will discuss several possibilities for both the input datasets and the datasets to be used as reference for the supervised learning phase. Regarding the input datasets, it will be shown that NNs take advantage of the synergy of SMOS data and data from other sensors such as the Advanced Scatterometer (ASCAT, active microwaves) and MODIS (visible and infra red). NNs have also been successfully used to construct long time series of soil moisture from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and SMOS. A NN with input data from ASMR-E observations and SMOS soil moisture as reference for the training was used to construct a dataset sharing a similar climatology and without a significant bias with respect to SMOS soil moisture. Regarding the reference data to train the data-driven retrievals, we will show different possibilities depending on the application. Using actual in situ measurements is challenging at global scale due to the scarce distribution of sensors. In contrast, in situ measurements have been successfully used to retrieve SM at continental scale in North America, where the density of in situ measurement stations is high. Using global land surface models to train the NN constitute an interesting alternative to implement new remote sensing surface datasets. In addition, these datasets can be used to perform data assimilation into the model used as reference for the training. This approach has recently been tested at the European Centre for Medium-Range Weather Forecasts (ECMWF). Finally, retrievals using radiative transfer models can also be used as a reference SM dataset for the training phase. This approach was used to retrieve soil moisture from ASMR-E, as mentioned above, and also to implement the official European Space Agency (ESA) SMOS soil moisture product in Near-Real-Time. We will finish with a discussion of the retrieval of vegetation parameters from SMOS observations using data-driven methods.

  4. Distributed HUC-based modeling with SUMMA for ensemble streamflow forecasting over large regional domains.

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Wood, A.; Clark, M. P.; Bennett, A.; Nijssen, B.; Clark, E.; Newman, A. J.

    2017-12-01

    Most operational streamflow forecasting systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow require an experienced human forecaster. But this approach faces challenges surrounding process reproducibility, hindcasting capability, and extension to large domains. The operational hydrologic community is increasingly moving towards `over-the-loop' (completely automated) large-domain simulations yet recent developments indicate a widespread lack of community knowledge about the strengths and weaknesses of such systems for forecasting. A realistic representation of land surface hydrologic processes is a critical element for improving forecasts, but often comes at the substantial cost of forecast system agility and efficiency. While popular grid-based models support the distributed representation of land surface processes, intermediate-scale Hydrologic Unit Code (HUC)-based modeling could provide a more efficient and process-aligned spatial discretization, reducing the need for tradeoffs between model complexity and critical forecasting requirements such as ensemble methods and comprehensive model calibration. The National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the USACE to implement, assess, and demonstrate real-time, over-the-loop distributed streamflow forecasting for several large western US river basins and regions. In this presentation, we present early results from short to medium range hydrologic and streamflow forecasts for the Pacific Northwest (PNW). We employ a real-time 1/16th degree daily ensemble model forcings as well as downscaled Global Ensemble Forecasting System (GEFS) meteorological forecasts. These datasets drive an intermediate-scale configuration of the Structure for Unifying Multiple Modeling Alternatives (SUMMA) model, which represents the PNW using over 11,700 HUCs. The system produces not only streamflow forecasts (using the MizuRoute channel routing tool) but also distributed model states such as soil moisture and snow water equivalent. We also describe challenges in distributed model-based forecasting, including the application and early results of real-time hydrologic data assimilation.

  5. On the mutual relationship between conceptual models and datasets in geophysical monitoring of volcanic systems

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.; Thomas, M.; Pascal, K.; Karl, S.

    2012-04-01

    Geophysical datasets are essential to guide particularly short-term forecasting of volcanic activity. Key parameters are derived from these datasets and interpreted in different ways, however, the biggest impact on the interpretation is not determined by the range of parameters but controlled through the parameterisation and the underlying conceptual model of the volcanic process. On the other hand, the increasing number of sophisticated geophysical models need to be constrained by monitoring data, to transform a merely numerical exercise into a useful forecasting tool. We utilise datasets from the "big three", seismology, deformation and gas emissions, to gain insight in the mutual relationship between conceptual models and constraining data. We show that, e.g. the same seismic dataset can be interpreted with respect to a wide variety of different models with very different implications to forecasting. In turn, different data processing procedures lead to different outcomes even though they are based on the same conceptual model. Unsurprisingly, the most reliable interpretation will be achieved by employing multi-disciplinary models with overlapping constraints.

  6. Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji

    2017-11-01

    Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.

  7. Supervised filters for EEG signal in naturally occurring epilepsy forecasting.

    PubMed

    Muñoz-Almaraz, Francisco Javier; Zamora-Martínez, Francisco; Botella-Rocamora, Paloma; Pardo, Juan

    2017-01-01

    Nearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an acceptable confidence level, could improve the disease treatment and thus the lifestyle of the people who suffer it. To do that the electroencephalogram (EEG) signal is usually studied through spectral power band filtering, but this paper proposes an alternative novel method of preprocessing the EEG signal based on supervised filters. Such filters have been employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to improve the prediction of seizures. The proposed solution extends with this novel approach an algorithm that was submitted to win the third prize of an international Data Science challenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of these preprocessing methods is presented and a detailed analysis in terms of Receiver Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The obtained results show statistical significant improvements when compared with the spectral power band filtering (PBF) typical baseline. A trend between performance and the dataset size is observed, suggesting that the supervised filters bring better information, compared to the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors) and time length. The paper demonstrates a better accuracy in forecasting when new filters are employed and its main contribution is in the field of machine learning algorithms to develop more accurate predictive systems.

  8. Supervised filters for EEG signal in naturally occurring epilepsy forecasting

    PubMed Central

    2017-01-01

    Nearly 1% of the global population has Epilepsy. Forecasting epileptic seizures with an acceptable confidence level, could improve the disease treatment and thus the lifestyle of the people who suffer it. To do that the electroencephalogram (EEG) signal is usually studied through spectral power band filtering, but this paper proposes an alternative novel method of preprocessing the EEG signal based on supervised filters. Such filters have been employed in a machine learning algorithm, such as the K-Nearest Neighbor (KNN), to improve the prediction of seizures. The proposed solution extends with this novel approach an algorithm that was submitted to win the third prize of an international Data Science challenge promoted by Kaggle contest platform and the American Epilepsy Society, the Epilepsy Foundation, National Institutes of Health (NIH) and Mayo Clinic. A formal description of these preprocessing methods is presented and a detailed analysis in terms of Receiver Operating Characteristics (ROC) curve and Area Under ROC curve is performed. The obtained results show statistical significant improvements when compared with the spectral power band filtering (PBF) typical baseline. A trend between performance and the dataset size is observed, suggesting that the supervised filters bring better information, compared to the conventional PBF filters, as the dataset grows in terms of monitored variables (sensors) and time length. The paper demonstrates a better accuracy in forecasting when new filters are employed and its main contribution is in the field of machine learning algorithms to develop more accurate predictive systems. PMID:28632737

  9. Comparison of present global reanalysis datasets in the context of a statistical downscaling method for precipitation prediction

    NASA Astrophysics Data System (ADS)

    Horton, Pascal; Weingartner, Rolf; Brönnimann, Stefan

    2017-04-01

    The analogue method is a statistical downscaling method for precipitation prediction. It uses similarity in terms of synoptic-scale predictors with situations in the past in order to provide a probabilistic prediction for the day of interest. It has been used for decades in a context of weather or flood forecasting, and is more recently also applied to climate studies, whether for reconstruction of past weather conditions or future climate impact studies. In order to evaluate the relationship between synoptic scale predictors and the local weather variable of interest, e.g. precipitation, reanalysis datasets are necessary. Nowadays, the number of available reanalysis datasets increases. These are generated by different atmospheric models with different assimilation techniques and offer various spatial and temporal resolutions. A major difference between these datasets is also the length of the archive they provide. While some datasets start at the beginning of the satellite era (1980) and assimilate these data, others aim at homogeneity on a longer period (e.g. 20th century) and only assimilate conventional observations. The context of the application of analogue methods might drive the choice of an appropriate dataset, for example when the archive length is a leading criterion. However, in many studies, a reanalysis dataset is subjectively chosen, according to the user's preferences or the ease of access. The impact of this choice on the results of the downscaling procedure is rarely considered and no comprehensive comparison has been undertaken so far. In order to fill this gap and to advise on the choice of appropriate datasets, nine different global reanalysis datasets were compared in seven distinct versions of analogue methods, over 300 precipitation stations in Switzerland. Significant differences in terms of prediction performance were identified. Although the impact of the reanalysis dataset on the skill score varies according to the chosen predictor, be it atmospheric circulation or thermodynamic variables, some hierarchy between the datasets is often preserved. This work can thus help choosing an appropriate dataset for the analogue method, or raise awareness of the consequences of using a certain dataset.

  10. Comparison of Four Precipitation Forcing Datasets in Land Information System Simulations over the Continental U.S.

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Kumar, Sujay V.; Kuliogwski, Robert J.; Langston, Carrie

    2013-01-01

    This paper and poster presented a description of the current real-time SPoRT-LIS run over the southeastern CONUS to provide high-resolution, land surface initialization grids for local numerical model forecasts at NWS forecast offices. The LIS hourly output also offers a supplemental dataset to aid in situational awareness for convective initiation forecasts, assessing flood potential, and monitoring drought at fine scales. It is a goal of SPoRT and several NWS forecast offices to expand the LIS to an entire CONUS domain, so that LIS output can be utilized by NWS Western Region offices, among others. To make this expansion cleanly so as to provide high-quality land surface output, SPoRT tested new precipitation datasets in LIS as an alternative forcing dataset to the current radar+gauge Stage IV product. Similar to the Stage IV product, the NMQ product showed comparable patterns of precipitation and soil moisture distribution, but suffered from radar gaps in the intermountain West, and incorrectly set values to zero instead of missing in the data-void regions of Mexico and Canada. The other dataset tested was the next-generation GOES-R QPE algorithm, which experienced a high bias in both coverage and intensity of accumulated precipitation relative to the control (NLDAS2), Stage IV, and NMQ simulations. The resulting root zone soil moisture was substantially higher in most areas.

  11. Japanese 25-year reanalysis (JRA-25)

    NASA Astrophysics Data System (ADS)

    Ohkawara, Nozomu

    2006-12-01

    A long term global atmospheric reanalysis Japanese 25-year Reanalysis (JRA-25) which covers from 1979 to 2004 was completed using the Japan Meteorological Agency (JMA) numerical assimilation and forecast system. This is the first long term reanalysis undertaken in Asia. JMA's latest numerical assimilation system, and observational data collected as much as possible, were used in JRA-25 to generate a consistent and high quality reanalysis dataset to contribute to climate research and operational work. One purpose of JRA-25 is to enhance to a high quality the analysis in the Asian region. 6-hourly data assimilation cycles were performed and produced 6-hourly atmospheric analysis and forecast fields with various kinds of physical variables. The global model used in JRA-25 has a spectral resolution of T106 (equivalent to a horizontal grid size of around 120km) and 40 vertical layers with the top level at 0.4hPa. For observational data, a great deal of satellite data was used in addition to conventional surface and upper air data. Atmospheric Motion Vector (AMV) data retrieved from geostationary satellites, brightness temperature (TBB) data from TIROS Operational Vertical Sounder (TOVS), precipitable water retrieved from radiance of microwave radiometer from orbital satellites and some other satellite data were assimilated with 3-dimensional variational method (3DVAR). Many advantages have been found in the JRA-25 reanalysis. Firstly, forecast 6-hour global total precipitation in JRA-25 performs well, distribution and amount are properly represented both in space and time. JRA-25 has the best performance compared to other reanalysis with respect to time series of global precipitation over many years, with few unrealistic variations caused by degraded quality of satellite data due to volcanic eruptions. Secondly, JRA-25 is the first reanalysis which assimilated wind profiles surrounding tropical cyclones retrieved from historical best track information; tropical cyclones were analyzed correctly in all the global regions. Additionally, low-level cloud along the subtropical western coast of continents is forecast very accurately, and snow depth analysis is also good.

  12. Analysis of extreme summers and prior late winter/spring conditions in central Europe

    NASA Astrophysics Data System (ADS)

    Träger-Chatterjee, C.; Müller, R. W.; Bendix, J.

    2013-05-01

    Drought and heat waves during summer in mid-latitudes are a serious threat to human health and agriculture and have negative impacts on the infrastructure, such as problems in energy supply. The appearance of such extreme events is expected to increase with the progress of global warming. A better understanding of the development of extremely hot and dry summers and the identification of possible precursors could help improve existing seasonal forecasts in this regard, and could possibly lead to the development of early warning methods. The development of extremely hot and dry summer seasons in central Europe is attributed to a combined effect of the dominance of anticyclonic weather regimes and soil moisture-atmosphere interactions. The atmospheric circulation largely determines the amount of solar irradiation and the amount of precipitation in an area. These two variables are themselves major factors controlling the soil moisture. Thus, solar irradiation and precipitation are used as proxies to analyse extreme sunny and dry late winter/spring and summer seasons for the period 1958-2011 in Germany and adjacent areas. For this purpose, solar irradiation data from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis dataset, as well as remote sensing data are used. Precipitation data are taken from the Global Precipitation Climatology Project. To analyse the atmospheric circulation geopotential data at 850 hPa are also taken from the European Center for Medium Range Weather Forecast 40-yr and interim re-analysis datasets. For the years in which extreme summers in terms of high solar irradiation and low precipitation are identified, the previous late winter/spring conditions of solar irradiation and precipitation in Germany and adjacent areas are analysed. Results show that if the El Niño-Southern Oscillation (ENSO) is not very intensely developed, extremely high solar irradiation amounts, together with extremely low precipitation amounts during late winter/spring, might serve as precursor of extremely sunny and dry summer months to be expected.

  13. An assessment of a North American Multi-Model Ensemble (NMME) based global drought early warning forecast system

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.

    2013-12-01

    One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.

  14. Forecasting intentional wildfires using temporal and spatiotemporal autocorrelations

    Treesearch

    Jeffrey P. Prestemon; María L. Chas-Amil; Julia M. Touza; Scott L. Goodrick

    2012-01-01

    We report daily time series models containing both temporal and spatiotemporal lags, which are applied to forecasting intentional wildfires in Galicia, Spain. Models are estimated independently for each of the 19 forest districts in Galicia using a 1999–2003 training dataset and evaluated out-of-sample with a 2004–06 dataset. Poisson autoregressive models of order P –...

  15. GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale

    NASA Astrophysics Data System (ADS)

    Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter

    2017-04-01

    Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.

  16. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Luna, A. S.; Paredes, M. L. L.; de Oliveira, G. C. G.; Corrêa, S. M.

    2014-12-01

    It is well known that air quality is a complex function of emissions, meteorology and topography, and statistical tools provide a sound framework for relating these variables. The observed data were contents of nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx), carbon monoxide (CO), ozone (O3), scalar wind speed (SWS), global solar radiation (GSR), temperature (TEM), moisture content in the air (HUM), collected by a mobile automatic monitoring station at Rio de Janeiro City in two places of the metropolitan area during 2011 and 2012. The aims of this study were: (1) to analyze the behavior of the variables, using the method of PCA for exploratory data analysis; (2) to propose forecasts of O3 levels from primary pollutants and meteorological factors, using nonlinear regression methods like ANN and SVM, from primary pollutants and meteorological factors. The PCA technique showed that for first dataset, variables NO, NOx and SWS have a greater impact on the concentration of O3 and the other data set had the TEM and GSR as the most influential variables. The obtained results from the nonlinear regression techniques ANN and SVM were remarkably closely and acceptable to one dataset presenting coefficient of determination for validation respectively 0.9122 and 0.9152, and root mean square error of 7.66 and 7.85, respectively. For these datasets, the PCA, SVM and ANN had demonstrated their robustness as useful tools for evaluation, and forecast scenarios for air quality.

  17. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    NASA Technical Reports Server (NTRS)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  18. Robust nonlinear canonical correlation analysis: application to seasonal climate forecasting

    NASA Astrophysics Data System (ADS)

    Cannon, A. J.; Hsieh, W. W.

    2008-02-01

    Robust variants of nonlinear canonical correlation analysis (NLCCA) are introduced to improve performance on datasets with low signal-to-noise ratios, for example those encountered when making seasonal climate forecasts. The neural network model architecture of standard NLCCA is kept intact, but the cost functions used to set the model parameters are replaced with more robust variants. The Pearson product-moment correlation in the double-barreled network is replaced by the biweight midcorrelation, and the mean squared error (mse) in the inverse mapping networks can be replaced by the mean absolute error (mae). Robust variants of NLCCA are demonstrated on a synthetic dataset and are used to forecast sea surface temperatures in the tropical Pacific Ocean based on the sea level pressure field. Results suggest that adoption of the biweight midcorrelation can lead to improved performance, especially when a strong, common event exists in both predictor/predictand datasets. Replacing the mse by the mae leads to improved performance on the synthetic dataset, but not on the climate dataset except at the longest lead time, which suggests that the appropriate cost function for the inverse mapping networks is more problem dependent.

  19. A study comparison of two system model performance in estimated lifted index over Indonesia.

    NASA Astrophysics Data System (ADS)

    lestari, Juliana tri; Wandala, Agie

    2018-05-01

    Lifted index (LI) is one of atmospheric stability indices that used for thunderstorm forecasting. Numerical weather Prediction Models are essential for accurate weather forecast these day. This study has completed the attempt to compare the two NWP models these are Weather Research Forecasting (WRF) model and Global Forecasting System (GFS) model in estimates LI at 20 locations over Indonesia and verified the result with observation. Taylor diagram was used to comparing the models skill with shown the value of standard deviation, coefficient correlation and Root mean square error (RMSE). This study using the dataset on 00.00 UTC and 12.00 UTC during mid-March to Mid-April 2017. From the sample of LI distributions, both models have a tendency to overestimated LI value in almost all region in Indonesia while the WRF models has the better ability to catch the LI pattern distribution with observation than GFS model has. The verification result shows how both WRF and GFS model have such a weak relationship with observation except Eltari meteorologi station that its coefficient correlation reach almost 0.6 with the low RMSE value. Mean while WRF model have a better performance than GFS model. This study suggest that estimated LI of WRF model can provide the good performance for Thunderstorm forecasting over Indonesia in the future. However unsufficient relation between output models and observation in the certain location need a further investigation.

  20. Impact of Lidar Wind Sounding on Mesoscale Forecast

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Chou, Shih-Hung; Goodman, H. Michael (Technical Monitor)

    2001-01-01

    An Observing System Simulation Experiment (OSSE) was conducted to study the impact of airborne lidar wind sounding on mesoscale weather forecast. A wind retrieval scheme, which interpolates wind data from a grid data system, simulates the retrieval of wind profile from a satellite lidar system. A mesoscale forecast system based on the PSU/NCAR MM5 model is developed and incorporated the assimilation of the retrieved line-of-sight wind. To avoid the "identical twin" problem, the NCEP reanalysis data is used as our reference "nature" atmosphere. The simulated space-based lidar wind observations were retrieved by interpolating the NCEP values to the observation locations. A modified dataset obtained by smoothing the NCEP dataset was used as the initial state whose forecast was sought to be improved by assimilating the retrieved lidar observations. Forecasts using wind profiles with various lidar instrument parameters has been conducted. The results show that to significantly improve the mesoscale forecast the satellite should fly near the storm center with large scanning radius. Increasing lidar firing rate also improves the forecast. Cloud cover and lack of aerosol degrade the quality of the lidar wind data and, subsequently, the forecast.

  1. Improving GEFS Weather Forecasts for Indian Monsoon with Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Agrawal, Ankita; Salvi, Kaustubh; Ghosh, Subimal

    2014-05-01

    Weather forecast has always been a challenging research problem, yet of a paramount importance as it serves the role of 'key input' in formulating modus operandi for immediate future. Short range rainfall forecasts influence a wide range of entities, right from agricultural industry to a common man. Accurate forecasts actually help in minimizing the possible damage by implementing pre-decided plan of action and hence it is necessary to gauge the quality of forecasts which might vary with the complexity of weather state and regional parameters. Indian Summer Monsoon Rainfall (ISMR) is one such perfect arena to check the quality of weather forecast not only because of the level of intricacy in spatial and temporal patterns associated with it, but also the amount of damage it can cause (because of poor forecasts) to the Indian economy by affecting agriculture Industry. The present study is undertaken with the rationales of assessing, the ability of Global Ensemble Forecast System (GEFS) in predicting ISMR over central India and the skill of statistical downscaling technique in adding value to the predictions by taking them closer to evidentiary target dataset. GEFS is a global numerical weather prediction system providing the forecast results of different climate variables at a fine resolution (0.5 degree and 1 degree). GEFS shows good skills in predicting different climatic variables but fails miserably over rainfall predictions for Indian summer monsoon rainfall, which is evident from a very low to negative correlation values between predicted and observed rainfall. Towards the fulfilment of second rationale, the statistical relationship is established between the reasonably well predicted climate variables (GEFS) and observed rainfall. The GEFS predictors are treated with multicollinearity and dimensionality reduction techniques, such as principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO). Statistical relationship is established between the principal components and observed rainfall over training period and predictions are obtained for testing period. The validations show high improvements in correlation coefficient between observed and predicted data (0.25 to 0.55). The results speak in favour of statistical downscaling methodology which shows the capability to reduce the gap between observed data and predictions. A detailed study is required to be carried out by applying different downscaling techniques to quantify the improvements in predictions.

  2. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, C.; Hodge, B. M.; Clifton, A.

    2015-04-13

    The Wind Integration National Dataset (WIND) Toolkit described in this report fulfills these requirements, and constitutes a state-of-the-art national wind resource data set covering the contiguous United States from 2007 to 2013 for use in a variety of next-generation wind integration analyses and wind power planning. The toolkit is a wind resource data set, wind forecast data set, and wind power production and forecast data set derived from the Weather Research and Forecasting (WRF) numerical weather prediction model. WIND Toolkit data are available online for over 116,000 land-based and 10,000 offshore sites representing existing and potential wind facilities.

  3. Bayesian Hierarchical Models to Augment the Mediterranean Forecast System

    DTIC Science & Technology

    2010-09-30

    In part 2 (Bonazzi et al., 2010), the impact of the ensemble forecast methodology based on MFS-Wind-BHM perturbations is documented. Forecast...absence of dt data stage inputs, the forecast impact of MFS-Error-BHM is neutral. Experiments are underway now to introduce dt back into the MFS-Error...BHM and quantify forecast impacts at MFS. MFS-SuperEnsemble-BHM We have assembled all needed datasets and completed algorithmic development

  4. Informing Drought Preparedness and Response with the South Asia Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Ghatak, D.; Matin, M. A.; Qamer, F. M.; Adhikary, B.; Bajracharya, B.; Nelson, J.; Pulla, S. T.; Ellenburg, W. L.

    2017-12-01

    Decision-relevant drought monitoring in South Asia is a challenge from both a scientific and an institutional perspective. Scientifically, climatic diversity, inconsistent in situ monitoring, complex hydrology, and incomplete knowledge of atmospheric processes mean that monitoring and prediction are fraught with uncertainty. Institutionally, drought monitoring efforts need to align with the information needs and decision-making processes of relevant agencies at national and subnational levels. Here we present first results from an emerging operational drought monitoring and forecast system developed and supported by the NASA SERVIR Hindu-Kush Himalaya hub. The system has been designed in consultation with end users from multiple sectors in South Asian countries to maximize decision-relevant information content in the monitoring and forecast products. Monitoring of meteorological, agricultural, and hydrological drought is accomplished using the South Asia Land Data Assimilation System, a platform that supports multiple land surface models and meteorological forcing datasets to characterize uncertainty, and subseasonal to seasonal hydrological forecasts are produced by driving South Asia LDAS with downscaled meteorological fields drawn from an ensemble of global dynamically-based forecast systems. Results are disseminated to end users through a Tethys online visualization platform and custom communications that provide user oriented, easily accessible, timely, and decision-relevant scientific information.

  5. The Transition of NASA EOS Datasets to WFO Operations: A Model for Future Technology Transfer

    NASA Technical Reports Server (NTRS)

    Darden, C.; Burks, J.; Jedlovec, G.; Haines, S.

    2007-01-01

    The collocation of a National Weather Service (NWS) Forecast Office with atmospheric scientists from NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama has afforded a unique opportunity for science sharing and technology transfer. Specifically, the NWS office in Huntsville has interacted closely with research scientists within the SPORT (Short-term Prediction and Research and Transition) Center at MSFC. One significant technology transfer that has reaped dividends is the transition of unique NASA EOS polar orbiting datasets into NWS field operations. NWS forecasters primarily rely on the AWIPS (Advanced Weather Information and Processing System) decision support system for their day to day forecast and warning decision making. Unfortunately, the transition of data from operational polar orbiters or low inclination orbiting satellites into AWIPS has been relatively slow due to a variety of reasons. The ability to integrate these high resolution NASA datasets into operations has yielded several benefits. The MODIS (MODerate-resolution Imaging Spectrometer ) instrument flying on the Aqua and Terra satellites provides a broad spectrum of multispectral observations at resolutions as fine as 250m. Forecasters routinely utilize these datasets to locate fine lines, boundaries, smoke plumes, locations of fog or haze fields, and other mesoscale features. In addition, these important datasets have been transitioned to other WFOs for a variety of local uses. For instance, WFO Great Falls Montana utilizes the MODIS snow cover product for hydrologic planning purposes while several coastal offices utilize the output from the MODIS and AMSR-E instruments to supplement observations in the data sparse regions of the Gulf of Mexico and western Atlantic. In the short term, these datasets have benefited local WFOs in a variety of ways. In the longer term, the process by which these unique datasets were successfully transitioned to operations will benefit the planning and implementation of products and datasets derived from both NPP and NPOESS. This presentation will provide a brief overview of current WFO usage of satellite data, the transition of datasets between SPORT and the N W S , and lessons learned for future transition efforts.

  6. Approximating Long-Term Statistics Early in the Global Precipitation Measurement Era

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Kirschbaum, Dalia B.; Huffman, George J.; Adler, Robert F.

    2017-01-01

    Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMMs successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics, but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.

  7. ECPC’s weekly to seasonal global forecasts

    Treesearch

    John O. Roads; Shyh-Chin Chen; Francis M. Fujioka

    2001-01-01

    The Scripps Experimental Climate Prediction Center (ECPC) has been making experimental, near-real-time seasonal global forecasts since 26 September 1997 with the NCEP global spectral model used for the reanalysis. Images of these forecasts, at daily to seasonal timescales, are provided on the World Wide Web and digital forecast products are provided on the ECPC...

  8. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  9. Oceanic sources of predictability for MJO propagation across the Maritime Continent in a subset of S2S forecast models

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.; Klingaman, N. P.

    2017-12-01

    Skillful prediction of the Madden-Julian oscillation (MJO) passage across the Maritime Continent (MC) has important implications for global forecasts of high-impact weather events, such as atmospheric rivers and heat waves. The North American teleconnection response to the MJO is strongest when MJO convection is located in the western Pacific Ocean, but many climate and forecast models are deficient in their simulation of MC-crossing MJO events. Compared to atmosphere-only general circulation models (AGCMs), MJO simulation skill generally improves with the addition of ocean feedbacks in coupled GCMs (CGCMs). Using observations, previous studies have noted that the degree of ocean coupling may vary considerably from one MJO event to the next. The coupling mechanisms may be linked to the presence of ocean Equatorial Rossby waves, the sign and amplitude of Equatorial surface currents, and the upper ocean temperature and salinity profiles. In this study, we assess the role of ocean feedbacks to MJO prediction skill using a subset of CGCMs participating in the Subseasonal-to-Seasonal (S2S) Project database. Oceanic observational and reanalysis datasets are used to characterize the upper ocean background state for observed MJO events that do and do not propagate beyond the MC. The ability of forecast models to capture the oceanic influence on the MJO is first assessed by quantifying SST forecast skill. Next, a set of previously developed air-sea interaction diagnostics is applied to model output to measure the role of SST perturbations on the forecast MJO. The "SST effect" in forecast MJO events is compared to that obtained from reanalysis data. Leveraging all ensemble members of a given forecast helps disentangle oceanic model biases from atmospheric model biases, both of which can influence the expression of ocean feedbacks in coupled forecast systems. Results of this study will help identify areas of needed model improvement for improved MJO forecasts.

  10. Global, Persistent, Real-time Multi-sensor Automated Satellite Image Analysis and Crop Forecasting in Commercial Cloud

    NASA Astrophysics Data System (ADS)

    Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.

    2016-12-01

    Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general indicators of environmental health, and can detect growth and changes in cities that are displacing historical agricultural zones.

  11. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  12. Analysis of Science and Technology Trend Based on Word Usage in Digitized Books

    NASA Astrophysics Data System (ADS)

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2013-03-01

    Throughout mankind's history, forecasting and predicting future has been a long-lasting interest to our society. Many fortune-tellers have tried to forecast the future by ``divine'' items. Sci-fi writers have also imagined what the future would look like. However most of them have been illogical and unscientific. Meanwhile, scientists have also attempted to discover future trend of science. Many researchers have used quantitative models to study how new ideas are used and spread. Besides the modeling works, in the early 21st century, the rise of data science has provided another prospect of forecasting future. However many studies have focused on very limited set of period or age, due to the limitations of dataset. Hence, many questions still remained unanswered. Fortunately, Google released a new dataset named ``Google N-Gram Dataset.'' This dataset provides us with 5 million words worth of literature dating from 1520 to 2008, and this is nearly 4% of publications ever printed. With this new time-varying dataset, we studied the spread and development of technologies by searching ``Science and Technology'' related words from 1800 to 2000. By statistical analysis, some general scaling laws were discovered. And finally, we determined factors that strongly affect the lifecycle of a word.

  13. The Second NWRA Flare-Forecasting Comparison Workshop: Methods Compared and Methodology

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.; the Flare Forecasting Comparison Group

    2013-07-01

    The Second NWRA Workshop to compare methods of solar flare forecasting was held 2-4 April 2013 in Boulder, CO. This is a follow-on to the First NWRA Workshop on Flare Forecasting Comparison, also known as the ``All-Clear Forecasting Workshop'', held in 2009 jointly with NASA/SRAG and NOAA/SWPC. For this most recent workshop, many researchers who are active in the field participated, and diverse methods were represented in terms of both the characterization of the Sun and the statistical approaches used to create a forecast. A standard dataset was created for this investigation, using data from the Solar Dynamics Observatory/ Helioseismic and Magnetic Imager (SDO/HMI) vector magnetic field HARP series. For each HARP on each day, 6 hours of data were used, allowing for nominal time-series analysis to be included in the forecasts. We present here a summary of the forecasting methods that participated and the standardized dataset that was used. Funding for the workshop and the data analysis was provided by NASA/Living with a Star contract NNH09CE72C and NASA/Guest Investigator contract NNH12CG10C.

  14. Controls on delta formation, area, and topset slope: New predictive relationships developed using a global delta dataset

    NASA Astrophysics Data System (ADS)

    Caldwell, R. L.; Edmonds, D. A.; Baumgardner, S. E.; Paola, C.; Roy, S.; Nienhuis, J.

    2017-12-01

    River deltas are irreplaceable natural and societal resources, though they are at risk of drowning due to sea-level rise and decreased sediment delivery. To enhance hazard mitigation efforts in the face of global environmental change, we must understand the controls on delta growth. Previous empirical studies of delta growth are based on small datasets and often biased towards large, river-dominated deltas. We are currently lacking relationships that predict delta formation, area, or topset slope across the full breadth of global deltas. To this end, we developed a global dataset of 5,229 rivers (with and without deltas) paired with nine upstream (e.g., sediment discharge) and four downstream (e.g., wave height) environmental variables. Using Google Earth imagery, we identify all coastal river mouths (≥ 50 m wide) connected to an upstream catchment, and define deltas as river mouths that split into two or more distributary channels, end in a depositional protrusion from the shoreline, or do both. Delta area is defined as the area of the polygon connecting the delta node, two lateral shoreline extent points, and the basinward-most extent of the delta. Topset slope is calculated as the average, linear slope from the delta node elevation (extracted from SRTM data) to the main channel mouth, and shoreline and basinward extent points. Of the 5,229 rivers in our dataset, 1,816 (35%) have a delta. Using 495 rivers (those with data available for all variables), we build an empirically-derived relationship that predicts delta formation with 76% success. Delta formation is controlled predominantly by upstream water and sediment discharge, with secondary control by downstream waves and tides that suppress delta formation. For those rivers that do form deltas, we show that delta area is best predicted by sediment discharge, bathymetric slope, and drainage basin area (R2 = 0.95, n = 170), and exhibits a negative power-law relationship with topset slope (R2 = 0.85, n = 1,342). Topset slope is best predicted by grain size and wave height (R2 = 0.50, n = 358). These empirical relationships can aid in forecasting delta response to continued global environmental change.

  15. Forecast of severe fever with thrombocytopenia syndrome incidence with meteorological factors.

    PubMed

    Sun, Ji-Min; Lu, Liang; Liu, Ke-Ke; Yang, Jun; Wu, Hai-Xia; Liu, Qi-Yong

    2018-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) is emerging and some studies reported that SFTS incidence was associated with meteorological factors, while no report on SFTS forecast models was reported up to date. In this study, we constructed and compared three forecast models using autoregressive integrated moving average (ARIMA) model, negative binomial regression model (NBM), and quasi-Poisson generalized additive model (GAM). The dataset from 2011 to 2015 were used for model construction and the dataset in 2016 were used for external validity assessment. All the three models fitted the SFTS cases reasonably well during the training process and forecast process, while the NBM model forecasted better than other two models. Moreover, we demonstrated that temperature and relative humidity played key roles in explaining the temporal dynamics of SFTS occurrence. Our study contributes to better understanding of SFTS dynamics and provides predictive tools for the control and prevention of SFTS. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. IEA Wind Task 36 Forecasting

    NASA Astrophysics Data System (ADS)

    Giebel, Gregor; Cline, Joel; Frank, Helmut; Shaw, Will; Pinson, Pierre; Hodge, Bri-Mathias; Kariniotakis, Georges; Sempreviva, Anna Maria; Draxl, Caroline

    2017-04-01

    Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Wind Power Forecasting tries to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, UK MetOffice, …) and operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets for verification. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts aiming at industry and forecasters alike. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions, especially probabilistic ones. The Operating Agent is Gregor Giebel of DTU, Co-Operating Agent is Joel Cline of the US Department of Energy. Collaboration in the task is solicited from everyone interested in the forecasting business. We will collaborate with IEA Task 31 Wakebench, which developed the Windbench benchmarking platform, which this task will use for forecasting benchmarks. The task runs for three years, 2016-2018. Main deliverables are an up-to-date list of current projects and main project results, including datasets which can be used by researchers around the world to improve their own models, an IEA Recommended Practice on performance evaluation of probabilistic forecasts, a position paper regarding the use of probabilistic forecasts, and one or more benchmark studies implemented on the Windbench platform hosted at CENER. Additionally, spreading of relevant information in both the forecasters and the users community is paramount. The poster also shows the work done in the first half of the Task, e.g. the collection of available datasets and the learnings from a public workshop on 9 June in Barcelona on Experiences with the Use of Forecasts and Gaps in Research. Participation is open for all interested parties in member states of the IEA Annex on Wind Power, see ieawind.org for the up-to-date list. For collaboration, please contact the author grgi@dtu.dk).

  17. The Implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for Global Dust Forecasting at NOAA NCEP

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Hsuan; Da Silva, Arlindo M.; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; hide

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented the NOAA Environmental Modeling System (NEMS) Global Forecast System (GFS) Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5-day dust forecasts at 1deg x 1deg resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders, as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  18. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  19. Transforming Atmospheric and Remotely-Sensed Information to Hydrologic Predictability in South Asia

    NASA Astrophysics Data System (ADS)

    Hopson, T. M.; Riddle, E. E.; Broman, D.; Brakenridge, G. R.; Birkett, C. M.; Kettner, A.; Sampson, K. M.; Boehnert, J.; Priya, S.; Collins, D. C.; Rostkier-Edelstein, D.; Young, W.; Singh, D.; Islam, A. S.

    2017-12-01

    South Asia is a flashpoint for natural disasters with profound societal impacts for the region and globally. Although close to 40% of the world's population depends on the Greater Himalaya's great rivers, $20 Billion of GDP is affected by river floods each year. The frequent occurrence of floods, combined with large and rapidly growing populations with high levels of poverty, make South Asia highly susceptible to humanitarian disasters. The challenges of mitigating such devastating disasters are exacerbated by the limited availability of real-time rain and stream gauge measuring stations and transboundary data sharing, and by constrained institutional commitments to overcome these challenges. To overcome such limitations, India and the World Bank have committed resources to the National Hydrology Project III, with the development objective to improve the extent, quality, and accessibility of water resources information and to strengthen the capacity of targeted water resources management institutions in India. The availability and application of remote sensing products and weather forecasts from ensemble prediction systems (EPS) have transformed river forecasting capability over the last decade, and is of interest to India. In this talk, we review the potential predictability of river flow contributed by some of the freely-available remotely-sensed and weather forecasting products within the framework of the physics of water migration through a watershed. Our specific geographical context is the Ganges, Brahmaputra, and Meghna river basin and a newly-available set of stream gauge measurements located over the region. We focus on satellite rainfall estimation, river height and width estimation, and EPS weather forecasts. For the later, we utilize the THORPEX-TIGGE dataset of global forecasts, and discuss how atmospheric predictability, as measured by an EPS, is transformed into hydrometeorological predictability. We provide an overview of the strengths and weaknesses of each of these data sets to the river flow prediction problem, generalizing their utility across spatial- and temporal-scales, and highlight the benefits of joint utilization and multi-modeling to minimize uncertainty and enhance operational robustness.

  20. Calibration of limited-area ensemble precipitation forecasts for hydrological predictions

    NASA Astrophysics Data System (ADS)

    Diomede, Tommaso; Marsigli, Chiara; Montani, Andrea; Nerozzi, Fabrizio; Paccagnella, Tiziana

    2015-04-01

    The main objective of this study is to investigate the impact of calibration for limited-area ensemble precipitation forecasts, to be used for driving discharge predictions up to 5 days in advance. A reforecast dataset, which spans 30 years, based on the Consortium for Small Scale Modeling Limited-Area Ensemble Prediction System (COSMO-LEPS) was used for testing the calibration strategy. Three calibration techniques were applied: quantile-to-quantile mapping, linear regression, and analogs. The performance of these methodologies was evaluated in terms of statistical scores for the precipitation forecasts operationally provided by COSMO-LEPS in the years 2003-2007 over Germany, Switzerland, and the Emilia-Romagna region (northern Italy). The analog-based method seemed to be preferred because of its capability of correct position errors and spread deficiencies. A suitable spatial domain for the analog search can help to handle model spatial errors as systematic errors. However, the performance of the analog-based method may degrade in cases where a limited training dataset is available. A sensitivity test on the length of the training dataset over which to perform the analog search has been performed. The quantile-to-quantile mapping and linear regression methods were less effective, mainly because the forecast-analysis relation was not so strong for the available training dataset. A comparison between the calibration based on the deterministic reforecast and the calibration based on the full operational ensemble used as training dataset has been considered, with the aim to evaluate whether reforecasts are really worthy for calibration, given that their computational cost is remarkable. The verification of the calibration process was then performed by coupling ensemble precipitation forecasts with a distributed rainfall-runoff model. This test was carried out for a medium-sized catchment located in Emilia-Romagna, showing a beneficial impact of the analog-based method on the reduction of missed events for discharge predictions.

  1. Forecast first: An argument for groundwater modeling in reverse

    USGS Publications Warehouse

    White, Jeremy

    2017-01-01

    Numerical groundwater models are important compo-nents of groundwater analyses that are used for makingcritical decisions related to the management of ground-water resources. In this support role, models are oftenconstructed to serve a specific purpose that is to provideinsights, through simulation, related to a specific func-tion of a complex aquifer system that cannot be observeddirectly (Anderson et al. 2015).For any given modeling analysis, several modelinput datasets must be prepared. Herein, the datasetsrequired to simulate the historical conditions are referredto as the calibration model, and the datasets requiredto simulate the model’s purpose are referred to as theforecast model. Future groundwater conditions or otherunobserved aspects of the groundwater system may besimulated by the forecast model—the outputs of interestfrom the forecast model represent the purpose of themodeling analysis. Unfortunately, the forecast model,needed to simulate the purpose of the modeling analysis,is seemingly an afterthought—calibration is where themajority of time and effort are expended and calibrationis usually completed before the forecast model is evenconstructed. Herein, I am proposing a new groundwatermodeling workflow, referred to as the “forecast first”workflow, where the forecast model is constructed at anearlier stage in the modeling analysis and the outputsof interest from the forecast model are evaluated duringsubsequent tasks in the workflow.

  2. Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities

    NASA Astrophysics Data System (ADS)

    Schemm, J. E.; Long, L.; Baxter, S.

    2013-12-01

    Evaluation of the NCEP CFSv2 45-day Forecasts for Predictability of Intraseasonal Tropical Storm Activities Jae-Kyung E. Schemm, Lindsey Long and Stephen Baxter Climate Prediction Center, NCEP/NWS/NOAA Predictability of intraseasonal tropical storm (TS) activities is assessed using the 1999-2010 CFSv2 hindcast suite. Weekly TS activities in the CFSv2 45-day forecasts were determined using the TS detection and tracking method devised by Carmago and Zebiak (2002). The forecast periods are divided into weekly intervals for Week 1 through Week 6, and also the 30-day mean. The TS activities in those intervals are compared to the observed activities based on the NHC HURDAT and JTWC Best Track datasets. The CFSv2 45-day hindcast suite is made of forecast runs initialized at 00, 06, 12 and 18Z every day during the 1999 - 2010 period. For predictability evaluation, forecast TS activities are analyzed based on 20-member ensemble forecasts comprised of 45-day runs made during the most recent 5 days prior to the verification period. The forecast TS activities are evaluated in terms of the number of storms, genesis locations and storm tracks during the weekly periods. The CFSv2 forecasts are shown to have a fair level of skill in predicting the number of storms over the Atlantic Basin with the temporal correlation scores ranging from 0.73 for Week 1 forecasts to 0.63 for Week 6, and the average RMS errors ranging from 0.86 to 1.07 during the 1999-2010 hurricane season. Also, the forecast track density distribution and false alarm statistics are compiled using the hindcast analyses. In real-time applications of the intraseasonal TS activity forecasts, the climatological TS forecast statistics will be used to make the model bias corrections in terms of the storm counts, track distribution and removal of false alarms. An operational implementation of the weekly TS activity prediction is planned for early 2014 to provide an objective input for the CPC's Global Tropical Hazards Outlooks.

  3. An observational and modeling study of the August 2017 Florida climate extreme event.

    NASA Astrophysics Data System (ADS)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  4. Long-term forecasting of meteorological time series using Nonlinear Canonical Correlation Analysis (NLCCA)

    NASA Astrophysics Data System (ADS)

    Woldesellasse, H. T.; Marpu, P. R.; Ouarda, T.

    2016-12-01

    Wind is one of the crucial renewable energy sources which is expected to bring solutions to the challenges of clean energy and the global issue of climate change. A number of linear and nonlinear multivariate techniques has been used to predict the stochastic character of wind speed. A wind forecast with good accuracy has a positive impact on the reduction of electricity system cost and is essential for the effective grid management. Over the past years, few studies have been done on the assessment of teleconnections and its possible effects on the long-term wind speed variability in the UAE region. In this study Nonlinear Canonical Correlation Analysis (NLCCA) method is applied to study the relationship between global climate oscillation indices and meteorological variables, with a major emphasis on wind speed and wind direction, of Abu Dhabi, UAE. The wind dataset was obtained from six ground stations. The first mode of NLCCA is capable of capturing the nonlinear mode of the climate indices at different seasons, showing the symmetry between the warm states and the cool states. The strength of the nonlinear canonical correlation between the two sets of variables varies with the lead/lag time. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE) and Mean absolute error (MAE). The results indicated that NLCCA models provide more accurate information about the nonlinear intrinsic behaviour of the dataset of variables than linear CCA model in terms of the correlation and root mean square error. Key words: Nonlinear Canonical Correlation Analysis (NLCCA), Canonical Correlation Analysis, Neural Network, Climate Indices, wind speed, wind direction

  5. JADDS - towards a tailored global atmospheric composition data service for CAMS forecasts and reanalysis

    NASA Astrophysics Data System (ADS)

    Stein, Olaf; Schultz, Martin G.; Rambadt, Michael; Saini, Rajveer; Hoffmann, Lars; Mallmann, Daniel

    2017-04-01

    Global model data of atmospheric composition produced by the Copernicus Atmospheric Monitoring Service (CAMS) is collected since 2010 at FZ Jülich and serves as boundary condition for use by Regional Air Quality (RAQ) modellers world-wide. RAQ models need time-resolved meteorological as well as chemical lateral boundary conditions for their individual model domains. While the meteorological data usually come from well-established global forecast systems, the chemical boundary conditions are not always well defined. In the past, many models used 'climatic' boundary conditions for the tracer concentrations, which can lead to significant concentration biases, particularly for tracers with longer lifetimes which can be transported over long distances (e.g. over the whole northern hemisphere) with the mean wind. The Copernicus approach utilizes extensive near-realtime data assimilation of atmospheric composition data observed from space which gives additional reliability to the global modelling data and is well received by the RAQ communities. An existing Web Coverage Service (WCS) for sharing these individually tailored model results is currently being re-engineered to make use of a modern, scalable database technology in order to improve performance, enhance flexibility, and allow the operation of catalogue services. The new Jülich Atmospheric Data Distributions Server (JADDS) adheres to the Web Coverage Service WCS2.0 standard as defined by the Open Geospatial Consortium OGC. This enables the user groups to flexibly define datasets they need by selecting a subset of chemical species or restricting geographical boundaries or the length of the time series. The data is made available in the form of different catalogues stored locally on our server. In addition, the Jülich OWS Interface (JOIN) provides interoperable web services allowing for easy download and visualization of datasets delivered from WCS servers via the internet. We will present the prototype JADDS server and address the major issues identified when relocating large four-dimensional datasets into a RASDAMAN raster array database. So far the RASDAMAN support for data available in netCDF format is limited with respect to metadata related to variables and axes. For community-wide accepted solutions, selected data coverages shall result in downloadable netCDF files including metadata complying with the netCDF CF Metadata Conventions standard (http://cfconventions.org/). This can be achieved by adding custom metadata elements for RASDAMAN bands (model levels) on data ingestion. Furthermore, an optimization strategy for ingestion of several TB of 4D model output data will be outlined.

  6. Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    NASA Astrophysics Data System (ADS)

    Gunn, L. S.; Blake, S.; Jones, M. C.; Rymer, H.

    2014-01-01

    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data have been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010. Data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption duration between the years 1600 and 1669 is found to be statistically different from that following it and the forecasting model is run on two datasets of Mt. Etna flank eruption durations: 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect on the forecasting model result, especially where short durations are involved. By assigning the terms `likely' and `unlikely' to probabilities of 66 % or more and 33 % or less, respectively, the forecasting model based on the 1600-2010 dataset indicates that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 86 days (± 29 days). This approach can easily be adapted for use on other highly active, well-documented volcanoes or for different duration data such as the duration of explosive episodes or the duration of repose periods between eruptions.

  7. Assessing the Value of Post-processed State-of-the-art Long-term Weather Forecast Ensembles within An Integrated Agronomic Modelling Framework

    NASA Astrophysics Data System (ADS)

    LI, Y.; Castelletti, A.; Giuliani, M.

    2014-12-01

    Over recent years, long-term climate forecast from global circulation models (GCMs) has been demonstrated to show increasing skills over the climatology, thanks to the advances in the modelling of coupled ocean-atmosphere dynamics. Improved information from long-term forecast is supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping time) and for more effectively coping with the adverse impacts of climate variability. Yet, evaluating how valuable this information can be is not straightforward and farmers' response must be taken into consideration. Indeed, while long-range forecast are traditionally evaluated in terms of accuracy by comparison of hindcast and observed values, in the context of agricultural systems, potentially useful forecast information should alter the stakeholders' expectation, modify their decisions and ultimately have an impact on their annual benefit. Therefore, it is more desirable to assess the value of those long-term forecasts via decision-making models so as to extract direct indication of probable decision outcomes from farmers, i.e. from an end-to-end perspective. In this work, we evaluate the operational value of thirteen state-of-the-art long-range forecast ensembles against climatology forecast and subjective prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of farmers' behavior. Collected ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in order to address the mismatch of the spatio-temporal scale between forecast data from GCMs and distributed crop simulation model. The agronomic model is first simulated using the forecast information (ex-ante), followed by a second run with actual climate (ex-post). Multi-year simulations are performed to account for climate variability and the value of the different climate forecast is evaluated against the perfect foresight scenario based on the expected crop productivity as well as the land-use decisions. Our results show that not all the products generate beneficial effects to farmers and that the forecast errors might be amplified by the farmers decisions.

  8. Understanding the Global Water and Energy Cycle Through Assimilation of Precipitation-Related Observations: Lessons from TRMM and Prospects for GPM

    NASA Technical Reports Server (NTRS)

    Hou, Arthur; Zhang, Sara; daSilva, Arlindo; Li, Frank; Atlas, Robert (Technical Monitor)

    2002-01-01

    Understanding the Earth's climate and how it responds to climate perturbations relies on what we know about how atmospheric moisture, clouds, latent heating, and the large-scale circulation vary with changing climatic conditions. The physical process that links these key climate elements is precipitation. Improving the fidelity of precipitation-related fields in global analyses is essential for gaining a better understanding of the global water and energy cycle. In recent years, research and operational use of precipitation observations derived from microwave sensors such as the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager and Special Sensor Microwave/Imager (SSM/I) have shown the tremendous potential of using these data to improve global modeling, data assimilation, and numerical weather prediction. We will give an overview of the benefits of assimilating TRMM and SSM/I rain rates and discuss developmental strategies for using space-based rainfall and rainfall-related observations to improve forecast models and climate datasets in preparation for the proposed multi-national Global Precipitation Mission (GPM).

  9. CFS Forecast Verification

    Science.gov Websites

    history of Nino3.4 SST anomalies of individual forecasts Forecast anomalies Target season Nino SST Global SST Global Prec Global T2m US Prec US T2m US SM z200 NDJ 2004/2005 Nino SST Global SST Global Prec Global T2m US Prec US T2m US SM z200 DJF 2005 Nino SST Global SST Global Prec Global T2m US Prec US T2m

  10. High resolution global climate modelling; the UPSCALE project, a large simulation campaign

    NASA Astrophysics Data System (ADS)

    Mizielinski, M. S.; Roberts, M. J.; Vidale, P. L.; Schiemann, R.; Demory, M.-E.; Strachan, J.; Edwards, T.; Stephens, A.; Lawrence, B. N.; Pritchard, M.; Chiu, P.; Iwi, A.; Churchill, J.; del Cano Novales, C.; Kettleborough, J.; Roseblade, W.; Selwood, P.; Foster, M.; Glover, M.; Malcolm, A.

    2014-01-01

    The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project constructed and ran an ensemble of HadGEM3 (Hadley centre Global Environment Model 3) atmosphere-only global climate simulations over the period 1985-2011, at resolutions of N512 (25 km), N216 (60 km) and N96 (130 km) as used in current global weather forecasting, seasonal prediction and climate modelling respectively. Alongside these present climate simulations a parallel ensemble looking at extremes of future climate was run, using a time-slice methodology to consider conditions at the end of this century. These simulations were primarily performed using a 144 million core hour, single year grant of computing time from PRACE (the Partnership for Advanced Computing in Europe) in 2012, with additional resources supplied by the Natural Environmental Research Council (NERC) and the Met Office. Almost 400 terabytes of simulation data were generated on the HERMIT supercomputer at the high performance computing center Stuttgart (HLRS), and transferred to the JASMIN super-data cluster provided by the Science and Technology Facilities Council Centre for Data Archival (STFC CEDA) for analysis and storage. In this paper we describe the implementation of the project, present the technical challenges in terms of optimisation, data output, transfer and storage that such a project involves and include details of the model configuration and the composition of the UPSCALE dataset. This dataset is available for scientific analysis to allow assessment of the value of model resolution in both present and potential future climate conditions.

  11. Quantitative approaches to energy and glucose homeostasis: machine learning and modelling for precision understanding and prediction

    PubMed Central

    Murphy, Kevin G.; Jones, Nick S.

    2018-01-01

    Obesity is a major global public health problem. Understanding how energy homeostasis is regulated, and can become dysregulated, is crucial for developing new treatments for obesity. Detailed recording of individual behaviour and new imaging modalities offer the prospect of medically relevant models of energy homeostasis that are both understandable and individually predictive. The profusion of data from these sources has led to an interest in applying machine learning techniques to gain insight from these large, relatively unstructured datasets. We review both physiological models and machine learning results across a diverse range of applications in energy homeostasis, and highlight how modelling and machine learning can work together to improve predictive ability. We collect quantitative details in a comprehensive mathematical supplement. We also discuss the prospects of forecasting homeostatic behaviour and stress the importance of characterizing stochasticity within and between individuals in order to provide practical, tailored forecasts and guidance to combat the spread of obesity. PMID:29367240

  12. Biases in Global Reanalysis Datasets Undermine Intraseasonal Prediction Skill Xiouhua Fu1, Bin Wang, June-Yi Lee, Wanqiu Wang, and Li Gao 1International Pacific Research Center (IPRC), SOEST, University of Hawaii at Manoa

    NASA Astrophysics Data System (ADS)

    Fu, J. X.

    2010-12-01

    Predictability of Intra-Seasonal Oscillation (ISO) relies on both initial conditions and lower boundary conditions (or atmosphere-ocean interaction). The atmospheric reanalysis datasets are commonly used as initial conditions. Here, the biases of three reanalysis datasets (NCEP_R1, _R2, and ERA_Interim) in describing ISO were revealed and the impacts of these biases as initial conditions on ISO prediction skills were assessed. A signal recovery method is proposed to improve ISO prediction. All three reanalysis datasets underestimate the intensity of the equatorial eastward-propagating ISO. When these reanalyses are used as initial conditions in the ECHAM4-UH hybrid coupled model (UH_HCM hereinafter), skillful ISO prediction reaches only about one week for both the 850-hPa zonal winds (U850) and rainfall over Southeast Asia and the global tropics. An enhanced nudging of divergence field is shown to significantly improve the initial conditions, resulting in an extension of the skillful rainfall prediction by 2-3 days and U850 prediction by 5-10 days. After recovering the ISO signals in the original reanalyses, the resultant initial conditions contain ISO strength much closer to the observed. Use of these signal-recovered reanalyses as initial conditions extends the skillful prediction of U850 and rainfall, respectively, to 23 and 18 days over Southeast Asia, and to 20 and 10 days over the global tropics. This finding underlines the urgent need to improve data assimilation systems and observations in advancement of ISO prediction by offering better initial conditions. It is also found that small-scale synoptic weather disturbances in initial conditions generally increase ISO prediction skill. The UH_HCM has better rainfall prediction than the NCEP Climate Forecast System (CFS) over Southeast Asia and both models suffer the prediction barrier over the Maritime Continent.

  13. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow observations are assimilated into the analysis and assimilation configuration, and all four configurations benefit from the inclusion of 1,260 reservoirs. An overview of the National Water Model will be given, along with information on ongoing evaluation activities and plans for future NWM enhancements.

  14. Skill of a global seasonal ensemble streamflow forecasting system

    NASA Astrophysics Data System (ADS)

    Candogan Yossef, Naze; Winsemius, Hessel; Weerts, Albrecht; van Beek, Rens; Bierkens, Marc

    2013-04-01

    Forecasting of water availability and scarcity is a prerequisite for managing the risks and opportunities caused by the inter-annual variability of streamflow. Reliable seasonal streamflow forecasts are necessary to prepare for an appropriate response in disaster relief, management of hydropower reservoirs, water supply, agriculture and navigation. Seasonal hydrological forecasting on a global scale could be valuable especially for developing regions of the world, where effective hydrological forecasting systems are scarce. In this study, we investigate the forecasting skill of the global seasonal streamflow forecasting system FEWS-World, using the global hydrological model PCR-GLOBWB. FEWS-World has been setup within the European Commission 7th Framework Programme project Global Water Scarcity Information Service (GLOWASIS). Skill is assessed in historical simulation mode as well as retroactive forecasting mode. The assessment in historical simulation mode used a meteorological forcing based on observations from the Climate Research Unit of the University of East Anglia and the ERA-40 reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF). We assessed the skill of the global hydrological model PCR-GLOBWB in reproducing past discharge extremes in 20 large rivers of the world. This preliminary assessment concluded that the prospects for seasonal forecasting with PCR-GLOBWB or comparable models are positive. However this assessment did not include actual meteorological forecasts. Thus the meteorological forcing errors were not assessed. Yet, in a forecasting setup, the predictive skill of a hydrological forecasting system is affected by errors due to uncertainty from numerical weather prediction models. For the assessment in retroactive forecasting mode, the model is forced with actual ensemble forecasts from the seasonal forecast archives of ECMWF. Skill is assessed at 78 stations on large river basins across the globe, for all the months of the year and for lead times up to 6 months. The forecasted discharges are compared with observed monthly streamflow records using the ensemble verification measures Brier Skill Score (BSS) and Continuous Ranked Probability Score (CRPS). The eventual goal is to transfer FEWS-World to operational forecasting mode, where the system will use operational seasonal forecasts from ECMWF. The results will be disseminated on the internet, and hopefully provide information that is valuable for users in data and model-poor regions of the world.

  15. Improving Global Building Exposure Data for Disaster Forecasting, Mitigation, and Response

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Huyck, C.; Lewis, G.; Becker, M.; Vinay, S.; Tralli, D.; Eguchi, R.

    2013-12-01

    This paper describes an exploratory study being performed under the NASA Applied Sciences Program where the goal is to integrate Earth science data and information for disaster forecasting, mitigation and response. Specifically, we are delivering EO-derived built environment data and information for use in catastrophe (CAT) models and loss estimation tools. CAT models and loss estimation tools typically use GIS exposure databases to characterize the real-world environment. These datasets are often a source of great uncertainty in the loss estimates, particularly in international events, because the data are incomplete, and sometimes inaccurate and disparate in quality from one region to another. Preliminary research by project team members as part of the Global Earthquake Model (GEM) consortium suggests that a strong relationship exists between the height and volume of built-up areas and NASA data products from the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA Socioeconomic Data and Applications Center (SEDAC). Applying this knowledge within the framework of the GEM Global Exposure Database (GED) is significantly enhancing our ability to quantify building exposure, particularly in developing countries and emerging insurance markets. Global insurance products that have a more comprehensive basis for assessing risk and exposure - as from EO-derived data and information assimilated into CAT models and loss estimation tools - will help a) help to transform the way in which we measure, monitor and assess the vulnerability of our communities globally, and in turn, b) help encourage the investments needed - especially in the developing world - stimulating economic growth and actions that would lead to a more disaster-resilient world. Improved building exposure data will also be valuable for near-real time applications such as emergency response planning and post-disaster damage and needs assessment.

  16. Can we achieve Millennium Development Goal 4? New analysis of country trends and forecasts of under-5 mortality to 2015.

    PubMed

    Murray, Christopher J L; Laakso, Thomas; Shibuya, Kenji; Hill, Kenneth; Lopez, Alan D

    2007-09-22

    Global efforts have increased the accuracy and timeliness of estimates of under-5 mortality; however, these estimates fail to use all data available, do not use transparent and reproducible methods, do not distinguish predictions from measurements, and provide no indication of uncertainty around point estimates. We aimed to develop new reproducible methods and reanalyse existing data to elucidate detailed time trends. We merged available databases, added to them when possible, and then applied Loess regression to estimate past trends and forecast to 2015 for 172 countries. We developed uncertainty estimates based on different model specifications and estimated levels and trends in neonatal, post-neonatal, and childhood mortality. Global under-5 mortality has fallen from 110 (109-110) per 1000 in 1980 to 72 (70-74) per 1000 in 2005. Child deaths worldwide have decreased from 13.5 (13.4-13.6) million in 1980 to an estimated 9.7 (9.5-10.0) million in 2005. Global under-5 mortality is expected to decline by 27% from 1990 to 2015, substantially less than the target of Millennium Development Goal 4 (MDG4) of a 67% decrease. Several regions in Latin America, north Africa, the Middle East, Europe, and southeast Asia have had consistent annual rates of decline in excess of 4% over 35 years. Global progress on MDG4 is dominated by slow reductions in sub-Saharan Africa, which also has the slowest rates of decline in fertility. Globally, we are not doing a better job of reducing child mortality now than we were three decades ago. Further improvements in the quality and timeliness of child-mortality measurements should be possible by more fully using existing datasets and applying standard analytical strategies.

  17. A novel single-parameter approach for forecasting algal blooms.

    PubMed

    Xiao, Xi; He, Junyu; Huang, Haomin; Miller, Todd R; Christakos, George; Reichwaldt, Elke S; Ghadouani, Anas; Lin, Shengpan; Xu, Xinhua; Shi, Jiyan

    2017-01-01

    Harmful algal blooms frequently occur globally, and forecasting could constitute an essential proactive strategy for bloom control. To decrease the cost of aquatic environmental monitoring and increase the accuracy of bloom forecasting, a novel single-parameter approach combining wavelet analysis with artificial neural networks (WNN) was developed and verified based on daily online monitoring datasets of algal density in the Siling Reservoir, China and Lake Winnebago, U.S.A. Firstly, a detailed modeling process was illustrated using the forecasting of cyanobacterial cell density in the Chinese reservoir as an example. Three WNN models occupying various prediction time intervals were optimized through model training using an early stopped training approach. All models performed well in fitting historical data and predicting the dynamics of cyanobacterial cell density, with the best model predicting cyanobacteria density one-day ahead (r = 0.986 and mean absolute error = 0.103 × 10 4  cells mL -1 ). Secondly, the potential of this novel approach was further confirmed by the precise predictions of algal biomass dynamics measured as chl a in both study sites, demonstrating its high performance in forecasting algal blooms, including cyanobacteria as well as other blooming species. Thirdly, the WNN model was compared to current algal forecasting methods (i.e. artificial neural networks, autoregressive integrated moving average model), and was found to be more accurate. In addition, the application of this novel single-parameter approach is cost effective as it requires only a buoy-mounted fluorescent probe, which is merely a fraction (∼15%) of the cost of a typical auto-monitoring system. As such, the newly developed approach presents a promising and cost-effective tool for the future prediction and management of harmful algal blooms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Real-time flood forecasting by employing artificial neural network based model with zoning matching approach

    NASA Astrophysics Data System (ADS)

    Sulaiman, M.; El-Shafie, A.; Karim, O.; Basri, H.

    2011-10-01

    Flood forecasting models are a necessity, as they help in planning for flood events, and thus help prevent loss of lives and minimize damage. At present, artificial neural networks (ANN) have been successfully applied in river flow and water level forecasting studies. ANN requires historical data to develop a forecasting model. However, long-term historical water level data, such as hourly data, poses two crucial problems in data training. First is that the high volume of data slows the computation process. Second is that data training reaches its optimal performance within a few cycles of data training, due to there being a high volume of normal water level data in the data training, while the forecasting performance for high water level events is still poor. In this study, the zoning matching approach (ZMA) is used in ANN to accurately monitor flood events in real time by focusing the development of the forecasting model on high water level zones. ZMA is a trial and error approach, where several training datasets using high water level data are tested to find the best training dataset for forecasting high water level events. The advantage of ZMA is that relevant knowledge of water level patterns in historical records is used. Importantly, the forecasting model developed based on ZMA successfully achieves high accuracy forecasting results at 1 to 3 h ahead and satisfactory performance results at 6 h. Seven performance measures are adopted in this study to describe the accuracy and reliability of the forecasting model developed.

  19. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data.

    PubMed

    Farrer, Emily C; Ashton, Isabel W; Knape, Jonas; Suding, Katharine N

    2014-04-01

    Two sources of complexity make predicting plant community response to global change particularly challenging. First, realistic global change scenarios involve multiple drivers of environmental change that can interact with one another to produce non-additive effects. Second, in addition to these direct effects, global change drivers can indirectly affect plants by modifying species interactions. In order to tackle both of these challenges, we propose a novel population modeling approach, requiring only measurements of abundance and climate over time. To demonstrate the applicability of this approach, we model population dynamics of eight abundant plant species in a multifactorial global change experiment in alpine tundra where we manipulated nitrogen, precipitation, and temperature over 7 years. We test whether indirect and interactive effects are important to population dynamics and whether explicitly incorporating species interactions can change predictions when models are forecast under future climate change scenarios. For three of the eight species, population dynamics were best explained by direct effect models, for one species neither direct nor indirect effects were important, and for the other four species indirect effects mattered. Overall, global change had negative effects on species population growth, although species responded to different global change drivers, and single-factor effects were slightly more common than interactive direct effects. When the fitted population dynamic models were extrapolated under changing climatic conditions to the end of the century, forecasts of community dynamics and diversity loss were largely similar using direct effect models that do not explicitly incorporate species interactions or best-fit models; however, inclusion of species interactions was important in refining the predictions for two of the species. The modeling approach proposed here is a powerful way of analyzing readily available datasets which should be added to our toolbox to tease apart complex drivers of global change. © 2013 John Wiley & Sons Ltd.

  20. A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best climatological analyses of fluxes derived from ship observations.

  1. The FALL3D Ash Cloud Dispersion Model and its Implementation at the Buenos Aires VAAC

    NASA Astrophysics Data System (ADS)

    Folch, A.; Suaya, M.; Costa, A.; Viramonte, J.

    2009-12-01

    Airborne volcanic ash and aerosols threat aerial navigation and affect the quality of air at medium to large distances downwind from the volcano. Airplane re-routing and airport disruption carry important socioeconomic consequences at regional and national levels. Models to forecast volcanic ash clouds constitute, together with satellite imagery, a valuable predictive tool during a crisis. FALL3D is an Eulerian ash cloud dispersion model based on the advection-diffusion-sedimentation equation. The model runs at any scale, from regional to global. The dispersion model is off-line coupled with global (e.g. GFS, NMM-b) and mesoscalar (e.g. NMM-b, WRF, ETA) meteorological models and with re-analysis datasets. FALL3D has been recently installed at the Buenos Aires VAAC, depending on the Argentinean National Meteorological Service (SMN). In this presentation we summarize the characteristics of the model and its implementation at the VAAC, including the different domains, the meteorological forecast inputs (ETA or GFS) and the scenarios assumed for some critical volcanoes (Chaitén, Llaima, Lascar, etc.). Pre-defined scenarios are necessary to give an early first order prediction when data is poor or unavailable. This is particularly critical in Central Andes, were most active volcanoes are located in remote areas with poor or inexistent monitoring.

  2. Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual

    DTIC Science & Technology

    2010-03-31

    odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance

  3. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP

    PubMed Central

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S.; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2018-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered. PMID:29652411

  4. The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP.

    PubMed

    Lu, Cheng-Hsuan; da Silva, Arlindo; Wang, Jun; Moorthi, Shrinivas; Chin, Mian; Colarco, Peter; Tang, Youhua; Bhattacharjee, Partha S; Chen, Shen-Po; Chuang, Hui-Ya; Juang, Hann-Ming Henry; McQueen, Jeffery; Iredell, Mark

    2016-01-01

    The NOAA National Centers for Environmental Prediction (NCEP) implemented NEMS GFS Aerosol Component (NGAC) for global dust forecasting in collaboration with NASA Goddard Space Flight Center (GSFC). NGAC Version 1.0 has been providing 5 day dust forecasts at 1°×1° resolution on a global scale, once per day at 00:00 Coordinated Universal Time (UTC), since September 2012. This is the first global system capable of interactive atmosphere aerosol forecasting at NCEP. The implementation of NGAC V1.0 reflects an effective and efficient transitioning of NASA research advances to NCEP operations, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders as well as to allow the effects of aerosols on weather forecasts and climate prediction to be considered.

  5. Recent updates in the aerosol component of the C-IFS model run by ECMWF

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier; Kipling, Zak; Flemming, Johannes

    2017-04-01

    The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Service (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfate. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce forthcoming developments. It will also present the impact of these changes as measured scores against AERONET Aerosol Optical Depth (AOD) and Airbase PM10 observations. The next cycle of C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. C-IFS now offers the possibility to emit biomass-burning aerosols at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). Secondary Organic Aerosols (SOA) production will be scaled on non-biomass burning CO fluxes. This approach allows to represent the anthropogenic contribution to SOA production; it brought a notable improvement in the skill of the model, especially over Europe. Lastly, the emissions of SO2 are now provided by the MACCity inventory instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset. Upcoming developments of the aerosol model of C-IFS consist mainly in the implementation of a nitrate and ammonium module, with 2 bins (fine and coarse) for nitrate. Nitrate and ammonium sulfate particle formation from gaseous precursors is represented following Hauglustaine et al. (2014); formation of coarse nitrate over pre-existing sea-salt or dust particles is also represented. This extension of the forward model improved scores over heavily populated areas such as Europe, China and Eastern United States. A new sea-salt scheme following Grythe et al (2014) has been adapted into C-IFS, which brings optical depths closer to MODIS values over oceans, and also has a beneficial impact on PM10 forecasts over Europe. The model also offers the possibility to use dynamically computed dry deposition velocities following Zhang et al (2001). These new developments come as options in C-IFS; the decision of use these options in the operational configuration will be taken by ECMWF after considering input from various parties.

  6. Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.

    2016-12-01

    Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.

  7. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster

    NASA Astrophysics Data System (ADS)

    Zaron, Edward D.; Fitzpatrick, Patrick J.; Cross, Scott L.; Harding, John M.; Bub, Frank L.; Wiggert, Jerry D.; Ko, Dong S.; Lau, Yee; Woodard, Katharine; Mooers, Christopher N. K.

    2015-12-01

    In response to the Deepwater Horizon (DwH) oil spill event in 2010, the Naval Oceanographic Office deployed a nowcast-forecast system covering the Gulf of Mexico and adjacent Caribbean Sea that was designated Americas Seas, or AMSEAS, which is documented in this manuscript. The DwH disaster provided a challenge to the application of available ocean-forecast capabilities, and also generated a historically large observational dataset. AMSEAS was evaluated by four complementary efforts, each with somewhat different aims and approaches: a university research consortium within an Integrated Ocean Observing System (IOOS) testbed; a petroleum industry consortium, the Gulf of Mexico 3-D Operational Ocean Forecast System Pilot Prediction Project (GOMEX-PPP); a British Petroleum (BP) funded project at the Northern Gulf Institute in response to the oil spill; and the Navy itself. Validation metrics are presented in these different projects for water temperature and salinity profiles, sea surface wind, sea surface temperature, sea surface height, and volume transport, for different forecast time scales. The validation found certain geographic and time biases/errors, and small but systematic improvements relative to earlier regional and global modeling efforts. On the basis of these positive AMSEAS validation studies, an oil spill transport simulation was conducted using archived AMSEAS nowcasts to examine transport into the estuaries east of the Mississippi River. This effort captured the influences of Hurricane Alex and a non-tropical cyclone off the Louisiana coast, both of which pushed oil into the western Mississippi Sound, illustrating the importance of the atmospheric influence on oil spills such as DwH.

  8. Development of water level estimation algorithms using SARAL/Altika dataset and validation over the Ukai reservoir, India

    NASA Astrophysics Data System (ADS)

    Chander, Shard; Ganguly, Debojyoti

    2017-01-01

    Water level was estimated, using AltiKa radar altimeter onboard the SARAL satellite, over the Ukai reservoir using modified algorithms specifically for inland water bodies. The methodology was based on waveform classification, waveform retracking, and dedicated inland range corrections algorithms. The 40-Hz waveforms were classified based on linear discriminant analysis and Bayesian classifier. Waveforms were retracked using Brown, Ice-2, threshold, and offset center of gravity methods. Retracking algorithms were implemented on full waveform and subwaveforms (only one leading edge) for estimating the improvement in the retrieved range. European Centre for Medium-Range Weather Forecasts (ECMWF) operational, ECMWF re-analysis pressure fields, and global ionosphere maps were used to exactly estimate the range corrections. The microwave and optical images were used for estimating the extent of the water body and altimeter track location. Four global positioning system (GPS) field trips were conducted on same day as the SARAL pass using two dual frequency GPS. One GPS was mounted close to the dam in static mode and the other was used on a moving vehicle within the reservoir in Kinematic mode. In situ gauge dataset was provided by the Ukai dam authority for the time period January 1972 to March 2015. The altimeter retrieved water level results were then validated with the GPS survey and in situ gauge dataset. With good selection of virtual station (waveform classification, back scattering coefficient), Ice-2 retracker and subwaveform retracker both work better with an overall root-mean-square error <15 cm. The results support that the AltiKa dataset, due to a smaller foot-print and sharp trailing edge of the Ka-band waveform, can be utilized for more accurate water level information over inland water bodies.

  9. Scalar and Vector Spherical Harmonics for Assimilation of Global Datasets in the Ionosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Miladinovich, D.; Datta-Barua, S.; Bust, G. S.; Ramirez, U.

    2017-12-01

    Understanding physical processes during storm time in the ionosphere-thermosphere (IT) system is limited, in part, due to the inability to obtain accurate estimates of IT states on a global scale. One reason for this inability is the sparsity of spatially distributed high quality data sets. Data assimilation is showing promise toward enabling global estimates by blending high quality observational data sets with established climate models. We are continuing development of an algorithm called Estimating Model Parameters for Ionospheric Reverse Engineering (EMPIRE) to enable assimilation of global datasets for storm time estimates of IT drivers. EMPIRE is a data assimilation algorithm that uses a Kalman filtering routine to ingest model and observational data. The EMPIRE algorithm is based on spherical harmonics which provide a spherically symmetric, smooth, continuous, and orthonormal set of basis functions suitable for a spherical domain such as Earth's IT region (200-600 km altitude). Once the basis function coefficients are determined, the newly fitted function represents the disagreement between observational measurements and models. We apply spherical harmonics to study the March 17, 2015 storm. Data sources include Fabry-Perot interferometer neutral wind measurements and global Ionospheric Data Assimilation 4 Dimensional (IDA4D) assimilated total electron content (TEC). Models include Weimer 2000 electric potential, International Geomagnetic Reference Field (IGRF) magnetic field, and Horizontal Wind Model 2014 (HWM14) neutral winds. We present the EMPIRE assimilation results of Earth's electric potential and thermospheric winds. We also compare EMPIRE storm time E cross B ion drift estimates to measured drifts produced from the Super Dual Auroral Radar Network (SuperDARN) and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) measurement datasets. The analysis from these results will enable the generation of globally assimilated storm time IT state estimates for future studies. In particular, the ability to provide data assimilated estimation of the drivers of the IT system from high to low latitudes is a critical step toward forecasting the influence of geomagnetic storms on the near Earth space environment.

  10. Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast

    NASA Astrophysics Data System (ADS)

    Jiang, Mengjiao; Feng, Jinqin; Li, Zhanqing; Sun, Ruiyu; Hou, Yu-Tai; Zhu, Yuejian; Wan, Bingcheng; Guo, Jianping; Cribb, Maureen

    2017-11-01

    Aerosol-cloud interactions (ACIs) have been widely recognized as a factor affecting precipitation. However, they have not been considered in the operational National Centers for Environmental Predictions Global Forecast System model. We evaluated the potential impact of neglecting ACI on the operational rainfall forecast using ground-based and satellite observations and model reanalysis. The Climate Prediction Center unified gauge-based precipitation analysis and the Modern-Era Retrospective analysis for Research and Applications Version 2 aerosol reanalysis were used to evaluate the forecast in three countries for the year 2015. The overestimation of light rain (47.84 %) and underestimation of heavier rain (31.83, 52.94, and 65.74 % for moderate rain, heavy rain, and very heavy rain, respectively) from the model are qualitatively consistent with the potential errors arising from not accounting for ACI, although other factors cannot be totally ruled out. The standard deviation of the forecast bias was significantly correlated with aerosol optical depth in Australia, the US, and China. To gain further insight, we chose the province of Fujian in China to pursue a more insightful investigation using a suite of variables from gauge-based observations of precipitation, visibility, water vapor, convective available potential energy (CAPE), and satellite datasets. Similar forecast biases were found: over-forecasted light rain and under-forecasted heavy rain. Long-term analyses revealed an increasing trend in heavy rain in summer and a decreasing trend in light rain in other seasons, accompanied by a decreasing trend in visibility, no trend in water vapor, and a slight increasing trend in summertime CAPE. More aerosols decreased cloud effective radii for cases where the liquid water path was greater than 100 g m-2. All findings are consistent with the effects of ACI, i.e., where aerosols inhibit the development of shallow liquid clouds and invigorate warm-base mixed-phase clouds (especially in summertime), which in turn affects precipitation. While we cannot establish rigorous causal relations based on the analyses presented in this study, the significant rainfall forecast bias seen in operational weather forecast model simulations warrants consideration in future model improvements.

  11. Navigating the "Research-to-Operations" Bridge of Death: Collaborative Transition of Remotely-Sensed Snow Data from Research into Operational Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.

    2016-12-01

    Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.

  12. Evaluating the Contribution of NASA Remotely-Sensed Data Sets on a Convection-Allowing Forecast Model

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Case, Jonathan L.; Molthan, Andrew L.

    2012-01-01

    The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.

  13. Global forecasting of thermal health hazards: the skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI).

    PubMed

    Pappenberger, F; Jendritzky, G; Staiger, H; Dutra, E; Di Giuseppe, F; Richardson, D S; Cloke, H L

    2015-03-01

    Although over a hundred thermal indices can be used for assessing thermal health hazards, many ignore the human heat budget, physiology and clothing. The Universal Thermal Climate Index (UTCI) addresses these shortcomings by using an advanced thermo-physiological model. This paper assesses the potential of using the UTCI for forecasting thermal health hazards. Traditionally, such hazard forecasting has had two further limitations: it has been narrowly focused on a particular region or nation and has relied on the use of single 'deterministic' forecasts. Here, the UTCI is computed on a global scale, which is essential for international health-hazard warnings and disaster preparedness, and it is provided as a probabilistic forecast. It is shown that probabilistic UTCI forecasts are superior in skill to deterministic forecasts and that despite global variations, the UTCI forecast is skilful for lead times up to 10 days. The paper also demonstrates the utility of probabilistic UTCI forecasts on the example of the 2010 heat wave in Russia.

  14. Multiresolution comparison of precipitation datasets for large-scale models

    NASA Astrophysics Data System (ADS)

    Chun, K. P.; Sapriza Azuri, G.; Davison, B.; DeBeer, C. M.; Wheater, H. S.

    2014-12-01

    Gridded precipitation datasets are crucial for driving large-scale models which are related to weather forecast and climate research. However, the quality of precipitation products is usually validated individually. Comparisons between gridded precipitation products along with ground observations provide another avenue for investigating how the precipitation uncertainty would affect the performance of large-scale models. In this study, using data from a set of precipitation gauges over British Columbia and Alberta, we evaluate several widely used North America gridded products including the Canadian Gridded Precipitation Anomalies (CANGRD), the National Center for Environmental Prediction (NCEP) reanalysis, the Water and Global Change (WATCH) project, the thin plate spline smoothing algorithms (ANUSPLIN) and Canadian Precipitation Analysis (CaPA). Based on verification criteria for various temporal and spatial scales, results provide an assessment of possible applications for various precipitation datasets. For long-term climate variation studies (~100 years), CANGRD, NCEP, WATCH and ANUSPLIN have different comparative advantages in terms of their resolution and accuracy. For synoptic and mesoscale precipitation patterns, CaPA provides appealing performance of spatial coherence. In addition to the products comparison, various downscaling methods are also surveyed to explore new verification and bias-reduction methods for improving gridded precipitation outputs for large-scale models.

  15. Online Visualization and Analysis of Global Half-Hourly Infrared Satellite Data

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Leptoukh, Gregory

    2011-01-01

    nfrared (IR) images (approximately 11-micron channel) recorded by satellite sensors have been widely used in weather forecasting, research, and classroom education since the Nimbus program. Unlike visible images, IR imagery can reveal cloud features without sunlight illumination; therefore, they can be used to monitor weather phenomena day and night. With geostationary satellites deployed around the globe, it is possible to monitor weather events 24/7 at a temporal resolution that polar-orbiting satellites cannot achieve at the present time. When IR data from multiple geostationary satellites are merged to form a single product--also known as a merged product--it allows for observing weather on a global scale. Its high temporal resolution (e.g., every half hour) also makes it an ideal ancillary dataset for supporting other satellite missions, such as the Tropical Rainfall Measuring Mission (TRMM), etc., by providing additional background information about weather system evolution.

  16. Application of the Streamflow Prediction Tool to Estimate Sediment Dredging Volumes in Texas Coastal Waterways

    NASA Astrophysics Data System (ADS)

    Yeates, E.; Dreaper, G.; Afshari, S.; Tavakoly, A. A.

    2017-12-01

    Over the past six fiscal years, the United States Army Corps of Engineers (USACE) has contracted an average of about a billion dollars per year for navigation channel dredging. To execute these funds effectively, USACE Districts must determine which navigation channels need to be dredged in a given year. Improving this prioritization process results in more efficient waterway maintenance. This study uses the Streamflow Prediction Tool, a runoff routing model based on global weather forecast ensembles, to estimate dredged volumes. This study establishes regional linear relationships between cumulative flow and dredged volumes over a long-term simulation covering 30 years (1985-2015), using drainage area and shoaling parameters. The study framework integrates the National Hydrography Dataset (NHDPlus Dataset) with parameters from the Corps Shoaling Analysis Tool (CSAT) and dredging record data from USACE District records. Results in the test cases of the Houston Ship Channel and the Sabine and Port Arthur Harbor waterways in Texas indicate positive correlation between the simulated streamflows and actual dredging records.

  17. Global scale predictability of floods

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Gijsbers, Peter; Sperna Weiland, Frederiek

    2016-04-01

    Flood (and storm surge) forecasting at the continental and global scale has only become possible in recent years (Emmerton et al., 2016; Verlaan et al., 2015) due to the availability of meteorological forecast, global scale precipitation products and global scale hydrologic and hydrodynamic models. Deltares has setup GLOFFIS a research-oriented multi model operational flood forecasting system based on Delft-FEWS in an open experimental ICT facility called Id-Lab. In GLOFFIS both the W3RA and PCRGLOB-WB model are run in ensemble mode using GEFS and ECMWF-EPS (latency 2 days). GLOFFIS will be used for experiments into predictability of floods (and droughts) and their dependency on initial state estimation, meteorological forcing and the hydrologic model used. Here we present initial results of verification of the ensemble flood forecasts derived with the GLOFFIS system. Emmerton, R., Stephens, L., Pappenberger, F., Pagano, T., Weerts, A., Wood, A. Salamon, P., Brown, J., Hjerdt, N., Donnelly, C., Cloke, H. Continental and Global Scale Flood Forecasting Systems, WIREs Water (accepted), 2016 Verlaan M, De Kleermaeker S, Buckman L. GLOSSIS: Global storm surge forecasting and information system 2015, Australasian Coasts & Ports Conference, 15-18 September 2015,Auckland, New Zealand.

  18. Consistency between the global and regional modeling components of CAMS over Europe.

    NASA Astrophysics Data System (ADS)

    Katragkou, Eleni; Akritidis, Dimitrios; Kontos, Serafim; Zanis, Prodromos; Melas, Dimitrios; Engelen, Richard; Plu, Matthieu; Eskes, Henk

    2017-04-01

    The Copernicus Atmosphere Monitoring Service (CAMS) is a component of the European Earth Observation programme Copernicus. CAMS consists of two major forecast and analysis systems: i) the CAMS global near-real time service, based on the ECMWF Integrated Forecast System (C-IFS), which provides daily analyses and forecasts of reactive trace gases, greenhouse gases and aerosol concentrations ii) a regional ensemble (ENS) for European air quality, compiled and disseminated by Météo-France, which consists of seven ensemble members. The boundaries from the regional ensemble members are extracted from the global CAMS forecast product. This work reports on the consistency between the global and regional modeling components of CAMS, and the impact of global CAMS boundary conditions on regional forecasts. The current analysis includes ozone (O3) carbon monoxide (CO) and aerosol (PM10/PM2.5) forecasts. The comparison indicates an overall good agreement between the global C-IFS and the regional ENS patterns for O3 and CO, especially above 250m altitude, indicating that the global boundary conditions are efficiently included in the regional ensemble simulations. As expected, differences are found within the PBL, with lower/higher C-IFS O3/CO concentrations over continental Europe with respect to ENS.

  19. Forecasting of global solar radiation using anfis and armax techniques

    NASA Astrophysics Data System (ADS)

    Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi'u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.

    2018-01-01

    Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.

  20. Does using different modern climate datasets impact pollen-based paleoclimate reconstructions in North America during the past 2,000 years

    NASA Astrophysics Data System (ADS)

    Ladd, Matthew; Viau, Andre

    2013-04-01

    Paleoclimate reconstructions rely on the accuracy of modern climate datasets for calibration of fossil records under the assumption of climate normality through time, which means that the modern climate operates in a similar manner as over the past 2,000 years. In this study, we show how using different modern climate datasets have an impact on a pollen-based reconstruction of mean temperature of the warmest month (MTWA) during the past 2,000 years for North America. The modern climate datasets used to explore this research question include the: Whitmore et al., (2005) modern climate dataset; North American Regional Reanalysis (NARR); National Center For Environmental Prediction (NCEP); European Center for Medium Range Weather Forecasting (ECMWF) ERA-40 reanalysis; WorldClim, Global Historical Climate Network (GHCN) and New et al., which is derived from the CRU dataset. Results show that some caution is advised in using the reanalysis data on large-scale reconstructions. Station data appears to dampen out the variability of the reconstruction produced using station based datasets. The reanalysis or model-based datasets are not recommended for paleoclimate large-scale North American reconstructions as they appear to lack some of the dynamics observed in station datasets (CRU) which resulted in warm-biased reconstructions as compared to the station-based reconstructions. The Whitmore et al. (2005) modern climate dataset appears to be a compromise between CRU-based datasets and model-based datasets except for the ERA-40. In addition, an ultra-high resolution gridded climate dataset such as WorldClim may only be useful if the pollen calibration sites in North America have at least the same spatial precision. We reconstruct the MTWA to within +/-0.01°C by using an average of all curves derived from the different modern climate datasets, demonstrating the robustness of the procedure used. It may be that the use of an average of different modern datasets may reduce the impact of uncertainty of paleoclimate reconstructions, however, this is yet to be determined with certainty. Future evaluation using for example the newly developed Berkeley earth surface temperature datasets should be tested against the paleoclimate record.

  1. Improving Global Analysis and Short-Range Forecast Using Rainfall and Moisture Observations Derived from TRMM and SSM/I Passive Microwave Instruments

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Zhang, Sara Q.; daSilva, Arlindo M.; Olson, William S.; Kummerow, Christian D.; Simpson, Joanne

    2000-01-01

    The Global Precipitation Mission, a satellite project under consideration as a follow-on to the Tropical Rainfall Measuring Mission (TRMM) by the National Aeronautics and Space Agency (NASA) in the United States, the National Space Development Agency (NASDA) in Japan, and other international partners, comprises an improved TRMM-like satellite and a constellation of 8 satellites carrying passive microwave radiometers to provide global rainfall measurements at 3-hour intervals. The success of this concept relies on the merits of rainfall estimates derived from passive microwave radiometers. This article offers a proof-of-concept demonstration of the benefits of using, rainfall and total precipitable water (TPW) information derived from such instruments in global data assimilation with observations from the TRMM Microwave Imager (TMI) and 2 Special Sensor Microwave/Imager (SSM/I) instruments. Global analyses that optimally combine observations from diverse sources with physical models of atmospheric and land processes can provide a comprehensive description of the climate systems. Currently, such data analyses contain significant errors in primary hydrological fields such as precipitation and evaporation, especially in the tropics. We show that assimilating the 6-h averaged TMI and SSM/I surface rainrate and TPW retrievals improves not only the hydrological cycle but also key climate parameters such as clouds, radiation, and the upper tropospheric moisture in the analysis produced by the Goddard Earth Observing System (GEOS) Data Assimilation System, as verified against radiation measurements by the Clouds and the Earth's Radiant Energy System (CERES) instrument and brightness temperature observations by the TIROS Operational Vertical Sounder (TOVS) instruments. Typically, rainfall assimilation improves clouds and radiation in areas of active convection, as well as the latent heating and large-scale motions in the tropics, while TPW assimilation leads to reduced moisture biases and improved radiative fluxes in clear-sky regions. Ensemble forecasts initialized with analyses that incorporate TMI and SSM/I rainfall and TPW data also yield better short-range predictions of geopotential heights, winds, and precipitation in the tropics. This study offers a compelling illustration of the potential of using rainfall and TPW information derived from passive microwave instruments to significantly improve the quality of 4-dimensional global datasets for climate analysis and weather forecasting applications.

  2. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.

    PubMed

    Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.

  3. A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run

    PubMed Central

    Armeanu, Daniel; Lache, Leonard; Panait, Mirela

    2017-01-01

    The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100

  4. Forecasting Occurrences of Activities.

    PubMed

    Minor, Bryan; Cook, Diane J

    2017-07-01

    While activity recognition has been shown to be valuable for pervasive computing applications, less work has focused on techniques for forecasting the future occurrence of activities. We present an activity forecasting method to predict the time that will elapse until a target activity occurs. This method generates an activity forecast using a regression tree classifier and offers an advantage over sequence prediction methods in that it can predict expected time until an activity occurs. We evaluate this algorithm on real-world smart home datasets and provide evidence that our proposed approach is most effective at predicting activity timings.

  5. Assessing Applications of GPM and IMERG Passive Microwave Rain Rates in Modeling and Operational Forecasting

    NASA Astrophysics Data System (ADS)

    Zavodsky, B.; Le Roy, A.; Smith, M. R.; Case, J.

    2016-12-01

    In support of NASA's recently launched GPM `core' satellite, the NASA-SPoRT project is leveraging experience in research-to-operations transitions and training to provide feedback on the operational utility of GPM products. Thus far, SPoRT has focused on evaluating the Level 2 GPROF passive microwave and IMERG rain rate estimates. Formal evaluations with end-users have occurred, as well as internal evaluations of the datasets. One set of end users for these products is National Weather Service Forecast Offices (WFOs) and National Weather Service River Forecast Centers (RFCs), comprising forecasters and hydrologists. SPoRT has hosted a series of formal assessments to determine uses and utility of these datasets for NWS operations at specific offices. Forecasters primarily have used Level 2 swath rain rates to observe rainfall in otherwise data-void regions and to confirm model QPF for their nowcasting or short-term forecasting. Hydrologists have been evaluating both the Level 2 rain rates and the IMERG rain rates, including rain rate accumulations derived from IMERG; hydrologists have used these data to supplement gauge data for post-event analysis as well as for longer-term forecasting. Results from specific evaluations will be presented. Another evaluation of the GPM passive microwave rain rates has been in using the data within other products that are currently transitioned to end-users, rather than as stand-alone observations. For example, IMERG Early data is being used as a forcing mechanism in the NASA Land Information System (LIS) for real-time soil moisture product over eastern Africa. IMERG is providing valuable precipitation information to LIS in an otherwise data-void region. Results and caveats will briefly be discussed. A third application of GPM data is using the IMERG Late and Final products for model verification in remote regions where high-quality gridded precipitation fields are not readily available. These datasets can now be used to verify NWP model forecasts over Eastern Africa using the SPoRT-MET scripts verification package, a wrapper around the NCAR Model Evaluation Toolkit (MET) verification software.

  6. Comparison of Different Global Information Sources Used in Surface Radiative Flux Calculation: Radiative Properties of the Surface

    NASA Technical Reports Server (NTRS)

    Zhang, Yuanchong; Rossow, William B.; Stackhouse, Paul W., Jr.

    2007-01-01

    Direct estimates of surface radiative fluxes that resolve regional and weather-scale variabilty over the whole globe with reasonable accuracy have only become possible with the advent of extensive global, mostly satellite, datasets within the past couple of decades. The accuracy of these fluxes, estimated to be about 10-15 W per square meter is largely limited by the accuracy of the input datasets. The leading uncertainties in the surface fluxes are no longer predominantly induced by clouds but are now as much associated with uncertainties in the surface and near-surface atmospheric properties. This study presents a fuller, more quantitative evaluation of the uncertainties for the surface albedo and emissivity and surface skin temperatures by comparing the main available global datasets from the Moderate-Resolution Imaging Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project, the European Centre for Medium-Range Weather Forecasts, the National Aeronautics and Space Administration, the National Centers for Environmental Prediction, the International Satellite Cloud Climatology Project (ISCCP), the Laboratoire de Meteorologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project, NOAA Optimum Interpolation Sea Surface Temperature Analysis and the Tropical Rainfall Measuring Mission (TRMM) Microwave Image project. The datasets are, in practice, treated as an ensemble of realizations of the actual climate such that their differences represent an estimate of the uncertainty in their measurements because we do not possess global truth datasets for these quantities. The results are globally representative and may be taken as a generalization of our previous ISCCP-based uncertainty estimates for the input datasets. Surface properties have the primary role in determining the surface upward shortwave (SW) and longwave (LW) flux. From this study, the following conclusions are obtained. Although land surface albedos in the near near-infrared remain poorly constrained (highly uncertain), they do not cause too much error in total surface SW fluxes; the more subtle regional and seasonal variations associated with vegetation and snow are still on doubt. The uncertainty of the broadband black-sky SW albedo for land surface from this study is about 7%, which can easily induce 5-10 W per square meter uncertainty in (upwelling) surface SW flux estimates. Even though available surface (broadband) LW emissivity datasets differ significantly (3%-5% uncertainty), this disagreement is confined to wavelengths greater than 20 micrometers so that there is little practical effect (1-3 W per square meters) on the surface upwelling LW fluxes. The surface skin temperature is one of two leading factors that cause problems with surface LW fluxes. Even though the differences among the various datasets are generally only 2-4 K, this can easily cause 10-15 W per square meter uncertainty in calculated surface (upwelling) LW fluxes. Significant improvements could be obtained for surface LW flux calculations by improving the retrievals of (in order of decreasing importance): (1) surface skin temperature, (2) surface air and near-surface-layer temperature, (3) column precipitable water amount and (4) broadband emissivity. And for surface SW fluxes, improvements could be obtained (excluding improved cloud treatment) by improving the retrievals of (1) aerosols (from our sensitivity studies but not discussed in this work), and (2) surface (black-sky) albedo, of which, NIR part of the spectrum has much larger uncertainty.

  7. Web-Based Real Time Earthquake Forecasting and Personal Risk Management

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Graves, W. R.; Turcotte, D. L.; Donnellan, A.

    2012-12-01

    Earthquake forecasts have been computed by a variety of countries and economies world-wide for over two decades. For the most part, forecasts have been computed for insurance, reinsurance and underwriters of catastrophe bonds. One example is the Working Group on California Earthquake Probabilities that has been responsible for the official California earthquake forecast since 1988. However, in a time of increasingly severe global financial constraints, we are now moving inexorably towards personal risk management, wherein mitigating risk is becoming the responsibility of individual members of the public. Under these circumstances, open access to a variety of web-based tools, utilities and information is a necessity. Here we describe a web-based system that has been operational since 2009 at www.openhazards.com and www.quakesim.org. Models for earthquake physics and forecasting require input data, along with model parameters. The models we consider are the Natural Time Weibull (NTW) model for regional earthquake forecasting, together with models for activation and quiescence. These models use small earthquakes ('seismicity-based models") to forecast the occurrence of large earthquakes, either through varying rates of small earthquake activity, or via an accumulation of this activity over time. These approaches use data-mining algorithms combined with the ANSS earthquake catalog. The basic idea is to compute large earthquake probabilities using the number of small earthquakes that have occurred in a region since the last large earthquake. Each of these approaches has computational challenges associated with computing forecast information in real time. Using 25 years of data from the ANSS California-Nevada catalog of earthquakes, we show that real-time forecasting is possible at a grid scale of 0.1o. We have analyzed the performance of these models using Reliability/Attributes and standard Receiver Operating Characteristic (ROC) tests. We show how the Reliability and ROC tests allow us to judge data completeness and estimate error. It is clear from much of the analysis that data quality is a major limitation on the accurate computation of earthquake probabilities. We discuss the challenges and pitfalls in serving up these datasets over the web.

  8. Profiling physicochemical and planktonic features from discretely/continuously sampled surface water.

    PubMed

    Oita, Azusa; Tsuboi, Yuuri; Date, Yasuhiro; Oshima, Takahiro; Sakata, Kenji; Yokoyama, Akiko; Moriya, Shigeharu; Kikuchi, Jun

    2018-04-24

    There is an increasing need for assessing aquatic ecosystems that are globally endangered. Since aquatic ecosystems are complex, integrated consideration of multiple factors utilizing omics technologies can help us better understand aquatic ecosystems. An integrated strategy linking three analytical (machine learning, factor mapping, and forecast-error-variance decomposition) approaches for extracting the features of surface water from datasets comprising ions, metabolites, and microorganisms is proposed herein. The three developed approaches can be employed for diverse datasets of sample sizes and experimentally analyzed factors. The three approaches are applied to explore the features of bay water surrounding Odaiba, Tokyo, Japan, as a case study. Firstly, the machine learning approach separated 681 surface water samples within Japan into three clusters, categorizing Odaiba water into seawater with relatively low inorganic ions, including Mg, Ba, and B. Secondly, the factor mapping approach illustrated Odaiba water samples from the summer as rich in multiple amino acids and some other metabolites and poor in inorganic ions relative to other seasons based on their seasonal dynamics. Finally, forecast-error-variance decomposition using vector autoregressive models indicated that a type of microalgae (Raphidophyceae) grows in close correlation with alanine, succinic acid, and valine on filters and with isobutyric acid and 4-hydroxybenzoic acid in filtrate, Ba, and average wind speed. Our integrated strategy can be used to examine many biological, chemical, and environmental physical factors to analyze surface water. Copyright © 2018. Published by Elsevier B.V.

  9. An assessment of historical Antarctic precipitation and temperature trend using CMIP5 models and reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Tang, Malcolm S. Y.; Chenoli, Sheeba Nettukandy; Samah, Azizan Abu; Hai, Ooi See

    2018-03-01

    The study of Antarctic precipitation has attracted a lot of attention recently. The reliability of climate models in simulating Antarctic precipitation, however, is still debatable. This work assess the precipitation and surface air temperature (SAT) of Antarctica (90 oS to 60 oS) using 49 Coupled Model Intercomparison Project phase 5 (CMIP5) global climate models and the European Centre for Medium-range Weather Forecasts "Interim" reanalysis (ERA-Interim); the National Centers for Environmental Prediction Climate Forecast System Reanalysis (CFSR); the Japan Meteorological Agency 55-year Reanalysis (JRA-55); and the Modern Era Retrospective-analysis for Research and Applications (MERRA) datasets for 1979-2005 (27 years). For precipitation, the time series show that the MERRA and JRA-55 have significantly increased from 1979 to 2005, while the ERA-Int and CFSR have insignificant changes. The reanalyses also have low correlation with one another (generally less than +0.69). 37 CMIP5 models show increasing trend, 18 of which are significant. The resulting CMIP5 MMM also has a significant increasing trend of 0.29 ± 0.06 mm year-1. For SAT, the reanalyses show insignificant changes and have high correlation with one another, while the CMIP5 MMM shows a significant increasing trend. Nonetheless, the variability of precipitation and SAT of MMM could affect the significance of its trend. One of the many reasons for the large differences of precipitation is the CMIP5 models' resolution.

  10. A Forecast Skill Comparison between CliPAS One-Tier and Two-Tier Hindcast Experiments

    NASA Astrophysics Data System (ADS)

    Lee, J.; Wang, B.; Kang, I.

    2006-05-01

    A 24-year (1981-2004) MME hindcast experimental dataset is produced under the "Climate Prediction and Its Application to Society" (CliPAS) project sponsored by Korean Meteorological Administration (KMA). This dataset consists of 5 one-tier model systems from National Aeronautics and Space Administration (NASA), National Center for Environmental Prediction (NCEP), Frontier Research Center for Global Change (FRCGC), Seoul National University (SNU), and University of Hawaii (UH) and 5 two-tier model systems from Florida State University (FSU), Geophysical Fluid Dynamic Lab (GFDL), SNU, and UH. Multi-model Ensemble (MME) Forecast skills of seasonal precipitation and atmospheric circulation are compared between CliPAS one-tier and two-tier hindcast experiments for seasonal mean precipitation and atmospheric circulation. For winter prediction, two-tier MME has a comparable skill to one-tier MME. However, it is demonstrated that in the Asian-Australian monsoon (A-AM) heavy precipitation regions, one-tier systems are superior to two-tier systems in summer season. The reason is that inclusion of the local warm pool- monsoon interaction in the one-tier system improves the ENSO teleconnection with monsoon regions. Both one-tier and two-tier MME fail to predict Indian monsoon circulation, while they have a significantly good skill for the broad scale monsoon circulation defined by Webster and Yang index. One-tier system has a much better skill to predict the monsoon circulation over the western North pacific where air-sea interaction plays an important role than two-tier system.

  11. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    PubMed Central

    Jensen, Tue V.; Pinson, Pierre

    2017-01-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation. PMID:29182600

  12. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system.

    PubMed

    Jensen, Tue V; Pinson, Pierre

    2017-11-28

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  13. RE-Europe, a large-scale dataset for modeling a highly renewable European electricity system

    NASA Astrophysics Data System (ADS)

    Jensen, Tue V.; Pinson, Pierre

    2017-11-01

    Future highly renewable energy systems will couple to complex weather and climate dynamics. This coupling is generally not captured in detail by the open models developed in the power and energy system communities, where such open models exist. To enable modeling such a future energy system, we describe a dedicated large-scale dataset for a renewable electric power system. The dataset combines a transmission network model, as well as information for generation and demand. Generation includes conventional generators with their technical and economic characteristics, as well as weather-driven forecasts and corresponding realizations for renewable energy generation for a period of 3 years. These may be scaled according to the envisioned degrees of renewable penetration in a future European energy system. The spatial coverage, completeness and resolution of this dataset, open the door to the evaluation, scaling analysis and replicability check of a wealth of proposals in, e.g., market design, network actor coordination and forecasting of renewable power generation.

  14. Web-GIS approach for integrated analysis of heterogeneous georeferenced data

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Shulgina, Tamara

    2014-05-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales [1]. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required [2]. Dedicated information-computational system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is presented. It is based on combination of Web and GIS technologies according to Open Geospatial Consortium (OGC) standards, and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library (http://www.geoext.org), ExtJS Framework (http://www.sencha.com/products/extjs) and OpenLayers software (http://openlayers.org). The main advantage of the system lies in it's capability to perform integrated analysis of time series of georeferenced data obtained from different sources (in-situ observations, model results, remote sensing data) and to combine the results in a single map [3, 4] as WMS and WFS layers in a web-GIS application. Also analysis results are available for downloading as binary files from the graphical user interface or can be directly accessed through web mapping (WMS) and web feature (WFS) services for a further processing by the user. Data processing is performed on geographically distributed computational cluster comprising data storage systems and corresponding computational nodes. Several geophysical datasets represented by NCEP/NCAR Reanalysis II, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, reanalysis of Monitoring atmospheric composition and climate (MACC) Collaborated Project, NOAA-CIRES Twentieth Century Global Reanalysis Version II, NCEP Climate Forecast System Reanalysis (CFSR), meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others are available for processing by the system. The Web-GIS information-computational system for heterogeneous geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for integrated research of climate and ecosystems changes on global and regional scales. With its help even an unskilled in programming user is able to process and visualize multidimensional observational and model data through unified web-interface using a common graphical web-browser. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant #13-05-12034, grant #14-05-00502, and integrated project SB RAS #131. References 1. Gordov E.P., Lykosov V.N., Krupchatnikov V.N., Okladnikov I.G., Titov A.G., Shulgina T.M. Computational and information technologies for monitoring and modeling of climate changes and their consequences. - Novosibirsk: Nauka, Siberian branch, 2013. - 195 p. (in Russian) 2. Felice Frankel, Rosalind Reid. Big data: Distilling meaning from data // Nature. Vol. 455. N. 7209. P. 30. 3. T.M. Shulgina, E.P. Gordov, I.G. Okladnikov, A.G., Titov, E.Yu. Genina, N.P. Gorbatenko, I.V. Kuzhevskaya, A.S. Akhmetshina. Software complex for a regional climate change analysis. // Vestnik NGU. Series: Information technologies. 2013. Vol. 11. Issue 1. P. 124-131 (in Russian). 4. I.G. Okladnikov, A.G. Titov, T.M. Shulgina, E.P. Gordov, V.Yu. Bogomolov, Yu.V. Martynova, S.P. Suschenko, A.V. Skvortsov. Software for analysis and visualization of climate change monitoring and forecasting data // Numerical methods and programming, 2013. Vol. 14. P. 123-131 (in Russian).

  15. Seasonal prediction of Indian summer monsoon rainfall in NCEP CFSv2: forecast and predictability error

    NASA Astrophysics Data System (ADS)

    Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.

    2016-04-01

    A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.

  16. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations

    NASA Astrophysics Data System (ADS)

    Heublein, Marion; Alshawaf, Fadwa; Erdnüß, Bastian; Zhu, Xiao Xiang; Hinz, Stefan

    2018-06-01

    In this work, the reconstruction quality of an approach for neutrospheric water vapor tomography based on Slant Wet Delays (SWDs) obtained from Global Navigation Satellite Systems (GNSS) and Interferometric Synthetic Aperture Radar (InSAR) is investigated. The novelties of this approach are (1) the use of both absolute GNSS and absolute InSAR SWDs for tomography and (2) the solution of the tomographic system by means of compressive sensing (CS). The tomographic reconstruction is performed based on (i) a synthetic SWD dataset generated using wet refractivity information from the Weather Research and Forecasting (WRF) model and (ii) a real dataset using GNSS and InSAR SWDs. Thus, the validation of the achieved results focuses (i) on a comparison of the refractivity estimates with the input WRF refractivities and (ii) on radiosonde profiles. In case of the synthetic dataset, the results show that the CS approach yields a more accurate and more precise solution than least squares (LSQ). In addition, the benefit of adding synthetic InSAR SWDs into the tomographic system is analyzed. When applying CS, adding synthetic InSAR SWDs into the tomographic system improves the solution both in magnitude and in scattering. When solving the tomographic system by means of LSQ, no clear behavior is observed. In case of the real dataset, the estimated refractivities of both methodologies show a consistent behavior although the LSQ and CS solution strategies differ.

  17. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  18. Workshop Summary: International Cooperative for Aerosol Prediction Workshop On Aerosol Forecast Verification

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  19. Preliminary Results of a U.S. Deep South Warm Season Deep Convective Initiation Modeling Experiment using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Medlin, Jeffrey M.; Wood, Lance; Zavodsky, Brad; Case, Jon; Molthan, Andrew

    2012-01-01

    The initiation of deep convection during the warm season is a forecast challenge in the relative high instability and low wind shear environment of the U.S. Deep South. Despite improved knowledge of the character of well known mesoscale features such as local sea-, bay- and land-breezes, observations show the evolution of these features fall well short in fully describing the location of first initiates. A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA s Short-term Prediction Research and Transition (SPoRT) Center was undertaken during the 2012 warm season to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System. The NASA products were: a 4-km Land Information System data, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with a 9 km outer grid spacing and a 3 km inner nest spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the forecast timing and location of the first initiates, with a focus on the impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  20. Friend or Foe? Urbanization and the Biosphere

    NASA Astrophysics Data System (ADS)

    Schneider, A.

    2008-12-01

    The environmental influence of urban areas is still often assumed to be negligible at global scales. Although local environmental conditions such as the urban heat island effect are well-documented, surprisingly little work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, improved systems for measuring, monitoring and modeling the global environmental impacts of cities should receive far greater scientific attention. This presentation will summarize urban environmental issues and impacts at local, regional and global scales and introduce the fundamental concepts and tools needed to measure and respond to these problems. Newly available datasets for the distribution and intensity of urban land use will be introduced, demonstrating the importance of clearly defining 'urbanized' land for empirical studies at the global scale. The negative environmental impacts of urban development will be compared with the often over-looked "positives" of urban growth from a global environmental perspective. Progress in understanding and forecasting the global impacts of urban areas will require systematic global urban research designs that treat cities as urban systems, anthropogenic biomes and urban ecoregions. The challenges and opportunities of global environmental research on urban areas have important implications not only for current research but also for educating the next generation of earth system scientists.

  1. An experimental system for flood risk forecasting and monitoring at global scale

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter

    2017-04-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.

  2. A GLM Post-processor to Adjust Ensemble Forecast Traces

    NASA Astrophysics Data System (ADS)

    Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.

    2011-12-01

    The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.

  3. A GEOS-Based OSSE for the "MISTiC Winds" Concept

    NASA Technical Reports Server (NTRS)

    McCarty, W.; Blaisdell, J.; Fuentes, M.; Carvalho, D.; Errico, R.; Gelaro, R.; Kouvaris, L.; Moradi, I.; Pawson, S.; Prive, N.; hide

    2018-01-01

    The Goddard Earth Observing System (GEOS) atmospheric model and data assimilation system are used to perform an Observing System Simulation Experiment (OSSE) for the proposed MISTiC Wind mission. The GEOS OSSE includes a reference simulation (the Nature Run), from which the pseudo-observations are generated. These pseuo-observations span the entire suite of in-situ and space space-based observations presently used in operational weather prediction, with the addition of the MISTiC-Wind dataset. New observation operators have been constructed for the MISTiC Wind data, including both the radiances measured in the 4-micron part of the solar spectrum and the winds derived from these radiances. The OSSE examines the impacts on global forecast skill of adding these observations to the current operational suite, showing substantial improvements in forecasts when the wind information are added. It is shown that a constellation of four MISTiC Wind satellites provides more benefit than a single platform, largely because of the increased accuracy of the feature-derived wind measurements when more platforms are used.

  4. Sensitivity of WRF Regional Climate Simulations to Choice of Land Use Dataset

    EPA Science Inventory

    The goal of this study is to assess the sensitivity of regional climate simulations run with the Weather Research and Forecasting (WRF) model to the choice of datasets representing land use and land cover (LULC). Within a regional climate modeling application, an accurate repres...

  5. Stochastic Forcing for High-Resolution Regional and Global Ocean and Atmosphere-Ocean Coupled Ensemble Forecast System

    NASA Astrophysics Data System (ADS)

    Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.

    2017-12-01

    An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.

  6. Development of an Experimental African Drought Monitoring and Seasonal Forecasting System: A First Step towards a Global Drought Information System

    NASA Astrophysics Data System (ADS)

    Wood, E. F.; Chaney, N.; Sheffield, J.; Yuan, X.

    2012-12-01

    Extreme hydrologic events in the form of droughts are a significant source of social and economic damage. Internationally, organizations such as UNESCO, the Group on Earth Observations (GEO), and the World Climate Research Programme (WCRP) have recognized the need for drought monitoring, especially for the developing world where drought has had devastating impacts on local populations through food insecurity and famine. Having the capacity to monitor droughts in real-time, and to provide drought forecasts with sufficient warning will help developing countries and international programs move from the management of drought crises to the management of drought risk. While observation-based assessments, such as those produced by the US Drought Monitor, are effective for monitoring in countries with extensive observation networks (of precipitation in particular), their utility is lessened in areas (e.g., Africa) where observing networks are sparse. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the real-time data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for the construction of a climatology against which current conditions can be compared. In this presentation we discuss the development of our multi-lingual experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML). At the request of UNESCO, the ADM system has been installed at AGRHYMET, a regional climate and agricultural center in Niamey, Niger and at the ICPAC climate center in Nairobi, Kenya. The ADM system leverages off our U.S. drought monitoring and forecasting system (http://hydrology.princeton.edu/forecasting) that uses the NLDAS data to force the VIC land surface model (LSM) at 1/8th degree spatial resolution for the estimation of our soil moisture drought index (Sheffield et al., 2004). For the seasonal forecast of drought, CFSv2 climate forecasts are bias corrected, downscaled and used as inputs to the VIC LSM as well as forecasts based on ESP and CPC official seasonal outlook. For Africa, data from a combination of remote sensing (TMPA-based precipitation, land cover characteristics) and GFS analysis fields (temperature and wind) are used to monitor drought using our soil moisture drought index as well as 1, 3 and and 6-month SPI. River discharge is also estimated at over 900 locations. Seasonal forecasts have been developed using CFSv2 climate forecasts following the approaches used over CONUS. We will discuss the performance of the system to evaluate the depiction of drought over various scales, from regional to the African continent, and over a number of years to capture multiple drought events. Furthermore, the hindcasts from the seasonal drought forecast system are analyzed to assess the ability of seasonal climate models to detect drought on-set and its recovery. Finally, we will discuss whether our ADM provides a pathway to a Global Drought Information System, a goal of the WCRP Drought Task Force.

  7. Predicting ionospheric scintillation: Recent advancements and future challenges

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  8. Self-Organizing Maps-based ocean currents forecasting system.

    PubMed

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-03-16

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training.

  9. Self-Organizing Maps-based ocean currents forecasting system

    PubMed Central

    Vilibić, Ivica; Šepić, Jadranka; Mihanović, Hrvoje; Kalinić, Hrvoje; Cosoli, Simone; Janeković, Ivica; Žagar, Nedjeljka; Jesenko, Blaž; Tudor, Martina; Dadić, Vlado; Ivanković, Damir

    2016-01-01

    An ocean surface currents forecasting system, based on a Self-Organizing Maps (SOM) neural network algorithm, high-frequency (HF) ocean radar measurements and numerical weather prediction (NWP) products, has been developed for a coastal area of the northern Adriatic and compared with operational ROMS-derived surface currents. The two systems differ significantly in architecture and algorithms, being based on either unsupervised learning techniques or ocean physics. To compare performance of the two methods, their forecasting skills were tested on independent datasets. The SOM-based forecasting system has a slightly better forecasting skill, especially during strong wind conditions, with potential for further improvement when data sets of higher quality and longer duration are used for training. PMID:26979129

  10. Supplier Short Term Load Forecasting Using Support Vector Regression and Exogenous Input

    NASA Astrophysics Data System (ADS)

    Matijaš, Marin; Vukićcević, Milan; Krajcar, Slavko

    2011-09-01

    In power systems, task of load forecasting is important for keeping equilibrium between production and consumption. With liberalization of electricity markets, task of load forecasting changed because each market participant has to forecast their own load. Consumption of end-consumers is stochastic in nature. Due to competition, suppliers are not in a position to transfer their costs to end-consumers; therefore it is essential to keep forecasting error as low as possible. Numerous papers are investigating load forecasting from the perspective of the grid or production planning. We research forecasting models from the perspective of a supplier. In this paper, we investigate different combinations of exogenous input on the simulated supplier loads and show that using points of delivery as a feature for Support Vector Regression leads to lower forecasting error, while adding customer number in different datasets does the opposite.

  11. Continental scale data assimilation of discharge and its effect on flow predictions

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; van Dijk, Albert

    2017-04-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) and Europe into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  12. Continental scale data assimilation of discharge and its effect on flow predictions across the contiguous US (CONUS)

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Schellekens, J.; van Dijk, A.; Molenaar, R.

    2016-12-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  13. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  14. NCAR's Research Data Archive: OPeNDAP Access for Complex Datasets

    NASA Astrophysics Data System (ADS)

    Dattore, R.; Worley, S. J.

    2014-12-01

    Many datasets have complex structures including hundreds of parameters and numerous vertical levels, grid resolutions, and temporal products. Making these data accessible is a challenge for a data provider. OPeNDAP is powerful protocol for delivering in real-time multi-file datasets that can be ingested by many analysis and visualization tools, but for these datasets there are too many choices about how to aggregate. Simple aggregation schemes can fail to support, or at least make it very challenging, for many potential studies based on complex datasets. We address this issue by using a rich file content metadata collection to create a real-time customized OPeNDAP service to match the full suite of access possibilities for complex datasets. The Climate Forecast System Reanalysis (CFSR) and it's extension, the Climate Forecast System Version 2 (CFSv2) datasets produced by the National Centers for Environmental Prediction (NCEP) and hosted by the Research Data Archive (RDA) at the Computational and Information Systems Laboratory (CISL) at NCAR are examples of complex datasets that are difficult to aggregate with existing data server software. CFSR and CFSv2 contain 141 distinct parameters on 152 vertical levels, six grid resolutions and 36 products (analyses, n-hour forecasts, multi-hour averages, etc.) where not all parameter/level combinations are available at all grid resolution/product combinations. These data are archived in the RDA with the data structure provided by the producer; no additional re-organization or aggregation have been applied. Since 2011, users have been able to request customized subsets (e.g. - temporal, parameter, spatial) from the CFSR/CFSv2, which are processed in delayed-mode and then downloaded to a user's system. Until now, the complexity has made it difficult to provide real-time OPeNDAP access to the data. We have developed a service that leverages the already-existing subsetting interface and allows users to create a virtual dataset with its own structure (das, dds). The user receives a URL to the customized dataset that can be used by existing tools to ingest, analyze, and visualize the data. This presentation will detail the metadata system and OPeNDAP server that enable user-customized real-time access and show an example of how a visualization tool can access the data.

  15. Electricity forecasting on the individual household level enhanced based on activity patterns

    PubMed Central

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents’ daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken. PMID:28423039

  16. Electricity forecasting on the individual household level enhanced based on activity patterns.

    PubMed

    Gajowniczek, Krzysztof; Ząbkowski, Tomasz

    2017-01-01

    Leveraging smart metering solutions to support energy efficiency on the individual household level poses novel research challenges in monitoring usage and providing accurate load forecasting. Forecasting electricity usage is an especially important component that can provide intelligence to smart meters. In this paper, we propose an enhanced approach for load forecasting at the household level. The impacts of residents' daily activities and appliance usages on the power consumption of the entire household are incorporated to improve the accuracy of the forecasting model. The contributions of this paper are threefold: (1) we addressed short-term electricity load forecasting for 24 hours ahead, not on the aggregate but on the individual household level, which fits into the Residential Power Load Forecasting (RPLF) methods; (2) for the forecasting, we utilized a household specific dataset of behaviors that influence power consumption, which was derived using segmentation and sequence mining algorithms; and (3) an extensive load forecasting study using different forecasting algorithms enhanced by the household activity patterns was undertaken.

  17. Design of a High Resolution Open Access Global Snow Cover Web Map Service Using Ground and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Kadlec, J.; Ames, D. P.

    2014-12-01

    The aim of the presented work is creating a freely accessible, dynamic and re-usable snow cover map of the world by combining snow extent and snow depth datasets from multiple sources. The examined data sources are: remote sensing datasets (MODIS, CryoLand), weather forecasting model outputs (OpenWeatherMap, forecast.io), ground observation networks (CUAHSI HIS, GSOD, GHCN, and selected national networks), and user-contributed snow reports on social networks (cross-country and backcountry skiing trip reports). For adding each type of dataset, an interface and an adapter is created. Each adapter supports queries by area, time range, or combination of area and time range. The combined dataset is published as an online snow cover mapping service. This web service lowers the learning curve that is required to view, access, and analyze snow depth maps and snow time-series. All data published by this service are licensed as open data; encouraging the re-use of the data in customized applications in climatology, hydrology, sports and other disciplines. The initial version of the interactive snow map is on the website snow.hydrodata.org. This website supports the view by time and view by site. In view by time, the spatial distribution of snow for a selected area and time period is shown. In view by site, the time-series charts of snow depth at a selected location is displayed. All snow extent and snow depth map layers and time series are accessible and discoverable through internationally approved protocols including WMS, WFS, WCS, WaterOneFlow and WaterML. Therefore they can also be easily added to GIS software or 3rd-party web map applications. The central hypothesis driving this research is that the integration of user contributed data and/or social-network derived snow data together with other open access data sources will result in more accurate and higher resolution - and hence more useful snow cover maps than satellite data or government agency produced data by itself.

  18. Predicting Global Fund grant disbursements for procurement of artemisinin-based combination therapies

    PubMed Central

    Cohen, Justin M; Singh, Inder; O'Brien, Megan E

    2008-01-01

    Background An accurate forecast of global demand is essential to stabilize the market for artemisinin-based combination therapy (ACT) and to ensure access to high-quality, life-saving medications at the lowest sustainable prices by avoiding underproduction and excessive overproduction, each of which can have negative consequences for the availability of affordable drugs. A robust forecast requires an understanding of the resources available to support procurement of these relatively expensive antimalarials, in particular from the Global Fund, at present the single largest source of ACT funding. Methods Predictive regression models estimating the timing and rate of disbursements from the Global Fund to recipient countries for each malaria grant were derived using a repeated split-sample procedure intended to avoid over-fitting. Predictions were compared against actual disbursements in a group of validation grants, and forecasts of ACT procurement extrapolated from disbursement predictions were evaluated against actual procurement in two sub-Saharan countries. Results Quarterly forecasts were correlated highly with actual smoothed disbursement rates (r = 0.987, p < 0.0001). Additionally, predicted ACT procurement, extrapolated from forecasted disbursements, was correlated strongly with actual ACT procurement supported by two grants from the Global Fund's first (r = 0.945, p < 0.0001) and fourth (r = 0.938, p < 0.0001) funding rounds. Conclusion This analysis derived predictive regression models that successfully forecasted disbursement patterning for individual Global Fund malaria grants. These results indicate the utility of this approach for demand forecasting of ACT and, potentially, for other commodities procured using funding from the Global Fund. Further validation using data from other countries in different regions and environments will be necessary to confirm its generalizability. PMID:18831742

  19. Global Real-Time Ocean Forecast System

    Science.gov Websites

    services. Marine Modeling and Analysis Branch Logo Click here to go to the MMAB home page Global Real-Time 17 Oct 2017 at 0Z, the Global RTOFS model has been upgraded to version 1.1.2. Changes include: The ). The global operational Real-Time Ocean Forecast System (Global RTOFS) at the National Centers for

  20. Ensemble Downscaling of Winter Seasonal Forecasts: The MRED Project

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Mred Team

    2010-12-01

    The Multi-Regional climate model Ensemble Downscaling (MRED) project is a multi-institutional project that is producing large ensembles of downscaled winter seasonal forecasts from coupled atmosphere-ocean seasonal prediction models. Eight regional climate models each are downscaling 15-member ensembles from the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) and the new NASA seasonal forecast system based on the GEOS5 atmospheric model coupled with the MOM4 ocean model. This produces 240-member ensembles, i.e., 8 regional models x 15 global ensemble members x 2 global models, for each winter season (December-April) of 1982-2003. Results to date show that combined global-regional downscaled forecasts have greatest skill for seasonal precipitation anomalies during strong El Niño events such as 1982-83 and 1997-98. Ensemble means of area-averaged seasonal precipitation for the regional models generally track the corresponding results for the global model, though there is considerable inter-model variability amongst the regional models. For seasons and regions where area mean precipitation is accurately simulated the regional models bring added value by extracting greater spatial detail from the global forecasts, mainly due to better resolution of terrain in the regional models. Our results also emphasize that an ensemble approach is essential to realizing the added value from the combined global-regional modeling system.

  1. Limits of Risk Predictability in a Cascading Alternating Renewal Process Model.

    PubMed

    Lin, Xin; Moussawi, Alaa; Korniss, Gyorgy; Bakdash, Jonathan Z; Szymanski, Boleslaw K

    2017-07-27

    Most risk analysis models systematically underestimate the probability and impact of catastrophic events (e.g., economic crises, natural disasters, and terrorism) by not taking into account interconnectivity and interdependence of risks. To address this weakness, we propose the Cascading Alternating Renewal Process (CARP) to forecast interconnected global risks. However, assessments of the model's prediction precision are limited by lack of sufficient ground truth data. Here, we establish prediction precision as a function of input data size by using alternative long ground truth data generated by simulations of the CARP model with known parameters. We illustrate the approach on a model of fires in artificial cities assembled from basic city blocks with diverse housing. The results confirm that parameter recovery variance exhibits power law decay as a function of the length of available ground truth data. Using CARP, we also demonstrate estimation using a disparate dataset that also has dependencies: real-world prediction precision for the global risk model based on the World Economic Forum Global Risk Report. We conclude that the CARP model is an efficient method for predicting catastrophic cascading events with potential applications to emerging local and global interconnected risks.

  2. Evaluation of Real-Time Convection-Permitting Precipitation Forecasts in China During the 2013-2014 Summer Season

    NASA Astrophysics Data System (ADS)

    Zhu, Kefeng; Xue, Ming; Zhou, Bowen; Zhao, Kun; Sun, Zhengqi; Fu, Peiling; Zheng, Yongguang; Zhang, Xiaoling; Meng, Qingtao

    2018-01-01

    Forecasts at a 4 km convection-permitting resolution over China during the summer season have been produced with the Weather Research and Forecasting model at Nanjing University since 2013. Precipitation forecasts from 2013 to 2014 are evaluated with dense rain gauge observations and compared with operational global model forecasts. Overall, the 4 km forecasts show very good agreement with observations over most parts of China, outperforming global forecasts in terms of spatial distribution, intensity, and diurnal variation. Quantitative evaluations with the Gilbert skill score further confirm the better performance of the 4 km forecasts over global forecasts for heavy precipitation, especially for the thresholds of 100 and 150 mm d-1. Besides bulk characteristics, the representations of some unique features of summer precipitation in China under the influence of the East Asian summer monsoon are further evaluated. These include the northward progression and southward retreat of the main rainband through the summer season, the diurnal variations of precipitation, and the meridional and zonal propagation of precipitation episodes associated with background synoptic flow and the embedded mesoscale convective systems. The 4 km forecast is able to faithfully reproduce most of the features while overprediction of afternoon convection near the southern China coast is found to be a main deficiency that requires further investigations.

  3. National Centers for Environmental Prediction

    Science.gov Websites

    SYSTEM CFS CLIMATE FORECAST SYSTEM NAQFC NAQFC MODEL GEFS GLOBAL ENSEMBLE FORECAST SYSTEM HWRF HURRICANE WEATHER RESEARCH and FORECASTING HMON HMON - OPERATIONAL HURRICANE FORECASTING WAVEWATCH III WAVEWATCH III

  4. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  5. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.

  6. Applications For Real Time NOMADS At NCEP To Disseminate NOAA's Operational Model Data Base

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.; Wang, J.; Rutledge, G.

    2007-05-01

    A wide range of environmental information, in digital form, with metadata descriptions and supporting infrastructure is contained in the NOAA Operational Modeling Archive Distribution System (NOMADS) and its Real Time (RT) project prototype at the National Centers for Environmental Prediction (NCEP). NOMADS is now delivering on its goal of a seamless framework, from archival to real time data dissemination for NOAA's operational model data holdings. A process is under way to make NOMADS part of NCEP's operational production of products. A goal is to foster collaborations among the research and education communities, value added retailers, and public access for science and development. In the National Research Council's "Completing the Forecast", Recommendation 3.4 states: "NOMADS should be maintained and extended to include (a) long-term archives of the global and regional ensemble forecasting systems at their native resolution, and (b) re-forecast datasets to facilitate post-processing." As one of many participants of NOMADS, NCEP serves the operational model data base using data application protocol (Open-DAP) and other services for participants to serve their data sets and users to obtain them. Using the NCEP global ensemble data as an example, we show an Open-DAP (also known as DODS) client application that provides a request-and-fulfill mechanism for access to the complex ensemble matrix of holdings. As an example of the DAP service, we show a client application which accesses the Global or Regional Ensemble data set to produce user selected weather element event probabilities. The event probabilities are easily extended over model forecast time to show probability histograms defining the future trend of user selected events. This approach insures an efficient use of computer resources because users transmit only the data necessary for their tasks. Data sets are served by OPeN-DAP allowing commercial clients such as MATLAB or IDL as well as freeware clients such as GrADS to access the NCEP real time database. We will demonstrate how users can use NOMADS services to repackage area subsets and select levels and variables that are sent to a users selected ftp site. NOMADS can also display plots on demand for area subsets, selected levels, time series and selected variables.

  7. Using High Resolution Model Data to Improve Lightning Forecasts across Southern California

    NASA Astrophysics Data System (ADS)

    Capps, S. B.; Rolinski, T.

    2014-12-01

    Dry lightning often results in a significant amount of fire starts in areas where the vegetation is dry and continuous. Meteorologists from the USDA Forest Service Predictive Services' program in Riverside, California are tasked to provide southern and central California's fire agencies with fire potential outlooks. Logistic regression equations were developed by these meteorologists several years ago, which forecast probabilities of lightning as well as lightning amounts, out to seven days across southern California. These regression equations were developed using ten years of historical gridded data from the Global Forecast System (GFS) model on a coarse scale (0.5 degree resolution), correlated with historical lightning strike data. These equations do a reasonably good job of capturing a lightning episode (3-5 consecutive days or greater of lightning), but perform poorly regarding more detailed information such as exact location and amounts. It is postulated that the inadequacies in resolving the finer details of episodic lightning events is due to the coarse resolution of the GFS data, along with limited predictors. Stability parameters, such as the Lifted Index (LI), the Total Totals index (TT), Convective Available Potential Energy (CAPE), along with Precipitable Water (PW) are the only parameters being considered as predictors. It is hypothesized that the statistical forecasts will benefit from higher resolution data both in training and implementing the statistical model. We have dynamically downscaled NCEP FNL (Final) reanalysis data using the Weather Research and Forecasting model (WRF) to 3km spatial and hourly temporal resolution across a decade. This dataset will be used to evaluate the contribution to the success of the statistical model of additional predictors in higher vertical, spatial and temporal resolution. If successful, we will implement an operational dynamically downscaled GFS forecast product to generate predictors for the resulting statistical lightning model. This data will help fire agencies be better prepared to pre-deploy resources in advance of these events. Specific information regarding duration, amount, and location will be especially valuable.

  8. Similarity-based multi-model ensemble approach for 1-15-day advance prediction of monsoon rainfall over India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Neeru; Kishtawal, C. M.; Bhomia, Swati

    2018-04-01

    The southwest (SW) monsoon season (June, July, August and September) is the major period of rainfall over the Indian region. The present study focuses on the development of a new multi-model ensemble approach based on the similarity criterion (SMME) for the prediction of SW monsoon rainfall in the extended range. This approach is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional MME approaches. In this approach, the training dataset has been selected by matching the present day condition to the archived dataset and days with the most similar conditions were identified and used for training the model. The coefficients thus generated were used for the rainfall prediction. The precipitation forecasts from four general circulation models (GCMs), viz. European Centre for Medium-Range Weather Forecasts (ECMWF), United Kingdom Meteorological Office (UKMO), National Centre for Environment Prediction (NCEP) and China Meteorological Administration (CMA) have been used for developing the SMME forecasts. The forecasts of 1-5, 6-10 and 11-15 days were generated using the newly developed approach for each pentad of June-September during the years 2008-2013 and the skill of the model was analysed using verification scores, viz. equitable skill score (ETS), mean absolute error (MAE), Pearson's correlation coefficient and Nash-Sutcliffe model efficiency index. Statistical analysis of SMME forecasts shows superior forecast skill compared to the conventional MME and the individual models for all the pentads, viz. 1-5, 6-10 and 11-15 days.

  9. An experimental system for flood risk forecasting at global scale

    NASA Astrophysics Data System (ADS)

    Alfieri, L.; Dottori, F.; Kalas, M.; Lorini, V.; Bianchi, A.; Hirpa, F. A.; Feyen, L.; Salamon, P.

    2016-12-01

    Global flood forecasting and monitoring systems are nowadays a reality and are being applied by an increasing range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasts, combining streamflow estimations with expected inundated areas and flood impacts. To this end, we have developed an experimental procedure for near-real time flood mapping and impact assessment based on the daily forecasts issued by the Global Flood Awareness System (GloFAS). The methodology translates GloFAS streamflow forecasts into event-based flood hazard maps based on the predicted flow magnitude and the forecast lead time and a database of flood hazard maps with global coverage. Flood hazard maps are then combined with exposure and vulnerability information to derive flood risk. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To further increase the reliability of the proposed methodology we integrated model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification of impact forecasts. The preliminary tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management. In particular, the link with social media is crucial for improving the accuracy of impact predictions.

  10. An intercomparison of GCM and RCM dynamical downscaling for characterizing the hydroclimatology of California and Nevada

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Rhoades, A.; Johansen, H.; Ullrich, P. A.; Collins, W. D.

    2017-12-01

    Dynamical downscaling is widely used to properly characterize regional surface heterogeneities that shape the local hydroclimatology. However, the factors in dynamical downscaling, including the refinement of model horizontal resolution, large-scale forcing datasets and dynamical cores, have not been fully evaluated. Two cutting-edge global-to-regional downscaling methods are used to assess these, specifically the variable-resolution Community Earth System Model (VR-CESM) and the Weather Research & Forecasting (WRF) regional climate model, under different horizontal resolutions (28, 14, and 7 km). Two groups of WRF simulations are driven by either the NCEP reanalysis dataset (WRF_NCEP) or VR-CESM outputs (WRF_VRCESM) to evaluate the effects of the large-scale forcing datasets. The impacts of dynamical core are assessed by comparing the VR-CESM simulations to the coupled WRF_VRCESM simulations with the same physical parameterizations and similar grid domains. The simulated hydroclimatology (i.e., total precipitation, snow cover, snow water equivalent and surface temperature) are compared with the reference datasets. The large-scale forcing datasets are critical to the WRF simulations in more accurately simulating total precipitation, SWE and snow cover, but not surface temperature. Both the WRF and VR-CESM results highlight that no significant benefit is found in the simulated hydroclimatology by just increasing horizontal resolution refinement from 28 to 7 km. Simulated surface temperature is sensitive to the choice of dynamical core. WRF generally simulates higher temperatures than VR-CESM, alleviates the systematic cold bias of DJF temperatures over the California mountain region, but overestimates the JJA temperature in California's Central Valley.

  11. Seasonal scale water deficit forecasting in Africa and the Middle East using NASA's Land Information System (LIS)

    NASA Astrophysics Data System (ADS)

    Shukla, Shraddhanand; Arsenault, Kristi R.; Getirana, Augusto; Kumar, Sujay V.; Roningen, Jeanne; Zaitchik, Ben; McNally, Amy; Koster, Randal D.; Peters-Lidard, Christa

    2017-04-01

    Drought and water scarcity are among the important issues facing several regions within Africa and the Middle East. A seamless and effective monitoring and early warning system is needed by regional/national stakeholders. Such system should support a proactive drought management approach and mitigate the socio-economic losses up to the extent possible. In this presentation, we report on the ongoing development and validation of a seasonal scale water deficit forecasting system based on NASA's Land Information System (LIS) and seasonal climate forecasts. First, our presentation will focus on the implementation and validation of the LIS models used for drought and water availability monitoring in the region. The second part will focus on evaluating drought and water availability forecasts. Finally, details will be provided of our ongoing collaboration with end-user partners in the region (e.g., USAID's Famine Early Warning Systems Network, FEWS NET), on formulating meaningful early warning indicators, effective communication and seamless dissemination of the monitoring and forecasting products through NASA's web-services. The water deficit forecasting system thus far incorporates NOAA's Noah land surface model (LSM), version 3.3, the Variable Infiltration Capacity (VIC) model, version 4.12, NASA GMAO's Catchment LSM, and the Noah Multi-Physics (MP) LSM (the latter two incorporate prognostic water table schemes). In addition, the LSMs' surface and subsurface runoff are routed through the Hydrological Modeling and Analysis Platform (HyMAP) to simulate surface water dynamics. The LSMs are driven by NASA/GMAO's Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), and the USGS and UCSB Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) daily rainfall dataset. The LIS software framework integrates these forcing datasets and drives the four LSMs and HyMAP. The Land Verification Toolkit (LVT) is used for the evaluation of the LSMs, as it provides model ensemble metrics and the ability to compare against a variety of remotely sensed measurements, like different evapotranspiration (ET) and soil moisture products, and other reanalysis datasets that are available for this region. Comparison of the models' energy and hydrological budgets will be shown for this region (and sub-basin level, e.g., Blue Nile River) and time period (1981-2015), along with evaluating ET, streamflow, groundwater storage and soil moisture, using evaluation metrics (e.g., anomaly correlation, RMSE, etc.). The system uses seasonal climate forecasts from NASA's GMAO (the Goddard Earth Observing System Model, version 5) and NCEP's Climate Forecast System, version 2, and it produces forecasts of soil moisture, ET and streamflow out to 6 months in the future. Forecasts of those variables are formulated in terms of indicators to provide forecasts of drought and water availability in the region.

  12. Spacebuoy: A University Nanosat Space Weather Mission (III)

    DTIC Science & Technology

    2013-10-11

    ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air Force... ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air...Mission Objectives • Provide critical space weather data for use in ionospheric forecasting efforts, particularly assimilated data used in the GAIM

  13. Added value of dynamical downscaling of winter seasonal forecasts over North America

    NASA Astrophysics Data System (ADS)

    Tefera Diro, Gulilat; Sushama, Laxmi

    2017-04-01

    Skillful seasonal forecasts have enormous potential benefits for socio-economic sectors that are sensitive to weather and climate conditions, as the early warning routines could reduce the vulnerability of such sectors. In this study, individual ensemble members of the ECMWF global ensemble seasonal forecasts are dynamically downscaled to produce ensemble of regional seasonal forecasts over North America using the fifth generation Canadian Regional Climate Model (CRCM5). CRCM5 forecasts are initialized on November 1st of each year and are integrated for four months for the 1991-2001 period at 0.22 degree resolution to produce a one-month lead-time forecast. The initial conditions for atmospheric variables are obtained from ERA-Interim reanalysis, whereas the initial conditions for land surface are obtained from a separate ERA-interim driven CRCM5 simulation with spectral nudging applied to the interior domain. The global and regional ensemble forecasts were then verified to investigate the skill and economic benefits of dynamical downscaling. Results indicate that both the global and regional climate models produce skillful precipitation forecast over the southern Great Plains and eastern coasts of the U.S and skillful temperature forecasts over the northern U.S. and most of Canada. In comparison to ECMWF forecasts, CRCM5 forecasts improved the temperature forecast skill over most part of the domain, but the improvements for precipitation is limited to regions with complex topography, where it improves the frequency of intense daily precipitation. CRCM5 forecast also yields a better economic value compared to ECMWF precipitation forecasts, for users whose cost to loss ratio is smaller than 0.5.

  14. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  15. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  16. Toward Seasonal Forecasting of Global Droughts: Evaluation over USA and Africa

    NASA Astrophysics Data System (ADS)

    Wood, Eric; Yuan, Xing; Roundy, Joshua; Sheffield, Justin; Pan, Ming

    2013-04-01

    Extreme hydrologic events in the form of droughts are significant sources of social and economic damage. In the United States according to the National Climatic Data Center, the losses from drought exceed US210 billion during 1980-2011, and account for about 24% of all losses from major weather disasters. Internationally, especially for the developing world, drought has had devastating impacts on local populations through food insecurity and famine. Providing reliable drought forecasts with sufficient early warning will help the governments to move from the management of drought crises to the management of drought risk. After working on drought monitoring and forecasting over the USA for over 10 years, the Princeton land surface hydrology group is now developing a global drought monitoring and forecasting system using a dynamical seasonal climate-hydrologic LSM-model (CHM) approach. Currently there is an active debate on the merits of the CHM-based seasonal hydrologic forecasts as compared to Ensemble Streamflow Prediction (ESP). We use NCEP's operational forecast system, the Climate Forecast System version 2 (CFSv2) and its previous version CFSv1, to investigate the value of seasonal climate model forecasts by conducting a set of 27-year seasonal hydrologic hindcasts over the USA. Through Bayesian downscaling, climate models have higher squared correlation (R2) and smaller error than ESP for monthly precipitation averaged over major river basins across the USA, and the forecasts conditional on ENSO show further improvements (out to four months) over river basins in the southern USA. All three approaches have plausible predictions of soil moisture drought frequency over central USA out to six months because of strong soil moisture memory, and seasonal climate models provide better results over central and eastern USA. The R2 of drought extent is higher for arid basins and for the forecasts initiated during dry seasons, but significant improvements from CFSv2 occur in different seasons for different basins. The R2 of drought severity accumulated over USA is higher during winter, and climate models present added value especially at long leads. For countries with sparse networks and weak reporting systems, remote sensing observations can provide the realtime data for the monitoring of drought. More importantly, these datasets are now available for at least a decade, which allows for estimating a climatology against which current conditions can be compared. Based on our established experimental African Drought Monitor (ADM) (see http://hydrology.princeton.edu/~nchaney/ADM_ML), we use the downscaled CFSv2 climate forcings to drive the re-calibrated VIC model and produce 6-month, 20-member ensemble hydrologic forecasts over Africa starting on the 1st of each calendar month during 1982-2007. Our CHM-based seasonal hydrologic forecasts are now being analyzed for its skill in predicting short-term soil moisture droughts over Africa. Besides relying on a single seasonal climate model or a single drought index, preliminary forecast results will be presented using multiple seasonal climate models based on the NOAA-supported National Multi-Model Ensemble (NMME) project, and with multiple drought indices. Results will be presented for the USA NIDIS test beds such as Southeast US and Colorado NIDIS (National Integrated Drought Information System) test beds, and potentially for other regions of the globe.

  17. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    NASA Astrophysics Data System (ADS)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.

  18. Low Frequency Oscillations in Assimilated Global Datasets Using TRMM Rainfall Observations

    NASA Technical Reports Server (NTRS)

    Tao, Li; Yang, Song; Zhang, Zhan; Hou, Arthur; Olson, William S.

    2004-01-01

    Global datasets for the period May-August 1998 from the Goddard Earth Observing System (GEOS) data assimilation system (DAS) with/without assimilated Tropical Rainfall Measuring Mission (TRMM) precipitation are analyzed against European Center for Medium-Range Weather Forecast (ECMWF) output, NOAA observed outgoing longwave radiation (OLR) data, and TRMM measured rainfall. The purpose of this study is to investigate the representation of the Madden-Julian Oscillation (MJO) in GEOS assimilated global datasets, noting the impact of TRMM observed rainfall on the MJO in GEOS data assimilations. A space-time analysis of the OLR data indicates that the observed OLR exhibits a spectral maximum for eastward-propagating wavenumber 1-3 disturbances with periods of 20-60 days in the 0deg-30degN latitude band. The assimilated OLR has a similar feature but with a smaller magnitude. However, OLR spectra from assimilations including TRMM rainfall data show better agreement with observed OLR spectra than spectra from assimilations without TRMM rainfall. Similar results are found for wavenumber 4-6 disturbances. There is a spectral peak for eastward-propagating wavenumber 4-6 disturbances with periods of 20-40 days near the equator, while for westward-moving disturbances, a spectral peak is noted for periods of 30-50 days near 25degN. To isolate the MJO, a 30-50 day band filter is selected for this study. It was found that the eastward-propagating waves from the band-filtered observed OLR between 10degs- 10degN are located in the eastern hemisphere. Similar patterns are evident in surface rainfall and the 850 hPa wind field. Assimilation of TRMM-observed rainfall reveals more distinct MJO features in the analysis than without rainfall assimilation. Similar analyses are also conducted over the Indian summer monsoon and East Asia summer monsoon regions, where the MJO is strongly related to the summer monsoon active-break patterns.

  19. Assessing the value of post-processed state-of-the-art long-term weather forecast ensembles for agricultural water management mediated by farmers' behaviours

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2016-04-01

    Recent advances in modelling of coupled ocean-atmosphere dynamics significantly improved skills of long-term climate forecast from global circulation models (GCMs). These more accurate weather predictions are supposed to be a valuable support to farmers in optimizing farming operations (e.g. crop choice, cropping and watering time) and for more effectively coping with the adverse impacts of climate variability. Yet, assessing how actually valuable this information can be to a farmer is not straightforward and farmers' response must be taken into consideration. Indeed, in the context of agricultural systems potentially useful forecast information should alter stakeholders' expectation, modify their decisions, and ultimately produce an impact on their performance. Nevertheless, long-term forecast are mostly evaluated in terms of accuracy (i.e., forecast quality) by comparing hindcast and observed values and only few studies investigated the operational value of forecast looking at the gain of utility within the decision-making context, e.g. by considering the derivative of forecast information, such as simulated crop yields or simulated soil moisture, which are essential to farmers' decision-making process. In this study, we contribute a step further in the assessment of the operational value of long-term weather forecasts products by embedding these latter into farmers' behavioral models. This allows a more critical assessment of the forecast value mediated by the end-users' perspective, including farmers' risk attitudes and behavioral patterns. Specifically, we evaluate the operational value of thirteen state-of-the-art long-range forecast products against climatology forecast and empirical prediction (i.e. past year climate and historical average) within an integrated agronomic modeling framework embedding an implicit model of the farmers' decision-making process. Raw ensemble datasets are bias-corrected and downscaled using a stochastic weather generator, in order to address the mismatch of the spatio-temporal scale between forecast data from GCMs and our model. For each product, the experiment is composed by two cascade simulations: 1) an ex-ante simulation using forecast data, and 2) an ex-post simulation with observations. Multi-year simulations are performed to account for climate variability, and the operational value of the different forecast products is evaluated against the perfect foresight on the basis of expected crop productivity as well as the final decisions under different decision-making criterions. Our results show that not all products generate beneficial effects to farmers' performance, and the forecast errors might be amplified due to farmers' decision-making process and risk attitudes, yielding little or even worse performance compared with the empirical approaches.

  20. Choosing the right amount of healthcare information technologies investments.

    PubMed

    Meyer, Rodolphe; Degoulet, Patrice

    2010-04-01

    Choosing and justifying the right amount of investment in healthcare information technologies (HITECH or HIT) in hospitals is an ever increasing challenge. Our objectives are to assess the financial impact of HIT on hospital outcome, and propose decision-helping tools that could be used to rationalize the distribution of hospital finances. We used a production function and microeconomic tools on data of 21 Paris university hospitals recorded from 1998 to 2006 to compute the elasticity coefficients of HIT versus non-HIT capital and labor as regards to hospital financial outcome and optimize the distribution of investments according to the productivity associated with each input. HIT inputs and non-HIT inputs both have a positive and significant impact on hospital production (elasticity coefficients respectively of 0.106 and 0.893; R(2) of 0.92). We forecast 2006 results from the 1998 to 2005 dataset with an accuracy of +0.61%. With the model used, the best proportion of HIT investments was estimated to be 10.6% of total input and this was predicted to lead to a total saving of 388 million Euros for the 2006 dataset. Considering HIT investment from the point of view of a global portfolio and applying econometric and microeconomic tools allow the required confidence level to be attained for choosing the right amount of HIT investments. It could also allow hospitals using these tools to make substantial savings, and help them forecast their choices for the following year for better HITECH governance in the current stimulation context. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS)

    DTIC Science & Technology

    2016-09-01

    Laboratory Change in Weather Research and Forecasting (WRF) Model Accuracy with Age of Input Data from the Global Forecast System (GFS) by JL Cogan...analysis. As expected, accuracy generally tended to decline as the large-scale data aged , but appeared to improve slightly as the age of the large...19 Table 7 Minimum and maximum mean RMDs for each WRF time (or GFS data age ) category. Minimum and

  2. Validation Test Report for the 1/8 deg Global Navy Coastal Ocean Model Nowcast/Forecast System

    DTIC Science & Technology

    2007-01-24

    Test Report for the 1/8° Global Navy Coastal Ocean Model Nowcast/Forecast System Charlie N. BarroN a. Birol Kara roBert C. rhodes ClarK rowley......OF ACRONYMS ......................................................................48 VALIDATION TEST REPORT FOR THE 1/8° GLOBAL NAVY COASTAL

  3. Forecasting Future Sea Ice Conditions: A Lagrangian Approach

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Forecasting Future Sea Ice Conditions: A Lagrangian ...GCMs participating in IPCC AR5 agree with observed source region patterns from the satellite- derived dataset. 4- Compare Lagrangian ice... Lagrangian sea-ice back trajectories to estimate thermodynamic and dynamic (advection) ice loss. APPROACH We use a Lagrangian trajectory model to

  4. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.

  5. How sensitive are estimates of carbon fixation in agricultural models to input data?

    PubMed Central

    2012-01-01

    Background Process based vegetation models are central to understand the hydrological and carbon cycle. To achieve useful results at regional to global scales, such models require various input data from a wide range of earth observations. Since the geographical extent of these datasets varies from local to global scale, data quality and validity is of major interest when they are chosen for use. It is important to assess the effect of different input datasets in terms of quality to model outputs. In this article, we reflect on both: the uncertainty in input data and the reliability of model results. For our case study analysis we selected the Marchfeld region in Austria. We used independent meteorological datasets from the Central Institute for Meteorology and Geodynamics and the European Centre for Medium-Range Weather Forecasts (ECMWF). Land cover / land use information was taken from the GLC2000 and the CORINE 2000 products. Results For our case study analysis we selected two different process based models: the Environmental Policy Integrated Climate (EPIC) and the Biosphere Energy Transfer Hydrology (BETHY/DLR) model. Both process models show a congruent pattern to changes in input data. The annual variability of NPP reaches 36% for BETHY/DLR and 39% for EPIC when changing major input datasets. However, EPIC is less sensitive to meteorological input data than BETHY/DLR. The ECMWF maximum temperatures show a systematic pattern. Temperatures above 20°C are overestimated, whereas temperatures below 20°C are underestimated, resulting in an overall underestimation of NPP in both models. Besides, BETHY/DLR is sensitive to the choice and accuracy of the land cover product. Discussion This study shows that the impact of input data uncertainty on modelling results need to be assessed: whenever the models are applied under new conditions, local data should be used for both input and result comparison. PMID:22296931

  6. Satellite Imagery Analysis for Automated Global Food Security Forecasting

    NASA Astrophysics Data System (ADS)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.

    2017-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.

  7. A flexible tool for diagnosing water, energy, and entropy budgets in climate models

    NASA Astrophysics Data System (ADS)

    Lembo, Valerio; Lucarini, Valerio

    2017-04-01

    We have developed a new flexible software for studying the global energy budget, the hydrological cycle, and the material entropy production of global climate models. The program receives as input radiative, latent and sensible energy fluxes, with the requirement that the variable names are in agreement with the Climate and Forecast (CF) conventions for the production of NetCDF datasets. Annual mean maps, meridional sections and time series are computed by means of Climate Data Operators (CDO) collection of command line operators developed at Max-Planck Institute for Meteorology (MPI-M). If a land-sea mask is provided, the program also computes the required quantities separately on the continents and oceans. Depending on the user's choice, the program also calls the MATLAB software to compute meridional heat transports and location and intensities of the peaks in the two hemispheres. We are currently planning to adapt the program in order to be included in the Earth System Model eValuation Tool (ESMValTool) community diagnostics.

  8. Experimental weekly to seasonal U.S. forecasts with the Regional Spectral Model

    Treesearch

    J. Roads

    2004-01-01

    As described previously Roads et al. 2001a, hereafter RCF), the Scripps Experimental Climate Prediction Center (ECPC) has been making routine, near-real-time, long-range experimental global and regional dynamical forecasts since 27 September 1997. The global spectral model (GSM) used for these forecasts is that of National Centers for Environmental Prediction’s (NCEP;...

  9. Sub-seasonal predictability of water scarcity at global and local scale

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  10. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  11. The Eruption Forecasting Information System: Volcanic Eruption Forecasting Using Databases

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Harpel, C. J.; Pesicek, J. D.; Wellik, J.

    2016-12-01

    Forecasting eruptions, including the onset size, duration, location, and impacts, is vital for hazard assessment and risk mitigation. The Eruption Forecasting Information System (EFIS) project is a new initiative of the US Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) and will advance VDAP's ability to forecast the outcome of volcanic unrest. The project supports probability estimation for eruption forecasting by creating databases useful for pattern recognition, identifying monitoring data thresholds beyond which eruptive probabilities increase, and for answering common forecasting questions. A major component of the project is a global relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest. This module allows us to query eruption chronologies, monitoring data, descriptive information, operational data, and eruptive phases alongside other global databases, such as WOVOdat and the Global Volcanism Program. The EFIS database is in the early stages of development and population; thus, this contribution also is a request for feedback from the community. Preliminary data are already benefitting several research areas. For example, VDAP provided a forecast of the likely remaining eruption duration for Sinabung volcano, Indonesia, using global data taken from similar volcanoes in the DomeHaz database module, in combination with local monitoring time-series data. In addition, EFIS seismologists used a beta-statistic test and empirically-derived thresholds to identify distal volcano-tectonic earthquake anomalies preceding Alaska volcanic eruptions during 1990-2015 to retrospectively evaluate Alaska Volcano Observatory eruption precursors. This has identified important considerations for selecting analog volcanoes for global data analysis, such as differences between closed and open system volcanoes.

  12. Medium range flood forecasts at global scale

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Wood, A. W.; Lettenmaier, D. P.; Wood, E. F.

    2006-12-01

    While weather and climate forecast methods have advanced greatly over the last two decades, this capability has yet to be evidenced in mitigation of water-related natural hazards (primarily floods and droughts), especially in the developing world. Examples abound of extreme property damage and loss of life due to floods in the underdeveloped world. For instance, more than 4.5 million people were affected by the July 2000 flooding of the Mekong River and its tributaries in Cambodia, Vietnam, Laos and Thailand. The February- March 2000 floods in the Limpopo River of Mozambique caused extreme disruption to that country's fledgling economy. Mitigation of these events through advance warning has typically been modest at best. Despite the above noted improvement in weather and climate forecasts, there is at present no system for forecasting of floods globally, notwithstanding that the potential clearly exists. We describe a methodology that is eventually intended to generate global flood predictions routinely. It draws heavily from the experimental North American Land Data Assimilation System (NLDAS) and the companion Global Land Data Assimilation System (GLDAS) for development of nowcasts, and the University of Washington Experimental Hydrologic Prediction System to develop ensemble hydrologic forecasts based on Numerical Weather Prediction (NWP) models which serve both as nowcasts (and hence reduce the need for in situ precipitation and other observations in parts of the world where surface networks are critically deficient) and provide forecasts for lead times as long as fifteen days. The heart of the hydrologic modeling system is the University of Washington/Princeton University Variable Infiltration Capacity (VIC) macroscale hydrology model. In the prototype (tested using retrospective data), VIC is driven globally up to the time of forecast with daily ERA40 precipitation (rescaled on a monthly basis to a station-based global climatology), ERA40 wind, and ERA40 average surface air temperature (with temperature ranges adjusted to a station-based climatology). In the retrospective forecasting mode, VIC is driven by global NCEP ensemble 15-day reforecasts provided by Tom Hamill (NOAA/ERL), bias corrected with respect to the adjusted ERA40 data and further downscaled spatially using higher spatial resolution Global Precipitation Climatology Project (GPCP) 1dd daily precipitation. Downward solar and longwave radiation, surface relative humidity, and other model forcings are derived from relationships with the daily temperature range during both the retrospective (spinup) and forecast period. The initial system is implemented globally at one-half degree spatial resolution. We evaluate model performance retrospectively for predictions of major floods for the Oder River in 1997, the Mekong River in 2000 and the Limpopo River in 2000.

  13. Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances

    NASA Astrophysics Data System (ADS)

    Wahir, N. A.; Nor, M. E.; Rusiman, M. S.; Gopal, K.

    2018-04-01

    Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.

  14. High-resolution visibility and air quality forecasting using multi-layer urban canopy model for highly urbanized Hong Kong and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Piu NG, Chak; HAO, Song; Fat LAM, Yun

    2015-04-01

    Visibility is a universally critical element which affects the public in many aspects, including economic activities, health of local citizens and safety of marine transportation and aviation. The Interagency Monitoring of Protected Visual Environments (IMPROVE) visibility equation, an empirical equation developed by USEPA, has been modified by various studies to fit into the application upon the Asian continent including Hong Kong and China. Often these studies focused on the improvement of the existing IMPROVE equation by modifying its particulate speciation using local observation data. In this study, we developed an Integrated Forecast System (IFS) to predict the next-day air quality and visibility using Weather Research and Forecasting model with Building Energy Parameterization and Building Energy Model (WRF-BEP+BEM) and Community Multi-scale Air Quality Model (CMAQ). Unlike the other studies, the core of this study is to include detailed urbanization impacts with calibrated "IMPROVE equation for PRD" into the modeling system for Hong Kong's environs. The ultra-high resolution land cover information (~1km x 1km) from Google images, was digitized into the Geographic Information System (GIS) for preparing the model-ready input for IFS. The NCEP FNL (Final) Operation Global Analysis (FNL) and the Global Forecasting System (GFS) datasets were tested for both hind-cast and forecast cases, in order to calibrate the input of urban parameters in the WRF-BEP+BEM model. The evaluation of model performance with sensitivity cases was performed on sea surface temperature (SST), surface temperature (T), wind speed/direction with the major pollutants (i.e., PM10, PM2.5, NOx, SO2 and O3) using local observation and will be presented/discussed in this paper. References: 1. Y. L. Lee, R. Sequeira, Visibility degradation across Hong Kong its components and their relative contribution. Atmospheric Environment 2001, 35, 5861-5872. doi:10.1016/S1352-2310(01)00395-8 2. R. Zhang, Q. Bian, J. C. H. Fung, A. K. H. Lau, Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment 2013, 77, 803-816. http://dx.doi.org/10.1016/j.atmosenv.2013.05.048

  15. How well do we know the global water cycle? - Intercomparison and Performance Analysis of the Hydrological Cycle in Three State-of-the-Art Reanalyses

    NASA Astrophysics Data System (ADS)

    Kunstmann, H.; Lorenz, C.

    2012-12-01

    The three state-of-the-art global atmospheric reanalysis models—namely, ECMWF Interim Re-Analysis (ERA-Interim), Modern-Era Retrospective Analysis for Research and Applications (MERRA; NASA), and Climate Forecast System Reanalysis (CFSR; NCEP)—are analyzed and compared with independent observations (GPCC; GPCP; CRU; CPC; DEL; HOAPS) in the period between 1989 and 2006. Comparison of precipitation and temperature estimates from the three models with gridded observations reveals large differences between the reanalyses and also of the observation datasets. A major source of uncertainty in the observations is the spatial distribution and change of the number of gauges over time. In South America for example, active measuring stations were reduced from 4267 to 390. The quality of precipitation estimates from the reanalyses strongly depends on the geographic location, as there are significant differences especially in tropical regions. The closure of the water cycle in the three reanalyses is analyzed by estimating long-term mean values for precipitation, evapotranspiration, surface runoff, and moisture flux divergence. Major shortcomings in the moisture budgets of the datasets are mainly due to inconsistencies of the net precipitation minus evaporation and evapotranspiration, respectively, (P-E) estimates over the oceans and landmasses. This imbalance largely originates from the assimilation of radiance sounding data from the NOAA-15 satellite, which results in an unrealistic increase of oceanic P-E in the MERRA and CFSR budgets. Overall, ERA-Interim shows both a comparatively reasonable closure of the terrestrial and atmospheric water balance and a reasonable agreement with the observation datasets. The limited performance of the three state-of-the-art reanalyses in reproducing the hydrological cycle, however, puts the use of these models for climate trend analyses and long-term water budget studies into question.

  16. Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.

    2008-12-01

    The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Can regional climate models provide additional useful information from global seasonal forecasts? MRED will use a suite of regional climate models to downscale seasonal forecasts produced by the new National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus will be on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the potential usefulness of higher resolution, especially for near-surface fields influenced by high resolution orography. Each regional model will cover the conterminous US (CONUS) at approximately 32 km resolution, and will perform an ensemble of 15 runs for each year 1982-2003 for the forecast period 1 December - 30 April. MRED will compare individual regional and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs), as well as wind, humidity, radiation, turbulent heat fluxes, which are important for more advanced coupled macro-scale hydrologic models. Metrics of ensemble spread will also be evaluated. Extensive analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will eventually define a strategy for more skillful and useful regional seasonal climate forecasts.

  17. Application of the WRF-Chem model for the simulation of air quality over Cyprus

    NASA Astrophysics Data System (ADS)

    Kushta, Jonilda; Proestos, Yiannis; Georgiou, George; Christoudias, Theodoros; Lelieveld, Jos

    2017-04-01

    The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Cyprus. Cyprus is an island country with complex topography, located in the eastern corner of East Mediterranean region, affected year-long by local, regional and long range transported pollution. An extensive sensitivity analysis of the model performance has been performed over the area of interest with three domains of respective grid spacing of 40, 8 and 2 km. Different configurations have been deployed regarding horizontal resolution, simulation timestep, boundary conditions, NOx emissions and speciation method of emitted NMVOCs (Non Methane Volatile Organic Compounds). The WRF-Chem model simulated hourly concentrations of air pollutants for a month-long period (July 2014) during which measurements are available over 13 stations (4 of which background stations, 1 industrial and 8 urban/traffic stations). The model was initialized with meteorological initial and boundary conditions (ICBC) using NCAR-NCEP's F Global Forecast System output (GFS) at a 1o x1o spatial resolution. The ICBC for the chemical species are derived from the MOZART global model results (2.5o x 2.5o). Both ICBCs datasets are updated every 6 hours. The emission inventory used in the study is the EDGAR-HTAP v2 dataset with a horizontal grid resolution of 0.1o × 0.1o, while an additional dataset with speciated NMVOCs (instead of summed volatile species) is also tested. The diurnal cycle of the atmospheric concentrations of ozone averaged over the island, exhibits a maximum of 114 μg/m3 when the boundary conditions are derived from MOZART and 94 μg/m3 when the boundary conditions are not included (local background and production), suggesting a constant inflow of ozone from long range transport of about 20 μg/m3. The contribution of pollution from regional sources is more pronounced at the western border due to the characteristic summer time north-northeasterly etesian flow that brings southward the pollution produced or accumulated over Eastern Europe, the Black sea and major upwind megacities (Istanbul, Athens etc). Ozone concentrations are overestimated in all stations indicating a possible overestimation of ozone from the global model (MOZART) that has also been discussed in other studies over neighbouring countries, or an excess of ozone production in the parent domain that includes all Eastern Mediterranean. Model results are influenced by the speciation of NMVOCs with the pre-speciated emission dataset resulting in lower ozone values by an average of 5 μg/m3. Lowering NOx emission brings ozone levels closer to observations; however this does not account for the overestimation of ozone since the respective comparison of NOx levels reveals strong underestimation of NOx (both NO and NO2) even before reducing them. Horizontal, vertical and temporal resolutions show smaller impact on changing the modelled patterns of ozone concentrations. The discrepancies between modelled and observed ozone over the main Cypriot urban areas point at the need for more detailed emission inventories, either in terms of spatial resolution and/or validation of absolute emitted values, and adjustments in the use of boundary conditions from global models.

  18. Improving Arctic Sea Ice Edge Forecasts by Assimilating High Horizontal Resolution Sea Ice Concentration Data into the US Navy’s Ice Forecast Systems

    DTIC Science & Technology

    2016-06-13

    Global Ocean Forecast System 3.1 also showed a substantial improvement in ice edge location over a system using the SSMIS sea ice concentration product... Global Ocean Fore- cast System (GOFS 3.1). Prior to 2 February 2015, the ice concentration fields from both ACNFS and GOFS 3.1 had been updated with...Scanning Radiometer (AMSR2) on the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission – Water (GCOM-W) platform became available

  19. Applications of Satellite Observations to Aerosol Analyses and Forecasting using the NAAPS Model and the DataFed Distributed Data System

    NASA Astrophysics Data System (ADS)

    Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Scheffe, R.; Keating, T.; Frank, N.; Poirot, R.; DuBois, D. W.; Bleiweiss, M. P.; Eberhard, W. L.; Menon, R.; Sethi, V.; Deshpande, A.

    2012-12-01

    Near-real-time (NRT) aerosol characterization, forecasting and decision support is now possible through the availability of (1) surface-based monitoring of regional PM concentrations, (2) global-scale columnar aerosol observations through satellites; (3) an aerosol model (NAAPS) that is capable of assimilating NRT satellite observations; and (4) an emerging cyber infrastructure for processing and distribution of data and model results (DataFed) for a wide range of users. This report describes the evolving NRT aerosol analysis and forecasting system and its applications at Federal and State and other AQ Agencies and groups. Through use cases and persistent real-world applications in the US and abroad, the report will show how satellite observations along with surface data and models are combined to aid decision support for AQ management, science and informing the public. NAAPS is the U.S. Navy's global aerosol and visibility forecast model that generates operational six-day global-scale forecasts for sulfate, dust, sea salt, and smoke aerosol. Through NAVDAS-AOD, NAAPS operationally assimilates filtered and corrected MODIS MOD04 aerosol optical depths and uses satellite-derived FLAMBÉ smoke emissions. Washington University's federated data system, DataFed, consist of a (1) data server which mediates the access to AQ datasets from distributed providers (NASA, NOAA, EPA, etc.,); (2) an AQ Data Catalog for finding and accessing data; and (3) a set of application programs/tools for browsing, exploring, comparing, aggregating, fusing data, evaluating models and delivering outputs through interactive visualization. NAAPS and DataFed are components of the Global Earth Observation System of Systems (GEOSS). Satellite data support the detection of long-range transported wind-blown dust and biomass smoke aerosols on hemispheric scales. The AQ management and analyst communities use the satellite/model data through DataFed and other channels as evidence for Exceptional Events (EE) as defined by EPA; i.e., Sahara dust impact on Texas and Florida, local dusts events in the Southwestern U.S. and Canadian smoke events over the Northeastern U.S. Recent applications include the impact analysis of a major Saudi Arabian dust event on Mumbai, India air quality. The NAAPS model and the DataFed tools can visualize the dynamic AQ events as they are manifested through the different sensors. Satellite-derived aerosol observations assimilated into NAAPS provide estimates of daily emission rates for dust and biomass fire sources. Tuning and reconciliation of the observations, emissions and models constitutes a key and novel contribution yielding a convergence toward the true five-dimensional (X, Y, Z, T, Composition) characterization of the atmospheric aerosol data space. This observation-emission-model reconciliation effort is aided by model evaluation tools and supports the international HTAP program. The report will also discuss some of the challenges facing multi-disciplinary, multi-agency, multi-national applications of integrated observation-modeling system of systems that impede the incorporation of satellite observations into AQ management decision support systems.

  20. Fusion of multi-source remote sensing data for agriculture monitoring tasks

    NASA Astrophysics Data System (ADS)

    Skakun, S.; Franch, B.; Vermote, E.; Roger, J. C.; Becker Reshef, I.; Justice, C. O.; Masek, J. G.; Murphy, E.

    2016-12-01

    Remote sensing data is essential source of information for enabling monitoring and quantification of crop state at global and regional scales. Crop mapping, state assessment, area estimation and yield forecasting are the main tasks that are being addressed within GEO-GLAM. Efficiency of agriculture monitoring can be improved when heterogeneous multi-source remote sensing datasets are integrated. Here, we present several case studies of utilizing MODIS, Landsat-8 and Sentinel-2 data along with meteorological data (growing degree days - GDD) for winter wheat yield forecasting, mapping and area estimation. Archived coarse spatial resolution data, such as MODIS, VIIRS and AVHRR, can provide daily global observations that coupled with statistical data on crop yield can enable the development of empirical models for timely yield forecasting at national level. With the availability of high-temporal and high spatial resolution Landsat-8 and Sentinel-2A imagery, course resolution empirical yield models can be downscaled to provide yield estimates at regional and field scale. In particular, we present the case study of downscaling the MODIS CMG based generalized winter wheat yield forecasting model to high spatial resolution data sets, namely harmonized Landsat-8 - Sentinel-2A surface reflectance product (HLS). Since the yield model requires corresponding in season crop masks, we propose an automatic approach to extract winter crop maps from MODIS NDVI and MERRA2 derived GDD using Gaussian mixture model (GMM). Validation for the state of Kansas (US) and Ukraine showed that the approach can yield accuracies > 90% without using reference (ground truth) data sets. Another application of yearly derived winter crop maps is their use for stratification purposes within area frame sampling for crop area estimation. In particular, one can simulate the dependence of error (coefficient of variation) on the number of samples and strata size. This approach was used for estimating the area of winter crops in Ukraine for 2013-2016. The GMM-GDD approach is further extended for HLS data to provide automatic winter crop mapping at 30 m resolution for crop yield model and area estimation. In case of persistent cloudiness, addition of Sentinel-1A synthetic aperture radar (SAR) images is explored for automatic winter crop mapping.

  1. Improving global flood risk awareness through collaborative research: Id-Lab

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Zijderveld, A.; Cumiskey, L.; Buckman, L.; Verlaan, M.; Baart, F.

    2015-12-01

    Scientific and end-user collaboration on operational flood risk modelling and forecasting requires an environment where scientists and end-users can physically work together and demonstrate, enhance and learn about new tools, methods and models for forecasting and warning purposes. Therefore, Deltares has built a real-time demonstration, training and research infrastructure ('operational' room and ICT backend). This research infrastructure supports various functions like (1) Real time response and disaster management, (2) Training, (3) Collaborative Research, (4) Demonstration. The research infrastructure will be used for a mixture of these functions on a regular basis by Deltares and a multitude of both scientists as well as end users such as universities, research institutes, consultants, governments and aid agencies. This infrastructure facilitates emergency advice and support during international and national disasters caused by rainfall, tropical cyclones or tsunamis. It hosts research flood and storm surge forecasting systems for global/continental/regional scale. It facilitates training for emergency & disaster management (along with hosting forecasting system user trainings in for instance the forecasting platform Delft-FEWS) both internally and externally. The facility is expected to inspire and initiate creative innovations by bringing together different experts from various organizations. The room hosts interactive modelling developments, participatory workshops and stakeholder meetings. State of the art tools, models and software, being applied across the globe are available and on display within the facility. We will present the Id-Lab in detail and we will put particular focus on the global operational forecasting systems GLOFFIS (Global Flood Forecasting Information System) and GLOSSIS (Global Storm Surge Information System).

  2. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  3. The HyMeX database

    NASA Astrophysics Data System (ADS)

    Brissebrat, Guillaume; Mastrorillo, Laurence; Ramage, Karim; Boichard, Jean-Luc; Cloché, Sophie; Fleury, Laurence; Klenov, Ludmila; Labatut, Laurent; Mière, Arnaud

    2013-04-01

    The international HyMeX (HYdrological cycle in the Mediterranean EXperiment) project aims at a better understanding and quantification of the hydrological cycle and related processes in the Mediterranean, with emphasis on high-impact weather events, inter-annual to decadal variability of the Mediterranean coupled system, and associated trends in the context of global change. The project includes long term monitoring of environmental parameters, intensive field campaigns, use of satellite data, modelling studies, as well as post event field surveys and value-added products processing. Therefore HyMeX database incorporates various dataset types from different disciplines, either operational or research. The database relies on a strong collaboration between OMP and IPSL data centres. Field data, which are 1D time series, maps or pictures, are managed by OMP team while gridded data (satellite products, model outputs, radar data...) are managed by IPSL team. At present, the HyMeX database contains about 150 datasets, including 80 hydrological, meteorological, ocean and soil in situ datasets, 30 radar datasets, 15 satellite products, 15 atmosphere, ocean and land surface model outputs from operational (re-)analysis or forecasts and from research simulations, and 5 post event survey datasets. The data catalogue complies with international standards (ISO 19115; INSPIRE; Directory Interchange Format; Global Change Master Directory Thesaurus). It includes all the datasets stored in the HyMeX database, as well as external datasets relevant for the project. All the data, whatever the type is, are accessible through a single gateway. The database website http://mistrals.sedoo.fr/HyMeX offers different tools: - A registration procedure which enables any scientist to accept the data policy and apply for a user database account. - A search tool to browse the catalogue using thematic, geographic and/or temporal criteria. - Sorted lists of the datasets by thematic keywords, by measured parameters, by instruments or by platform type. - Forms to document observations or products that will be provided to the database. - A shopping-cart web interface to order in situ data files. - Ftp facilities to access gridded data. The website will soon propose new facilities. Many in situ datasets have been homogenized and inserted in a relational database yet, in order to enable more accurate data selection and download of different datasets in a shared format. Interoperability between the two data centres will be enhanced by the OpenDAP communication protocol associated with the Thredds catalogue software, which may also be implemented in other data centres that manage data of interest for the HyMeX project. In order to meet the operational needs for the HyMeX 2012 campaigns, a day-to-day quick look and report display website has been developed too: http://sop.hymex.org. It offers a convenient way to browse meteorological conditions and data during the campaign periods.

  4. VIIRS Marine Isoprene Product and Initial Applications

    NASA Astrophysics Data System (ADS)

    Tong, D.; Wang, M.; Wang, B.; Pan, L.; Lee, P.; Goldberg, M.

    2017-12-01

    Isoprene is a reactive biogenic hydrocarbon that affects atmospheric chemistry, aerosol loading, and cloud formation. We have developed a marine isoprene emission algorithm based on ocean color data from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). and global meteorology simulated by NOAA Global Forecasting System (GFS). This algorithm is implemented to generate a multi-year data record (2012-2015) of marine isoprene. The product was validated using historic ocean observations of marine isoprene, as well as in-situ data collected during two recent cruises (SPACES/OASIS in 2014 and ASTRA-OMZ in 2015). Result shows that the VIIRS product has captured the seasonal and spatial variability of global oceanic isoprene emission, which is controlled by a myriad of biological and environmental variables including chlorophyll-a concentration, phytoplankton functional types, seawater light attenuation rate, wind speed, and sea surface temperature. The VIIRS isoprene emission displays considerable seasonal and spatial variations, with peaks in spring over seawater abundant with nutrient inputs. Year to year variations are small, with the annual global emissions ranging from 0.20 to 0.25 Tg C/yr. This new dataset provides the first multi-year observations of global isoprene emissions that can be used to study a variety of environmental issues such as coastal air quality, global aerosol, and cloud formation. Some "early-adopter" applications of this product are briefly discussed.

  5. Generation of a Realistic Soil Moisture Initialization System and its Potential Impact on Short-to-Seasonal Forecasting of Near Surface Variables

    NASA Astrophysics Data System (ADS)

    Boisserie, M.; Cocke, S.; O'Brien, J. J.

    2009-12-01

    Although the amount of water contained in the soil seems insignificant when compared to the total amount of water on a global-scale, soil moisture is widely recognized as a crucial variable for climate studies. It plays a key role in regulating the interaction between the atmosphere and the land-surface by controlling the repartition between the surface latent and sensible heat fluxes. In addition, the persistence of soil moisture anomalies provides one of the most important components of memory for the climate system. Several studies have shown that, during the boreal summer in mid-latitudes, the soil moisture role in controlling the continental precipitation variability may be more important than that of the sea surface temperature (Koster et al. 2000, Hong and Kalnay 2000, Koster et al. 2000, Kumar and Hoerling 1995, Trenberth et al. 1998, Shukla 1998). Although all of the above studies have demonstrated the strong sensitivity of seasonal forecasts to the soil moisture initial conditions, they relied on extreme or idealized soil moisture levels. The question of whether realistic soil moisture initial conditions lead to improved seasonal predictions has not been adequately addressed. Progress in addressing this question has been hampered by the lack of long-term reliable observation-based global soil moisture data sets. Since precipitation strongly affects the soil moisture characteristics at the surface and in depth, an alternative to this issue is to assimilate precipitation. Because precipitation is a diagnostic variable, most of the current reanalyses do not directly assimilate it into their models (M. Bosilovitch, 2008). In this study, an effective technique that directly assimilates the precipitation is used. We examine two experiments. In the first experiment, the model is initialized by directly assimilating a global, 3-hourly, 1.0° precipitation dataset, provided by Sheffield et al. (2006), in a continuous assimilation period of a couple of months. For this, we use a technique named the Precipitation Assimilation Reanalysis (PAR) described in Nunes and Cocke (2004). This technique consists of modifying the vertical profile of humidity as a function of the observed and predicted model rain rates. In the second experiment, the model is initialized without precipitation assimilation. For each experiment, ten sets of seasonal forecasts of the coupled land-atmosphere Florida State University/Center for Ocean and Atmosphere Predictions Studies (FSU/COAPS) model were generated, starting from the boreal summer of each year between 1986 and 1995. For each forecast, ten ensembles are produced by starting the forecast from the 1st and the 15th of each month from April to August. The results of these experiments show, first, that the PAR technique greatly improves the temporal and spatial variability of out model soil moisture estimate. Second, using these realistic soil moisture initial conditions, we found a significant increase in the air temperature seasonal forecasting skills. However, not significant increase has been found in the precipitation seasonal forecasting skills. The results of this study are involved in the GLACE-2 international multi-model experiment.

  6. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the observations collected and highlights the multiple impact studies completed.

  7. A robust scientific workflow for assessing fire danger levels using open-source software

    NASA Astrophysics Data System (ADS)

    Vitolo, Claudia; Di Giuseppe, Francesca; Smith, Paul

    2017-04-01

    Modelling forest fires is theoretically and computationally challenging because it involves the use of a wide variety of information, in large volumes and affected by high uncertainties. In-situ observations of wildfire, for instance, are highly sparse and need to be complemented by remotely sensed data measuring biomass burning to achieve homogeneous coverage at global scale. Fire models use weather reanalysis products to measure energy release and rate of spread but can only assess the potential predictability of fire danger as the actual ignition is due to human behaviour and, therefore, very unpredictable. Lastly, fire forecasting systems rely on weather forecasts to extend the advance warning but are currently calibrated using fire danger thresholds that are defined at global scale and do not take into account the spatial variability of fuel availability. As a consequence, uncertainties sharply increase cascading from the observational to the modelling stage and they might be further inflated by non-reproducible analyses. Although uncertainties in observations will only decrease with technological advances over the next decades, the other uncertainties (i.e. generated during modelling and post-processing) can already be addressed by developing transparent and reproducible analysis workflows, even more if implemented within open-source initiatives. This is because reproducible workflows aim to streamline the processing task as they present ready-made solutions to handle and manipulate complex and heterogeneous datasets. Also, opening the code to the scrutiny of other experts increases the chances to implement more robust solutions and avoids duplication of efforts. In this work we present our contribution to the forest fire modelling community: an open-source tool called "caliver" for the calibration and verification of forest fire model results. This tool is developed in the R programming language and publicly available under an open license. We will present the caliver R package, illustrate the main functionalities and show the results of our preliminary experiments calculating fire danger thresholds for various regions on Earth. We will compare these with the existing global thresholds and, lastly, demonstrate how these newly-calculated regional thresholds can lead to improved calibration of fire forecast models in an operational setting.

  8. Refinement of pollutant gas emissions in the state of Rio de Janeiro for applications in modeling air quality on a local scale

    NASA Astrophysics Data System (ADS)

    Domínguez Chovert, Angel; Félix Alonso, Marcelo; Frassoni, Ariane; José Ferreira, Valter; Eiras, Denis; Longo, Karla; Freitas, Saulo

    2017-04-01

    Numerical modeling is a fundamental tool for studying the earth system components along with weather and climate forecast. In fact, the development of on-line models allows to simulate conditions of the atmosphere, for example, to evaluate certain chemicals in weather events with the purpose of improving a region's quality of air. For this determined purpose, the on-line models employ information from a broad range of sources in order to generate its variables forecasts. But beyond vast information sources, for a region's quality of air study, the data concerning the amount and distribution of emissions of polluting gases must be representative, as well as, it's required complete georeferenced emissions for simulations made with high resolution. Consequently, the modifications made in this work to the PREP-CHEM-SRC (Preprocessor of trace gas and aerosol emission fields for regional and a global atmospheric chemistry models) tool are presented to meliorate the initialization files for BRAMS models, 5.2 version (Brazilian Developments on the Regional Atmospheric Modeling System) and WRF (Weather Research and Forecasting Model) with vehicle emissions in the state of Rio de Janeiro, Brazil. It was determined the annual vehicle emission, until the year 2030, of the nitrogen oxides species (NOx) and carbon monoxide (CO) for each city and using different scenarios. For Rio de Janeiro city, a process of distribution by emissions of the main pollutant gases was implemented. In total, five different types of routes were used and the emission percentage for each one was calculated using the most current traffic information in them. For to check the industrial contributions to the emissions were used the global datasets RETRO (REanalysis of TROpospheric chemical composition) and EDGAR-HTAP (Emission Database for Global Atmospheric Research). On the other hand, for the biogenic contributions was used information from the MEGAN model (Model of Emissions of Gases and Aerosols from Nature). For all the analyzed species it was possible to observe the strong influence of the vehicular activity on the emission distribution.

  9. Multi-RCM ensemble downscaling of global seasonal forecasts (MRED)

    NASA Astrophysics Data System (ADS)

    Arritt, R.

    2009-04-01

    Regional climate models (RCMs) have long been used to downscale global climate simulations. In contrast the ability of RCMs to downscale seasonal climate forecasts has received little attention. The Multi-RCM Ensemble Downscaling (MRED) project was recently initiated to address the question, Does dynamical downscaling using RCMs provide additional useful information for seasonal forecasts made by global models? MRED is using a suite of RCMs to downscale seasonal forecasts produced by the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) seasonal forecast system and the NASA GEOS5 system. The initial focus is on wintertime forecasts in order to evaluate topographic forcing, snowmelt, and the usefulness of higher resolution for near-surface fields influenced by high resolution orography. Each RCM covers the conterminous U.S. at approximately 32 km resolution, comparable to the scale of the North American Regional Reanalysis (NARR) which will be used to evaluate the models. The forecast ensemble for each RCM is comprised of 15 members over a period of 22+ years (from 1982 to 2003+) for the forecast period 1 December - 30 April. Each RCM will create a 15-member lagged ensemble by starting on different dates in the preceding November. This results in a 120-member ensemble for each projection (8 RCMs by 15 members per RCM). The RCMs will be continually updated at their lateral boundaries using 6-hourly output from CFS or GEOS5. Hydrometeorological output will be produced in a standard netCDF-based format for a common analysis grid, which simplifies both model intercomparison and the generation of ensembles. MRED will compare individual RCM and global forecasts as well as ensemble mean precipitation and temperature forecasts, which are currently being used to drive macroscale land surface models (LSMs). Metrics of ensemble spread will also be evaluated. Extensive process-oriented analysis will be performed to link improvements in downscaled forecast skill to regional forcings and physical mechanisms. Our overarching goal is to determine what additional skill can be provided by a community ensemble of high resolution regional models, which we believe will define a strategy for more skillful and useful regional seasonal climate forecasts.

  10. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    PubMed

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. © 2016 The Author(s).

  11. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  12. A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Wind stress is the major forcing for driving the oceanic circulation, while Evaporation is a key component of hydrological cycle and surface heat budget. We have produced a 7.5-year (July 1987-December 1994) dataset of daily, individual monthly-mean and climatological (1988-94) monthly-mean surface turbulent fluxes over the global oceans from measurements of the Special Sensor Microwave/Imager (SSM/I) on board the US Defense Meteorological Satellite Program F8, F10, and F11 satellites. It has a spatial resolution of 2.0x2.5 latitude-longitude. Daily turbulent fluxes are derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) IS found to be generally accurate as compared to the collocated radiosonde observations over global oceans. The surface wind speed and specific humidity (latent heat flux) derived from the F10 SSM/I are found to be -encrally smaller (larger) than those retrieved from the F11 SSM/I. The F11 SSM/I appears to have slightly better retrieval accuracy for surface wind speed and humidity as compared to the F10 SSM/I. This difference may be due to the orbital drift of the F10 satellite. The daily wind stresses and latent heat fluxes retrieved from F10 and F11 SSM/Is show useful accuracy as verified against the research quality in si -neasurerrients (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE Intensive observing period (November 1992-February 1993). The 1988-94 seasonal-mean turbulent fluxes and input variables derived from FS and F11 SSM/Is show reasonable patterns related to seasonal variations of atmospheric general circulation. This dataset of SSM/I-derived turbulent fluxes is useful for climate studies, forcing of ocean models, and validation of coupled ocean-atmosphere global models and can be accessed through the NASA/GSFC Distributed Active Archive Center.

  13. Multilayer Stock Forecasting Model Using Fuzzy Time Series

    PubMed Central

    Javedani Sadaei, Hossein; Lee, Muhammad Hisyam

    2014-01-01

    After reviewing the vast body of literature on using FTS in stock market forecasting, certain deficiencies are distinguished in the hybridization of findings. In addition, the lack of constructive systematic framework, which can be helpful to indicate direction of growth in entire FTS forecasting systems, is outstanding. In this study, we propose a multilayer model for stock market forecasting including five logical significant layers. Every single layer has its detailed concern to assist forecast development by reconciling certain problems exclusively. To verify the model, a set of huge data containing Taiwan Stock Index (TAIEX), National Association of Securities Dealers Automated Quotations (NASDAQ), Dow Jones Industrial Average (DJI), and S&P 500 have been chosen as experimental datasets. The results indicate that the proposed methodology has the potential to be accepted as a framework for model development in stock market forecasts using FTS. PMID:24605058

  14. Best Practices for International Collaboration and Applications of Interoperability within a NASA Data Center

    NASA Astrophysics Data System (ADS)

    Moroni, D. F.; Armstrong, E. M.; Tauer, E.; Hausman, J.; Huang, T.; Thompson, C. K.; Chung, N.

    2013-12-01

    The Physical Oceanographic Distributed Active Archive Center (PO.DAAC) is one of 12 data centers sponsored by NASA's Earth Science Data and Information System (ESDIS) project. The PO.DAAC is tasked with archival and distribution of NASA Earth science missions specific to physical oceanography, many of which have interdisciplinary applications for weather forecasting/monitoring, ocean biology, ocean modeling, and climate studies. PO.DAAC has a 20-year history of cross-project and international collaborations with partners in Europe, Japan, Australia, and the UK. Domestically, the PO.DAAC has successfully established lasting partners with non-NASA institutions and projects including the National Oceanic and Atmospheric Administration (NOAA), United States Navy, Remote Sensing Systems, and Unidata. A key component of these partnerships is PO.DAAC's direct involvement with international working groups and science teams, such as the Group for High Resolution Sea Surface Temperature (GHRSST), International Ocean Vector Winds Science Team (IOVWST), Ocean Surface Topography Science Team (OSTST), and the Committee on Earth Observing Satellites (CEOS). To help bolster new and existing collaborations, the PO.DAAC has established a standardized approach to its internal Data Management and Archiving System (DMAS), utilizing a Data Dictionary to provide the baseline standard for entry and capture of dataset and granule metadata. Furthermore, the PO.DAAC has established an end-to-end Dataset Lifecycle Policy, built upon both internal and external recommendations of best practices toward data stewardship. Together, DMAS, the Data Dictionary, and the Dataset Lifecycle Policy provide the infrastructure to enable standardized data and metadata to be fully ingested and harvested to facilitate interoperability and compatibility across data access protocols, tools, and services. The Dataset Lifecycle Policy provides the checks and balances to help ensure all incoming HDF and netCDF-based datasets meet minimum compliance requirements with the Lawrence Livermore National Laboratory's actively maintained Climate and Forecast (CF) conventions with additional goals toward metadata standards provided by the Attribute Convention for Dataset Discovery (ACDD), the International Organization for Standardization (ISO) 19100-series, and the Federal Geographic Data Committee (FGDC). By default, DMAS ensures all datasets are compliant with NASA's Global Change Master Directory (GCMD) and NASA's Reverb data discovery clearinghouse (also known as ECHO). For data access, PO.DAAC offers several widely-used technologies, including File Transfer Protocol (FTP), Open-source Project for a Network Data Access Protocol (OPeNDAP), and Thematic Realtime Environmental Distributed Data Services (THREDDS). These access technologies are available directly to users or through PO.DAAC's web interfaces, specifically the High-level Tool for Interactive Data Extraction (HiTIDE), Live Access Server (LAS), and PO.DAAC's set of search, image, and Consolidated Web Services (CWS). Lastly, PO.DAAC's newly introduced, standards-based CWS provide singular endpoints for search, imaging, and extraction capabilities, respectively, across L2/L3/L4 datasets. Altogether, these tools, services and policies serve to provide flexible, interoperable functionality for both users and data providers.

  15. Time series regression and ARIMAX for forecasting currency flow at Bank Indonesia in Sulawesi region

    NASA Astrophysics Data System (ADS)

    Suharsono, Agus; Suhartono, Masyitha, Aulia; Anuravega, Arum

    2015-12-01

    The purpose of the study is to forecast the outflow and inflow of currency at Indonesian Central Bank or Bank Indonesia (BI) in Sulawesi Region. The currency outflow and inflow data tend to have a trend pattern which is influenced by calendar variation effects. Therefore, this research focuses to apply some forecasting methods that could handle calendar variation effects, i.e. Time Series Regression (TSR) and ARIMAX models, and compare the forecast accuracy with ARIMA model. The best model is selected based on the lowest of Root Mean Squares Errors (RMSE) at out-sample dataset. The results show that ARIMA is the best model for forecasting the currency outflow and inflow at South Sulawesi. Whereas, the best model for forecasting the currency outflow at Central Sulawesi and Southeast Sulawesi, and for forecasting the currency inflow at South Sulawesi and North Sulawesi is TSR. Additionally, ARIMAX is the best model for forecasting the currency outflow at North Sulawesi. Hence, the results show that more complex models do not neccessary yield more accurate forecast than the simpler one.

  16. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  17. Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment

    NASA Astrophysics Data System (ADS)

    Jha, Sanjeev K.; Shrestha, Durga L.; Stadnyk, Tricia A.; Coulibaly, Paulin

    2018-03-01

    Flooding in Canada is often caused by heavy rainfall during the snowmelt period. Hydrologic forecast centers rely on precipitation forecasts obtained from numerical weather prediction (NWP) models to enforce hydrological models for streamflow forecasting. The uncertainties in raw quantitative precipitation forecasts (QPFs) are enhanced by physiography and orography effects over a diverse landscape, particularly in the western catchments of Canada. A Bayesian post-processing approach called rainfall post-processing (RPP), developed in Australia (Robertson et al., 2013; Shrestha et al., 2015), has been applied to assess its forecast performance in a Canadian catchment. Raw QPFs obtained from two sources, Global Ensemble Forecasting System (GEFS) Reforecast 2 project, from the National Centers for Environmental Prediction, and Global Deterministic Forecast System (GDPS), from Environment and Climate Change Canada, are used in this study. The study period from January 2013 to December 2015 covered a major flood event in Calgary, Alberta, Canada. Post-processed results show that the RPP is able to remove the bias and reduce the errors of both GEFS and GDPS forecasts. Ensembles generated from the RPP reliably quantify the forecast uncertainty.

  18. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Treesearch

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  19. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    NASA Technical Reports Server (NTRS)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  20. Global terrain classification using Multiple-Error-Removed Improved-Terrain (MERIT) to address susceptibility of landslides and other geohazards

    NASA Astrophysics Data System (ADS)

    Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.

    2017-12-01

    A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there are known errors in DEM derivatives at higher-resolutions. We expect the improvement in DEM resolution (4 times greater detail) and the combination of regional and global coverage will yield a consistent dataset of polygons that have the potential to improve relations to the Y16 estimates significantly.

  1. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  2. Global Turbulence Decision Support for Aviation

    NASA Astrophysics Data System (ADS)

    Williams, J.; Sharman, R.; Kessinger, C.; Feltz, W.; Wimmers, A.

    2009-09-01

    Turbulence is widely recognized as the leading cause of injuries to flight attendants and passengers on commercial air carriers, yet legacy decision support products such as SIGMETs and SIGWX charts provide relatively low spatial- and temporal-resolution assessments and forecasts of turbulence, with limited usefulness for strategic planning and tactical turbulence avoidance. A new effort is underway to develop an automated, rapid-update, gridded global turbulence diagnosis and forecast system that addresses upper-level clear-air turbulence, mountain-wave turbulence, and convectively-induced turbulence. This NASA-funded effort, modeled on the U.S. Federal Aviation Administration's Graphical Turbulence Guidance (GTG) and GTG Nowcast systems, employs NCEP Global Forecast System (GFS) model output and data from NASA and operational satellites to produce quantitative turbulence nowcasts and forecasts. A convective nowcast element based on GFS forecasts and satellite data provides a basis for diagnosing convective turbulence. An operational prototype "Global GTG” system has been running in real-time at the U.S. National Center for Atmospheric Research since the spring of 2009. Initial verification based on data from TRMM, Cloudsat and MODIS (for the convection nowcasting) and AIREPs and AMDAR data (for turbulence) are presented. This product aims to provide the "single authoritative source” for global turbulence information for the U.S. Next Generation Air Transportation System.

  3. Comparison of trends and abrupt changes of the South Asia high from 1979 to 2014 in reanalysis and radiosonde datasets

    NASA Astrophysics Data System (ADS)

    Shi, Chunhua; Huang, Ying; Guo, Dong; Zhou, Shunwu; Hu, Kaixi; Liu, Yu

    2018-05-01

    The South Asian High (SAH) has an important influence on atmospheric circulation and the Asian climate in summer. However, current comparative analyses of the SAH are mostly between reanalysis datasets and there is a lack of sounding data. We therefore compared the climatology, trends and abrupt changes in the SAH in the Japanese 55-year Reanalysis (JRA-55) dataset, the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) dataset, the European Center for Medium-Range Weather Forecasts Reanalysis Interim (ERA-interim) dataset and radiosonde data from China using linear analysis and a sliding t-test. The trends in geopotential height in the control area of the SAH were positive in the JRA-55, NCEP-CFSR and ERA-interim datasets, but negative in the radiosonde data in the time period 1979-2014. The negative trends for the SAH were significant at the 90% confidence level in the radiosonde data from May to September. The positive trends in the NCEP-CFSR dataset were significant at the 90% confidence level in May, July, August and September, but the positive trends in the JRA-55 and ERA-Interim were only significant at the 90% confidence level in September. The reasons for the differences in the trends of the SAH between the radiosonde data and the three reanalysis datasets in the time period 1979-2014 were updates to the sounding systems, changes in instrumentation and improvements in the radiation correction method for calculations around the year 2000. We therefore analyzed the trends in the two time periods of 1979-2000 and 2001-2014 separately. From 1979 to 2000, the negative SAH trends in the radiosonde data mainly agreed with the negative trends in the NCEP-CFSR dataset, but were in contrast with the positive trends in the JRA-55 and ERA-Interim datasets. In 2001-2014, however, the trends in the SAH were positive in all four datasets and most of the trends in the radiosonde and NCEP-CFSR datasets were significant. It is therefore better to use the NCEP-CFSR dataset than the JRA-55 and ERA-Interim datasets when discussing trends in the SAH.

  4. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    NASA Astrophysics Data System (ADS)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  5. A global gridded dataset of daily precipitation going back to 1950, ideal for analysing precipitation extremes

    NASA Astrophysics Data System (ADS)

    Contractor, S.; Donat, M.; Alexander, L. V.

    2017-12-01

    Reliable observations of precipitation are necessary to determine past changes in precipitation and validate models, allowing for reliable future projections. Existing gauge based gridded datasets of daily precipitation and satellite based observations contain artefacts and have a short length of record, making them unsuitable to analyse precipitation extremes. The largest limiting factor for the gauge based datasets is a dense and reliable station network. Currently, there are two major data archives of global in situ daily rainfall data, first is Global Historical Station Network (GHCN-Daily) hosted by National Oceanic and Atmospheric Administration (NOAA) and the other by Global Precipitation Climatology Centre (GPCC) part of the Deutsche Wetterdienst (DWD). We combine the two data archives and use automated quality control techniques to create a reliable long term network of raw station data, which we then interpolate using block kriging to create a global gridded dataset of daily precipitation going back to 1950. We compare our interpolated dataset with existing global gridded data of daily precipitation: NOAA Climate Prediction Centre (CPC) Global V1.0 and GPCC Full Data Daily Version 1.0, as well as various regional datasets. We find that our raw station density is much higher than other datasets. To avoid artefacts due to station network variability, we provide multiple versions of our dataset based on various completeness criteria, as well as provide the standard deviation, kriging error and number of stations for each grid cell and timestep to encourage responsible use of our dataset. Despite our efforts to increase the raw data density, the in situ station network remains sparse in India after the 1960s and in Africa throughout the timespan of the dataset. Our dataset would allow for more reliable global analyses of rainfall including its extremes and pave the way for better global precipitation observations with lower and more transparent uncertainties.

  6. Short-Term Global Horizontal Irradiance Forecasting Based on Sky Imaging and Pattern Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Feng, Cong; Cui, Mingjian

    Accurate short-term forecasting is crucial for solar integration in the power grid. In this paper, a classification forecasting framework based on pattern recognition is developed for 1-hour-ahead global horizontal irradiance (GHI) forecasting. Three sets of models in the forecasting framework are trained by the data partitioned from the preprocessing analysis. The first two sets of models forecast GHI for the first four daylight hours of each day. Then the GHI values in the remaining hours are forecasted by an optimal machine learning model determined based on a weather pattern classification model in the third model set. The weather pattern ismore » determined by a support vector machine (SVM) classifier. The developed framework is validated by the GHI and sky imaging data from the National Renewable Energy Laboratory (NREL). Results show that the developed short-term forecasting framework outperforms the persistence benchmark by 16% in terms of the normalized mean absolute error and 25% in terms of the normalized root mean square error.« less

  7. Role of Satellite Rainfall Information in Improving Understanding of the Dynamical Link Between the Tropics and Extratropics Prospects of Improved Forecasts of Weather and Short-Term Climate Variability on Sub-Seasonal Time Scales

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2002-01-01

    The tropics and extratropics are two dynamically distinct regimes. The coupling between these two regimes often defies simple analytical treatment. Progress in understanding of the dynamical interaction between the tropics and extratropics relies on better observational descriptions to guide theoretical development. However, global analyses currently contain significant errors in primary hydrological variables such as precipitation, evaporation, moisture, and clouds, especially in the tropics. Tropical analyses have been shown to be sensitive to parameterized precipitation processes, which are less than perfect, leading to order-one discrepancies between estimates produced by different data assimilation systems. One strategy for improvement is to assimilate rainfall observations to constrain the analysis and reduce uncertainties in variables physically linked to precipitation. At the Data Assimilation Office at the NASA Goddard Space Flight Center, we have been exploring the use of tropical rain rates derived from the TRMM Microwave Imager (TMI) and the Special Sensor Microwave/ Imager (SSM/I) instruments in global data assimilation. Results show that assimilating these data improves not only rainfall and moisture fields but also related climate parameters such as clouds and radiation, as well as the large-scale circulation and short-range forecasts. These studies suggest that assimilation of microwave rainfall observations from space has the potential to significantly improve the quality of 4-D assimilated datasets for climate investigations (Hou et al. 2001). In the next few years, there will be a gradual increase in microwave rain products available from operational and research satellites, culminating to a target constellation of 9 satellites to provide global rain measurements every 3 hours with the proposed Global Precipitation Measurement (GPM) mission in 2007. Continued improvements in assimilation methodology, rainfall error estimates, and model parameterizations are needed to ensure that we derive maximum benefits from these observations.

  8. Use of Bayesian event trees in semi-quantitative volcano eruption forecasting and hazard analysis

    NASA Astrophysics Data System (ADS)

    Wright, Heather; Pallister, John; Newhall, Chris

    2015-04-01

    Use of Bayesian event trees to forecast eruptive activity during volcano crises is an increasingly common practice for the USGS-USAID Volcano Disaster Assistance Program (VDAP) in collaboration with foreign counterparts. This semi-quantitative approach combines conceptual models of volcanic processes with current monitoring data and patterns of occurrence to reach consensus probabilities. This approach allows a response team to draw upon global datasets, local observations, and expert judgment, where the relative influence of these data depends upon the availability and quality of monitoring data and the degree to which the volcanic history is known. The construction of such event trees additionally relies upon existence and use of relevant global databases and documented past periods of unrest. Because relevant global databases may be underpopulated or nonexistent, uncertainty in probability estimations may be large. Our 'hybrid' approach of combining local and global monitoring data and expert judgment facilitates discussion and constructive debate between disciplines: including seismology, gas geochemistry, geodesy, petrology, physical volcanology and technology/engineering, where difference in opinion between response team members contributes to definition of the uncertainty in the probability estimations. In collaboration with foreign colleagues, we have created event trees for numerous areas experiencing volcanic unrest. Event trees are created for a specified time frame and are updated, revised, or replaced as the crisis proceeds. Creation of an initial tree is often prompted by a change in monitoring data, such that rapid assessment of probability is needed. These trees are intended as a vehicle for discussion and a way to document relevant data and models, where the target audience is the scientists themselves. However, the probabilities derived through the event-tree analysis can also be used to help inform communications with emergency managers and the public. VDAP trees evaluate probabilities of: magmatic intrusion, likelihood of eruption, magnitude of eruption, and types of associated hazardous events and their extents. In a few cases, trees have been extended to also assess and communicate vulnerability and relative risk.

  9. An ensemble forecast of the South China Sea monsoon

    NASA Astrophysics Data System (ADS)

    Krishnamurti, T. N.; Tewari, Mukul; Bensman, Ed; Han, Wei; Zhang, Zhan; Lau, William K. M.

    1999-05-01

    This paper presents a generalized ensemble forecast procedure for the tropical latitudes. Here we propose an empirical orthogonal function-based procedure for the definition of a seven-member ensemble. The wind and the temperature fields are perturbed over the global tropics. Although the forecasts are made over the global belt with a high-resolution model, the emphasis of this study is on a South China Sea monsoon. Over this domain of the South China Sea includes the passage of a Tropical Storm, Gary, that moved eastwards north of the Philippines. The ensemble forecast handled the precipitation of this storm reasonably well. A global model at the resolution Triangular Truncation 126 waves is used to carry out these seven forecasts. The evaluation of the ensemble of forecasts is carried out via standard root mean square errors of the precipitation and the wind fields. The ensemble average is shown to have a higher skill compared to a control experiment, which was a first analysis based on operational data sets over both the global tropical and South China Sea domain. All of these experiments were subjected to physical initialization which provides a spin-up of the model rain close to that obtained from satellite and gauge-based estimates. The results furthermore show that inherently much higher skill resides in the forecast precipitation fields if they are averaged over area elements of the order of 4° latitude by 4° longitude squares.

  10. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  11. Developing a Mixed Neural Network Approach to Forecast the Residential Electricity Consumption Based on Sensor Recorded Data

    PubMed Central

    Bâra, Adela; Stănică, Justina-Lavinia; Coculescu, Cristina

    2018-01-01

    In this paper, we report a study having as a main goal the obtaining of a method that can provide an accurate forecast of the residential electricity consumption, refining it up to the appliance level, using sensor recorded data, for residential smart homes complexes that use renewable energy sources as a part of their consumed electricity, overcoming the limitations of not having available historical meteorological data and the unwillingness of the contractor to acquire such data periodically in the future accurate short-term forecasts from a specialized institute due to the implied costs. In this purpose, we have developed a mixed artificial neural network (ANN) approach using both non-linear autoregressive with exogenous input (NARX) ANNs and function fitting neural networks (FITNETs). We have used a large dataset containing detailed electricity consumption data recorded by sensors, monitoring a series of individual appliances, while in the NARX case we have also used timestamps datasets as exogenous variables. After having developed and validated the forecasting method, we have compiled it in view of incorporating it into a cloud solution, being delivered to the contractor that can provide it as a service for a monthly fee to both the operators and residential consumers. PMID:29734761

  12. Developing a Mixed Neural Network Approach to Forecast the Residential Electricity Consumption Based on Sensor Recorded Data.

    PubMed

    Oprea, Simona-Vasilica; Pîrjan, Alexandru; Căruțașu, George; Petroșanu, Dana-Mihaela; Bâra, Adela; Stănică, Justina-Lavinia; Coculescu, Cristina

    2018-05-05

    In this paper, we report a study having as a main goal the obtaining of a method that can provide an accurate forecast of the residential electricity consumption, refining it up to the appliance level, using sensor recorded data, for residential smart homes complexes that use renewable energy sources as a part of their consumed electricity, overcoming the limitations of not having available historical meteorological data and the unwillingness of the contractor to acquire such data periodically in the future accurate short-term forecasts from a specialized institute due to the implied costs. In this purpose, we have developed a mixed artificial neural network (ANN) approach using both non-linear autoregressive with exogenous input (NARX) ANNs and function fitting neural networks (FITNETs). We have used a large dataset containing detailed electricity consumption data recorded by sensors, monitoring a series of individual appliances, while in the NARX case we have also used timestamps datasets as exogenous variables. After having developed and validated the forecasting method, we have compiled it in view of incorporating it into a cloud solution, being delivered to the contractor that can provide it as a service for a monthly fee to both the operators and residential consumers.

  13. Seasonal forecasts for the agricultural sector in Peru through user-tailored indices

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Katrin; Gubler, Stefanie; Spierig, Christoph; Quevedo, Karim; Escajadillo, Yury; Avalos, Griña; Liniger, Mark A.; Schwierz, Cornelia

    2017-04-01

    In the agricultural sector, the demand for seasonal forecast information is high since agriculture depends strongly on climatic conditions during the growing season. Unfavorable weather and climate events, such as droughts or frost events, can lead to crop losses and thereby to large economic damages or life-threatening conditions in case of subsistence farming. The generally used presentation form of tercile probabilities of seasonally averaged meteorological quantities are not specific enough for end users. More user-tailored seasonal information is necessary. For example, warmer than average temperatures might be favorable for a crop as long as they remain below a plant-specific critical threshold. If, on the other hand, too many days show temperatures above this critical threshold, a mitigation action such as e.g. changing the crop type would be required. In the framework of the CLIMANDES project (a pilot project of the Global Framework for Climate Services led by WMO [http://www.wmo.int/gfcs/climandes]), user-tailored seasonal forecast products are developed for the agricultural sector in the Peruvian Andes. Such products include indices such as e.g. the frost risk, the occurrence of long dry periods, or the start of the rainy season which is crucial to schedule sowing. Furthermore, more specific indices derived from crop requirement studies are elaborated such as the number of days exceeding or falling below plant specific temperature thresholds for given phenological stages. The applicability of these products highly depends on forecast skill. In this study, the potential predictability and the skill of selected indicators are presented using seasonal hindcast data of the ECMWF system 4 for Peru during the time period 1981-2010. Furthermore, the influence of ENSO on the prediction skill is investigated. In this study, reanalysis data, ground measurements, and a gridded precipitation dataset are used for verification. The results indicate that temperature-based indicators show sizeable skill in the Peruvian highlands while precipitation-based forecasts are much more challenging.

  14. Forecasting high-priority infectious disease surveillance regions: a socioeconomic model.

    PubMed

    Chan, Emily H; Scales, David A; Brewer, Timothy F; Madoff, Lawrence C; Pollack, Marjorie P; Hoen, Anne G; Choden, Tenzin; Brownstein, John S

    2013-02-01

    Few researchers have assessed the relationships between socioeconomic inequality and infectious disease outbreaks at the population level globally. We use a socioeconomic model to forecast national annual rates of infectious disease outbreaks. We constructed a multivariate mixed-effects Poisson model of the number of times a given country was the origin of an outbreak in a given year. The dataset included 389 outbreaks of international concern reported in the World Health Organization's Disease Outbreak News from 1996 to 2008. The initial full model included 9 socioeconomic variables related to education, poverty, population health, urbanization, health infrastructure, gender equality, communication, transportation, and democracy, and 1 composite index. Population, latitude, and elevation were included as potential confounders. The initial model was pared down to a final model by a backwards elimination procedure. The dependent and independent variables were lagged by 2 years to allow for forecasting future rates. Among the socioeconomic variables tested, the final model included child measles immunization rate and telephone line density. The Democratic Republic of Congo, China, and Brazil were predicted to be at the highest risk for outbreaks in 2010, and Colombia and Indonesia were predicted to have the highest percentage of increase in their risk compared to their average over 1996-2008. Understanding socioeconomic factors could help improve the understanding of outbreak risk. The inclusion of the measles immunization variable suggests that there is a fundamental basis in ensuring adequate public health capacity. Increased vigilance and expanding public health capacity should be prioritized in the projected high-risk regions.

  15. Application of web-GIS approach for climate change study

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Bogomolov, Vasily; Martynova, Yuliya; Shulgina, Tamara

    2013-04-01

    Georeferenced datasets are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. It is based on OGC standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. The main advantage of the system lies in a possibility to perform mathematical and statistical data analysis, graphical visualization of results with GIS-functionality, and to prepare binary output files with just only a modern graphical web-browser installed on a common desktop computer connected to Internet. Several geophysical datasets represented by two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others are available for processing by the system. And this list is extending. Also a functionality to run WRF and "Planet simulator" models was implemented in the system. Due to many preset parameters and limited time and spatial ranges set in the system these models have low computational power requirements and could be used in educational workflow for better understanding of basic climatological and meteorological processes. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.

  16. The 1/12 deg Global HYCOM Nowcast/Forecast System

    DTIC Science & Technology

    2010-01-13

    DATE (DD-MM-YYYY) 13-01-2010 REPORT TYPE Conference Proceeding 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE The 1/12° Global HYCOM...advaneed global ocean nowcasting/forecasting system has been of long-time US Navy interest. Such a system will provide the capability to depict (nowcast...73-8677-A8-5 Classification X U Sponsor ONR approval obtained yes 4. AUTHOR Title of Paper or Presentation The MM degree Global

  17. Wind power forecasting: IEA Wind Task 36 & future research issues

    NASA Astrophysics Data System (ADS)

    Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.

    2016-09-01

    This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.

  18. An operational global ocean forecast system and its applications

    NASA Astrophysics Data System (ADS)

    Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.

    2012-12-01

    A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information provided by OPC using real time ocean model guidance from Global RTOFS surface ocean currents, operational guidance on radionuclide dispersion near Fukushima using 3D tracers, boundary conditions for various operational coastal ocean forecast systems (COFS) run by NOS etc.

  19. Using Bayesian Model Averaging (BMA) to calibrate probabilistic surface temperature forecasts over Iran

    NASA Astrophysics Data System (ADS)

    Soltanzadeh, I.; Azadi, M.; Vakili, G. A.

    2011-07-01

    Using Bayesian Model Averaging (BMA), an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM), with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME) of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009) over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data. The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.

  20. An Ensemble-Based Forecasting Framework to Optimize Reservoir Releases

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Saleh, F.

    2017-12-01

    Increasing frequency of extreme precipitation events are stressing the need to manage water resources on shorter timescales. Short-term management of water resources becomes proactive when inflow forecasts are available and this information can be effectively used in the control strategy. This work investigates the utility of short term hydrological ensemble forecasts for operational decision making during extreme weather events. An advanced automated hydrologic prediction framework integrating a regional scale hydrologic model, GIS datasets and the meteorological ensemble predictions from the European Center for Medium Range Weather Forecasting (ECMWF) was coupled to an implicit multi-objective dynamic programming model to optimize releases from a water supply reservoir. The proposed methodology was evaluated by retrospectively forecasting the inflows to the Oradell reservoir in the Hackensack River basin in New Jersey during the extreme hydrologic event, Hurricane Irene. Additionally, the flexibility of the forecasting framework was investigated by forecasting the inflows from a moderate rainfall event to provide important perspectives on using the framework to assist reservoir operations during moderate events. The proposed forecasting framework seeks to provide a flexible, assistive tool to alleviate the complexity of operational decision-making.

  1. Wind Integration National Dataset (WIND) Toolkit; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draxl, Caroline; Hodge, Bri-Mathias

    A webinar about the Wind Integration National Dataset (WIND) Toolkit was presented by Bri-Mathias Hodge and Caroline Draxl on July 14, 2015. It was hosted by the Southern Alliance for Clean Energy. The toolkit is a grid integration data set that contains meteorological and power data at a 5-minute resolution across the continental United States for 7 years and hourly power forecasts.

  2. Generating a global soil evaporation dataset using SMAP soil moisture data to estimate components of the surface water balance

    NASA Astrophysics Data System (ADS)

    Carbone, E.; Small, E. E.; Badger, A.; Livneh, B.

    2016-12-01

    Evapotranspiration (ET) is fundamental to the water, energy and carbon cycles. However, our ability to measure ET and partition the total flux into transpiration and evaporation from soil is limited. This project aims to generate a global, observationally-based soil evaporation dataset (E-SMAP): using SMAP surface soil moisture data in conjunction with models and auxiliary observations to observe or estimate each component of the surface water balance. E-SMAP will enable a better understanding of water balance processes and contribute to forecasts of water resource availability. Here we focus on the flux between the soil surface and root zone layers (qbot), which dictates the proportion of water that is available for soil evaporation. Any water that moves from the surface layer to the root zone contributes to transpiration or groundwater recharge. The magnitude and direction of qbot are driven by gravity and the gradient in matric potential. We use a highly discretized Richards Equation-type model (e.g. Hydrus 1D software) with meteorological forcing from the North American Land Data Assimilation System (NLDAS) to estimate qbot. We verify the simulations using SMAP L4 surface and root zone soil moisture data. These data are well suited for evaluating qbot because they represent the most advanced estimate of the surface to root zone soil moisture gradient at the global scale. Results are compared with similar calculations using NLDAS and in situ soil moisture data. Preliminary calculations show that the greatest amount of variability between qbot determined from NLDAS, in situ and SMAP occurs directly after precipitation events. At these times, uncertainties in qbot calculations significantly affect E-SMAP estimates.

  3. Modelling of Peach Tree (Prunus persica) Full Blooming Dates Using APCC MME Seasonal Forecasts

    NASA Astrophysics Data System (ADS)

    Chun, Jong; Kim, Sung; Lee, Hyojin; Han, Hyun-Hee; Son, In-Chang; Cho, Kyung Hwa

    2016-04-01

    Due to global warming, recently, bud-burst and flowering dates of fruit crops have become earlier and the abnormal climate increases the variabilities of temperature in spring, suggesting that the risk of frost damage has increased. However, the full blooming date prediction model for peach tree used by the Rural Developmental Administration (RDA) were developed using only one cultivar (Youmyeong) and observations from a station (Suwon). This model might not adequately reflect the characteristics of peach cultivars or local orchards. the objectives of this study were to develops the site-and cultivar-specific blooming date prediction models for major peach cultivation regions and cultivars and presents a framework for applications of the APEC Climate Center Multimodel Ensemble (APCC MME) seasonal datasets.Developmental rate (DVR), and Sequential dormancy models (Chill day, New chill day, and fraction-time models) were used to develop the locally tailored full blooming date prediction models for major peach cultivars. For the development of these models, bud-burst and full blooming dates of peach tree for 5 cultivars (Cheonhong, Youmyeong, Changbangjosaeng, Cheonjoongdo, and Janghowon) were collected from the 6 major peach cultivation sites: Chuncheon, Suwon, Cheongwon, Cheongdo, Naju, and Jinju. For the chill day model, those measures for the entire dataset regardless the location and cultivar were 2.31%, 0.79, and 3.36 day for MAPE, R2, RMSE, respectively. For the new chill day model, those values (2.19%, 0.82, and 3.16 day for MAPE, R2, RMSE, respectively) were slightly better than those of the chill day model. The model results showed that the new chill day model was found slightly highest performance than others. Based on the considerations of the predictability of the statistical downscaling method and the observed periods of the full blooming dates at each site, we determined that the APCC MME seasonal datasets were applied for the new chill day model for the Changbangjosaeng and Youmyeong cultivars at the Suwon site. The values of the goodness-of-fit measures using the selected synthetic daily maximum and minimum temperatures reflecting APCC MME seasonal datasets and selected were worse than those using those collected from the Suwon station. It is concluded that further work was recommended that the predictability of APCC MME seasonal forecasts should be improved to reduce the prediction errors of full blooming dates of peach trees.

  4. Unique Datasets Collected by NOAA Hurricane Hunter Aircraft during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Zawislak, J.; Reasor, P.

    2017-12-01

    Each year, NOAA's Atlantic Oceanographic & Meteorological Laboratory (AOML) Hurricane Research Division (HRD), in partnership with the National Hurricane Center (NHC) and NOAA's Environmental Modeling Center (EMC), operates a hurricane field program, the Intensity Forecast Experiment (IFEX). The experiment leverages the NOAA P-3 and G-IV hurricane hunter aircraft, based at NOAA's Office of Marine and Aviation Operations (OMAO) Aircraft Operations Center (AOC). The goals of IFEX are to improve understanding of physical processes in tropical cyclones (TCs), improve operational forecasts of TC intensity, structure, and rainfall by providing data into operational numerical modeling systems, and to develop and refine measurement technologies. This season the IFEX program, leveraging mainly operationally tasked EMC and NHC missions, sampled extensively Hurricanes Harvey, Irma, Jose, Maria, and Nate, as well as Tropical Storm Franklin. We will contribute to this important session by providing an overview of aircraft missions into these storms, guidance on the datasets made available from instruments onboard the P-3 and G-IV, and will offer some perspective on the science that can be addressed with these unique datasets, such as the value of those datasets towards model forecast improvement. NOAA aircraft sampled these storms during critical periods of intensification, and for Hurricanes Harvey and Irma, just prior to the devastating landfalls in the Caribbean and United States. The unique instrument suite on the P-3 offers inner core observations of the three-dimensional precipitation and vortex structure, lower troposphere (boundary layer) thermodynamic properties, and surface wind speed. In contrast, the G-IV flies at higher altitudes, sampling the environment surrounding the storms, and provides deep-tropospheric soundings from dropsondes.

  5. A Local Forecast of Land Surface Wetness Conditions, Drought, and St. Louis Encephalitis Virus Transmission Derived from Seasonal Climate Predictions

    NASA Astrophysics Data System (ADS)

    Shaman, J.; Stieglitz, M.; Zebiak, S.; Cane, M.; Day, J. F.

    2002-12-01

    We present an ensemble local hydrologic forecast derived from the seasonal forecasts of the International Research Institute (IRI) for Climate Prediction. Three- month seasonal forecasts were used to resample historical meteorological conditions and generate ensemble forcing datasets for a TOPMODEL-based hydrology model. Eleven retrospective forecasts were run at a Florida and New York site. Forecast skill was assessed for mean area modeled water table depth (WTD), i.e. near surface soil wetness conditions, and compared with WTD simulated with observed data. Hydrology model forecast skill was evident at the Florida site but not at the New York site. At the Florida site, persistence of hydrologic conditions and local skill of the IRI seasonal forecast contributed to the local hydrologic forecast skill. This forecast will permit probabilistic prediction of future hydrologic conditions. At the Florida site, we have also quantified the link between modeled WTD (i.e. drought) and the amplification and transmission of St. Louis Encephalitis virus (SLEV). We derive an empirical relationship between modeled land surface wetness and levels of SLEV transmission associated with human clinical cases. We then combine the seasonal forecasts of local, modeled WTD with this empirical relationship and produce retrospective probabilistic seasonal forecasts of epidemic SLEV transmission in Florida. Epidemic SLEV transmission forecast skill is demonstrated. These findings will permit real-time forecast of drought and resultant SLEV transmission in Florida.

  6. A Copula-Based Conditional Probabilistic Forecast Model for Wind Power Ramps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Krishnan, Venkat K; Zhang, Jie

    Efficient management of wind ramping characteristics can significantly reduce wind integration costs for balancing authorities. By considering the stochastic dependence of wind power ramp (WPR) features, this paper develops a conditional probabilistic wind power ramp forecast (cp-WPRF) model based on Copula theory. The WPRs dataset is constructed by extracting ramps from a large dataset of historical wind power. Each WPR feature (e.g., rate, magnitude, duration, and start-time) is separately forecasted by considering the coupling effects among different ramp features. To accurately model the marginal distributions with a copula, a Gaussian mixture model (GMM) is adopted to characterize the WPR uncertaintymore » and features. The Canonical Maximum Likelihood (CML) method is used to estimate parameters of the multivariable copula. The optimal copula model is chosen based on the Bayesian information criterion (BIC) from each copula family. Finally, the best conditions based cp-WPRF model is determined by predictive interval (PI) based evaluation metrics. Numerical simulations on publicly available wind power data show that the developed copula-based cp-WPRF model can predict WPRs with a high level of reliability and sharpness.« less

  7. Trainable structure-activity relationship model for virtual screening of CYP3A4 inhibition.

    PubMed

    Didziapetris, Remigijus; Dapkunas, Justas; Sazonovas, Andrius; Japertas, Pranas

    2010-11-01

    A new structure-activity relationship model predicting the probability for a compound to inhibit human cytochrome P450 3A4 has been developed using data for >800 compounds from various literature sources and tested on PubChem screening data. Novel GALAS (Global, Adjusted Locally According to Similarity) modeling methodology has been used, which is a combination of baseline global QSAR model and local similarity based corrections. GALAS modeling method allows forecasting the reliability of prediction thus defining the model applicability domain. For compounds within this domain the statistical results of the final model approach the data consistency between experimental data from literature and PubChem datasets with the overall accuracy of 89%. However, the original model is applicable only for less than a half of PubChem database. Since the similarity correction procedure of GALAS modeling method allows straightforward model training, the possibility to expand the applicability domain has been investigated. Experimental data from PubChem dataset served as an example of in-house high-throughput screening data. The model successfully adapted itself to both data classified using the same and different IC₅₀ threshold compared with the training set. In addition, adjustment of the CYP3A4 inhibition model to compounds with a novel chemical scaffold has been demonstrated. The reported GALAS model is proposed as a useful tool for virtual screening of compounds for possible drug-drug interactions even prior to the actual synthesis.

  8. Climate Forecast System

    Science.gov Websites

    number of Reforecast datasets are available at NCDC: 9 Month Means 45Day/Seasonal Timeseries (14 select 9 Month Means Calibration Climatologies of CFSR Monthly Calibration Climatologies of CFSR Timeseries

  9. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  10. Applying Binary Forecasting Approaches to Induced Seismicity in the Western Canada Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Kahue, R.; Shcherbakov, R.

    2016-12-01

    The Western Canada Sedimentary Basin has been chosen as a focus due to an increase in the recent observed seismicity there which is most likely linked to anthropogenic activities related to unconventional oil and gas exploration. Seismicity caused by these types of activities is called induced seismicity. The occurrence of moderate to larger induced earthquakes in areas where critical infrastructure is present can be potentially problematic. Here we use a binary forecast method to analyze past seismicity and well production data in order to quantify future areas of increased seismicity. This method splits the given region into spatial cells. The binary forecast method used here has been suggested in the past to retroactively forecast large earthquakes occurring globally in areas called alarm cells. An alarm cell, or alert zone, is a bin in which there is a higher likelihood for earthquakes to occur based on previous data. The first method utilizes the cumulative Benioff strain, based on earthquakes that had occurred in each bin above a given magnitude over a time interval called the training period. The second method utilizes the cumulative well production data within each bin. Earthquakes that occurred within an alert zone in the retrospective forecast period contribute to the hit rate, while alert zones that did not have an earthquake occur within them in the forecast period contribute to the false alarm rate. In the resulting analysis the hit rate and false alarm rate are determined after optimizing and modifying the initial parameters using the receiver operating characteristic diagram. It is found that when modifying the cell size and threshold magnitude parameters within various training periods, hit and false alarm rates are obtained for specific regions in Western Canada using both recent seismicity and cumulative well production data. Certain areas are thus shown to be more prone to potential larger earthquakes based on both datasets. This has implications for the potential link between oil and gas production and induced seismicity observed in the Western Canada Sedimentary Basin.

  11. WRF Simulation over the Eastern Africa by use of Land Surface Initialization

    NASA Astrophysics Data System (ADS)

    Sakwa, V. N.; Case, J.; Limaye, A. S.; Zavodsky, B.; Kabuchanga, E. S.; Mungai, J.

    2014-12-01

    The East Africa region experiences severe weather events associated with hazards of varying magnitude. It receives heavy precipitation which leads to wide spread flooding and lack of sufficient rainfall in some parts results into drought. Cases of flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). The source of heat and moisture depends on the state of the land surface which interacts with the boundary layer of the atmosphere to produce excessive precipitation or lack of it that leads to severe drought. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Improved modeling capabilities within the region have the potential to enhance forecast guidance in support of daily operations and high-impact weather over East Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Non-hydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over Eastern Africa.SPoRT and SERVIR provide land surface initialization datasets and model verification tool. The NASA Land Information System (LIS) provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Model verification is done using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. These MET tools enable KMS to monitor model forecast accuracy in near real time. This study highlights verification results of WRF runs over East Africa using the LIS land surface initialization.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giebel, G.; Cline, J.; Frank, H.

    Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less

  13. Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables in the North Central USA

    NASA Astrophysics Data System (ADS)

    Hoss, F.; Fischbeck, P. S.

    2014-10-01

    This study further develops the method of quantile regression (QR) to predict exceedance probabilities of flood stages by post-processing forecasts. Using data from the 82 river gages, for which the National Weather Service's North Central River Forecast Center issues forecasts daily, this is the first QR application to US American river gages. Archived forecasts for lead times up to six days from 2001-2013 were analyzed. Earlier implementations of QR used the forecast itself as the only independent variable (Weerts et al., 2011; López López et al., 2014). This study adds the rise rate of the river stage in the last 24 and 48 h and the forecast error 24 and 48 h ago to the QR model. Including those four variables significantly improved the forecasts, as measured by the Brier Skill Score (BSS). Mainly, the resolution increases, as the original QR implementation already delivered high reliability. Combining the forecast with the other four variables results in much less favorable BSSs. Lastly, the forecast performance does not depend on the size of the training dataset, but on the year, the river gage, lead time and event threshold that are being forecast. We find that each event threshold requires a separate model configuration or at least calibration.

  14. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  15. Seasonal Water Balance Forecasts for Drought Early Warning in Ethiopia

    NASA Astrophysics Data System (ADS)

    Spirig, Christoph; Bhend, Jonas; Liniger, Mark

    2016-04-01

    Droughts severely impact Ethiopian agricultural production. Successful early warning for drought conditions in the upcoming harvest season therefore contributes to better managing food shortages arising from adverse climatic conditions. So far, however, meteorological seasonal forecasts have not been used in Ethiopia's national food security early warning system (i.e. the LEAP platform). Here we analyse the forecast quality of seasonal forecasts of total rainfall and of the meteorological water balance as a proxy for plant available water. We analyse forecast skill of June to September rainfall and water balance from dynamical seasonal forecast systems, the ECMWF System4 and EC-EARTH global forecasting systems. Rainfall forecasts outperform forecasts assuming a stationary climate mainly in north-eastern Ethiopia - an area that is particularly vulnerable to droughts. Forecasts of the water balance index seem to be even more skilful and thus more useful than pure rainfall forecasts. The results vary though for different lead times and skill measures employed. We further explore the potential added value of dynamically downscaling the forecasts through several dynamical regional climate models made available through the EU FP7 project EUPORIAS. Preliminary results suggest that dynamically downscaled seasonal forecasts are not significantly better compared with seasonal forecasts from the global models. We conclude that seasonal forecasts of a simple climate index such as the water balance have the potential to benefit drought early warning in Ethiopia, both due to its positive predictive skill and higher usefulness than seasonal mean quantities.

  16. A Preliminary Evaluation of the GFS Physics in the Navy Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Liu, M.; Langland, R.; Martini, M.; Viner, K.

    2017-12-01

    Global extended long-range weather forecast is a goal in the near future at Navy's Fleet Numerical Meteorology and Oceanography Center (FNMOC). In an effort to improve the performance of the Navy Global Environmental Model (NAVGEM) operated at FNMOC, and to gain more understanding of the impact of atmospheric physics in the long-range forecast, the physics package of the Global Forecast System (GFS) of the National Centers for Environmental Prediction is being evaluated in the framework of NAVGEM. That is GFS physics being transported by NAVGEM Semi-Lagrangian Semi-Implicit advection, and update-cycled by the 4D-variational data assimilation along with the assimilated land surface data of NASA's Land Information System. The output of free long runs of 10-day GFS physics forecast in a summer and a winter season are evaluated through the comparisons with the output of NAVGEM physics long forecast, and through the validations with observations and with the European Center's analyses data. It is found that the GFS physics is able to effectively reduce some of the modeling biases of NAVGEM, especially wind speed of the troposphere and land surface temperature that is an important surface boundary condition. The bias corrections increase with forecast leads, reaching maximum at 240 hours. To further understand the relative roles of physics and dynamics in extended long-range forecast, the tendencies of physics components and advection are also calculated and analyzed to compare their forces of magnitudes in the integration of winds, temperature, and moisture. The comparisons reveal the strength and limitation of GFS physics in the overall improvement of NAVGEM prediction system.

  17. Historical citizen science to understand and predict climate-driven trout decline

    PubMed Central

    Ninyerola, Miquel; Hermoso, Virgilio; Filipe, Ana Filipa; Pla, Magda; Villero, Daniel; Brotons, Lluís; Delibes, Miguel

    2017-01-01

    Historical species records offer an excellent opportunity to test the predictive ability of range forecasts under climate change, but researchers often consider that historical records are scarce and unreliable, besides the datasets collected by renowned naturalists. Here, we demonstrate the relevance of biodiversity records developed through citizen-science initiatives generated outside the natural sciences academia. We used a Spanish geographical dictionary from the mid-nineteenth century to compile over 10 000 freshwater fish records, including almost 4 000 brown trout (Salmo trutta) citations, and constructed a historical presence–absence dataset covering over 2 000 10 × 10 km cells, which is comparable to present-day data. There has been a clear reduction in trout range in the past 150 years, coinciding with a generalized warming. We show that current trout distribution can be accurately predicted based on historical records and past and present values of three air temperature variables. The models indicate a consistent decline of average suitability of around 25% between 1850s and 2000s, which is expected to surpass 40% by the 2050s. We stress the largely unexplored potential of historical species records from non-academic sources to open new pathways for long-term global change science. PMID:28077766

  18. Monthly mean forecast experiments with the GISS model

    NASA Technical Reports Server (NTRS)

    Spar, J.; Atlas, R. M.; Kuo, E.

    1976-01-01

    The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.

  19. Action-based flood forecasting for triggering humanitarian action

    NASA Astrophysics Data System (ADS)

    Coughlan de Perez, Erin; van den Hurk, Bart; van Aalst, Maarten K.; Amuron, Irene; Bamanya, Deus; Hauser, Tristan; Jongma, Brenden; Lopez, Ana; Mason, Simon; Mendler de Suarez, Janot; Pappenberger, Florian; Rueth, Alexandra; Stephens, Elisabeth; Suarez, Pablo; Wagemaker, Jurjen; Zsoter, Ervin

    2016-09-01

    Too often, credible scientific early warning information of increased disaster risk does not result in humanitarian action. With financial resources tilted heavily towards response after a disaster, disaster managers have limited incentive and ability to process complex scientific data, including uncertainties. These incentives are beginning to change, with the advent of several new forecast-based financing systems that provide funding based on a forecast of an extreme event. Given the changing landscape, here we demonstrate a method to select and use appropriate forecasts for specific humanitarian disaster prevention actions, even in a data-scarce location. This action-based forecasting methodology takes into account the parameters of each action, such as action lifetime, when verifying a forecast. Forecasts are linked with action based on an understanding of (1) the magnitude of previous flooding events and (2) the willingness to act "in vain" for specific actions. This is applied in the context of the Uganda Red Cross Society forecast-based financing pilot project, with forecasts from the Global Flood Awareness System (GloFAS). Using this method, we define the "danger level" of flooding, and we select the probabilistic forecast triggers that are appropriate for specific actions. Results from this methodology can be applied globally across hazards and fed into a financing system that ensures that automatic, pre-funded early action will be triggered by forecasts.

  20. AIRS Impact on Analysis and Forecast of an Extreme Rainfall Event (Indus River Valley 2010) with a Global Data Assimilation and Forecast System

    NASA Technical Reports Server (NTRS)

    Reale, O.; Lau, W. K.; Susskind, J.; Rosenberg, R.

    2011-01-01

    A set of data assimilation and forecast experiments are performed with the NASA Global data assimilation and forecast system GEOS-5, to compare the impact of different approaches towards assimilation of Advanced Infrared Spectrometer (AIRS) data on the precipitation analysis and forecast skill. The event chosen is an extreme rainfall episode which occurred in late July 11 2010 in Pakistan, causing massive floods along the Indus River Valley. Results show that the assimilation of quality-controlled AIRS temperature retrievals obtained under partly cloudy conditions produce better precipitation analyses, and substantially better 7-day forecasts, than assimilation of clear-sky radiances. The improvement of precipitation forecast skill up to 7 day is very significant in the tropics, and is caused by an improved representation, attributed to cloudy retrieval assimilation, of two contributing mechanisms: the low-level moisture advection, and the concentration of moisture over the area in the days preceding the precipitation peak.

  1. A Bayesian modelling method for post-processing daily sub-seasonal to seasonal rainfall forecasts from global climate models and evaluation for 12 Australian catchments

    NASA Astrophysics Data System (ADS)

    Schepen, Andrew; Zhao, Tongtiegang; Wang, Quan J.; Robertson, David E.

    2018-03-01

    Rainfall forecasts are an integral part of hydrological forecasting systems at sub-seasonal to seasonal timescales. In seasonal forecasting, global climate models (GCMs) are now the go-to source for rainfall forecasts. For hydrological applications however, GCM forecasts are often biased and unreliable in uncertainty spread, and calibration is therefore required before use. There are sophisticated statistical techniques for calibrating monthly and seasonal aggregations of the forecasts. However, calibration of seasonal forecasts at the daily time step typically uses very simple statistical methods or climate analogue methods. These methods generally lack the sophistication to achieve unbiased, reliable and coherent forecasts of daily amounts and seasonal accumulated totals. In this study, we propose and evaluate a Rainfall Post-Processing method for Seasonal forecasts (RPP-S), which is based on the Bayesian joint probability modelling approach for calibrating daily forecasts and the Schaake Shuffle for connecting the daily ensemble members of different lead times. We apply the method to post-process ACCESS-S forecasts for 12 perennial and ephemeral catchments across Australia and for 12 initialisation dates. RPP-S significantly reduces bias in raw forecasts and improves both skill and reliability. RPP-S forecasts are also more skilful and reliable than forecasts derived from ACCESS-S forecasts that have been post-processed using quantile mapping, especially for monthly and seasonal accumulations. Several opportunities to improve the robustness and skill of RPP-S are identified. The new RPP-S post-processed forecasts will be used in ensemble sub-seasonal to seasonal streamflow applications.

  2. Global Climate Teleconnections to Forecast Increased Risk of Vector-Borne Animal and Human Disease Transmission

    USDA-ARS?s Scientific Manuscript database

    We willexamine how climate teleconnect ions and variability impact vector biology and vector borne disease ecology, and demonstrate that global climate monitoring can be used to anticipate and forecast epidemics and epizootics. In this context we willexamine significant worldwide weather anomalies t...

  3. Science Formulation of Global Precipitation Mission (gpm)

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally-sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  4. Science Formulation of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  5. Fuzzy time-series based on Fibonacci sequence for stock price forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Liang; Cheng, Ching-Hsue; Jong Teoh, Hia

    2007-07-01

    Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311-319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609-624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481-491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.

  6. The SPoRT-WRF: Evaluating the Impact of NASA Datasets on Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Kozlowski, Danielle; Case, Jonathan; Molthan, Andrew

    2012-01-01

    Short-term Prediction Research and Transition (SPoRT) seeks to improve short-term, regional weather forecasts using unique NASA products and capabilities SPoRT has developed a unique, real-time configuration of the NASA Unified Weather Research and Forecasting (WRF)WRF (ARW) that integrates all SPoRT modeling research data: (1) 2-km SPoRT Sea Surface Temperature (SST) Composite, (2) 3-km LIS with 1-km Greenness Vegetation Fraction (GVFs) (3) 45-km AIRS retrieved profiles. Transitioned this real-time forecast to NOAA's Hazardous Weather Testbed (HWT) as deterministic model at Experimental Forecast Program (EFP). Feedback from forecasters/participants and internal evaluation of SPoRT-WRF shows a cool, dry bias that appears to suppress convection likely related to methodology for assimilation of AIRS profiles Version 2 of the SPoRT-WRF will premier at the 2012 EFP and include NASA physics, cycling data assimilation methodology, better coverage of precipitation forcing, and new GVFs

  7. Knowing what to expect, forecasting monthly emergency department visits: A time-series analysis.

    PubMed

    Bergs, Jochen; Heerinckx, Philipe; Verelst, Sandra

    2014-04-01

    To evaluate an automatic forecasting algorithm in order to predict the number of monthly emergency department (ED) visits one year ahead. We collected retrospective data of the number of monthly visiting patients for a 6-year period (2005-2011) from 4 Belgian Hospitals. We used an automated exponential smoothing approach to predict monthly visits during the year 2011 based on the first 5 years of the dataset. Several in- and post-sample forecasting accuracy measures were calculated. The automatic forecasting algorithm was able to predict monthly visits with a mean absolute percentage error ranging from 2.64% to 4.8%, indicating an accurate prediction. The mean absolute scaled error ranged from 0.53 to 0.68 indicating that, on average, the forecast was better compared with in-sample one-step forecast from the naïve method. The applied automated exponential smoothing approach provided useful predictions of the number of monthly visits a year in advance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. National Water Model: Providing the Nation with Actionable Water Intelligence

    NASA Astrophysics Data System (ADS)

    Aggett, G. R.; Bates, B.

    2017-12-01

    The National Water Model (NWM) provides national, street-level detail of water movement through time and space. Operating hourly, this flood of information offers enormous benefits in the form of water resource management, natural disaster preparedness, and the protection of life and property. The Geo-Intelligence Division at the NOAA National Water Center supplies forecasters and decision-makers with timely, actionable water intelligence through the processing of billions of NWM data points every hour. These datasets include current streamflow estimates, short and medium range streamflow forecasts, and many other ancillary datasets. The sheer amount of NWM data produced yields a dataset too large to allow for direct human comprehension. As such, it is necessary to undergo model data post-processing, filtering, and data ingestion by visualization web apps that make use of cartographic techniques to bring attention to the areas of highest urgency. This poster illustrates NWM output post-processing and cartographic visualization techniques being developed and employed by the Geo-Intelligence Division at the NOAA National Water Center to provide national actionable water intelligence.

  9. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  10. Analysing the teleconnection systems affecting the climate of the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Kristóf, Erzsébet; Bartholy, Judit; Pongrácz, Rita

    2017-04-01

    Nowadays, the increase of the global average near-surface air temperature is unequivocal. Atmospheric low-frequency variabilities have substantial impacts on climate variables such as air temperature and precipitation. Therefore, assessing their effects is essential to improve global and regional climate model simulations for the 21st century. The North Atlantic Oscillation (NAO) is one of the best-known atmospheric teleconnection patterns affecting the Carpathian Basin in Central Europe. Besides NAO, we aim to analyse other interannual-to-decadal teleconnection patterns, which might have significant impacts on the Carpathian Basin, namely, the East Atlantic/West Russia pattern, the Scandinavian pattern, the Mediterranean Oscillation, and the North-Sea Caspian Pattern. For this purpose primarily the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-20C atmospheric reanalysis dataset and multivariate statistical methods are used. The indices of each teleconnection pattern and their correlations with temperature and precipitation will be calculated for the period of 1961-1990. On the basis of these data first the long range (i. e. seasonal and/or annual scale) forecast ability is evaluated. Then, we aim to calculate the same indices of the relevant teleconnection patterns for the historical and future simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models and compare them against each other using statistical methods. Our ultimate goal is to examine all available CMIP5 models and evaluate their abilities to reproduce the selected teleconnection systems. Thus, climate predictions for the 21st century for the Carpathian Basin may be improved using the best-performing models among all CMIP5 model simulations.

  11. Solar Energetic Particle Forecasting Algorithms and Associated False Alarms

    NASA Astrophysics Data System (ADS)

    Swalwell, B.; Dalla, S.; Walsh, R. W.

    2017-11-01

    Solar energetic particle (SEP) events are known to occur following solar flares and coronal mass ejections (CMEs). However, some high-energy solar events do not result in SEPs being detected at Earth, and it is these types of event which may be termed "false alarms". We define two simple SEP forecasting algorithms based upon the occurrence of a magnetically well-connected CME with a speed in excess of 1500 km s^{-1} (a "fast" CME) or a well-connected X-class flare and analyse them with respect to historical datasets. We compare the parameters of those solar events which produced an enhancement of {>} 40 MeV protons at Earth (an "SEP event") and the parameters of false alarms. We find that an SEP forecasting algorithm based solely upon the occurrence of a well-connected fast CME produces fewer false alarms (28.8%) than an algorithm which is based solely upon a well-connected X-class flare (50.6%). Both algorithms fail to forecast a relatively high percentage of SEP events (53.2% and 50.6%, respectively). Our analysis of the historical datasets shows that false-alarm X-class flares were either not associated with any CME, or were associated with a CME slower than 500 km s^{-1}; false-alarm fast CMEs tended to be associated with flare classes lower than M3. A better approach to forecasting would be an algorithm which takes as its base the occurrence of both CMEs and flares. We define a new forecasting algorithm which uses a combination of CME and flare parameters, and we show that the false-alarm ratio is similar to that for the algorithm based upon fast CMEs (29.6%), but the percentage of SEP events not forecast is reduced to 32.4%. Lists of the solar events which gave rise to {>} 40 MeV protons and the false alarms have been derived and are made available to aid further study.

  12. Precipitation and floodiness

    NASA Astrophysics Data System (ADS)

    Stephens, E.; Day, J. J.; Pappenberger, F.; Cloke, H.

    2015-12-01

    There are a number of factors that lead to nonlinearity between precipitation anomalies and flood hazard; this nonlinearity is a pertinent issue for applications that use a precipitation forecast as a proxy for imminent flood hazard. We assessed the degree of this nonlinearity for the first time using a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010). We introduced new indices to assess large-scale flood hazard, or floodiness, and quantified the link between monthly precipitation, river discharge, and floodiness anomalies at the global and regional scales. The results show that monthly floodiness is not well correlated with precipitation, therefore demonstrating the value of hydrometeorological systems for providing floodiness forecasts for decision-makers. A method is described for forecasting floodiness using the Global Flood Awareness System, building a climatology of regional floodiness from which to forecast floodiness anomalies out to 2 weeks.

  13. Wind power forecasting: IEA Wind Task 36 & future research issues

    DOE PAGES

    Giebel, G.; Cline, J.; Frank, H.; ...

    2016-10-03

    Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less

  14. Displaying Planetary and Geophysical Datasets on NOAAs Science On a Sphere (TM)

    NASA Astrophysics Data System (ADS)

    Albers, S. C.; MacDonald, A. E.; Himes, D.

    2005-12-01

    NOAAs Science On a Sphere(TM)(SOS)was developed to educate current and future generations about the changing Earth and its processes. This system presents NOAAs global science through a 3D representation of our planet as if the viewer were looking at the Earth from outer space. In our presentation, we will describe the preparation of various global datasets for display on Science On a Sphere(TM), a 1.7-m diameter spherical projection system developed and patented at the Forecast Systems Laboratory (FSL) in Boulder, Colorado. Four projectors cast rotating images onto a spherical projection screen to create the effect of Earth, planet, or satellite floating in space. A static dataset can be prepared for display using popular image formats such as JPEG, usually sized at 1024x2048 or 2048x4096 pixels. A set of static images in a directory will comprise a movie. Imagery and data for SOS are obtained from a variety of government organizations, sometimes post-processed by various individuals, including the authors. Some datasets are already available in the required cylindrical projection. Readily available planetary maps can often be improved in coverage and/or appearance by reprojecting and combining additional images and mosaics obtained by various spacecraft, such as Voyager, Galileo, and Cassini. A map of Mercury was produced by blending some Mariner 10 photo-mosaics with a USGS shaded-relief map. An improved high-resolution map of Venus was produced by combining several Magellan mosaics, supplied by The Planetary Society, along with other spacecraft data. We now have a full set of Jupiter's Galilean satellite imagery that we can display on Science On a Sphere(TM). Photo-mosaics of several Saturnian satellites were updated by reprojecting and overlaying recently taken Cassini flyby images. Maps of imagery from five Uranian satellites were added, as well as one for Neptune. More image processing was needed to add a high-resolution Voyager mosaic to a pre-existing map of Neptune's moon Triton. A map of the cosmic background radiation was produced that shows the early universe from an external perspective. Full details and credits for these maps may be viewed online at http://laps.fsl.noaa.gov/albers/sos/sos.html. Geophysical imagery recently added to SOS includes a real-time global infrared weather satellite animation of Earth. This is a 15-minute, quality controlled animation spanning the most recent month, which draws on a number of geosynchronous and polar-orbiting weather satellites for data. Other meteorological and oceanographic datasets can be displayed, such as animations depicting the three-dimensional drifting of the ARGO buoy network through the oceans. Oceanic buoy observations were overlaid on the "Blue Marble" Earth imagery displayed on Science On a Sphere(TM). A static image shows locations for five different global buoy networks. We also produced two movies that show the drift of >1000 ARGO buoys over a period of several months. The first movie shows only the horizontal buoy drift, and the second modulates the intensities to represent the timing of each buoy dive cycle. Animations in real time are also being produced for sea surface temperatures (and anomalies). These analyses are obtained from web displays provided by the DOD Fleet Numerical Operations Center. With advanced technologies, the possibilities are limitless for displaying additional global datasets on Science On a Sphere(TM) and other spherical projection screens.

  15. Research Review, 1983

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Global Modeling and Simulation Branch (GMSB) of the Laboratory for Atmospheric Sciences (GLAS) is engaged in general circulation modeling studies related to global atmospheric and oceanographic research. The research activities discussed are organized into two disciplines: Global Weather/Observing Systems and Climate/Ocean-Air Interactions. The Global Weather activities are grouped in four areas: (1) Analysis and Forecast Studies, (2) Satellite Observing Systems, (3) Analysis and Model Development, (4) Atmospheric Dynamics and Diagnostic Studies. The GLAS Analysis/Forecast/Retrieval System was applied to both FGGE and post FGGE periods. The resulting analyses have already been used in a large number of theoretical studies of atmospheric dynamics, forecast impact studies and development of new or improved algorithms for the utilization of satellite data. Ocean studies have focused on the analysis of long-term global sea surface temperature data, for use in the study of the response of the atmosphere to sea surface temperature anomalies. Climate research has concentrated on the simulation of global cloudiness, and on the sensitivities of the climate to sea surface temperature and ground wetness anomalies.

  16. Validation of reactive gases and aerosols in the MACC global analysis and forecast system

    NASA Astrophysics Data System (ADS)

    Eskes, H.; Huijnen, V.; Arola, A.; Benedictow, A.; Blechschmidt, A.-M.; Botek, E.; Boucher, O.; Bouarar, I.; Chabrillat, S.; Cuevas, E.; Engelen, R.; Flentje, H.; Gaudel, A.; Griesfeller, J.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Kinne, S.; Langerock, B.; Razinger, M.; Richter, A.; Schultz, M.; Schulz, M.; Sudarchikova, N.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.

    2015-11-01

    The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols, and greenhouse gases, and is based on the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF). The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past 3 years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high-pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.

  17. High Predictive Skill of Global Surface Temperature a Year Ahead

    NASA Astrophysics Data System (ADS)

    Folland, C. K.; Colman, A.; Kennedy, J. J.; Knight, J.; Parker, D. E.; Stott, P.; Smith, D. M.; Boucher, O.

    2011-12-01

    We discuss the high skill of real-time forecasts of global surface temperature a year ahead issued by the UK Met Office, and their scientific background. Although this is a forecasting and not a formal attribution study, we show that the main instrumental global annual surface temperature data sets since 1891 are structured consistently with a set of five physical forcing factors except during and just after the second World War. Reconstructions use a multiple application of cross validated linear regression to minimise artificial skill allowing time-varying uncertainties in the contribution of each forcing factor to global temperature to be assessed. Mean cross validated reconstructions for the data sets have total correlations in the range 0.93-0.95,interannual correlations in the range 0.72-0.75 and root mean squared errors near 0.06oC, consistent with observational uncertainties.Three transient runs of the HadCM3 coupled model for 1888-2002 demonstrate quite similar reconstruction skill from similar forcing factors defined appropriately for the model, showing that skilful use of our technique is not confined to observations. The observed reconstructions show that the Atlantic Multidecadal Oscillation (AMO) likely contributed to the re-commencement of global warming between 1976 and 2010 and to global cooling observed immediately beforehand in 1965-1976. The slowing of global warming in the last decade is likely to be largely due to a phase-delayed response to the downturn in the solar cycle since 2001-2, with no net ENSO contribution. The much reduced trend in 2001-10 is similar in size to other weak decadal temperature trends observed since global warming resumed in the 1970s. The causes of variations in decadal trends can be mostly explained by variations in the strength of the forcing factors. Eleven real-time forecasts of global mean surface temperature for the year ahead for 2000-2010, based on broadly similar methods, provide an independent test of the ideas of this study. They had the high correlation and root mean square error skill levels compared to observations of 0.74 and 0.07oC respectively. Pseudo-forecasts for the same period reconstructed from somewhat improved forcing data used for this study had the slightly better correlation of 0.80 and root mean squared error of 0.05oC. Finally we compare the statistical forecasts with dynamical hindcasts and forecasts of global surface temperature a year ahead made by the Met Office DePreSys coupled model. The statistical and dynamical forecasts of global surface temperature for 2011 will be compared with preliminary verification data.

  18. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Intercomparison of microphysical datasets collected from CAIPEEX observations and WRF simulation

    NASA Astrophysics Data System (ADS)

    Pattnaik, S.; Goswami, B.; Kulkarni, J.

    2009-12-01

    In the first phase of ongoing Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) program of Indian Institute of Tropical Meteorology (IITM), intensive cloud microphysical datasets are collected over India during the May through September, 2009. This study is designed to evaluate the forecast skills of existing cloud microphysical parameterization schemes (i.e. single moment/double moments) within the WRF-ARW model (Version 3.1.1) during different intensive observation periods (IOP) over the targeted regions spreading all across India. Basic meteorological and cloud microphysical parameters obtained from the model simulations are validated against the observed data set collected during CAIPEEX program. For this study, we have considered three IOP phases (i.e. May 23-27, June 11-15, July 3-7) carried out over northern, central and western India respectively. This study emphasizes the thrust to understand the mechanism of evolution, intensification and distribution of simulated precipitation forecast upto day four (i.e. 96 hour forecast). Efforts have also been made to carryout few important microphysics sensitivity experiments within the explicit schemes to investigate their respective impact on the formation and distribution of vital cloud parameters (e.g. cloud liquid water, frozen hydrometeors) and model rainfall forecast over the IOP regions. The characteristic features of liquid and frozen hydrometers in the pre-monsoon and monsoon regimes are examined from model forecast as well as from CAIPEEX observation data set for different IOPs. The model is integrated in a triply nested fashion with an innermost nest explicitly resolved at a horizontal resolution of 4km.In this presentation preliminary results from aforementioned research initiatives will be introduced.

  20. Using statistical and artificial neural network models to forecast potentiometric levels at a deep well in South Texas

    NASA Astrophysics Data System (ADS)

    Uddameri, V.

    2007-01-01

    Reliable forecasts of monthly and quarterly fluctuations in groundwater levels are necessary for short- and medium-term planning and management of aquifers to ensure proper service of seasonal demands within a region. Development of physically based transient mathematical models at this time scale poses considerable challenges due to lack of suitable data and other uncertainties. Artificial neural networks (ANN) possess flexible mathematical structures and are capable of mapping highly nonlinear relationships. Feed-forward neural network models were constructed and trained using the back-percolation algorithm to forecast monthly and quarterly time-series water levels at a well that taps into the deeper Evangeline formation of the Gulf Coast aquifer in Victoria, TX. Unlike unconfined formations, no causal relationships exist between water levels and hydro-meteorological variables measured near the vicinity of the well. As such, an endogenous forecasting model using dummy variables to capture short-term seasonal fluctuations and longer-term (decadal) trends was constructed. The root mean square error, mean absolute deviation and correlation coefficient ( R) were noted to be 1.40, 0.33 and 0.77 m, respectively, for an evaluation dataset of quarterly measurements and 1.17, 0.46, and 0.88 m for an evaluative monthly dataset not used to train or test the model. These statistics were better for the ANN model than those developed using statistical regression techniques.

  1. Global Earthquake Activity Rate models based on version 2 of the Global Strain Rate Map

    NASA Astrophysics Data System (ADS)

    Bird, P.; Kreemer, C.; Kagan, Y. Y.; Jackson, D. D.

    2013-12-01

    Global Earthquake Activity Rate (GEAR) models have usually been based on either relative tectonic motion (fault slip rates and/or distributed strain rates), or on smoothing of seismic catalogs. However, a hybrid approach appears to perform better than either parent, at least in some retrospective tests. First, we construct a Tectonic ('T') forecast of shallow (≤ 70 km) seismicity based on global plate-boundary strain rates from version 2 of the Global Strain Rate Map. Our approach is the SHIFT (Seismic Hazard Inferred From Tectonics) method described by Bird et al. [2010, SRL], in which the character of the strain rate tensor (thrusting and/or strike-slip and/or normal) is used to select the most comparable type of plate boundary for calibration of the coupled seismogenic lithosphere thickness and corner magnitude. One difference is that activity of offshore plate boundaries is spatially smoothed using empirical half-widths [Bird & Kagan, 2004, BSSA] before conversion to seismicity. Another is that the velocity-dependence of coupling in subduction and continental-convergent boundaries [Bird et al., 2009, BSSA] is incorporated. Another forecast component is the smoothed-seismicity ('S') forecast model of [Kagan & Jackson, 1994, JGR; Kagan & Jackson, 2010, GJI], which was based on optimized smoothing of the shallow part of the GCMT catalog, years 1977-2004. Both forecasts were prepared for threshold magnitude 5.767. Then, we create hybrid forecasts by one of 3 methods: (a) taking the greater of S or T; (b) simple weighted-average of S and T; or (c) log of the forecast rate is a weighted average of the logs of S and T. In methods (b) and (c) there is one free parameter, which is the fractional contribution from S. All hybrid forecasts are normalized to the same global rate. Pseudo-prospective tests for 2005-2012 (using versions of S and T calibrated on years 1977-2004) show that many hybrid models outperform both parents (S and T), and that the optimal weight on S is in the neighborhood of 5/8. This is true whether forecast performance is scored by Kagan's [2009, GJI] I1 information score, or by the S-test of Zechar & Jordan [2010, BSSA]. These hybrids also score well (0.97) in the ASS-test of Zechar & Jordan [2008, GJI] with respect to prior relative intensity.

  2. GEOSS interoperability for Weather, Ocean and Water

    NASA Astrophysics Data System (ADS)

    Richardson, David; Nyenhuis, Michael; Zsoter, Ervin; Pappenberger, Florian

    2013-04-01

    "Understanding the Earth system — its weather, climate, oceans, atmosphere, water, land, geodynamics, natural resources, ecosystems, and natural and human-induced hazards — is crucial to enhancing human health, safety and welfare, alleviating human suffering including poverty, protecting the global environment, reducing disaster losses, and achieving sustainable development. Observations of the Earth system constitute critical input for advancing this understanding." With this in mind, the Group on Earth Observations (GEO) started implementing the Global Earth Observation System of Systems (GEOSS). GEOWOW, short for "GEOSS interoperability for Weather, Ocean and Water", is supporting this objective. GEOWOW's main challenge is to improve Earth observation data discovery, accessibility and exploitability, and to evolve GEOSS in terms of interoperability, standardization and functionality. One of the main goals behind the GEOWOW project is to demonstrate the value of the TIGGE archive in interdisciplinary applications, providing a vast amount of useful and easily accessible information to the users through the GEO Common Infrastructure (GCI). GEOWOW aims at developing funcionalities that will allow easy discovery, access and use of TIGGE archive data and of in-situ observations, e.g. from the Global Runoff Data Centre (GRDC), to support applications such as river discharge forecasting.TIGGE (THORPEX Interactive Grand Global Ensemble) is a key component of THORPEX: a World Weather Research Programme to accelerate the improvements in the accuracy of 1-day to 2 week high-impact weather forecasts for the benefit of humanity. The TIGGE archive consists of ensemble weather forecast data from ten global NWP centres, starting from October 2006, which has been made available for scientific research. The TIGGE archive has been used to analyse hydro-meteorological forecasts of flooding in Europe as well as in China. In general the analysis has been favourable in terms of forecast skill and concluded that the use of a multi-model forecast is beneficial. Long term analysis of individual centres, such as the European Centre for Medium-Range Weather Forecasts (ECMWF), has been conducted in the past. However, no long term and large scale study has been performed so far with inclusion of different global numerical models. Here we present some initial results from such a study.

  3. Tropical-Cyclone Formation: Theory and Idealized Modelling

    DTIC Science & Technology

    2010-11-01

    to saturation at the sea-surface temperature and the positive entropy flux from the ocean surface...and Atmospheric Administration; IFEX = Intensity Forecasting Experiment. 15GFS = NOAA Global Forecasting System ; NOGAPS = Navy Operational Global... Atmospheric Prediction System ; UKMET = United Kingdom Meteorological Office. 16 http://www.met.nps.edu/~mtmontgo/storms2010.html 18 overcomes

  4. Entropy Econometrics for combining regional economic forecasts: A Data-Weighted Prior Estimator

    NASA Astrophysics Data System (ADS)

    Fernández-Vázquez, Esteban; Moreno, Blanca

    2017-10-01

    Forecast combination has been studied in econometrics for a long time, and the literature has shown the superior performance of forecast combination over individual predictions. However, there is still controversy on which is the best procedure to specify the forecast weights. This paper explores the possibility of using a procedure based on Entropy Econometrics, which allows setting the weights for the individual forecasts as a mixture of different alternatives. In particular, we examine the ability of the Data-Weighted Prior Estimator proposed by Golan (J Econom 101(1):165-193, 2001) to combine forecasting models in a context of small sample sizes, a relative common scenario when dealing with time series for regional economies. We test the validity of the proposed approach using a simulation exercise and a real-world example that aims at predicting gross regional product growth rates for a regional economy. The forecasting performance of the Data-Weighted Prior Estimator proposed is compared with other combining methods. The simulation results indicate that in scenarios of heavily ill-conditioned datasets the approach suggested dominates other forecast combination strategies. The empirical results are consistent with the conclusions found in the numerical experiment.

  5. Toward Global Real Time Hydrologic Modeling - An "Open" View From the Trenches

    NASA Astrophysics Data System (ADS)

    Nelson, J.

    2015-12-01

    Big Data has become a popular term to describe the exponential growth of data and related cyber infrastructure to process it so that better analysis can be performed and lead to improved decision-making. How are we doing in the hydrologic sciences? As part of a significant collaborative effort that brought together scientists from public, private, and academic organizations a new transformative hydrologic forecasting modeling infrastructure has been developed. How was it possible to go from deterministic hydrologic forecasts largely driven through manual interactions at 3600 stations to automated 15-day ensemble forecasts at 2.67 million stations? Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts, but this project demonstrates a critical component to harness these resources can be summed up in one word: OPEN. Whether it is open data sources, open software solutions with open standards, or just being open to collaborations and building teams across institutions, disciplines, and international boundaries, time and time again through my involvement in the development of a high-resolution real time global hydrologic forecasting model I have discovered that in every aspect the sum has always been greater than the parts. While much has been accomplished, much more remains to be done, but the most important lesson learned has been to the degree that we can remain open and work together, the greater our ability will be to use big data hydrologic modeling resources to solve the world's most vexing water related challenges. This presentation will demonstrate a transformational global real time hydrologic forecasting application based on downscaled ECMWF ensemble forecasts, RAPID routing, and Tethys Platform for cloud computing and visualization with discussions of the human and cyber infrastructure connections that make it successful and needs moving forward.

  6. Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism

    NASA Astrophysics Data System (ADS)

    Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.

    2016-06-01

    Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.

  7. Trends in the predictive performance of raw ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.

  8. Ensemble superparameterization versus stochastic parameterization: A comparison of model uncertainty representation in tropical weather prediction

    NASA Astrophysics Data System (ADS)

    Subramanian, Aneesh C.; Palmer, Tim N.

    2017-06-01

    Stochastic schemes to represent model uncertainty in the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system has helped improve its probabilistic forecast skill over the past decade by both improving its reliability and reducing the ensemble mean error. The largest uncertainties in the model arise from the model physics parameterizations. In the tropics, the parameterization of moist convection presents a major challenge for the accurate prediction of weather and climate. Superparameterization is a promising alternative strategy for including the effects of moist convection through explicit turbulent fluxes calculated from a cloud-resolving model (CRM) embedded within a global climate model (GCM). In this paper, we compare the impact of initial random perturbations in embedded CRMs, within the ECMWF ensemble prediction system, with stochastically perturbed physical tendency (SPPT) scheme as a way to represent model uncertainty in medium-range tropical weather forecasts. We especially focus on forecasts of tropical convection and dynamics during MJO events in October-November 2011. These are well-studied events for MJO dynamics as they were also heavily observed during the DYNAMO field campaign. We show that a multiscale ensemble modeling approach helps improve forecasts of certain aspects of tropical convection during the MJO events, while it also tends to deteriorate certain large-scale dynamic fields with respect to stochastically perturbed physical tendencies approach that is used operationally at ECMWF.Plain Language SummaryProbabilistic weather forecasts, especially for tropical weather, is still a significant challenge for global weather forecasting systems. Expressing uncertainty along with weather forecasts is important for informed decision making. Hence, we explore the use of a relatively new approach in using super-parameterization, where a cloud resolving model is embedded within a global model, in probabilistic tropical weather forecasts at medium range. We show that this approach helps improve modeling uncertainty in forecasts of certain features such as precipitation magnitude and location better, but forecasts of tropical winds are not necessarily improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.S21A2684J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.S21A2684J"><span>Recent Achievements of the Collaboratory for the Study of Earthquake Predictability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jordan, T. H.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Jackson, D. D.; Rhoades, D. A.; Zechar, J. D.; Marzocchi, W.</p> <p>2016-12-01</p> <p>The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 442 models under evaluation. The California testing center, started by SCEC, Sept 1, 2007, currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. Our tests are now based on the hypocentral locations and magnitudes of cataloged earthquakes, but we plan to test focal mechanisms, seismic hazard models, ground motion forecasts, and finite rupture forecasts as well. We have increased computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model, introduced Bayesian ensemble models, and implemented support for non-Poissonian simulation-based forecasts models. We are currently developing formats and procedures to evaluate externally hosted forecasts and predictions. CSEP supports the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. We found that earthquakes as small as magnitude 2.5 provide important information on subsequent earthquakes larger than magnitude 5. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence showed that some physics-based and hybrid models outperform catalog-based (e.g., ETAS) models. This experiment also demonstrates the ability of the CSEP infrastructure to support retrospective forecast testing. Current CSEP development activities include adoption of the Comprehensive Earthquake Catalog (ComCat) as an authorized data source, retrospective testing of simulation-based forecasts, and support for additive ensemble methods. We describe the open-source CSEP software that is available to researchers as they develop their forecast models. We also discuss how CSEP procedures are being adapted to intensity and ground motion prediction experiments as well as hazard model testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70041208','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70041208"><span>Assessment of the NASA-USGS Global Land Survey (GLS) Datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gutman, Garik; Huang, Chengquan; Chander, Gyanesh; Noojipady, Praveen; Masek, Jeffery G.</p> <p>2013-01-01</p> <p>The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the global land area decadally since the early 1970s. The global mosaics are centered on 1975, 1990, 2000, 2005, and 2010, and consist of data acquired from four sensors: Enhanced Thematic Mapper Plus, Thematic Mapper, Multispectral Scanner, and Advanced Land Imager. The GLS datasets have been widely used in land-cover and land-use change studies at local, regional, and global scales. This study evaluates the GLS datasets with respect to their spatial coverage, temporal consistency, geodetic accuracy, radiometric calibration consistency, image completeness, extent of cloud contamination, and residual gaps. In general, the three latest GLS datasets are of a better quality than the GLS-1990 and GLS-1975 datasets, with most of the imagery (85%) having cloud cover of less than 10%, the acquisition years clustered much more tightly around their target years, better co-registration relative to GLS-2000, and better radiometric absolute calibration. Probably, the most significant impediment to scientific use of the datasets is the variability of image phenology (i.e., acquisition day of year). This paper provides end-users with an assessment of the quality of the GLS datasets for specific applications, and where possible, suggestions for mitigating their deficiencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H44H..02P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H44H..02P"><span>Global relationships in river hydromorphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.</p> <p>2017-12-01</p> <p>Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3552528','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3552528"><span>Forecasting High-Priority Infectious Disease Surveillance Regions: A Socioeconomic Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chan, Emily H.; Scales, David A.; Brewer, Timothy F.; Madoff, Lawrence C.; Pollack, Marjorie P.; Hoen, Anne G.; Choden, Tenzin; Brownstein, John S.</p> <p>2013-01-01</p> <p>Background. Few researchers have assessed the relationships between socioeconomic inequality and infectious disease outbreaks at the population level globally. We use a socioeconomic model to forecast national annual rates of infectious disease outbreaks. Methods. We constructed a multivariate mixed-effects Poisson model of the number of times a given country was the origin of an outbreak in a given year. The dataset included 389 outbreaks of international concern reported in the World Health Organization's Disease Outbreak News from 1996 to 2008. The initial full model included 9 socioeconomic variables related to education, poverty, population health, urbanization, health infrastructure, gender equality, communication, transportation, and democracy, and 1 composite index. Population, latitude, and elevation were included as potential confounders. The initial model was pared down to a final model by a backwards elimination procedure. The dependent and independent variables were lagged by 2 years to allow for forecasting future rates. Results. Among the socioeconomic variables tested, the final model included child measles immunization rate and telephone line density. The Democratic Republic of Congo, China, and Brazil were predicted to be at the highest risk for outbreaks in 2010, and Colombia and Indonesia were predicted to have the highest percentage of increase in their risk compared to their average over 1996–2008. Conclusions. Understanding socioeconomic factors could help improve the understanding of outbreak risk. The inclusion of the measles immunization variable suggests that there is a fundamental basis in ensuring adequate public health capacity. Increased vigilance and expanding public health capacity should be prioritized in the projected high-risk regions. PMID:23118271</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1047426-application-medium-range-global-hydrologic-probabilistic-forecast-scheme-ohio-river-basin','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1047426-application-medium-range-global-hydrologic-probabilistic-forecast-scheme-ohio-river-basin"><span>Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.</p> <p>2011-08-15</p> <p>A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatialmore » scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014HESSD..1111489P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014HESSD..1111489P"><span>Evaluation of precipitation estimates over CONUS derived from satellite, radar, and rain gauge datasets (2002-2012)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prat, O. P.; Nelson, B. R.</p> <p>2014-10-01</p> <p>We use a suite of quantitative precipitation estimates (QPEs) derived from satellite, radar, and surface observations to derive precipitation characteristics over CONUS for the period 2002-2012. This comparison effort includes satellite multi-sensor datasets (bias-adjusted TMPA 3B42, near-real time 3B42RT), radar estimates (NCEP Stage IV), and rain gauge observations. Remotely sensed precipitation datasets are compared with surface observations from the Global Historical Climatology Network (GHCN-Daily) and from the PRISM (Parameter-elevation Regressions on Independent Slopes Model). The comparisons are performed at the annual, seasonal, and daily scales over the River Forecast Centers (RFCs) for CONUS. Annual average rain rates present a satisfying agreement with GHCN-D for all products over CONUS (± 6%). However, differences at the RFC are more important in particular for near-real time 3B42RT precipitation estimates (-33 to +49%). At annual and seasonal scales, the bias-adjusted 3B42 presented important improvement when compared to its near real time counterpart 3B42RT. However, large biases remained for 3B42 over the Western US for higher average accumulation (≥ 5 mm day-1) with respect to GHCN-D surface observations. At the daily scale, 3B42RT performed poorly in capturing extreme daily precipitation (> 4 in day-1) over the Northwest. Furthermore, the conditional analysis and the contingency analysis conducted illustrated the challenge of retrieving extreme precipitation from remote sensing estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..984D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..984D"><span>Exploiting the atmosphere's memory for monthly, seasonal and interannual temperature forecasting using Scaling LInear Macroweather Model (SLIMM)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Del Rio Amador, Lenin; Lovejoy, Shaun</p> <p>2016-04-01</p> <p>Traditionally, most of the models for prediction of the atmosphere behavior in the macroweather and climate regimes follow a deterministic approach. However, modern ensemble forecasting systems using stochastic parameterizations are in fact deterministic/ stochastic hybrids that combine both elements to yield a statistical distribution of future atmospheric states. Nevertheless, the result is both highly complex (both numerically and theoretically) as well as being theoretically eclectic. In principle, it should be advantageous to exploit higher level turbulence type scaling laws. Concretely, in the case for the Global Circulation Models (GCM's), due to sensitive dependence on initial conditions, there is a deterministic predictability limit of the order of 10 days. When these models are coupled with ocean, cryosphere and other process models to make long range, climate forecasts, the high frequency "weather" is treated as a driving noise in the integration of the modelling equations. Following Hasselman, 1976, this has led to stochastic models that directly generate the noise, and model the low frequencies using systems of integer ordered linear ordinary differential equations, the most well-known are the Linear Inverse Models (LIM). For annual global scale forecasts, they are somewhat superior to the GCM's and have been presented as a benchmark for surface temperature forecasts with horizons up to decades. A key limitation for the LIM approach is that it assumes that the temperature has only short range (exponential) decorrelations. In contrast, an increasing body of evidence shows that - as with the models - the atmosphere respects a scale invariance symmetry leading to power laws with potentially enormous memories so that LIM greatly underestimates the memory of the system. In this talk we show that, due to the relatively low macroweather intermittency, the simplest scaling models - fractional Gaussian noise - can be used for making greatly improved forecasts. The corresponding space-time model (the ScaLIng Macroweather Model (SLIMM) is thus only multifractal in space where the spatial intermittency is associated with different climate zones. SLIMM exploits the power law (scaling) behavior in time of the temperature field and uses the long historical memory of the temperature series to improve the skill. The only model parameter is the fluctuation scaling exponent, H (usually in the range -0.5 - 0), which is directly related to the skill and can be obtained from the data. The results predicted analytically by the model have been tested by performing actual hindcasts in different 5° x 5° regions covering the planet using ERA-Interim, 20CRv2 and NCEP/NCAR reanalysis as reference datasets. We report maps of theoretical skill predicted by the model and we compare it with actual skill based on hindcasts for monthly, seasonal and annual resolutions. We also present maps of calibrated probability hindcasts with their respective validations. Comparisons between our results using SLIMM, some other stochastic autoregressive model, and hindcasts from the Canadian Seasonal to Interannual Prediction System (CanSIPS) and the National Centers for Environmental Prediction (NCEP)'s model CFSv2, are also shown. For seasonal temperature forecasts, SLIMM outperforms the GCM based forecasts in over 90% of the earth's surface. SLIMM forecasts can be accessed online through the site: http://www.to_be_announced.mcgill.ca.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.2729V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.2729V"><span>Global analysis of seasonal streamflow predictability using an ensemble prediction system and observations from 6192 small catchments worldwide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Dijk, Albert I. J. M.; Peña-Arancibia, Jorge L.; Wood, Eric F.; Sheffield, Justin; Beck, Hylke E.</p> <p>2013-05-01</p> <p>Ideally, a seasonal streamflow forecasting system would ingest skilful climate forecasts and propagate these through calibrated hydrological models initialized with observed catchment conditions. At global scale, practical problems exist in each of these aspects. For the first time, we analyzed theoretical and actual skill in bimonthly streamflow forecasts from a global ensemble streamflow prediction (ESP) system. Forecasts were generated six times per year for 1979-2008 by an initialized hydrological model and an ensemble of 1° resolution daily climate estimates for the preceding 30 years. A post-ESP conditional sampling method was applied to 2.6% of forecasts, based on predictive relationships between precipitation and 1 of 21 climate indices prior to the forecast date. Theoretical skill was assessed against a reference run with historic forcing. Actual skill was assessed against streamflow records for 6192 small (<10,000 km2) catchments worldwide. The results show that initial catchment conditions provide the main source of skill. Post-ESP sampling enhanced skill in equatorial South America and Southeast Asia, particularly in terms of tercile probability skill, due to the persistence and influence of the El Niño Southern Oscillation. Actual skill was on average 54% of theoretical skill but considerably more for selected regions and times of year. The realized fraction of the theoretical skill probably depended primarily on the quality of precipitation estimates. Forecast skill could be predicted as the product of theoretical skill and historic model performance. Increases in seasonal forecast skill are likely to require improvement in the observation of precipitation and initial hydrological conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4937S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4937S"><span>Precipitation and floodiness: forecasts of flood hazard at the regional scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephens, Liz; Day, Jonny; Pappenberger, Florian; Cloke, Hannah</p> <p>2016-04-01</p> <p>In 2008, a seasonal forecast of an increased likelihood of above-normal rainfall in West Africa led the Red Cross to take early humanitarian action (such as prepositioning of relief items) on the basis that this forecast implied heightened flood risk. However, there are a number of factors that lead to non-linearity between precipitation anomalies and flood hazard, so in this presentation we use a recently developed global-scale hydrological model driven by the ERA-Interim/Land precipitation reanalysis (1980-2010) to quantify this non-linearity. Using these data, we introduce the concept of floodiness to measure the incidence of floods over a large area, and quantify the link between monthly precipitation, river discharge and floodiness anomalies. Our analysis shows that floodiness is not well correlated with precipitation, demonstrating the problem of using seasonal precipitation forecasts as a proxy for forecasting flood hazard. This analysis demonstrates the value of developing hydrometeorological forecasts of floodiness for decision-makers. As a result, we are now working with the European Centre for Medium-Range Weather Forecasts and the Joint Research Centre, as partners of the operational Global Flood Awareness System (GloFAS), to implement floodiness forecasts in real-time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN21D..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN21D..06L"><span>Using Multiple Big Datasets and Machine Learning to Produce a New Global Particulate Dataset: A Technology Challenge Case Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lary, D. J.</p> <p>2013-12-01</p> <p>A BigData case study is described where multiple datasets from several satellites, high-resolution global meteorological data, social media and in-situ observations are combined using machine learning on a distributed cluster using an automated workflow. The global particulate dataset is relevant to global public health studies and would not be possible to produce without the use of the multiple big datasets, in-situ data and machine learning.To greatly reduce the development time and enhance the functionality a high level language capable of parallel processing has been used (Matlab). A key consideration for the system is high speed access due to the large data volume, persistence of the large data volumes and a precise process time scheduling capability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13N..02R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13N..02R"><span>Petascale Diagnostic Assessment of the Global Portfolio Rainfall Space Missions' Ability to Support Flood Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reed, P. M.; Chaney, N.; Herman, J. D.; Wood, E. F.; Ferringer, M. P.</p> <p>2015-12-01</p> <p>This research represents a multi-institutional collaboration between Cornell University, The Aerospace Corporation, and Princeton University that has completed a Petascale diagnostic assessment of the current 10 satellite missions providing rainfall observations. Our diagnostic assessment has required four core tasks: (1) formally linking high-resolution astrodynamics design and coordination of space assets with their global hydrological impacts within a Petascale "many-objective" global optimization framework, (2) developing a baseline diagnostic evaluation of a 1-degree resolution global implementation of the Variable Infiltration Capacity (VIC) model to establish the required satellite observation frequencies and coverage to maintain acceptable global flood forecasts, (3) evaluating the limitations and vulnerabilities of the full suite of current satellite precipitation missions including the recently approved Global Precipitation Measurement (GPM) mission, and (4) conceptualizing the next generation spaced-based platforms for water cycle observation. Our team exploited over 100 Million hours of computing access on the 700,000+ core Blue Waters machine to radically advance our ability to discover and visualize key system tradeoffs and sensitivities. This project represents to our knowledge the first attempt to develop a 10,000 member Monte Carlo global hydrologic simulation at one degree resolution that characterizes the uncertain effects of changing the available frequencies of satellite precipitation on drought and flood forecasts. The simulation—optimization components of the work have set a theoretical baseline for the best possible frequencies and coverages for global precipitation given unlimited investment, broad international coordination in reconfiguring existing assets, and new satellite constellation design objectives informed directly by key global hydrologic forecasting requirements. Our research poses a step towards realizing the integrated global water cycle observatory long sought by the World Climate Research Programme, which has to date eluded the world's space agencies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.130..755K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.130..755K"><span>Impact of single-point GPS integrated water vapor estimates on short-range WRF model forecasts over southern India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kumar, Prashant; Gopalan, Kaushik; Shukla, Bipasha Paul; Shyam, Abhineet</p> <p>2017-11-01</p> <p>Specifying physically consistent and accurate initial conditions is one of the major challenges of numerical weather prediction (NWP) models. In this study, ground-based global positioning system (GPS) integrated water vapor (IWV) measurements available from the International Global Navigation Satellite Systems (GNSS) Service (IGS) station in Bangalore, India, are used to assess the impact of GPS data on NWP model forecasts over southern India. Two experiments are performed with and without assimilation of GPS-retrieved IWV observations during the Indian winter monsoon period (November-December, 2012) using a four-dimensional variational (4D-Var) data assimilation method. Assimilation of GPS data improved the model IWV analysis as well as the subsequent forecasts. There is a positive impact of ˜10 % over Bangalore and nearby regions. The Weather Research and Forecasting (WRF) model-predicted 24-h surface temperature forecasts have also improved when compared with observations. Small but significant improvements were found in the rainfall forecasts compared to control experiments.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......155L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......155L"><span>Rainfall and Extratropical Transition of Tropical Cyclones: Simulation, Prediction, and Projection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Maofeng</p> <p></p> <p>Rainfall and associated flood hazards are one of the major threats of tropical cyclones (TCs) to coastal and inland regions. The interaction of TCs with extratropical systems can lead to enhanced precipitation over enlarged areas through extratropical transition (ET). To achieve a comprehensive understanding of rainfall and ET associated with TCs, this thesis conducts weather-scale analyses by focusing on individual storms and climate-scale analyses by focusing on seasonal predictability and changing properties of climatology under global warming. The temporal and spatial rainfall evolution of individual storms, including Hurricane Irene (2011), Hurricane Hanna (2008), and Hurricane Sandy (2012), is explored using the Weather Research and Forecast (WRF) model and a variety of hydrometeorological datasets. ET and Orographic mechanism are two key players in the rainfall distribution of Irene over regions experiencing most severe flooding. The change of TC rainfall under global warming is explored with the Forecast-oriented Low Ocean Resolution (FLOR) climate model under representative concentration pathway (RCP) 4.5 scenario. Despite decreased TC frequency, FLOR projects increased landfalling TC rainfall over most regions of eastern United States, highlighting the risk of increased flood hazards. Increased storm rain rate is an important player of increased landfalling TC rainfall. A higher atmospheric resolution version of FLOR (HiFLOR) model projects increased TC rainfall at global scales. The increase of TC intensity and environmental water vapor content scaled by the Clausius-Clapeyron relation are two key factors that explain the projected increase of TC rainfall. Analyses on the simulation, prediction, and projection of the ET activity with FLOR are conducted in the North Atlantic. FLOR model exhibits good skills in simulating many aspects of present-day ET climatology. The 21st-century-projection under RCP4.5 scenario demonstrates the dominant role of ET events on the projected increase of TC frequency in the eastern North Atlantic, highlighting increased exposure of the northeastern United States and Western Europe to storm hazards. Retrospective seasonal forecast experiments demonstrate the skill of HiFLOR in predicting basinwide and regional ET frequency. This skill, however, is not seen in the seasonal prediction of ET rate. More work on the property of signal-to-noise ratio of ET rate is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27035953','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27035953"><span>Global fishery prospects under contrasting management regimes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C Kent; Hilborn, Ray; Melnychuk, Michael C; Branch, Trevor A; Gaines, Steven D; Szuwalski, Cody S; Cabral, Reniel B; Rader, Douglas N; Leland, Amanda</p> <p>2016-05-03</p> <p>Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous-the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world's fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.scirp.org/journal/PaperInformation.aspx?PaperID=43632#.Ux9OwPRDuVM','USGSPUBS'); return false;" href="http://www.scirp.org/journal/PaperInformation.aspx?PaperID=43632#.Ux9OwPRDuVM"><span>Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swain, Eric; Stefanova, Lydia; Smith, Thomas</p> <p>2014-01-01</p> <p>Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983844','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4983844"><span>Global fishery prospects under contrasting management regimes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Costello, Christopher; Ovando, Daniel; Clavelle, Tyler; Strauss, C. Kent; Hilborn, Ray; Melnychuk, Michael C.; Branch, Trevor A.; Gaines, Steven D.; Szuwalski, Cody S.; Cabral, Reniel B.; Rader, Douglas N.; Leland, Amanda</p> <p>2016-01-01</p> <p>Data from 4,713 fisheries worldwide, representing 78% of global reported fish catch, are analyzed to estimate the status, trends, and benefits of alternative approaches to recovering depleted fisheries. For each fishery, we estimate current biological status and forecast the impacts of contrasting management regimes on catch, profit, and biomass of fish in the sea. We estimate unique recovery targets and trajectories for each fishery, calculate the year-by-year effects of alternative recovery approaches, and model how alternative institutional reforms affect recovery outcomes. Current status is highly heterogeneous—the median fishery is in poor health (overfished, with further overfishing occurring), although 32% of fisheries are in good biological, although not necessarily economic, condition. Our business-as-usual scenario projects further divergence and continued collapse for many of the world’s fisheries. Applying sound management reforms to global fisheries in our dataset could generate annual increases exceeding 16 million metric tons (MMT) in catch, $53 billion in profit, and 619 MMT in biomass relative to business as usual. We also find that, with appropriate reforms, recovery can happen quickly, with the median fishery taking under 10 y to reach recovery targets. Our results show that commonsense reforms to fishery management would dramatically improve overall fish abundance while increasing food security and profits. PMID:27035953</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMetR..30..217Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMetR..30..217Y"><span>Development of a global historic monthly mean precipitation dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Su; Xu, Wenhui; Xu, Yan; Li, Qingxiang</p> <p>2016-04-01</p> <p>Global historic precipitation dataset is the base for climate and water cycle research. There have been several global historic land surface precipitation datasets developed by international data centers such as the US National Climatic Data Center (NCDC), European Climate Assessment & Dataset project team, Met Office, etc., but so far there are no such datasets developed by any research institute in China. In addition, each dataset has its own focus of study region, and the existing global precipitation datasets only contain sparse observational stations over China, which may result in uncertainties in East Asian precipitation studies. In order to take into account comprehensive historic information, users might need to employ two or more datasets. However, the non-uniform data formats, data units, station IDs, and so on add extra difficulties for users to exploit these datasets. For this reason, a complete historic precipitation dataset that takes advantages of various datasets has been developed and produced in the National Meteorological Information Center of China. Precipitation observations from 12 sources are aggregated, and the data formats, data units, and station IDs are unified. Duplicated stations with the same ID are identified, with duplicated observations removed. Consistency test, correlation coefficient test, significance t-test at the 95% confidence level, and significance F-test at the 95% confidence level are conducted first to ensure the data reliability. Only those datasets that satisfy all the above four criteria are integrated to produce the China Meteorological Administration global precipitation (CGP) historic precipitation dataset version 1.0. It contains observations at 31 thousand stations with 1.87 × 107 data records, among which 4152 time series of precipitation are longer than 100 yr. This dataset plays a critical role in climate research due to its advantages in large data volume and high density of station network, compared to other datasets. Using the Penalized Maximal t-test method, significant inhomogeneity has been detected in historic precipitation datasets at 340 stations. The ratio method is then employed to effectively remove these remarkable change points. Global precipitation analysis based on CGP v1.0 shows that rainfall has been increasing during 1901-2013 with an increasing rate of 3.52 ± 0.5 mm (10 yr)-1, slightly higher than that in the NCDC data. Analysis also reveals distinguished long-term changing trends at different latitude zones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930049771&hterms=skills&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dskills','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930049771&hterms=skills&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dskills"><span>An evaluation of the real-time tropical cyclone forecast skill of the Navy Operational Global Atmospheric Prediction System in the western North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fiorino, Michael; Goerss, James S.; Jensen, Jack J.; Harrison, Edward J., Jr.</p> <p>1993-01-01</p> <p>The paper evaluates the meteorological quality and operational utility of the Navy Operational Global Atmospheric Prediction System (NOGAPS) in forecasting tropical cyclones. It is shown that the model can provide useful predictions of motion and formation on a real-time basis in the western North Pacific. The meterological characteristics of the NOGAPS tropical cyclone predictions are evaluated by examining the formation of low-level cyclone systems in the tropics and vortex structure in the NOGAPS analysis and verifying 72-h forecasts. The adjusted NOGAPS track forecasts showed equitable skill to the baseline aid and the dynamical model. NOGAPS successfully predicted unusual equatorward turns for several straight-running cyclones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMIN23E..08O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMIN23E..08O"><span>Development of web-GIS system for analysis of georeferenced geophysical data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Okladnikov, I.; Gordov, E. P.; Titov, A. G.; Bogomolov, V. Y.; Genina, E.; Martynova, Y.; Shulgina, T. M.</p> <p>2012-12-01</p> <p>Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated web-GIS information-computational system for analysis of georeferenced climatological and meteorological data has been created. The information-computational system consists of 4 basic parts: computational kernel developed using GNU Data Language (GDL), a set of PHP-controllers run within specialized web-portal, JavaScript class libraries for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology, and an archive of geophysical datasets. Computational kernel comprises of a number of dedicated modules for querying and extraction of data, mathematical and statistical data analysis, visualization, and preparing output files in geoTIFF and netCDF format containing processing results. Specialized web-portal consists of a web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript libraries aiming at graphical user interface development are based on GeoExt library combining ExtJS Framework and OpenLayers software. The archive of geophysical data consists of a number of structured environmental datasets represented by data files in netCDF, HDF, GRIB, ESRI Shapefile formats. For processing by the system are available: two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others. The system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #07.514.114044), projects IV.31.1.5, IV.31.2.7, RFBR grants #10-07-00547a, #11-05-01190a, and integrated project SB RAS #131.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE.423L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE.423L"><span>Verification of FLYSAFE Clear Air Turbulence (CAT) objects against aircraft turbulence measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lunnon, R.; Gill, P.; Reid, L.; Mirza, A.</p> <p>2009-09-01</p> <p>Prediction of gridded CAT fields The main causes of CAT are (a) Vertical wind shear - low Richardson Number (b) Mountain waves (c) Convection. All three causes contribute roughly equally to CAT occurrences, globally Prediction of shear induced CAT The predictions of shear induced CAT has a longer history than either mountain-wave induced CAT or convectively induced CAT. Both Global Aviation Forecasting Centres are currently using the Ellrod TI1 algorithm (Ellrod and Knapp, 1992). This predictor is the scalar product of deformation [akm1]and vertical wind shear. More sophisticated algorithms can amplify errors in non-linear, differentiated quantities so it is very likely that Ellrod will out-perform other algorithms when verified globally. Prediction of mountain wave CAT The Global Aviation Forecasting Centre in the UK has been generating automated forecasts of mountain wave CAT since the late 1990s, based on the diagnosis of gravity wave drag. Generation of CAT objects In the FLYSAFE project it was decided at an early stage that short range forecasts of meteorological hazards, i.e. icing, Clear Air Turbulence, Cumulonimbus Clouds, should be represented as weather objects, that is, descriptions of individual hazardous volumes of airspace. For CAT, the forecast information on which the weather objects were based was gridded, that comprised a representation of a hazard level for all points in a pre-defined 3-D grid, for a range of forecast times. A "grid-to-objects" capability was generated. This is discussed further in Mirza and Drouin (this conference). Verification of CAT forecasts Verification was performed using digital accelerometer data from aircraft in the British Airways Boeing 747 fleet. A preliminary processing of the aircraft data were performed to generate a truth field on a scale similar to that used to provide gridded forecasts to airlines. This truth field was binary, i.e. each flight segment was characterised as being either "turbulent" or "benign". A gridded forecast field is a continuously changing variable. In contrast, a simple weather object must be characterised by a specific threshold. For a gridded forecast and a binary truth measure it is possible to generate Relative Operating Characteristic (ROC) curves. For weather objects, a single point in the hit-rate/false-alarm-rate space can be generated. If this point is plotted on a ROC curve graph then the skill of the forecast using weather objects can be compared with the skill of the gridded forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29760089','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29760089"><span>Uncertainty in forecasts of long-run economic growth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christensen, P; Gillingham, K; Nordhaus, W</p> <p>2018-05-22</p> <p>Forecasts of long-run economic growth are critical inputs into policy decisions being made today on the economy and the environment. Despite its importance, there is a sparse literature on long-run forecasts of economic growth and the uncertainty in such forecasts. This study presents comprehensive probabilistic long-run projections of global and regional per-capita economic growth rates, comparing estimates from an expert survey and a low-frequency econometric approach. Our primary results suggest a median 2010-2100 global growth rate in per-capita gross domestic product of 2.1% per year, with a standard deviation (SD) of 1.1 percentage points, indicating substantially higher uncertainty than is implied in existing forecasts. The larger range of growth rates implies a greater likelihood of extreme climate change outcomes than is currently assumed and has important implications for social insurance programs in the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H52C..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H52C..08S"><span>A Seamless Framework for Global Water Cycle Monitoring and Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.</p> <p>2013-12-01</p> <p>The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29403077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29403077"><span>Species co-occurrence analysis predicts management outcomes for multiple threats.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tulloch, Ayesha I T; Chadès, Iadine; Lindenmayer, David B</p> <p>2018-03-01</p> <p>Mitigating the impacts of global anthropogenic change on species is conservation's greatest challenge. Forecasting the effects of actions to mitigate threats is hampered by incomplete information on species' responses. We develop an approach to predict community restructuring under threat management, which combines models of responses to threats with network analyses of species co-occurrence. We discover that contributions by species to network co-occurrence predict their recovery under reduction of multiple threats. Highly connected species are likely to benefit more from threat management than poorly connected species. Importantly, we show that information from a few species on co-occurrence and expected responses to alternative threat management actions can be used to train a response model for an entire community. We use a unique management dataset for a threatened bird community to validate our predictions and, in doing so, demonstrate positive feedbacks in occurrence and co-occurrence resulting from shared threat management responses during ecosystem recovery.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..121e2061W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..121e2061W"><span>Forecast and analysis of the ratio of electric energy to terminal energy consumption for global energy internet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Wei; Zhong, Ming; Cheng, Ling; Jin, Lu; Shen, Si</p> <p>2018-02-01</p> <p>In the background of building global energy internet, it has both theoretical and realistic significance for forecasting and analysing the ratio of electric energy to terminal energy consumption. This paper firstly analysed the influencing factors of the ratio of electric energy to terminal energy and then used combination method to forecast and analyse the global proportion of electric energy. And then, construct the cointegration model for the proportion of electric energy by using influence factor such as electricity price index, GDP, economic structure, energy use efficiency and total population level. At last, this paper got prediction map of the proportion of electric energy by using the combination-forecasting model based on multiple linear regression method, trend analysis method, and variance-covariance method. This map describes the development trend of the proportion of electric energy in 2017-2050 and the proportion of electric energy in 2050 was analysed in detail using scenario analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A33J0302L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A33J0302L"><span>Spin-up simulation behaviors in a climate model to build a basement of long-time simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, J.; Xue, Y.; De Sales, F.</p> <p>2015-12-01</p> <p>It is essential to develop start-up information when conducting long-time climate simulation. In case that the initial condition is already available from the previous simulation of same type model this does not necessary; however, if not, model needs spin-up simulation to have adjusted and balanced initial condition with the model climatology. Otherwise, a severe spin may take several years. Some of model variables such as deep soil temperature fields and temperature in ocean deep layers in initial fields would affect model's further long-time simulation due to their long residual memories. To investigate the important factor for spin-up simulation in producing an atmospheric initial condition, we had conducted two different spin-up simulations when no atmospheric condition is available from exist datasets. One simulation employed atmospheric global circulation model (AGCM), namely Global Forecast System (GFS) of National Center for Environmental Prediction (NCEP), while the other employed atmosphere-ocean coupled global circulation model (CGCM), namely Climate Forecast System (CFS) of NCEP. Both models share the atmospheric modeling part and only difference is in applying of ocean model coupling, which is conducted by Modular Ocean Model version 4 (MOM4) of Geophysical Fluid Dynamics Laboratory (GFDL) in CFS. During a decade of spin-up simulation, prescribed sea-surface temperature (SST) fields of target year is forced to the GFS daily basis, while CFS digested only first time step ocean condition and freely iterated for the rest of the period. Both models were forced by CO2 condition and solar constant given from the target year. Our analyses of spin-up simulation results indicate that freely conducted interaction between the ocean and the atmosphere is more helpful to produce the initial condition for the target year rather than produced by fixed SST forcing. Since the GFS used prescribed forcing exactly given from the target year, this result is unexpected. The detail analysis will be discussed in this presentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030032926','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030032926"><span>A Global Aerosol Model Forecast for the ACE-Asia Field Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chin, Mian; Ginoux, Paul; Lucchesi, Robert; Huebert, Barry; Weber, Rodney; Anderson, Tad; Masonis, Sarah; Blomquist, Byron; Bandy, Alan; Thornton, Donald</p> <p>2003-01-01</p> <p>We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large-scale intercontinental transport, but also produce the small-scale spatial and temporal variations that are adequate for aircraft measurements planning.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970020739','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970020739"><span>The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo</p> <p>1997-01-01</p> <p>The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA263300','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA263300"><span>Meeting the Energy Challenges of the 1990s. Experts Define the Key Policy Issues.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-03-01</p> <p>Forecast of Low Emission Fuel Usage-Liquid 79 Fuels Figure 2.10: Forecast of Low Emission Fuel Usage- 81 Gaseous Fuels Figure 2.11: Global Warming From...environmental problems caused by acid rain, smog, and global warming , he said. According to Mr. Lovins, utilities as well as their customers benefit from...made in relation to these effects. The panel- ists addressed the links between global warming and the fossil fuels that now produce nearly 90 percent</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010112','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010112"><span>Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.</p> <p>2014-01-01</p> <p>Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable resolution to provide real-time, daily soil initialization data in place of data interpolated from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model soil moisture and temperature fields. Additionally, realtime green vegetation fraction (GVF) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite will be incorporated into the KMS-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service (NESDIS). Finally, model verification capabilities will be transitioned to KMS using the Model Evaluation Tools (MET; Brown et al. 2009) package in conjunction with a dynamic scripting package developed by SPoRT (Zavodsky et al. 2014), to help quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. Furthermore, the transition of these MET tools will enable KMS to monitor model forecast accuracy in near real time. This paper presents preliminary efforts to improve land surface model initialization over eastern Africa in support of operations at KMS. The remainder of this extended abstract is organized as follows: The collaborating organizations involved in the project are described in Section 2; background information on LIS and the configuration for eastern Africa is presented in Section 3; the WRF configuration used in this modeling experiment is described in Section 4; sample experimental WRF output with and without LIS initialization data are given in Section 5; a summary is given in Section 6 followed by acknowledgements and references.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.H23C1368G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.H23C1368G"><span>How to improve an un-alterable model forecast? A sequential data assimilation based error updating approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gragne, A. S.; Sharma, A.; Mehrotra, R.; Alfredsen, K. T.</p> <p>2012-12-01</p> <p>Accuracy of reservoir inflow forecasts is instrumental for maximizing value of water resources and influences operation of hydropower reservoirs significantly. Improving hourly reservoir inflow forecasts over a 24 hours lead-time is considered with the day-ahead (Elspot) market of the Nordic exchange market in perspectives. The procedure presented comprises of an error model added on top of an un-alterable constant parameter conceptual model, and a sequential data assimilation routine. The structure of the error model was investigated using freely available software for detecting mathematical relationships in a given dataset (EUREQA) and adopted to contain minimum complexity for computational reasons. As new streamflow data become available the extra information manifested in the discrepancies between measurements and conceptual model outputs are extracted and assimilated into the forecasting system recursively using Sequential Monte Carlo technique. Besides improving forecast skills significantly, the probabilistic inflow forecasts provided by the present approach entrains suitable information for reducing uncertainty in decision making processes related to hydropower systems operation. The potential of the current procedure for improving accuracy of inflow forecasts at lead-times unto 24 hours and its reliability in different seasons of the year will be illustrated and discussed thoroughly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190368','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190368"><span>A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Field, Edward; Jordan, Thomas H.; Page, Morgan T.; Milner, Kevin R.; Shaw, Bruce E.; Dawson, Timothy E.; Biasi, Glenn; Parsons, Thomas E.; Hardebeck, Jeanne L.; Michael, Andrew J.; Weldon, Ray; Powers, Peter; Johnson, Kaj M.; Zeng, Yuehua; Bird, Peter; Felzer, Karen; van der Elst, Nicholas; Madden, Christopher; Arrowsmith, Ramon; Werner, Maximillan J.; Thatcher, Wayne R.</p> <p>2017-01-01</p> <p>Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHyd..530..829Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHyd..530..829Y"><span>Artificial intelligence based models for stream-flow forecasting: 2000-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba</p> <p>2015-11-01</p> <p>The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.nco.ncep.noaa.gov/pmb/products','SCIGOVWS'); return false;" href="http://www.nco.ncep.noaa.gov/pmb/products"><span>NCEP Data Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p><em>Image</em> of NCEP Logo WHERE AMERICA'S CLIMATE AND WEATHER SERVICES BEGIN Inventory of Data <em>Products</em> on Generated <em>Products</em> <em>Image</em> of horizontal rule Global Forecast System (GFS) GFS Ensemble Forecast System (GEFS of horizontal rule External <em>Products</em> <em>Image</em> of horizontal rule Canadian Ensemble Forecast System</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020083041&hterms=global+water+issues&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dglobal%2Bwater%2Bissues','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020083041&hterms=global+water+issues&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dglobal%2Bwater%2Bissues"><span>Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Eric A.; Starr, David OC. (Technical Monitor)</p> <p>2002-01-01</p> <p>In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27450767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27450767"><span>Human-model hybrid Korean air quality forecasting system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun</p> <p>2016-09-01</p> <p>The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the national forecasting be improved. In this study, we investigated the problems in the current forecasting as well as various alternatives to solve the problems. Such efforts to improve the accuracy of the forecast are expected to contribute to the protection of public health by increasing the availability of the forecast system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130008574','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130008574"><span>Global Modeling and Assimilation Office Annual Report and Research Highlights 2011-2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rienecker, Michele M.</p> <p>2012-01-01</p> <p>Over the last year, the Global Modeling and Assimilation Office (GMAO) has continued to advance our GEOS-5-based systems, updating products for both weather and climate applications. We contributed hindcasts and forecasts to the National Multi-Model Ensemble (NMME) of seasonal forecasts and the suite of decadal predictions to the Coupled Model Intercomparison Project (CMIP5).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMDD....8.1117E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMDD....8.1117E"><span>Validation of reactive gases and aerosols in the MACC global analysis and forecast system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eskes, H.; Huijnen, V.; Arola, A.; Benedictow, A.; Blechschmidt, A.-M.; Botek, E.; Boucher, O.; Bouarar, I.; Chabrillat, S.; Cuevas, E.; Engelen, R.; Flentje, H.; Gaudel, A.; Griesfeller, J.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Kinne, S.; Langerock, B.; Razinger, M.; Richter, A.; Schultz, M.; Schulz, M.; Sudarchikova, N.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.</p> <p>2015-02-01</p> <p>The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in-situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols and greenhouse gases, and is based on the Integrated Forecast System of the ECMWF. The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past three years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCC...7..875H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCC...7..875H"><span>Recently amplified arctic warming has contributed to a continual global warming trend</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong</p> <p>2017-12-01</p> <p>The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28239235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28239235"><span>Quality-control of an hourly rainfall dataset and climatology of extremes for the UK.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Blenkinsop, Stephen; Lewis, Elizabeth; Chan, Steven C; Fowler, Hayley J</p> <p>2017-02-01</p> <p>Sub-daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non-operation of gauges. Given the prospect of an intensification of short-duration rainfall in a warming climate, the identification of such errors is essential if sub-daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near-complete hourly records for 1992-2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n-largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north-south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub-daily rainfall, with convection dominating during summer. The resulting quality-controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality-control procedures for sub-daily data, the validation of the new generation of very high-resolution climate models and improved understanding of the drivers of extreme rainfall.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..549..667W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..549..667W"><span>Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wongchuig Correa, Sly; Paiva, Rodrigo Cauduro Dias de; Espinoza, Jhan Carlo; Collischonn, Walter</p> <p>2017-06-01</p> <p>Recently developed methodologies such as climate reanalysis make it possible to create a historical record of climate systems. This paper proposes a methodology called Hydrological Retrospective (HR), which essentially simulates large rainfall datasets, using this as input into hydrological models to develop a record of past hydrology, making it possible to analyze past floods and droughts. We developed a methodology for the Amazon basin, where studies have shown an increase in the intensity and frequency of hydrological extreme events in recent decades. We used eight large precipitation datasets (more than 30 years) as input for a large scale hydrological and hydrodynamic model (MGB-IPH). HR products were then validated against several in situ discharge gauges controlling the main Amazon sub-basins, focusing on maximum and minimum events. For the most accurate HR, based on performance metrics, we performed a forecast skill of HR to detect floods and droughts, comparing the results with in-situ observations. A statistical temporal series trend was performed for intensity of seasonal floods and droughts in the entire Amazon basin. Results indicate that HR could represent most past extreme events well, compared with in-situ observed data, and was consistent with many events reported in literature. Because of their flow duration, some minor regional events were not reported in literature but were captured by HR. To represent past regional hydrology and seasonal hydrological extreme events, we believe it is feasible to use some large precipitation datasets such as i) climate reanalysis, which is mainly based on a land surface component, and ii) datasets based on merged products. A significant upward trend in intensity was seen in maximum annual discharge (related to floods) in western and northwestern regions and for minimum annual discharge (related to droughts) in south and central-south regions of the Amazon basin. Because of the global coverage of rainfall datasets, this methodology can be transferred to other regions for better estimation of future hydrological behavior and its impact on society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5300158','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5300158"><span>Quality‐control of an hourly rainfall dataset and climatology of extremes for the UK</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lewis, Elizabeth; Chan, Steven C.; Fowler, Hayley J.</p> <p>2016-01-01</p> <p>ABSTRACT Sub‐daily rainfall extremes may be associated with flash flooding, particularly in urban areas but, compared with extremes on daily timescales, have been relatively little studied in many regions. This paper describes a new, hourly rainfall dataset for the UK based on ∼1600 rain gauges from three different data sources. This includes tipping bucket rain gauge data from the UK Environment Agency (EA), which has been collected for operational purposes, principally flood forecasting. Significant problems in the use of such data for the analysis of extreme events include the recording of accumulated totals, high frequency bucket tips, rain gauge recording errors and the non‐operation of gauges. Given the prospect of an intensification of short‐duration rainfall in a warming climate, the identification of such errors is essential if sub‐daily datasets are to be used to better understand extreme events. We therefore first describe a series of procedures developed to quality control this new dataset. We then analyse ∼380 gauges with near‐complete hourly records for 1992–2011 and map the seasonal climatology of intense rainfall based on UK hourly extremes using annual maxima, n‐largest events and fixed threshold approaches. We find that the highest frequencies and intensities of hourly extreme rainfall occur during summer when the usual orographically defined pattern of extreme rainfall is replaced by a weaker, north–south pattern. A strong diurnal cycle in hourly extremes, peaking in late afternoon to early evening, is also identified in summer and, for some areas, in spring. This likely reflects the different mechanisms that generate sub‐daily rainfall, with convection dominating during summer. The resulting quality‐controlled hourly rainfall dataset will provide considerable value in several contexts, including the development of standard, globally applicable quality‐control procedures for sub‐daily data, the validation of the new generation of very high‐resolution climate models and improved understanding of the drivers of extreme rainfall. PMID:28239235</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H41G1534F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H41G1534F"><span>Scaling up: What coupled land-atmosphere models can tell us about critical zone processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>FitzGerald, K. A.; Masarik, M. T.; Rudisill, W. J.; Gelb, L.; Flores, A. N.</p> <p>2017-12-01</p> <p>A significant limitation to extending our knowledge of critical zone (CZ) evolution and function is a lack of hydrometeorological information at sufficiently fine spatial and temporal resolutions to resolve topo-climatic gradients and adequate spatial and temporal extent to capture a range of climatic conditions across ecoregions. Research at critical zone observatories (CZOs) suggests hydrometeorological stores and fluxes exert key controls on processes such as hydrologic partitioning and runoff generation, landscape evolution, soil formation, biogeochemical cycling, and vegetation dynamics. However, advancing fundamental understanding of CZ processes necessitates understanding how hydrometeorological drivers vary across space and time. As a result of recent advances in computational capabilities it has become possible, although still computationally expensive, to simulate hydrometeorological conditions via high resolution coupled land-atmosphere models. Using the Weather Research and Forecasting (WRF) model, we developed a high spatiotemporal resolution dataset extending from water year 1987 to present for the Snake River Basin in the northwestern USA including the Reynolds Creek and Dry Creek Experimental Watersheds, both part of the Reynolds Creek CZO, as well as a range of other ecosystems including shrubland desert, montane forests, and alpine tundra. Drawing from hypotheses generated by work at these sites and across the CZO network, we use the resulting dataset in combination with CZO observations and publically available datasets to provide insights regarding hydrologic partitioning, vegetation distribution, and erosional processes. This dataset provides key context in interpreting and reconciling what observations obtained at particular sites reveal about underlying CZ structure and function. While this dataset does not extend to future climates, the same modeling framework can be used to dynamically downscale coarse global climate model output to scales relevant to CZ processes. This presents an opportunity to better characterize the impact of climate change on the CZ. We also argue that opportunities exist beyond the one way flow of information and that what we learn at CZOs has the potential to contribute significantly to improved Earth system models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913698C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913698C"><span>Simple statistical bias correction techniques greatly improve moderate resolution air quality forecast at station level</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curci, Gabriele; Falasca, Serena</p> <p>2017-04-01</p> <p>Deterministic air quality forecast is routinely carried out at many local Environmental Agencies in Europe and throughout the world by means of eulerian chemistry-transport models. The skill of these models in predicting the ground-level concentrations of relevant pollutants (ozone, nitrogen dioxide, particulate matter) a few days ahead has greatly improved in recent years, but it is not yet always compliant with the required quality level for decision making (e.g. the European Commission has set a maximum uncertainty of 50% on daily values of relevant pollutants). Post-processing of deterministic model output is thus still regarded as a useful tool to make the forecast more reliable. In this work, we test several bias correction techniques applied to a long-term dataset of air quality forecasts over Europe and Italy. We used the WRF-CHIMERE modelling system, which provides operational experimental chemical weather forecast at CETEMPS (http://pumpkin.aquila.infn.it/forechem/), to simulate the years 2008-2012 at low resolution over Europe (0.5° x 0.5°) and moderate resolution over Italy (0.15° x 0.15°). We compared the simulated dataset with available observation from the European Environmental Agency database (AirBase) and characterized model skill and compliance with EU legislation using the Delta tool from FAIRMODE project (http://fairmode.jrc.ec.europa.eu/). The bias correction techniques adopted are, in order of complexity: (1) application of multiplicative factors calculated as the ratio of model-to-observed concentrations averaged over the previous days; (2) correction of the statistical distribution of model forecasts, in order to make it similar to that of the observations; (3) development and application of Model Output Statistics (MOS) regression equations. We illustrate differences and advantages/disadvantages of the three approaches. All the methods are relatively easy to implement for other modelling systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......320S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......320S"><span>An Assessment of the Subseasonal Predictability of Severe Thunderstorm Environments and Activity using the Climate Forecast System Version 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepanek, Adam J.</p> <p></p> <p>The prospect for skillful long-term predictions of atmospheric conditions known to directly contribute to the onset and maintenance of severe convective storms remains unclear. A thorough assessment of the capability for a global climate model such as the Climate Forecast System Version 2 (CFSv2) to skillfully represent parameters related to severe weather has the potential to significantly improve medium- to long-range outlooks vital to risk managers. Environmental convective available potential energy (CAPE) and deep-layer vertical wind shear (DLS) can be used to distinguish an atmosphere conducive to severe storms from one supportive of primarily non-severe 'ordinary' convection. As such, this research concentrates on the predictability of CAPE, DLS, and a product of the two parameters (CAPEDLS) by the CFSv2 with a specific focus on the subseasonal timescale. Individual month-long verification periods from the Climate Forecast System reanalysis (CFSR) dataset are measured against a climatological standard using cumulative distribution function (CDF) and area-under-the-CDF (AUCDF) techniques designed mitigate inherent model biases while concurrently assessing the entire distribution of a given parameter in lieu of a threshold-based approach. Similar methods imposed upon the CFS reforecast (CFSRef) and operational CFSv2 allow for comparisons elucidating both spatial and temporal trends in skill using correlation coefficients, proportion correct metrics, Heidke skill score (HSS), and root-mean-square-error (RMSE) statistics. Key results show the CFSv2-based output often demonstrates skill beyond a climatologically-based threshold when the forecast is notably anomalous from the 29-year (1982-2010) mean CFSRef prediction (exceeding one standard deviation at grid point level). CFSRef analysis indicates enhanced skill during the months of April and June (relative to May) and for predictions of DLS. Furthermore, years exhibiting skill in terms of RMSE are shown to possess certain correlations with El Nino-Southern Oscillation conditions from the preceding winter and concurrent Madden Julian Oscillation activity. Applying results gleaned from the CFSRef analysis to the operational CFSv2 (2011-16) indicates predictive skill can be increased by isolating forecasts meeting multiple parameter-based relationships.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H44E..08W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H44E..08W"><span>The potential of remotely sensed soil moisture for operational flood forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wanders, N.; Karssenberg, D.; de Roo, A.; de Jong, S.; Bierkens, M. F.</p> <p>2013-12-01</p> <p>Nowadays, remotely sensed soil moisture is readily available from multiple space born sensors. The high temporal resolution and global coverage make these products very suitable for large-scale land-surface applications. The potential to use these products in operational flood forecasting has thus far not been extensively studied. In this study, we evaluate the added value of assimilated remotely sensed soil moisture for the European Flood Awareness System (EFAS) and its potential to improve the timing and height of the flood peak and low flows. EFAS is used for operational flood forecasting in Europe and uses a distributed hydrological model for flood predictions for lead times up to 10 days. Satellite-derived soil moisture from ASCAT, AMSR-E and SMOS is assimilated into the EFAS system for the Upper Danube basin and results are compared to assimilation of only discharge observations. Discharge observations are available at the outlet and at six additional locations throughout the catchment. To assimilate soil moisture data into EFAS, an Ensemble Kalman Filter (EnKF) is used. Information on the spatial (cross-) correlation of the errors in the satellite products, derived from a detailed model-satellite soil moisture comparison study, is included to ensure optimal performance of the EnKF. For the validation, additional discharge observations not used in the EnKF are used as an independent validation dataset. Our results show that the accuracy of flood forecasts is increased when more discharge observations are used in that the Mean Absolute Error (MAE) of the ensemble mean is reduced by 65%. The additional inclusion of satellite data results in a further increase of the performance: forecasts of base flows are better and the uncertainty in the overall discharge is reduced, shown by a 10% reduction in the MAE. In addition, floods are predicted with a higher accuracy and the Continuous Ranked Probability Score (CRPS) shows a performance increase of 10-15% on average, compared to assimilation of discharge only. The rank histograms show that the forecast is not biased. The timing errors in the flood predictions are decreased when soil moisture data is used and imminent floods can be forecasted with skill one day earlier. In conclusion, our study shows that assimilation of satellite soil moisture increases the performance of flood forecasting systems for large catchments, like the Upper Danube. The additional gain is highest when discharge observations from both upstream and downstream areas are used in combination with the soil moisture data. These results show the potential of future soil moisture missions with a higher spatial resolution like SMAP to improve near-real time flood forecasting in large catchments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21B0708V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21B0708V"><span>Model-free aftershock forecasts constructed from similar sequences in the past</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Elst, N.; Page, M. T.</p> <p>2017-12-01</p> <p>The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity forecast may be useful to emergency managers and non-specialists when confidence or expertise in parametric forecasting may be lacking. The method makes over-tuning impossible, and minimizes the rate of surprises. At the least, this forecast constitutes a useful benchmark for more precisely tuned parametric forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1441212-evaluation-regression-neural-network-models-solar-forecasting-over-different-short-term-horizons','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1441212-evaluation-regression-neural-network-models-solar-forecasting-over-different-short-term-horizons"><span>Evaluation of regression and neural network models for solar forecasting over different short-term horizons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas</p> <p>2018-04-13</p> <p>Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1441212-evaluation-regression-neural-network-models-solar-forecasting-over-different-short-term-horizons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1441212-evaluation-regression-neural-network-models-solar-forecasting-over-different-short-term-horizons"><span>Evaluation of regression and neural network models for solar forecasting over different short-term horizons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Inanlouganji, Alireza; Reddy, T. Agami; Katipamula, Srinivas</p> <p></p> <p>Forecasting solar irradiation has acquired immense importance in view of the exponential increase in the number of solar photovoltaic (PV) system installations. In this article, analyses results involving statistical and machine-learning techniques to predict solar irradiation for different forecasting horizons are reported. Yearlong typical meteorological year 3 (TMY3) datasets from three cities in the United States with different climatic conditions have been used in this analysis. A simple forecast approach that assumes consecutive days to be identical serves as a baseline model to compare forecasting alternatives. To account for seasonal variability and to capture short-term fluctuations, different variants of themore » lagged moving average (LMX) model with cloud cover as the input variable are evaluated. Finally, the proposed LMX model is evaluated against an artificial neural network (ANN) model. How the one-hour and 24-hour models can be used in conjunction to predict different short-term rolling horizons is discussed, and this joint application is illustrated for a four-hour rolling horizon forecast scheme. Lastly, the effect of using predicted cloud cover values, instead of measured ones, on the accuracy of the models is assessed. Results show that LMX models do not degrade in forecast accuracy if models are trained with the forecast cloud cover data.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC11B1139X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC11B1139X"><span>Precipitation forecast verification over Brazilian watersheds on present and future climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xavier, L.; Bruyere, C. L.; Rotunno, O.</p> <p>2016-12-01</p> <p>Evaluating the quality of precipitation forecast is an essential step for hydrological studies, among other applications, which is particularly relevant when taking into account climate change and the consequent likely modification of precipitation patterns. In this study we analyzed daily precipitation forecasts given by the global model CESM and the regional model WRF on present and future climate. For present runs, CESM data have been considered from 1980 to 2005, and WRF data from 1990 to 2000. CESM future runs were available for 3 RCP scenarios (4.5, 6.0 and 8.5), over 2005-2100 period; for WRF, future runs spanned 4 different 11-year periods (2020-2030, 2030-2040, 2050-2060 and 2080-2090). WRF simulations had been driven by bias-corrected forcings, and had been done on present climate for a 24 members ensemble created by varying the adopted parameterization schemes. On WRF future climate simulations, data from 3 members out of the original ensemble were available. Precipitation data have been spatially averaged over some large Brazilian watersheds (Amazon and subbasins, Tocantins, Sao Francisco, 4 of Parana`s subbasins) and have been evaluated for present climate against a gauge gridded dataset and ERA Interim data both spanning the 1980-2013 period. The evaluation was focused on the analysis of precipitation forecasts probabilities distribution. Taking into account daily and monthly mean precipitation aggregated on 3-month periods (DJF,MAM,JJA,SON), we adopted some skill measures, amongst them, the Perkins Skill Score (PSS). From the results we verified that on present climate WRF ensemble mean led to clearly better results when compared with CESM data for Amazon, Tocantins and Sao Francisco, but model was not as skillful to the other basins, which could be also been observed for future climate. PSS results from future runs showed that few changes would be observed over the different periods for the considered basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996BAMS...77..305D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996BAMS...77..305D"><span>Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dabberdt, Walter F.; Schlatter, Thomas W.</p> <p>1996-02-01</p> <p>The Second Prospectus Development Team (PDT-2) of the U.S. Weather Research Program was charged with identifying research opportunities that are best matched to emerging operational and experimental measurement and modeling methods. The overarching recommendation of PDT-2 is that inputs for weather forecast models can best be obtained through the use of composite observing systems together with adaptive (or targeted) observing strategies employing both in situ and remote sensing. Optimal observing systems and strategies are best determined through a three-part process: observing system simulation experiments, pilot field measurement programs, and model-assisted data sensitivity experiments. Furthermore, the mesoscale research community needs easy and timely access to the new operational and research datasets in a form that can readily be reformatted into existing software packages for analysis and display. The value of these data is diminished to the extent that they remain inaccessible.The composite observing system of the future must combine synoptic observations, routine mobile observations, and targeted observations, as the current or forecast situation dictates. High costs demand fuller exploitation of commercial aircraft, meteorological and navigation [Global Positioning System (GPS)] satellites, and Doppler radar. Single observing systems must be assessed in the context of a composite system that provides complementary information. Maintenance of the current North American rawinsonde network is critical for progress in both research-oriented and operational weather forecasting.Adaptive sampling strategies are designed to improve large-scale and regional weather prediction but they will also improve diagnosis and prediction of flash flooding, air pollution, forest fire management, and other environmental emergencies. Adaptive measurements can be made by piloted or unpiloted aircraft. Rawinsondes can be launched and satellites can be programmed to make adaptive observations at special times or in specific regions. PDT-2 specifically recommends the following forms of data gathering: a pilot field and modeling study should be designed and executed to assess the benefit of adaptive observations over the eastern Pacific for mesoscale forecasts over the contiguous United</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A33A0165H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A33A0165H"><span>Testing a Coupled Global-limited-area Data Assimilation System using Observations from the 2004 Pacific Typhoon Season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holt, C. R.; Szunyogh, I.; Gyarmati, G.; Hoffman, R. N.; Leidner, M.</p> <p>2011-12-01</p> <p>Tropical cyclone (TC) track and intensity forecasts have improved in recent years due to increased model resolution, improved data assimilation, and the rapid increase in the number of routinely assimilated observations over oceans. The data assimilation approach that has received the most attention in recent years is Ensemble Kalman Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the error statistics, which can have important benefits for the analysis of rapidly developing TCs. We implement the Local Ensemble Transform Kalman Filter algorithm, a vari- ation of the EnKF, on a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP Regional Spectral Model (RSM) to build a coupled global-limited area anal- ysis/forecast system. This is the first time, to our knowledge, that such a system is used for the analysis and forecast of tropical cyclones. We use data from summer 2004 to study eight tropical cyclones in the Northwest Pacific. The benchmark data sets that we use to assess the performance of our system are the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These benchmark analyses were both obtained by the Statistical Spectral Interpolation, which was the operational data assimilation system of NCEP in 2004. The GFS Operational analysis assimilated a large number of satellite radiance observations in addition to the observations assimilated in our system. All analyses are verified against the Joint Typhoon Warning Center Best Track data set. The errors are calculated for the position and intensity of the TCs. The global component of the ensemble-based system shows improvement in po- sition analysis over the NCEP Reanalysis, but shows no significant difference from the NCEP operational analysis for most of the storm tracks. The regional com- ponent of our system improves position analysis over all the global analyses. The intensity analyses, measured by the minimum sea level pressure, are of similar quality in all of the analyses. Regional deterministic forecasts started from our analyses are generally not significantly different from those started from the GFS operational analysis. On average, the regional experiments performed better for longer than 48 h sea level pressure forecasts, while the global forecast performed better in predicting the position for longer than 48 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28608851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28608851"><span>A global dataset of crowdsourced land cover and land use reference data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael</p> <p>2017-06-13</p> <p>Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5469313','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5469313"><span>A global dataset of crowdsourced land cover and land use reference data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael</p> <p>2017-01-01</p> <p>Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.5201R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.5201R"><span>SMOS near-real-time soil moisture product: processor overview and first validation results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rodríguez-Fernández, Nemesio J.; Muñoz Sabater, Joaquin; Richaume, Philippe; de Rosnay, Patricia; Kerr, Yann H.; Albergel, Clement; Drusch, Matthias; Mecklenburg, Susanne</p> <p>2017-10-01</p> <p>Measurements of the surface soil moisture (SM) content are important for a wide range of applications. Among them, operational hydrology and numerical weather prediction, for instance, need SM information in near-real-time (NRT), typically not later than 3 h after sensing. The European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite is the first mission specifically designed to measure SM from space. The ESA Level 2 SM retrieval algorithm is based on a detailed geophysical modelling and cannot provide SM in NRT. This paper presents the new ESA SMOS NRT SM product. It uses a neural network (NN) to provide SM in NRT. The NN inputs are SMOS brightness temperatures for horizontal and vertical polarizations and incidence angles from 30 to 45°. In addition, the NN uses surface soil temperature from the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The NN was trained on SMOS Level 2 (L2) SM. The swath of the NRT SM retrieval is somewhat narrower (˜ 915 km) than that of the L2 SM dataset (˜ 1150 km), which implies a slightly lower revisit time. The new SMOS NRT SM product was compared to the SMOS Level 2 SM product. The NRT SM data show a standard deviation of the difference with respect to the L2 data of < 0.05 m3 m-3 in most of the Earth and a Pearson correlation coefficient higher than 0.7 in large regions of the globe. The NRT SM dataset does not show a global bias with respect to the L2 dataset but can show local biases of up to 0.05 m3 m-3 in absolute value. The two SMOS SM products were evaluated against in situ measurements of SM from more than 120 sites of the SCAN (Soil Climate Analysis Network) and the USCRN (US Climate Reference Network) networks in North America. The NRT dataset obtains similar but slightly better results than the L2 data. In summary, the NN SMOS NRT SM product exhibits performances similar to those of the Level 2 SM product but it has the advantage of being available in less than 3.5 h after sensing, complying with NRT requirements. The new product is processed at ECMWF and it is distributed by ESA and via the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) multicast service (EUMETCast).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040081366&hterms=seasonal+forecast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dseasonal%2Bforecast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040081366&hterms=seasonal+forecast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dseasonal%2Bforecast"><span>Alternative Approaches to Land Initialization for Seasonal Precipitation and Temperature Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koster, Randal; Suarez, Max; Liu, Ping; Jambor, Urszula</p> <p>2004-01-01</p> <p>The seasonal prediction system of the NASA Global Modeling and Assimilation Office is used to generate ensembles of summer forecasts utilizing realistic soil moisture initialization. To derive the realistic land states, we drive offline the system's land model with realistic meteorological forcing over the period 1979-1993 (in cooperation with the Global Land Data Assimilation System project at GSFC) and then extract the state variables' values on the chosen forecast start dates. A parallel series of forecast ensembles is performed with a random (though climatologically consistent) set of land initial conditions; by comparing the two sets of ensembles, we can isolate the impact of land initialization on forecast skill from that of the imposed SSTs. The base initialization experiment is supplemented with several forecast ensembles that use alternative initialization techniques. One ensemble addresses the impact of minimizing climate drift in the system through the scaling of the initial conditions, and another is designed to isolate the importance of the precipitation signal from that of all other signals in the antecedent offline forcing. A third ensemble includes a more realistic initialization of the atmosphere along with the land initialization. The impact of each variation on forecast skill is quantified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110023008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110023008"><span>Regional Model Nesting Within GFS Daily Forecasts Over West Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Druyan, Leonard M.; Fulakeza, Matthew; Lonergan, Patrick; Worrell, Ruben</p> <p>2010-01-01</p> <p>The study uses the RM3, the regional climate model at the Center for Climate Systems Research of Columbia University and the NASA/Goddard Institute for Space Studies (CCSR/GISS). The paper evaluates 30 48-hour RM3 weather forecasts over West Africa during September 2006 made on a 0.5 grid nested within 1 Global Forecast System (GFS) global forecasts. September 2006 was the Special Observing Period #3 of the African Monsoon Multidisciplinary Analysis (AMMA). Archived GFS initial conditions and lateral boundary conditions for the simulations from the US National Weather Service, National Oceanographic and Atmospheric Administration were interpolated four times daily. Results for precipitation forecasts are validated against Tropical Rainfall Measurement Mission (TRMM) satellite estimates and data from the Famine Early Warning System (FEWS), which includes rain gauge measurements, and forecasts of circulation are compared to reanalysis 2. Performance statistics for the precipitation forecasts include bias, root-mean-square errors and spatial correlation coefficients. The nested regional model forecasts are compared to GFS forecasts to gauge whether nesting provides additional realistic information. They are also compared to RM3 simulations driven by reanalysis 2, representing high potential skill forecasts, to gauge the sensitivity of results to lateral boundary conditions. Nested RM3/GFS forecasts generate excessive moisture advection toward West Africa, which in turn causes prodigious amounts of model precipitation. This problem is corrected by empirical adjustments in the preparation of lateral boundary conditions and initial conditions. The resulting modified simulations improve on the GFS precipitation forecasts, achieving time-space correlations with TRMM of 0.77 on the first day and 0.63 on the second day. One realtime RM3/GFS precipitation forecast made at and posted by the African Centre of Meteorological Application for Development (ACMAD) in Niamey, Niger is shown.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1247462','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1247462"><span>Final Report on the Creation of the Wind Integration National Dataset (WIND) Toolkit and API: October 1, 2013 - September 30, 2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hodge, Bri-Mathias</p> <p>2016-04-08</p> <p>The primary objective of this work was to create a state-of-the-art national wind resource data set and to provide detailed wind plant output data for specific sites based on that data set. Corresponding retrospective wind forecasts were also included at all selected locations. The combined information from these activities was used to create the Wind Integration National Dataset (WIND), and an extraction tool was developed to allow web-based data access.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31K..03I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31K..03I"><span>Assessment of Forecast Sensitivity to Observation and Its Application to Satellite Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ide, K.</p> <p>2017-12-01</p> <p>The Forecast sensitivity to observation provides practical and useful metric for the assessment of observation impact without conducting computationally intensive data denial experiments. Quite often complex data assimilation systems use a simplified version of the forecast sensitivity formulation based on ensembles. In this talk, we first present the comparison of forecast sensitivity for 4DVar, Hybrid-4DEnVar, and 4DEnKF with or without such simplifications using a highly nonlinear model. We then present the results of ensemble forecast sensitivity to satellite radiance observations for Hybrid-4DEnVart using NOAA's Global Forecast System.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015GMD.....8.3947E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015GMD.....8.3947E"><span>A global empirical system for probabilistic seasonal climate prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.</p> <p>2015-12-01</p> <p>Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/54388','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/54388"><span>Impact of Brexit on the forest products industry of the United Kingdom and the rest of the world</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Craig M. T. Johnston; Joseph Buongiorno</p> <p>2016-01-01</p> <p>The Global Forest Products Model was applied to forecast the effect of Brexit on the global forest products industry to2003 under two scenarios; an optimistic and pessimistic future storyline regarding the potential economic effect of Brexit. The forecasts integrated a range of gross domestic product growth rates using an average of the optimistic and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870020563','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870020563"><span>Five year global dataset: NMC operational analyses (1978 to 1982)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Straus, David; Ardizzone, Joseph</p> <p>1987-01-01</p> <p>This document describes procedures used in assembling a five year dataset (1978 to 1982) using NMC Operational Analysis data. These procedures entailed replacing missing and unacceptable data in order to arrive at a complete dataset that is continuous in time. In addition, a subjective assessment on the integrity of all data (both preliminary and final) is presented. Documentation on tapes comprising the Five Year Global Dataset is also included.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7089P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7089P"><span>The impact of convection in the West African monsoon region on global weather forecasts - explicit vs. parameterised convection simulations using the ICON model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pante, Gregor; Knippertz, Peter</p> <p>2017-04-01</p> <p>The West African monsoon is the driving element of weather and climate during summer in the Sahel region. It interacts with mesoscale convective systems (MCSs) and the African easterly jet and African easterly waves. Poor representation of convection in numerical models, particularly its organisation on the mesoscale, can result in unrealistic forecasts of the monsoon dynamics. Arguably, the parameterisation of convection is one of the main deficiencies in models over this region. Overall, this has negative impacts on forecasts over West Africa itself but may also affect remote regions, as waves originating from convective heating are badly represented. Here we investigate those remote forecast impacts based on daily initialised 10-day forecasts for July 2016 using the ICON model. One set of simulations employs the default setup of the global model with a horizontal grid spacing of 13 km. It is compared with simulations using the 2-way nesting capability of ICON. A second model domain over West Africa (the nest) with 6.5 km grid spacing is sufficient to explicitly resolve MCSs in this region. In the 2-way nested simulations, the prognostic variables of the global model are influenced by the results of the nest through relaxation. The nest with explicit convection is able to reproduce single MCSs much more realistically compared to the stand-alone global simulation with parameterised convection. Explicit convection leads to cooler temperatures in the lower troposphere (below 500 hPa) over the northern Sahel due to stronger evaporational cooling. Overall, the feedback of dynamic variables from the nest to the global model shows clear positive effects when evaluating the output of the global domain of the 2-way nesting simulation and the output of the stand-alone global model with ERA-Interim re-analyses. Averaged over the 2-way nested region, bias and root mean squared error (RMSE) of temperature, geopotential, wind and relative humidity are significantly reduced in the lower troposphere. Outside Africa over the Atlantic or in Europe the effect of the 2-way nesting becomes visible after some days of simulation. The changes in error measures are not as clear as in the nesting region itself but still improvements for some variables at different altitudes are evident, most likely due to a better representation of African easterly waves and Rossby waves. This work shows the importance of the West African region for global weather forecasts and the potential of convective permitting modelling in this region to improve the forecasts even far away from Africa in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH23E2816S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH23E2816S"><span>Nowcasting, forecasting and hindcasting Harvey and Irma inundation in near-real time using a continental 2D hydrodynamic model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sampson, C. C.; Wing, O.; Quinn, N.; Smith, A.; Neal, J. C.; Schumann, G.; Bates, P.</p> <p>2017-12-01</p> <p>During an ongoing natural disaster data are required on: (1) the current situation (nowcast); (2) its likely immediate evolution (forecast); and (3) a consistent view post-event of what actually happened (hindcast or reanalysis). We describe methods used to achieve all three tasks for flood inundation during the Harvey and Irma events using a continental scale 2D hydrodynamic model (Wing et al., 2017). The model solves the local inertial form of the Shallow Water equations over a regular grid of 1 arcsecond ( 30m). Terrain data are taken from the USGS National Elevation Dataset with known flood defences represented using the U.S. Army Corps of Engineers National Levee Dataset. Channels are treated as sub-grid scale features using the HydroSHEDS global hydrography data set. The model is driven using river flows, rainfall and coastal water levels. It simulates river flooding in basins > 50 km2, and fluvial and coastal flooding everywhere. Previous wide area validation tests show this model to be capable of matching FEMA maps and USGS local models built with bespoke data with hit rates of 86% and 92% respectively (Wing et al., 2017). Boundary conditions were taken from NOAA QPS data to produce nowcast and forecast simulations in near real time, before updating with NOAA observations to produce the hindcast. During the event simulation results were supplied to major insurers and multi-nationals who used them to estimate their likely capital exposure and to mitigate flood damage to their infrastructure whilst the event was underway. Simulations were validated against modelled flood footprints computed by FEMA and USACE, and composite satellite imagery produced by the Dartmouth Flood Observatory. For the Harvey event, hit rates ranged from 60-84% against these data sources, but a lack of metadata meant it was difficult to perform like-for-like comparisons. The satellite data also appeared to miss known flooding in urban areas that was picked up in the models. Despite these limitations, the validation was able to pick our areas, notably along the Colorado River near Houston, where our model under-performed and identify areas for future development. The study shows that high resolution near real-time inundation predictions over very large areas during complex events with multiple flood drivers are now a reality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1919027S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1919027S"><span>Downscaling global precipitation for local applications - a case for the Rhine basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sperna Weiland, Frederiek; van Verseveld, Willem; Schellekens, Jaap</p> <p>2017-04-01</p> <p>Within the EU FP7 project eartH2Observe a global Water Resources Re-analysis (WRR) is being developed. This re-analysis consists of meteorological and hydrological water balance variables with global coverage, spanning the period 1979-2014 at 0.25 degrees resolution (Schellekens et al., 2016). The dataset can be of special interest in regions with limited in-situ data availability, yet for local scale analysis particularly in mountainous regions, a resolution of 0.25 degrees may be too coarse and downscaling the data to a higher resolution may be required. A downscaling toolbox has been made that includes spatial downscaling of precipitation based on the global WorldClim dataset that is available at 1 km resolution as a monthly climatology (Hijmans et al., 2005). The input of the down-scaling tool are either the global eartH2Observe WRR1 and WRR2 datasets based on the WFDEI correction methodology (Weedon et al., 2014) or the global Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2016). Here we present a validation of the datasets over the Rhine catchment by means of a distributed hydrological model (wflow, Schellekens et al., 2014) using a number of precipitation scenarios. (1) We start by running the model using the local reference dataset derived by spatial interpolation of gauge observations. Furthermore we use (2) the MSWEP dataset at the native 0.25-degree resolution followed by (3) MSWEP downscaled with the WorldClim dataset and final (4) MSWEP downscaled with the local reference dataset. The validation will be based on comparison of the modeled river discharges as well as rainfall statistics. We expect that down-scaling the MSWEP dataset with the WorldClim data to higher resolution will increase its performance. To test the performance of the down-scaling routine we have added a run with MSWEP data down-scaled with the local dataset and compare this with the run based on the local dataset itself. - Beck, H. E. et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-236, accepted for final publication. - Hijmans, R.J. et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. - Schellekens, J. et al., 2016. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, under review. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Weedon, G.P. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160001850','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160001850"><span>Transitioning Enhanced Land Surface Initialization and Model Verification Capabilities to the Kenya Meteorological Department (KMD)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Case, Jonathan L.; Mungai, John; Sakwa, Vincent; Zavodsky, Bradley T.; Srikishen, Jayanthi; Limaye, Ashutosh; Blankenship, Clay B.</p> <p>2016-01-01</p> <p>Flooding, severe weather, and drought are key forecasting challenges for the Kenya Meteorological Department (KMD), based in Nairobi, Kenya. Atmospheric processes leading to convection, excessive precipitation and/or prolonged drought can be strongly influenced by land cover, vegetation, and soil moisture content, especially during anomalous conditions and dry/wet seasonal transitions. It is thus important to represent accurately land surface state variables (green vegetation fraction, soil moisture, and soil temperature) in Numerical Weather Prediction (NWP) models. The NASA SERVIR and the Short-term Prediction Research and Transition (SPoRT) programs in Huntsville, AL have established a working partnership with KMD to enhance its regional modeling capabilities. SPoRT and SERVIR are providing experimental land surface initialization datasets and model verification capabilities for capacity building at KMD. To support its forecasting operations, KMD is running experimental configurations of the Weather Research and Forecasting (WRF; Skamarock et al. 2008) model on a 12-km/4-km nested regional domain over eastern Africa, incorporating the land surface datasets provided by NASA SPoRT and SERVIR. SPoRT, SERVIR, and KMD participated in two training sessions in March 2014 and June 2015 to foster the collaboration and use of unique land surface datasets and model verification capabilities. Enhanced regional modeling capabilities have the potential to improve guidance in support of daily operations and high-impact weather and climate outlooks over Eastern Africa. For enhanced land-surface initialization, the NASA Land Information System (LIS) is run over Eastern Africa at 3-km resolution, providing real-time land surface initialization data in place of interpolated global model soil moisture and temperature data available at coarser resolutions. Additionally, real-time green vegetation fraction (GVF) composites from the Suomi-NPP VIIRS instrument is being incorporated into the KMD-WRF runs, using the product generated by NOAA/NESDIS. Model verification capabilities are also being transitioned to KMD using NCAR's Model *Corresponding author address: Jonathan Case, ENSCO, Inc., 320 Sparkman Dr., Room 3008, Huntsville, AL, 35805. Email: Jonathan.Case-1@nasa.gov Evaluation Tools (MET; Brown et al. 2009) software in conjunction with a SPoRT-developed scripting package, in order to quantify and compare errors in simulated temperature, moisture and precipitation in the experimental WRF model simulations. This extended abstract and accompanying presentation summarizes the efforts and training done to date to support this unique regional modeling initiative at KMD. To honor the memory of Dr. Peter J. Lamb and his extensive efforts in bolstering weather and climate science and capacity-building in Africa, we offer this contribution to the special Peter J. Lamb symposium. The remainder of this extended abstract is organized as follows. The collaborating international organizations involved in the project are presented in Section 2. Background information on the unique land surface input datasets is presented in Section 3. The hands-on training sessions from March 2014 and June 2015 are described in Section 4. Sample experimental WRF output and verification from the June 2015 training are given in Section 5. A summary is given in Section 6, followed by Acknowledgements and References.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrEaS...6...55W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrEaS...6...55W"><span>Dynamic Statistical Models for Pyroclastic Density Current Generation at Soufrière Hills Volcano</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolpert, Robert L.; Spiller, Elaine T.; Calder, Eliza S.</p> <p>2018-05-01</p> <p>To mitigate volcanic hazards from pyroclastic density currents, volcanologists generate hazard maps that provide long-term forecasts of areas of potential impact. Several recent efforts in the field develop new statistical methods for application of flow models to generate fully probabilistic hazard maps that both account for, and quantify, uncertainty. However a limitation to the use of most statistical hazard models, and a key source of uncertainty within them, is the time-averaged nature of the datasets by which the volcanic activity is statistically characterized. Where the level, or directionality, of volcanic activity frequently changes, e.g. during protracted eruptive episodes, or at volcanoes that are classified as persistently active, it is not appropriate to make short term forecasts based on longer time-averaged metrics of the activity. Thus, here we build, fit and explore dynamic statistical models for the generation of pyroclastic density current from Soufrière Hills Volcano (SHV) on Montserrat including their respective collapse direction and flow volumes based on 1996-2008 flow datasets. The development of this approach allows for short-term behavioral changes to be taken into account in probabilistic volcanic hazard assessments. We show that collapses from the SHV lava dome follow a clear pattern, and that a series of smaller flows in a given direction often culminate in a larger collapse and thereafter directionality of the flows change. Such models enable short term forecasting (weeks to months) that can reflect evolving conditions such as dome and crater morphology changes and non-stationary eruptive behavior such as extrusion rate variations. For example, the probability of inundation of the Belham Valley in the first 180 days of a forecast period is about twice as high for lava domes facing Northwest toward that valley as it is for domes pointing East toward the Tar River Valley. As rich multi-parametric volcano monitoring dataset become increasingly available, eruption forecasting is becoming an increasingly viable and important research field. We demonstrate an approach to utilize such data in order to appropriately 'tune' probabilistic hazard assessments for pyroclastic flows. Our broader objective with development of this method is to help advance time-dependent volcanic hazard assessment, by bridging the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A51J0200W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A51J0200W"><span>Spectral characteristics of mid-latitude continental convection from a global variable-resolution Voronoi-mesh atmospheric model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, M.; Skamarock, W. C.</p> <p>2015-12-01</p> <p>Global numerical weather forecast tests were performed using the global nonhydrostatic atmospheric model, Model for Prediction Across Scales (MPAS), for the NOAA Storm Prediction Center 2015 Spring Forecast Experiment (May 2015) and the Plains Elevated Convection at Night (PECAN) field campaign (June to mid-July 2015). These two sets of forecasts were performed on 50-to-3 km and 15-to-3 km smoothly-varying horizontal meshes, respectively. Both variable-resolution meshes have nominal convection-permitting 3-km grid spacing over the entire continental US. Here we evaluate the limited-area (vs. global) spectra from these NWP simulations. We will show the simulated spectral characteristics of total kinetic energy, vertical velocity variance, and precipitation during these spring and summer periods when diurnal continental convection is most active over central US. Spectral characteristics of a high-resolution global 3-km simulation (essentially no nesting) from the 20 May 2013 Moore, OK tornado case are also shown. These characteristics include spectral scaling, shape, and anisotropy, as well as the effective resolution of continental convection representation in MPAS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NHESS..17.1795P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NHESS..17.1795P"><span>Revisiting the synoptic-scale predictability of severe European winter storms using ECMWF ensemble reforecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pantillon, Florian; Knippertz, Peter; Corsmeier, Ulrich</p> <p>2017-10-01</p> <p>New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995-2015 period are obtained using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The predictability of the storms is assessed with different metrics including (a) the track and intensity to investigate the storms' dynamics and (b) the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are well predicted by the whole ensemble up to 2-4 days ahead. At longer lead times, the number of members predicting the observed storms decreases and the ensemble average is not clearly defined for the track and intensity. The Extreme Forecast Index and Shift of Tails are therefore computed from the deviation of the ensemble from the model climate. Based on these indices, the model has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates a clear potential for early warnings. However, large variability is found between the individual storms. The poor predictability of outliers appears related to their physical characteristics such as explosive intensification or small size. Longer datasets with more cases would be needed to further substantiate these points.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APJAS..53..243A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APJAS..53..243A"><span>Baseline predictability of daily east Asian summer monsoon circulation indices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ai, Shucong; Chen, Quanliang; Li, Jianping; Ding, Ruiqiang; Zhong, Quanjia</p> <p>2017-05-01</p> <p>The nonlinear local Lyapunov exponent (NLLE) method is adopted to quantitatively determine the predictability limit of East Asian summer monsoon (EASM) intensity indices on a synoptic timescale. The predictability limit of EASM indices varies widely according to the definitions of indices. EASM indices defined by zonal shear have a limit of around 7 days, which is higher than the predictability limit of EASM indices defined by sea level pressure (SLP) difference and meridional wind shear (about 5 days). The initial error of EASM indices defined by SLP difference and meridional wind shear shows a faster growth than indices defined by zonal wind shear. Furthermore, the indices defined by zonal wind shear appear to fluctuate at lower frequencies, whereas the indices defined by SLP difference and meridional wind shear generally fluctuate at higher frequencies. This result may explain why the daily variability of the EASM indices defined by zonal wind shear tends be more predictable than those defined by SLP difference and meridional wind shear. Analysis of the temporal correlation coefficient (TCC) skill for EASM indices obtained from observations and from NCEP's Global Ensemble Forecasting System (GEFS) historical weather forecast dataset shows that GEFS has a higher forecast skill for the EASM indices defined by zonal wind shear than for indices defined by SLP difference and meridional wind shear. The predictability limit estimated by the NLLE method is shorter than that in GEFS. In addition, the June-September average TCC skill for different daily EASM indices shows significant interannual variations from 1985 to 2015 in GEFS. However, the TCC for different types of EASM indices does not show coherent interannual fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180001301','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180001301"><span>Assessing the Skill of Chlorophyll Forecasts: Latest Development and Challenges Ahead Using the Case of the Equatorial Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rousseaux, Cecile S.; Gregg, Watson W.</p> <p>2018-01-01</p> <p>Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Nino event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Nino. The anomaly correlation coefficient (ACC) was significant (p less than 0.05) for forecast at 1-month (R=0.33), 8-month (R=0.42) and 9-month (R=0.41) lead times. The root mean square error (RMSE) increased from 0.0399 microgram chl L(exp -1) for the 1-month lead forecast to a maximum of 0.0472 microgram chl L(exp -1) for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 microgram chl L(exp -1)) while the forecast with a 9-month lead time were the furthest (31% or 0.042 microgram chl L(exp -1)). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Nino events on fisheries and other ocean resources given improvements identified in the analysis of these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29291196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29291196"><span>Forecasting Ocean Chlorophyll in the Equatorial Pacific.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rousseaux, Cecile S; Gregg, Watson W</p> <p>2017-01-01</p> <p>Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Niño event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Niño. The anomaly correlation coefficient (ACC) was significant ( p < 0.05) for forecast at 1-month ( R = 0.33), 8-month ( R = 0.42) and 9-month ( R = 0.41) lead times. The root mean square error (RMSE) increased from 0.0399 μg chl L -1 for the 1-month lead forecast to a maximum of 0.0472 μg chl L -1 for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 μg chl L -1 ) while the forecast with a 9-month lead time were the furthest (31% or 0.042 μg chl L -1 ). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Niño events on fisheries and other ocean resources given improvements identified in the analysis of these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000GeoRL..27.4049T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000GeoRL..27.4049T"><span>Evaluating space weather forecasts of geomagnetic activity from a user perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomson, A. W. P.</p> <p>2000-12-01</p> <p>Decision Theory can be used as a tool for discussing the relative costs of complacency and false alarms with users of space weather forecasts. We describe a new metric for the value of space weather forecasts, derived from Decision Theory. In particular we give equations for the level of accuracy that a forecast must exceed in order to be useful to a specific customer. The technique is illustrated by simplified example forecasts for global geomagnetic activity and for geophysical exploration and power grid management in the British Isles.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41H2384E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41H2384E"><span>Machine learning of atmospheric chemistry. Applications to a global chemistry transport model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evans, M. J.; Keller, C. A.</p> <p>2017-12-01</p> <p>Atmospheric chemistry is central to many environmental issues such as air pollution, climate change, and stratospheric ozone loss. Chemistry Transport Models (CTM) are a central tool for understanding these issues, whether for research or for forecasting. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (mili-seconds for O(1D) to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a CTM.We have investigated a machine learning approach to solving the differential equations instead of solving them numerically. From an annual simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (random regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry.This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, centennial scale climate simulations etc. We discuss our approches' speed and accuracy, and highlight some potential future directions for improving this approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020052223&hterms=Volunteer+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DVolunteer%2Bvalue','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020052223&hterms=Volunteer+value&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DVolunteer%2Bvalue"><span>Inter-Comparison of CHARM Data and WSR-88D Storm Integrated Rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jedlovec, Gary J.; Meyer, Paul J.; Guillory, Anthony R.; Stellman, Keith; Limaye, Ashutosh; Arnold, James E. (Technical Monitor)</p> <p>2002-01-01</p> <p>A localized precipitation network has been established over a 4000 sq km region of northern Alabama in support of local weather and climate research at the Global Hydrology and Climate Center (GHCC) in Huntsville. This Cooperative Huntsville-Area Rainfall Measurement (CHARM) network is comprised of over 80 volunteers who manually take daily rainfall measurements from 85 sites. The network also incorporates 20 automated gauges that report data at 1-5 minute intervals on a 24 h a day basis. The average spacing of the gauges in the network is about 6 kin, however coverage in some regions benefit from gauges every 1-2 km. The 24 h rainfall totals from the CHARM network have been used to validate Stage III rainfall estimates of daily and storm totals derived from the WSR-88D radars that cover northern Alabama. The Stage III rainfall product is produced by the Lower Mississippi River Forecast Center (LMRFC) in support of their daily forecast operations. The intercomparisons between the local rain gauge and the radar estimates have been useful to understand the accuracy and utility of the Stage III data. Recently, the Stage III and CHARM rainfall measurements have been combined to produce an hourly rainfall dataset at each CHARM observation site. The procedure matches each CHARM site with a time sequence of Stage III radar estimates of precipitation. Hourly stage III rainfall estimates were used to partition the rain gauge values to the time interval over which they occurred. The new hourly rain gauge dataset is validated at selected points where 1-5 minute rainfall measurements have been made. This procedure greatly enhances the utility of the CHARM data for local weather and hydrologic modeling studies. The conference paper will present highlights of the Stage III intercomparison and some examples of the combined radar / rain gauge product demonstrating its accuracy and utility in deriving an hourly rainfall product from the 24 h CHARM totals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A31K..08E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A31K..08E"><span>Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.</p> <p>2017-12-01</p> <p>The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17532609','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17532609"><span>Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Corzo, Gerald; Solomatine, Dimitri</p> <p>2007-05-01</p> <p>Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5523K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5523K"><span>Application of Hydrometeorological Information for Short-term and Long-term Water Resources Management over Ungauged Basin in Korea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Ji-in; Ryu, Kyongsik; Suh, Ae-sook</p> <p>2016-04-01</p> <p>In 2014, three major governmental organizations that are Korea Meteorological Administration (KMA), K-water, and Korea Rural Community Corporation have been established the Hydrometeorological Cooperation Center (HCC) to accomplish more effective water management for scarcely gauged river basins, where data are uncertain or non-consistent. To manage the optimal drought and flood control over the ungauged river, HCC aims to interconnect between weather observations and forecasting information, and hydrological model over sparse regions with limited observations sites in Korean peninsula. In this study, long-term forecasting ensemble models so called Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system, provided by KMA was used in order to produce drought outlook. Glosea5 ensemble model prediction provides predicted drought information for 1 and 3 months ahead with drought index including Standardized Precipitation Index (SPI3) and Palmer Drought Severity Index (PDSI). Also, Global Precipitation Measurement and Global Climate Observation Measurement - Water1 satellites data products are used to estimate rainfall and soil moisture contents over the ungauged region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/484436-technology-assessment-network-building-international-association-technology-assessment-forecasting-institutions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/484436-technology-assessment-network-building-international-association-technology-assessment-forecasting-institutions"><span>Technology assessment network building: The International Association of Technology Assessment and Forecasting Institutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Williams, G.; Andersen, J.</p> <p>1996-01-01</p> <p>With the globalization of trade and the increased understanding of transboundary problems such as global climate change, the need for understanding the consequences of technological change has never been higher. Institutional arrangements necessary to assess these changes and make decision makers aware of the consequences have not necessarily adapted to these world conditions. In response to this leading technology assessment and forecasting institutions formed an international association of technology assessment and forecasting institutions to assist in the diffusion of technology assessment in the decision-making process. This paper discusses the origins of the International Association of Technology Assessment and Forecasting Institutionsmore » (IATAFI) and the goals and the vision for the organization. The articles cited represent some of the topics discussed at the first IATAFI conference in Bergen, Norway in May 1994.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1047D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1047D"><span>Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobslaw, Henryk; Dill, Robert</p> <p>2018-02-01</p> <p>Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8995D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8995D"><span>Enhancing Community Based Early Warning Systems in Nepal with Flood Forecasting Using Local and Global Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dugar, Sumit; Smith, Paul; Parajuli, Binod; Khanal, Sonu; Brown, Sarah; Gautam, Dilip; Bhandari, Dinanath; Gurung, Gehendra; Shakya, Puja; Kharbuja, RamGopal; Uprety, Madhab</p> <p>2017-04-01</p> <p>Operationalising effective Flood Early Warning Systems (EWS) in developing countries like Nepal poses numerous challenges, with complex topography and geology, sparse network of river and rainfall gauging stations and diverse socio-economic conditions. Despite these challenges, simple real-time monitoring based EWSs have been in place for the past decade. A key constraint of these simple systems is the very limited lead time for response - as little as 2-3 hours, especially for rivers originating from steep mountainous catchments. Efforts to increase lead time for early warning are focusing on imbedding forecasts into the existing early warning systems. In 2016, the Nepal Department of Hydrology and Meteorology (DHM) piloted an operational Probabilistic Flood Forecasting Model in major river basins across Nepal. This comprised a low data approach to forecast water levels, developed jointly through a research/practitioner partnership with Lancaster University and WaterNumbers (UK) and the International NGO Practical Action. Using Data-Based Mechanistic Modelling (DBM) techniques, the model assimilated rainfall and water levels to generate localised hourly flood predictions, which are presented as probabilistic forecasts, increasing lead times from 2-3 hours to 7-8 hours. The Nepal DHM has simultaneously started utilizing forecasts from the Global Flood Awareness System (GLoFAS) that provides streamflow predictions at the global scale based upon distributed hydrological simulations using numerical ensemble weather forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts). The aforementioned global and local models have already affected the approach to early warning in Nepal, being operational during the 2016 monsoon in the West Rapti basin in Western Nepal. On 24 July 2016, GLoFAS hydrological forecasts for the West Rapti indicated a sharp rise in river discharge above 1500 m3/sec (equivalent to the river warning level at 5 meters) with 53% probability of exceeding the Medium Level Alert in two days. Rainfall stations upstream of the West Rapti catchment recorded heavy rainfall on 26 July, and localized forecasts from the probabilistic model at 8 am suggested that the water level would cross a pre-determined warning level in the next 3 hours. The Flood Forecasting Section at DHM issued a flood advisory, and disseminated SMS flood alerts to more than 13,000 at-risk people residing along the floodplains. Water levels crossed the danger threshold (5.4 meters) at 11 am, peaking at 8.15 meters at 10 pm. Extension of the warning lead time from probabilistic forecasts was significant in minimising the risk to lives and livelihoods as communities gained extra time to prepare, evacuate and respond. Likewise, longer timescale forecasts from GLoFAS could be potentially linked with no-regret early actions leading to improved preparedness and emergency response. These forecasting tools have contributed to enhance the effectiveness and efficiency of existing community based systems, increasing the lead time for response. Nevertheless, extensive work is required on appropriate ways to interpret and disseminate probabilistic forecasts having longer (2-14 days) and shorter (3-5 hours) time horizon for operational deployment as there are numerous uncertainties associated with predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUSM...A61B04S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUSM...A61B04S"><span>A Real-time 1/16° Global Ocean Nowcast/Forecast System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shriver, J. F.; Rhodes, R. C.; Hurlburt, H. E.; Wallcraft, A. J.; Metzger, E. J.; Smedstad, O. M.; Kara, A. B.</p> <p>2001-05-01</p> <p>A 1/16° eddy-resolving global ocean prediction system that uses the NRL Layered Ocean Model (NLOM) has been transitioned to the Naval Oceanographic Office (NAVO), Stennis Space Center, MS. The system gives a real time view of the ocean down to the 50-100 mile scale of ocean eddies and the meandering of ocean currents and fronts, a view with unprecedented resolution and clarity, and demonstrated forecast skill for a month or more for many ocean features. It has been running in real time at NAVO since 19 Oct 2000 with assimilation of real-time altimeter sea surface height (SSH) data (currently ERS-2, GFO and TOPEX/POSEIDON) and sea surface temperature (SST). The model is updated daily and 4-day forecasts are made daily. 30-day forecasts are made once a week. Nowcasts and forecasts using this model are viewable on the web, including SSH, SST and 30-day forecast verification statistics for many zoom regions. The NRL web address is http://www7320.nrlssc.navy.mil/global_nlom/index.html. The NAVO web address is: http://www.navo.navy.mil. Click on "Operational Products", then "Product Search Form", then "Product Type View", then select "Model Navy Layered Ocean Model" and a region and click on "Submit Query". This system is used at NAVO for ocean front and eddy analyses and predictions and to provide accurate sea surface height for use in computing synthetic temperature and salinity profiles, among other applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSD...460124S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSD...460124S"><span>A global distributed basin morphometric dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Xinyi; Anagnostou, Emmanouil N.; Mei, Yiwen; Hong, Yang</p> <p>2017-01-01</p> <p>Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at 30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present formulas for generating twenty-one additional morphometric variables based on combination of the prime variables. The dataset can aid different applications including studies of land-atmosphere interaction, and modelling of floods and droughts for sustainable water management. The validity of the dataset has been consolidated by successfully repeating the Hack's law.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA589490','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA589490"><span>Observations and High-Resolution Numerical Simulations of a Non-Developing Tropical Disturbance in the Western North Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-01</p> <p>potential energy CFSR Climate Forecast System Reanalysis COAMPS Coupled Ocean / Atmosphere Mesoscale Prediction System DA data assimilation DART Data...developing (TCS025) tropical disturbance using the adjoint and tangent linear models for the Coupled Ocean – Atmosphere Mesoscale Prediction System (COAMPS...for Medium-range Weather Forecasts ELDORA ELectra DOppler RAdar EOL Earth Observing Laboratory GPS global positioning system GTS Global</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016656','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016656"><span>Electrically-Active Convection in Tropical Easterly Waves and Implications for Tropical Cyclogenesis in the Atlantic and East Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leppert, Kenneth D., II; Petersen, Walter A.; Cecil, Daniel J.</p> <p>2012-01-01</p> <p>In this study, we investigate the characteristics of tropical easterly wave convection and the possible implications of convective structure on tropical cyclogenesis and intensification over the Atlantic Ocean and East Pacific using data from the Tropical Rainfall Measurement Mission Microwave Imager, Precipitation Radar (PR), and Lightning Imaging Sensor as well as infrared (IR) brightness temperature data from the NASA global-merged IR brightness temperature dataset. Easterly waves were partitioned into northerly, southerly, trough, and ridge phases based on the 700-hPa meridional wind from the NCEP-NCAR reanalysis dataset. Waves were subsequently divided according to whether they did or did not develop tropical cyclones (i.e., developing and nondeveloping, respectively), and developing waves were further subdivided according to development location. Finally, composites as a function of wave phase and category were created using the various datasets. Results suggest that the convective characteristics that best distinguish developing from nondeveloping waves vary according to where developing waves spawn tropical cyclones. For waves that developed a cyclone in the Atlantic basin, coverage by IR brightness temperatures .240 K and .210 K provide the best distinction between developing and nondeveloping waves. In contrast, several variables provide a significant distinction between nondeveloping waves and waves that develop cyclones over the East Pacific as these waves near their genesis location including IR threshold coverage, lightning flash rates, and low-level (<4.5 km) PR reflectivity. Results of this study may be used to help develop thresholds to better distinguish developing from nondeveloping waves and serve as another aid for tropical cyclogenesis forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPA14B..05L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPA14B..05L"><span>Generating Southern Africa Precipitation Forecast Using the FEWS Engine, a New Application for the Google Earth Engine</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landsfeld, M. F.; Hegewisch, K.; Daudert, B.; Morton, C.; Husak, G. J.; Friedrichs, M.; Funk, C. C.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.</p> <p>2016-12-01</p> <p>The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence-based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The network of FEWS NET analysts and scientists require flexible, interactive tools to aid in their monitoring and research efforts. Because they often work in bandwidth-limited regions, lightweight Internet tools and services that bypass the need for downloading massive datasets are preferred for their work. To support food security analysis FEWS NET developed a custom interface for the Google Earth Engine (GEE). GEE is a platform developed by Google to support scientific analysis of environmental data in their cloud computing environment. This platform allows scientists and independent researchers to mine massive collections of environmental data, leveraging Google's vast computational resources for purposes of detecting changes and monitoring the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). CHIRPS precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. In this talk we introduce the FEWS Engine interface. We present an application that highlights the utility of FEWS Engine for forecasting the upcoming seasonal precipitation of southern Africa. Specifically, the current state of ENSO is assessed and used to identify similar historical seasons. The FEWS Engine compositing tool is used to examine rainfall and other environmental data for these analog seasons. The application illustrates the unique benefits of using FEWS Engine for on-the-fly food security scenario development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24894753','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24894753"><span>Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Mei; Lu, Jun</p> <p>2014-09-01</p> <p>Water quality forecasting in agricultural drainage river basins is difficult because of the complicated nonpoint source (NPS) pollution transport processes and river self-purification processes involved in highly nonlinear problems. Artificial neural network (ANN) and support vector model (SVM) were developed to predict total nitrogen (TN) and total phosphorus (TP) concentrations for any location of the river polluted by agricultural NPS pollution in eastern China. River flow, water temperature, flow travel time, rainfall, dissolved oxygen, and upstream TN or TP concentrations were selected as initial inputs of the two models. Monthly, bimonthly, and trimonthly datasets were selected to train the two models, respectively, and the same monthly dataset which had not been used for training was chosen to test the models in order to compare their generalization performance. Trial and error analysis and genetic algorisms (GA) were employed to optimize the parameters of ANN and SVM models, respectively. The results indicated that the proposed SVM models performed better generalization ability due to avoiding the occurrence of overtraining and optimizing fewer parameters based on structural risk minimization (SRM) principle. Furthermore, both TN and TP SVM models trained by trimonthly datasets achieved greater forecasting accuracy than corresponding ANN models. Thus, SVM models will be a powerful alternative method because it is an efficient and economic tool to accurately predict water quality with low risk. The sensitivity analyses of two models indicated that decreasing upstream input concentrations during the dry season and NPS emission along the reach during average or flood season should be an effective way to improve Changle River water quality. If the necessary water quality and hydrology data and even trimonthly data are available, the SVM methodology developed here can easily be applied to other NPS-polluted rivers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70156326','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70156326"><span>A Census of marine life: unknowable or just unknown?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>O'Dor, Ron; Decker, Cynthia J.</p> <p>2002-01-01</p> <p>As an introduction to the entire volume, this article outlines the relationships among the five elements of the Census of Marine Life (CoML) that create new knowledge: (1) The Ocean Biogeographic Information System (OBIS), a marine component of the Global Biodiversity Information Facility, links marine databases around the world to provide an Internet accessible, dynamic interface for comparing species-level, geo-referenced biodiversity data in relation to ocean habitats. The entire CoML field project data will be managed in and accessible through OBIS. (2) The History of Marine Animal Populations (HMAP) is a unique new synthesis of historical and biological research that will document marine biodiversity, globally, up to 500 years ago, before significant human impact, and store it in formats compatible with modern data in OBIS. (3) The Scientific Committee on Oceanic Research Working Group 118 monitors and recommends advanced marine technologies, ready to be routinely used in CoML field projects. (4) CoML Initial Field Projects develop and calibrate these technologies in selected regions to facilitate and accelerate global biodiversity research. As calibrated technologies and protocols are adopted in many regions, qualitative and quantitative biodiversity discoveries accumulate. (5) The Future of Marine Animal Populations (FMAP) program will insure that the data in OBIS are suitable for modeling and predicting changes in global biodiversity in response to fishing, pollution, and climate change challenges. It will make datasets available for hindcasting and forecasting analyses linked to physical ocean observations and assist in documenting the impacts of conservation efforts on sustainability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812412Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812412Z"><span>Assessing a 3D smoothed seismicity model of induced earthquakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan</p> <p>2016-04-01</p> <p>As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336118','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336118"><span>Sensor network based solar forecasting using a local vector autoregressive ridge framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, J.; Yoo, S.; Heiser, J.</p> <p>2016-04-04</p> <p>The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations duemore » to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......285T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......285T"><span>Improving medium-range and seasonal hydroclimate forecasts in the southeast USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tian, Di</p> <p></p> <p>Accurate hydro-climate forecasts are important for decision making by water managers, agricultural producers, and other stake holders. Numerical weather prediction models and general circulation models may have potential for improving hydro-climate forecasts at different scales. In this study, forecast analogs of the Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) based on different approaches were evaluated for medium-range reference evapotranspiration (ETo), irrigation scheduling, and urban water demand forecasts in the southeast United States; the Climate Forecast System version 2 (CFSv2) and the North American national multi-model ensemble (NMME) were statistically downscaled for seasonal forecasts of ETo, precipitation (P) and 2-m temperature (T2M) at the regional level. The GFS mean temperature (Tmean), relative humidity, and wind speed (Wind) reforecasts combined with the climatology of Reanalysis 2 solar radiation (Rs) produced higher skill than using the direct GFS output only. Constructed analogs showed slightly higher skill than natural analogs for deterministic forecasts. Both irrigation scheduling driven by the GEFS-based ETo forecasts and GEFS-based ETo forecast skill were generally positive up to one week throughout the year. The GEFS improved ETo forecast skill compared to the GFS. The GEFS-based analog forecasts for the input variables of an operational urban water demand model were skillful when applied in the Tampa Bay area. The modified operational models driven by GEFS analog forecasts showed higher forecast skill than the operational model based on persistence. The results for CFSv2 seasonal forecasts showed maximum temperature (Tmax) and Rs had the greatest influence on ETo. The downscaled Tmax showed the highest predictability, followed by Tmean, Tmin, Rs, and Wind. The CFSv2 model could better predict ETo in cold seasons during El Nino Southern Oscillation (ENSO) events only when the forecast initial condition was in ENSO. Downscaled P and T2M forecasts were produced by directly downscaling the NMME P and T2M output or indirectly using the NMME forecasts of Nino3.4 sea surface temperatures to predict local-scale P and T2M. The indirect method generally showed the highest forecast skill which occurs in cold seasons. The bias-corrected NMME ensemble forecast skill did not outperform the best single model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H11F0918K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H11F0918K"><span>An improved Multimodel Approach for Global Sea Surface Temperature Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, M. Z. K.; Mehrotra, R.; Sharma, A.</p> <p>2014-12-01</p> <p>The concept of ensemble combinations for formulating improved climate forecasts has gained popularity in recent years. However, many climate models share similar physics or modeling processes, which may lead to similar (or strongly correlated) forecasts. Recent approaches for combining forecasts that take into consideration differences in model accuracy over space and time have either ignored the similarity of forecast among the models or followed a pairwise dynamic combination approach. Here we present a basis for combining model predictions, illustrating the improvements that can be achieved if procedures for factoring in inter-model dependence are utilised. The utility of the approach is demonstrated by combining sea surface temperature (SST) forecasts from five climate models over a period of 1960-2005. The variable of interest, the monthly global sea surface temperature anomalies (SSTA) at a 50´50 latitude-longitude grid, is predicted three months in advance to demonstrate the utility of the proposed algorithm. Results indicate that the proposed approach offers consistent and significant improvements for majority of grid points compared to the case where the dependence among the models is ignored. Therefore, the proposed approach of combining multiple models by taking into account the existing interdependence, provides an attractive alternative to obtain improved climate forecast. In addition, an approach to combine seasonal forecasts from multiple climate models with varying periods of availability is also demonstrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930061897&hterms=european+journal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deuropean%2Bjournal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930061897&hterms=european+journal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Deuropean%2Bjournal"><span>A preliminary study of the impact of the ERS 1 C band scatterometer wind data on the European Centre for Medium-Range Weather Forecasts global data assimilation system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoffman, Ross N.</p> <p>1993-01-01</p> <p>A preliminary assessment of the impact of the ERS 1 scatterometer wind data on the current European Centre for Medium-Range Weather Forecasts analysis and forecast system has been carried out. Although the scatterometer data results in changes to the analyses and forecasts, there is no consistent improvement or degradation. Our results are based on comparing analyses and forecasts from assimilation cycles. The two sets of analyses are very similar except for the low level wind fields over the ocean. Impacts on the analyzed wind fields are greater over the southern ocean, where other data are scarce. For the most part the mass field increments are too small to balance the wind increments. The effect of the nonlinear normal mode initialization on the analysis differences is quite small, but we observe that the differences tend to wash out in the subsequent 6-hour forecast. In the Northern Hemisphere, analysis differences are very small, except directly at the scatterometer locations. Forecast comparisons reveal large differences in the Southern Hemisphere after 72 hours. Notable differences in the Northern Hemisphere do not appear until late in the forecast. Overall, however, the Southern Hemisphere impacts are neutral. The experiments described are preliminary in several respects. We expect these data to ultimately prove useful for global data assimilation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.B41D..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.B41D..07L"><span>Data Assimilation at FLUXNET to Improve Models towards Ecological Forecasting (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luo, Y.</p> <p>2009-12-01</p> <p>Dramatically increased volumes of data from observational and experimental networks such as FLUXNET call for transformation of ecological research to increase its emphasis on quantitative forecasting. Ecological forecasting will also meet the societal need to develop better strategies for natural resource management in a world of ongoing global change. Traditionally, ecological forecasting has been based on process-based models, informed by data in largely ad hoc ways. Although most ecological models incorporate some representation of mechanistic processes, today’s ecological models are generally not adequate to quantify real-world dynamics and provide reliable forecasts with accompanying estimates of uncertainty. A key tool to improve ecological forecasting is data assimilation, which uses data to inform initial conditions and to help constrain a model during simulation to yield results that approximate reality as closely as possible. In an era with dramatically increased availability of data from observational and experimental networks, data assimilation is a key technique that helps convert the raw data into ecologically meaningful products so as to accelerate our understanding of ecological processes, test ecological theory, forecast changes in ecological services, and better serve the society. This talk will use examples to illustrate how data from FLUXNET have been assimilated with process-based models to improve estimates of model parameters and state variables; to quantify uncertainties in ecological forecasting arising from observations, models and their interactions; and to evaluate information contributions of data and model toward short- and long-term forecasting of ecosystem responses to global change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1113498R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1113498R"><span>The NRL relocatable ocean/acoustic ensemble forecast system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.</p> <p>2009-04-01</p> <p>A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000BAMS...81.2121B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000BAMS...81.2121B"><span>Global Impacts and Regional Actions: Preparing for the 1997-98 El Niño.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buizer, James L.; Foster, Josh; Lund, David</p> <p>2000-09-01</p> <p>It has been estimated that severe El Niño-related flooding and droughts in Africa, Latin America, North America, and Southeast Asia resulted in more than 22 000 lives lost and in excess of $36 billion in damages during 1997-98. As one of the most severe events this century, the 1997-98 El Niño was unique not only in terms of physical magnitude, but also in terms of human response. This response was made possible by recent advances in climate-observing and forecasting systems, creation and dissemination of forecast information by institutions such as the International Research Institute for Climate Prediction and NOAA's Climate Prediction Center, and individuals in climate-sensitive sectors willing to act on forecast information by incorporating it into their decision-making. The supporting link between the forecasts and their practical application was a product of efforts by several national and international organizations, and a primary focus of the United States National Oceanic and Atmospheric Administration Office of Global Programs (NOAA/OGP).NOAA/OGP over the last decade has supported pilot projects in Latin America, the Caribbean, the South Pacific, Southeast Asia, and Africa to improve transfer of forecast information to climate sensitive sectors, study linkages between climate and human health, and distribute climate information products in certain areas. Working with domestic and international partners, NOAA/OGP helped organize a total of 11 Climate Outlook Fora around the world during the 1997-98 El Niño. At each Outlook Forum, climatologists and meteorologists created regional, consensus-based, seasonal precipitation forecasts and representatives from climate-sensitive sectors discussed options for applying forecast information. Additional ongoing activities during 1997-98 included research programs focused on the social and economic impacts of climate change and the regional manifestations of global-scale climate variations and their effect on decision-making in climate-sensitive sectors in the United States.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.The overall intent of NOAA/OGP's activities was to make experimental forecast information broadly available to potential users, and to foster a learning process on how seasonal-to-interannual forecasts could be applied in sectors susceptible to climate variability. This process allowed users to explore the capabilities and limitations of climate forecasts currently available, and forecast producers to receive feedback on the utility of their products. Through activities in which NOAA/OGP and its partners were involved, it became clear that further application of forecast information will be aided by improved forecast accuracy and detail, creation of common validation techniques, continued training in forecast generation and application, alternate methods for presenting forecast information, and a systematic strategy for creation and dissemination of forecast products.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS31C1412O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS31C1412O"><span>GLOBATO: An enhanced global relief model at 30 arc-seconds resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Leary, V.; Amante, C.</p> <p>2017-12-01</p> <p>The National Centers for Environmental Information (NCEI), an office of the National Oceanic and Atmospheric Administration (NOAA), first developed a digital bathymetric and elevation model, ETOPO5, from publicly available data in 1993. For nearly 25 years, NCEI's ETOPO family of global relief models have supported research at a planetary scale, including tsunami forecasting, ocean circulation modeling, visualization of the seafloor, understanding geological phenomena, and aiding the development of other global and regional elevation models. GLOBATO (GLObal BAThymetry and TOpography) is now the most detailed version released by NCEI with a horizontal resolution of 30 arc-seconds and succeeds ETOPO1 with the inclusion of several new or updated data-sets for the seafloor as well as land areas. GLOBATO is a compilation of data derived from models of satellite measurements, ship depth soundings, and multibeam surveys, as well as regional models developed for Greenland and Antarctica. These data were converted from different formats, resolutions, spatial distributions, and projections into a single global model using GDAL v2.2 and MB-System v5.5. As with previous NCEI models, GLOBATO is available in two formats, "bedrock elevation" (measured as the base of major ice sheets) and "ice surface elevation" (measured as the surface of major ice sheets) which provides comprehensive topographic and bathymetric coverage between +- 90 degrees latitude and +- 180 degrees longitude. Adhering to best practices, GLOBATO, all related digital products, and any supporting documentation are available online through the NCEI data portal. These new, high resolution models will better support the variety of research ETOPO1 has made possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25461118','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25461118"><span>A novel hybrid forecasting model for PM₁₀ and SO₂ daily concentrations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Ping; Liu, Yong; Qin, Zuodong; Zhang, Guisheng</p> <p>2015-02-01</p> <p>Air-quality forecasting in urban areas is difficult because of the uncertainties in describing both the emission and meteorological fields. The use of incomplete information in the training phase restricts practical air-quality forecasting. In this paper, we propose a hybrid artificial neural network and a hybrid support vector machine, which effectively enhance the forecasting accuracy of an artificial neural network (ANN) and support vector machine (SVM) by revising the error term of the traditional methods. The hybrid methodology can be described in two stages. First, we applied the ANN or SVM forecasting system with historical data and exogenous parameters, such as meteorological variables. Then, the forecasting target was revised by the Taylor expansion forecasting model using the residual information of the error term in the previous stage. The innovation involved in this approach is that it sufficiently and validly utilizes the useful residual information on an incomplete input variable condition. The proposed method was evaluated by experiments using a 2-year dataset of daily PM₁₀ (particles with a diameter of 10 μm or less) concentrations and SO₂ (sulfur dioxide) concentrations from four air pollution monitoring stations located in Taiyuan, China. The theoretical analysis and experimental results demonstrated that the forecasting accuracy of the proposed model is very promising. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11E1926W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11E1926W"><span>Forecast Verification: Identification of small changes in weather forecasting skill</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weatherhead, E. C.; Jensen, T. L.</p> <p>2017-12-01</p> <p>Global and regonal weather forecasts have improved over the past seven decades most often because of small, incrmental improvements. The identificaiton and verification of forecast improvement due to proposed small changes in forecasting can be expensive and, if not carried out efficiently, can slow progress in forecasting development. This presentation will look at the skill of commonly used verification techniques and show how the ability to detect improvements can depend on the magnitude of the improvement, the number of runs used to test the improvement, the location on the Earth and the statistical techniques used. For continuous variables, such as temperture, wind and humidity, the skill of a forecast can be directly compared using a pair-wise statistical test that accommodates the natural autocorrelation and magnitude of variability. For discrete variables, such as tornado outbreaks, or icing events, the challenges is to reduce the false alarm rate while improving the rate of correctly identifying th discrete event. For both continuus and discrete verification results, proper statistical approaches can reduce the number of runs needed to identify a small improvement in forecasting skill. Verification within the Next Generation Global Prediction System is an important component to the many small decisions needed to make stat-of-the-art improvements to weather forecasting capabilities. The comparison of multiple skill scores with often conflicting results requires not only appropriate testing, but also scientific judgment to assure that the choices are appropriate not only for improvements in today's forecasting capabilities, but allow improvements that will come in the future.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8055T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8055T"><span>Evaluation of annual, global seismicity forecasts, including ensemble models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taroni, Matteo; Zechar, Jeremy; Marzocchi, Warner</p> <p>2013-04-01</p> <p>In 2009, the Collaboratory for the Study of the Earthquake Predictability (CSEP) initiated a prototype global earthquake forecast experiment. Three models participated in this experiment for 2009, 2010 and 2011—each model forecast the number of earthquakes above magnitude 6 in 1x1 degree cells that span the globe. Here we use likelihood-based metrics to evaluate the consistency of the forecasts with the observed seismicity. We compare model performance with statistical tests and a new method based on the peer-to-peer gambling score. The results of the comparisons are used to build ensemble models that are a weighted combination of the individual models. Notably, in these experiments the ensemble model always performs significantly better than the single best-performing model. Our results indicate the following: i) time-varying forecasts, if not updated after each major shock, may not provide significant advantages with respect to time-invariant models in 1-year forecast experiments; ii) the spatial distribution seems to be the most important feature to characterize the different forecasting performances of the models; iii) the interpretation of consistency tests may be misleading because some good models may be rejected while trivial models may pass consistency tests; iv) a proper ensemble modeling seems to be a valuable procedure to get the best performing model for practical purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WtFor..33..369V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WtFor..33..369V"><span>Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, Peter; Knippertz, Peter; Fink, Andreas H.; Schlueter, Andreas; Gneiting, Tilmann</p> <p>2018-04-01</p> <p>Accumulated precipitation forecasts are of high socioeconomic importance for agriculturally dominated societies in northern tropical Africa. In this study, we analyze the performance of nine operational global ensemble prediction systems (EPSs) relative to climatology-based forecasts for 1 to 5-day accumulated precipitation based on the monsoon seasons 2007-2014 for three regions within northern tropical Africa. To assess the full potential of raw ensemble forecasts across spatial scales, we apply state-of-the-art statistical postprocessing methods in form of Bayesian Model Averaging (BMA) and Ensemble Model Output Statistics (EMOS), and verify against station and spatially aggregated, satellite-based gridded observations. Raw ensemble forecasts are uncalibrated, unreliable, and underperform relative to climatology, independently of region, accumulation time, monsoon season, and ensemble. Differences between raw ensemble and climatological forecasts are large, and partly stem from poor prediction for low precipitation amounts. BMA and EMOS postprocessed forecasts are calibrated, reliable, and strongly improve on the raw ensembles, but - somewhat disappointingly - typically do not outperform climatology. Most EPSs exhibit slight improvements over the period 2007-2014, but overall have little added value compared to climatology. We suspect that the parametrization of convection is a potential cause for the sobering lack of ensemble forecast skill in a region dominated by mesoscale convective systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100036648','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100036648"><span>Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reale, O.; Lau, K. M.; da Silva, A.</p> <p>2010-01-01</p> <p>The real-time treatment of interactive realistically varying aerosol in a global operational forecasting system, as opposed to prescribed (fixed or climatologically varying) aerosols, is a very difficult challenge that only recently begins to be addressed. Experiment results from a recent version of the NASA GEOS-5 forecasting system, inclusive of interactive aerosol treatment, are presented in this work. Four sets of 30 5-day forecasts are initialized from a high quality set of analyses previously produced and documented to cover the period from 15 August to 16 September 2006, which corresponds to the NASA African Monsoon Multidisciplinary Analysis (NAMMA) observing campaign. The four forecast sets are at two different horizontal resolutions and with and without interactive aerosol treatment. The net impact of aerosol, at times in which there is a strong dust outbreak, is a temperature increase at the dust level and decrease in the near-surface levels, in complete agreement with previous observational and modeling studies. Moreover, forecasts in which interactive aerosols are included depict an African Easterly (AEJ) at slightly higher elevation, and slightly displace northward, with respect to the forecasts in which aerosols are not include. The shift in the AEJ position goes in the direction of observations and agrees with previous results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.S53A2773J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.S53A2773J"><span>Recent Achievements of the Collaboratory for the Study of Earthquake Predictability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jackson, D. D.; Liukis, M.; Werner, M. J.; Schorlemmer, D.; Yu, J.; Maechling, P. J.; Zechar, J. D.; Jordan, T. H.</p> <p>2015-12-01</p> <p>Maria Liukis, SCEC, USC; Maximilian Werner, University of Bristol; Danijel Schorlemmer, GFZ Potsdam; John Yu, SCEC, USC; Philip Maechling, SCEC, USC; Jeremy Zechar, Swiss Seismological Service, ETH; Thomas H. Jordan, SCEC, USC, and the CSEP Working Group The Collaboratory for the Study of Earthquake Predictability (CSEP) supports a global program to conduct prospective earthquake forecasting experiments. CSEP testing centers are now operational in California, New Zealand, Japan, China, and Europe with 435 models under evaluation. The California testing center, operated by SCEC, has been operational since Sept 1, 2007, and currently hosts 30-minute, 1-day, 3-month, 1-year and 5-year forecasts, both alarm-based and probabilistic, for California, the Western Pacific, and worldwide. We have reduced testing latency, implemented prototype evaluation of M8 forecasts, and are currently developing formats and procedures to evaluate externally-hosted forecasts and predictions. These efforts are related to CSEP support of the USGS program in operational earthquake forecasting and a DHS project to register and test external forecast procedures from experts outside seismology. A retrospective experiment for the 2010-2012 Canterbury earthquake sequence has been completed, and the results indicate that some physics-based and hybrid models outperform purely statistical (e.g., ETAS) models. The experiment also demonstrates the power of the CSEP cyberinfrastructure for retrospective testing. Our current development includes evaluation strategies that increase computational efficiency for high-resolution global experiments, such as the evaluation of the Global Earthquake Activity Rate (GEAR) model. We describe the open-source CSEP software that is available to researchers as they develop their forecast models (http://northridge.usc.edu/trac/csep/wiki/MiniCSEP). We also discuss applications of CSEP infrastructure to geodetic transient detection and how CSEP procedures are being adapted to ground motion prediction experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1332538','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1332538"><span>Scalable Regression Tree Learning on Hadoop using OpenPlanet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yin, Wei; Simmhan, Yogesh; Prasanna, Viktor</p> <p></p> <p>As scientific and engineering domains attempt to effectively analyze the deluge of data arriving from sensors and instruments, machine learning is becoming a key data mining tool to build prediction models. Regression tree is a popular learning model that combines decision trees and linear regression to forecast numerical target variables based on a set of input features. Map Reduce is well suited for addressing such data intensive learning applications, and a proprietary regression tree algorithm, PLANET, using MapReduce has been proposed earlier. In this paper, we describe an open source implement of this algorithm, OpenPlanet, on the Hadoop framework usingmore » a hybrid approach. Further, we evaluate the performance of OpenPlanet using realworld datasets from the Smart Power Grid domain to perform energy use forecasting, and propose tuning strategies of Hadoop parameters to improve the performance of the default configuration by 75% for a training dataset of 17 million tuples on a 64-core Hadoop cluster on FutureGrid.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AcMeS..26...93B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AcMeS..26...93B"><span>Development and application of an atmospheric-hydrologic-hydraulic flood forecasting model driven by TIGGE ensemble forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bao, Hongjun; Zhao, Linna</p> <p>2012-02-01</p> <p>A coupled atmospheric-hydrologic-hydraulic ensemble flood forecasting model, driven by The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble (TIGGE) data, has been developed for flood forecasting over the Huaihe River. The incorporation of numerical weather prediction (NWP) information into flood forecasting systems may increase forecast lead time from a few hours to a few days. A single NWP model forecast from a single forecast center, however, is insufficient as it involves considerable non-predictable uncertainties and leads to a high number of false alarms. The availability of global ensemble NWP systems through TIGGE offers a new opportunity for flood forecast. The Xinanjiang model used for hydrological rainfall-runoff modeling and the one-dimensional unsteady flow model applied to channel flood routing are coupled with ensemble weather predictions based on the TIGGE data from the Canadian Meteorological Centre (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF), the UK Met Office (UKMO), and the US National Centers for Environmental Prediction (NCEP). The developed ensemble flood forecasting model is applied to flood forecasting of the 2007 flood season as a test case. The test case is chosen over the upper reaches of the Huaihe River above Lutaizi station with flood diversion and retarding areas. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The Muskingum method is used for flood routing in the flood diversion area. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE ensemble forecasts. The results demonstrate satisfactory flood forecasting with clear signals of probability of floods up to a few days in advance, and show that TIGGE ensemble forecast data are a promising tool for forecasting of flood inundation, comparable with that driven by raingauge observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JSR....99...74S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JSR....99...74S"><span>Using non-systematic surveys to investigate effects of regional climate variability on Australasian gannets in the Hauraki Gulf, New Zealand</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Srinivasan, Mridula; Dassis, Mariela; Benn, Emily; Stockin, Karen A.; Martinez, Emmanuelle; Machovsky-Capuska, Gabriel E.</p> <p>2015-05-01</p> <p>Few studies have investigated regional and natural climate variability on seabird populations using ocean reanalysis datasets (e.g. Simple Ocean Data Assimilation (SODA)) that integrate atmospheric information to supplement ocean observations and provide improved estimates of ocean conditions. Herein we use a non-systematic dataset on Australasian gannets (Morus serrator) from 2001 to 2009 to identify potential connections between Gannet Sightings Per Unit Effort (GSPUE) and climate and oceanographic variability in a region of known importance for breeding seabirds, the Hauraki Gulf (HG), New Zealand. While no statistically significant relationships between GSPUE and global climate indices were determined, there was a significant correlation between GSPUE and regional SST anomaly for HG. Also, there appears to be a strong link between global climate indices and regional climate in the HG. Further, based on cross-correlation function coefficients and lagged multiple regression models, we identified potential leading and lagging climate variables, and climate variables but with limited predictive capacity in forecasting future GSPUE. Despite significant inter-annual variability and marginally cooler SSTs since 2001, gannet sightings appear to be increasing. We hypothesize that at present underlying physical changes in the marine ecosystem may be insufficient to affect supply of preferred gannet main prey (pilchard Sardinops spp.), which tolerate a wide thermal range. Our study showcases the potential scientific value of lengthy non-systematic data streams and when designed properly (i.e., contain abundance, flock size, and spatial data), can yield useful information in climate impact studies on seabirds and other marine fauna. Such information can be invaluable for enhancing conservation measures for protected species in fiscally constrained research environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51P..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51P..07L"><span>Prospects for development of unified global flood observation and prediction systems (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lettenmaier, D. P.</p> <p>2013-12-01</p> <p>Floods are among the most damaging of natural hazards, with global flood losses in 2011 alone estimated to have exceeded $100B. Historically, flood economic damages have been highest in the developed world (due in part to encroachment on historical flood plains), but loss of life, and human impacts have been greatest in the developing world. However, as the 2011 Thailand floods show, industrializing countries, many of which do not have well developed flood protection systems, are increasingly vulnerable to economic damages as they become more industrialized. At present, unified global flood observation and prediction systems are in their infancy; notwithstanding that global weather forecasting is a mature field. The summary for this session identifies two evolving capabilities that hold promise for development of more sophisticated global flood forecast systems: global hydrologic models and satellite remote sensing (primarily of precipitation, but also of flood inundation). To this I would add the increasing sophistication and accuracy of global precipitation analysis (and forecast) fields from numerical weather prediction models. In this brief overview, I will review progress in all three areas, and especially the evolution of hydrologic data assimilation which integrates modeling and data sources. I will also comment on inter-governmental and inter-agency cooperation, and related issues that have impeded progress in the development and utilization of global flood observation and prediction systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812880Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812880Z"><span>Integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zischg, Andreas Paul; Mosimann, Markus; Weingartner, Rolf</p> <p>2016-04-01</p> <p>A key aspect of disaster prevention is flood discharge forecasting which is used for early warning and therefore as a decision support for intervention forces. Hereby, the phase between the issued forecast and the time when the expected flood occurs is crucial for an optimal planning of the intervention. Typically, river discharge forecasts cover the regional level only, i.e. larger catchments. However, it is important to note that these forecasts are not useable directly for specific target groups on local level because these forecasts say nothing about the consequences of the predicted flood in terms of affected areas, number of exposed residents and houses. For this, on one hand simulations of the flooding processes and on the other hand data of vulnerable objects are needed. Furthermore, flood modelling in a high spatial and temporal resolution is required for robust flood loss estimation. This is a resource-intensive task from a computing time point of view. Therefore, in real-time applications flood modelling in 2D is not suited. Thus, forecasting flood losses in the short-term (6h-24h in advance) requires a different approach. Here, we propose a method to downscale the river discharge forecast to a spatially-explicit flood loss forecast. The principal procedure is to generate as many flood scenarios as needed in advance to represent the flooded areas for all possible flood hydrographs, e.g. very high peak discharges of short duration vs. high peak discharges with high volumes. For this, synthetic flood hydrographs were derived from the hydrologic time series. Then, the flooded areas of each scenario were modelled with a 2D flood simulation model. All scenarios were intersected with the dataset of vulnerable objects, in our case residential, agricultural and industrial buildings with information about the number of residents, the object-specific vulnerability, and the monetary value of the objects. This dataset was prepared by a data-mining approach. For each flood scenario, the resulting number of affected residents, houses and therefore the losses are computed. This integral assessment leads to a hydro-economical characterisation of each floodplain. Based on that, a transfer function between discharge forecast and damages can be elaborated. This transfer function describes the relationship between predicted peak discharge, flood volume and the number of exposed houses, residents and the related losses. It also can be used to downscale the regional discharge forecast to a local level loss forecast. In addition, a dynamic map delimiting the probable flooded areas on the basis of the forecasted discharge can be prepared. The predicted losses and the delimited flooded areas provide a complementary information for assessing the need of preventive measures on one hand on the long-term timescale and on the other hand 6h-24h in advance of a predicted flood. To conclude, we can state that the transfer function offers the possibility for an integral assessment of floodplains as a basis for spatially-explicit flood loss forecasts. The procedure has been developed and tested in the alpine and pre-alpine environment of the Aare river catchment upstream of Bern, Switzerland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ClDy...24..741T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ClDy...24..741T"><span>Trends and variability in column-integrated atmospheric water vapor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trenberth, Kevin E.; Fasullo, John; Smith, Lesley</p> <p>2005-06-01</p> <p>An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988 2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997 98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N 30°S of 7.8% K-1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture by the trade winds. The main region where positive trends are not very evident is over Europe, in spite of large and positive trends over the North Atlantic since 1988. A much longer time series is probably required to obtain stable patterns of trends over the oceans, although the main variability could probably be deduced from past SST and associated precipitation variations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41B2257K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41B2257K"><span>Medium-range Performance of the Global NWP Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, J.; Jang, T.; Kim, J.; Kim, Y.</p> <p>2017-12-01</p> <p>The medium-range performance of the global numerical weather prediction (NWP) model in the Korea Meteorological Administration (KMA) is investigated. The performance is based on the prediction of the extratropical circulation. The mean square error is expressed by sum of spatial variance of discrepancy between forecasts and observations and the square of the mean error (ME). Thus, it is important to investigate the ME effect in order to understand the model performance. The ME is expressed by the subtraction of an anomaly from forecast difference against the real climatology. It is found that the global model suffers from a severe systematic ME in medium-range forecasts. The systematic ME is dominant in the entire troposphere in all months. Such ME can explain at most 25% of root mean square error. We also compare the extratropical ME distribution with that from other NWP centers. NWP models exhibit similar spatial ME structure each other. It is found that the spatial ME pattern is highly correlated to that of an anomaly, implying that the ME varies with seasons. For example, the correlation coefficient between ME and anomaly ranges from -0.51 to -0.85 by months. The pattern of the extratropical circulation also has a high correlation to an anomaly. The global model has trouble in faithfully simulating extratropical cyclones and blockings in the medium-range forecast. In particular, the model has a hard to simulate an anomalous event in medium-range forecasts. If we choose an anomalous period for a test-bed experiment, we will suffer from a large error due to an anomaly.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070021465','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070021465"><span>The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.</p> <p>2006-01-01</p> <p>Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950035304&hterms=heating+global&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheating%2Bglobal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950035304&hterms=heating+global&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dheating%2Bglobal"><span>January and July global distributions of atmospheric heating for 1986, 1987, and 1988</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schaack, Todd K.; Johnson, Donald R.</p> <p>1994-01-01</p> <p>Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11Q..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11Q..04P"><span>Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pillosu, F. M.; Hewson, T.; Mazzetti, C.</p> <p>2017-12-01</p> <p>Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (<2 days) and become prohibitively expensive at global scale. ECMWF/EFAS/GLOFAS have developed a novel, cost-effective and physically-based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will illustrate for ecPR 1) system calibration, 2) operational implementation, 3) long-term verification, 4) future developments, and 5) early ideas for the application of ecPR outputs in hydrological models.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917352H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917352H"><span>The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie</p> <p>2017-04-01</p> <p>As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant, larvae dispersion etc… These Eulerian and Lagrangian validation approach can be applied for real time or offline assessment of ocean velocity products. In real time, the main limitation is our capability to detect drifter drogue's loss, causing erroneous assessment. Several methods, by comparison to wind entrainment effect or other velocity estimates like from satellite altimetry, are used. These Eulerian and Lagrangian surface velocity validation methods are planned to be adopted by the GODAE OceanView operational community in order to offer independent verification of surface current forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61..433Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61..433Z"><span>The impact of different background errors in the assimilation of satellite radiances and in-situ observational data using WRFDA for three rainfall events over Iran</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zakeri, Zeinab; Azadi, Majid; Ghader, Sarmad</p> <p>2018-01-01</p> <p>Satellite radiances and in-situ observations are assimilated through Weather Research and Forecasting Data Assimilation (WRFDA) system into Advanced Research WRF (ARW) model over Iran and its neighboring area. Domain specific background error based on x and y components of wind speed (UV) control variables is calculated for WRFDA system and some sensitivity experiments are carried out to compare the impact of global background error and the domain specific background errors, both on the precipitation and 2-m temperature forecasts over Iran. Three precipitation events that occurred over the country during January, September and October 2014 are simulated in three different experiments and the results for precipitation and 2-m temperature are verified against the verifying surface observations. Results show that using domain specific background error improves 2-m temperature and 24-h accumulated precipitation forecasts consistently, while global background error may even degrade the forecasts compared to the experiments without data assimilation. The improvement in 2-m temperature is more evident during the first forecast hours and decreases significantly as the forecast length increases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710899C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710899C"><span>A high resolution Adriatic-Ionian Sea circulation model for operational forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ciliberti, Stefania Angela; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo; Vukicevic, Tomislava; Lecci, Rita; Verri, Giorgia; Kumkar, Yogesh; Creti', Sergio</p> <p>2015-04-01</p> <p>A new numerical regional ocean model for the Italian Seas, with focus on the Adriatic-Ionian basin, has been implemented within the framework of Technologies for Situational Sea Awareness (TESSA) Project. The Adriatic-Ionian regional model (AIREG) represents the core of the new Adriatic-Ionian Forecasting System (AIFS), maintained operational by CMCC since November 2014. The spatial domain covers the Adriatic and the Ionian Seas, extending eastward until the Peloponnesus until the Libyan coasts; it includes also the Tyrrhenian Sea and extends westward, including the Ligurian Sea, the Sardinia Sea and part of the Algerian basin. The model is based on the NEMO-OPA (Nucleus for European Modeling of the Ocean - Ocean PArallelise), version 3.4 (Madec et al. 2008). NEMO has been implemented for AIREG at 1/45° resolution model in horizontal using 121 vertical levels with partial steps. It solves the primitive equations using the time-splitting technique for solving explicitly the external gravity waves. The model is forced by momentum, water and heat fluxes interactively computed by bulk formulae using the 6h-0.25° horizontal-resolution operational analysis and forecast fields from the European Centre for Medium-Range Weather Forecast (ECMWF) (Tonani et al. 2008, Oddo et al. 2009). The atmospheric pressure effect is included as surface forcing for the model hydrodynamics. The evaporation is derived from the latent heat flux, while the precipitation is provided by the Climate Prediction Centre Merged Analysis of Precipitation (CMAP) data. Concerning the runoff contribution, the model considers the estimate of the inflow discharge of 75 rivers that flow into the Adriatic-Ionian basin, collected by using monthly means datasets. Because of its importance as freshwater input in the Adriatic basin, the Po River contribution is provided using daily average observations from ARPA Emilia Romagna observational network. AIREG is one-way nested into the Mediterranean Forecasting System (MFS, http://medforecast.bo.ingv.it/) using daily means fields computed from daily outputs of the 1/16° general circulation model. One-way nesting is done by a novel pre-processing tool for an on-the-fly computation of boundary datasets compatible with BDY module provided by NEMO. It imposes the interpolation constraint and correction as in Pinardi et al. (2003) on the total velocity, ensuring that the total volume transport across boundaries is preserved after the interpolation procedures. In order to compute the lateral open boundary conditions, the model applies the Flow Relaxation Scheme (Engerdhal, 1995) for temperature, salinity and velocities and the Flather's radiation condition (Flather, 1976) for the depth-mean transport. Concerning the forecasting production cycle, AIFS produces 9-days forecast every day, producing hourly and daily means of temperature, salinity, surface currents, heat flux, water flux and shortwave radiation fields. AIREG model performances have been verified by using statistics (root mean square errors and BIAS) with respect to observed data (ARGO and CDT datasets)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010107843','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010107843"><span>Continuation of the NVAP Global Water Vapor Data Sets for Pathfinder Science Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>VonderHaar, Thomas H.; Engelen, Richard J.; Forsythe, John M.; Randel, David L.; Ruston, Benjamin C.; Woo, Shannon; Dodge, James (Technical Monitor)</p> <p>2001-01-01</p> <p>This annual report covers August 2000 - August 2001 under NASA contract NASW-0032, entitled "Continuation of the NVAP (NASA's Water Vapor Project) Global Water Vapor Data Sets for Pathfinder Science Analysis". NASA has created a list of Earth Science Research Questions which are outlined by Asrar, et al. Particularly relevant to NVAP are the following questions: (a) How are global precipitation, evaporation, and the cycling of water changing? (b) What trends in atmospheric constituents and solar radiation are driving global climate? (c) How well can long-term climatic trends be assessed or predicted? Water vapor is a key greenhouse gas, and an understanding of its behavior is essential in global climate studies. Therefore, NVAP plays a key role in addressing the above climate questions by creating a long-term global water vapor dataset and by updating the dataset with recent advances in satellite instrumentation. The NVAP dataset produced from 1988-1998 has found wide use in the scientific community. Studies of interannual variability are particularly important. A recent paper by Simpson, et al. that examined the NVAP dataset in detail has shown that its relative accuracy is sufficient for the variability studies that contribute toward meeting NASA's goals. In the past year, we have made steady progress towards continuing production of this high-quality dataset as well as performing our own investigations of the data. This report summarizes the past year's work on production of the NVAP dataset and presents results of analyses we have performed in the past year.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780006813','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780006813"><span>Weather assessment and forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1977-01-01</p> <p>Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18...26B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18...26B"><span>Calibration of Ocean Forcing with satellite Flux Estimates (COFFEE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barron, Charlie; Jan, Dastugue; Jackie, May; Rowley, Clark; Smith, Scott; Spence, Peter; Gremes-Cordero, Silvia</p> <p>2016-04-01</p> <p>Predicting the evolution of ocean temperature in regional ocean models depends on estimates of surface heat fluxes and upper-ocean processes over the forecast period. Within the COFFEE project (Calibration of Ocean Forcing with satellite Flux Estimates, real-time satellite observations are used to estimate shortwave, longwave, sensible, and latent air-sea heat flux corrections to a background estimate from the prior day's regional or global model forecast. These satellite-corrected fluxes are used to prepare a corrected ocean hindcast and to estimate flux error covariances to project the heat flux corrections for a 3-5 day forecast. In this way, satellite remote sensing is applied to not only inform the initial ocean state but also to mitigate errors in surface heat flux and model representations affecting the distribution of heat in the upper ocean. While traditional assimilation of sea surface temperature (SST) observations re-centers ocean models at the start of each forecast cycle, COFFEE endeavors to appropriately partition and reduce among various surface heat flux and ocean dynamics sources. A suite of experiments in the southern California Current demonstrates a range of COFFEE capabilities, showing the impact on forecast error relative to a baseline three-dimensional variational (3DVAR) assimilation using operational global or regional atmospheric forcing. Experiment cases combine different levels of flux calibration with assimilation alternatives. The cases use the original fluxes, apply full satellite corrections during the forecast period, or extend hindcast corrections into the forecast period. Assimilation is either baseline 3DVAR or standard strong-constraint 4DVAR, with work proceeding to add a 4DVAR expanded to include a weak constraint treatment of the surface flux errors. Covariance of flux errors is estimated from the recent time series of forecast and calibrated flux terms. While the California Current examples are shown, the approach is equally applicable to other regions. These approaches within a 3DVAR application are anticipated to be useful for global and larger regional domains where a full 4DVAR methodology may be cost-prohibitive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.3573C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.3573C"><span>Preparing for floods: flood forecasting and early warning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cloke, Hannah</p> <p>2016-04-01</p> <p>Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H41C1049F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H41C1049F"><span>Developing a regional retrospective ensemble precipitation dataset for watershed hydrology modeling, Idaho, USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flores, A. N.; Smith, K.; LaPorte, P.</p> <p>2011-12-01</p> <p>Applications like flood forecasting, military trafficability assessment, and slope stability analysis necessitate the use of models capable of resolving hydrologic states and fluxes at spatial scales of hillslopes (e.g., 10s to 100s m). These models typically require precipitation forcings at spatial scales of kilometers or better and time intervals of hours. Yet in especially rugged terrain that typifies much of the Western US and throughout much of the developing world, precipitation data at these spatiotemporal resolutions is difficult to come by. Ground-based weather radars have significant problems in high-relief settings and are sparsely located, leaving significant gaps in coverage and high uncertainties. Precipitation gages provide accurate data at points but are very sparsely located and their placement is often not representative, yielding significant coverage gaps in a spatial and physiographic sense. Numerical weather prediction efforts have made precipitation data, including critically important information on precipitation phase, available globally and in near real-time. However, these datasets present watershed modelers with two problems: (1) spatial scales of many of these datasets are tens of kilometers or coarser, (2) numerical weather models used to generate these datasets include a land surface parameterization that in some circumstances can significantly affect precipitation predictions. We report on the development of a regional precipitation dataset for Idaho that leverages: (1) a dataset derived from a numerical weather prediction model, (2) gages within Idaho that report hourly precipitation data, and (3) a long-term precipitation climatology dataset. Hourly precipitation estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are stochastically downscaled using a hybrid orographic and statistical model from their native resolution (1/2 x 2/3 degrees) to a resolution of approximately 1 km. Downscaled precipitation realizations are conditioned on hourly observations from reporting gages and then conditioned again on the Parameter-elevation Regressions on Independent Slopes Model (PRISM) at the monthly timescale to reflect orographic precipitation trends common to watersheds of the Western US. While this methodology potentially introduces cross-pollination of errors due to the re-use of precipitation gage data, it nevertheless achieves an ensemble-based precipitation estimate and appropriate measures of uncertainty at a spatiotemporal resolution appropriate for watershed modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.1082S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.1082S"><span>Performance Comparison of the European Storm Surge Models and Chaotic Model in Forecasting Extreme Storm Surges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siek, M. B.; Solomatine, D. P.</p> <p>2009-04-01</p> <p>Storm surge modeling has rapidly developed considerably over the past 30 years. A number of significant advances on operational storm surge models have been implemented and tested, consisting of: refining computational grids, calibrating the model, using a better numerical scheme (i.e. more realistic model physics for air-sea interaction), implementing data assimilation and ensemble model forecasts. This paper addresses the performance comparison between the existing European storm surge models and the recently developed methods of nonlinear dynamics and chaos theory in forecasting storm surge dynamics. The chaotic model is built using adaptive local models based on the dynamical neighbours in the reconstructed phase space of observed time series data. The comparison focused on the model accuracy in forecasting a recently extreme storm surge in the North Sea on November 9th, 2007 that hit the coastlines of several European countries. The combination of a high tide, north-westerly winds exceeding 50 mph and low pressure produced an exceptional storm tide. The tidal level was exceeded 3 meters above normal sea levels. Flood warnings were issued for the east coast of Britain and the entire Dutch coast. The Maeslant barrier's two arc-shaped steel doors in the Europe's biggest port of Rotterdam was closed for the first time since its construction in 1997 due to this storm surge. In comparison to the chaotic model performance, the forecast data from several European physically-based storm surge models were provided from: BSH Germany, DMI Denmark, DNMI Norway, KNMI Netherlands and MUMM Belgium. The performance comparison was made over testing datasets for two periods/conditions: non-stormy period (1-Sep-2007 till 14-Oct-2007) and stormy period (15-Oct-2007 till 20-Nov-2007). A scalar chaotic model with optimized parameters was developed by utilizing an hourly training dataset of observations (11-Sep-2005 till 31-Aug-2007). The comparison results indicated the chaotic model yields better forecasts than the existing European storm surge models. The best performance of European storm surge models for non-storm and storm conditions was achieved by KNMI (with Kalman filter data assimilation) and BSH with errors of 8.95cm and 10.92cm, respectively. Whereas the chaotic model can provide 6 and 48 hours forecasts with errors of 3.10cm and 8.55cm for non-storm condition and 5.04cm and 15.21cm for storm condition, respectively. The chaotic model can provide better forecasts primarily due to the fact that the chaotic model forecasting are estimated by local models which model and identify the similar development of storm surges in the past. In practice, the chaotic model can serve as a reliable and accurate model to support decision-makers in operational ship navigation and flood forecasting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616478W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616478W"><span>The Challenges of Developing a Framework for Global Water Cycle Monitoring and Prediction (Alfred Wegener Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, Eric F.</p> <p>2014-05-01</p> <p>The Global Earth Observation System of Systems (GEOSS) Water Strategy ("From Observations to Decisions") recognizes that "water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity", and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the developments at Princeton University towards a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions, flood potential and the state of drought. Seasonal climate model forecasts are downscaled and bias-corrected to drive the land surface model to provide hydrological forecasts and drought products out 6-9 months. The system relies on historic reconstructions of water variability over the 20th century, which forms the background climatology to which current conditions can be assessed. Future changes in water availability and drought risk are quantified based on bias-corrected and downscaled climate model projections that are used to drive the land surface models. For regions with lack of on-the-ground data we are field-testing low-cost environmental sensors and along with new satellite products for terrestrial hydrology and vegetation, integrating these into the system for improved monitoring and prediction. At every step there are scientific challenges whose solutions are only partially being solved. In addition there are challenges in delivering such systems as "climate services", especially to societies with low technical capacity such as rural agriculturalists in sub-Saharan Africa, but whose needs for such information are great. We provide an overview of the system and some examples of real-world applications to flood and drought events, with a focus on Africa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810306M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810306M"><span>Potential for using regional and global datasets for national scale ecosystem service modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maxwell, Deborah; Jackson, Bethanna</p> <p>2016-04-01</p> <p>Ecosystem service models are increasingly being used by planners and policy makers to inform policy development and decisions about national-level resource management. Such models allow ecosystem services to be mapped and quantified, and subsequent changes to these services to be identified and monitored. In some cases, the impact of small scale changes can be modelled at a national scale, providing more detailed information to decision makers about where to best focus investment and management interventions that could address these issues, while moving toward national goals and/or targets. National scale modelling often uses national (or local) data (for example, soils, landcover and topographical information) as input. However, there are some places where fine resolution and/or high quality national datasets cannot be easily obtained, or do not even exist. In the absence of such detailed information, regional or global datasets could be used as input to such models. There are questions, however, about the usefulness of these coarser resolution datasets and the extent to which inaccuracies in this data may degrade predictions of existing and potential ecosystem service provision and subsequent decision making. Using LUCI (the Land Utilisation and Capability Indicator) as an example predictive model, we examine how the reliability of predictions change when national datasets of soil, landcover and topography are substituted with coarser scale regional and global datasets. We specifically look at how LUCI's predictions of where water services, such as flood risk, flood mitigation, erosion and water quality, change when national data inputs are replaced by regional and global datasets. Using the Conwy catchment, Wales, as a case study, the land cover products compared are the UK's Land Cover Map (2007), the European CORINE land cover map and the ESA global land cover map. Soils products include the National Soil Map of England and Wales (NatMap) and the European Soils Database. NEXTmap elevation data, which covers the UK and parts of continental Europe, are compared to global AsterDEM and SRTM30 topographical products. While the regional and global datasets can be used to fill gaps in data requirements, the coarser resolution of these datasets means that there is greater aggregation of information over larger areas. This loss of detail impacts on the reliability of model output, particularly where significant discrepancies between datasets exist. The implications of this loss of detail in terms of spatial planning and decision making is discussed. Finally, in the context of broader development the need for better nationally and globally available data to allow LUCI and other ecosystem models to become more globally applicable is highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3616','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3616"><span>Pilot testing of SHRP 2 reliability data and analytical products: Washington. [supporting datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-01-01</p> <p>The Washington site used the reliability guide from Project L02, analysis tools for forecasting reliability and estimating impacts from Project L07, Project L08, and Project C11 as well as the guide on reliability performance measures from the Projec...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhDT.......112A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhDT.......112A"><span>Targeted observations to improve tropical cyclone track forecasts in the Atlantic and eastern Pacific basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aberson, Sim David</p> <p></p> <p>In 1997, the National Hurricane Center and the Hurricane Research Division began conducting operational synoptic surveillance missions with the Gulfstream IV-SP jet aircraft to improve operational forecast models. During the first two years, twenty-four missions were conducted around tropical cyclones threatening the continental United States, Puerto Rico, and the Virgin Islands. Global Positioning System dropwindsondes were released from the aircraft at 150--200 km intervals along the flight track in the tropical cyclone environment to obtain wind, temperature, and humidity profiles from flight level (around 150 hPa) to the surface. The observations were processed and formatted aboard the aircraft and transmitted to the National Centers for Environmental Prediction (NCEP). There, they were ingested into the Global Data Assimilation System that subsequently provides initial and time-dependent boundary conditions for numerical models that forecast tropical cyclone track and intensity. Three dynamical models were employed in testing the targeting and sampling strategies. With the assimilation into the numerical guidance of all the observations gathered during the surveillance missions, only the 12-h Geophysical Fluid Dynamics Laboratory Hurricane Model forecast showed statistically significant improvement. Neither the forecasts from the Aviation run of the Global Spectral Model nor the shallow-water VICBAR model were improved with the assimilation of the dropwindsonde data. This mediocre result is found to be due mainly to the difficulty in operationally quantifying the storm-motion vector used to create accurate synthetic data to represent the tropical cyclone vortex in the models. A secondary limit on forecast improvements from the surveillance missions is the limited amount of data provided by the one surveillance aircraft in regular missions. The inability of some surveillance missions to surround the tropical cyclone with dropwindsonde observations is a possible third limit, though the results are inconclusive. Due to limited aircraft resources, optimal observing strategies for these missions must be developed. Since observations in areas of decaying error modes are unlikely to have large impact on subsequent forecasts, such strategies should be based on taking observations in those geographic locations corresponding to the most rapidly growing error modes in the numerical models and on known deficiencies in current data assimilation systems. Here, the most rapidly growing modes are represented by areas of large forecast spread in the NCEP bred-mode global ensemble forecasting system. The sampling strategy requires sampling the entire target region at approximately the same resolution as the North American rawinsonde network to limit the possibly spurious spread of information from dropwindsonde observations into data-sparse regions where errors are likely to grow. When only the subset of data in these fully-sampled target regions is assimilated into the numerical models, statistically significant reduction of the track forecast errors of up to 25% within the critical first two days of the forecast are seen. These model improvements are comparable with the cumulative business-as-usual track forecast model improvements expected over eighteen years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2459K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2459K"><span>Model Parameter Estimation Using Ensemble Data Assimilation: A Case with the Nonhydrostatic Icosahedral Atmospheric Model NICAM and the Global Satellite Mapping of Precipitation Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kotsuki, Shunji; Terasaki, Koji; Yashiro, Hasashi; Tomita, Hirofumi; Satoh, Masaki; Miyoshi, Takemasa</p> <p>2017-04-01</p> <p>This study aims to improve precipitation forecasts from numerical weather prediction (NWP) models through effective use of satellite-derived precipitation data. Kotsuki et al. (2016, JGR-A) successfully improved the precipitation forecasts by assimilating the Japan Aerospace eXploration Agency (JAXA)'s Global Satellite Mapping of Precipitation (GSMaP) data into the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) at 112-km horizontal resolution. Kotsuki et al. mitigated the non-Gaussianity of the precipitation variables by the Gaussian transform method for observed and forecasted precipitation using the previous 30-day precipitation data. This study extends the previous study by Kotsuki et al. and explores an online estimation of model parameters using ensemble data assimilation. We choose two globally-uniform parameters, one is the cloud-to-rain auto-conversion parameter of the Berry's scheme for large scale condensation and the other is the relative humidity threshold of the Arakawa-Schubert cumulus parameterization scheme. We perform the online-estimation of the two model parameters with an ensemble transform Kalman filter by assimilating the GSMaP precipitation data. The estimated parameters improve the analyzed and forecasted mixing ratio in the lower troposphere. Therefore, the parameter estimation would be a useful technique to improve the NWP models and their forecasts. This presentation will include the most recent progress up to the time of the symposium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4611749','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4611749"><span>Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pérez-Luque, Antonio Jesús; Zamora, Regino; Bonet, Francisco Javier; Pérez-Pérez, Ramón</p> <p>2015-01-01</p> <p>Abstract In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range. PMID:26491387</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29313841','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29313841"><span>TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C</p> <p>2018-01-09</p> <p>We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatSD...570191A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatSD...570191A"><span>TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.</p> <p>2018-01-01</p> <p>We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.8611H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.8611H"><span>Post-processing of global model output to forecast point rainfall</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hewson, Tim; Pillosu, Fatima</p> <p>2016-04-01</p> <p>ECMWF (the European Centre for Medium range Weather Forecasts) has recently embarked upon a new project to post-process gridbox rainfall forecasts from its ensemble prediction system, to provide probabilistic forecasts of point rainfall. The new post-processing strategy relies on understanding how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. We use a number of simple global model parameters, such as the convective rainfall fraction, to anticipate the sub-grid variability, and then post-process each ensemble forecast into a pdf (probability density function) for a point-rainfall total. The final forecast will comprise the sum of the different pdfs from all ensemble members. The post-processing is essentially a re-calibration exercise, which needs only rainfall totals from standard global reporting stations (and forecasts) to train it. High density observations are not needed. This presentation will describe results from the initial 'proof of concept' study, which has been remarkably successful. Reference will also be made to other useful outcomes of the work, such as gaining insights into systematic model biases in different synoptic settings. The special case of orographic rainfall will also be discussed. Work ongoing this year will also be described. This involves further investigations of which model parameters can provide predictive skill, and will then move on to development of an operational system for predicting point rainfall across the globe. The main practical benefit of this system will be a greatly improved capacity to predict extreme point rainfall, and thereby provide early warnings, for the whole world, of flash flood potential for lead times that extend beyond day 5. This will be incorporated into the suite of products output by GLOFAS (the GLObal Flood Awareness System) which is hosted at ECMWF. As such this work offers a very cost-effective approach to satisfying user needs right around the world. This field has hitherto relied on using very expensive high-resolution ensembles; by their very nature these can only run over small regions, and only for lead times up to about 2 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H13J1545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H13J1545M"><span>Statistical and Hydrological evaluation of precipitation forecasts from IMD MME and ECMWF numerical weather forecasts for Indian River basins</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mohite, A. R.; Beria, H.; Behera, A. K.; Chatterjee, C.; Singh, R.</p> <p>2016-12-01</p> <p>Flood forecasting using hydrological models is an important and cost-effective non-structural flood management measure. For forecasting at short lead times, empirical models using real-time precipitation estimates have proven to be reliable. However, their skill depreciates with increasing lead time. Coupling a hydrologic model with real-time rainfall forecasts issued from numerical weather prediction (NWP) systems could increase the lead time substantially. In this study, we compared 1-5 days precipitation forecasts from India Meteorological Department (IMD) Multi-Model Ensemble (MME) with European Center for Medium Weather forecast (ECMWF) NWP forecasts for over 86 major river basins in India. We then evaluated the hydrologic utility of these forecasts over Basantpur catchment (approx. 59,000 km2) of the Mahanadi River basin. Coupled MIKE 11 RR (NAM) and MIKE 11 hydrodynamic (HD) models were used for the development of flood forecast system (FFS). RR model was calibrated using IMD station rainfall data. Cross-sections extracted from SRTM 30 were used as input to the MIKE 11 HD model. IMD started issuing operational MME forecasts from the year 2008, and hence, both the statistical and hydrologic evaluation were carried out from 2008-2014. The performance of FFS was evaluated using both the NWP datasets separately for the year 2011, which was a large flood year in Mahanadi River basin. We will present figures and metrics for statistical (threshold based statistics, skill in terms of correlation and bias) and hydrologic (Nash Sutcliffe efficiency, mean and peak error statistics) evaluation. The statistical evaluation will be at pan-India scale for all the major river basins and the hydrologic evaluation will be for the Basantpur catchment of the Mahanadi River basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC51E0852B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC51E0852B"><span>The Status of the NASA MEaSUREs Combined ASTER and MODIS Emissivity Over Land (CAMEL) Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borbas, E. E.; Feltz, M.; Hulley, G. C.; Knuteson, R. O.; Hook, S. J.</p> <p>2017-12-01</p> <p>As part of a NASA MEaSUREs Land Surface Temperature and Emissivity project, the University of Wisconsin, Space Science and Engineering Center and the NASA's Jet Propulsion Laboratory have developed a global monthly mean emissivity Earth System Data Record (ESDR). The CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4). The dataset includes monthly global data records of emissivity, uncertainty at 13 hinge points between 3.6-14.3 µm, and Principal Components Analysis (PCA) coefficients at 5 kilometer resolution for years 2003 to 2015. A high spectral resolution algorithm is also provided for HSR applications. The dataset is currently being tested in sounder retrieval algorithm (e.g. CrIS, IASI) and has already been implemented in RTTOV-12 for immediate use in numerical weather modeling and data assimilation. This poster will present the current status of the dataset.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H51J1403Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H51J1403Y"><span>Evaluation of Satellite and Model Precipitation Products Over Turkey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yilmaz, M. T.; Amjad, M.</p> <p>2017-12-01</p> <p>Satellite-based remote sensing, gauge stations, and models are the three major platforms to acquire precipitation dataset. Among them satellites and models have the advantage of retrieving spatially and temporally continuous and consistent datasets, while the uncertainty estimates of these retrievals are often required for many hydrological studies to understand the source and the magnitude of the uncertainty in hydrological response parameters. In this study, satellite and model precipitation data products are validated over various temporal scales (daily, 3-daily, 7-daily, 10-daily and monthly) using in-situ measured precipitation observations from a network of 733 gauges from all over the Turkey. Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 version 7 and European Center of Medium-Range Weather Forecast (ECMWF) model estimates (daily, 3-daily, 7-daily and 10-daily accumulated forecast) are used in this study. Retrievals are evaluated for their mean and standard deviation and their accuracies are evaluated via bias, root mean square error, error standard deviation and correlation coefficient statistics. Intensity vs frequency analysis and some contingency table statistics like percent correct, probability of detection, false alarm ratio and critical success index are determined using daily time-series. Both ECMWF forecasts and TRMM observations, on average, overestimate the precipitation compared to gauge estimates; wet biases are 10.26 mm/month and 8.65 mm/month, respectively for ECMWF and TRMM. RMSE values of ECMWF forecasts and TRMM estimates are 39.69 mm/month and 41.55 mm/month, respectively. Monthly correlations between Gauges-ECMWF, Gauges-TRMM and ECMWF-TRMM are 0.76, 0.73 and 0.81, respectively. The model and the satellite error statistics are further compared against the gauges error statistics based on inverse distance weighting (IWD) analysis. Both the model and satellite data have less IWD errors (14.72 mm/month and 10.75 mm/month, respectively) compared to gauges IWD error (21.58 mm/month). These results show that, on average, ECMWF forecast data have higher skill than TRMM observations. Overall, both ECMWF forecast data and TRMM observations show good potential for catchment scale hydrological analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860014650','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860014650"><span>Proceedings of the First National Workshop on the Global Weather Experiment: Current Achievements and Future Directions, volume 2, part 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1985-01-01</p> <p>Topics covered include: data systems and quality; analysis and assimilation techniques; impacts on forecasts; tropical forecasts; analysis intercomparisons; improvements in predictability; and heat sources and sinks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhyA..401...71B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhyA..401...71B"><span>Multifractality and value-at-risk forecasting of exchange rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batten, Jonathan A.; Kinateder, Harald; Wagner, Niklas</p> <p>2014-05-01</p> <p>This paper addresses market risk prediction for high frequency foreign exchange rates under nonlinear risk scaling behaviour. We use a modified version of the multifractal model of asset returns (MMAR) where trading time is represented by the series of volume ticks. Our dataset consists of 138,418 5-min round-the-clock observations of EUR/USD spot quotes and trading ticks during the period January 5, 2006 to December 31, 2007. Considering fat-tails, long-range dependence as well as scale inconsistency with the MMAR, we derive out-of-sample value-at-risk (VaR) forecasts and compare our approach to historical simulation as well as a benchmark GARCH(1,1) location-scale VaR model. Our findings underline that the multifractal properties in EUR/USD returns in fact have notable risk management implications. The MMAR approach is a parsimonious model which produces admissible VaR forecasts at the 12-h forecast horizon. For the daily horizon, the MMAR outperforms both alternatives based on conditional as well as unconditional coverage statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JSWSC...8A..22P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JSWSC...8A..22P"><span>Geomagnetic storm forecasting service StormFocus: 5 years online</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Podladchikova, Tatiana; Petrukovich, Anatoly; Yermolaev, Yuri</p> <p>2018-04-01</p> <p>Forecasting geomagnetic storms is highly important for many space weather applications. In this study, we review performance of the geomagnetic storm forecasting service StormFocus during 2011-2016. The service was implemented in 2011 at SpaceWeather.Ru and predicts the expected strength of geomagnetic storms as measured by Dst index several hours ahead. The forecast is based on L1 solar wind and IMF measurements and is updated every hour. The solar maximum of cycle 24 is weak, so most of the statistics are on rather moderate storms. We verify quality of selection criteria, as well as reliability of real-time input data in comparison with the final values, available in archives. In real-time operation 87% of storms were correctly predicted while the reanalysis running on final OMNI data predicts successfully 97% of storms. Thus the main reasons for prediction errors are discrepancies between real-time and final data (Dst, solar wind and IMF) due to processing errors, specifics of datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28981548','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28981548"><span>A genetic-algorithm-based remnant grey prediction model for energy demand forecasting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Yi-Chung</p> <p>2017-01-01</p> <p>Energy demand is an important economic index, and demand forecasting has played a significant role in drawing up energy development plans for cities or countries. As the use of large datasets and statistical assumptions is often impractical to forecast energy demand, the GM(1,1) model is commonly used because of its simplicity and ability to characterize an unknown system by using a limited number of data points to construct a time series model. This paper proposes a genetic-algorithm-based remnant GM(1,1) (GARGM(1,1)) with sign estimation to further improve the forecasting accuracy of the original GM(1,1) model. The distinctive feature of GARGM(1,1) is that it simultaneously optimizes the parameter specifications of the original and its residual models by using the GA. The results of experiments pertaining to a real case of energy demand in China showed that the proposed GARGM(1,1) outperforms other remnant GM(1,1) variants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5628834','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5628834"><span>A genetic-algorithm-based remnant grey prediction model for energy demand forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Energy demand is an important economic index, and demand forecasting has played a significant role in drawing up energy development plans for cities or countries. As the use of large datasets and statistical assumptions is often impractical to forecast energy demand, the GM(1,1) model is commonly used because of its simplicity and ability to characterize an unknown system by using a limited number of data points to construct a time series model. This paper proposes a genetic-algorithm-based remnant GM(1,1) (GARGM(1,1)) with sign estimation to further improve the forecasting accuracy of the original GM(1,1) model. The distinctive feature of GARGM(1,1) is that it simultaneously optimizes the parameter specifications of the original and its residual models by using the GA. The results of experiments pertaining to a real case of energy demand in China showed that the proposed GARGM(1,1) outperforms other remnant GM(1,1) variants. PMID:28981548</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1616409M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1616409M"><span>Impact of atmosphere and land surface initial conditions on seasonal forecast of global surface temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Materia, Stefano; Borrelli, Andrea; Bellucci, Alessio; Alessandri, Andrea; Di Pietro, Pierluigi; Athanasiadis, Panagiotis; Navarra, Antonio; Gualdi, Silvio</p> <p>2014-05-01</p> <p>The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, mitigating the coupling shock and possibly increasing the model predictive skill in the ocean. In fact, in a few regions characterized by strong air-sea coupling, the atmosphere initial condition affects the forecast skill for several months. In particular, the ENSO region, the eastern tropical Atlantic and the North Pacific benefit significantly from the atmosphere initialization. On mainland, the impact of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects the forecast skill in the following lead seasons. The winter forecast in the high latitude plains of Siberia and Canada benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region, in central Asia and Australia. However, initialization through land surface reanalysis does not systematically guarantee an enhancement of the predictive skill: the quality of the forecast is sometimes higher for the non-constrained model. Overall, the introduction of a realistic initialization of land surface and atmosphere substantially increases skill and accuracy. However, further developments in the operating procedure for land surface initialization are required for more accurate seasonal forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO14B2771L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO14B2771L"><span>Performance and Quality Assessment of the Forthcoming Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.</p> <p>2016-02-01</p> <p>Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24714027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24714027"><span>Influenza forecasting in human populations: a scoping review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chretien, Jean-Paul; George, Dylan; Shaman, Jeffrey; Chitale, Rohit A; McKenzie, F Ellis</p> <p>2014-01-01</p> <p>Forecasts of influenza activity in human populations could help guide key preparedness tasks. We conducted a scoping review to characterize these methodological approaches and identify research gaps. Adapting the PRISMA methodology for systematic reviews, we searched PubMed, CINAHL, Project Euclid, and Cochrane Database of Systematic Reviews for publications in English since January 1, 2000 using the terms "influenza AND (forecast* OR predict*)", excluding studies that did not validate forecasts against independent data or incorporate influenza-related surveillance data from the season or pandemic for which the forecasts were applied. We included 35 publications describing population-based (N = 27), medical facility-based (N = 4), and regional or global pandemic spread (N = 4) forecasts. They included areas of North America (N = 15), Europe (N = 14), and/or Asia-Pacific region (N = 4), or had global scope (N = 3). Forecasting models were statistical (N = 18) or epidemiological (N = 17). Five studies used data assimilation methods to update forecasts with new surveillance data. Models used virological (N = 14), syndromic (N = 13), meteorological (N = 6), internet search query (N = 4), and/or other surveillance data as inputs. Forecasting outcomes and validation metrics varied widely. Two studies compared distinct modeling approaches using common data, 2 assessed model calibration, and 1 systematically incorporated expert input. Of the 17 studies using epidemiological models, 8 included sensitivity analysis. This review suggests need for use of good practices in influenza forecasting (e.g., sensitivity analysis); direct comparisons of diverse approaches; assessment of model calibration; integration of subjective expert input; operational research in pilot, real-world applications; and improved mutual understanding among modelers and public health officials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3979760','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3979760"><span>Influenza Forecasting in Human Populations: A Scoping Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chretien, Jean-Paul; George, Dylan; Shaman, Jeffrey; Chitale, Rohit A.; McKenzie, F. Ellis</p> <p>2014-01-01</p> <p>Forecasts of influenza activity in human populations could help guide key preparedness tasks. We conducted a scoping review to characterize these methodological approaches and identify research gaps. Adapting the PRISMA methodology for systematic reviews, we searched PubMed, CINAHL, Project Euclid, and Cochrane Database of Systematic Reviews for publications in English since January 1, 2000 using the terms “influenza AND (forecast* OR predict*)”, excluding studies that did not validate forecasts against independent data or incorporate influenza-related surveillance data from the season or pandemic for which the forecasts were applied. We included 35 publications describing population-based (N = 27), medical facility-based (N = 4), and regional or global pandemic spread (N = 4) forecasts. They included areas of North America (N = 15), Europe (N = 14), and/or Asia-Pacific region (N = 4), or had global scope (N = 3). Forecasting models were statistical (N = 18) or epidemiological (N = 17). Five studies used data assimilation methods to update forecasts with new surveillance data. Models used virological (N = 14), syndromic (N = 13), meteorological (N = 6), internet search query (N = 4), and/or other surveillance data as inputs. Forecasting outcomes and validation metrics varied widely. Two studies compared distinct modeling approaches using common data, 2 assessed model calibration, and 1 systematically incorporated expert input. Of the 17 studies using epidemiological models, 8 included sensitivity analysis. This review suggests need for use of good practices in influenza forecasting (e.g., sensitivity analysis); direct comparisons of diverse approaches; assessment of model calibration; integration of subjective expert input; operational research in pilot, real-world applications; and improved mutual understanding among modelers and public health officials. PMID:24714027</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040130204&hterms=Disease&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DDisease','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040130204&hterms=Disease&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DDisease"><span>Forecasting disease risk for increased epidemic preparedness in public health</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Myers, M. F.; Rogers, D. J.; Cox, J.; Flahault, A.; Hay, S. I.</p> <p>2000-01-01</p> <p>Emerging infectious diseases pose a growing threat to human populations. Many of the world's epidemic diseases (particularly those transmitted by intermediate hosts) are known to be highly sensitive to long-term changes in climate and short-term fluctuations in the weather. The application of environmental data to the study of disease offers the capability to demonstrate vector-environment relationships and potentially forecast the risk of disease outbreaks or epidemics. Accurate disease forecasting models would markedly improve epidemic prevention and control capabilities. This chapter examines the potential for epidemic forecasting and discusses the issues associated with the development of global networks for surveillance and prediction. Existing global systems for epidemic preparedness focus on disease surveillance using either expert knowledge or statistical modelling of disease activity and thresholds to identify times and areas of risk. Predictive health information systems would use monitored environmental variables, linked to a disease system, to be observed and provide prior information of outbreaks. The components and varieties of forecasting systems are discussed with selected examples, along with issues relating to further development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080023466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080023466"><span>CALIPSO Satellite Lidar Identification Of Elevated Dust Over Australia Compared With Air Quality Model PM60 Forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin</p> <p>2008-01-01</p> <p>Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3196833','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3196833"><span>Forecasting Disease Risk for Increased Epidemic Preparedness in Public Health</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Myers, M.F.; Rogers, D.J.; Cox, J.; Flahault, A.; Hay, S.I.</p> <p>2011-01-01</p> <p>Emerging infectious diseases pose a growing threat to human populations. Many of the world’s epidemic diseases (particularly those transmitted by intermediate hosts) are known to be highly sensitive to long-term changes in climate and short-term fluctuations in the weather. The application of environmental data to the study of disease offers the capability to demonstrate vector–environment relationships and potentially forecast the risk of disease outbreaks or epidemics. Accurate disease forecasting models would markedly improve epidemic prevention and control capabilities. This chapter examines the potential for epidemic forecasting and discusses the issues associated with the development of global networks for surveillance and prediction. Existing global systems for epidemic preparedness focus on disease surveillance using either expert knowledge or statistical modelling of disease activity and thresholds to identify times and areas of risk. Predictive health information systems would use monitored environmental variables, linked to a disease system, to be observed and provide prior information of outbreaks. The components and varieties of forecasting systems are discussed with selected examples, along with issues relating to further development. PMID:10997211</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21F2213B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21F2213B"><span>Coupled Data Assimilation in Navy ESPC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barron, C. N.; Spence, P. L.; Frolov, S.; Rowley, C. D.; Bishop, C. H.; Wei, M.; Ruston, B.; Smedstad, O. M.</p> <p>2017-12-01</p> <p>Data assimilation under global coupled Earth System Prediction Capability (ESPC) presents significantly greater challenges than data assimilation in forecast models of a single earth system like the ocean and atmosphere. In forecasts of a single component, data assimilation has broad flexibility in adjusting boundary conditions to reduce forecast errors; coupled ESPC requires consistent simultaneous adjustment of multiple components within the earth system: air, ocean, ice, and others. Data assimilation uses error covariances to express how to consistently adjust model conditions in response to differences between forecasts and observations; in coupled ESPC, these covariances must extend from air to ice to ocean such that changes within one fluid are appropriately balanced with corresponding adjustments in the other components. We show several algorithmic solutions that allow us to resolve these challenges. Specifically, we introduce the interface solver method that augments existing stand-alone systems for ocean and atmosphere by allowing them to be influenced by relevant measurements from the coupled fluid. Plans are outlined for implementing coupled data assimilation within ESPC for the Navy's global coupled model. Preliminary results show the impact of assimilating SST-sensitive radiances in the atmospheric model and first results of hybrid DA in a 1/12 degree model of the global ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OcDyn..68..603Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OcDyn..68..603Z"><span>Wave ensemble forecast system for tropical cyclones in the Australian region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zieger, Stefan; Greenslade, Diana; Kepert, Jeffrey D.</p> <p>2018-05-01</p> <p>Forecasting of waves under extreme conditions such as tropical cyclones is vitally important for many offshore industries, but there remain many challenges. For Northwest Western Australia (NW WA), wave forecasts issued by the Australian Bureau of Meteorology have previously been limited to products from deterministic operational wave models forced by deterministic atmospheric models. The wave models are run over global (resolution 1/4∘) and regional (resolution 1/10∘) domains with forecast ranges of + 7 and + 3 day respectively. Because of this relatively coarse resolution (both in the wave models and in the forcing fields), the accuracy of these products is limited under tropical cyclone conditions. Given this limited accuracy, a new ensemble-based wave forecasting system for the NW WA region has been developed. To achieve this, a new dedicated 8-km resolution grid was nested in the global wave model. Over this grid, the wave model is forced with winds from a bias-corrected European Centre for Medium Range Weather Forecast atmospheric ensemble that comprises 51 ensemble members to take into account the uncertainties in location, intensity and structure of a tropical cyclone system. A unique technique is used to select restart files for each wave ensemble member. The system is designed to operate in real time during the cyclone season providing + 10-day forecasts. This paper will describe the wave forecast components of this system and present the verification metrics and skill for specific events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNG33A1854H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNG33A1854H"><span>The Impact of STTP on the GEFS Forecast of Week-2 and Beyond in the Presence of Stochastic Physics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, D.</p> <p>2015-12-01</p> <p>The Stochastic Total Tendency Perturbation (STTP) scheme was designed to represent the model related uncertainties not considered in the numerical model itself and the physics based stochastic schemes. It has been applied in NCEP's Global Ensemble Forecast System (GEFS) since 2010, showing significant positive impacts on the forecast with improved spread-error ratio and probabilistic forecast skills. The scheme is robust and it went well with the resolution increases and model improvements in 2012 and 2015 with minimum changes. Recently, a set of stochastic physics schemes are coded in the Global Forecast System model and tested in the GEFS package. With these schemes turned on and STTP off, the forecast performance is comparable or even superior to the operational GEFS, in which STTP is the only contributor to the model related uncertainties. This is true especially in week one. However, over the second week and beyond, both the experimental and the operational GEFS has insufficient spread, especially over the warmer seasons. This is a major challenge when the GEFS is extended to sub-seasonal (week 4-6) time scales. The impact of STTP on the GEFS forecast in the presence of stochastic physics is investigated by turning both the stochastic physics schemes and STTP on and carefully tuning their amplitudes. Analysis will be focused on the forecast of extended range, especially week 2. Its impacts on week 3-4 will also be addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811754R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811754R"><span>Long-term records of global radiation, carbon and water fluxes derived from multi-satellite data and a process-based model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ryu, Youngryel; Jiang, Chongya</p> <p>2016-04-01</p> <p>To gain insights about the underlying impacts of global climate change on terrestrial ecosystem fluxes, we present a long-term (1982-2015) global radiation, carbon and water fluxes products by integrating multi-satellite data with a process-based model, the Breathing Earth System Simulator (BESS). BESS is a coupled processed model that integrates radiative transfer in the atmosphere and canopy, photosynthesis (GPP), and evapotranspiration (ET). BESS was designed most sensitive to the variables that can be quantified reliably, fully taking advantages of remote sensing atmospheric and land products. Originally, BESS entirely relied on MODIS as input variables to produce global GPP and ET during the MODIS era. This study extends the work to provide a series of long-term products from 1982 to 2015 by incorporating AVHRR data. In addition to GPP and ET, more land surface processes related datasets are mapped to facilitate the discovery of the ecological variations and changes. The CLARA-A1 cloud property datasets, the TOMS aerosol datasets, along with the GLASS land surface albedo datasets, were input to a look-up table derived from an atmospheric radiative transfer model to produce direct and diffuse components of visible and near infrared radiation datasets. Theses radiation components together with the LAI3g datasets and the GLASS land surface albedo datasets, were used to calculate absorbed radiation through a clumping corrected two-stream canopy radiative transfer model. ECMWF ERA interim air temperature data were downscaled by using ALP-II land surface temperature dataset and a region-dependent regression model. The spatial and seasonal variations of CO2 concentration were accounted by OCO-2 datasets, whereas NOAA's global CO2 growth rates data were used to describe interannual variations. All these remote sensing based datasets are used to run the BESS. Daily fluxes in 1/12 degree were computed and then aggregated to half-month interval to match with the spatial-temporal resolution of LAI3g dataset. The BESS GPP and ET products were compared to other independent datasets including MPI-BGC and CLM. Overall, the BESS products show good agreement with the other two datasets, indicating a compelling potential for bridging remote sensing and land surface models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1914056M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1914056M"><span>Global snowfall: A combined CloudSat, GPM, and reanalysis perspective.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Milani, Lisa; Kulie, Mark S.; Skofronick-Jackson, Gail; Munchak, S. Joseph; Wood, Norman B.; Levizzani, Vincenzo</p> <p>2017-04-01</p> <p>Quantitative global snowfall estimates derived from multi-year data records will be presented to highlight recent advances in high latitude precipitation retrievals using spaceborne observations. More specifically, the analysis features the 2006-2016 CloudSat Cloud Profiling Radar (CPR) and the 2014-2016 Global Precipitation (GPM) Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR) observational datasets and derived products. The ERA-Interim reanalysis dataset is also used to define the meteorological context and an independent combined modeling/observational evaluation dataset. An overview is first provided of CloudSat CPR-derived results that have stimulated significant recent research regarding global snowfall, including seasonal analyses of unique snowfall modes. GMI and DPR global annual snowfall retrievals are then evaluated against the CloudSat estimates to highlight regions where the datasets provide both consistent and diverging snowfall estimates. A hemispheric seasonal analysis for both datasets will also be provided. These comparisons aim at providing a unified global snowfall characterization that leverages the respective instrument's strengths. Attention will also be devoted to regions around the globe that experience unique snowfall modes. For instance, CloudSat has demonstrated an ability to effectively discern snowfall produced by shallow cumuliform cloud structures (e.g., lake/ocean-induced convective snow produced by air/water interactions associated with seasonal cold air outbreaks). The CloudSat snowfall database also reveals prevalent seasonal shallow cumuliform snowfall trends over climate-sensitive regions like the Greenland Ice Sheet. Other regions with unique snowfall modes, such as the US East Coast winter storm track zone that experiences intense snowfall rates directly associated with strong low pressure systems, will also be highlighted to demonstrate GPM's observational effectiveness. Linkages between CloudSat and GPM global snowfall analyses and independent ERA-Interim datasets will also be presented as a final evaluation exercise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930014050','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930014050"><span>Bibliography of global change, 1992</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1993-01-01</p> <p>This bibliography lists 585 reports, articles, and other documents introduced in the NASA Scientific and Technical Information Database in 1992. The areas covered include global change, decision making, earth observation (from space), forecasting, global warming, policies, and trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC53H..04Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC53H..04Z"><span>Recent Development on the NOAA's Global Surface Temperature Dataset</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, H. M.; Huang, B.; Boyer, T.; Lawrimore, J. H.; Menne, M. J.; Rennie, J.</p> <p>2016-12-01</p> <p>Global Surface Temperature (GST) is one of the most widely used indicators for climate trend and extreme analyses. A widely used GST dataset is the NOAA merged land-ocean surface temperature dataset known as NOAAGlobalTemp (formerly MLOST). The NOAAGlobalTemp had recently been updated from version 3.5.4 to version 4. The update includes a significant improvement in the ocean surface component (Extended Reconstructed Sea Surface Temperature or ERSST, from version 3b to version 4) which resulted in an increased temperature trends in recent decades. Since then, advancements in both the ocean component (ERSST) and land component (GHCN-Monthly) have been made, including the inclusion of Argo float SSTs and expanded EOT modes in ERSST, and the use of ISTI databank in GHCN-Monthly. In this presentation, we describe the impact of those improvements on the merged global temperature dataset, in terms of global trends and other aspects.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H41L..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H41L..07W"><span>Assessing the viability of `over-the-loop' real-time short-to-medium range ensemble streamflow forecasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, A. W.; Clark, E.; Mendoza, P. A.; Nijssen, B.; Newman, A. J.; Clark, M. P.; Arnold, J.; Nowak, K. C.</p> <p>2016-12-01</p> <p>Many if not most national operational short-to-medium range streamflow prediction systems rely on a forecaster-in-the-loop approach in which some parts of the forecast workflow are automated, but others require the hands-on-effort of an experienced human forecaster. This approach evolved out of the need to correct for deficiencies in the models and datasets that were available for forecasting, and often leads to skillful predictions despite the use of relatively simple, conceptual models. On the other hand, the process is not reproducible, which limits opportunities to assess and incorporate process variations, and the effort required to make forecasts in this way is an obstacle to expanding forecast services - e.g., though adding new forecast locations or more frequent forecast updates, running more complex models, or producing forecast ensembles and hindcasts that can support verification. In the last decade, the hydrologic forecasting community has begun to develop more centralized, `over-the-loop' systems. The quality of these new forecast products will depend on their ability to leverage research in areas including earth system modeling, parameter estimation, data assimilation, statistical post-processing, weather and climate prediction, verification, and uncertainty estimation through the use of ensembles. Currently, the operational streamflow forecasting and water management communities have little experience with the strengths and weaknesses of over-the-loop approaches, even as the systems are being rolled out in major operational forecasting centers. There is thus a need both to evaluate these forecasting advances and to demonstrate their potential in a public arena, raising awareness in forecast user communities and development programs alike. To address this need, the National Center for Atmospheric Research is collaborating with the University of Washington, the Bureau of Reclamation and the US Army Corps of Engineers, using the NCAR 'System for Hydromet Analysis, Research, and Prediction' (SHARP) to implement, assess and demonstrate real-time over-the-loop forecasts. We present early hindcast and verification results from SHARP for short to medium range streamflow forecasts in a number of US case study watersheds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC13D1125D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC13D1125D"><span>The visualisation and communication of probabilistic climate forecasts to renewable energy policy makers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doblas-Reyes, F.; Steffen, S.; Lowe, R.; Davis, M.; Rodó, X.</p> <p>2013-12-01</p> <p>Despite the strong dependence of weather and climate variability on the renewable energy industry, and several initiatives towards demonstrating the added benefits of integrating probabilistic forecasts into energy decision making process, they are still under-utilised within the sector. Improved communication is fundamental to stimulate the use of climate forecast information within decision-making processes, in order to adapt to a highly climate dependent renewable energy industry. This paper focuses on improving the visualisation of climate forecast information, paying special attention to seasonal to decadal (s2d) timescales. This is central to enhance climate services for renewable energy, and optimise the usefulness and usability of inherently complex climate information. In the realm of the Global Framework for Climate Services (GFCS) initiative, and subsequent European projects: Seasonal-to-Decadal Climate Prediction for the Improvement of European Climate Service (SPECS) and the European Provision of Regional Impacts Assessment in Seasonal and Decadal Timescales (EUPORIAS), this paper investigates the visualisation and communication of s2d forecasts with regards to their usefulness and usability, to enable the development of a European climate service. The target end user will be renewable energy policy makers, who are central to enhance climate services for the energy industry. The overall objective is to promote the wide-range dissemination and exchange of actionable climate information based on s2d forecasts from Global Producing Centres (GPC's). Therefore, it is crucial to examine the existing main barriers and deficits. Examples of probabilistic climate forecasts from different GPC's were used to prepare a catalogue of current approaches, to assess their advantages and limitations and finally to recommend better alternatives. In parallel, interviews were conducted with renewable energy stakeholders to receive feedback for the improvement of existing visualisation techniques of forecasts. The overall aim is to establish a communication protocol for the visualisation of probabilistic climate forecasts, which does not currently exist. Global Producing Centres show their own probabilistic forecasts with limited consistency in their communication across different centres, which complicates the understanding for the end user. A communication protocol for both the visualisation and description of climate forecasts can help to introduce a standard format and message to end users from several climate-sensitive sectors, such as energy, tourism, agriculture and health. It is hoped that this work will facilitate the improvement of decision-making processes relying on forecast information and enable their wide-range dissemination based on a standardised approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598903','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598903"><span>A Community Terrain-Following Ocean Modeling System (ROMS/TOMS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-30</p> <p>workshop at the Windsor Atlântica Hotel, Rio de Janeiro , Brazil, October 22-25, 2012. As in the past, several tutorials were offered on basic and...from the European Centre For Medium-Range Weather Forecasts (ECMWF) ERA-Interim, 3-hour dataset. River runoff is included along the Alabama</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMIN53E..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMIN53E..08S"><span>Dynamic analysis, transformation, dissemination and applications of scientific multidimensional data in ArcGIS Platform</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shrestha, S. R.; Collow, T. W.; Rose, B.</p> <p>2016-12-01</p> <p>Scientific datasets are generated from various sources and platforms but they are typically produced either by earth observation systems or by modelling systems. These are widely used for monitoring, simulating, or analyzing measurements that are associated with physical, chemical, and biological phenomena over the ocean, atmosphere, or land. A significant subset of scientific datasets stores values directly as rasters or in a form that can be rasterized. This is where a value exists at every cell in a regular grid spanning the spatial extent of the dataset. Government agencies like NOAA, NASA, EPA, USGS produces large volumes of near real-time, forecast, and historical data that drives climatological and meteorological studies, and underpins operations ranging from weather prediction to sea ice loss. Modern science is computationally intensive because of the availability of an enormous amount of scientific data, the adoption of data-driven analysis, and the need to share these dataset and research results with the public. ArcGIS as a platform is sophisticated and capable of handling such complex domain. We'll discuss constructs and capabilities applicable to multidimensional gridded data that can be conceptualized as a multivariate space-time cube. Building on the concept of a two-dimensional raster, a typical multidimensional raster dataset could contain several "slices" within the same spatial extent. We will share a case from the NOAA Climate Forecast Systems Reanalysis (CFSR) multidimensional data as an example of how large collections of rasters can be efficiently organized and managed through a data model within a geodatabase called "Mosaic dataset" and dynamically transformed and analyzed using raster functions. A raster function is a lightweight, raster-valued transformation defined over a mixed set of raster and scalar input. That means, just like any tool, you can provide a raster function with input parameters. It enables dynamic processing of only the data that's being displayed on the screen or requested by an application. We will present the dynamic processing and analysis of CFSR data using the chains of raster function and share it as dynamic multidimensional image service. This workflow and capabilities can be easily applied to any scientific data formats that are supported in mosaic dataset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT.......174W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT.......174W"><span>Understanding the influence of assimilating satellite-derived observations on mesoscale analyses and forecasts of tropical cyclone track and structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Ting-Chi</p> <p></p> <p>This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF/EnKF experiments that assimilate AMVs subsetted horizontally by their distances to the TC center (interior and exterior) and vertically by their assigned heights (upper, middle, and lower layers). For both Sinlaku and Ike, it is found: 1) interior AMVs are important for accurate TC intensity, 2) excluding upper-layer AMVs generally results in larger track errors and ensemble spread, 3) exclusion of interior AMVs has the largest impact on the forecast of TC size than exclusively removing AMVs in particular tropospheric layers, 4) the largest ensemble spreads are found in track, intensity, and size forecasts when interior and upper-layer AMVs are not included, 5) withholding the middle-layer AMVs can improve the track forecasts. Findings from this study could influence future scenarios that involve the targeted acquisition and assimilation of high-density AMV observations in TC events. The last part of the research focuses on the assimilation of hyperspectral temperature and moisture soundings and microwave based vertically-integrated total precipitable water (TPW) products derived from polar-orbiting satellites. A comparison is made between the assimilation of soundings retrieved from the combined use of Advanced Microwave Scanning Radiometer and Atmospheric Infrared Sounder (AMSU-AIRS) and sounding products provided by CIMSS (CIMSS-AIRS). AMSU-AIRS soundings provide broad spatial coverage albeit coarse resolution, whilst CIMSS-AIRS is geared towards mesoscale applications and thus provide higher spatial resolution but restricted coverage due to the use of radiance in clear sky. The assimilation of bias-corrected CIMSS-AIRS soundings provides slightly more accurate TC structure than the control case. The assimilation of AMSU-AIRS improves the track forecasts but produces weaker and smaller storm. Preliminary results of assimilating TPW product derived from the Advanced Microwave Scanning Radiometer-EOS indicate improved TC structure over the control case. However, the short-range forecasts exhibit the largest TC track errors. In all, this study demonstrates the influence of assimilating high-resolution satellite data on mesoscale analyses and forecasts of TC track and structure. The results suggest the inclusion and assimilation of observations with high temporal resolution, broad spatial coverage, and greater proximity to TCs does indeed improve TC track and structure forecasts. Such findings are beneficial for future decisions on data collecting and retrievals that are essential for TC forecasts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=effect+AND+biodiversity&pg=2&id=EJ502198','ERIC'); return false;" href="https://eric.ed.gov/?q=effect+AND+biodiversity&pg=2&id=EJ502198"><span>Global Warming: Understanding and Teaching the Forecast.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Andrews, Bill</p> <p>1995-01-01</p> <p>A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850021121','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850021121"><span>Research Review, 1984</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1986-01-01</p> <p>A variety of topics relevant to global modeling and simulation are presented. Areas of interest include: (1) analysis and forecast studies; (2) satellite observing systems; (3) analysis and forecast model development; (4) atmospheric dynamics and diagnostic studies; (5) climate/ocean-air interactions; and notes from lectures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1378320','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1378320"><span>Final Report: Archiving Data to Support Data Synthesis of DOE Sponsored Elevated CO 2 Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Megonigal, James; Lu, Meng</p> <p></p> <p>Over the last three decades DOE made a large investment in field-scale experiments in order to understand the role of terrestrial ecosystems in the global carbon cycle, and forecast how carbon cycling will change over the next century. The Smithsonian Environmental Research Center received one of the first awards in this program and managed two long-term studies (25 years and 10 years) with a total of approximately $10 million of support from DOE, and many more millions leveraged from the Smithsonian Institution and agencies such as NSF. The present DOE grant was based on the premise that such a largemore » investment demands a proper synthesis effort so that the full potential of these experiments are realized through data analysis and modeling. The goal of the this grant was to archive legacy data from two major elevated carbon dioxide experiments in DOE databases, and to engage in synthesis activities using these data. Both goals were met. All datasets deemed a high priority for data synthesis and modeling were prepared for archiving and analysis. Many of these datasets were deposited in DOE’s CDIAC, while others are being held at the Oak Ridge National Lab and the Smithsonian Institution until they can be received by DOE’s new ESS-DIVE system at Berkeley Lab. Most of the effort was invested in researching and re-constituting high-quality data sets from a 30-year elevated CO 2 experiment. Using these data, the grant produced products that are already benefiting climate change science, including the publication of new coastal wetland allometry equations based on 9,771 observations, public posting of dozens of datasets, metadata and supporting codes from long-term experiments at the Global Change Research Wetland, and publication of two synthetic data papers on scrub oak forest responses to elevated CO 2. In addition, three papers are in review or nearing submission reporting unexpected long-term patterns in ecosystem responses to elevated CO 2 and nitrogen in a coastal wetland.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917121S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917121S"><span>Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas</p> <p>2017-04-01</p> <p>The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.175.1197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.175.1197M"><span>Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.</p> <p>2018-03-01</p> <p>There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080045782&hterms=TENS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DTENS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080045782&hterms=TENS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DTENS"><span>Evaluation of Ten Methods for Initializing a Land Surface Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rodell, M.; Houser, P. R.; Berg, A. A.; Famiglietti, J. S.</p> <p>2005-01-01</p> <p>Land surface models (LSMs) are computer programs, similar to weather and climate prediction models, which simulate the stocks and fluxes of water (including soil moisture, snow, evaporation, and runoff) and energy (including the temperature of and sensible heat released from the soil) after they arrive on the land surface as precipitation and sunlight. It is not currently possible to measure all of the variables of interest everywhere on Earth with sufficient accuracy and space-time resolution. Hence LSMs have been developed to integrate the available observations with our understanding of the physical processes involved, using powerful computers, in order to map these stocks and fluxes as they change in time. The maps are used to improve weather forecasts, support water resources and agricultural applications, and study the Earth"s water cycle and climate variability. NASA"s Global Land Data Assimilation System (GLDAS) project facilitates testing of several different LSMs with a variety of input datasets (e.g., precipitation, plant type).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMIN33B1533B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMIN33B1533B"><span>Common Web Mapping and Mobile Device Framework for Display of NASA Real-time Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burks, J. E.</p> <p>2013-12-01</p> <p>Scientists have strategic goals to deliver their unique datasets and research to both collaborative partners and more broadly to the public. These datasets can have a significant impact locally and globally as has been shown by the success of the NASA Short-term Prediction Research and Transition (SPoRT) Center and SERVIR programs at Marshall Space Flight Center. Each of these respective organizations provides near real-time data at the best resolution possible to address concerns of the operational weather forecasting community (SPoRT) and to support environmental monitoring and disaster assessment (SERVIR). However, one of the biggest struggles to delivering the data to these and other Earth science community partners is formatting the product to fit into an end user's Decision Support System (DSS). The problem of delivering the data to the end-user's DSS can be a significant impediment to transitioning research to operational environments especially for disaster response where the deliver time is critical. The decision makers, in addition to the DSS, need seamless access to these same datasets from a web browser or a mobile phone for support when they are away from their DSS or for personnel out in the field. A framework has been developed for MSFC Earth Science program that can be used to easily enable seamless delivery of scientific data to end users in multiple formats. The first format is an open geospatial format, Web Mapping Service (WMS), which is easily integrated into most DSSs. The second format is a web browser display, which can be embedded within any MSFC Science web page with just a few lines of web page coding. The third format is accessible in the form of iOS and Android native mobile applications that could be downloaded from an 'app store'. The framework developed has reduced the level of effort needed to bring new and existing NASA datasets to each of these end user platforms and help extend the reach of science data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.B43A0530L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.B43A0530L"><span>An Agro-Climatological Early Warning Tool Based on the Google Earth Engine to Support Regional Food Security Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.</p> <p>2015-12-01</p> <p>The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002896','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002896"><span>A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002896'); toggleEditAbsImage('author_20150002896_show'); toggleEditAbsImage('author_20150002896_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002896_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002896_hide"></p> <p>2015-01-01</p> <p>In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will improve our understanding of the future utility of CYGNSS for documenting key MJO processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140006477','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140006477"><span>Common Web Mapping and Mobile Device Framework for Display of NASA Real-time Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burks, Jason</p> <p>2013-01-01</p> <p>Scientists have strategic goals to deliver their unique datasets and research to both collaborative partners and more broadly to the public. These datasets can have a significant impact locally and globally as has been shown by the success of the NASA Short-term Prediction Research and Transition (SPoRT) Center and SERVIR programs at Marshall Space Flight Center. Each of these respective organizations provides near real-time data at the best resolution possible to address concerns of the operational weather forecasting community (SPoRT) and to support environmental monitoring and disaster assessment (SERVIR). However, one of the biggest struggles to delivering the data to these and other Earth science community partners is formatting the product to fit into an end user's Decision Support System (DSS). The problem of delivering the data to the end-user's DSS can be a significant impediment to transitioning research to operational environments especially for disaster response where the deliver time is critical. The decision makers, in addition to the DSS, need seamless access to these same datasets from a web browser or a mobile phone for support when they are away from their DSS or for personnel out in the field. A framework has been developed for MSFC Earth Science program that can be used to easily enable seamless delivery of scientific data to end users in multiple formats. The first format is an open geospatial format, Web Mapping Service (WMS), which is easily integrated into most DSSs. The second format is a web browser display, which can be embedded within any MSFC Science web page with just a few lines of web page coding. The third format is accessible in the form of iOS and Android native mobile applications that could be downloaded from an "app store". The framework developed has reduced the level of effort needed to bring new and existing NASA datasets to each of these end user platforms and help extend the reach of science data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750011840','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750011840"><span>A 30-day forecast experiment with the GISS model and updated sea surface temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spar, J.; Atlas, R.; Kuo, E.</p> <p>1975-01-01</p> <p>The GISS model was used to compute two parallel global 30-day forecasts for the month January 1974. In one forecast, climatological January sea surface temperatures were used, while in the other observed sea temperatures were inserted and updated daily. A comparison of the two forecasts indicated no clear-cut beneficial effect of daily updating of sea surface temperatures. Despite the rapid decay of daily predictability, the model produced a 30-day mean forecast for January 1974 that was generally superior to persistence and climatology when evaluated over either the globe or the Northern Hemisphere, but not over smaller regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16391931','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16391931"><span>A 30-day-ahead forecast model for grass pollen in north London, United Kingdom.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Matt; Emberlin, Jean</p> <p>2006-03-01</p> <p>A 30-day-ahead forecast method has been developed for grass pollen in north London. The total period of the grass pollen season is covered by eight multiple regression models, each covering a 10-day period running consecutively from 21 May to 8 August. This means that three models were used for each 30-day forecast. The forecast models were produced using grass pollen and environmental data from 1961 to 1999 and tested on data from 2000 and 2002. Model accuracy was judged in two ways: the number of times the forecast model was able to successfully predict the severity (relative to the 1961-1999 dataset as a whole) of grass pollen counts in each of the eight forecast periods on a scale of 1 to 4; the number of times the forecast model was able to predict whether grass pollen counts were higher or lower than the mean. The models achieved 62.5% accuracy in both assessment years when predicting the relative severity of grass pollen counts on a scale of 1 to 4, which equates to six of the eight 10-day periods being forecast correctly. The models attained 87.5% and 100% accuracy in 2000 and 2002, respectively, when predicting whether grass pollen counts would be higher or lower than the mean. Attempting to predict pollen counts during distinct 10-day periods throughout the grass pollen season is a novel approach. The models also employed original methodology in the use of winter averages of the North Atlantic Oscillation to forecast 10-day means of allergenic pollen counts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22280003-delensing-cmb-polarization-external-datasets','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22280003-delensing-cmb-polarization-external-datasets"><span>Delensing CMB polarization with external datasets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena</p> <p>2012-06-01</p> <p>One of the primary scientific targets of current and future CMB polarization experiments is the search for a stochastic background of gravity waves in the early universe. As instrumental sensitivity improves, the limiting factor will eventually be B-mode power generated by gravitational lensing, which can be removed through use of so-called ''delensing'' algorithms. We forecast prospects for delensing using lensing maps which are obtained externally to CMB polarization: either from large-scale structure observations, or from high-resolution maps of CMB temperature. We conclude that the forecasts in either case are not encouraging, and that significantly delensing large-scale CMB polarization requires high-resolutionmore » polarization maps with sufficient sensitivity to measure the lensing B-mode. We also present a simple formalism for including delensing in CMB forecasts which is computationally fast and agrees well with Monte Carlos.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMPA11B0220L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMPA11B0220L"><span>A conceptual prediction model for seasonal drought processes using atmospheric and oceanic standardized anomalies and its application to four recent severe regional drought events in China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z.; LU, G.; He, H.; Wu, Z.; He, J.</p> <p>2017-12-01</p> <p>Reliable drought prediction is fundamental for seasonal water management. Considering that drought development is closely related to the spatio-temporal evolution of large-scale circulation patterns, we develop a conceptual prediction model of seasonal drought processes based on atmospheric/oceanic Standardized Anomalies (SA). It is essentially the synchronous stepwise regression relationship between 90-day-accumulated atmospheric/oceanic SA-based predictors and 3-month SPI updated daily (SPI3). It is forced with forecasted atmospheric and oceanic variables retrieved from seasonal climate forecast systems, and it can make seamless drought prediction for operational use after a year-to-year calibration. Simulation and prediction of four severe seasonal regional drought processes in China were forced with the NCEP/NCAR reanalysis datasets and the NCEP Climate Forecast System Version 2 (CFSv2) operationally forecasted datasets, respectively. With the help of real-time correction for operational application, model application during four recent severe regional drought events in China revealed that the model is good at development prediction but weak in severity prediction. In addition to weakness in prediction of drought peak, the prediction of drought relief is possible to be predicted as drought recession. This weak performance may be associated with precipitation-causing weather patterns during drought relief. Based on initial virtual analysis on predicted 90-day prospective SPI3 curves, it shows that the 2009/2010 drought in Southwest China and 2014 drought in North China can be predicted and simulated well even for the prospective 1-75 day. In comparison, the prospective 1-45 day may be a feasible and acceptable lead time for simulation and prediction of the 2011 droughts in Southwest China and East China, after which the simulated and predicted developments clearly change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=effect+AND+greenhouse&pg=5&id=EJ502190','ERIC'); return false;" href="https://eric.ed.gov/?q=effect+AND+greenhouse&pg=5&id=EJ502190"><span>Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Andrews, Bill</p> <p>1993-01-01</p> <p>Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/GFS','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/GFS"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches <em>Global</em> Climate and Weather / VISION | About EMC EMC > <em>GLOBAL</em> BRANCH > GFS > HOME Home Implementations Documentation References Products Model Guidance Performance Developers VLab <em>GLOBAL</em> FORECAST SYSTEM <em>Global</em> Data</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.17602008K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.17602008K"><span>Scientific motivation for ADM/Aeolus mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Källén, Erland</p> <p>2018-04-01</p> <p>The ADM/Aeolus wind lidar mission will provide a global coverage of atmospheric wind profiles. Atmospheric wind observations are required for initiating weather forecast models and for predicting and monitoring long term climate change. Improved knowledge of the global wind field is widely recognised as fundamental to advancing the understanding and prediction of weather and climate. In particular over tropical areas there is a need for better wind data leading to improved medium range (3-10 days) weather forecasts over the whole globe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780010554','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780010554"><span>Analysis of data systems requirements for global crop production forecasting in the 1985 time frame</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Downs, S. W.; Larsen, P. A.; Gerstner, D. A.</p> <p>1978-01-01</p> <p>Data systems concepts that would be needed to implement the objective of the global crop production forecasting in an orderly transition from experimental to operational status in the 1985 time frame were examined. Information needs of users were converted into data system requirements, and the influence of these requirements on the formulation of a conceptual data system was analyzed. Any potential problem areas in meeting these data system requirements were identified in an iterative process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA503936','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA503936"><span>Combining Satellite Ocean Color Imagery and Circulation Modeling to Forecast Bio-Optical Properties: Comparison of Models and Advection Schemes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-10-01</p> <p>Director NCST E. R. Franchi , 7000 ^^M^4^k ro£— 4// 2^/s y Public Affairs (Unclassified/ Unlimited Only), Code 7030 4 Division, Code Author, Code...from the Navy Operational Global Atmospheric Prediction System (NOGAPS, Hogan and Rosmond, 1991) and assimilates data via the Navy Coupled Ocean...forecasts using Global , Atlantic, Gulf of Mexico, and northern Gulf of Mexico configurations of HYCOM. Proceedings, Ocean Optics XIX, Castelvecchio Pascoli</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.A11B0864Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.A11B0864Y"><span>Regional Air Quality forecAST (RAQAST) Over the U.S</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yoshida, Y.; Choi, Y.; Zeng, T.; Wang, Y.</p> <p>2005-12-01</p> <p>A regional chemistry and transport modeling system is used to provide 48-hour forecast of the concentrations of ozone and its precursors over the United States. Meteorological forecast is conducted using the NCAR/Penn State MM5 model. The regional chemistry and transport model simulates the sources, transport, chemistry, and deposition of 24 chemical tracers. The lateral and upper boundary conditions of trace gas concentrations are specified using the monthly mean output from the global GEOS-CHEM model. The initial and boundary conditions for meteorological fields are taken from the NOAA AVN forecast. The forecast has been operational since August, 2003. Model simulations are evaluated using surface, aircraft, and satellite measurements in the A'hindcast' mode. The next step is an automated forecast evaluation system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70177935','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70177935"><span>Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Page, Morgan T.; Van Der Elst, Nicholas; Hardebeck, Jeanne L.; Felzer, Karen; Michael, Andrew J.</p> <p>2016-01-01</p> <p>Following a large earthquake, seismic hazard can be orders of magnitude higher than the long‐term average as a result of aftershock triggering. Because of this heightened hazard, emergency managers and the public demand rapid, authoritative, and reliable aftershock forecasts. In the past, U.S. Geological Survey (USGS) aftershock forecasts following large global earthquakes have been released on an ad hoc basis with inconsistent methods, and in some cases aftershock parameters adapted from California. To remedy this, the USGS is currently developing an automated aftershock product based on the Reasenberg and Jones (1989) method that will generate more accurate forecasts. To better capture spatial variations in aftershock productivity and decay, we estimate regional aftershock parameters for sequences within the García et al. (2012) tectonic regions. We find that regional variations for mean aftershock productivity reach almost a factor of 10. We also develop a method to account for the time‐dependent magnitude of completeness following large events in the catalog. In addition to estimating average sequence parameters within regions, we develop an inverse method to estimate the intersequence parameter variability. This allows for a more complete quantification of the forecast uncertainties and Bayesian updating of the forecast as sequence‐specific information becomes available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012GeoJI.190.1579E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012GeoJI.190.1579E"><span>A prospective earthquake forecast experiment in the western Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eberhard, David A. J.; Zechar, J. Douglas; Wiemer, Stefan</p> <p>2012-09-01</p> <p>Since the beginning of 2009, the Collaboratory for the Study of Earthquake Predictability (CSEP) has been conducting an earthquake forecast experiment in the western Pacific. This experiment is an extension of the Kagan-Jackson experiments begun 15 years earlier and is a prototype for future global earthquake predictability experiments. At the beginning of each year, seismicity models make a spatially gridded forecast of the number of Mw≥ 5.8 earthquakes expected in the next year. For the three participating statistical models, we analyse the first two years of this experiment. We use likelihood-based metrics to evaluate the consistency of the forecasts with the observed target earthquakes and we apply measures based on Student's t-test and the Wilcoxon signed-rank test to compare the forecasts. Overall, a simple smoothed seismicity model (TripleS) performs the best, but there are some exceptions that indicate continued experiments are vital to fully understand the stability of these models, the robustness of model selection and, more generally, earthquake predictability in this region. We also estimate uncertainties in our results that are caused by uncertainties in earthquake location and seismic moment. Our uncertainty estimates are relatively small and suggest that the evaluation metrics are relatively robust. Finally, we consider the implications of our results for a global earthquake forecast experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/55896','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/55896"><span>Data Descriptor: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch</p> <p>2018-01-01</p> <p>We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958–2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/gcwmb/mdls.php','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/gcwmb/mdls.php"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Statistics <em>Observational</em> Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar (CFS) HURRICANE WEATHER <em>RESEARCH</em> and FORECASTING (HWRF) GLOBAL ENSEMBLE FORECAST SYSTEM (GEFS) NATIONAL Climate Prediction (NCWCP) 5830 University <em>Research</em> Court College Park, MD 20740 Page Author: EMC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008053','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008053"><span>Using MERRA Gridded Innovations for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>da Silva, Arlindo; Redder, Christopher</p> <p>2010-01-01</p> <p>MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19..891W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19..891W"><span>Hydrological Retrospective of floods and droughts: Case study in the Amazon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wongchuig Correa, Sly; Cauduro Dias de Paiva, Rodrigo; Carlo Espinoza Villar, Jhan; Collischonn, Walter</p> <p>2017-04-01</p> <p>Recent studies have reported an increase in intensity and frequency of hydrological extreme events in many regions of the Amazon basin over last decades, these events such as seasonal floods and droughts have originated a significant impact in human and natural systems. Recently, methodologies such as climatic reanalysis are being developed in order to create a coherent register of climatic systems, thus taking this notion, this research efforts to produce a methodology called Hydrological Retrospective (HR), that essentially simulate large rainfall datasets over hydrological models in order to develop a record over past hydrology, enabling the analysis of past floods and droughts. We developed our methodology on the Amazon basin, thus we used eight large precipitation datasets (more than 30 years) through a large scale hydrological and hydrodynamic model (MGB-IPH), after that HR products were validated against several in situ discharge gauges dispersed throughout Amazon basin, given focus in maximum and minimum events. For better HR results according performance metrics, we performed a forecast skill of HR to detect floods and droughts considering in-situ observations. Furthermore, statistical temporal series trend was performed for intensity of seasonal floods and drought in the whole Amazon basin. Results indicate that better HR represented well most past extreme events registered by in-situ observed data and also showed coherent with many events cited by literature, thus we consider viable to use some large precipitation datasets as climatic reanalysis mainly based on land surface component and datasets based in merged products for represent past regional hydrology and seasonal hydrological extreme events. On the other hand, an increase trend of intensity was realized for maximum annual discharges (related to floods) in north-western regions and for minimum annual discharges (related to drought) in central-south regions of the Amazon basin, these features were previously detected by other researches. In the whole basin, we estimated an upward trend of maximum annual discharges at Amazon River. In order to estimate better future hydrological behavior and their impacts on the society, HR could be used as a methodology to understand past extreme events occurrence in many places considering the global coverage of rainfall datasets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.A53E0306D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.A53E0306D"><span>Using MERRA Gridded Innovation for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Silva, A.; Redder, C. R.</p> <p>2010-12-01</p> <p>MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070034915','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070034915"><span>Forecasting Plant Productivity and Health Using Diffuse-to-Global Irradiance Ratios Extracted from the OMI Aerosol Product</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knowlton, Kelly; Andrews, Jane C.; Ryan, Robert E.</p> <p>2007-01-01</p> <p>Atmospheric aerosols are a major contributor to diffuse irradiance. This Candidate Solution suggests using the OMI (Ozone Monitoring Instrument) aerosol product as input into a radiative transfer model, which would calculate the ratio of diffuse to global irradiance at the Earth s surface. This ratio can significantly influence the rate of photosynthesis in plants; increasing the ratio of diffuse to global irradiance can accelerate photosynthesis, resulting in greater plant productivity. Accurate values of this ratio could be useful in predicting crop productivity, thereby improving forecasts of regional food resources. However, disagreements exist between diffuse-to-global irradiance values measured by different satellites and ground sensors. OMI, with its unique combination of spectral bands, high resolution, and daily global coverage, may be able to provide more accurate aerosol measurements than other comparable sensors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMEP41C0926K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMEP41C0926K"><span>Disaggregation of remotely sensed soil moisture under all sky condition using machine learning approach in Northeast Asia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, S.; Kim, H.; Choi, M.; Kim, K.</p> <p>2016-12-01</p> <p>Estimating spatiotemporal variation of soil moisture is crucial to hydrological applications such as flood, drought, and near real-time climate forecasting. Recent advances in space-based passive microwave measurements allow the frequent monitoring of the surface soil moisture at a global scale and downscaling approaches have been applied to improve the spatial resolution of passive microwave products available at local scale applications. However, most downscaling methods using optical and thermal dataset, are valid only in cloud-free conditions; thus renewed downscaling method under all sky condition is necessary for the establishment of spatiotemporal continuity of datasets at fine resolution. In present study Support Vector Machine (SVM) technique was utilized to downscale a satellite-based soil moisture retrievals. The 0.1 and 0.25-degree resolution of daily Land Parameter Retrieval Model (LPRM) L3 soil moisture datasets from Advanced Microwave Scanning Radiometer 2 (AMSR2) were disaggregated over Northeast Asia in 2015. Optically derived estimates of surface temperature (LST), normalized difference vegetation index (NDVI), and its cloud products were obtained from MODerate Resolution Imaging Spectroradiometer (MODIS) for the purpose of downscaling soil moisture in finer resolution under all sky condition. Furthermore, a comparison analysis between in situ and downscaled soil moisture products was also conducted for quantitatively assessing its accuracy. Results showed that downscaled soil moisture under all sky condition not only preserves the quality of AMSR2 LPRM soil moisture at 1km resolution, but also attains higher spatial data coverage. From this research we expect that time continuous monitoring of soil moisture at fine scale regardless of weather conditions would be available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7971W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7971W"><span>Beyond Open Data: the importance of data standards and interoperability - Experiences from ECMWF's Open Data Week</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wagemann, Julia; Siemen, Stephan</p> <p>2017-04-01</p> <p>The European Centre for Medium-Range Weather Forecasts (ECMWF) has been providing an increasing amount of data to the public. One of the most widely used datasets include the global climate reanalyses (e.g. ERA-interim) and atmospheric composition data, which are available to the public free of charge. The centre is further operating, on behalf of the European Commission, two Copernicus Services, the Copernicus Atmosphere Monitoring Service (CAMS) and Climate Change Service (C3S), which are making up-to-date environmental information freely available for scientists, policy makers and businesses. However, to fully benefit from open data, large environmental datasets also have to be easily accessible in a standardised, machine-readable format. Traditional data centres, such as ECMWF, currently face challenges in providing interoperable standardised access to increasingly large and complex datasets for scientists and industry. Therefore, ECMWF put open data in the spotlight during a week of events in March 2017 exploring the potential of freely available weather- and climate-related data and to review technological solutions serving these data. Key events included a Workshop on Meteorological Operational Systems (MOS) and a two-day hackathon. The MOS workshop aimed at reviewing technologies and practices to ensure efficient (open) data processing and provision. The hackathon focused on exploring creative uses of open environmental data and to see how open data is beneficial for various industries. The presentation aims to give a review of the outcomes and conclusions of the Open Data Week at ECMWF. A specific focus will be set on the importance of data standards and web services to make open environmental data a success. The presentation overall examines the opportunities and challenges of open environmental data from a data provider's perspective.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140012055','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140012055"><span>Toward Global Drought Early Warning Capability - Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pozzi, Will; Sheffield, Justin; Stefanski, Robert; Cripe, Douglas; Pulwarty, Roger; Vogt, Jurgen V.; Heim, Richard R., Jr.; Brewer, Michael J.; Svoboda, Mark; Westerhoff, Rogier; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20140012055'); toggleEditAbsImage('author_20140012055_show'); toggleEditAbsImage('author_20140012055_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20140012055_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20140012055_hide"></p> <p>2013-01-01</p> <p>Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10 percent-13 percent over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict. This paper highlights the recent progress made toward a Global Drought Early Warning Monitoring Framework (GDEWF), an underlying partnership and framework, along with its Global Drought Early Warning System (GDEWS), which is its interoperable information system, and the organizations that have begun working together to make it a reality. The GDEWF aims to improve existing regional and national drought monitoring and forecasting capabilities by adding a global component, facilitating continental monitoring and forecasting (where lacking), and improving these tools at various scales, thereby increasing the capacity of national and regional institutions that lack drought early warning systems or complementing existing ones. A further goal is to improve coordination of information delivery for drought-related activities and relief efforts across the world. This is especially relevant for regions and nations with low capacity for drought early warning. To do this requires a global partnership that leverages the resources necessary and develops capabilities at the global level, such as global drought forecasting combined with early warning tools, global real-time monitoring, and harmonized methods to identify critical areas vulnerable to drought. Although the path to a fully functional GDEWS is challenging, multiple partners and organizations within the drought, forecasting, agricultural, and water-cycle communities are committed to working toward its success.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912230C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912230C"><span>Application of global datasets for hydrological modelling of a remote, snowmelt driven catchment in the Canadian Sub-Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri</p> <p>2017-04-01</p> <p>Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140007295','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140007295"><span>Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Department</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Case. Jonathan; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.</p> <p>2014-01-01</p> <p>Flooding and drought are two key forecasting challenges for the Kenya Meteorological Department (KMD). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the boundary layer of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface within weakly-sheared environments, such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in numerical weather prediction models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-end events over east Africa. KMD currently runs a configuration of the Weather Research and Forecasting (WRF) model in real time to support its daily forecasting operations, invoking the Nonhydrostatic Mesoscale Model (NMM) dynamical core. They make use of the National Oceanic and Atmospheric Administration / National Weather Service Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the WRF-NMM model runs on a 7-km regional grid over eastern Africa. Two organizations at the National Aeronautics and Space Administration Marshall Space Flight Center in Huntsville, AL, SERVIR and the Short-term Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMD for enhancing its regional modeling capabilities. To accomplish this goal, SPoRT and SERVIR will provide experimental land surface initialization datasets and model verification capabilities to KMD. To produce a land-surface initialization more consistent with the resolution of the KMD-WRF runs, the NASA Land Information System (LIS) will be run at a comparable resolution to provide real-time, daily soil initialization data in place of interpolated Global Forecast System soil moisture and temperature data. Additionally, real-time green vegetation fraction data from the Visible Infrared Imaging Radiometer Suite will be incorporated into the KMD-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service. Finally, model verification capabilities will be transitioned to KMD using the Model Evaluation Tools (MET) package, in order to quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. The transition of these MET tools will enable KMD to monitor model forecast accuracy in near real time. This presentation will highlight preliminary verification results of WRF runs over east Africa using the LIS land surface initialization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1212449-forecasting-response-earth-surface-future-climatic-land-use-changes-review-methods-research-needs','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1212449-forecasting-response-earth-surface-future-climatic-land-use-changes-review-methods-research-needs"><span>Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; ...</p> <p>2015-07-14</p> <p>In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43F3336S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43F3336S"><span>New Radiosonde Temperature Bias Adjustments for Potential NWP Applications Based on GPS RO Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sun, B.; Reale, A.; Ballish, B.; Seidel, D. J.</p> <p>2014-12-01</p> <p>Conventional radiosonde observations (RAOBs), along with satellite and other in situ data, are assimilated in numerical weather prediction (NWP) models to generate a forecast. Radiosonde temperature observations, however, have solar and thermal radiation induced biases (typically a warm daytime bias from sunlight heating the sensor and a cold bias at night as the sensor emits longwave radiation). Radiation corrections made at stations based on algorithms provided by radiosonde manufacturers or national meteorological agencies may not be adequate, so biases remain. To adjust these biases, NWP centers may make additional adjustments to radiosonde data. However, the radiation correction (RADCOR) schemes used in the NOAA NCEP data assimilation and forecasting system is outdated and does not cover several widely-used contemporary radiosonde types. This study focuses on work whose objective is to improve these corrections and test their impacts on the NWP forecasting and analysis. GPS Radio Occultation (RO) dry temperature (Tdry) is considered to be highly accurate in the upper troposphere and low stratosphere where atmospheric water vapor is negligible. This study uses GPS RO Tdry from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) as the reference to quantify the radiation induced RAOB temperature errors by analyzing ~ 3-yr collocated RAOB and COSMIC GPS RO data compile by the NOAA Products Validation System (NPROVS). The new radiation adjustments are developed for different solar angle categories and for all common sonde types flown in the WMO global operational upper air network. Results for global and several commonly used sondes are presented in the context of NCEP Global Forecast System observation-minus-background analysis, indicating projected impacts in reducing forecast error. Dedicated NWP impact studies to quantify the impact of the new RADCOR schemes on the NCEP analyses and forecast are under consideration.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>