NASA Astrophysics Data System (ADS)
Pederson, J. L.; Sohbati, R.; Murray, A. S.; Jain, M.
2015-12-01
Recent studies have helped develop the optically stimulated luminescence (OSL) dating of rock surfaces, as applied to the age of the famous Great Gallery rock art panel in Canyonlands National Park. Chapot et al. (2012) dated a key rock fall to ~900 yrs ago by applying OSL to the outer 1-mm buried surface of a sandstone talus boulder, an age confirmed by independent radiocarbon dating. Later, in a novel approach and with the use of a local known-age calibration sample, Sohbati et al. (2012) modelled the millimeter-scale OSL-depth profile to determine a pre-burial exposure duration of ~700 years for the same rock fall. This combination of rock-fall dating and exposure dating--an approach with broad potential to date Holocene mass movements--constrains the creation of the Great Gallery rock art to a time window of 900 to ~1600 years ago (Pederson et al., 2014), a result met with some controversy. Here we report on a new phase of research to verify these results and further refine OSL-profile exposure dating for mass movements. New analyses from within and near the Great Gallery alcove include: i) exposure dating of the same alcove surface upon which the rock art is painted with a predicted exposure age of ~1600 years; ii) exposure dating of the top (light-exposed) side of the same rock-fall boulder whose buried side was previously dated to test for reproduction of the known age; and iii) an improved calibration sample from a nearby trail/road-cut for verification. The residual OSL signal is measured with depth in millimeter-thick increments of all samples. We first determine the site-specific luminescence reduction rate at the rock surface by fitting the OSL surface-exposure dating model to the calibration profile from the trail/road-cut. This parameterized model then provides exposure ages for the bleaching profiles observed in the other samples. Results have implications for the application of OSL rock-surface and exposure-profile dating in other settings where quartz-rich rock is available. We discuss how the light-exposed top and buried underside of clasts can be used in tandem for calibration. The technique has particular relevance to younger timescales over which cosmogenic nuclides are of limited application.
Electron microprobe evaluation of terrestrial basalts for whole-rock K-Ar dating
Mankinen, E.A.; Brent, Dalrymple G.
1972-01-01
Four basalt samples for whole-rock K-Ar dating were analyzed with an electron microprobe to locate potassium concentrations. Highest concentrations of potassium were found in those mineral phases which were the last to crystallize. The two reliable samples had potassium concentrated in fine-grained interstitial feldspar and along grain boundaries of earlier formed plagioclase crystals. The two unreliable samples had potassium concentrated in the glassy matrix, demonstrating the ineffectiveness of basaltic glass as a retainer of radiogenic argon. In selecting basalt samples for whole-rock K-Ar dating, particular emphasis should be placed on determining the nature and condition of the fine-grained interstitial phases. ?? 1972.
Radiometric dates from Alaska: A 1975 compilation
Turner, D.L.; Grybeck, Donald; Wilson, Frederic H.
1975-01-01
The following table of radiometric dates from Alaska includes published material through 1972 as well as some selected later data. The table includes 726 mineral and whole-rock dates determined by the K-Ar, Rb-Sr, fission-track U-Pb, and Pb-alpha techniques.The data are organized in alphabetical order of the 1:250,000 scale quadrangles in which the dated rocks are located. The latitude and longitude of each sample are given. In addition, each sample is located on a 1:250,000 quadrangle map by a grid system. The initial point of the grid is taken as the southwest corner of the quadrangle and the location of the sample is measured in inches east and inches north from that corner, e.g., "156E 126N" indicated 15.6 inches east and 12.6 inches north of the southwest corner of the quadrangle. Zeroes in the location columns for some dates indicate that accurate locations are not available.Rock type, dating method, mineral dated, radiometric age, sample identification number, and reference are also listed where possible. Short comments, mostly geographic locality names, are given for some dates. These comments have been taken from the original references.Sample identification numbers beginning with "AA" or "BB" have been assigned arbitrarily in cases where sample numbers were not assigned in the original references. Abbreviations are explained in the appendix at the end of table 1.
A compilation of K-Ar-ages for southern California
Miller, Fred K.; Morton, Douglas M.; Morton, Janet L.; Miller, David M.
2014-01-01
The purpose of this report is to make available a large body of conventional K-Ar ages for granitic, volcanic, and metamorphic rocks collected in southern California. Although one interpretive map is included, the report consists primarily of a systematic listing, without discussion or interpretation, of published and unpublished ages that may be of value in future regional and other geologic studies. From 1973 to 1979, 468 rock samples from southern California were collected for conventional K-Ar dating under a regional geologic mapping project of Southern California (predecessor of the Southern California Areal Mapping Project). Most samples were collected and dated between 1974 and 1977. For 61 samples (13 percent of those collected), either they were discarded for varying reasons, or the original collection data were lost. For the remaining samples, 518 conventional K-Ar ages are reported here; coexisting mineral pairs were dated from many samples. Of these K-Ar ages, 225 are previously unpublished, and identified as such in table 1. All K-Ar ages are by conventional K-Ar analysis; no 40Ar/39Ar dating was done. Subsequent to the rock samples collected in the 1970s and reported here, 33 samples were collected and 38 conventional K-Ar ages determined under projects directed at (1) characterization of the Mesozoic and Cenozoic igneous rocks in and on both sides of the Transverse Ranges and (2) clarifying the Mesozoic and Cenozoic tectonics of the eastern Mojave Desert. Although previously published (Beckerman et al., 1982), another eight samples and 11 conventional K-Ar ages are included here, because they augment those completed under the previous two projects.
Whittington, Charles L.; Grimes, David J.; Leinz, Reinhard W.
1985-01-01
This map presents data on the abundance and distribution of mercury in 3,146 rock samples from the Medford quadrangle. Most of the rock samples were collected incidental to geologic, geochemical, and mineral resources studies in the period from 1974 to 1980, but about 6 percent date from earlier investigations (Wells, 1940; 1956; Wells and others 1949).
NASA Astrophysics Data System (ADS)
Aronoff, R.; Andronicos, C.; Vervoort, J. D.; Hunter, R. A.
2014-12-01
Lu-Hf garnet dating of Proterozoic rocks of the southwestern United States provides constraints on the timing and geographic extent of metamorphism associated with the Yavapai, Mazatzal, and newly recognized Picuris orogenies. Prior work focusing on U-Pb dating of plutons and Ar geochronology has left the timing of prograde metamorphism ambiguous, particularly in northern New Mexico and southern Colorado. Because the Lu-Hf system dates the onset of garnet growth, it can constrain the timing of the prograde P-T path. Garnet schist samples from central and northern New Mexico exhibit garnet growth restricted to the time period between ~1460 and 1400 Ma. In the Picuris and Manzano mountains, the oldest Lu-Hf garnet ages predate the U-Pb ages of ~1.4 Ga plutons located near the dated samples. This implies that garnet growth, and therefore the onset of amphibolite facies metamorphism, cannot be driven by contact metamorphism, as has been previously inferred. Garnet-bearing samples from the Needle and Wet Mountains in southern Colorado display a range of garnet ages between ~1750 and 1470 Ma. A garnet gneiss from the Needle Mountains in southwestern Colorado yields an age of 1748 Ma, which is consistent with the Yavapai orogeny. This Lu-Hf garnet age has not been reset by contact metamorphism associated with the emplacement of the ~1.4 Ga Eolus batholith. Anatectic garnet in an orthogneiss from the northern Wet Mountains yields an age of 1601 Ma and is interpreted to date partial melting at the close of the Mazatzal orogeny. A 1476 Ma garnet age from the aureole of the 1440 Ma Oak Creek pluton is interpreted to date upper amphibolite facies metamorphism. The age distribution of these samples shows that rocks in Colorado underwent a complex, poly-metamorphic history, while rocks in New Mexico underwent a single progressive metamorphic event. This contrast implies that the boundary between rocks deformed and metamorphosed during the ~1800-1600 Ma Yavapai and Mazatzal orogenies and those only deformed and metamorphosed during the ~1460-1400 Ma Picuris orogeny lies in northern New Mexico, along what has previously been considered the Mazatzal front. By using Lu-Hf geochronology to directly date a rock-forming mineral, we are better able to reconstruct the tectonic history of this region.
K-Ar dating of young volcanic rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damon, P.E.; Shafiqullah, M.
1991-01-31
Potassium-Argon (K-Ar) age dates were determined for forty-two young geologic samples by the Laboratory of Isotope Geochemistry, Department of Geosciences, in the period February 1, 1986 to June 30, 1989. Under the terms of Department of Energy Grant No. FG07-86ID12622, The University of Arizona was to provide state-of-the-art K-Ar age dating services, including sample preparation, analytical procedures, and computations, for forty-two young geologic samples submitted by DOE geothermal researchers. We billed only for forty samples. Age dates were determined for geologic samples from five regions with geothermal potential: the Cascade Mountains (Oregon); the Cascade Mountains (Washington); Ascension Island, South Atlanticmore » Ocean; Cerro Prieto, Mexico; and Las Azufres, Mexico. The ages determined varied from 5.92 m.a. to 0.62 m.a. The integration of K-Ar dates with geologic data and the interpretation in terms of geologic and geothermal significance has been reported separately by the various DOE geothermal researchers. Table 1 presents a detailed listing of all samples dated, general sample location, researcher, researcher's organization, rock type, age, and probable error (1 standard deviation). Additional details regarding the geologic samples may be obtained from the respective geothermal researcher. 1 tab.« less
NASA Astrophysics Data System (ADS)
Buchanan, A.; Hanchar, J. M.; Steele-MacInnis, M. J.; Crowley, J. L.; Valley, P. M.; Fisher, C. M.; Fedo, C.; Piccoli, P. M.; Fournelle, J.
2012-12-01
The Lyon Mountain granite (LMG) is located in the northeastern Adirondack Mountains in New York State and hosts several low-titanium iron oxide apatite (IOA) ore deposits. The ores are predominately hosted by perthite bearing granite, which has been extensively altered to albite and microcline granite by Na and K metasomatism. This alteration results in several distinct groups of rocks that are dominated by either K or Na addition and a group composed of mixed Na and K addition. The different groups of altered perthite also lie on a trend suggestive of addition of Fe to each, consistent with a secondary mineralization origin. Previous work showed that the host rocks of the IOA ores have zircon with ~1150 Ma cores and 1060-1050 Ma rims and whole grains. This study aims to further constrain the timing of LMG emplacement, subsequent hydrothermal alteration, and Fe mineralization through geochemical analysis of the major, minor, and accessory phases and geochronology of accessory phases. SIMS analyses of zircon from several of the IOA ores reveal at least two periods of growth after LMG magmatism, at 1039 +/- 4.4 Ma and 1016 +/- 7 Ma to 1000 +/- 9 Ma. In situ EMPA and LA-ICPMS trace element analyses of the zircon rims and cores reveal that in two samples the zircon rims are enriched in rare earth elements (REE) compared to their cores, potentially pointing to a hydrothermal origin. Apatite has unusually high REE and Y concentrations (some total REE2O3 > 20 wt. % oxide and up to 8 wt. % oxide Y2O3), as does titanite, which allowed for the in situ analysis of Sm-Nd in apatite and titanite by LA-MC-ICP-MS. Initial Nd isotopic composition of both ore and host rock apatite and host rock titanite are consistent with published Adirondack initial Nd whole rock data, suggesting a local source for REE in these ores. EMPA and LA-ICPMS trace-element analyses of the major rock-forming minerals indicate that the feldspar have undergone Na-metasomatism and are depleted in REEs, perhaps signifying the "local source" and the mechanism of the REE enrichment in the LMG apatite in the IOA ores and host rocks. In contrast, the minor- and trace-element compositions of the other major rock-forming minerals (e.g., clinopyroxene and fayalite) as well as the zircon, and fluorite in the LMG have average igneous granitic trace- and minor-element compositions. To better understand the timing and origin of these post ~1050 Ma events, U-Pb ID-TIMS dating of apatite and titanite, and in situ LA-MC-ICPMS Sm-Nd analysis were done on the ore and host rock samples. Apatite dates range from 1050 to 850 Ma and titanite dates range from ~1015 to 970 Ma. There is significant age variation within samples and within grains. Titanite does not have sufficient spread for accurate Sm-Nd isochron dating and two ore-apatite samples have homogenous initial Nd isotopic and Sm-Nd elemental ratios, precluding calculation of Sm-Nd dates. A third ore sample shows a large spread in Sm-Nd and yields a Sm-Nd isochron date of ~850 Ma, in close agreement with U-Pb apatite dates. The Sm-Nd isochron and U-Pb apatite dates may reflect cooling recorded in these minerals or a younger hydrothermal mineralization event.
Rubidium-strontium date of possibly 3 billion years for a granitic rock from antarctica.
Halpern, M
1970-09-04
A single total rock sample of biotite granite from Jule Peaks, Antarctica, has been dated by the rubidium-strontium method at about 3 billion years. The juxtaposition of this sector of Antarctica with Africa in the Dietz and Sproll continental drift reconstruction results in a possible geochronologic fit of the Princess Martha Coast of Antarctica with a covered possible notheastern extension of the African Swaziland Shield, which contains granitic rocks that are also 3 billion years old.
NASA Astrophysics Data System (ADS)
Cazes, Gaël; Fink, David; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.
2017-04-01
The Kimberley region, northwest Australia, possesses an extensive and diverse collection of aboriginal rock art that potentially dates to more than 40,000 years ago. However, dating of such art using conventional techniques remains problematic. Here, we develop a new approach which makes use of the difference in production rates of in-situ 10Be and 26Al between intact rock walls and exposed surfaces of detached slabs from rock art shelters to constrain the age of Aboriginal rock-art. In the prevailing sandstone lithology of the Kimberley region, open cave-like rock shelters with cantilevered overhangs evolve by the collapse of unstable, partially rectangular, blocks weakened typically along joint-lines and fractures. On release, those slabs which extend outside the rock face perimeter will experience a higher production rate of cosmogenic 10Be and 26Al than the adjacent rock which remains intact within the shelter. The dating of these freshly exposed slabs can help reconstruct rock-shelter formation and provide either maximum or minimum ages for the rock art within the shelter. At each site, both the upper-face of the newly exposed fallen slab and the counterpart intact rock surface on the ceiling need to be sampled at their exact matching-point to ensure that the initial pre-release cosmogenic nuclide concentration on slab and ceiling are identical. The calculation of the timing of the event of slab release is strongly dependent on the local production rate, the new shielding of the slab surface and the post-production that continues on the ceiling sample at the matching point. The horizon, ceiling and slab shielding are estimated by modelling the distribution of neutron and muon trajectories in the irregular shaped rock-shelter and slab using 3D photogrammetric reconstruction from drone flights and a MATLAB code (modified from G. Balco, 2014) to estimate attenuation distances and model the production rate at each sample. Five rock-art sites have been dated and results range from 9.8 ± 1.9 kyr to 180.8 ± 22.3 kyr, While the date obtained for the youngest site can be interpreted as both a maximum and minimum age for the art due to its positioning over different walls of this specific shelter, all the other sites give maximum art ages which are significantly older than presumed human occupation in Australia. However, within the context of regional landscape geomorphology, these relatively young ages give new insights into the contrasting modes of landscape evolution in the Kimberley, and the importance of episodic escarpment retreat overprinted by passive basin-wide denudation which from numerous previous measurements are as low as 1-5 mm/ka (i.e. averaging timescales of ˜400 kyr). A large number of similar sites in the region have been mapped and are potential candidates for this new approach which can constrain the controversial relative chronology of the various aboriginal rock art styles.
Ar-Ar dating techniques for terrestrial meteorite impacts
NASA Astrophysics Data System (ADS)
Kelley, S. P.
2003-04-01
The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.
K-Ar chronology of the Luohe iron district, Anhui Province, China
McKee, E.H.
1988-01-01
Twelve samples of rock from the four mapped units or cycles and one of the major intrusive bodies were collected and evaluated for K-Ar age determination. These include specimens from outcrop and from drill core. Biotite from two outcrop and two core samples and hornblende from one outcrop sample were separated from the sample and dated; a sixth sample was dated using crushed, sieved, and acid-treated whole rock. The ages and analytical data to support them are compatible with the observed relationships in the field or from the drill holes. The percent of K2O in all samples is typical of fresh unaltered mineral phases and the percent of radiogenetic 40Ar relative to total 40Ar is high (88.8 to 63.8%) yielding relatively low analytical errors. -from Authors
NASA Astrophysics Data System (ADS)
Liu, Changfeng; Wu, Chen; Zhou, Zhiguang; Yan, Zhu; Jiang, Tian; Song, Zhijie; Liu, Wencan; Yang, Xin; Zhang, Hongyuan
2018-03-01
The Tuolai Group dominates the Central Qilian Terrane, and there are different opinions on the age and tectonic attribute of the Tuolai Group. Based on large-scale geologic mapping and zircon dating, the Tuolai Group is divided into four parts: metamorphic supracrustal rocks, Neoproterozoic acid intrusive rocks, early-middle Ordovician acid intrusive rocks and middle Ordovician basic intrusive rocks. The metamorphic supracrustal rocks are the redefined Tuolai complex-group and include gneiss and schist assemblage by faulting contact. Zircon U-Pb LA-MC-ICP-MS dating was conducted on these samples of gneiss and migmatite from the gneiss assemblage, quartzite, two-mica schist and slate from the schist assemblage. The five detrital samples possess similar age spectra; have detrital zircon U-Pb main peak ages of 1.7 Ga with youngest U-Pb ages of 1150 Ma. They are intruded by Neoproterozoic acid intrusive rocks. Therefore, the Tuolai Group belonging to late Mesoproterozoic and early Neoproterozoic. With this caveat in mind, we believe that U-Pb detrital zircon dating, together with the geologic constraints obtained from this study and early work in the neighboring regions. We suggest that the formation age of the entire crystalline basement rocks of metasedimentary sequence from the Central Qilian Terrane should be constrained between the Late Mesoproterozoic and the Late Neoproterozoic, but not the previous Paleoproterozoic. The basement of the Central Qilian Terrane contains the typical Grenville ages, which indicates the Centre Qilian Terrane have been experienced the Grenville orogeny event.
NASA Astrophysics Data System (ADS)
Akif Sarıkaya, M.; Çiner, Attila; Yıldırım, Cengiz
2017-04-01
Cosmogenic surface exposure dating has been applied to date numerous moraines worldwide. The geochronological data obtained from these studies have improved our knowledge on the timing of glaciation and allow us to reconstruct the paleoclimate. Due to the geomorphic complications after deposition, such as degradation, exhumation, bedrock erosion, snow cover and toppling of boulders, several (n>5) large boulder (>1-2 m) samples should be dated to obtain a reliable age distribution. Generally, the ages on a well-preserved moraine surface show unimodal normal distribution. Frequently, erosion, exhumation and boulder toppling are blamed for the younger outliers. On the other hand, although infrequent, older outliers will indicate inherited nuclide concentration from pre-exposure to cosmic radiation. To obtain the true age of a moraine deposit, one needs to collect several samples that not only greatly increases the budget of the project but also is time consuming. To overcome this problem, we developed a new sampling strategy for dating moraine surfaces by cosmogenic nuclides. We collected rock chips (each 20-50 grams) from large boulder (>1 m) tops located on the crest of moraines. Fourteen to 32 boulders were chosen for sampling every 20 m. All rock chips were amalgamated to make one sample. To test the suitability of the method, we also sampled 3 large boulders (>1 m), as it is done classically, from the same surface. The age results from the two Late Pleistocene moraines and one rock glacier surface show no difference in terms of boulder exposure ages. Three 36Cl ages from one single lateral moraine in Çimi Valley of Geyikdaǧ, central Taurus, Turkey, are 11.9±0.9 ka, 14.0±1.1 ka and 11.9±0.9 ka (all ages have no erosion corrections) and yield a mean age of 12.6±0.9 ka, while the amalgamated boulder chips' (ABCs) age is 12.0±0.9 ka. Another well developed terminal moraine (so called Zor Moraine) in the Güneycik Valley of Geyikdaǧ, yielded ages as 4.9±0.4 ka, 7.7±0.6 ka and 3.7±0.3 ka, while the ABCs' age is 6.4±0.6 ka. The rock glacier boulder samples yielded ages of 12.2±0.9 ka, 14.0±1.0 ka and 9.2±0.8 ka, while the rock glacier ABCs' age is 10.7±0.9 ka. These results clearly indicate that the age obtained from ABCs is reliable and can safely replace classical methodology that requires collection of several samples from a moraine surface. The use of ABCs sampling strategy will considerably decrease the time and budget allocated to date a landform. This work was supported by TUBITAK 112Y139 project.
Development of the Potassium-Argon Laser Experiment (KArLE) Instrument for In Situ Geochronology
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Li, Z.-H.; Miller, J. S.; Brinckerhoff, W. B.; Clegg, S. M.; Mahaffy, P. R.; Swindle, T. D.; Wiens, R. C.
2012-01-01
Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Traditionally, geochronology has only been accomplishable on samples from dedicated sample return missions or meteorites. The capability for in situ geochronology is highly desired, because it will allow one-way planetary missions to perform dating of large numbers of samples. The success of an in situ geochronology package will not only yield data on absolute ages, but can also complement sample return missions by identifying the most interesting rocks to cache and/or return to Earth. In situ dating instruments have been proposed, but none have yet reached TRL 6 because the required high-resolution isotopic measurements are very challenging. Our team is now addressing this challenge by developing the Potassium (K) - Argon Laser Experiment (KArLE) under the NASA Planetary Instrument Definition and Development Program (PIDDP), building on previous work to develop a K-Ar in situ instrument [1]. KArLE uses a combination of several flight-proven components that enable accurate K-Ar isochron dating of planetary rocks. KArLE will ablate a rock sample, determine the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by the volume of the ablated pit using an optical method such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to +/-100 Myr, sufficient to address a wide range of geochronology problems in planetary science.
NASA Astrophysics Data System (ADS)
Bischoff, James L.; Cummins, Kathleen
2001-01-01
Chemical analyses of the clay-sized fractions of 564 continuous sediment samples (200-yr resolution) from composite core OL90/92 allow quantification of an abundance of glacial rock flour. Rock flour produced during glacier advances is represented by clay-sized plagioclase, K-feldspar, and biotite in homogeneous internal composition. The abundance of rock flour is deemed proportional to the intensity of glacies advances. Age control for the composite section is provided by combining previously published radiocarbon dates on organics, U/Th dates on ostracode shells, and U/Th dates on saline minerals from nearby Searles Lake correlated to OL92 by pollen. The rock flour record displays three levels of variability: (1) a dominant one of about 20,000 yr related to summer insolation and precipitation; (2) an intermediate one of 3000-5000 yr, perhaps related to North Atlantic Heinrich events; and (3) a minor one of 1000-2000 yr, perhaps related to North Atlantic thermohaline-driven air-temperature variation.
Bischoff, J.L.; Cummins, K.
2001-01-01
Chemical analyses of the clay-sized fractions of 564 continuous sediment samples (200-yr resolution) from composite core OL90/92 allow quantification of an abundance of glacial rock flour. Rock flour produced during glacier advances is represented by clay-sized plagioclase, K-feldspar, and biotite in homogeneous internal composition. The abundance of rock flour is deemed proportional to the intensity of glacies advances. Age control for the composite section is provided by combining previously published radiocarbon dates on organics, U/Th dates on ostracode shells, and U/Th dates on saline minerals from nearby Searles Lake correlated to OL92 by pollen. The rock flour record displays three levels of variability: (1) a dominant one of about 20,000 yr related to summer insolation and precipitation; (2) an intermediate one of 3000-5000 yr, perhaps related to North Atlantic Heinrich events; and (3) a minor one of 1000-2000 yr, perhaps related to North Atlantic thermohaline-driven air-temperature variation. ?? 2001 University of Washington.
Gongurov, N.A.; Laiba, A.A.; Beliatsky, B.V.
2007-01-01
Precambrian rocks at Mt Meredith underwent granulite-facies metamorphism M1. Zircon isotope dating for two orthogneisses revealed the following age signatures: 1294±3 and 957±4Ma; 1105±5 and 887±2Ma. The oldest ages could reflect the time of orthogneiss protolith crystallization and the latest age determinations date Grenvillian metamorphism. The metamorphic rocks were intruded by two-mica and garnet-biotite granites. The granites and host rocks underwent amphibolite-facies metamorphism M2. Zircon isotope analysis of the two-mica granites showed age estimation within 550-510Ma and zircon dating of the garnet-biotite granites revealed the ages of 1107±5, 953±8, and 551±4Ma. As Pan-African age signatures were obtained from only the granite samples, it is possible to suggest that the granites were formed at the time of 510-550Ma and the zircons with greater age values were captured by granites from the host rocks.
Ion microprobe mass analysis of lunar samples. Lunar sample program
NASA Technical Reports Server (NTRS)
Anderson, C. A.; Hinthorne, J. R.
1971-01-01
Mass analyses of selected minerals, glasses and soil particles of lunar, meteoritic and terrestrial rocks have been made with the ion microprobe mass analyzer. Major, minor and trace element concentrations have been determined in situ in major and accessory mineral phases in polished rock thin sections. The Pb isotope ratios have been measured in U and Th bearing accessory minerals to yield radiometric age dates and heavy volatile elements have been sought on the surfaces of free particles from Apollo soil samples.
Closing the gap between rocks and clocks using total-evidence dating
2016-01-01
Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term ‘deep root attraction’ (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325833
Closing the gap between rocks and clocks using total-evidence dating.
Ronquist, Fredrik; Lartillot, Nicolas; Phillips, Matthew J
2016-07-19
Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term 'deep root attraction' (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
A Holocene paleosecular variation from 14C-dated volcanic rocks in Western North America
Hagstrum, J.T.; Champion, D.E.
2002-01-01
A paleosecular variation (PSV) curve for western North America is presented on the basis of 94 virtual geomagnetic poles (VGPs) from dated volcanic rocks sampled at 446 sites. Approximately 60% of the paleomagnetic database has been previously published. A curve defined by "spherical smoothed splines" is fitted to the VGPs, ranked by the quality of the age determinations, where the data density is highest between 3690 and -30 years before present (B.P.) (A.D. 1950), between 7800 and 7050 years B.P., and between 14,060 and 12,700 years B.P. The younger segments of the curve derived from volcanic rocks are similar but less complex than other high-resolution PSV curves derived from lacustrine sediments, particularly the record at Fish Lake, Oregon. The PSV record from lava flows (PSVL), however, is perhaps more reliable in its general shape and chronology because of the higher fidelity of volcanic rocks as magnetic field recorders and because of the greater density of 14C dates. The new PSVL record provides a partial Holocene master curve for western North America and will be of particular value in dating geological and archeological materials using paleomagnetic directions.
Inception and Early Evolution of the Aleutian Arc
NASA Astrophysics Data System (ADS)
Bezard, R.; Hoernle, K.; Hauff, F.; Portnyagin, M.; Werner, R.; Yogodzinski, G.; Jicha, B.; Garbe-Schönberg, D.; Turner, S.; Schaefer, B. F.
2017-12-01
Constraining the timing and style of subduction initiation in the Aleutian system is critical to model the Cenozoic geodynamic evolution of the Pacific. Until now, the oldest ages for the Aleutian arc suggest a subduction inception at c.a. 46-47 Ma. However, the compositions of these samples (arc tholeiites and calc-alkaline rocks) are different from those of typical early-arc sequences found at extensively studied subduction systems (Izu-Bonin-Mariana), dominated by FABs and boninites. Thus, if the FAB/boninite model applies to the Aleutian, the oldest units might not have been recovered yet and the arc inception could have occurred earlier than 47 Ma. To test this hypothesis, we have sampled the lowermost submarine Aleutian sequences at ten forearc and rear-arc localities during the R/V SONNE Cruise 249. We present preliminary whole-rock major and trace element concentrations, Sr-Nd-Hf-Pb isotopes as well as U-Pb zircon dating on the recovered igneous rocks. The sample compositions range from tholeiitic to calc-alkaline. No boninites were found. Most of the samples show strong subduction signatures. However, the remaining rocks present no or minor arc-type trace element features. These samples are either depleted tholeiites with similar trace element characteristics to FABs or enriched calc-alkaline rocks. Preliminary zircon dating suggests an age of 47.2 ± 1.2 Ma for one of the samples with strong arc signatures, consistent with the oldest published ages for the Aleutian so far. However, based on their compositional similarities to FABs, the depleted tholeiites should be older than the arc-type rocks, suggesting that subduction initiation could have occurred earlier than the above-mentioned age. The absence of boninite could either reflect an incomplete sampling of the early-arc sequences or a different initiation style compared to other Pacific subduction zones. Further ages and radiogenic isotope data should refine these interpretations.
NASA Astrophysics Data System (ADS)
Sack, Patrick J.; Berry, Ron F.; Meffre, Sebastien; Falloon, Trevor J.; Gemmell, J. Bruce; Friedman, Richard M.
2011-05-01
A new U-Pb zircon dating protocol for small (10-50 μm) zircons has been developed using an automated searching method to locate zircon grains in a polished rock mount. The scanning electron microscope-energy-dispersive X ray spectrum-based automated searching method can routinely find in situ zircon grains larger than 5 μm across. A selection of these grains was ablated using a 10 μm laser spot and analyzed in an inductively coupled plasma-quadrupole mass spectrometer (ICP-QMS). The technique has lower precision (˜6% uncertainty at 95% confidence on individual spot analyses) than typical laser ablation ICP-MS (˜2%), secondary ion mass spectrometry (<1%), and isotope dilution-thermal ionization mass spectrometry (˜0.4%) methods. However, it is accurate and has been used successfully on fine-grained lithologies, including mafic rocks from island arcs, ocean basins, and ophiolites, which have traditionally been considered devoid of dateable zircons. This technique is particularly well suited for medium- to fine-grained mafic volcanic rocks where zircon separation is challenging and can also be used to date rocks where only small amounts of sample are available (clasts, xenoliths, dredge rocks). The most significant problem with dating small in situ zircon grains is Pb loss. In our study, many of the small zircons analyzed have high U contents, and the isotopic compositions of these grains are consistent with Pb loss resulting from internal α radiation damage. This problem is not significant in very young rocks and can be minimized in older rocks by avoiding high-U zircon grains.
Exploring the U-Pb systematics of titanite from the Archean Stillwater Complex
NASA Astrophysics Data System (ADS)
Friedman, R. M.; Wall, C. J.; Scoates, J. S.; Weis, D. A.; Meurer, W. P.
2011-12-01
The Stillwater Complex is a large mafic-ultramafic layered intrusion in the Beartooth Mountains of Montana (USA) and host to the world-class J-M Reef platinum group element deposit. The size and geologic/economic importance of this igneous complex make it an important target for high-precision U-Pb dating. As a part of a comprehensive U-Pb study of the Stillwater Complex, we present ID-TIMS U-Pb titanite data, including new single grain results produced using the EARTHTIME ET535 spike, for very low-volume, relatively felsic granophyric and pegmatitic rocks associated with Stillwater layered rocks. Four samples studied include a pegmatitic ksp-qtz core to a gabbroic pegmatoid in the Lower Banded Series (N1), an alaskite (quartz diorite) and an amphibole-rich reaction zone between the alaskite and anorthosite (AN1) in the Middle Banded Series, and an amphibole-bearing granophyre from the Upper Banded Series (GN3). CA-TIMS U-Pb dating of zircon from these samples yielded concordant results only for the pegmatitic rock (weighted 207Pb/206Pb: 2709.65 ± 0.80 Ma, n = 5), which agrees with new zircon ages from Stillwater layered rocks. Results for high-U (up to 1438 ppm) metamict zircon that occurs in the other three rocks were highly discordant and did not yield precise ages. Titanite U-Pb results for the pegmatite are about -1% to +1% discordant with two groupings of 207Pb/206Pb dates: one with a weighted average of 2708.1 ± 2.0 Ma (n = 2), which overlaps in age with zircon from the same sample and the crystallization age of the Stillwater Complex, and a second, younger grouping of 2701.1 ± 1.3 Ma (n = 5). Younger dates record an early Pb-loss event, possibly related to intrusion of cross-cutting quartz monzonites. The alaskite data also shows two groupings of 207Pb/206Pb dates, although more subtle: a weighted average of 2709.3 ± 1.8 Ma (n = 3) and a single result of 2706.5 ± 1.7 Ma. Titanite from the other two samples has undergone significant Pb-loss. Results for four analyses from the reaction zone sample are 1.74-54.3% discordant and lie in a quasi-linear array with intercepts at ca. 2700 Ma and 325 Ma. Data for the granophyre in the Upper Banded Series also have a wide range of discordance (1.5-3.4%, 21.4% and 61.3%). Titanites from these samples appear to have undergone a two stage Pb-loss history: an early, relatively minor event as suggested for the pegmatite, and a subsequent episode, which for some grains resulted in significant discordance. Concordant U-Pb titanite data from two of the Stillwater Complex granophyres confirms nearly synchronous crystallization with that of the layered rocks in the intrusion. For the pegmatite, the ages and overlap of zircon and titanite suggest a direct relationship between the granophyres and the layered rock and relatively rapid cooling of the complex through titanite closure temperature. Titanite from the alaskite yields useful age information, whereas coexisting zircon are highly discordant and not age diagnostic.
NASA Astrophysics Data System (ADS)
Cho, Yuichiro; Sugita, Seiji; Miura, Yayoi N.; Okazaki, Ryuji; Iwata, Naoyoshi; Morota, Tomokatsu; Kameda, Shingo
2016-09-01
Age is essential information for interpreting the geologic record on planetary surfaces. Although crater counting has been widely used to estimate the planetary surface ages, crater chronology in the inner solar system is largely built on radiometric age data from limited sites on the Moon. This has resulted in major uncertainty in planetary chronology. Because opportunities for sample-return missions are limited, in-situ geochronology measurements from one-way lander/rover missions are extremely valuable. Here we developed an in-situ isochron-based dating method using the K-Ar system, with K and Ar in a single rock sample extracted locally by laser ablation and measured using laser-induced breakdown spectroscopy (LIBS) and a quadrupole mass spectrometer (QMS), respectively. We built an experimental system combining flight-equivalent instruments and measured K-Ar ages for mineral samples with known ages (~1.8 Ga) and K contents (1-8 wt%); we achieved precision of 20% except for a mineral with low mechanical strength. Furthermore, validation measurements with two natural rocks (gneiss slabs) obtained K-Ar isochron ages and initial 40Ar consistent with known values for both cases. This result supports that our LIBS-MS approach can derive both isochron ages and contributions of non-in situ radiogenic 40Ar from natural rocks. Error assessments suggest that the absolute ages of key geologic events including the Noachian/Hesperian- and the Hesperian/Amazonian-transition can be dated with 10-20% errors for a rock containing ~1 wt% K2O, greatly reducing the uncertainty of current crater chronology models on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, J. E.; Summa, L.
This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Exxon Production Research Company (EPR) to develop improved techniques for extracting, concentrating, and measuring iodine from large volumes of source rock and oil. The purpose of this project was to develop a technique for measuring total iodine extracted from rock, obtain isotopic ratios, and develop age models for samples provided by EPR.
Hofstra, A.H.; Snee, L.W.; Rye, R.O.; Folger, H.W.; Phinisey, J.D.; Loranger, R.J.; Dahl, A.R.; Naeser, C.W.; Stein, H.J.; Lewchuk, M.
1999-01-01
Carlin-type gold deposits are difficult to date and a wide range of ages has been reported for individual deposits. Therefore, several methods were employed to constrain the age of the gold deposits in the Jerritt Canyon district. Dated igneous rocks with well-documented crosscutting relationships to ore provided the most reliable constraints. K/Ar and 40Ar/39Ar dates on igneous rocks are as follows: andesite dikes 324 Ma, sericitic alteration in andesite dikes 118 Ma, basalt dikes 40.8 Ma, quartz monzonite dikes 39.2 Ma, and calc-alkaline ignimbrites 43.1 to 40.1 Ma. Of these, only the andesite and basalt dikes are clearly altered and mineralized. The gold deposits are, therefore, younger than the 40.8 Ma basalt dikes. The sericitic alteration in the andesite dikes is unrelated to the gold deposits. A number of dating techniques did not work. K/Ar and 40Ar/39Ar dates on mica from mineralized Ordovician to Devonian sedimentary rocks gave misleading results. The youngest date of 149 Ma from the smallest <0.1-??m-size fraction shows that the temperature (120??-260??C) and duration (?) of hydrothermal activity was insufficient to reset preexisting fine-grained micas in the host rocks. The temperature and duration was also insufficient to anneal fission tracks in zircon from Ordovician quartzites as they yield Middle Proterozoic dates in both mineralized and barren samples. Apatites were too small for fission track dating. Hydrothermal sulfides have pronounced crustal osmium isotope signatures (187Os/188Os(initial) = 0.9-3.6) but did not yield a meaningful isochron due to very low Re and Os concentrations and large analytical uncertainties. Paleomagnetic dating techniques failed because the hydrothermal fluids sulfidized nearly all of the iron in the host rocks leaving no remnant magnetism. When published isotopic dates from other Carlin-type deposits in Nevada and Utah are subject to the rigorous evaluation developed for the Jerritt Canyon study, most deposits can be shown to have formed between 42 and 30 Ma. K/Ar and 40Ar/39Ar dates on the youngest preore igneous rocks range from 41 to 32 Ma, whereas the oldest postore igneous rocks range from 35 to 33 Ma. Hydrothermal adularia from the Twin Creeks deposit yields similar 40Ar/39Ar dates of 42 Ma. K/Ar dates on supergene alunite range from 4 to 30 Ma. K/Ar and 40Ar/39Ar dates on micas separated from sedimentary (395-43 Ma) and igneous (145-38 Ma) rocks are usually much older than the gold deposits and most are suspect because they are from incompletely reset preore micas or from mixtures of preore and ore-stage mica. Fission track dates on zircons are also generally older than the deposits (169-35 Ma) and are not completely reset by mineralization. Apatites are likley to be reset by the hydrothermal systems (and by younger thermal events) and yield dates (83-22 Ma) that are younger than those from zircon.
NASA Astrophysics Data System (ADS)
Ohta, T.; Mahara, Y.
2010-12-01
Young groundwater dating less than 100 years is possible to be obtained from environmental radioactivity with short half life, 3H+3He, 85Kr, or chemical material, CFC-12. The 3H+3He dating method is excellent method to estimate the residence time of shallow groundwater. The one of advantage of the method is small sample volume. The 3He in groundwater is originated by 3 sources, tritiogenic He, mantle He, radiogenic He produced in rock. Especially, as the contribution of the mantle He is greater than the radiogenic and triogenic, when 3H+3He dating apply for groundwater dating on volcanic area, we have to determine ratio of 3 sources. On the other hand, as 85Kr is only originated from atmosphere, it is excellent groundwater dating tracer on volcanic area. However, as 85Kr is ultra low concentration in groundwater, 85Kr is needed to separate from large amount of ground water about 10^5 L. Young groundwater dating by these methods has both advantages and disadvantages, but the disadvantages of the individual methods can be offset by using multiple tracers. Development of a lot of groundwater dating techniques is desired. Therefore, an application of radium isotopes which is simple origin to groundwater dating on volcanic area was tried. Ra-228 and Ra-226 are progenies of Th and U, respectively. The 228Ra/226Ra in ground waters depends on the Th/U in the relevant rocks. As the 228Ra and 226Ra in shallow groundwater on volcanic area are originated from only rock, and the collection of radium isotopes from groundwater is easier than that of 85Kr, implying that it is possible to be good tracer for volcanic area. We aim that groundwater age obtain from 228Ra/226Ra in groundwater and relevant rock on volcanic area. We determined that 228Ra/226Ra observed with river waters and the relevant rocks. The method applied for Kakitagawa around Fuji Volcano, Japan. The relevant rock of Kakitagawa is Mishima lava flow. Our method compared with 3H+3He dating. The residence time of Kakitagawa river water estimated from the 228Ra/226Ra activity ratio in river water and relevant rock is from 12-20 years, and agree well with 3H+3He age, suggesting that 228Ra/226Ra of groundwater could be used as a tool of residence time estimation of groundwater on volcanic area.
Cretaceous crust beneath SW Borneo: U-Pb dating of zircons from metamorphic and granitic rocks
NASA Astrophysics Data System (ADS)
Davies, L.; Hall, R.; Armstrong, R.
2012-12-01
Metamorphic basement rocks from SW Borneo are undated but have been suggested to be Palaeozoic. This study shows they record low pressure 'Buchan-type' metamorphism and U-Pb SHRIMP dating of zircons indicates a mid-Cretaceous (volcaniclastic) protolith. SW Borneo is the southeast promontory of Sundaland, the continental core of SE Asia. It has no sedimentary cover and the exposed basement has been widely assumed to be a crustal fragment from the Indochina-China margin. Metamorphic rocks of the Pinoh Group in Kalimantan (Indonesian Borneo) are intruded by granitoid rocks of Jurassic-Cretaceous age, based on K-Ar dating, suggesting emplacement mainly between 130 and 80 Ma. The Pinoh metamorphic rocks have been described as a suite of pelitic schists, slates, phyllites, and hornfelses, and have not been dated, although they have been correlated with rocks elsewhere in Borneo of supposed Palaeozoic age. Pelitic schists contain biotite, chlorite, cordierite, andalusite, quartz, plagioclase and in some cases high-Mn almandine-rich garnet. Many have a shear fabric associated with biotite and fibrolite intergrowth. Contact metamorphism due to intrusion of the granitoid rocks produced hornfelses with abundant andalusite and cordierite porphyroblasts. Granitoids range from alkali-granite to tonalite and contain abundant hornblende and biotite, with rare white mica. Zircons from granitoid rocks exhibit sector- and concentric- zoning; some have xenocrystic cores mantled by magmatic zircon. There are four important age populations at c. 112, 98, 84 and 84 Ma broadly confirming earlier dating studies. There is a single granite body with a Jurassic age (186 ± 2.3 Ma). Zircons from pelitic metamorphic rocks are typically euhedral, with no evidence of rounding or resorbing of grains; a few preserve volcanic textures. They record older ages than those from igneous rocks; U-Pb ages are Cretaceous with a major population between 134 and 110 Ma. A single sample contains Proterozoic and Phanerozoic zircons. The metamorphic rocks from SW Borneo are not an ancient core to the island as previously assumed. We propose that extensive arc volcanism produced fine grained volcanogenic sediments during the Early Cretaceous deposited on, or reworking, older crust. These sediments were subjected to low pressure 'Buchan-type' metamorphism soon after deposition. Magmatism continued into the Late Cretaceous, resulting in contact metamorphism.
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, B. A.
2016-01-01
Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).
Potential Cement Phases in Sedimentary Rocks Drilled by Curiosity at Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Morris, R. V.; Bish, D. L.; Chipera, S. J.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Cavanagh, P.; Farmer, J. D.;
2015-01-01
The Mars Science Laboratory rover Curiosity has encountered a variety of sedimentary rocks in Gale crater with different grain sizes, diagenetic features, sedimentary structures, and varying degrees of resistance to erosion. Curiosity has drilled three rocks to date and has analyzed the mineralogy, chemical composition, and textures of the samples with the science payload. The drilled rocks are the Sheepbed mudstone at Yellowknife Bay on the plains of Gale crater (John Klein and Cumberland targets), the Dillinger sandstone at the Kimberley on the plains of Gale crater (Windjana target), and a sedimentary unit in the Pahrump Hills in the lowermost rocks at the base of Mt. Sharp (Confidence Hills target). CheMin is the Xray diffractometer on Curiosity, and its data are used to identify and determine the abundance of mineral phases. Secondary phases can tell us about aqueous alteration processes and, thus, can help to elucidate past aqueous environments. Here, we present the secondary mineralogy of the rocks drilled to date as seen by CheMin and discuss past aqueous environments in Gale crater, the potential cementing agents in each rock, and how amorphous materials may play a role in cementing the sediments.
Developement of the Potassium-Argon Laser Experiment (KArLE) for In Situ Geochronology
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2012-01-01
Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. Thus far, radiometric geochronology of planetary samples has only been accomplishable in terrestrial laboratories on samples from dedicated sample return missions and meteorites. In situ instruments to measure rock ages have been proposed, but none have yet reached TRL 6, because isotopic measurements with sufficient resolution are challenging. We have begun work under the NASA Planetary Instrument Definition and Development Program (PIDDP) to develop the Potassium (K) - Argon Laser Experiment (KArLE), a novel combination of several flight-proven components that will enable accurate KAr isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using quadrupole mass spectrometry (QMS), and relate the two by measuring the volume of the abated pit using a optical methods such as a vertical scanning interferometer (VSI). Our preliminary work indicates that the KArLE instrument will be capable of determining the age of several kinds of planetary samples to 100 Myr, sufficient to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses common to most planetary surface missions.
NASA Technical Reports Server (NTRS)
Cho, Yuichiro; Cohen, Barbara A.
2018-01-01
We report new K-Ar isochron data for two approximately 380 Ma basaltic rocks, using an updated version of the Potassium-Argon Laser Experiment (KArLE). These basalts have K contents comparable to lunar KREEP basalts or igneous lithologies found by Mars rovers, whereas previous proof-of-concept studies focused primarily on more K-rich rocks. We continue to measure these analogue samples to show the advancing capability of in situ K-Ar geochronology. KArLE is applicable to other bodies including the Moon or asteroids.
Diet of Crotalus lepidus klauberi (Banded Rock Rattlesnake)
Holycross, A.T.; Painter, C.W.; Prival, D.B.; Swann, D.E.; Schroff, M.J.; Edwards, T.; Schwalbe, C.R.
2002-01-01
We describe the diet of Crotalus lepidus klauberi (Banded Rock Rattlesnake) using samples collected in the field and from museum specimens, as well as several records from unpublished reports. Most records (approximately 91%) were from the northern Sierra Madrean Archipelago. Diet consisted of 55.4% lizards, 28.3% scolopendromorph centipedes, 13.8% mammals, 1.9% birds, and 0.6% snakes. Sceloporus spp. comprised 92.4% of lizards. Extrapolation suggests that Sceloporus jarrovii represents 82.3% of lizard records. Diet was independent of geographic distribution (mountain range), sex, source of sample (stomach vs. intestine/feces), and age class. However, predator snout-vent length differed significantly among prey types; snakes that ate birds were longest, followed in turn by those that ate mammals, lizards, and centipedes. Collection date also differed significantly among prey classes; the mean date for centipede records was later than the mean date for squamate, bird, or mammal records. We found no difference in the elevation of collection sites among prey classes.
The Potassium-Argon Laser Experiment (KARLE): In Situ Geochronology for Planetary Robotic Missions
NASA Technical Reports Server (NTRS)
Cohen, B. A.; Devismes, D.; Miller, J. S.; Swindle, T. D.
2014-01-01
Isotopic dating is an essential tool to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar Laser Experiment (KArLE) brings together a novel combination of several flight-proven components to provide precise measurements of potassium (K) and argon (Ar) that will enable accurate isochron dating of planetary rocks. KArLE will ablate a rock sample, measure the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measure the liberated Ar using mass spectrometry (MS), and relate the two by measuring the volume of the ablated pit by optical imaging. Our work indicates that the KArLE instrument is capable of determining the age of planetary samples with sufficient accuracy to address a wide range of geochronology problems in planetary science. Additional benefits derive from the fact that each KArLE component achieves analyses useful for most planetary surface missions.
Zircon age-temperature-compositional spectra in plutonic rocks
Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie; ...
2017-08-23
We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less
Zircon age-temperature-compositional spectra in plutonic rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samperton, Kyle M.; Bell, Elizabeth A.; Barboni, Mélanie
We present that geochronology can resolve dispersed zircon dates in plutonic rocks when magma cooling time scales exceed the temporal precision of individual U-Pb analyses; such age heterogeneity may indicate protracted crystallization between the temperatures of zircon saturation (T sat) and rock solidification (T solid). Diffusive growth models predict asymmetric distributions of zircon dates and crystallization temperatures in a cooling magma, with volumetrically abundant old, hot crystallization at T sat decreasing continuously to volumetrically minor young, cold crystallization at T solid. We present integrated geochronological and geochemical data from Bergell Intrusion tonalites (Central Alps, Europe) that document zircon compositional changemore » over hundreds of thousands of years at the hand-sample scale, indicating melt compositional evolution during solidification. Ti-in-zircon thermometry, crystallization simulation using MELTS software, and U-Pb dates produce zircon mass-temperature-time distributions that are in excellent agreement with zircon growth models. In conclusion, these findings provide the first quantitative validation of longstanding expectations from zircon saturation theory by direct geochronological investigation, underscoring zircon’s capacity to quantify supersolidus cooling rates in magmas and resolve dynamic differentiation histories in the plutonic rock record.« less
Radiometric age map of Aleutian Islands
Wilson, Frederic H.; Turner, D.L.
1975-01-01
This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.
Radiometric age map of southcentral Alaska
Wilson, Frederic H.; Turner, D.L.
1975-01-01
This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.
Radiometric age map of southwest Alaska
Wilson, Frederic H.; Turner, D.L.
1975-01-01
This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.
Radiometric age map of southeast Alaska
Wilson, Frederic H.; Turner, D.L.
1975-01-01
This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.
Radiometric age map of northern Alaska
Wilson, Frederic H.; Turner, D.L.
1975-01-01
This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.
NASA Technical Reports Server (NTRS)
Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.
2009-01-01
The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novikov, I.S.; Sokol, E.V.; Travin, A.V.
Cenozoic combustion metamorphic (CM) complexes produced by fossil natural coal fires are widespread at range-basin junctions worldwide. Large-scale fires accompany the initial orogenic phases as fresh coal-bearing strata become drawn into the aeration zone as a result of crustal deformation. In combustion metamorphism, the protolith melts to different degrees either into ferrous basic paralava or in glassy clinker. The melt rocks have a phase composition favorable for Ar-40/Ar-39 dating of ignition coeval with the onset of each episode in Late Cenozoic orogenic events. We suggest an algorithm providing correct Ar-40/Ar-39 age determination of CM rocks followed by well-grounded geological interpretationmore » and test the new approach on melt rocks from the Kuznetsk Coal Basin. Paralava samples were dated by Ar-40/Ar-39 incremental heating and the isotope ratios were corrected for Ca-, Cl-, and K-derived Ar isotopic interferences. The interpretation of age-spectrum results was checked against internal and external criteria. The former were plateau and isochrone ages and the latter included the so-called 'couple criterion' and conventional relative ages inferred from geological and stratigraphic evidence. As a result, we distinguished two groups of dates for combustion metamorphic events bracketed between 1.2 {+-} 0.4 and 0.2 {+-} 0.3 Ma. The older ages represent rocks in the western edge of the Prokopievsk-Kiselevsk block of the Salair zone and the younger dates correspond to those in its eastern edge. The reported dates record the time when the fault boundaries of the blocks were rejuvenated during recent activity and the block accreted to the Salair orogenic area as a submontane step. The suggested approach to the choice of objects, classification of rocks, and interpretation of Ar-40/Ar-39 spectra is universal and can be practiced in any area of combustion metamorphism.« less
NASA Astrophysics Data System (ADS)
Sauer, K. B.; Gordon, S. M.; Miller, R. B.; Vervoort, J. D.; Fisher, C. M.
2017-12-01
The metasupracrustal units within the north central Chelan block of the North Cascades Range, Washington, are investigated to determine mechanisms and timescales of supracrustal rock incorporation into the deep crust of continental magmatic arcs. Zircon U-Pb and Hf-isotope analyses were used to characterize the protoliths of metasedimentary and metaigneous rocks from the Skagit Gneiss Complex, metasupracrustal rocks from the Cascade River Schist, and metavolcanic rocks from the Napeequa Schist. Skagit Gneiss Complex metasedimentary rocks have (1) a wide range of zircon U-Pb dates from Proterozoic to latest Cretaceous and (2) a more limited range of dates, from Late Triassic to latest Cretaceous, and a lack of Proterozoic dates. Two samples from the Cascade River Schist are characterized by Late Cretaceous protoliths. Amphibolites from the Napeequa Schist have Late Triassic protoliths. Similarities between the Skagit Gneiss metasediments and accretionary wedge and forearc sediments in northwestern Washington and Southern California indicate that the protolith for these units was likely deposited in a forearc basin and/or accretionary wedge in the Early to Late Cretaceous (circa 134-79 Ma). Sediment was likely underthrust into the active arc by circa 74-65 Ma, as soon as 7 Ma after deposition, and intruded by voluminous magmas. The incorporation of metasupracrustal units aligns with the timing of major arc magmatism in the North Cascades (circa 79-60 Ma) and may indicate a link between the burial of sediments and pluton emplacement.
K-Ca and Rb-Sr Dating of Lunar Granite 14321 Revisited
NASA Technical Reports Server (NTRS)
Simon, Justin I.; Shih, C.-Y.; Nyquist, L. E.
2011-01-01
K-Ca and Rb-Sr age determinations were made for a bulk feldspar-rich portion of an Apollo rock fragment of the pristine lunar granite clast (14321,1062), an acid-leached split of the sample, and the leachate. K-Ca and Rb-Sr data were also obtained for a whole rock sample of Apollo ferroan anorthosite (FAN, 15415). The recent detection [1] of widespread intermediate composition plagioclase indicates that the generation of a diversity of evolved lunar magmas maybe more common and therefore more important to our understanding of crust formation than previously believed. Our new data strengthen the K-Ca and Rb-Sr internal isochrons of the well-studied Apollo sample 14321 [2], which along with a renewed effort to study evolved lunar magmas will provide an improved understanding of the petrogenetic history of evolved rocks on the Moon.
Rock Around the World: International Outreach for Scientific Education Using Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Rogers, L. D.; Klug, S. L.; Christensen, P. R.; Rogers, T. A.; Daub, G.
2005-12-01
Since the creation of the Rock Around the World (RATW) program in January 2004, we have received 6,861 (to date) rocks from children and adults alike from around the world. RATW is an educational outreach device to inspire and teach children about science. In addition, the accumulation of almost 7,000 rock samples has exponentially expanded the Arizona State University earth-based rock library into a large collection of samples useful for scientific investigation of Earth and Mars. This library currently supports research that is being conducted by the Mars Global Surveyor Thermal Emission Spectrometer (TES), the Mars Odyssey Thermal Emission Imaging System (THEMIS) and the two Mini-Thermal Emission Spectrometer (Mini-TES) instruments that are onboard the Mars Exploration Rovers. Currently, we have 3 undergraduate students working on the RATW project. As each rock sample arrives, appropriate information that was received with the sample is entered into our web-based RATW database. The information received with the rock sample is directly input into the RATW website. The information is publicly available for each sample at http://ratw.asu.edu. The sample is photographed, and then sent to the spectrometer for analysis. Once the spectrum is taken, calibration is performed. Then the sample is filed away in our rock archive room. Our website has several interactive tools which enhance the learning process. These tools include an interactive world map where the visitor can click on a rock location and preview all of the rocks sent from that geographical area of the world. In addition RATW has also put four virtual mineral libraries online. This enables any visitor to the RATW website to deconvolve or "unmix" their spectrum to see the mineral composition, using the same techniques that scientists use on the TES, THEMIS, and mini-TES data. The 6,861 rock samples we have received have been very geographically widespread. Participants have sent rocks from such places as Greenland, India, Switzerland and the Falkland Islands. We have received submissions that have included maps, drawings, pictures, stories, GPS readings and scientific literature and research about their rock sample and collection area. The number of RATW participants, and the enthusiasm with which they have participated, has shown that educational and scientific programs in Earth and Planetary Science draw worldwide interest among students and adults alike.
NASA Technical Reports Server (NTRS)
Onstott, T. C.; Moser, D. P.; Fredrickson, J. K.; Pfiffner, S. M.; Phelps, T. J.; White, D. C.; Peacock, A.; Balkwill, D.; Hoover, R. B.; Krumholz, L.;
2002-01-01
The concentration and distribution of microbial biomass within deep subsurface rock strata is not well known To date, most analyses are from water samples and a few cores. Hand samples, block samples and cores from an actively mined Carbon Leader ore zone at 3.2 kilometers depth were collected for microbial analyses. The Carbon Leader was comprised of quartz, S-bearing aromatic hydrocarbons, Fe(III) oxyhydroxides, sulfides, uraninite, Au and minor amounts of sulfate. The porosity of the ore was 1% and the maximum pore throat diameter was less than 0.1 microns; whereas, the porosity of the adjacent quartzite was .02 to .9% with a maximum pore throat diameter of 0.9 microns. Rhodamine dye, fluorescent microspheres, microbial enrichments, autoradiography, phospholipid fatty acid (PLEA) and 16S rDNA analyses were performed on these rock samples and the mining water. The date indicate that the levels of solute contamination less than 0.01% for pared rock samples. Despite this low level of contamination, PLEA, microbial enrichment, DNA and tracer analyses and calculations indicate that most of the viable microorganisms in the Carbon Leader represent gram negative aerobic heterotrophs and ammonia oxidizers that are phylogenetically identical or closely related to service water microorganisms. These microbial contaminants probably infiltrated the low permeability rock through mining-induced microfractures. Geochemical data also detected drilling water in a fault zone approx. 1 meter behind the rock face encountered during coring. The mining induced macrofractures that are common at these great depths act as pathways for the drilling water borne microorganisms into the lower temperature zone that extends several meters into rock strata from the rock face. Combined PLEA and T- RFLP analyses of the service water and Carbon Leader samples indicate that the concentration of indigenous microorganisms was less than 10(exp 2) cells/gram. Such a low concentrations result from the submicron pore throat diameters. PLFA. SO4-35 autoradiography and tracer analyses indicate that the bounding quartzite contains thermophilic sulfate reducing bacteria at 10(exp 3) cells/gram that are not attributable to drilling water contamination. The microorganisms may be surviving on sulfate generated by oxidation of sulfide by radiolytic reactions resulting from the high U concentration in the ore zone. The presence of up to 8,000 ppm of Fe(III) oxyhydroxides in the host rock will also act to recycle sulfide generated by the sulfate reducing bacteria into sulfate. The activity of these sulfate-reducing bacteria may be enhanced by mining induced fracturing which can propagate up to 40 meters into virgin rock where the temperatures are ca. 50 C, and decrepitate of sulfate rich fluid inclusions. In ultra deep mines, judicious application of tracers and multiple microbial characterization techniques can distinguish microbial contamination caused by the near field fracturing and drilling water migration from the indigenous microbial communities in rock strata. The importance of far field fracturing on indigenous microbial communities, however, remains unknown.
Tang, Yuan; Lian, Bin
2012-06-01
The endolithic environment, the tiny pores and cracks in rocks, buffer microbial communities from a number of physical stresses, such as desiccation, rapid temperature variations, and UV radiation. Considerable knowledge has been acquired about the diversity of microorganisms in these ecosystems, but few culture-independent studies have been carried out on the diversity of fungi to date. Scanning electron microscopy of carbonate rock fragments has revealed that the rock samples contain certain kinds of filamentous fungi. We evaluated endolithic fungal communities from bare dolomite and limestone rocks collected from Nanjiang Canyon (a typical karst canyon in China) using culture-independent methods. Results showed that Ascomycota was absolutely dominant both in the dolomite and limestone fungal clone libraries. Basidiomycota and other eukaryotic groups (Bryophyta and Chlorophyta) were only detected occasionally or at low frequencies. The most common genus in the investigated carbonate rocks was Verrucaria. Some other lichen-forming fungi (e.g., Caloplaca, Exophiala, and Botryolepraria), Aspergillus, and Penicillium were also identified from the rock samples. The results provide a cross-section of the endolithic fungal communities in carbonate rocks and help us understand more about the role of microbes (fungi and other rock-inhabiting microorganisms) in rock weathering and pedogenesis.
NASA Technical Reports Server (NTRS)
Neukum, G.
1988-01-01
In the absence of dates derived from rock samples, impact crater frequencies are commonly used to date Martian surface units. All models for absolute dating rely on the lunar cratering chronology and on the validity of its extrapolation to Martian conditions. Starting from somewhat different lunar chronologies, rather different Martian cratering chronologies are found in the literature. Currently favored models are compared. The differences at old ages are significant, the differences at younger ages are considerable and give absolute ages for the same crater frequencies as different as a factor of 3. The total uncertainty could be much higher, though, since the ratio of lunar to Martian cratering rate which is of basic importance in the models is believed to be known no better than within a factor of 2. Thus, it is of crucial importance for understanding the the evolution of Mars and determining the sequence of events to establish an unambiguous Martian cratering chronology from crater statistics in combination with clean radiometric ages of returned Martian samples. For the dating goal, rocks should be as pristine as possible from a geologically simple area with a one-stage emplacement history of the local formation. A minimum of at least one highland site for old ages, two intermediate-aged sites, and one very young site is needed.
NASA Astrophysics Data System (ADS)
van den Haute, P.
1984-11-01
Fission-track method dating of 27 apatite samples recovered from Precambrian intrusive rocks has yielded ages in the 75-423 million year range, which is noted to be younger than the ages of emplacement or metamorphism for these rocks according to other radiometric methods. On the basis of the regional geology and the length ratios of spontaneous-to-induced tracks for 18 of the 27 samples, it can be inferred that the fission-track ages are not mixed ages due to a recent thermal event, but rather that they date the last cooling history of the studied massifs. This last cooling is interpreted as primarily the result of a slow, epirogenetic uplift which affected the area during the major part of the Phanerozoic. In this way, the large age variations can be ascribed to differential cooling caused by regional epirogenetic uplift rate differences.
Chemical analyses and K-Ar ages of samples from 13 drill holes, Medicine Lake volcano, California
Donnelly-Nolan, Julie M.
2006-01-01
Chemical analyses and K-Ar ages are presented for rocks sampled from drill holes at Medicine Lake volcano, northern California. A location map and a cross-section are included, as are separate tables for drill hole information, major and trace element data, and for K-Ar dates.
Purdue Rare Isotope Measurement Laboratory
NASA Astrophysics Data System (ADS)
Caffee, M.; Elmore, D.; Granger, D.; Muzikar, P.
2002-12-01
The Purdue Rare Isotope Measurement Laboratory (PRIME Lab) is a dedicated research and service facility for accelerator mass spectrometry. AMS is an ultra-sensitive analytical technique used to measure low levels of long-lived cosmic-ray-produced and anthropogenic radionuclides, and rare trace elements. We measure 10Be (T1/2 = 1.5 My), 26Al (.702 My), 36Cl (.301 My), and 129I (16 My), in geologic samples. Applications include dating the cosmic-ray-exposure time of rocks on Earth's surface, determining rock and sediment burial ages, measuring the erosion rates of rocks and soils, and tracing and dating ground water. We perform sample preparation and separation chemistries for these radio-nuclides for our internal research activities and for those external researchers not possessing this capability. Our chemical preparation laboratories also serve as training sites for members of the geoscience community developing these techniques at their institutions. Research at Purdue involves collaborators among members of the Purdue Departments of Physics, Earth and Atmospheric Sciences, Chemistry, Agronomy, and Anthropology. We also collaborate and serve numerous scientists from other institutions. We are currently in the process of modernizing the facility with the goals of higher precision for routinely measured radio-nuclides, increased sample throughput, and the development of new measurement capabilities for the geoscience community.
NASA Astrophysics Data System (ADS)
Nishikawa, O.; Theeraporn, C.; Takashima, I.; Shigematsu, N.; Little, T. A.; Boulton, C. J.
2015-12-01
The Alpine Fault, New Zealand is an oblique slip thrust with significantly high slip rate, and its dip-slip component causes the rapid uplift of the Southern Alps and the extremely high geothermal gradient in it. Thermoluminescence (TL) dating is a method using the phenomenon that energy accumulated in the crystal from radiation of surrounding radioactive elements is reemitted in the form of light when heating the minerals. This method covers a wide range of age from 1,000 to 1,000,000 years, and has relatively low reset temperature for the accumulation of radiation dose. Therefore, TL dating is a feasible geochronometry for the reconstruction of the thermal history of the area with very high uplifting rate. In order to determine uplifting rates and their distribution in the Southern Alps adjacent to the Alpine fault, ten rock samples were collected for TL dating in the distance 1 km from main fault plane along the Stony Creek. All the samples commonly include quartz veins which are folded tightly or in isoclinal form parallel to the foliations. TL dating was performed using quartz grains separated from host rock. A widely ranging TL ages are obtained from the hanging wall of the fault. The rocks within 600m from present shear zone yield ages ranging from 55.2 ka to 88.8 ka, showing older ages with distance from shear zone. Within 600 m to 900 m from the fault, relatively younger ages, 54.7 to 34.4 ka are obtained. Assuming the thermal gradient of 10 °C /100 m and exhumation rate of 10 m / kyr, the zeroing depth and temperature of TL signals is estimated from 350 to 900 m and from 45 to 100 °C, respectively. The range of TL ages is very large amounted to 50,000 years in the narrow zone. This may be responsible for the variety of TL zeroing temperatures in the hanging wall rocks rather than disturbance of thermal structure and/or inhomogeneity of uplifting rate in this area. Annealing tests are necessary to clarify the real properties of TL for each sample tested.
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
NASA Astrophysics Data System (ADS)
Kunz, Barbara E.; Regis, Daniele; Engi, Martin
2018-03-01
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U-Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P-T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U-Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure.
Green, Helen; Gleadow, Andrew; Finch, Damien
2017-10-01
This data article contains mineralogical and chemical data from mineral accretions sampled from rock art shelters in the Kimberley region of north west Australia. The accretions were collected both on and off pigment and engraved rock art of varying styles observed in the Kimberley with an aim of providing a thorough understanding of the formation and preservation of such materials in the context of dating [1]. This contribution includes processed powder X-ray Diffraction data, Scanning Electron Microscopy energy dispersive spectroscopy data, and Laser Ablation ICP-MS trace element mapping data.
NASA Astrophysics Data System (ADS)
Zoeller, Ludwig; Richter, Daniel; Klinger, Philip; van den Bogaard, Paul
2013-04-01
Middle to Upper Pleistocene and Holocene volcanic eruptions are difficult to date by Ar/Ar techniques when K-rich minerals such as sanidines are not present, as is the case in mafic and some intermediate rocks. However, these may contain phlogopite crystals suitable for Ar/Ar dating. Direct luminescence dating of volcanic feldspar is hampered by a poorly understood phenomenon of long-term signal instability called "anomalous fading" which, however, is apparently not present in quartz. To circumvent the fading problem involved in luminescence dating of volcanic rocks lacking quartz we sampled quartz-bearing crustal xenoliths from the Quaternary West and the East Eifel Volcanic Fields. Sufficient heating for zeroing of the acquired geological TL during eruption is sometimes but not always visible in the field and among others depends on the size of the xenolith. Quartz grains were extracted from the xenoliths by crushing, density separation and etching in HF or H2SiF6. The orange-red TL emission from quartz is known to have a very high saturation dose and was therefore employed using a new "lexsyg" luminescence reader equipped with a special detection unit for measuring this orange-red TL emission. Additionally, the existing data base of Ar/Ar dating results is increased by a series of new laser ablation step heating Ar/Ar dating results from samples extracted from identical volcanic eruptions. These can serve as verification of the luminescence dating attempts. Some first preliminary TL dating results in the range up to ca. 500 ka will be presented and discussed. Apparently, some TL ages from quartz extracts underestimate the Ar/Ar ages significantly. Possible explanations of age underestimates will be presented for discussion.
User guide for luminescence sampling in archaeological and geological contexts
Nelson, Michelle S.; Gray, Harrison J.; Johnson, Jack A.; Rittenour, Tammy M.; Feathers, James K.; Mahan, Shannon
2015-01-01
Luminescence dating provides a direct age estimate of the time of last exposure of quartz or feldspar minerals to light or heat and has been successfully applied to deposits, rock surfaces, and fired materials in a number of archaeological and geological settings. Sampling strategies are diverse and can be customized depending on local circumstances, although all sediment samples need to include a light-safe sample and material for dose-rate determination. The accuracy and precision of luminescence dating results are directly related to the type and quality of the material sampled and sample collection methods in the field. Selection of target material for dating should include considerations of adequacy of resetting of the luminescence signal (optical and thermal bleaching), the ability to characterize the radioactive environment surrounding the sample (dose rate), and the lack of evidence for post-depositional mixing (bioturbation in soils and sediment). Sample strategies for collection of samples from sedimentary settings and fired materials are discussed. This paper should be used as a guide for luminescence sampling and is meant to provide essential background information on how to properly collect samples and on the types of materials suitable for luminescence dating.
Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal
NASA Technical Reports Server (NTRS)
Nyquist, L. E.; Shih, C. Y.; Reese, Y. D.
2011-01-01
Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the 1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return.
NASA Astrophysics Data System (ADS)
Winkler, Stefan; Lambiel, Christophe; Sattler, Katrin; Büche, Thomas; Springer, Johanna
2016-04-01
Although not uncommon within the dryer eastern parts of the Southern Alps, New Zealand, comparatively few previous studies have previously focused on rock glacier dynamics and spatial distribution. Neither investigations of their chronological constraints nor any studies on actual rock glacier velocities have yet been carried out. Rock glaciers and periglacial processes still largely constitute a largely unexplored albeit potentially valuable field of research in the Southern Alps. The high-altitude valley head of Irishman Stream in the Ben Ohau Range between Lakes Ohau and Pukaki, roughly 30 km southeast of the Main Divide, contains a few morphologically intact rock glaciers and some appear to be active features (Sattler et al. 2016). Previous work focusing on the Late-glacial and early Holocene moraines in the valley head below the rock glaciers (Kaplan et al. 2010) provided 10Be-ages that could be utilised as fixed points for SHD (Schmidt-hammer exposure-age dating). Apart from detailed Schmidt-hammer sampling on the Late-glacial and early Holocene moraines, two altitudinal transects from the toe to their apex have been measured in detail on selected rock glaciers. On each of the multiple ridges of the rock glacier surface three sites of 50 boulders have been sampled with one impact each by the hammer (an N-type electronic SilverSchmidt by Proceq). Apart from getting some age constraints of these periglacial features in comparison to the well-dated moraines, the Schmidt-hammer measurements also had the aim to provide some insight into their genetic development resulting in a quite complex morphology of the rock glaciers and partial interaction with some of the moraines. Both altitudinal transects reveal a clear and continuous trend of increasing means (i.e. less weathered/younger exposure ages) towards their apex. The values for the individual ridges show, however, a transitional character with adjacent ridges albeit the abovementioned trend not statistically significant different in age, a phenomena known from similar studies on rock glaciers elsewhere. Already during sampling it became obvious that with increasing altitude and decreasing distance to the valley headwall the percentage of freshly appearing boulders vs. weathered boulders with a distinct micro-relief is getting higher. The means of the lowermost ridges of the rock glaciers show, however, no significant difference to the early Holocene moraines dated to c. 11.5 10Be ka ago. This may indicate that rock glacier formation initiated shortly after Termination 1 during the early Holocene and partly overrode some parts of the early Holocene moraines. During the field work, a network of 46 differential GPS points has been established to start future monitoring of any potential rock glacier movement. It will allow exploring the climatological control on rock glacier behaviour in in the Southern Alps, as well as comparisons with current velocities measured in the European Alps. References: Kaplan, M.R., Schaefer, J., Denton, G.H., Barrell, D.J.A., Chinn, T.J.H., Putnam, A.E., Anderson, B.G., Finkel, R.C., Schwartz, R. & Doughty, A.M. (2010): Glacier retreat in New Zealand during the Younger DryasStadial. Nature 467, 194-197. Sattler, K., Anderson, B., Mackintosh, A., Norton, K., de Róiste, M. (2016): Estimating permafrost distribution in the maritime SouthernAlps, New Zealand, based on climatic conditions at rock glacier sites. Frontiers in Earth Science - Section Cryospheric Sciences. doi: 10.3389/feart.2016.00004.
A regional 17-18 MA thermal event in Southwestern Arizona
NASA Technical Reports Server (NTRS)
Brooks, W. E.
1985-01-01
A regional thermal event in southwestern Arizona 17 to 18 Ma ago is suggested by discordances between fission track (FT) and K-Ar dates in Tertiary volcanic and sedimentary rocks, by the abundance of primary hydrothermal orthoclase in quenched volcanic rocks, and by the concentration of Mn, Ba, Cu, Ag, and Au deposits near detachment faults. A high condont alteration index (CAI) of 3 to 7 is found in Paleozoic rocks of southwestern Arizona. The high CAI may have been caused by this mid-Tertiary thermal event. Resetting of temperature-sensitive TF dates (2) 17 to 18 Ma with respect to K-Ar dates of 24 and 20 Ma has occurred in upper plate volcanic rocks at the Harcuvar and Picacho Peak detachments. Discordances between FT and K-Ar dates are most pronounced at detachment faults. However, on a regional scale Ft dates from volcanic and sedimentary rocks approach 17 to 18 Ma event in areas away from known detachment faults. Effects of detachment faulting on the K-Ar system suggest that dates of correlative rocks will be younger as the detachment fault is approached.
Archaeomagnetic investigation and dating of Neolithic archaeological site (Kovatchevo) from Bulgaria
NASA Astrophysics Data System (ADS)
Kovacheva, M.; Jordanova, N.; Kostadinova, M.
2003-04-01
Archaeomagnetic investigation of direction and palaeointensity was carried out on a collection of samples from Neolithic kiln, excavated at Kovatchevo site. Suitability of the materials for obtaining reliable archaeomagnetic results was checked by applying different rock-magnetic experiments. The obtained values of viscosity index and Koeningsberger ratio show favorable stability characteristics of the burnt clay. The main magnetic minerals, identified by Curie temperature analysis through high-temperature behavior of magnetic susceptibility, and three-axes thermal demagnetization of IRM, show the prevailing role of magnetite and Ti-magnetite. However, investigations on the chemical changes occurring during laboratory heating show overall bad thermal stability of the studied materials, which is not good indication concerning palaeointensity determination. Palaeodirection investigation of samples, taken from different parts of the walls and kiln's floor, reveals possible influence of magnetic refraction - higher Inclination values and azymuthal dependence of Declination for the samples from walls; lower Inclination values from floor's samples. Definitive directional results are determined by averaging data for all samples, which are well distributed all over walls and three kiln's floors. For palaeointensity evaluation rock-magnetic studies are carefully considered and strict acception criteria applied. Archaeomagnetic dating of the studied kiln was performed according to the newly developed method (Lanos, 2001). Final dating, taking into account directional and intensity results, gives the most probable time interval of the last kiln's usage between 5712-5571 BC. Dating result is in agreement with archaeological findings for Bulgarian Early Neolithic and most of 14C data available. This study is supported by EU-funded project AARCH, contract No HPRN-CT-2002-00219 and Mission archeologique de la Vallee du Strymon (Centre de Recherches Protohistorique de l'Universite de Paris).
40Ar/39Ar geochronology of terrestrial pyroxene
NASA Astrophysics Data System (ADS)
Ware, Bryant; Jourdan, Fred
2018-06-01
Geochronological techniques such as U/Pb in zircon and baddeleyite and 40Ar/39Ar on a vast range of minerals, including sanidine, plagioclase, and biotite, provide means to date an array of different geologic processes. Many of these minerals, however, are not always present in a given rock, or can be altered by secondary processes (e.g. plagioclase in mafic rocks) limiting our ability to derive an isotopic age. Pyroxene is a primary rock forming mineral for both mafic and ultramafic rocks and is resistant to alteration process but attempts to date this phase with 40Ar/39Ar has been met with little success so far. In this study, we analyzed pyroxene crystals from two different Large Igneous Provinces using a multi-collector noble gas mass spectrometer (ARGUS VI) since those machines have been shown to significantly improve analytical precision compared to the previous single-collector instruments. We obtain geologically meaningful and relatively precise 40Ar/39Ar plateau ages ranging from 184.6 ± 3.9 to 182.4 ± 0.8 Ma (2σ uncertainties of ±1.8-0.4%) and 506.3 ± 3.4 Ma for Tasmanian and Kalkarindji dolerites, respectively. Those data are indistinguishable from new and/or published U-Pb and 40Ar/39Ar plagioclase ages showing that 40Ar/39Ar dating of pyroxene is a suitable geochronological tool. Scrutinizing the analytical results of the pyroxene analyses as well as comparing them to the analytical result from plagioclase of the same samples indicate pure pyroxene was dated. Numerical models of argon diffusion in plagioclase and pyroxene support these observations. However, we found that the viability of 40Ar/39Ar dating approach of pyroxene can be affected by irradiation-induced recoil redistribution between thin pyroxene exsolution lamellae and the main pyroxene crystal, hence requiring careful petrographic observations before analysis. Finally, diffusion modeling show that 40Ar/39Ar of pyroxene can be used as a powerful tool to date the formation age of mafic rocks affected by greenschist metamorphism and will likely play an important role in high temperature thermochronology.
Unruh, Daniel M.; Lund, Karen; Kuntz, Mel A.; Snee, Lawrence W.
2008-01-01
Across the Salmon River suture in western Idaho, where allochthonous Permian to Cretaceous oceanic rocks are juxtaposed against Proterozoic North American rocks, a wide variety of plutonic rocks are exposed. Available data indicate much variation in composition, source, and structural state of these plutons. The plutonic rocks were long described as the western border zone of the Cretaceous Idaho batholith but limited pre-existing age data indicate more complicated origins. Because the affinity and age of the plutonic rocks cannot be reliably determined from field relations, TIMS U-Pb dating in conjunction with Sr, Nd, and Pb isotopic studies of selected plutons across the suture in western Idaho were undertaken. The data indicate three general groups of plutons including (1) those that intruded the island arc terranes during the Triassic and Jurassic, those that intruded near the western edge of oceanic rocks along the suture in the Early Cretaceous, and the plutons of the Idaho batholith that intruded Proterozoic North American rocks in the Late Cretaceous. Plutons that intruded Proterozoic North American rocks commonly include xenocrystic zircons and in several cases, ages could not be determined. The least radiogenic Sr and most radiogenic Nd are found among the Blue Mountains superterrane island arc samples. Suture-zone plutons have isotopic characteristics that span the range between Idaho batholith and island arc samples but mostly follow island arc signatures. Plutons of the Idaho batholith have the most radiogenic initial Pb and Sr ratios and the least radiogenic Nd of the samples analyzed.
Page, Norman J; Riley, Leonard Benjamin; Haffty, Joseph
1969-01-01
Analyses by a combination fire- assay-solution-optical-emission spectrographic method of 137 rocks from the Stillwater Complex, Mont., indicate that platinum, palladium, and rhodium are preferentially concentrated in chromitite zones. The A chromitite zone (21 samples) has an average of 988.9 ppb (pans per billion, 10-9) Pt, 2290.2 ppb Pd, and 245.9 ppb Rh and reaches a maximum (to date) of 8,000 ppb Pt, 11,000 ppb Pd, and 1,700 ppb Rh.
NASA Astrophysics Data System (ADS)
Djellit, Hamou; Bellon, Hervé; Ouabadi, Aziouz; Derder, Mohamed E. M.; Henry, Bernard; Bayou, Boualem; Khaldi, Allaoua; Baziz, Kamal; Merahi, Mounir K.
2006-07-01
Palaeozoic formations of the Tassilis Oua-n-Ahaggar (southeastern Hoggar) include magmatic rocks in the Tin Serririne syncline. Slight contact metamorphism of the overlying bed and studies of anisotropy of magnetic susceptibility of these rocks show that the latter correspond to sills and NW-SE or north-south dykes. 40K/ 40Ar dating of separated feldspars and whole rock for one sample and of whole rock for two other samples give a mean age of 347.6±16.2Ma (at the 2- σ level), thus corresponding to a Lower Carboniferous (Tournaisian) age. Taking into account both the age of this magmatism and the stratigraphic and structural data for this region suggests that dolerites were emplaced within distensive zones that are related to the reactivation of Panafrican faults. To cite this article: H. Djellit et al., C. R. Geoscience 338 (2006).
NASA Astrophysics Data System (ADS)
He, Haiyang; Li, Yalin; Wang, Chengshan; Zhou, Aorigele; Qian, Xinyu; Zhang, Jiawei; Du, Lintao; Bi, Wenjun
2018-03-01
The tectonic evolutionary history of the Lhasa and Qiangtang collision zones remains hotly debated because of the lack of pivotal magmatic records in the southern Qiangtang subterrane, central Tibet. We present zircon U-Pb dating, whole-rock major and trace-element geochemical analyses, and Sr-Nd isotopic data for the newly discovered Biluoco volcanic rocks from the southern Qiangtang subterrane, central Tibet. Zircon U-Pb dating reveals that the Biluoco volcanic rocks were crystallized at ca. 95 Ma. The samples are characterized by low SiO2 (50.26-54.53 wt%), high Cr (109.7-125.92 ppm) and Ni (57.4-71.58 ppm), and a high Mg# value (39-56), which plot in the magnesian andesites field on the rock classification diagram. They display highly fractionated rare earth element patterns with light rare earth element enrichment ([La/Yb]N = 21.04-25.24), high Sr/Y (63.97-78.79) and no negative Eu anomalies (Eu/Eu* = 0.98-1.04). The Biluoco volcanic rocks are depleted in Nb, Ta and Ti and enriched in Ba, Th, U and Pb. Moreover, the eight samples of Biluoco volcanic rocks display constant (87Sr/86Sr)i ratios (0.70514-0.70527), a positive εNd(t) value (2.16-2.68) and younger Nd model ages (0.56-0.62 Ga). These geochemical signatures indicate that the Biluoco volcanic rocks were most likely derived from partial melting of the mantle wedge peridotite metasomatized by melts of subducted slab and sediment in the subducted slab, invoked by asthenospheric upwelling resulting from the slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere. Identification of ca. 95 Ma Biluoco magnesian andesites suggests they were a delayed response of slab break-off of the northward subduction of the Bangong-Nujiang oceanic lithosphere at ca. 100 Ma.
NASA Technical Reports Server (NTRS)
Jolliff, B. L.; Zeigler, R. A.; Korotev, R. L.; Barra, F.; Swindle, T. D.
2005-01-01
In this abstract, we report on the composition, mineralogy and petrography of a basaltic rock fragment, 12032,366-18, found in the Apollo 12 regolith. Age data, collected as part of an investigation by Barra et al., will be presented in detail in. Here, only the age dating result is summarized. This rock fragment garnered our attention because it is significantly enriched in incompatible elements, e.g., 7 ppm thorium, compared to other known lunar basalts. Its mineral- and trace-element chemistry set it apart from other Apollo 12 basalts and indeed from all Apollo and Luna basalts. What makes it potentially very significant is the possibility that it is a sample of a relatively young, thorium-rich basalt flow similar to those inferred to occur in the Procellarum region, especially northwestern Procellarum, on the basis of Lunar Prospector orbital data. Exploiting the lunar regolith for the diversity of rock types that have been delivered to a landing site by impact processes and correlating them to their likely site of origin using remote sensing will be an important part of future missions to the Moon. One such mission is Moonrise, which would collect regolith samples from the South Pole-Aitken Basin, concentrating thousands of rock fragments of 3-20 mm size from the regolith, and returning the samples to Earth.
NASA Astrophysics Data System (ADS)
Paquette, J.-L.; Ballèvre, M.; Peucat, J.-J.; Cornen, G.
2017-12-01
In the Variscan belt of Western Europe, the lifetime and evolution of the oceanic domain is poorly constrained by sparse, outdated and unreliable multigrain ID-TIMS U-Pb zircon dating. In this article, we present a complete in situ LA-ICP-MS dataset of about 300 U-Pb zircon analyses obtained on most of the ophiolitic and eclogitic outcrops of Southern Brittany, comprising new dating of previously published zircon populations and newly discovered rock samples. In situ dating and cathodo-luminescence imaging of each zircon grain yields new absolute time-constraints on the evolution of the Galicia-Moldanubian Ocean. The new results confirm that the opening of this oceanic domain is well defined at about 490 Ma. In contrast, the generally-quoted 400-410 Ma-age for the high-pressure event related to the subduction of the oceanic crust is definitely not recorded in the zircons of the eclogites. In light of these new data, we propose that the obduction of oceanic rocks occurred at about 370-380 Ma while the high-pressure event is recorded at 355 Ma in only a few zircon grains of some eclogite samples. Additionally, this large scale dating project demonstrates that the zircons from eclogites do not systematically recrystallise during the high pressure event and consequently their U-Pb systems do not record that metamorphism systematically. These zircons rather preserve the isotopic memory of the magmatic crystallization of their igneous protolith. Another example of an eclogite sample from the French Massif Central illustrates the frequent mistake in the interpretation of the ages of the early hydrothermal alteration of zircons in the oceanic crust versus partial or complete recrystallization during eclogite facies metamorphism.
NASA Astrophysics Data System (ADS)
Wang, D.; Vervoort, J. D.; Fisher, C. M.; Cao, H.
2016-12-01
The Sulu UHP terrane is the extension of the Dabie orogenic belt to the east, offset 500 km to the northeast by the Tanlu fault [1]. The focus of this study, the Weihai area, is located at the northernmost part of the Sulu UHP terrane, and consists mainly of gneisses overprinted by amphibolite-facies assemblages, in addition to minor eclogite, granulite, and some ultramafic rocks [1]. Time constrains are critical to our understanding of the processes of UHP metamorphism, as well as the tectonic evolution of the region. In the last decade, U-Pb dating of metamorphic domains of zircons has been widely applied to determine the history of the UHP metamorphism (240 - 220 Ma) [1]. Recent garnet Lu-Hf dating from the Dabie terrane (240 - 220Ma) suggests the initiation of prograde metamorphism to be prior to ca. 240 Ma [2]. In-situ U-Pb dating of accessary minerals using LA-ICPMS (i.e. monazite, titanite, rutile, etc.), can provide important information to augment and complement the zircon U-Pb metamorphic dates. In this study, we collected samples throughout the Weihai area. Protolith ages of these samples range from Paleoproterozoic to Neoproterozoic ( 1850 - 700 Ma) as indicated by U-Pb dating of zircon cores. Zircon metamorphic rims yield U-Pb ages of 240 - 220 Ma, likely indicating the UHP stage of the Sulu terrane [3]. Four eclogites yield Lu-Hf garnet isochrons with dates between 239 and 224 Ma, consistent with garnet Lu-Hf dates from Dabie UHP terrane [2]. Sm-Nd isochrons indicate systematic younger dates (220 - 210 Ma) interpreted as cooling ages. Titanites extracted from four samples give U-Pb ages ranging from 220 to 200 Ma, in agreement with the titanite dates from the southern Sulu terrane [4]. Monazites from three samples give precise dates between 214 and 211 Ma. Collectively, monazite and titanite U-Pb ages are broadly consistent with the garnet Sm-Nd isochrons, and thus we interpret these as cooling ages. Based on the dates of different systems/minerals presented above, we suggest the prograde metamorphism of Weihai UHP terrane likely took place prior to 240 Ma, and the peak of the UHP stage is likely between 240 and 220 Ma. [1] Zhang et al., Gondwana Res., 16 (2009) 1-26 [2] Cheng et al., J. Metamorphic Geol., 26 (2008), 741-758 [3] Liou et al., J. Asian Earth Sci., 35 (2009), 199-231 [4] Chen and Zheng, GCA, 150(2015), 53-73
Preliminary examination of lunar samples from apollo 14.
1971-08-20
The major findings of the preliminary examination of the lunar samples are as follows: 1) The samples from Fra Mauro base may be contrasted with those from Tranquillity base and the Ocean of Storms in that about half the Apollo 11 samples consist of basaltic rocks, and all but three Apollo 12 rocks are basaltic, whereas in the Apollo 14 samples only two rocks of the 33 rocks over 50 grams have basaltic textures. The samples from Fra Mauro base consist largely of fragmental rocks containing clasts of diverse lithologies and histories. Generally the rocks differ modally from earlier lunar samples in that they contain more plagioclase and contain orthopyroxene. 2) The Apollo 14 samples differ chemically from earlier lunar rocks and from their closest meteorite and terrestrial analogs. The lunar material closest in composition is the KREEP component (potassium, rare earth elements, phosphorus), "norite," "mottled gray fragments" (9) from the soil samples (in particular, sample 12033) from the Apollo 12 site, and the dark portion of rock 12013 (10). The Apollo 14 material is richer in titanium, iron, magnesium, and silicon than the Surveyor 7 material, the only lunar highlands material directly analyzed (11). The rocks also differ from the mare basalts, having much lower contents of iron, titanium, manganese, chromium, and scandium and higher contents of silicon, aluminum, zirconium, potassium, uranium, thorium, barium, rubidium, sodium, niobium, lithium, and lanthanum. The ratios of potassium to uranium are lower than those of terrestrial rocks and similar to those of earlier lunar samples. 3) The chemical composition of the soil closely resembles that of the fragmental rocks and the large basaltic rock (sample 14310) except that some elements (potassium, lanthanum, ytterbium, and barium) may be somewhat depleted in the soil with respect to the average rock composition. 4) Rocks display characteristic surface features of lunar material (impact microcraters, rounding) and shock effects similar to those observed in rocks and soil from the Apollo 11 and Apollo 12 missions. The rocks show no evidence of exposure to water, and their content of metallic iron suggests that they, like the Apollo 11 and Apollo 12 material, were formed and have remained in an environment with low oxygen activity. 5) The concentration of solar windimplanted material in the soil is large, as was the case for Apollo 11 and Apollo 12 soil. However, unlike previous fragmental rocks, Apollo 14 fragmental rocks possess solar wind contents ranging from approximately that of the soil to essentially zero, with most rocks investigated falling toward one extreme of this range. A positive correlation appears to exist between the solar wind components, carbon, and (20)Ne, of fragmental rocks and their friability (Fig. 12). 6) Carbon contents lie within the range of carbon contents for Apollo 11 and Apollo 12 samples. 7) Four fragmental rocks show surface exposure times (10 x 10(6) to 20 x 10(6) years) about an order of magnitude less than typical exposure times of Apollo 11 and Apollo 12 rocks. 8) A much broader range of soil mechanics properties was encountered at the Apollo 14 site than has been observed at the Apollo 11, Apollo 12, and Surveyor landing sites. At different points along the traverses of the Apollo 14 mission, lesser cohesion, coarser grain size, and greater resistance to penetration was found than at the Apollo 11 and Apollo 12 sites. These variations are indicative of a very complex, heterogeneous deposit. The soils are more poorly sorted, but the range of grain size is similar to those of the Apollo 11 and Apollo 12 soils. 9) No evidence of biological material has been found in the samples to date.
Petrology of the Crystalline Rocks Hosting the Santa Fe Impact Structure
NASA Technical Reports Server (NTRS)
Schrader, C. M.; Cohen, B. A.
2010-01-01
We collected samples from within the area of shatter cone occurrence and for approximately 8 kilometers (map distance) along the roadway. Our primary goal is to date the impact. Our secondary goal is to use the petrology and Ar systematics to provide further insight into size and scale of the impact. Our approach is to: Conduct a detailed petrology study to identify lithologies that share petrologic characteristics and tectonic histories but with differing degrees of shock. Obtain micro-cores of K-bearing minerals from multiple samples for Ar-40/Ar-39 analysis. Examine the Ar diffusion patterns for multiple minerals in multiple shocked and control samples. This will help us to better understand outcrop and regional scale relationships among rocks and their responses to the impact event.
NASA Astrophysics Data System (ADS)
Owona, Sébastien; Tichomirowa, Marion; Ratschbacher, Lothar; Ondoa, Joseph Mvondo; Youmen, Dieudonné; Pfänder, Jörg; Tchoua, Félix M.; Affaton, Pascal; Ekodeck, Georges Emmanuel
2012-10-01
Three meta-igneous bodies from the Yaounde Group have been analyzed for their petrography, geochemistry, and 207Pb/206Pb zircon ages. According to their geochemical patterns, they represent meta-diorites. The meta-plutonites yielded identical zircon ages with a mean of 624 ± 2 Ma interpreted as their intrusion age. This age is in agreement with previously published zircon ages of meta-diorites from the Yaounde Group. The meta-diorites derived mainly from crustal rocks with minor contribution from mantle material. The 87Rb/86Sr isochron ages of one meta-diorite sample and three meta-sedimentary host rocks are significantly younger than the obtained intrusion age. Therefore, they are not related to igneous processes. 87Rb/86Sr isochron ages differ from sample to sample (599 ± 3, 572 ± 4, 554 ± 5, 540 ± 5 Ma) yielding the oldest Neoproterozoic age (~600 Ma) for a paragneiss sample at a more northern location. The youngest Rb/Sr isochron age (~540 Ma) was obtained for a mica schist sample at a more southern location closer to the border of the Congo Craton. The 87Rb/86Sr whole rock-biotite ages are interpreted as cooling ages related to transpressional processes during exhumation. Therefore, several discrete metamorphic events related to the exhumation of the Yaounde Group were dated. It could be shown by Rb/Sr dating for the first time that these late tectonic processes occurred earlier at more distant northern locations of the Yaounde Group and lasted at least until early Cambrian (~540 Ma) more closely to the border of the Congo Craton.
Apollo rocks, fines and soil cores
NASA Astrophysics Data System (ADS)
Allton, J.; Bevill, T.
Apollo rocks and soils not only established basic lunar properties and ground truth for global remote sensing, they also provided important lessons for planetary protection (Adv. Space Res ., 1998, v. 22, no. 3 pp. 373-382). The six Apollo missions returned 2196 samples weighing 381.7 kg, comprised of rocks, fines, soil cores and 2 gas samples. By examining which samples were allocated for scientific investigations, information was obtained on usefulness of sampling strategy, sampling devices and containers, sample types and diversity, and on size of sample needed by various disciplines. Diversity was increased by using rakes to gather small rocks on the Moon and by removing fragments >1 mm from soils by sieving in the laboratory. Breccias and soil cores are diverse internally. Per unit weight these samples were more often allocated for research. Apollo investigators became adept at wringing information from very small sample sizes. By pushing the analytical limits, the main concern was adequate size for representative sampling. Typical allocations for trace element analyses were 750 mg for rocks, 300 mg for fines and 70 mg for core subsamples. Age-dating and isotope systematics allocations were typically 1 g for rocks and fines, but only 10% of that amount for core depth subsamples. Historically, allocations for organics and microbiology were 4 g (10% for cores). Modern allocations for biomarker detection are 100mg. Other disciplines supported have been cosmogenic nuclides, rock and soil petrology, sedimentary volatiles, reflectance, magnetics, and biohazard studies . Highly applicable to future sample return missions was the Apollo experience with organic contamination, estimated to be from 1 to 5 ng/g sample for Apollo 11 (Simonheit &Flory, 1970; Apollo 11, 12 &13 Organic contamination Monitoring History, U.C. Berkeley; Burlingame et al., 1970, Apollo 11 LSC , pp. 1779-1792). Eleven sources of contaminants, of which 7 are applicable to robotic missions, were identified and reduced; thus, improving Apollo 12 samples to 0.1 ng/g. Apollo sample documentation preserves the parentage, orientation, and location, packaging, handling and environmental histories of each of the 90,000 subsamples currently curated. Active research on Apollo samples continues today, and because 80% by weight of the Apollo collection remains pristine, researchers have a reservoir of material to support studies well into the future.
NASA Astrophysics Data System (ADS)
Michael, Greg; Basilevsky, Alexander; Neukum, Gerhard
2018-03-01
This work revisits the hypothesis of the so-called 'lunar terminal cataclysm' suggested by Tera et al. (1973, 1974) as a strong peak in the meteorite bombardment of the Moon around 3.9 Ga ago. According to the hypothesis, most of the impact craters observed on the lunar highlands formed during this short time period and thus formed the majority of the lunar highland impact breccias and melts. The hypothesis arose from the observation that the ages of highland samples from all the lunar missions are mostly grouped around 3.9-4.0 Ga. Since those missions, however, radiometric dating techniques have progressed and many samples, both old and new, have been re-analyzed. Nevertheless, the debate over whether there was a terminal cataclysm persists. To progress in this problem we summarized results of 269 K-Ar datings (mostly made using the 40Ar-39Ar technique) of highland rocks represented by the Apollo 14, 15, 16, 17 and Luna 20 samples and 94 datings of clasts of the highland rocks from 23 lunar meteorites representing 21 localities on the lunar surface, and considered them jointly with the results of our modelling of the cumulative effect of the impact gardening process on the presence of impact melt of different ages at the near-surface of the Moon. The considered results of K-Ar dating of the Apollo-Luna samples of lunar highland rocks confirmed a presence of strong peak centered at 3.87 Ga. But since the time when the hypothesis of terminal cataclysm was suggested, it has become clear that this peak could be a result of sampling bias: it is the only prominent feature at the sites with an apparent domination of Imbrium basin ejecta (Apollo 14 and 15) and the age pattern is more complicated for the sites influenced not only by Imbrium ejecta but also that of other basins (Nectaris at the Apollo 16 site and Serenitatis at the Apollo 17 site). Our modelling shows that the cataclysm, if it occurred, should produce a strong peak in the measured age values but we see in the considered histograms and relative probability plots not only the 3.87 Ga peak (due to Imbrium basin), but also several secondary peaks caused by the formation of other basins distributed between 3.87 and 4.25 Ga. The lunar terminal cataclysm hypothesis is in disagreement with the distribution of K-Ar ages for the highland rocks of the lunar meteorites. The population of lunar meteorites representing localities randomly distributed over the lunar surface, and thus free from the mentioned sampling bias, shows no ∼3.9 Ga peak as it should, if the cataclysm did occur. We conclude that the statistics of sample ages contradict the terminal cataclysm scenario in the bombardment of the Moon. We also see evidence for the formation of several impact basins between 3.87 and 4.25 Ga which is likewise incompatible with the hypothesis of a short interval cataclysm. There remain other basins, including the largest South Pole - Aitken, the ages of which should be determined in future studies to further clarify the impact history. Sample-return missions targeted to date several key basins need to be planned, and the continued study of lunar meteorites may also bring new details to the general view of the impact bombardment of the Moon.
NASA Astrophysics Data System (ADS)
Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.
2012-12-01
A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U-Pb dating of zircon from both host rock and ore samples confirms a previously documented event around 1880 - 1900 Ma in the Norrbotten region. However, U-Pb in monazite from an ore sample suggests a further event at ca. 1650 Ma, a period of known activity in Fennoscandia. Further investigation and more U-Pb data are needed to confirm those dates and how the iron mineralization is related to those two events. The combination of U-Th-Pb ages, tracer isotopes and trace element abundances at mineral scale (e.g., Lu-Hf in zircon, and Sm-Nd in monazite, apatite, titanite), along with the O isotopic composition of zircon, will be used to decipher whether the Kiruna iron ore deposits are of metasomatic or igneous origin. Overall, the study also intends to develop a predictive model for exploration of similar iron oxide apatite deposits worldwide.
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Coker, R. F.
2009-01-01
The South Pole-Aitken (SPA) basin is an important target for absolute age-dating. Vertical and lateral impact mixing ensures that regolith within SPA will contain rock fragments from SPA itself, local impact craters, and faraway giant basins. About 20% of the regolith at any given site is foreign [1, 2], but much of this material will be cold ejecta, not impact melt. We calculated the fraction of contributed impact melt using scaling laws to estimate the amount and provenance of impact melt, demonstrating that SPA melt is the dominant impact melt rock (>70%) likely to be present. We also constructed a statistical model to illustrate how many randomly-selected impact-melt fragments would need to be dated, and with what accuracy, to confidently reproduce the impact history of a site. A detailed impact history becomes recognizable after a few hundred to a thousand randomly-selected marbles, however, it will be useful to have more information (e.g. compositional, mineralogical, remote sensing) to group fragments. These exercises show that SPA melt has a high probability of being present in a scoop sample and that dating of a few hundred to a thousand impact-melt fragments will yield the impact history of the SPA basin.
7. Photographic copy of the original construction drawing, dated June ...
7. Photographic copy of the original construction drawing, dated June 1934, from the linens in possession of U.S. Army Engineers, Rock Island District, Clock Tower Building, Arsenal Island, Rock Island, Illinois. MISSISSIPPI RIVER, LOCK AND DAM NO. 15, LOCK OPERATOR'S SHELTER HOUSE, ELEVATIONS AND PLANS - Locks & Dam No. 15, Locks Operator's Shelter House, Arsenal Island, Upper Mississippi River, Rock Island, Rock Island County, IL
8. Photographic copy of the original construction drawing dated June ...
8. Photographic copy of the original construction drawing dated June 1934, from the linens in possession of U.S. Army Engineers, Rock Island District, Clock Tower Building, Arsenal Island, Rock Island, Illinois. MISSISSIPPI RIVER, LOCK AND DAM NO. 15, LOCK OPERATOR'S SHELTER HOUSE, SECTIONS AND DETAILS - Locks & Dam No. 15, Locks Operator's Shelter House, Arsenal Island, Upper Mississippi River, Rock Island, Rock Island County, IL
A Mars Sample Return Sample Handling System
NASA Technical Reports Server (NTRS)
Wilson, David; Stroker, Carol
2013-01-01
We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P.; Hecht, Michael H.; Hurowitz, Joel A.
2012-01-01
A miniaturized instrument for performing chemical and isotopic analysis of rocks has been developed. The rock sample is ablated by a laser and the neutral species produced are analyzed using the JPL-invented miniature mass spectrometer. The direct sampling of neutral ablated material and the simultaneous measurement of all the elemental and isotopic species are the novelties of this method. In this laser ablation-miniature mass spectrometer (LA-MMS) method, the ablated neutral atoms are led into the electron impact ionization source of the MMS, where they are ionized by a 70-eV electron beam. This results in a secondary ion pulse typically 10-100 microsecond wide, compared to the original 5-10-nanosecond laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer and measured in parallel by a modified CCD (charge-coupled device) array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LAMMS offers a more quantitative assessment of elemental composition than techniques that detect laser-ionized species produced directly in the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the laser beam, and the ionization energies of the elements. The measurement of high-precision isotopic ratios and elemental composition of different rock minerals by LAMMS method has been demonstrated. The LA-MMS can be applied for the absolute age determination of rocks. There is no such instrument available presently in a miniaturized version that can be used for NASA space missions. Work is in progress in the laboratory for geochronology of rocks using LA-MMS that is based on K-Ar radiogenic dating technique.
NASA Astrophysics Data System (ADS)
Smithies, R. H.; Nelson, D. R.; Pike, G.
2001-06-01
SHRIMP U-Pb zircon dates are combined with an examination of the age distribution patterns and provenance of both detrital zircons and of zircon xenocrysts in granites to investigate the development of the Archaean Mallina Basin, in the granite-greenstone terrain of the Pilbara Craton, northwestern Australia. The oldest dated components of the basin are c. 3010 Ma volcaniclastic rocks in the western part of the area. New data indicate that siliciclastic turbidites that dominate the southern and eastern part of the basin were deposited at or after c. 2970 Ma but before c. 2955 Ma. Linking both the detrital zircon populations as well as zircon xenocrysts from granites that intruded the Mallina Basin to well-dated areas of the Pilbara granite-greenstone terrane indicates that the sediment was derived from the south, north, northwest, and east. The basin probably evolved primarily in an intracontinental setting between two elevated land masses to the southeast and northwest. Most of the rocks within the basin were folded before intrusion of granites, the oldest of which has been dated at 2954±4 Ma. Evidence of a second depositional cycle is provided by a maximum depositional age of 2941±9 Ma, indicated by a detrital zircon population from a sample of wacke from the southeast part of the Mallina Basin. This second depositional phase may have been related to renewed extension, and recycling of sedimentary rocks within the basin.
High precision ages from the Torres del Paine Intrusion, Chile
NASA Astrophysics Data System (ADS)
Michel, J.; Baumgartner, L.; Cosca, M.; Ovtcharova, M.; Putlitz, B.; Schaltegger, U.
2006-12-01
The upper crustal bimodal Torres del Paine Intrusion, southern Chile, consists of the lower Paine-Mafic- Complex and the upper Paine-Granite. Geochronologically this bimodal complex is not well studied except for a few existing data from Halpern (1973) and Sanchez (2006). The aim of this study is to supplement the existing data and to constrain the age relations between the major magmatic pulses by applying high precision U-Pb dating on accessory zircons and 40Ar/39Ar-laser-step-heating-ages on biotites from the Torres del Paine Intrusion. The magmatic rocks from mafic complex are fine to medium-grained and vary in composition from quartz- monzonites to granodiorites and gabbros. Coarse-grained olivine gabbros have intruded these rocks in the west. The granitic body is represented by a peraluminous, biotite-orthoclase-granite and a more evolved leucocratic granite in the outer parts towards the host-rock. Field observations suggest a feeder-zone for the granite in the west and that the granite postdates the mafic complex. Two granite samples of the outermost margins in the Northeast and South were analyzed. The zircons were dated by precise isotope-dilution U-Pb techniques of chemically abraded single grains. The data are concordant within the analytical error and define weighted mean 206/238U ages of 12.59 ± 0.03 Ma and 12.58 ± 0.01 Ma for the two samples respectively. A 40Ar/39Ar-age for the second sample yield a date of 12.37 ± 0.11 Ma. Three 40Ar/39Ar -ages of biotites were obtained for rocks belonging to the mafic complex. A hbl-bio- granodiorite from the central part, approximately 150 m below the subhorizontal contact with the granite, gives an age of 12.81 ± 0.11 Ma. A hbl-bio-granodiorite and an olivine-gabbro west of the feeder-zone date at 12.42 ± 0.14 Ma and 12.49 ± 0.11 Ma, respectively. The obtained older age of 12.81 Ma for the granodiorite in the central part is consistent with structural relationships of brittle fracturing of the mafic complex by the granite and we conclude that some parts of the mafic complex were emplaced before the granite. The well defined 206/238U-age for zircons and the slightly younger 40Ar/39Ar -ages for biotites of both rock suites show that emplacement and cooling of the Torres del Paine Intrusion took place in a relatively short time-frame. Halpern, 1973, Geological Society of America Bulletin, 84/7: 2407-2422. Sanchez et.al., 2006. V SSAGI, Punta del Este, April 2006.
In-Situ Operations and Planning for the Mars Science Laboratory Robotic Arm: The First 200 Sols
NASA Technical Reports Server (NTRS)
Robinson, M.; Collins, C.; Leger, P.; Carsten, J.; Tompkins, V.; Hartman, F.; Yen, J.
2013-01-01
The Robotic Arm (RA) has operated for more than 200 Martian solar days (or sols) since the Mars Science Laboratory rover touched down in Gale Crater on August 5, 2012. During the first seven months on Mars the robotic arm has performed multiple contact science sols including the positioning of the Alpha Particle X-Ray Spectrometer (APXS) and/or Mars Hand Lens Imager (MAHLI) with respect to rocks or loose regolith targets. The RA has supported sample acquisition using both the scoop and drill, sample processing with CHIMRA (Collection and Handling for In- Situ Martian Rock Analysis), and delivery of sample portions to the observation tray, and the SAM (Sample Analysis at Mars) and CHEMIN (Chemistry and Mineralogy) science instruments. This paper describes the planning and execution of robotic arm activities during surface operations, and reviews robotic arm performance results from Mars to date.
Long-distance Dating: In situ geochronology for planetary missions
NASA Astrophysics Data System (ADS)
Cho, Y.; Cohen, B. A.
2016-12-01
Isotopic dating is an essential tool to establish an absolute chronology for geological events. It enables a planet's crystallization history, magmatic evolution, and alteration to be placed into the framework of solar system history. The capability for in situ geochronology will open up the ability for this crucial measurement to be accomplished as part of lander or rover complement. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The capability of flight instruments to conduct in situ geochronology is called out in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap as needing development to serve the community's needs. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ K-Ar isotopic dating [1], but it failed to communicate and was lost. The first in situ K-Ar date on Mars, using SAM and APXS measurements on the Cumberland mudstone [2], yielded an age of 4.21 ± 0.35 Ga and validated the idea of K-Ar dating on other planets, though the Curiosity method is not purpose-built for dating and requires many assumptions that degrade its precision. To get more precise and meaningful ages, multiple groups are developing dedicated in situ dating instruments [3-7], including the K-Ar Laser Experiment (KArLE) [5]. KArLE ablates a rock sample, measures K using laser-induced breakdown spectroscopy (LIBS), measures liberated Ar using mass spectrometry (MS), and relates the two by measuring the volume of the ablated pit with optical imaging. The KArLE breadboard tested planetary analog samples yielding ages with 25% uncertainty on very young samples (<50Ma) and 10% uncertainties on older samples. [1] Talboys, et al. (2009) Planetary and Space Science 57, 1237-1245, doi:10.1016/j.pss.2009.02.012. [2] Farley, et al. (2014) Science 343, doi:10.1126/science.1247166. [3] Anderson, et al. (2015) Rapid Comm. Mass Spec. 29, 191-204, doi:10.1002/rcm.7095. [4] Solé (2014) Chem. Geo. doi: 10.1016/j.chemgeo.2014.08.027. [5] Cohen, et al. (2014) Geostand. Geoanaly. Res. 38, 421-439, doi:10.1111/j.1751-908X.2014.00319.x. [6] Farley, et al. (2013) Geochim. Cosmochim. Acta 110, 1-12, doi:10.1016/j.gca.2013.02.010. [7] Cho, et al. (2016) Planet. Space Sci. 128, 14-29.
Advancements in cosmogenic 38Ar exposure dating of terrestrial rocks
NASA Astrophysics Data System (ADS)
Oostingh, K. F.; Jourdan, F.; Danišík, M.; Evans, N. J.
2017-11-01
Cosmogenic exposure dating of Ca-rich minerals using 38Ar on terrestrial rocks could be a valuable new dating tool to determine timescales of geological surface processes on Earth. Here, we show that advancement in analytical precision, using the new generation multi-collector ARGUSVI mass spectrometer on irradiated pyroxene and apatite samples, allows determination of cosmogenic 38Ar abundances above background values, as well as discrimination of 38Ar/36Ar ratios (1σ absolute precision of ±0.3%) from the non-cosmogenic background value. Four statistically significant cosmochron (38Ar/36Ar vs37Ar/36Ar) diagrams could be constructed for southeast Australian pyroxene samples from the Mt Elephant scoria cone for which a combined apparent exposure age of 313 ± 179 ka (2σ) was obtained when using a 38Ar production rate (Ca) of 250 atoms /g Ca/ yr. This exposure age overlaps within error with the known 40Ar/39Ar eruption age of 184 ± 15 ka (2σ). Although apatite shows much larger 38Ar abundances than pyroxene, our modelling and analyses of unirradiated apatite suggest that apatite suffers from both natural and reactor-derived chlorogenic as well as natural nucleogenic contributions of 38Ar. Hence, we suggest that cosmogenic 38Ar exposure dating on irradiated Ca-rich (and eventually K-rich), but Cl-free, terrestrial minerals is a potential valuable and accessible tool to determine geological surface processes on timescales of a few Ma. Calculations show that with the new generation multi-collector mass spectrometers an analytical uncertainty better than 5% (2σ) can be achieved on samples with expected exposure ages of >4 Ma.
Dating previously balanced rocks in seismically active parts of California and Nevada
Bell, J.W.; Brune, J.N.; Liu, T.; Zreda, M.; Yount, J.C.
1998-01-01
Precariously balanced boulders that could be knocked down by strong earthquake ground motion are found in some seismically active areas of southern California and Nevada. In this study we used two independent surface-exposure dating techniques - rock-varnish microlamination and cosmogenic 36Cl dating methodologies - to estimate minimum- and maximum-limiting ages, respectively, of the precarious boulders and by inference the elapsed time since the sites were shaken down. The results of the exposure dating indicate that all of the precarious rocks are >10.5 ka and that some may be significantly older. At Victorville and Jacumba, California, these results show that the precarious rocks have not been knocked down for at least 10.5 k.y., a conclusion in apparent conflict with some commonly used probabilistic seismic hazard maps. At Yucca Mountain, Nevada, the ages of the precarious rocks are >10.5 to >27.0 ka, providing an independent measure of the minimum time elapsed since faulting occurred on the Solitario Canyon fault.
NASA Astrophysics Data System (ADS)
Walther, D. A.; Whiles, M. R.
2005-05-01
Rock weirs were constructed in a degraded section of the Cache River in southern Illinois in 2001 and 2003 to prevent channel incision and protect riparian wetlands. We sampled macroinvertebrates in two older weirs and in two sites downstream of the restored section in April 2003, October 2003, and April 2004 to evaluate differences in community structure between weir, snag, and streambed (scoured clay) habitats. Three recently constructed weirs were also sampled in April 2004. Functional composition differed among sample dates and habitats. Although collector-gatherers consistently dominated streambed habitats, functional composition on weirs and snags was more variable. Filterer and predator biomass was generally higher on weirs, and snags harbored the only shredders collected in the system (Pycnopsyche spp.). Weirs generally supported higher biomass of Ephemeroptera, Plecoptera, and Trichoptera than other habitats. For example, mean EPT biomass on weirs in 2003 (April=187 mgAFDM/m2; October=899 mgAFDM/m2) was 4 to 10-fold higher than EPT biomass in snag or streambed habitats. Late instar Pycnopsyche contributed 41% of snag biomass in April 2004, resulting in EPT biomass similar to rock weirs. Results indicate rock weirs provide suitable stable substrate for macroinvertebrates and may enhance populations of sensitive EPT taxa in degraded systems.
Isotopic ages of rocks in the northern Front Range, Colorado
Wilson, Anna B.; Bryant, Bruce
2006-01-01
These maps, and the tables that accompany them, are a compilation of isotopic age determinations of rocks and minerals in four 1:100,000 quadrangles in the northern and central Front Range, Colorado. Phanerozoic (primarily Tertiary and Cretaceous) age data are shown on one map; Proterozoic data are on the other. A sample location map is included for ease of matching specific localities and data in the tables to the maps. Several records in the tables were not included in the maps because either there were ambiguous dates or lack of location precluded accurate plotting.
NASA Technical Reports Server (NTRS)
Black, S.; Macdonald, R.; Kelly, M.
1993-01-01
U-series disequilibrium analyses have been conducted on samples from Olkaria rhyolite centers with ages being available for all but one center using both internal and whole rock isochrons. 67 percent of the rhyolites analyzed show U-Th disequilibrium, ranging from 27 percent excess thorium to 36 percent excess uranium. Internal and whole rock isochrons give crystallization/formation ages between 65 ka and 9 ka, in every case these are substantially older than the eruptive dates. The residence times of the rhyolites (U-Th age minus the eruption date) have decreased almost linearly with time, from 45 ka to 7 Ka suggesting a possible increase of activity within the system related to increased basaltic input. The long residence times are mirrored by large Rn-222 fluxes from the centers which cannot be explained by larger U contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arney, B.; Goff, F.; Eddy, A.C.
1985-04-01
As part of a reconnaissance mapping project, 40 chemical analyses and 13 potassium-argon age dates were obtained for Tertiary volcanic and Precambrian granitic rocks between Kingman and Bill Williams Mountain, Arizona. The dated volcanic rocks range in age from 5.5 +- 0.2 Myr for basalt in the East Juniper Mountains to about 25 Myr for a biotite-pyroxene andesite. The date for Picacho Butte, a rhyodacite in the Mt. Floyd volcanic field, was 9.8 +- 0.07 Myr, making it the oldest rhyodacite dome in that volcanic field. Dated rocks in the Fort Rock area range from 20.7 to 24.3 Myr. Nomore » ages were obtained on the Precambrian rocks. Compositionally, the volcanic rocks analyzed range from alkali basalt to rhyolite, but many rocks on the western side of the map area are unusually potassic. The granites chosen for analysis include syenogranite from the Hualapai Mountains, a muscovite granite from the Picacho Butte area, and two other granites. The chemical and K-Ar age data and petrographic descriptions included in this report accompany the reconnaissance geologic strip map published as LA-9202-MAP by Goff, Eddy, and Arney. 9 refs., 4 figs., 2 tabs.« less
Dorais, Michael J.; Wintsch, Robert P.; Kunk, Michael J.; Aleinikoff, John; Burton, William; Underdown, Christine; Kerwin, Charles M.
2012-01-01
We present new evidence for the assignment of the Neoproterozoic Massabesic Gneiss Complex of New Hampshire to the Gander terrane rather than the Avalon terrane. The majority of Avalonian (sensu stricto) igneous and meta-igneous rocks as defined in Maritime Canada have positive whole-rock ɛNd compared to more negative values for Gander rocks, although there is a region of overlap in ɛNd between the two terranes. Our samples from areas in Connecticut previously thought to be Avalonian and samples from the Willimantic dome have the same isotopic signatures as Maritime Canada Avalon. In contrast, samples from the Clinton dome of southern Connecticut plots exclusively in the Gander field. The majority of the orthogneiss samples from Lyme dome (coastal Connecticut), Pelham dome (central Massachusetts) and Massabesic Gneiss Complex also plot in the Gander field, with a few samples plotting in the overlap zone between Gander and Avalon. U-Pb age distributions of detrital zircon populations from quartzites from the Massabesic Gneiss Complex more closely approximate the data from the Lyme Dome rather than Avalon. Additionally, the similarity of the P-T-t path for the rocks of the Massabesic Gneiss Complex (established by thermobarometry and 40Ar/39Ar dating of amphibole, muscovite, biotite and K-feldspar) with that established in the Ganderian Lyme dome of southern Connecticut strengthens the assignment of these rocks to a single Gander block that docked to Laurentia during the Salinic Orogeny. The identification of Ganderian isotopic signatures for these rocks all of which show evidence for Alleghanian metamorphism, supports the hypothesis that Neoproterozoic Gander lower crustal rocks underlie southern New Hampshire, Massachusetts, and Connecticut, and that all rocks of the overlying Central Maine trough that largely escaped high-grade Alleghanian metamorphism are allochthonous. We suggest that during the Alleghanian, the docking of Gondwana caused Avalon to wedge into Gander, metamorphosing and partially melting the Massabesic Gneiss Complex to the observed P-T-t conditions, with the complex forming an uplifted sheet that was back-thrusted over the Avalonian wedge.
An Approximately 4.35 Ga Ar-Ar Age for GRA 8 and the Complex Chronology of its Parent Body
NASA Technical Reports Server (NTRS)
Park, J.; Nyquist, Laurence E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Reese, Y. D.
2010-01-01
GRA06128 and GRA06129 (hereafter GRA 8 and GRA 9) are partial melts of a parent body of approximately chondritic composition. We reported a conventional Sm-147-Nd-143 isochron age of 4.559+/-0.096 Ga and a 146 Sm-142Nd model age of 4.549+/-0.036 for combined data for the two rocks. Plagioclase plus whole rock and leachate (approx.phosphate) samples gave a secondary Sm-147-Nd-143 age of 3.4+/-0.4 Ga. An Ar-39-Ar-40 age of 4.460+/-0.028 Ga was interpreted as dating metamorphism in GRA 9. We report Ar-39-Ar-40 ages in the range approx.4344-4366 Ma for GRA 8, establishing similar but different Ar-39-Ar-40 ages for the two rocks, consistent with their different Sr-isotopic systematics, and discuss these ages in the context of the complex sequence of events that affected these samples.
An Approximately 4.35 Ga Ar-Ar Age for GRA 8 and the Complex Chronology of its Parent Body
NASA Technical Reports Server (NTRS)
Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Reese, Y. D.
2010-01-01
GRA06128 and GRA06129 (hereafter GRA 8 and GRA 9) are partial melts of a parent body of approximately chondritic composition. We reported a conventional SM-147Sm-ND_143 isochron age of 4.559 +/-.096 Ga and a SM-146-142Nd model age of 4.549 +/- 0.036 for combined data for the two rocks. Plagioclase plus whole rock and leachate (approximately phosphate) samples gave a secondary SM-147-ND-143 age of 3.4 +/-0.4 Ga. An Ar-39-Ar-40 age of 4.460+/-0.028 Ga was interpreted by as dating metamorphism in GRA 9. We report Ar-39-Ar-40 ages in the range approximately 4344-4366 Ma for GRA 8, establishing similar but different Ar-39-Ar-40 ages for the two rocks, consistent with their different Sr-istopic systematics, and discuss these ages in the context of the complex sequence of events that affected these samples
36Chlorine exposure dating of a terminal moraine in the Galicica Mountains, Macedonia
NASA Astrophysics Data System (ADS)
Gromig, R.; Mechernich, S.; Ribolini, A.; Dunai, T. J.; Wagner, B.
2015-12-01
The glaciation history of the Balkan Peninsula is subject of research since the late 19th century. To date, only a few moraines on the Balkan Peninsula are dated, mainly using 10Be exposure dating applied on quartz bearing rocks. Since large parts of the Balkan Peninsula mountains are composed of carbonatic rocks, absolute age dating is restricted to 36Cl exposure dating, which, to date, was not conducted in this region yet. So far, an absolute chronological control in limestone-dominated areas is limited to U-series minimum ages of calcitic cements. In order to obtain more information about the timing of the glaciation history on the Balkan Peninsula, we investigated a terminal moraine in a NNE-facing cirque in the Galicica Mountains (40°56´N, 20°49´E) in the Former Yugoslav Republic of Macedonia. The cirque comprises a series of nested moraine ridges at the base of the cirque wall, with the largest one being sampled. Samples from five limestone boulders in crest position (≈ 2050 m a.s.l.) were taken and pre-treated for AMS measurement at the University of Cologne. Three preliminary ages point to a moraine formation in the course of a late Pleistocene glaciation, either Last Glacial Maximum or Younger Dryas. The data were discussed concerning corrections for topographic shielding, snow cover, inheritance, and erosion. However, five AMS re-measurements are currently in progress in order to refine the correlation of the moraine formation to a specific glacial period. The resulting ages will be compared to sediments of the adjacent Lakes Ohrid and Prespa, which represent valuable climatic and environmental archives. Several studies on these sediments were carried out in order to reconstruct relative changes in temperature and moisture availability. Moreover, the inferred moraine formation ages will be compared to glaciation reconstructions of other mountainous regions on the Balkan Peninsula to improve the knowledge on past climatic conditions.
40Ar/39Ar mica ages from marble mylonites: a cautionary tale
NASA Astrophysics Data System (ADS)
Rogowitz, Anna; Huet, Benjamin; Schneider, David; Grasemann, Bernhard
2014-05-01
40Ar/39Ar geochronology on white mica is a popular method to date deformation under moderate (brittle-ductile) temperatures. In particular, deformation events preserved in greenschist facies shear zones have been successfully dated with this method. A consequence of strain localization in many tectonic settings that bear calcitic marbles is the formation of marble mylonites and ultramylonites. Little is known, however, about the behaviour of the K/Ar systems and the influence of deformation on the ages in such rocks. We studied an extremely localized shear zone (2 cm thick) in marble from Syros (Cyclades, Greece) and performed microstructural, chemical and isotopic analysis on samples from the host rock and the shear zone. The host rock is composed of coarse-grained (300 µm) calcite with only minor undulatory extinction and slightly curved grain boundaries. This initial large grain size is likely to have formed during the Eocene high-pressure - low-temperature event that is well documented in the Cyclades. In contrast, the marble within the shear zone shows evidence of strong intracrystalline deformation and recrystallization resulting in grain size reduction and the formation of an ultramylonite. Both microstructures and kinematics are consistent with the low grade evolution described on Syros. White mica (100's microns in size) are preferentially orientated parallel to the foliation. In both samples there is no clear evidence for crystal plastic deformation of the mica grains. Bigger grains behave brittle resulting in grain size reduction. A deformation mechanism map for calcite at 300 °C indicates that the host rock deformed at strain rates of around 10-12.5 s-1 whereas within the shear zone strain rates of up to 10-9.5 s-1 are attained. We performed laser-heating 40Ar/39Ar analysis on white mica located in the host rock and the shear zone. The low-strain host rock yielded a ca. 40 Ma age, and the shear zone recorded a ca. 37 Ma age; both ages are statistically indistinguishable when errors are considered. These dates correspond to the regional Eocene high-pressure - low-temperature event and not the later low grade deformation event that is responsible for the formation of the studied shear zone. Although the marble within the shear zone was deformed at extremely fast strain rates, we observe no resetting in the isotopic system. Moreover, mineral chemistry demonstrates that (1) white mica is homogeneous and (2) there is no compositional difference between the host rock and the shear zone. This is in agreement with thermodynamical modelling, which indicates that the observed assemblage (calcite + dolomite + quartz + white mica) is stable without any composition change along the pressure-temperature path followed by the metamorphic rocks of Syros. Our case study emphasizes it is not the amount of strain the rock suffered but the degree of mica recrystallization that is important for resetting of the K/Ar system at low temperatures.
Results and Implications of Mineralogical Models for Chemical Sediments at Meridiani Planum
NASA Technical Reports Server (NTRS)
Clark, B. C.; McLennan, S. M.; Morris, R. V.; Gellert, R.; Jolliff, B.; Knoll, A.; Lowenstein, T. K.; Ming, D. W.; Tosca, N. J.; Christensen, P. R.
2005-01-01
The Mars Exploration Rover (MER) "Opportunity" has explored chemically-enriched sedimentary outcrops at Meridiani Planum, Mars. In its first year, three different crater sites - Eagle, Fram and Endurance - have been explored. Nineteen high-interest outcrop rocks were investigated by first grinding a hole to reach the interior (using the Rock Abrasion Tool, RAT), and then conducting APXS (alpha particle x-ray spectrometry) analysis, MB (M ssbauer) analysis, and close up imaging (MI, microscopic imager). Sixteen elements and four Fe-bearing minerals were assayed to good accuracy in each sample, producing 380 compositional data points. The Miniature Thermal Emission Spectrometer (Mini- TES) obtained spectra on outcrop materials which provide direct indication of several mineral classes. Preliminary reports on Eagle crater and three RAT samples have been published. Chemical trends and a derived mineralogical model for all RAT d outcrop samples to date has been developed.
Curiosity First 14 Rock or Soil Sampling Sites on Mars
2016-06-13
This graphic maps locations of the first 14 sites where NASA's Curiosity Mars rover collected rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 12 rock-powder samples were acquired. At the other two sites -- Rocknest and Gobabeb -- Curiosity scooped soil samples. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. The latest sample site included is "Oudam," where Curiosity drilled into mudstone of the "Murray formation" on June 4, during the 1,361th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). Dates when the first 11 drilled-rock samples were collected are: "John Klein" on Feb. 8, 2013 (Sol 182); "Cumberland" on May 19, 2013 (Sol 279); "Windjana" on May 5, 2014 (Sol 621); "Confidence Hills" on Sept. 24, 2014 (Sol 759); "Mojave" on Jan. 29, 2015 (Sol 882); "Telegraph Peak" on Feb. 24, 2015 (Sol 908); "Buckskin" on July 30, 2015 (Sol 1060); "Big Sky" on Sept. 29, 2015 (Sol 1119); "Greenhorn" on Oct. 18, 2015 (Sol 1137); "Lubango" on April 23, 2016 (Sol 1320); and "Okoruso" on May 5, 2016 (Sol 1332). http://photojournal.jpl.nasa.gov/catalog/PIA20748
NASA Astrophysics Data System (ADS)
Şener, M. Furkan; Şener, Mehmet; Uysal, I. Tonguç
2017-12-01
Cappadocia Geothermal Province (CGP), central Turkey, consists of nine individual geothermal regions controlled by active regional fault systems. This paper examines the age dating of alteration minerals and the geochemistry (trace elements and isotopes) of the alteration minerals and geothermal waters, to assess the evolution of CGP in relation to regional tectonics. Ar-Ar age data of jarosite and alunite show that the host rocks were exposed to oxidizing conditions near the Earth's surface at about 5.30 Ma. Based on the δ18O-δD relationhip, water samples had a high altitude meteoric origin. The δ34S values of jarosite and alunite indicate that water samples from the southern part of the study area reached the surface after circulation through volcanic rocks, while northern samples had traveled to the surface after interacting with evaporates at greater depths. REY (rare earth elements and yttrium) diagrams of alteration minerals (especially illite, jarosite and alunite) from rock samples, taken from the same locations as the water samples, display a similar REY pattern to water samples. This suggests that thermal fluids, which reached the surface along a fault zone and caused the mineral alteration in the past, had similar chemical composition to the current geothermal water. The geothermal conceptual model, which defines a volcanically heated reservoir and cap rocks, suggests there are no structural drawbacks to the use of the CGP geothermal system as a resource. However, fluid is insufficient to drive the geothermal system as a result of scanty supply of meteoric water due to evaporation significantly exceeding rainfall.
NASA Astrophysics Data System (ADS)
Buchen, Christopher T.
U-Pb dating of detrital zircon grains separated from elastic sedimentary rocks is combined with field, petrographic and geochemical data to reconstruct the geologic history of Mesozoic rocks exposed at the southern end of the Lake Kaweah metamorphic pendant, western Sierra Nevada. Identification of rocks exposed at Limekiln Hill, Kern County, CA, as belonging to the Calaveras complex and Kings sequence was confirmed. Detrital zircon populations from two Calaveras complex samples provide Permo-Triassic maximum depositional ages (MDA) and reveal a Laurentian provenance indicating that continental accretion of the northwest-trending Kings-Kaweah ophiolite belt was in process prior to the Jurassic Period. Rock types including radiolarian metachert, metachert-argillite, and calc-silicate rocks with marble lenses are interpreted as formed in a hemipelagic environment of siliceous radiolarian deposition, punctuated by extended episodes of lime-mud gravity flows mixing with siliceous ooze forming cafe-silicate protoliths and limestone olistoliths forming marble lenses. Two samples of the overlying Kings sequence turbidites yield detrital zircons with an MDA of 181.4 +/-3.0 Ma and an interpreted provenance similar to other Jurassic metasediments found in the Yokohl Valley, Sequoia and Boyden Cave roof pendants. Age peaks indicative of Jurassic erg heritage are also present. In contrast, detrital zircon samples from the Sequoia and Slate Mountain roof pendants bear age-probability distributions interpreted as characteristic of the Snow Lake block, a tectonic sliver offset from the Paleozoic miogeocline.
NASA Astrophysics Data System (ADS)
Peña, Rafael Maciel; Goguitchaichvili, Avto; Guilbaud, Marie-Noëlle; Martínez, Vicente Carlos Ruiz; Rathert, Manuel Calvo; Siebe, Claus; Reyes, Bertha Aguilar; Morales, Juan
2014-04-01
More than 350 oriented paleomagnetic cores were obtained for rock-magnetic and paleomagnetic analysis from radiometrically dated (40Ar-39Ar) magmatic rocks occurring in the southern segment (Jorullo and Tacámbaro areas) of the Michoacán-Guanajuato Volcanic Field in the Trans-Mexican Volcanic Belt. Most of the lavas (37) stem from monogenetic volcanoes dated at less than 4 Ma. Two additional sites were sampled from the plutonic basement dated at 33-30 Ma. Primary remanences carried by low-Ti titanomagnetites allowed to determining 34 reliable site-mean directions of mostly normal (27) but also reversed (7) polarities. The mean directions of these two populations are antipodal, and suggest neither major vertical-axis rotations with respect to the North America craton nor tilting in the region for the last 4 Ma (rotation and flattening of the inclination parameters being less than -5.9 ± 3.8 and 0.1 ± 3.9, respectively). The corresponding paleomagnetic pole obtained for Pliocene-Pleistocene times is PLAT = 83.4°, PLON = 2.4° (N = 32, A95 = 2.7°). Virtual geomagnetic poles also contribute to the time averaged field global database and to the paleosecular variation (PSV) investigations at low latitudes from lavas for the last 5 Ma, showing a geomagnetic dispersion value that is in agreement with available PSV models. When comparing the magnetic polarities and corresponding radiometric ages of the studied sites with the Cenozoic geomagnetic polarity time scale (GPTS), a good correlation is observable. This finding underscores the suitability of data obtained on lavas in Central Mexico for contributing to the GPTS. Furthermore, the detection of short-lived geomagnetic features seems possible, since the possible evidence of Intra-Jaramillo geomagnetic excursion could be documented for the first time in these volcanic rocks.
NASA Astrophysics Data System (ADS)
Dahlquist, Juan A.; Alasino, Pablo H.; Basei, Miguel A. S.; Morales Cámera, Matías M.; Macchioli Grande, Marcos; da Costa Campos Neto, Mario
2018-04-01
We report a study integrating 13 new U-Pb LA-MC-ICP-MS zircon ages and Hf-isotope data from dated magmatic zircons together with complete petrological and whole-rock geochemistry data for the dated granitic rocks. Sample selection was strongly based on knowledge reported in previous investigations. Latest Devonian-Early Carboniferous granite samples were collected along a transect of 900 km, from the inner continental region (present-day Eastern Sierras Pampeanas) to the magmatic arc (now Western Sierras Pampeanas and Frontal Cordillera). Based on these data together with ca. 100 published whole-rock geochemical analyses we conclude that Late Devonian-Early Carboniferous magmatism at this latitude represents continuous activity (ranging from 322 to 379 Ma) on the pre-Andean margin of SW Gondwana, although important whole-rock and isotopic compositional variations occurred through time and space. Combined whole-rock chemistry and isotope data reveal that peraluminous A-type magmatism started in the intracontinental region during the Late Devonian, with subsequent development of synchronous Carboniferous peraluminous and metaluminous A-type magmatism in the retro-arc region and calc-alkaline magmatism in the western paleomargin. We envisage that magmatic evolution was mainly controlled by episodic fluctuations in the angle of subduction of the oceanic plate (between flat-slab and normal subduction), supporting a geodynamic switching model. Subduction fluctuations were relatively fast (ca. 7 Ma) during the Late Devonian and Early Carboniferous, and the complete magmatic switch-off and switch-on process lasted for 57 Ma. Hf T DM values of zircon (igneous and inherited) from some Carboniferous peraluminous A-type granites in the retro-arc suggest that Gondwana continental lithosphere formed during previous orogenies was partly the source of the Devonian-Carboniferous granitic magmas, thus precluding the generation of the parental magmas from exotic terranes.
Samples for estimating primary volatiles in Martian magmas and ancient atmospheric pressures on Mars
NASA Technical Reports Server (NTRS)
Anderson, A. T., Jr.
1988-01-01
Inclusions of glass are likely to be present in phenocrysts in volcanic rocks from Mars, because these occur in volcanic rocks from both Earth and Moon. The usefulness of the inclusions depends upon their size and composition. The compositions of tiny inclusions may be modified by diffusion during growth of the enclosing crystal, the modifications increasing with melt viscosity (silica). Slow cooling results in crystallization and possible redistribution of volatiles, the effects increasing with decreasing silica. Primary volatile concentrations are best sought in inclusions larger than about 50 micrometer diameter in olivine or chromite crystals from quickly cooled basaltic scoria. Such crystals may be present in sands, but it would be preferable to extract them from individual rocks which could be dated and compositionally characterized. This would allow eventual understanding of the role of time and place in outgassing and volcanism on Mars. Analyses of volatiles in inclusions of more siliceous glass in non-basaltic rocks will reveal whether deep outgassing occurs and whether surface volatiles are recycled. Most volcanic crystals contain inclusions, but large inclusions can be uncommon. In the case of terrestrial basalts sample masses of several hundred grams are generally sufficient.
4. Photograph of a photograph in possession of Rock Island ...
4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL
3. Photograph of a photograph in possession of Rock Island ...
3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 103, Rodman Avenue & First Street, Rock Island, Rock Island County, IL
3. Photograph of a photograph in possession of Rock Island ...
3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION IN UNALTERED CONDITION. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 61, Rodman Avenue & First Street, Rock Island, Rock Island County, IL
4. Photograph of a photograph in possession of Rock Island ...
4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION IN UNALTERED CONDITION. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL
11. Photograph of a photograph in possession of Rock Island ...
11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ORIGINAL OPEN INTERIOR PLAN. DATED APRIL 7, 1942. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL
10. Photograph of a photograph in possession of Rock Island ...
10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR, LOOKING WEST. DATED OCTOBER 2, 1945. - Rock Island Arsenal, Building No. 138, Second Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL
7. Photograph of a photograph in possession of Rock Island ...
7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS. DATED MARCH 19, 1945. - Rock Island Arsenal, Building No. 62, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR AFTER REMODELING INTO OFFICE SPACE. DATED FEBRUARY 13, 1943. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS, BEFORE REMOVAL OF CHIMNEY, FINIALS, GINGERBREAD, AND VARIEGATED SLATE ROOFING. DATED C. 1876. - Rock Island Arsenal, Building No. 321, Rodman Avenue & Rock Island Avenue, Rock Island, Rock Island County, IL
Rubidium-strontium geochronology of the Oaxaca and Acatlan metamorphic areas of southern Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz Castellanos, M.
1979-01-01
A Rb-Sr study was carried out on crystalline basement rocks from two small separate areas of southern Mexico: Oaxaca area and the Acatlan area. The Oaxaca area consists mainly of orthogneisses and paragneisses of amphibolite to granulite grade metamorphism as well as granitic intrusives. In the present study the following dates and initial /sup 87/Sr//sup 86/Sr rates (Sr/sub 0/) were obtained from rocks of this area: El Cortijo gneisses 341 +/- 61 my, Sr/sub 0/ 0.7226 +/- 0.0027; Ojo de Agua pegmatite 975 +/- 25 my, assumed Sr/sub 0/ 0.710; El Catrin gneisses 1500 +/- 230 my, Sr/sub 0/ 0.7026more » +/- 0.0005; Suchilquitongo granite 272 +/- 8 my, Sr/sup 0/ 0.7047 +/- 0.0005; Laachila marble 901 +/- 24 my, Sr/sub 0/ 0.7062 +/- 0.0007; Laachila granitic dike 236 +/- 5 my, Sr/sub 0/ 0.8477 +/- 0.0009. The Acatlan area consists typically of greenschist facies metasedimentary rocks with similar structural and metamorphic characteristics through the area. In the present study, muscovite, biotite and whole rock data points from the typical Acatlan schists collected at different locations within the Acatlan Complex define two different linear arrays from which an age of 481 +/- 9 my, and two Sr/sub 0/ intercepts of 0.7075 +/- 0.0008 and 0.7112 +/- 0.0006 (95% confidence level) are obtained. The same date is obtained for 18 samples of the Piaxtla augen schist 480 +/- 84 my. Other dates obtained are: Caltepec granitic rocks 269 +/- 21 my, Sr/sub 0/ 0.7056 +/- 0.0004; Tepejillo intrusive bodies 207 +/- 10 my, Sr/sub 0/ 0.7037 +/- 0.0003 and Tepejillo pegmatite 173 +/- 0.3 my, Sr/sub 0/ 0.7044 +/- 0.0002. The tectonic histories of the Oaxaca and Acatlan areas are substantially different and have been unrelated at least until Late Paleozoic times.« less
Harlan, S.S.; Geissman, J.W.; Snee, L.W.; Reynolds, R.L.
1996-01-01
Paleomagnetic results from Early Proterozoic metabasite sills and Middle Proterozoic diabase dikes from the southern Highland Mountains of southwestern Montana give well-defined, dual-polarity magnetizations that are statistically identical to those from a small Late Cretaceous pluton that cuts the dikes. The concordance of paleomagnetic directions from rocks of three widely separated ages indicates that the Proterozoic rocks were remagnetized, probably during Late Cretaceous time. Paleomagnetic, rock magnetic, and petrographic observations from the metabasite and diabase samples indicate that remanence is carried primarily by low-Ti magnetite. Combining virtual geomagnetic poles from metabasite sills, diabase dikes, and the Late Cretaceous pluton, we obtain a paleomagnetic pole at 85.5??N, 310.7??E (K = 19.9, A95 = 9.1??, N = 14 sites) that is similar to a reference pole from the 74 Ma Adel Mountain Volcanics of western Montana. Biotite and hornblende 40Ar/39Ar isotopic dates from host basement geneiss and a hornblende from a remagnetized metabasite sill yield ages of ca. 1800 Ma; these dates probably record cooling of the southern Highland Mountains following high-grade metamorphism at 1.9-1.8 Ga. The gneiss and metabasite age spectra show virtually no evidence of disturbance, indicating that the basement rocks were never heated to temperatures sufficient to cause even partial resetting of their argon systems. Thus, the overprint magnetization of the Highland Mountains rocks is not a thermoremanent magnetization acquired during conductive cooling of nearby Late Cretaceous plutons. Remagnetization of the metabasite sills and diabase dikes was probably caused by localized thermochemical and thermoviscous effects during circulation of Late Cretaceous hydrothermal fluids related to epithermal mineralization. The absence of significant disturbance to the 40Ar/39Ar age spectrum from the remagnetized metabasite hornblende indicates that some secondary magnetizations may go unrecognized and undated, even if 40Ar/39Ar dating is applied.
NASA Astrophysics Data System (ADS)
Rosenwinkel, Swenja; Korup, Oliver; Landgraf, Angela; Dzhumabaeva, Atyrgul
2015-12-01
Lichenometry is a straightforward and inexpensive method for dating Holocene rock surfaces. The rationale is that the diameter of the largest lichen scales with the age of the originally fresh rock surface that it colonised. The success of the method depends on finding the largest lichen diameters, a suitable lichen-growth model, and a robust calibration curve. Recent critique of the method motivates us to revisit the accuracy and uncertainties of lichenometry. Specifically, we test how well lichenometry is capable of resolving the ages of different lobes of large active rock glaciers in the Kyrgyz Tien Shan. We use a bootstrapped quantile regression to calibrate local growth curves of Xanthoria elegans, Aspicilia tianshanica, and Rhizocarpon geographicum, and report a nonlinear decrease in dating accuracy with increasing lichen diameter. A Bayesian type of an analysis of variance demonstrates that our calibration allows discriminating credibly between rock-glacier lobes of different ages despite the uncertainties tied to sample size and correctly identifying the largest lichen thalli. Our results also show that calibration error grows with lichen size, so that the separability of rock-glacier lobes of different ages decreases, while the tendency to assign coeval ages increases. The abundant young (<200 yr) specimen of fast-growing X. elegans are in contrast with the fewer, slow-growing, but older (200-1500 yr) R. geographicum and A. tianshanica, and record either a regional reactivation of lobes in the past 200 years, or simply a censoring effect of lichen mortality during early phases of colonisation. The high variance of lichen sizes captures the activity of rock-glacier lobes, which is difficult to explain by regional climatic cooling or earthquake triggers alone. Therefore, we caution against inferring palaeoclimatic conditions from the topographic position of rock-glacier lobes. We conclude that lichenometry works better as a tool for establishing a relative, rather than an absolute, chronology of rock-glacier lobes in the northern Tien Shan.
6. Photograph of a photograph in possession of Rock Island ...
6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ORIGINAL OPEN INTERIOR FLOOR PLAN. DATED C. 1898. - Rock Island Arsenal, Building No. 62, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL
6. Photograph of a photograph in possession of Rock Island ...
6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office, SOUTH AND EAST ELEVATIONS BEFORE REMODELING OF PARAPET. DATED MARCH 8, 1945. - Rock Island Arsenal, Building No. 251, Gillespie Avenue & Ramsey Street, Rock Island, Rock Island County, IL
10. Photograph of a photograph in possession of Rock Island ...
10. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND WEST ELEVATIONS IN UNALTERED CONDITION. DATED APRIL 18, 1941. - Rock Island Arsenal, Building No. 56, North Avenue & East Avenue, Rock Island, Rock Island County, IL
3. Photograph of a photograph in possession of Rock Island ...
3. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. LOOKING NORTH; BUILDING IS SHOWN WITH ORIGINAL COPING. DATED C. 1873. - Rock Island Arsenal, Building No. 53, North Avenue North of Midpoint, Rock Island, Rock Island County, IL
ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.
2002-11-18
During the sixth quarter of this research project the research team developed a method and the experimental procedures for acquiring the data needed for ultrasonic tomography of rock core samples under triaxial stress conditions as outlined in Task 10. Traditional triaxial compression experiments, where compressional and shear wave velocities are measured, provide little or no information about the internal spatial distribution of mechanical damage within the sample. The velocities measured between platen-to-platen or sensor-to-sensor reflects an averaging of all the velocities occurring along that particular raypath across the boundaries of the rock. The research team is attempting to develop andmore » refine a laboratory equivalent of seismic tomography for use on rock samples deformed under triaxial stress conditions. Seismic tomography, utilized for example in crosswell tomography, allows an imaging of the velocities within a discrete zone within the rock. Ultrasonic or acoustic tomography is essentially the extension of that field technology applied to rock samples deforming in the laboratory at high pressures. This report outlines the technical steps and procedures for developing this technology for use on weak, soft chalk samples. Laboratory tests indicate that the chalk samples exhibit major changes in compressional and shear wave velocities during compaction. Since chalk is the rock type responsible for the severe subsidence and compaction in the North Sea it was selected for the first efforts at tomographic imaging of soft rocks. Field evidence from the North Sea suggests that compaction, which has resulted in over 30 feet of subsidence to date, is heterogeneously distributed within the reservoir. The research team will attempt to image this very process in chalk samples. The initial tomographic studies (Scott et al., 1994a,b; 1998) were accomplished on well cemented, competent rocks such as Berea sandstone. The extension of the technology to weaker samples is more difficult but potentially much more rewarding. The chalk, since it is a weak material, also attenuates wave propagation more than other rock types. Three different types of sensors were considered (and tested) for the tomographic imaging project: 600 KHz PZT, 1 MHz PZT, and PVDF film sensors. 600 KHz PZT crystals were selected because they generated a sufficiently high amplitude pulse to propagate across the damaged chalk. A number of different configurations were considered for placement of the acoustic arrays. It was decided after preliminary testing that the most optimum arrangement of the acoustic sensors was to place three arrays of sensors, with each array containing twenty sensors, around the sample. There would be two horizontal arrays to tomographically image two circular cross-sectional planes through the rock core sample. A third array would be vertically oriented to provide a vertical cross-sectional view of the sample. A total of 260 acoustic raypaths would be shot and acquired in the horizontal acoustic array to create each horizontal tomographic image. The sensors can be used as both acoustic sources or as acoustic each of the 10 pulsers to the 10 receivers.« less
60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed ...
60. PANORAMIC VIEW OF DOWNSTREAM FACE. No date, but believed to be just subsequent to construction. Photograph by C.G. Duffey, Long Beach, California. (38' x 11' framed print). - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
47. Northwest Side of Breaker, Rock Belt Line (foreground), date ...
47. Northwest Side of Breaker, Rock Belt Line (foreground), date unknown Historic Photograph, Photograher Unknown; Collection of William Everett, Jr. (Wilkes-Barre, PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA
Archaeomagnetic Investigation at Chapultepec, Mexico City: Case Study of Classical Settlers
NASA Astrophysics Data System (ADS)
Lopez, V.; Romero, E.; Soler-Arechalde, A. M.; Espinosa, G.
2007-05-01
During the restoration campaign at the Chapultepec Park in Mexico City downtown, a teotihuacan settlement was found at the south flank of Chapultepec Hill. Samples represent a kind of irregular home kilns with a hole in their central part bounded by andesite rocks. Alternating field demagnetization had been employed. Rock magnetic measurements which included: Hysteresis, continuous susceptibility and isothermal remanence experiments revealed that some spinels, most probably magnetite or Ti-poor Titanomagnetites are responsible for the remanence. An archeomagnetic date obtained here is of 525 AD which is in good agreement with other evidences of the Teotihuacan Classic Metepec period (450-600 AD).
Solar flare and galactic cosmic ray studies of Apollo 14 and 15 samples.
NASA Technical Reports Server (NTRS)
Crozaz, G.; Drozd, R.; Hohenberg, C. M.; Hoyt, H. P., Jr.; Ragan, D.; Walker, R. M.; Yuhas, D.
1972-01-01
Thermoluminescence (TL) measurements in rock 14310 show a strong depth dependence consistent with that expected from solar flares. This effect should prove useful in studying solar flare fluctuations in the time interval of 100 to 100,000 years. Rare gas spallation ages for rock 14301, 14306, and 14311 are respectively 102 plus or minus 30, 25 plus or minus 2, and 661 plus or minus 72 m.y. The 14306 value supports the idea that Cone Crater was formed 25 million years ago. Groupings of exposure ages suggest the dates of other major cratering events. Galactic track data in 14310 show little depth dependence.
Neymark, Leonid; Peterman, Zell E.; Moscati, Richard J.; Thivierge, R. H.
2013-01-01
As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks.Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate substantial large-scale preferential element mobility during superimposed metamorphic and water/rock interaction processes. This may confirm the integrity of the rock mass, which is a positive attribute for a potential nuclear waste repository. Most 234U/238U activity ratios (AR) in whole rock samples are within errors of the secular equilibrium value of one, indicating that the rocks have not experienced any appreciable U loss or gain within the past 1 Ma. However, 234U/238U AR in fracture mineral samples collected down to borehole lengths of about 740 m deviate from the secular equilibrium value and 234U/238U model ages calculated for fracture mineral samples showing excess 234U range from 593 to 1415 ka, thus providing evidence of fracture flow in the associated bedrock during the past 1.5 Ma. Rare earth element patterns are variable in fracture-filling calcites and Fe oxides/hydroxides but are similar to those observed in associated whole-rock samples. The observed Ce anomalies are very small (CeN/CeN∗≈1">CeN/CeN∗≈1), do not vary with depth, and, therefore, do not contain evidence that the studied fracture minerals precipitated from oxidizing waters at the conceptual depth of a repository.
4. Photograph of a photograph in possession of Rock Island ...
4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED NOVEMBER 11, 1944. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL
8. Photograph of a photograph in possession of Rock Island ...
8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND EAST ELEVATIONS, DOCUMENTING ORIGINAL CONSTRUCTION. DATED C. 1875. - Rock Island Arsenal, Building No. 225, Rodman Avenue between Flagler Street & Gillespie Avenue, Rock Island, Rock Island County, IL
9. Photograph of a photograph in possession of Rock Island ...
9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR OF STEEL-FRAMED SECTION showing ASSEMBLING OF GUN MOUNTS. DATED MAY 24, 1939. - Rock Island Arsenal, Building No. 210, Rodman Avenue & Gronen Street, Rock Island, Rock Island County, IL
4. Photograph of a photograph in possession of Rock Island ...
4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS DURING FINAL STAGE OF CONSTRUCTION. DATED 1871. - Rock Island Arsenal, Building No. 104, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL
7. Photograph of a photograph in possession of Rock Island ...
7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. INTERIOR LOOKING EAST, SHOWING STORAGE OF LUMBER. DATED OCTOBER 2, 1945. - Rock Island Arsenal, Building No. 140, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED APRIL 27, 1956. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ASSEMBLING OF ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL
NASA Astrophysics Data System (ADS)
Kouassi, M.
2016-12-01
We have compiled over 3200 detrital zircon ages in rock samples collected by various groups of previous workers that range in age from Cambrian to Cenozoic and cover the area of rifting between southern North America, Mexico, the Caribbean, and northern South America. We focussed this study on age populations in Jurassic sedimentary rocks from localities in the southern USA, Mexico, and Colombia to identify similar age populations that could constrain the relative locations of the various blocks during the period of Pangea's breakup and the formation of the Gulf of Mexico and Proto-Caribbean seaway. Jurassic samples from the Mixteca and Maya blocks of southern Mexico, the Norphlet Formation of Alabama and the Giron Formation of Eastern Cordillera of Colombia revealed a good correlation with correlative age populations of 900-1200 Ma and 200- 400 Ma. These results indicate that in a closed fit reconstruction all of these areas may have been overlain by common basin that covered the present-day area of the GOM, Yucatan block, and northern South America. We point out key areas for future sampling and dating that will help expand this study.
NASA Astrophysics Data System (ADS)
Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.
2013-12-01
Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting <50 ppm 2 sigma analytical precision on a 400pg in-house standard and continued improvement in blanks (<15pg full procedural blanks). Additionally, employing a nondestructive chemical prescreening technique (tabletop SEM) allows for grouping of multiple grains based on chemical similarity. Final Nd loads in the 450-750pg range routinely yield dates with precisions <×10Ma for two point isochrons between clean garnet (Sm/Nd ≥ 1.0) and their leached inclusion populations [2]. Four grouped garnet grain separates from one sample yield preliminary dates of 2703.6×6.0Ma, 2612.4×6.0Ma, 2605.0×5.5Ma, and 2567.3×8.3Ma, while the second sample yielded a date of 2579.6×4.6 Ma (2σ). Compositional and geochronologic data indicate likely in situ garnet growth during a late Archean greenschist facies metamorphic event. These dates are generally consistent with published monazite ages placing a metamorphic event at ~ca.2.65Ga [4,5]. It remains possible that an as yet unidentified detrital garnet component is present and may explain some of the scatter in absolute age. [1] Baxter EF, Jordan MK & Inglis JD, 2010, Goldschmidt [2] Baxter EF, Eccles KA & Sullivan N, 2012, Goldschmidt [3] Harvey J & Baxter EF, 2009, Chem Geol, 258, 251-257 [4] Rasmussen B, et al, 2010, Precambrian Res, 180, 26-46 [5] Iizuka T, et al, 2010, Contrib Mineral Petr, 160, 803-823
sup 40 Ar/ sup 39 Ar ages of six Apollo 15 impact melt rocks by laser step heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalrymple, G.B.; Ryder, G.
1991-06-01
The authors have obtained 15 high resolution (21-51 step) {sup 40}Ar/{sup 39}Ar age spectra on six Apollo 15 impact melt rocks of different compositions using a continuous laser system on submilligram subsamples and on single crystal plagioclase clasts. Four of the six samples gave reproducible age spectra with well-defined intermediate temperature plateaus over 48% or more of the {sup 39}AR released; the plateaus are interpreted as crystallization ages. Samples 15304,7,69, 15294,6,21, and 15314,26,156 gave virtually identical plateau ages whose weighted mean is 3,870 {plus minus} 6 Ma. These three melt rocks differ in composition and likely formed in three separatemore » impact events. Sample 15356,9 gave replicate plateau ages that average 3,836 {plus minus} 12 Ma and date a fourth and younger impact event. The age spectra for samples 15308,9 and 15414,3,36 increase with increasing increment temperature and may have been formed in or affected by impacts at about 2,700 Ma and 3,870 Ma, respectively. So far there continues to be no convincing evidence in the lunar record for impact melts older than about 3.9 Ga.« less
Total-Evidence Dating under the Fossilized Birth–Death Process
Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A.; Ronquist, Fredrik
2016-01-01
Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth–death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed. PMID:26493827
Total-Evidence Dating under the Fossilized Birth-Death Process.
Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A; Ronquist, Fredrik
2016-03-01
Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth-death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects, including sampling biases, are adequately addressed. ©The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
U-Pb Dating of Calcite by LA-ICPMS
NASA Astrophysics Data System (ADS)
Hacker, B. R.; Kylander-Clark, A. R.; Holder, R. M.; Nuriel, P.
2016-12-01
An emerging frontier area in geochronology is U-Pb dating of carbonate minerals by laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). The spate of papers over the last few years applying LA-ICPMS to carbonate dating stems from the capability of LA-ICPMS to deal with the variable, and often low, U/Pb ratios of carbonate. LA-ICPMS is an excellent tool for efficiently screening out samples with low U/Pb ratios and provides the ability to measure many spots with different U/Pb ratios and obtain dates free of assumptions about the composition of common Pb. Because this technique is in its infancy, important questions remain. What percentage of carbonate samples have high enough U/Pbc ratios that they can be dated? What percentage of samples yield isochronous datasets? What are the limits on precision and accuracy of carbonate U/Pb dates? What is the best analytical method in the absence of isotopically homogeneous reference materials? Through the generosity of our colleagues we have acquired 8 reference materials ranging in age from 3 to 250 Ma. We have analyzed 125 unknowns from a variety of locations using a 193 nm ns laser with an 80-100 μm spot and a Nu Plasma HR-ES. We measure 207Pb/206Pb using NIST 614 glass and then calculate a 206Pb/238U correction factor based on the measured vs. known ages of the reference materials. Sixty of these samples ( 50%) have high enough U/Pb ratios that they can be dated. There is great heterogeneity among the sample suites: some have no datable samples, whereas one suite of 68 samples yielded 53 datable rocks. Of the samples with high U/Pbc ratios, a majority yielded isochronous U-Pb data, indicating that the U-Pb system closed at a given time and was not subsequently disturbed.
6. Photograph of a photograph in possession of Rock Island ...
6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS IN FINAL STAGE OF CONSTRUCTION. DATED C. 1870. - Rock Island Arsenal, Building No. 60, Rodman Avenue between Gillespie Avenue & First Street, Rock Island, Rock Island County, IL
9. Photograph of a photograph in possession of Rock Island ...
9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION AFTER ADDITION OF HOSE DRYING TOWER. DATED SEPTEMBER 26, 1919. - Rock Island Arsenal, Building No. 225, Rodman Avenue between Flagler Street & Gillespie Avenue, Rock Island, Rock Island County, IL
7. Photograph of a photograph in possession of Rock Island ...
7. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BASEMENT, SHOWING ASSEMBLING OF 75MM GUN CARRIAGES. DATED AUGUST 23, 1918. - Rock Island Arsenal, Building No. 110, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Coker, Robert F.
2010-01-01
The South Pole Aitken (SPA) basin is the stratigraphically oldest identifiable lunar basin and is therefore one of the most important targets for absolute age-dating to help understand whether ancient lunar bombardment history smoothly declined or was punctuated by a cataclysm. A feasible near-term approach to this problem is to robotically collect a sample from near the center of the basin, where vertical and lateral mixing provided by post-basin impacts ensures that such a sample will be composed of small rock fragments from SPA itself, from local impact craters, and from faraway giant basins. The range of ages, intermediate spikes in the age distribution, and the oldest ages are all part of the definition of the absolute age and impact history recorded within the SPA basin.
NASA Astrophysics Data System (ADS)
Nishikawa, O.
2016-12-01
Thermoluminescence (TL) dating is one of the geochronometry with a low closure temperature, which covers a wide range of younger ages from 1k to 1m yrs, and used to be applied to young volcanics and archeological burnt materials. These materials experienced an instant temperature drop under the closure temperature just after they are generated. If crust is rapidly uplifting, it may possible to apply TL dating even for basement rocks to reconstruct a young history of orogeny. TL age applied to basement is not the age of rock itself, but the age since the rock rising from the deeper part crossed the depth of the closure temperature. Therefore TL age of basement rock is the function of both uplifting rate and geothermal gradient. In this study, in order to evaluation of the late Quaternary uplifting of the central Shikoku, Japan, TL dating of quartz grain derived from the Sambagawa metamorphic rocks has been performed. The ages are in 100-1000 kyr orders and much older than TL ages obtained from the hanging wall of Alpine fault, New Zealand (Nishikawa et al., 2015; AGU Fall meeting). This can be due to the difference of geothermal gradient and uplifting rate between two orogenic belts, and interpreted that the hanging wall of the Alpine fault has been rapidly lifted up from the shallower closure temperature depth, while the rocks in central Shikoku have been rising slowly from deeper part.
Neudorf, Christina M.; Smith, Nicole; Lepofsky, Dana; Toniello, Ginevra; Lian, Olav B.
2017-01-01
Rock-walled archaeological features are notoriously hard to date, largely because of the absence of suitable organic material for radiocarbon dating. This study demonstrates the efficacy of dating clam garden wall construction using optical dating, and uses optical ages to determine how sedimentation rates in the intertidal zone are affected by clam garden construction. Clam gardens are rock-walled, intertidal terraces that were constructed and maintained by coastal First Nation peoples to increase bivalve habitat and productivity. These features are evidence of ancient shellfish mariculture on the Pacific Northwest and, based on radiocarbon dating, date to at least the late Holocene. Optical dating exploits the luminescence signals of quartz or feldspar minerals to determine the last time the minerals were exposed to sunlight (i.e., their burial age), and thus does not require the presence of organic material. Optical ages were obtained from three clam garden sites on northern Quadra Island, British Columbia, and their reliability was assessed by comparing them to radiocarbon ages derived from shells underneath the clam garden walls, as well as below the terrace sediments. Our optical and radiocarbon ages suggest that construction of these clam garden walls commenced between ~1000 and ~1700 years ago, and our optical ages suggest that construction of the walls was likely incremental and increased sedimentation rates in the intertidal zone by up to fourfold. Results of this study show that when site characteristics are not amenable to radiocarbon dating, optical dating may be the only viable geochronometer. Furthermore, dating rock-walled marine management features and their geomorphic impact can lead to significant advances in our understanding of the intimate relationships that Indigenous peoples worldwide developed with their seascapes. PMID:28182645
Lunar surface processes and cosmic ray histories over the past several million years
NASA Technical Reports Server (NTRS)
Fruchter, J. S.; Rancitelli, L. A.; Evans, J. C.; Perkins, R. W.
1978-01-01
Measurements of the Al-26 and Mn-53 in interior portions of lunar rocks have shown that lunar surface processes which move a significant fraction of kilogram size rocks on the lunar surface occur on time scales of a few million years. These measurements, together with noble gas age dating have made it possible to define the history for nine rock samples selected from whole rock counting data because of anomalously low Al-26 relative to Na-22. Six of the rocks from the Apollo 15 and 16 missions showed evidence of movement during the past five million years. Of these six, only two are of an age consistent with their origin from the South Ray Crater Event. In addition, our measurements of Na-22 and Al-26 in Apollo 17 double drive tube 74001-74002 suggest that one to two cm of soil is missing from the top of this core tube. Even with this loss, at least two cm of gardening is indicated in the top portion of 74002.
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF BRICK STAIR TOWERS ON SOUTH FACADE. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 110, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF STAIR TOWERS ON SOUTH FACADE. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 104, Rodman Avenue between First & Second Streets, Rock Island, Rock Island County, IL
11. Photograph of a photograph in possession of Rock Island ...
11. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH AND EAST ELEVATIONS AFTER ADDITION OF WING TO CENTER OF EAST FACADE. DATED NOVEMBER 4, 1944. - Rock Island Arsenal, Building No. 90, East Avenue between North Avenue & King Drive, Rock Island, Rock Island County, IL
4. Photograph of a photograph in possession of Rock Island ...
4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION AFTER ADDITION OF REINFORCED-CONCRETE SECTION WITH CYCLONE SEPARATOR. DATED NOVEMBER 11, 1944. - Rock Island Arsenal, Building No. 105, South Avenue between Gillespie Avenue & Second Street, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. EAST AND NORTH ELEVATIONS BEFORE REMOVAL OF STRAP-HINGE DOOR. DATED NOVEMBER 21, 1944. - Rock Island Arsenal, Building No. 139, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL
5. Photograph of a photograph in possession of Rock Island ...
5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. WEST AND SOUTH ELEVATIONS BEFORE REPLACEMENT OF STRAP-HINGE DOOR. DATED NOVEMBER 1, 1944. - Rock Island Arsenal, Building No. 140, Second Street between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL
Ion-probe U–Pb dating of authigenic and detrital opal from Neogene-Quaternary alluvium
Neymark, Leonid; Paces, James B.
2013-01-01
Knowing depositional ages of alluvial fans is essential for many tectonic, paleoclimatic, and geomorphic studies in arid environments. The use of U–Pb dating on secondary silica to establish the age of Neogene-Quaternary clastic sediments was tested on samples of authigenic and detrital opal and chalcedony from depths of ∼25 to 53 m in boreholes at Midway Valley, Nevada. Dating of authigenic opal present as rinds on rock clasts and in calcite/silica cements establishes minimum ages of alluvium deposition; dating of detrital opal or chalcedony derived from the source volcanic rocks gives the maximum age of sediment deposition.Materials analyzed included 12 samples of authigenic opal, one sample of fracture-coating opal from bedrock, one sample of detrital opal, and two samples of detrital chalcedony. Uranium–lead isotope data were obtained by both thermal ionization mass spectrometry and ion-microprobe. Uranium concentrations ranged from tens to hundreds of μg/g. Relatively large U/Pb allowed calculation of 206Pb/238U ages that ranged from 1.64±0.36 (2σ) to 6.16±0.50 Ma for authigenic opal and from 8.34±0.28 to 11.2±1.3 Ma for detrital opal/chalcedony. Three samples with the most radiogenic Pb isotope compositions also allowed calculation of 207Pb/235U ages, which were concordant with 206Pb/238U ages from the same samples.These results indicate that basin development at Midway Valley was initiated between about 8 and 6 Ma, and that the basin was filled at long-term average deposition rates of less than 1 cm/ka. Because alluvium in Midway Valley was derived from adjacent highlands at Yucca Mountain, the low rates of deposition determined in this study may imply a slow rate of erosion of Yucca Mountain. Volcanic strata underlying the basin are offset by a number of buried faults to a greater degree than the relatively smooth-sloping bedrock/alluvium contact. These geologic relations indicate that movement on most faults ceased prior to erosional planation and burial. Therefore, ages of the authigenic opal from basal alluvium indicate that the last movement on buried faults was older than about 6 Ma.
Chapter 39 The Edwardsburg Formation and related rocks, Windermere Supergroup, central Idaho, USA
Lund, Karen; Evans, Karl V.; Alienikoff, John N.
2011-01-01
In central Idaho, Neoproterozoic stratified rocks are engulfed by the Late Cretaceous Idaho batholith and by Eocene volcanic and plutonic rocks of the Challis event. Studied sections in the Gospel Peaks and Big Creek areas of west-central Idaho are in roof pendants of the Idaho batholith. A drill core section studied from near Challis, east-central Idaho, lies beneath the Challis Volcanic Group and is not exposed at the surface. Metamorphic and deformational overprinting, as well as widespread dismembering by the younger igneous rocks, conceals many primary details. Despite this, these rocks provide important links for regional correlations and have produced critical geochronological data for two Neoproterozoic glacial periods in the North American Cordillera. At the base of the section, the more than 700-m-thick Edwardsburg Formation (Fm.) contains interlayered diamictite and volcanic rocks. There are two diamictite-bearing members in the Edwardsburg Fm. that are closely related in time. Each of the diamictites is associated with intermediate composition tuff or flow rocks and the diamictites are separated by mafic volcanic rocks. SHRIMP U–Pb dating indicates that the lower diamictite is about 685±7 Ma, whereas the upper diamictite is 684±4 Ma. The diamictite units are part of a cycle of rocks from coarse clastic, to fine clastic, to carbonate rocks that, by correlation to better preserved sections, are thought to record an older Cryogenian glacial to interglacial period in the northern US Cordillera. The more than 75-m-thick diamictite of Daugherty Gulch is dated at 664±6 Ma. This unit is preserved only in drill core and the palaeoenvironmental interpretation and local stratigraphic relations are non-unique. Thus, the date for this diamictite may provide a date for a newly recognized glaciogenic horizon or may be a minimum age for the diamictite in the Edwardsburg Fm. The c. 1000-m-thick Moores Lake Fm. is an amphibolite facies diamictite in which glacial features have not been observed. However, it is part of a sedimentary cycle from unsorted siliclastic deposits to mud and carbonate deposits. Using lithostratigraphy and available geochronology, the Moores Lake Fm. is correlated with a younger succession of Cryogenian glaciogenic rocks in southeastern Idaho. Traditional correlations of Neoproterozoic rocks in the Cordillera recognize two levels of Cryogenian diamictites. The Edwardsburg and Moores Lake diamictites along the middle Cordillera fit well into the scenario of two glacial events. Because of the correlations, dates that provide ages for the diamictites in central Idaho (and corroborated in southeastern Idaho, Link & Fanning 2008) could constrain the age of correlated glaciogenic deposits elsewhere in the Cordillera. However, in the absence of dates for the glaciogenic diamictites in Canadian and southern US Cordilleran sections, the correlations are considered possible but uncertain.
The Edwardsburg Formation and related rocks, Windermere Supergroup, central Idaho, USA
Lund, Karen; Aleinikoff, John N.; Evans, Karl V.
2011-01-01
In central Idaho, Neoproterozoic stratified rocks are engulfed by the Late Cretaceous Idaho batholith and by Eocene volcanic and plutonic rocks of the Challis event. Studied sections in the Gospel Peaks and Big Creek areas of west-central Idaho are in roof pendants of the Idaho batholith. A drill core section studied from near Challis, east-central Idaho, lies beneath the Challis Volcanic Group and is not exposed at the surface. Metamorphic and deformational overprinting, as well as widespread dismembering by the younger igneous rocks, conceals many primary details. Despite this, these rocks provide important links for regional correlations and have produced critical geochronological data for two Neoproterozoic glacial periods in the North American Cordillera. At the base of the section, the more than 700-m-thick Edwardsburg Formation (Fm.) contains interlayered diamictite and volcanic rocks. There are two diamictite-bearing members in the Edwardsburg Fm. that are closely related in time. Each of the diamictites is associated with intermediate composition tuff or flow rocks and the diamictites are separated by mafic volcanic rocks. SHRIMP U–Pb dating indicates that the lower diamictite is about 685±7 Ma, whereas the upper diamictite is 684±4 Ma. The diamictite units are part of a cycle of rocks from coarse clastic, to fine clastic, to carbonate rocks that, by correlation to better preserved sections, are thought to record an older Cryogenian glacial to interglacial period in the northern US Cordillera. The more than 75-m-thick diamictite of Daugherty Gulch is dated at 664±6 Ma. This unit is preserved only in drill core and the palaeoenvironmental interpretation and local stratigraphic relations are non-unique. Thus, the date for this diamictite may provide a date for a newly recognized glaciogenic horizon or may be a minimum age for the diamictite in the Edwardsburg Fm. The c. 1000-m-thick Moores Lake Fm. is an amphibolite facies diamictite in which glacial features have not been observed. However, it is part of a sedimentary cycle from unsorted siliclastic deposits to mud and carbonate deposits. Using lithostratigraphy and available geochronology, the Moores Lake Fm. is correlated with a younger succession of Cryogenian glaciogenic rocks in southeastern Idaho. Traditional correlations of Neoproterozoic rocks in the Cordillera recognize two levels of Cryogenian diamictites. The Edwardsburg and Moores Lake diamictites along the middle Cordillera fit well into the scenario of two glacial events. Because of the correlations, dates that provide ages for the diamictites in central Idaho (and corroborated in southeastern Idaho, Link & Fanning 2008) could constrain the age of correlated glaciogenic deposits elsewhere in the Cordillera. However, in the absence of dates for the glaciogenic diamictites in Canadian and southern US Cordilleran sections, the correlations are considered possible but uncertain.
Multi-disciplinary dating of a baked clay kiln excavated at Chieri, Northern Italy
NASA Astrophysics Data System (ADS)
Tema, Evdokia; Fantino, Fulvio; Ferrara, Enzo; Lo Giudice, Alessandro; Re, Alessandro; Barello, Federico; Vella, Silvia; Cirillo, Luigi; Gulmini, Monica
2014-05-01
A combined archaeological, archaeomagnetic and thermoluminescence study has been carried out on a rescue excavation kiln, discovered at Chieri, Northern Italy. Rock magnetic experiments indicate the dominance of a low coercivity magnetic phase, such as magnetite and/or Ti-magnetite as the main carrier of the remanent magnetization. Stepwise thermal demagnetization experiments generally show a stable characteristic remanent magnetization (ChRM). The mean archaeomagnetic direction, calculated from 17 independently oriented samples, is D=18.2o, I=66.8o with α95=2.6o and k=184. Archaeomagnetic dating of the kiln has been obtained after comparison of the kiln's ChRM direction with the reference curves produced by the SHA.DIF.3K European regional geomagnetic field model. Independent dating of the kiln has also been obtained from thermoluminescence (TL) study of two baked clay samples coming from the kiln's walls. The environmental dose has been measured in situ using field dosimeters. Accurate TL procedures have been followed for the calculation of annual dose and eventually the TL age. The combination of the archaeological evidence, archaeomagnetic and TL datings suggest that the last usage of the kiln occurred around the 17th century AD. Comparison of the results obtained from the different methods shows the relevant potential of these techniques on dating of baked clay artefacts; yet it also highlights the range of uncertainty sources affecting measurements, related to the samples and/or to the environment, and the utility of dating cross-checking for obtaining reliable dates.
(De)coupled zircon metamictization, radiation damage, and He diffusivity
NASA Astrophysics Data System (ADS)
Ault, A. K.; Guenthner, W.; Reiners, P. W.; Moser, A. C.; Miller, G. H.; Refsnider, K. A.
2017-12-01
We develop and apply a new protocol for targeting crystals for the zircon (U-Th)/He (He) thermochronometry to maximize effective U (eU) and corresponding closure temperature variability to develop zircon He date-eU correlations observed in some datasets. Our approach exploits visual proxies for radiation damage accumulation (metamictization) during zircon selection. We show that by purposefully targeting a spectrum of zircon textures from pristine to metamict grains, it is possible to generate broad eU variation in suites of zircon from a single sample and zircon He date-eU-metamictization trends that can be exploited to resolve increasingly complex thermal histories. We present plane light photographs, eU concentration, and zircon He results from 59 individual zircons from nine crystalline rock samples. Six of the nine samples come from exposed Proterozoic granitoids on SE Baffin Island, Canada; Boulder Creek, CO; Sandia Mountains, NM; and Mecca Hills, CA. We report data from three Archean Baffin samples to compare with the Proterozoic Baffin sample date-eU-metamictization trend. In each Proterozoic sample, target zircons display a spectrum of metamictization from pristine, transparent crystals to purple-brown, translucent grains. Progressive loss of transparency and increase in discoloration consistently corresponds to an increase in eU in all samples. Individual zircon eU varies from 89-1885 ppm and, within each sample, the total eU spread is 538 ppm to 1374 ppm. For any given eU value, the Archean zircon appear comparatively more metamict than the Proterozoic Baffin grains and samples collectively define a 1681 ppm range in eU, with more restrictive intrasample eU spreads (199-1120 ppm). Proterozoic samples from Baffin, Sandia, and Front Range yield negative zircon He date-eU correlations with intrasample date ranges of 90-783 Ma. Increasing eU and younger dates correspond with increasing metamictization. In contrast, all three Proterozoic Mecca Hills samples yield uniform 25 Ma zircon He dates over 1800 ppm eU. We apply simple thermal history models that account for the coevolution of zircon radiation damage and He-diffusivity to demonstrate that visible zircon metamictization and He diffusivity can be either coupled or decoupled depending on a sample's thermal history.
NASA Astrophysics Data System (ADS)
Hjelle, Kari Loe; Lødøen, Trond Klungseth
2017-07-01
One of the main aims of Scandinavian rock art research in recent years has been to identify the culture or society responsible for the imagery. This is of mutual importance, as studies of material culture can shed light on the rock art, while the iconography can be used to understand the contemporary material remains. A major challenge however, has been to determine the exact age of the images, as there are no direct dating materials. In order to overcome this challenge archaeological excavations and palynological analyses have been carried out at Vingen in Western Norway, one of Scandinavia's largest rock art areas. The archaeological and palynological data achieved, as well as loss-on-ignition are independent means for the dating of human activity. Since these methods provided similar results, an indirect connection to the rock art production activity may be inferred. Dates from archaeological contexts indicate a peak of activity between 6900 and 6300 cal. BP, with a potential start 7350 cal. BP and a culmination 6100 cal. BP. Palynological data from three different types of basins have documented forest disturbance in the same time period. Local vegetation reconstructions using the Landscape Reconstruction Algorithm has proved useful to identify anthropogenic-induced land cover changes in the Mesolithic period and a marked reforestation at the transition to the Neolithic period. The applied methods have helped to considerably improve our understanding of past activity and the environment, and demonstrates the potential of archaeological excavations and palynological studies for dating of rock art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.
1980-02-01
The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less
Kilbuck terrane: oldest known rocks in Alaska
Box, S.E.; Moll-Stalcup, E. J.; Wooden, J.L.; Bradshaw, J.Y.
1990-01-01
The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2070 ?? 16 and 2040 ?? 74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite (??Nd[T] = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton (??Nd[T] = -5.7) contains a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded. -from Authors
NASA Astrophysics Data System (ADS)
Warr, L. N.; Hofmann, H.; van der Pluijm, B. A.
2017-01-01
Smectite is typically considered unsuitable for radiometric dating, as argon (40Ar) produced from decay of exchangeable potassium (40K) located in the interlayer sites can be lost during fluid-rock interaction and/or during wet sample preparation in the laboratory. However, age analysis of Late Cretaceous Argentinian bentonites and associated volcaniclastic rocks from Lago Pellegrini, Northern Patagonia, indicates that, in the case of these very low-permeability rocks, the radioactive 40Ar was retained and thus can provide information on smectite age and the timing of rock alteration. This study presents isotopic results that indicate the ash-to-bentonite conversion and alteration of the overlying tuffaceous mudstones in Northern Patagonia was complete 13-17 my after middle Campanian sedimentation when the system isotopically closed. The general absence of illite in these smectite-rich lithologies reflects the low activity of K and the low temperature (<60 °C) of the formation waters that altered the parent ash.
Intra-grain Common Pb Correction and Detrital Apatite U-Pb Dating via LA-ICPMS Depth Profiling
NASA Astrophysics Data System (ADS)
Boyd, P. D.; Galster, F.; Stockli, D. F.
2017-12-01
Apatite is a common accessory phase in igneous and sedimentary rocks. While apatite is widely employed as a low-temperature thermochronometric tool, it has been increasingly utilized to constrain moderate temperature cooling histories by U-Pb dating. Apatite U-Pb is characterized by a thermal sensitivity window of 375-550°C. This unique temperature window recorded by the apatite U-Pb system, and the near-ubiquitous presence of apatite in igneous and clastic sedimentary rocks makes it a powerful tool able to illuminate mid-crustal tectono-thermal processes. However, as apatite incorporates only modest amounts of U and Th (1-10s of ppm) the significant amounts of non-radiogenic "common" Pb incorporated during its formation presents a major hurdle for apatite U-Pb dating. In bedrock samples common Pb in apatite can be corrected for by the measurement of Pb in a cogenetic mineral phase, such as feldspar, that does not incorporate U or from determination of a common Pb composition from multiple analyses in Tera-Wasserburg space. While these methods for common Pb correction in apatite can work for igneous samples, they cannot be applied to detrital apatite in sedimentary rocks with variable common Pb compositions. The obstacle of common Pb in apatite has hindered the application of detrital apatite U-Pb dating in provenance studies, despite the fact that it would be a powerful tool. This study presents a new method for the in situ correction of common Pb in apatite through the utilization of novel LA-ICP-MS depth profiling, which can recover U-Pb ratios at micron-scale spatial resolution during ablation of a grain. Due to the intra-grain U variability in apatite, a mixing line for a single grain can be generated in Tera-Wasserburg Concordia space. As a case study, apatite from a Variscan alpine granite were analyzed using both the single and multi-grain method, with both methods giving identical results. As a second case study the intra-grain method was then performed on detrital apatite from the Swiss Northern Alpine Foreland Basin, where the common Pb composition and age spectra of detrital apatite grains were elucidated. The novel intra-grain apatite method enables the correction for common Pb in detrital apatite, making it feasible to incorporate detrital apatite U-Pb dating in provenance and source-to-sink studies.
Texier, Pierre-Jean; Porraz, Guillaume; Parkington, John; Rigaud, Jean-Philippe; Poggenpoel, Cedric; Miller, Christopher; Tribolo, Chantal; Cartwright, Caroline; Coudenneau, Aude; Klein, Richard; Steele, Teresa; Verna, Christine
2010-04-06
Ongoing debates about the emergence of modern human behavior, however defined, regularly incorporate observations from the later part of the southern African Middle Stone Age and emphasize the early appearance of artifacts thought to reflect symbolic practice. Here we report a large sample of 270 fragments of intentionally marked ostrich eggshell from the Howiesons Poort at Diepkloof Rock Shelter, Western Cape, South Africa. Dating from approximately 60,000 years ago, these pieces attest to an engraving tradition that is the earliest reliable evidence of what is a widespread modern practice. These abstract linear depictions were made on functional items (eggshell containers), which were curated and involved in daily hunter-gatherer life. The standardized production of repetitive patterns, including a hatched band motif, suggests a system of symbolic representation in which collective identities and individual expressions are clearly communicated, suggesting social, cultural, and cognitive underpinnings that overlap with those of modern people.
NASA Astrophysics Data System (ADS)
Ondrejka, Martin; Li, Xian-Hua; Vojtko, Rastislav; Putis, Marian; Uher, Pavel; Sobocký, Tomas
2018-04-01
Three representative A-type rhyolitic rock samples from the Muráň Nappe of the inferred Silicic Unit of the Inner Western Carpathians (Slovakia) were dated using the high-precision SIMS U-Pb isotope technique on zircons. The geochronological data presented in this paper is the first in-situ isotopic dating of these volcanic rocks. Oscillatory zoned zircon crystals mostly revealed concordant Permian (Guadalupian) ages: 266.6 ± 2.4 Ma in Tisovec-Rejkovo (TIS-1), 263.3 ± 1.9 Ma in Telgárt-Gregová Hill (TEL-1) and 269.5 ± 1.8 Ma in Veľká Stožka-Dudlavka (SD-2) rhyolites. The results indicate that the formation of A-type rhyolites and their plutonic equivalents are connected to magmatic activity during the Permian extensional tectonics and most likely related to the Pangea supercontinent break-up.
Single Chondrule K/Ar ages of Mexican Meteorites Using ID-TIMS.
NASA Astrophysics Data System (ADS)
Hernandez, M.; Sole, J.
2007-05-01
We have determined the K/Ar ages of two H5 ordinary meteorites: Cosina and Nuevo Mercurio, neither dated until this study. We analyzed several single chondrules - weighing few milligrams - of each meteorite. Ages were obtained by using very precise K content determined by isotope dilution mass spectrometry. The K content in chondrules ranges between 650 and 1400 ppm. The 40Ar was measured by static vacuum noble gas mass spectrometry. Samples were fused with an infrared CO2 laser. Chondrule ages vary from 3.66 to 4.59 Ga for Cosina and from 4.20 to 4.87 Ga for Nuevo Mercurio. A comparison between our data and the published K/Ar ages of H and L whole rocks shows that dates obtained from single chondrules are older than those obtained from whole rocks and seem to preserve older events not evidenced in the WR ages. This implies that chondrules can preserve K/Ar ages very close to U-Pb crystallization ages.
Effect of sample inhomogeneity in KAr dating
Engels, J.C.; Ingamells, C.O.
1970-01-01
Error in K-Ar ages is often due more to deficiencies in the splitting process, whereby portions of the sample are taken for potassium and for argon determination, than to imprecision in the analytical methods. The effect of the grain size of a sample and of the composition of a contaminating mineral can be evaluated, and this provides a useful guide in attempts to minimize error. Rocks and minerals should be prepared for age determination with the effects of contaminants and grain size in mind. The magnitude of such effects can be much larger than intuitive estimates might indicate. ?? 1970.
High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks
NASA Astrophysics Data System (ADS)
Mercer, Cameron Mark
Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.
Amato, J.M.; Toro, J.; Miller, E.L.; Gehrels, G.E.; Farmer, G.L.; Gottlieb, E.S.; Till, A.B.
2009-01-01
The Seward Peninsula of northwestern Alaska is part of the Arctic Alaska-Chukotka terrane, a crustal fragment exotic to western Laurentia with an uncertain origin and pre-Mesozoic evolution. U-Pb zircon geochronology on deformed igneous rocks reveals a previously unknown intermediate-felsic volcanic event at 870 Ma, coeval with rift-related magmatism associated with early breakup of eastern Rodinia. Orthogneiss bodies on Seward Peninsula yielded numerous 680 Ma U-Pb ages. The Arctic Alaska-Chukotka terrane has pre-Neoproterozoic basement based on Mesoproterozoic Nd model ages from both 870 Ma and 680 Ma igneous rocks, and detrital zircon ages between 2.0 and 1.0 Ga in overlying cover rocks. Small-volume magmatism occurred in Devonian time, based on U-Pb dating of granitic rocks. U-Pb dating of detrital zircons in 12 samples of metamorphosed Paleozoic siliciclastic cover rocks to this basement indicates that the dominant zircon age populations in the 934 zircons analyzed are found in the range 700-540 Ma, with prominent peaks at 720-660 Ma, 620-590 Ma, 560-510 Ma, 485 Ma, and 440-400 Ma. Devonian- and Pennsylvanian-age peaks are present in the samples with the youngest detrital zircons. These data show that the Seward Peninsula is exotic to western Laurentia because of the abundance of Neoproterozoic detrital zircons, which are rare or absent in Lower Paleozoic Cordilleran continental shelf rocks. Maximum depositional ages inferred from the youngest detrital age peaks include latest Proterozoic-Early Cambrian, Cambrian, Ordovician, Silurian, Devonian, and Pennsylvanian. These maximum depositional ages overlap with conodont ages reported from fossiliferous carbonate rocks on Seward Peninsula. The distinctive features of the Arctic Alaska-Chukotka terrane include Neoproterozoic felsic magmatic rocks intruding 2.0-1.1 Ga crust overlain by Paleozoic carbonate rocks and Paleozoic siliciclastic rocks with Neoproterozoic detrital zircons. The Neoproterozoic ages are similar to those in the peri-Gondwanan Avalonian-Cadomian arc system, the Timanide orogen of Baltica, and other circum-Arctic terranes that were proximal to Arctic Alaska prior to the opening of the Amerasian basin in the Early Cretaceous. Our Neoproterozoic reconstruction places the Arctic Alaska-Chukotka terrane in a position near Baltica, northeast of Laurentia, in an arc system along strike with the Avalonian-Cadomian arc terranes. Previously published faunal data indicate that Seward Peninsula had Siberian and Laurentian links by Early Ordovician time. The geologic links between the Arctic Alaska-Chukotka terrane and eastern Laurentia, Baltica, peri-Gondwanan arc terranes, and Siberia from the Paleoproterozoic to the Paleozoic help to constrain paleogeographic models from the Neoproterozoic history of Rodinia to the Mesozoic opening of the Arctic basin. ?? 2009 Geological Society of America.
4. Photograph of a photograph in possession of Rock Island ...
4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH AND WEST ELEVATIONS BEFORE REMODELING OF PARAPET AND AFTER REMOVAL OF SMOKESTACK FROM SOUTH ELEVATION. DATED APRIL 7, 1941. - Rock Island Arsenal, Building No. 133, Gillespie Avenue between South Avenue & Ramsey Street, Rock Island, Rock Island County, IL
8. Photograph of a photograph in possession of Rock Island ...
8. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. FIRST FLOOR, WEST WING; SHOWING PRATT & WHITNEY RIFLING MACHINES FOR MANUFACTURING 1903 MODEL SPRING-FIELD RIFLE. DATED JULY 4, 1904. - Rock Island Arsenal, Building No. 60, Rodman Avenue between Gillespie Avenue & First Street, Rock Island, Rock Island County, IL
Stable Isotopes, Multidisciplinary Studies, and the Leadership of J.G. Liou in UHP Metamorphism
NASA Astrophysics Data System (ADS)
Rumble, D.
2005-12-01
J.G. Liou has played a crucial role in improving knowledge of UHP metamorphism by leading multi-disciplinary, multi-institutional teams of researchers and by encouraging new investigators and providing them access to samples. Stable isotope geochemistry has made important contributions to understanding UHP metamorphism including: (1) The discovery of O- and H-isotope signatures of meteoric water in UHP rocks from China and Kazakhstan demonstrates that their protoliths originated at or near Earth's surface in a cold climate(a); (2) The mapping of contiguous tracts of outcrops extending over distances of 100 km where both eclogites and their wall rocks retain unusually low d18O and dD is consistent with the subduction and exhumation of UHP slabs as coherent structural units(b); (3) Analysis of samples from the Chinese Continental Scientific Drilling project reveals not only that UHP metamorphic rocks have not exchanged O-isotopes with mantle rocks while they were buried in the upper mantle but also that garnet peridotite slabs from the mantle have not exchanged with crustal wall rocks(c). Recent advances have resulted from multidisciplinary geochemical investigations. The analysis of zircons for both d18O and U-Pb established the age of cold climate, meteoric water alteration of protoliths to be Neoproterozoic for UHP rocks from Dabie and Sulu, China(d). Thus, O-isotopes plus age dating raises the possibility that evidence of snowball Earth conditions has been preserved in an unlikely host: UHP metamorphic rocks. A comparison of U-Pb, Sm-Nd, and Rb-Sr isotope data with analyses for d18O in coexisting minerals shows that discordant age dates correlate with mineral pairs that are not in O-isotope exchange equilibrium(e). It may be seen that multidisciplinary geochemical investigations provide mutually reinforcing data that greatly strengthens interpretations. New discoveries of de novo microdiamonds accompanied by multiphase mineral inclusions in UHP metamorphosed crustal rocks raise exciting possibilities for future stable isotope research on their origin(f). Micron-scale analytical techniques including ion microprobe, "Nano-SIMS", and UV-laser ablation, should be applied to the mineral assemblages to determine whether parent fluids were super-critical C-O-H fluids or carbonate-rich melts. (a) Geochim.Cosmochim.Acta (GCA) 59, 2859; Euro.J.Mineral 8, 317; GCA 61, 1658.(b) GCA 62, 3307.(c) Amer.Mineral. 90, 857.(d) GCA 66, 2299; GCA 68, 4145.(e) GCA 66, 625.(f) J.Metamorph.Geol. 21, 425.
Water-quality trends using sediment cores from White Rock Lake, Dallas, Texas
Van Metre, Peter C.; Land, Larry F.; Braun, C.L.
1996-01-01
The purpose of this fact sheet is to summarize the principal findings documented in a report on water-quality trends in White Rock Creek Basin using dated sediment cores from White Rock Lake (Van Metre and Callender, in press). The study used dated sediment cores to reconstruct water-quality conditions. More specifically, the changes in water quality associated with the watershed’s change from agricultural to urban land use and with the implementation of environmental regulations were identified.
NASA Astrophysics Data System (ADS)
Kellerer-Pirklbauer, Andreas
2016-04-01
Rock glaciers are widespread permafrost landforms in Austria. Various rock glacier inventories list more than 4500 rock glaciers in the country; some 30-40% of them are intact. Relict (permafrost free) and pseudo-relict rock glaciers (sporadic and isolated permafrost particularly near the root zone) prevail in number. Rock glaciers are commonly formed over a period of several ka. Dating such landforms helps to understand palaeoclimatic conditions. In this study three rock glaciers consisting of gneiss were dated applying the Schmidt-hammer exposure-age dating (SHD) method. The rock glaciers are located at three neighbouring cirques in the Seckauer Tauern Range named Reichart Rock Glacier (RRG, area 1.26 km², length 1800 m, elevation range 1520-1940 m a.s.l.), Schöneben Rock Glacier (SRG, 0.11 km², 750 m, 1715-1905 m a.s.l.), and Dürrtal Rock Glacier (DRG, 0.08 km², 850 m, 1750-1980 m a.s.l.). RRG is one of the largest rock glaciers in Austria. All three landforms are influenced by lenses of permafrost at present (as indicated by ERT). During the LGM the Seckauer Tauern were covered by valley glaciers and deglaciation occurred presumably already early in the Alpine Lateglacial period. An analogue N-type Schmidt-hammer (proceq) was used for measuring the surface strength of stable blocks at the rock glacier surface by recording a rebound value (R-value) of a spring-loaded bolt. The R-value gives a relative measure of the surface hardness and hence time since exposure to weathering. Eight (RRG) or six (SRG, DRG) Schmidt-hammer measurement sites (with 50-100 individual readings) aligned along longitudinal transects (=former central flow line) between a talus slope (with relatively fresh boulders) in the root zone and the frontal ridge were measured. Mean R-value differences of 30.5 at RRG, 25.1 at SRG, and 20.7 at DRG were revealed along the three transects. The differences between the lowest and the highest R-value at the rock glaciers itself were 19.0 at RRG, 15.2 at SRG, and 10.5 at DRG. The differences in R-values between the talus slopes and the uppermost Schmidt-hammer site at the rock glacier were 11.5 at RRG, 9.9 at SRG, and 10.2 at DRG. No high-quality age control points are available at the studied rock glacier. Therefore, an age-calibration curve cannot be established. An age-calibration curve for gneiss has been established previously for a rock glacier c.110 km west of the study area yielding a mean decrease of 1.46 R/1 ka. This allows the estimate that the rock glacier formation period in the study area stretched over a period of several ka. Not unlikely, the formation of the rock glaciers was initiated already during the Gschnitz stadial (Heinrich 1 ice rafting event) dated to 15.4 ka BP or even earlier. SRG is the oldest rock glacier possibly starting to form during the later part of the Lateglacial ice decay-phase. At least 7-8 ka ago the stabilisation of the uppermost part of the three rock glaciers was accomplished. This rather late stabilisation might be also related to the thermally inert response of coarse rock glacier systems.
NASA Astrophysics Data System (ADS)
Bird, M. B.; Butler, S. L.; Hawkes, C. D.; Kotzer, T.
2014-12-01
The use of numerical simulations to model physical processes occurring within subvolumes of rock samples that have been characterized using advanced 3D imaging techniques is becoming increasingly common. Not only do these simulations allow for the determination of macroscopic properties like hydraulic permeability and electrical formation factor, but they also allow the user to visualize processes taking place at the pore scale and they allow for multiple different processes to be simulated on the same geometry. Most efforts to date have used specialized research software for the purpose of simulations. In this contribution, we outline the steps taken to use commercial software Avizo to transform a 3D synchrotron X-ray-derived tomographic image of a rock core sample to an STL (STereoLithography) file which can be imported into the commercial multiphysics modeling package COMSOL. We demonstrate that the use of COMSOL to perform fluid and electrical current flow simulations through the pore spaces. The permeability and electrical formation factor of the sample are calculated and compared with laboratory-derived values and benchmark calculations. Although the simulation domains that we were able to model on a desk top computer were significantly smaller than representative elementary volumes, and we were able to establish Kozeny-Carman and Archie's Law trends on which laboratory measurements and previous benchmark solutions fall. The rock core samples include a Fountainebleau sandstone used for benchmarking and a marly dolostone sampled from a well in the Weyburn oil field of southeastern Saskatchewan, Canada. Such carbonates are known to have complicated pore structures compared with sandstones, yet we are able to calculate reasonable macroscopic properties. We discuss the computing resources required.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 81 [EPA-R04-OAR-2010-0504-201029; FRL-9185-1] Approval and Promulgation of Implementation Plans; Extension of Attainment Date for the Charlotte-Gastonia-Rock... national ambient air quality standards (NAAQS) for the Charlotte-Gastonia-Rock Hill, North Carolina-South...
Igneous rocks formed by hypervelocity impact
NASA Astrophysics Data System (ADS)
Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.
2018-03-01
Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not be possible and all that may be available is remote sensing data. While the interpretation of some impact melt rocks may be relatively straightforward (e.g., for clast-rich varieties and those with clear projectile contamination) we conclude that distinguishing between impact and endogenic igneous rocks is a non-trivial task that ultimately may require sample investigation and analysis to be conducted. Caution is, therefore, urged in the interpretation of igneous rocks on planetary surfaces.
Combined apatite fission track and U-Pb dating by LA-ICPMS
NASA Astrophysics Data System (ADS)
Chew, D. M.; Donelick, R. A.
2012-04-01
Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental fractionation are challenges in apatite U-Pb dating by LA-ICPMS. Isochron-based approaches to common Pb correction require a significant spread in common Pb / radiogenic Pb ratios. This is not usually possible on individual detrital apatite grains and hence the 204Pb-, 207Pb- and 208Pb-correction methods are preferred. Uranium concentration measurements by ICPMS employ large peak jumps (the internal standard is a Ca isotope) which require a quadrupole or a rapid-scanning magnetic-sector LA-ICPMS system. These single-collector instruments require a prohibitively long dwell time on the low intensity 204Pb peak to measure it accurately and hence the 207Pb- and 208Pb-correction methods are preferred. Uranium-concentration measurements in fission-track dating require well-constrained ablation depths during analysis and hence spot analyses are preferred to rastering. Laser-induced U-Pb fractionation is corrected for by sample-standard bracketing using a variety of apatite standards (Durango, Emerald Lake, Fish Canyon Tuff, Kovdor, Otter Lake and McClure Mountain syenite). Of these, Emerald Lake (Chew et al., 2011) and McClure Mountain syenite apatite are recommended as primary standards with Durango apatite making a suitable secondary standard. Offline data-reduction uses custom-written software for ICPMS data processing (the UPbICP package of Ray Donelick) or the freeware IOLITE data-reduction package of Paton et al. (2010).
National geochronological and natural radioelement data bases
Zartman, Robert E.; Bush, Charles A.; Abston, C.C.
1995-01-01
This CD-ROM contains both the National Geochronological Data Base [NGDB] and the Natural Radioelement Data Base [NRDB]. Supporting location, geologic, and reference information is provided for both data bases. The NGDB is a compilation of more than 30,000 individual published Pb-alpha, fission-track, K-Ar, Rb-Sr, U-Th-Pb, and Sm-Nd rock and mineral ages reported on approximately 18,000 dated samples from the United States. A program is provided to search the data files by latitude and longitude, state, analytical method, and age range. The NGDB is provided as quote-comma delimited files that can be entered into most commercial spreadsheet programs. The NRDB gives gamma-ray spectrometric analyses of the natural radioelements (U, Th, and K) for more than 8500 whole-rock samples obtained under the USGS Natural Radioelement Distribution Project. A program is provided to search the data files by state, keyword, U content, Th content, and K content.
Pederson, Joel L; Chapot, Melissa S; Simms, Steven R; Sohbati, Reza; Rittenour, Tammy M; Murray, Andrew S; Cox, Gary
2014-09-09
Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock's exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼ 1-1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region.
NASA Technical Reports Server (NTRS)
Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.
1994-01-01
We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.
NASA Astrophysics Data System (ADS)
Reese, D.; DeCesare, M.; Subt, C.; Bart, P. J.; Wellner, J. S.; Rosenheim, B. E.
2016-12-01
Chronicling deglaciation rates and style in Antarctic margin sediment is difficult because of low preservation/deposition of carbonate foraminiferal tests as well as incorporation of pre-aged organic carbon from carbonaceous rocks. When carbonates for radiocarbon dating are absent, acid-insoluble organic matter (AIOM) 14C dates are often used as an alternative and providing reliable chronologies in some locations. Results obtained by this method can cause difficulties such as false age reversals and ambiguity due to contamination with pre-aged carbon (Rosenheim et. al., 2008; Subt et al., 2016). Ramped PyrOx 14C dating has exploited the higher thermochemical stability of pre-aged carbon to separate carbon dating to the time of sediment deposition, and recently has produced chronologies similar to foraminifera-based chronologies (Subt et al., 2016). Samples for Ramped PyrOx 14C dating have generally been treated with acid to remove carbonates, and thus some acid soluble organic matter. In an effort to minimize the alteration of the organic matter, we apply Ramped PyrOx 14C dating to samples that have been both treated with 1N HCl and left untreated. Untreated samples display a characteristic large, sharp peak at higher temperatures than pyrolysis of organic matter that we interpret as carbonate decomposition. These carbonate decomposition peaks are characteristically sharp and occur at higher temperatures than the maximum evolution of CO2 from the organic matter in the sample. We isolated these peaks for comparison between known carbonate ages from picked foraminifera and low-temperature Ramped PyrOx splits from acid treated samples. We will discuss the treatment of the suite of 14C ages with reconciliation of two dating methods in mind. Ultimately, this approach offers promise for a single treatment of Antarctic margin sediments that provides chronologies from both carbonate and organic material.
NASA Astrophysics Data System (ADS)
Uunk, Bertram; Wijbrans, Jan; Brouwer, Fraukje
2017-04-01
White mica 40Ar/39Ar dating is a proven powerful tool for constraining the timing and rate of metamorphism, deformation and exhumation. However, for high-pressure metamorphic rocks dating often results in wide age ranges, which are not in agreement with constraints from other isotopic systems, indicating that geological and chemical processes complicate straightforward 40Ar/39Ar dating. Despite hosting one of the largest geochronological datasets in the world, the Cycladic Blueschist Unit in Greece is presently one of the focal areas in the discussion on the interpretation of metamorphic 40Ar/39Ar ages. Previous phengite multi grain step heating experiments commonly yielded undulating age spectra ranging between 20 - 60 Ma. While some studies attempt to assign geological significance to these ages, others argue the ages are geologically meaningless and the result of the interplay between partial diffusive resetting and continued crystallization. By taking an alternative approach of multiple single grain fusion experiments, this study investigates age heterogeneity between samples of contrasting metamorphic facies, rheology and strain from the Cycladic islands of Syros and Sifnos. Comparing the size and shape of single grain fusion age distributions at the grain, rock, outcrop and island scale allows determination of the scale at which different age-forming processes operate. Resulting ages show a previously unreported consistent variation between different outcrops, moving from the eclogite-blueschist facies (55-45 Ma) to greenschist overprinting (40-30 Ma). This indicates that outcrop scale homogeneous resetting is the dominant processes for age formation in the CBU. Single grain age variation at the sample and outcrop scale is only limited to 10 Ma, indicating a smaller but observable role for local age perturbing processes of incomplete resetting, continued (re)crystallization or infiltration of excess argon. Some of the partially overprinted samples show homogeneous single grain age populations, indicating at least a partial role for efficient resetting by thermally activated diffusion at the outcrop scale. Traditional multi grain step heating experiments on the same samples yield flat plateaus for various single grain age distributions, indicating that age heterogeneities resolved by single grain fusion dating are mixed to a meaningless average in step heating experiments. In contrast, our approach leads to a better understanding of the processes responsible for age formation during high pressure metamorphism.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-001] Rock River Beach.... c. Date filed: November 23, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Town of Onota, Alger County...
6. Photograph of a photograph in possession of Rock Island ...
6. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. FIRST FLOOR, EAST WING, SHOWING BELT-DRIVEN EQUIPMENT (LATHES, DRILLS, SCREW MACHINES) USED IN MACHINING COMPONENTS FOR ARTILLERY GUN CARRIAGES. DATED MAY 12, 1904. - Rock Island Arsenal, Building No. 108, Rodman Avenue between Third & Fourth Streets, Rock Island, Rock Island County, IL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-000] Rock River Beach.... c. Filing Date: January 5, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Township of Onota, Alger County...
NASA Astrophysics Data System (ADS)
Schimmelpfennig, I.; Benedetti, L.; Pik, R.; Burnard, P.; Blard, P. H.; Bourles, D.
2007-12-01
One of the CRONUS-EU goals is to provide high quality calibration sites from independently dated surfaces. Several previous studies have been conducted on 36Cl production rate calibration (e.g. Stone et al. 1996, Phillips et al. 2001), which, however, used different protocols and yielded 36Cl production rates with up to 40% discrepancies. The objectives of this study are 1- to understand the source of these discrepancies and 2- to calibrate 36Cl production rates from its target elements Ca and K. As a first step we focused on testing the chemical protocol by performing a sequential 36Cl extraction experiment on whole rock grains and Ca-rich plagioclase from the same sample. The sample was collected at Mt. Etna on a pahoehoe flow, which has a K-Ar fossil exposure time of (10±3) kyr. Cosmogenic 3He was also precisely measured within cogenetic olivine phenocrysts of this sample (Blard et al. 2005) and yields an exposure time of (10.4±1.5) kyr. Both, total Cl and 36Cl concentrations from the first dissolution steps are high, 5800 ppm (whole rock) and 450 ppm (plagioclase) Cl, and 107 - 106 atoms 36Cl/g of rock dissolved. After about 20% dissolution of the plagioclase sample, Cl is almost completely removed (1-3ppm) and 36Cl concentrations reach a plateau value of 2*105 atoms/g of rock. Using the Stone et al. (1996) and Evans et al. (1997) 36Cl production rates for the target elements Ca and K, respectively, this plateau concentration yields an exposure age which is in excellent agreement with K-Ar dating and cosmogenic 3He ages. On the contrary, in the whole rock sample total Cl concentrations remain high (>330ppm) resulting in a considerable 36Cl production from capture of low-energy neutrons by 35Cl, an additional and still not well-constrained 36Cl production mechanism. The resulting exposure ages from the whole rock are 35-45% higher than the independent 3He ages. For 36Cl production rate calibration from Ca, we will use separated Ca-rich plagioclase from various Mt. Etna lava flows of different elevation and independently determined ages between 400 yr and 41 kyr. To better constrain the 36Cl production rate from K, separated sanidine (K-rich feldspar) from a 15 kyr old lava flow of volcano Payun-Matru (Argentina, 36° S) will be used. Stone J.O., et al. (1996), Geochim. Cosmochim. Acta 60 679-692; Phillips F.M., et al. (2001), Chem. Geol. 175 689-701; Blard P.H., et al. (2005), EPSL 236 613-631; Evans J.M. et al. (1997), Nucl. Instr. and Meth. in Phys. Res. B 123 334-340
Lunar Crustal History Recorded in Lunar Anorthosites
NASA Technical Reports Server (NTRS)
Nyquist, Laurence E.; Shih, C.-Y.; Reese, D.; Park, J.; Bogard. D.; Garrison, D.; Yamaguchi, A.
2010-01-01
Anorthosites occur ubiquitously within the lunar crust at depths of 3-30 km in apparent confirmation of the Lunar Magma Ocean (LMO) hypothesis. We have dated lunar anorthosite 67075, a Feldspathic Fragmental Breccia (FFB) collected near the rim of North Ray Crater by the Sm-Nd and Rb-Sr techniques. We also have dated an anorthositic white clast (WC) in lunar meteorite Dhofar 908 by the Ar-39-Ar-40 technique and measured whole rock (WR) Sm-Nd data for a companion sample. We discuss the significance of the ages determined for these and other anorthosites for the early magmatic and bombardment history of the moon.
NASA Astrophysics Data System (ADS)
Cattani, F.; Gillot, P. Y.; Hildenbrand, A.; Quidelleur, X.; Courtade, F.; Boukari, C.; Lefevre, J. C.
2017-12-01
Absolute dating within ± 20% is needed to check and to calibrate the relative Martian chronology presently available. For that purpose, a K-Ar dating system has been developed to experiment the feasibility of such dating in future landing planetary missions. It consists in a laser ablation-based system built to vaporize a reproducible volume of rock. Potassium content is measured by laser-induced breakdown spectroscopy (LIBS) and argon by quadrupole mass spectrometry (QMS). Improvements of LIBS acquisition (optimization of optics part and normalization by total intensity spectrum) and QMS calibration (by reproducible known amount of argon) have been achieved. In addition, we have test the determination of ablated mass from volume measurement performed by profilometry technique. Instrument calibration for Martian analyses requires terrestrial analogues to determine the most suitable analytical conditions. For that purpose, total chemistry, electron microprobe analyses, flame absorption spectrometry and mass spectrometry have been performed in order to qualify stoichiometry, mineralogy, K concentration and Ar content from a collection of old terrestrial rocks. These analyses coupled with those published have helped to select 14 mineral phases (e.g. feldspars) showing a large range of K content (0.15 - 11%). The objective is to calibrate the LIBS on different geological material with Mars-like %K values ( 0.4%), and assess the detection limit of the LIBS with extreme %K values. All these mineral phases display a K-Ar age older than 260 Ma. Hence, the content of radiogenic Ar atoms per gram is within the range of Martian samples (on the order of 1 Ga for 0.4 %K). Furthermore, the ablated mass is estimated by measurement of Ar extracted from an analogue mineral of known amount of radiogenic Ar content per gram. This quantification is then compared with the mass estimated from the volume measured by profilometry technique. Finally, it provides a well-defined relationship between the ablation time and the type of ablated mineral. Experiments have been conducted to test our dating system for rocks with similar features than those from the Martian surface. Our preliminary results show that our QMS and LIBS instruments are suitable for in-situ K-Ar analyses with an uncertainty for K-Ar age much better than 15%.
NASA Astrophysics Data System (ADS)
Onstott, T. C.; Dorbor, J.
Lower amphibolite to granulite facies metamorphic rocks in Nimba County, Liberia have yielded 2.2-2.9 Ga RbSr whole rock ages, indicating that they are part of the Archean Liberian age province. We report a 2040 Ma 4040Ar/ 39Ar plateau date on hornblende from an amphibolite in this region, and suggest that these rocks were also severelyreworked during the Eburnean (˜2.0 Ga) metamorphic episode. 40Ar/ 39Ar analyses of biotite and feldspars from neighboring schists also indicate the presence of two mild thermal events, at 1.5 Ga and 0.6 Ga. Paleomagnetic analyses of samples from these same metamorphic rocks reveal three components of magnetization. The predominant and most stable component (273°E, 21°N) is considered to have been acquired as a result of pos Eburnean uplift and cooling at ˜ 2.0 Ga, whereas the two less stable components with poles at 235°E, 43°N and 16°E, 36°N, probably correlate with the 1.5 Ga and 0.6 Ga thermal pulses, respectively. Rock units from southern Liberia also yield two secondary magnetizations, one at 247°E, 37°N and the other at 104°E, 5°N, and a 1.5 Ga 40Ar/ 39Ar date on plagioclase. Comparison of the paleomagnetic poles corresponding to the ˜2.0 Ga Eburnean component with published paleomagnetic data for West Africa is not consistent with prior interpretations of the polar wander path for West Africa. Our paleomagnetic data, when compared to poles of comparable age from the Kalahari Shield, still suggest that some form of displacement has occurred between the Kalahari and West African Shields since 2.0 Ga.
NASA Astrophysics Data System (ADS)
Zeng, Yun-Chuan; Xu, Ji-Feng; Chen, Jian-Lin; Wang, Bao-Di; Kang, Zhi-Qiang; Huang, Feng
2018-02-01
The formation of the Shiquanhe-Yunzhug-Namu Tso ophiolite mélange zone (SNMZ) within the Lhasa Terrane, Tibetan Plateau, is key to understanding the Mesozoic tectonic evolution of this terrane, which remains controversial. We show that the Yunzhug ophiolite in the central segment of the SNMZ formed at 150 Ma, based on U-Pb dating of zircons from a gabbroic sample in a well-developed sheeted dike complex. Geochemically, these mafic rocks are dominated by E-MORB-type compositions, along with minor amounts of rocks with P-MORB-type compositions. The samples also exhibit high εNd(t) values and lack negative Nb and Ta anomalies. Data for all the samples plot within the MORB array on a Th/Yb-Nb/Yb diagram. Therefore, these mafic rocks most likely formed in either a slow spreading oceanic setting or an embryonic ocean, and not in a back-arc basin as has been previously assumed. Taking into account the regional geology, we propose that the Yunzhug ophiolite is part of a distinct ophiolitic belt and represents material formed in an embryonic ocean within the Lhasa Terrane, which provides new insights into the Jurassic tectonic evolution of the Lhasa Terrane.
NASA Astrophysics Data System (ADS)
Anderson, F. S.; Nowicki, K.; Whitaker, T.
This paper reports on the first rubidium-strontium (Rb-Sr) radiometric dates using a Laser Desorption Resonance Ionization Mass Spectrometry (LDRIMS) instrument capable of being miniaturized for flight to another planet. The LDRIMS instrument produces dates in under 24 hours, requires minimal sample preparation, and avoids the interference and mass resolution issues associated with other geochronology measurements. We have begun testing the bench-top prototype on the Boulder Creek Granite (BCG), from Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite; whole rock Rb-Sr TIMS measurements result in dates of 1700± 40 Ma [1]. Data reduction of the LDRIMS Rb-Sr measurements on calibrated repeat runs result in a date for the BCG of 1.727± 0.087 Ga (n=288, MSWD=1). Most geochronology applications are willing to accept an MSWD up to ~2.7; at MSWD=2, the precision improves to ± 0.062 Ga. This technology is moving from lab prototype to field deployable instrument, and provides an opportunity to directly address the science goals of Mars Sample Return (MSR) within the bounds posed by current scientific, fiscal, and political pressures on the Mars program. Additionally, LDRIMS could potentially be flown to the Moon under the Discovery or New Frontiers program. We posit that in-situ geochronology missions to Mars to triage and validate samples for Mars Sample Return (MSR) are technically feasible in the 2018-2022 time frame.
Miggins, Daniel P.; Premo, Wayne R.; Snee, Lawrence W; Yeoman, Ross; Naeaer, Nancy D.; Naeser, Charles W.; Morton, Douglas M.
2014-01-01
The thermochronology for several suites of Mesozoic metamorphic and plutonic rocks collected throughout the northern Peninsular Ranges batholith (PRB) was studied as part of a collaborative isotopic study to further our understanding of the magmatic and tectonic history of southern California. These sample suites include: a traverse through the plutonic rocks across the northern PRB (N = 29), a traverse across a central structural and metamorphic transition zone of mainly metasedimentary rocks at Searl ridge (N = 20), plutonic samples from several drill cores (N = 7) and surface samples (N = 2) from the Los Angeles Basin, a traverse across the Eastern Peninsular Ranges mylonite zone (N = 6), and a suite of plutonic samples collected across the northern PRB (N = 13) from which only biotite 40Ar/39Ar ages were obtained. These geochronologic data help to characterize five major petrologic, geochemical, and isotopic zonations of the PRB (western zone, WZ; western transition zone, WTZ; eastern transition zone, ETZ; eastern zone, EZ; and upper-plate zone, UPZ).Apparent cooling rates were calculated using U-Pb zircon (zr) and titanite (sphene) ages; 40Ar/39Ar ages from hornblende (hbl), biotite (bi), and K-feldspar (Kf); and apatite fission-track (AFT) ages from the same samples. The apparent cooling rates across the northern PRB vary from relatively rapid in the west (zr-hbl ~210 °C/m.y.; zr-bio ~160 °C/m.y.; zr-Kf ~80 °C/m.y.) to less rapid in the central (zr-hb ~280 °C/m.y.; zr-bio ~90 °C/m.y.; zr-Kf ~60 °C/m.y.) and eastern (zr-hbl ~185 °C/m.y.; zr-bio ~180 °C/m.y.; zr-Kf ~60 °C/m.y.) zones. An exception in the eastern zone, the massive San Jacinto pluton, appears to have cooled very rapidly (zr-bio ~385 °C/m.y.). Apparent cooling rates for the UPZ samples are consistently slower in comparison (~25–45 °C/m.y.), regardless of which geochronometers are used.Notable characteristics of the various ages from different dating methods include: (1) Zircon ages indicate a progressive younging of magmatic activity from west to east between ca. 125 and 90 Ma. (2) Various geochronometers were apparently affected by emplacement of the voluminous (ETZ and EZ) La Posta–type plutons emplaced between 99 and 91 Ma. Those minerals affected include K-feldspar in the western zone rocks, biotite and K-feldspar in the WTZ rocks, and white mica and K-feldspar in rocks from Searl ridge. (3) The AFT ages record the time the rocks cooled through the AFT closure temperature (~100 °C in these rocks), likely due to exhumation. Throughout most of the northern traverse, the apatite data indicate the rocks cooled relatively quickly through the apatite partial annealing zone (PAZ; from ~110 °C to 60 °C) and remained at temperatures less than 60 °C as continued exhumation cooled them to present-day surface temperatures. The ages indicate that the western “arc” terrane of the WZ was being uplifted and cooled at ca. 91 Ma, during or shortly after intrusion of the 99–91 Ma La Posta–type plutons to the east. Uplift and cooling occurred later, between ca. 70 Ma and ca. 55 Ma, in the central WTZ, ETZ, and EZ rocks, possibly as upwarping in response to events in the UPZ. The UPZ experienced differential exhumation at ca. 50–35 Ma: Cooling on the western edge was taking place at about the same time or shortly after cooling in the younger samples in the ETZ and EZ, whereas on the east side of the UPZ, the rocks cooled later (ca. 35 Ma) and spent a prolonged time in the apatite PAZ compared to most northern traverse samples.Apparent cooling rates from Los Angeles Basin drill core samples of plutonic rocks show that four are similar to the WTZ thermal histories, and two are similar to the WTZ histories, indicating that the eastern part of the Los Angeles Basin area is underlain by mainly western zone PRB rocks.Thermal histories revealed by samples from Searl ridge indicate that the WTZ magmatism intruded the metasedimentary rocks prior to their deformation and metamorphism at ca. 97 Ma. Both low-grade schists and metasandstones of the western side of the ridge and high-grade gneisses of the eastern side of the ridge have thermal histories consistent with eastern zone rocks—suggesting a temporal/thermal relationship between the western transition zone and the eastern zones.Limited ages from six samples across the Eastern Peninsular Ranges mylonite zone (EPRMZ) indicate that this zone underwent cooling after emplacement of the youngest UPZ rocks at 85 Ma, suggesting that thrusting along the EPRMZ was either coeval with emplacement of the UPZ plutonic rocks or occurred shortly afterwards (~10–15 m.y.). Alternatively, the EPRMZ thrusting may have occurred at temperatures under ~180 °C at yet a later date.The geochronology presented here differs slightly from previous studies for similar rocks exposed across the middle and southern portions of the PRB, in that our data define a relatively smooth progression of magmatism from west to east, and the transition from western, oceanic-arc plutonism to eastern, continental arc plutonism is interpreted to have occurred at ca. 99–97 Ma and not at ca. 105 Ma.
NASA Astrophysics Data System (ADS)
Liu, De-Liang; Shi, Ren-Deng; Ding, Lin; Zou, Hai-Bo
2018-01-01
This study deals with arc-type and subsequent bimodal volcanic rocks interbedded with (late) Cretaceous sedimentary formations near Gaize, central Tibet that shed new light on the Tethyan evolution along the Bangong-Nujiang suture. Unit I consists of trachyandesites interbedded with fine-grained sandstone, slate, and limestone. Zircon dating on a trachyandesite sample yields a 206Pb/238U age of 99 ± 1 Ma. The trachyandesites are characterized by strong enrichment in LILE but depletion in HFSE, low zircon saturation temperatures (TZr = 642-727 °C), and high oxygen fugacity (Δ FMQ = - 0.67-0.73), indicating their arc affinities. Unit II comprises a bimodal basalt-rhyolite suite interbedded with coarse-grained sandstone and conglomerate. Zircon dating on two rhyolitic samples yield 206Pb/238U ages of 97.1-87.0 Ma. In contrast with Unit I trachyandesites, Unit II basalts and rhyolites exhibit OIB-like trace element patterns, high temperatures (T = 1298-1379 °C for basalts, TZr = 855-930 °C for rhyolites), and low oxygen fugacity (Δ FMQ = - 3.37 - 0.43), suggesting that Unit II bimodal volcanic rocks probably formed in an extensional setting. The Sr-Nd isotopes of both Unit I (87Sr/86Sri = 0.7052-0.7074, εNd(t) = - 2.21-1.02) and Unit II (87Sr/86Sri = 0.7057-0.7098, εNd(t) = - 3.22-0.88) rocks are similar to mantle-wedge-derived volcanic rocks within the southern Qiangtang block. The parental magma of Unit I trachyandesites was formed by fluid induced melting of the mantle wedge above the subducted Bangong-Nujiang Tethyan slab, and contaminated by crustal materials during MASH process within a deep crustal hot zone; and Unit II bimodal volcanic rocks were derived by melting of upwelling asthenosphere and a mildly metasomatized mantle wedge during the Lhasa-Qiangtang collision. We propose that the transition from the Bangong-Nujiang Tethyan subduction to the Lhasa-Qiangtang collision occurred during the Late Cretaceous in central Tibet.
Kistler, R.W.; Swanson, S.E.
1981-01-01
Metamorphosed Mesozoic volcanic rocks from the E-central Sierra Nevada range in composition from basalt to rhyolite and have ages, based on whole rock Rb-Sr and U-Pb zircon dating, of about 237- 224, 185, 163, 134, and 100Ma. The major plutons of the batholith in this area are of Triassic (215-200Ma) and Cretaceous (94-80Ma) ages. Initial 87Sr/86Sr values for the metamorphosed volcanic rocks of the area are in the range from 0.7042 to 0.7058 and are generally different from the values for the surrounding batholithic rocks (0.7056-0.7066). A circular, zoned granitic pluton, with an outcrop area of 2.5km2, similar in appearance to a ring dike complex, was apparently a conduit for some or possibly all of the middle-Cretaceous metamorphosed volcanic rocks exposed about 5km to the S in the western part of the Ritter Range. Samples from the metamorphosed volcanic rocks and the pluton yield a Rb/Sr whole rock isochron age of 99.9+ or -2.2Ma with an intitial 87Sr/86Sr of 0.7048+ or -0.00001. Major element variation diagrams of the pluton and volcanic rocks define coincident compositional trends. The ages of volcanic events relative to the ages of the major intrusive epochs and the major element and isotopic compositions of the volcanic rocks relative to the major plutons indicate that the volcanic rocks are not simply or directly related to the major plutons in the Sierra Nevada. -from Authors
NASA Astrophysics Data System (ADS)
Mertineit, Michael; Grewe, Wiebke; Schramm, Michael; Hammer, Jörg; Blanke, Hartmut; Patzschke, Mario
2017-04-01
Fractures occur locally in the z2 potash seam (Kaliflöz Staßfurt). Most of them extend several centimeter to meter into the surrounding salt rocks. The fractures are distributed on all levels in an extremely deformed area of the Morsleben salt mine, Northern Germany. The sampling site is located within a NW-SE trending synclinal structure, which was reverse folded (Behlau & Mingerzahn 2001). The samples were taken between the -195 m and - 305 m level at the field of Marie shaft. In this area, more than 200 healed fractures were mapped. Most of them show opening widths of only a few millimeters to rarely 10 cm. The fractures in rock salt are filled with basically polyhalite, halite and carnallite. In the potash seam, the fractures are filled with kainite, halite and minor amounts of carnallite and polyhalite. In some cases the fracture infill changes depending on the type of surrounding rocks. There are two dominant orientations of the fractures, which can be interpreted as a conjugated system. The main orientation is NE-SW trending, the dip angles are steep (ca. 70°, dip direction NW and SE, respectively). Subsequent deformation of the filled fractures is documented by a strong grain shape fabric of kainite, undulatory extinction and subgrain formation in kainite, and several mineral transformations. Subgrain formation in halite occurred in both, the fracture infill and the surrounding salt rocks. The results correlate in parts with investigations which were carried out at the close-by rock salt mine Braunschweig-Lüneburg (Horn et al. 2016). The development of the fractures occurred during compression of clayey salt rocks. However, the results are only partly comparable due to different properties (composition, impurities) of the investigated stratigraphic units. Further investigations will focus on detailed microstructural and geochemical analyses of the fracture infill and surrounding salt rocks. Age dating of suitable minerals, e.g. polyhalite (Leitner et al. 2013), could help to reconstruct the formation conditions. Behlau, J. & Mingerzahn, G. 2001. Geological and tectonic investigations in the former Morsleben salt mine (Germany) as a basis for the safety assessment of a radioactive waste repository. Engineering Geology 61, 83-97. Leitner, C., Neubauer, F., Genser, J., Borojevic-Sostaric, S. & Rantitsch, G. 2013. 40Ar/39Ar ages of crystallization and recrystallization of rock-forming polyhalite in Alpine rocksalt deposits. In: Jourdan, F., Mark, D.F. & Verati, C. (eds.): Advances in 40Ar/39Ar dating from archaeology to planetary sciences. - Geological Society of London, Special Publications 378, 207-224. Horn, M., Barnasch, J., Bode, J., Stanek, K. & Zeibig, S. 2016. Erscheinungsformen der bruchlosen Deformation und Bruchdeformation im Salinar des Steinsalzbergwerkes Braunschweig-Lüneburg. Kali und Steinsalz 02/2016, 30-42.
NASA Astrophysics Data System (ADS)
Vera-Sanchez, P.; Rebolledo-Vieyra, M.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.
2008-05-01
The tectonic and petrologic nature of the basement of the Yucatan Block is studied from analyses of basement clasts present in the impact suevitic breccias of Chicxulub crater. The impact breccias have been sampled as part of the drilling projects conducted in the Yucatan peninsula by Petroleos Mexicanos, the National University of Mexico and the Chicxulub Scientific Drilling Project. Samples analyzed come mainly from the Yaxcopoil-1, Tekax, and Santa Elena boreholes, and partly from Pemex boreholes. In this study we concentrate on clasts of the granites, granodiorites and quartzmonzonites in the impact breccias. We report major and trace element geochemical and petrological data, which are compared with data from the granitic and volcanic rocks from the Maya Mountains in Belize and from the Swannee terrane in Florida. Basement granitic clasts analyzed present intermediate to acidic sub-alkaline compositions. Plots of major oxides (e.g., Al2O3, Fe2O3, TiO2 and CaO) and trace elements (e.g., Th, Y, Hf, Nb and Zr) versus silica allow separation of samples into two major groups, which can be compared to units in the Maya Mountains and in Florida basement. The impact suevitic breccia samples have been affected by alteration likely related to the hydrothermal processes associated with the crater melt sheet. Cloritization, seritization and fenitization alterations are recognized, due to the long term hydrothermalism. Krogh et al. (1993) reported U-Pb dates on zircons from the suevitic breccias, which gave dates of 545 +/- 5 Ma and 418 +/- 6 Ma, which were interpreted in terms of the deep granitic metamorphic Yucatan basement. The younger date correlates with the age for the Osceola Granite and the St. Lucie metamorphic complex of the Swannee terrane in the Florida peninsula. The intrusive rocks in the Yucatan basement may be related to approx. 418 Ma ago collisional event in the Late Silurian.
A review of biostratigraphic studies in the olistostrome deposits of Karangsambung Formation
NASA Astrophysics Data System (ADS)
Hendrizan, Marfasran
2018-02-01
Planktonic foraminifera is widely used for marine sediment biostratigraphy. Foraminiferal biostratigraphy of Karangsambung Formation is relatively rare to be investigated by previous researchers. A review of foraminiferal biostratigraphy is expected to be early work to perform a research about the ages of Tertiary rock formations in Karangsambung. The research area is formed by olistostrome process; a sedimentary slide deposit characterized by bodies of harder rock mixed and dispersed in a matrix. Biostratigraphic studies based on foraminifera and nannoplankton in Karangsambung Formation are still qualitative analysis using fossils biomarker. However, the age of this formation is still debatable based on foraminifera and nannofossil analysis. Two explanations of debatable ages in Karangsambung Formation that is possibly developed in Karangsambung area: firstly, Karangsambung Formation is characterized by normal sedimentation in some places and other regions such Kali Welaran and Clebok, Village as a product of olistostrome, and secondly, Karangsambung Formation is olistostrome deposit. However, micropaleontology sampling and analysis in matrix clays from olistostrome were ignored causing biostratigraphical results in those matrix clays occurred in normal sedimentation process and achieving the age of middle Eocene to Oligocene. We suppose previous authors picked samples in matrix of Karangsambung Formation from several river sections, which will make misinterpretation of the age of Karangsambung Formation. The age of middle to late Eocene probably is the dates of the older sediment that was reworked by sliding and sampling process and accumulated in Karangsambung Formation. The date of Karangsambung Fm is in Oligocene period based on a finding of several calcareous nannofossils. Detailed micropaleontological analysis of olistostrome deposits in Karangsambung Formation should be reevaluated for new finding of the accurate dating. Re-evaluation should start from detailed sedimentological mapping of Karangsambung Fm transects based on previous authors especially Kali Welaran, Jatibungkus transect and Clebok section followed by systematic sampling of normal sedimentation process from olistostrome products and matrix clays of olistostrome Karangsambung Formation. Finally, quantitative method of micropaleontological analysis can be applied to identify the age of Karangsambung Formation.
A new Late Cretaceous paleomagnetic pole from the Adel Mountains, west central Montana
NASA Astrophysics Data System (ADS)
Gunderson, Jay A.; Sheriff, Steven D.
1991-01-01
North America's apparent polar wander path has been poorly defined between the mid-Cretaceous and Paleocene reference pole positions. Existing data allowed 13° of apparent polar motion over about 22 m.y. (87-65 Ma) roughly coinciding with the beginning of Laramide deformation (˜80 Ma). We report on a paleomagnetic study of the Adel Mountain Volcanic rocks to refine the North American apparent polar wander path for this interval. The shonkinite rocks of the Adel Mountain Volcanic field are on the eastern edge of the Cretaceous-Paleocene fold and thrust belt; some of these structures disturb the western edge of the volcanic pile. We obtained two new K-Ar dates from the Adel rocks. One date, on biotite ( from a shonkinite dike that crosscuts most of the volcanic rocks, is 71.2±2.7 Ma. The other, a whole rock date from a flow deep in the volcanic pile, is 81.1±3.5 Ma. We collected six to nine paleomagnetic samples from each of 34 sites in roadcuts and natural outcrops of flows, dikes, and laccoliths. Positive fold and conglomerate tests, along with alternating field and thermal demagnetization, indicate that our characteristic remanent directions are primary magnetizations acquired before Late Cretaceous to Paleocene thrust belt deformation. Averaging the virtual geomagnetic poles from 26 reliable sites, all of normal polarity, yields a paleopole at 82.2°N, 209.9°E (α95 = 6.80°, k = 18.38). This pole is concordant with the Paleocene reference pole (82.0°N, 170.2°E, α95 = 3.5°, k = 18.6 (Diehl et al., 1983)) and is 11.6° from the Globerman and Irving (1988) mid-Cretaceous pole at 71°N, 196°E. The youngest information in the Cretaceous stillstand pole is from the Niobrara Formation (Shive and Frerichs, 1974) at about 85-89 Ma. If we take the average age of the Adel Mountain Volcanics to be 76 Ma, then ˜12° of apparent polar motion occurred between 87 Ma and 76 Ma. Thus, rapid apparent polar motion correlates well with the onset of Laramide deformation.
Smith, Bruce D.; Tippens, C.L.; Flanigan, V.J.; Sadek, Hamdy
1983-01-01
Laboratory spectral induced polarization (SIP) measurements on 29 carbonaceous schist samples from the Wadi Bidah district show that most are associated with very long polarization decays or, equivalently, large time constants. In contrast, measurements on two massive sulfide samples indicate shorter polarization decays or smaller time constants. This difference in time constants for the polarization process results in two differences in the phase spectra in the frequency range of from 0.06 to 1Hz. First, phase values of carbonaceous rocks generally decrease as a function of increasing frequency. Second, phase values of massive sulfide-bearing rocks increase as a function of increasing frequency. These results from laboratory measurements agree well with those from other reported SIP measurements on graphites and massive sulfides from the Canadian Shield. Four SIP lines, measured by using a 50-m dipole-dipole array, were surveyed at the Rabathan 4 prospect to test how well the results of laboratory sample measurements can be applied to larger scale field measurements. Along one line, located entirely over carbonaceous schists, the phase values decreased as a function of increasing frequency. Along a second line, located over both massive sulfides and carbonaceous schists as defined by drilling, the phase values measured over carbonaceous schists decreased as a function of increasing frequency, whereas those measured over massive sulfides increased. In addition, parts of two lines were surveyed down the axes of the massive sulfide and carbonaceous units. The phase values along these lines showed similar differences between the carbonaceous schists and massive sulfides. To date, the SIP survey and the SIP laboratory measurements have produced the only geophysical data that indicate an electrical difference between the massive sulfide-bearing rocks and the surrounding carbonaceous rocks in the Wadi Bidah district. However, additional sample and field measurements in areas of known mineralization would fully evaluate the SIP method as applied to various geologic environments and styles of massive sulfide mineralization. Additionally, the efficiency of SIP surveys in delineating areas of sulfide mineralization might be improved by surveying lines down the axes of known electrical conductors. An evaluation of the applied research done on the SIP method to date suggests that this technique offers significant exploration applications to massive sulfide exploration in the Kingdom of Saudi Arabia.
Into the Past: A Step Towards a Robust Kimberley Rock Art Chronology
Hayward, John
2016-01-01
The recent establishment of a minimum age estimate of 39.9 ka for the origin of rock art in Sulawesi has challenged claims that Western Europe was the locus for the production of the world’s earliest art assemblages. Tantalising excavated evidence found across northern Australian suggests that Australia too contains a wealth of ancient art. However, the dating of rock art itself remains the greatest obstacle to be addressed if the significance of Australian assemblages are to be recognised on the world stage. A recent archaeological project in the northwest Kimberley trialled three dating techniques in order to establish chronological markers for the proposed, regional, relative stylistic sequence. Applications using optically-stimulated luminescence (OSL) provided nine minimum age estimates for fossilised mudwasp nests overlying a range of rock art styles, while Accelerator Mass Spectrometry radiocarbon (AMS 14C) results provided an additional four. Results confirm that at least one phase of the northwest Kimberley rock art assemblage is Pleistocene in origin. A complete motif located on the ceiling of a rockshelter returned a minimum age estimate of 16 ± 1 ka. Further, our results demonstrate the inherent problems in relying solely on stylistic classifications to order rock art assemblages into temporal sequences. An earlier than expected minimum age estimate for one style and a maximum age estimate for another together illustrate that the Holocene Kimberley rock art sequence is likely to be far more complex than generally accepted with different styles produced contemporaneously well into the last few millennia. It is evident that reliance on techniques that produce minimum age estimates means that many more dating programs will need to be undertaken before the stylistic sequence can be securely dated. PMID:27579865
Into the Past: A Step Towards a Robust Kimberley Rock Art Chronology.
Ross, June; Westaway, Kira; Travers, Meg; Morwood, Michael J; Hayward, John
2016-01-01
The recent establishment of a minimum age estimate of 39.9 ka for the origin of rock art in Sulawesi has challenged claims that Western Europe was the locus for the production of the world's earliest art assemblages. Tantalising excavated evidence found across northern Australian suggests that Australia too contains a wealth of ancient art. However, the dating of rock art itself remains the greatest obstacle to be addressed if the significance of Australian assemblages are to be recognised on the world stage. A recent archaeological project in the northwest Kimberley trialled three dating techniques in order to establish chronological markers for the proposed, regional, relative stylistic sequence. Applications using optically-stimulated luminescence (OSL) provided nine minimum age estimates for fossilised mudwasp nests overlying a range of rock art styles, while Accelerator Mass Spectrometry radiocarbon (AMS 14C) results provided an additional four. Results confirm that at least one phase of the northwest Kimberley rock art assemblage is Pleistocene in origin. A complete motif located on the ceiling of a rockshelter returned a minimum age estimate of 16 ± 1 ka. Further, our results demonstrate the inherent problems in relying solely on stylistic classifications to order rock art assemblages into temporal sequences. An earlier than expected minimum age estimate for one style and a maximum age estimate for another together illustrate that the Holocene Kimberley rock art sequence is likely to be far more complex than generally accepted with different styles produced contemporaneously well into the last few millennia. It is evident that reliance on techniques that produce minimum age estimates means that many more dating programs will need to be undertaken before the stylistic sequence can be securely dated.
9. Photograph of a photograph in possession of Rock Island ...
9. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SECOND FLOOR, EAST WING. MOTORIZED MACHINING EQUIPMENT USED IN MANUFACTURE OF MACHINE GUN PARTS. SHOWN IN THE FOREGROUND IS A PRATT & WHITNEY VERTICAL MILLING MACHINE. DATED JANUARY 21, 1943. - Rock Island Arsenal, Building No. 68, Rodman Avenue between Fourth Street & East Avenue, Rock Island, Rock Island County, IL
NASA needs a long-term sample return strategy
NASA Astrophysics Data System (ADS)
Agee, C.
Sample return missions, as demonstrated by Apollo, can have a huge payoff for plan- etary science. Beyond NASAAfs current Discovery missions, Stardust and Genesis, there are no future U.S. sample return missions on the books. At this juncture, it would be desirable for NASA to develop a coherent, long-term strategy for sample return missions to prime targets such as Mars, Venus, and other solar system bodies. The roster of missions planned for this decade in NASAAfs Mars Program no longer includes a sample return. Arguments against an early Mars sample return (MSR) in- clude the high cost, high risk, and not knowing the Agright placeAh on the Martian surface to sample. On the other hand, answering many of the key scientific questions about Mars, including the search for life, may require sample return. In lieu of MSR, NASA plans, out to 2009, a mix of orbital and landed missions that will perform re- mote and in-situ science at Mars. One approach to MSR that may lead to success in the opportunities beyond 2009 is a series of simple missions where large rovers and complex instruments are replaced by robust Mars ascent vehicles and lander-based sampling techniques. AgMobilityAh and Agsample diversityAh in these early reconnaissance sample return missions are accomplished by sending each mission to a distinctly different location based on our understanding of Martian geology prior to launch. The expected wealth of knowledge from these simple sample return missions will help guide Mars exploration beyond 2020. Venus sample return (VSR) should also be a high priority in NASAAfs exploration of the solar system. Our understanding of the Venusian surface is fragmentary at best and the mineralogy in unknown. We have no verified meteorites from Venus and thus radiometric ages of the crust do not exist. Venusian science best done on Earth from a VSR would include (1) precise isotopic measurements of atmospheric gases, soil, and rock, (2) age dating of rock, (3) trace element chemistry of soil and rock, (4) charac- terization of very small phases, (5) characterization of complex weathering products, (6) detailed rock mineralogy and petrology.
Thermoluminescence of quartz collected from Nojima Fault Trench excavated in 2015
NASA Astrophysics Data System (ADS)
Hasebe, N.; Miura, K.; Ganzawa, Y.; Tagami, T.; Lin, A.
2017-12-01
The Southern Hyogo prefecture earthquake occurred in 1995, which is known as Kobe Earthquake or Great Hanshin-Awaji Earthquake, was caused by the activity of the Nojima fault. The research project on the Nojima fault is currently going on and new trench was excavated in 2015. We investigate the effect of fault activity on surrounding rocks by thermoluminescence (TL) dating method. First, quartz were extracted from samples collected from the trench wall with different distance from the fault. A block of nearby basement rock is also collected and analyzed. Next, the luminescence sites and their emission temperatures were determined by T-Tmax method (McKeever, 1980) perfomed by 10 ° C interval for selected samples (the basement rock collected from Rokko granite, the granite sample collected about 5 m away from the fault in the trench, and the gouge sample adjacent to the fault). As a result, the peak emission temperatures were 200-220 ° C, 270 ° C and 320-350 ° C for granite quartz. These values were concordant for UV-TL and Blue TL. The activation energy and frequency factors were determined for signals emitted at different temperatures by peak shift methods (Aitken, 1985). On the other hand, the TL emission curves for the sample adjacent to the fault do not show discrete luminescence sites, different from granite samples. Natural TL emission show variety of TL profile. The accumulated doses of each sample were estimated for identified signal peaks after peak separation. Signals from different peak temperatures show different dose values in all the samples. The dose estimated by signals at 200 ° showed the minimum value for all samples. The same sample show different accumulated dose for Blue TL and UV-TL. The variety of accumulated doses in a sample may be reflective of complex thermal history of samples, and/or partly caused by the ineffective peak separation. Even the host rock collected away from the fault show a low accumulated dose in 200°C singnal, far less than the expected saturated value. Further investigation is important to fully understand the meaning of obtained data.
Matmon, A.; Shaked, Y.; Porat, N.; Enzel, Y.; Finkel, R.; Lifton, N.; Boaretto, E.; Agnon, A.
2005-01-01
In this study, we explored the spatial and temporal relations between boulders and their original in-situ locations on sandstone bedrock cliffs. This was accomplished by combining field observations with dating methods using cosmogenic isotopes (10Be and 14C) and optically stimulated luminescence (OSL). Our conclusions bear both on the landscape evolution and cliff retreat process in the hyperarid region of Timna and on the methodology of estimating exposure ages using cosmogenic isotopes. We recognize three discrete rock fall events, at 31 ka, 15 ka, and 4 ka. In this hyperarid region, the most plausible triggering mechanism for rock fall events is strong ground acceleration caused by earthquakes generated by the nearby Dead Sea fault (DSF). Our record, however, under represents the regional earthquake record implying that ongoing development of detachment cracks prior to the triggering event might be slower than the earthquake cycle. Cliff retreat rates calculated using the timing of rock fall events and estimated thickness of rock removed in each event range between 0.14 m ky-1 and 2 m ky-1. When only full cycles are considered, we derive a more realistic range of 0.4 m ky-1 to 0.7 m ky-1. These rates are an order of magnitude faster than the calculated rate of surface lowering in the area. We conclude that sandstone cliffs at Timna retreat through episodic rock fall events that preserve the sharp, imposing, landscape characteristic to this region and that ongoing weathering of the cliff faces is minor. A 10%-20% difference in the 10Be concentrations in samples from matching boulder and cliff faces that have identical exposure histories and are located only a few meters apart indicates that cosmogenic nuclide production rates are sensitive to shielding and vary spatially over short distances. However, uncertainties associated with age calculations yielded boulder and matching cliff face ages that are similar within 1 ??. The use of external constraints in the form of field relations and OSL dating helped to establish each pair's age. The agreement between calculated 14C and 10Be ages indicates that the accumulation of 10Be at depth by the capture of slow deep-penetrating muons was properly accounted for in the study. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zoeller, Ludwig; Richter, Daniel; Klinger, Philip; van den Bogaard, Paul
2014-05-01
Volcanic rocks, in particular tephra, can serve as most valuable time markers in sedimentary sequences such as loess-paleosol sequences, lake sediments, fluvial sediments, etc. Young (Quaternary) volcanic products are often difficult to date with K/Ar or Ar/Ar methods, due to the long half-life of 40K and/or the lack of K-rich minerals in mafic volcanic products. 14C dating is problematic in volcanic environments and limited to < ca 50 ka. Direct dating of volcanic minerals by TL is strongly hampered by so-called "anomalous fading" of volcanic feldspars or pyroxenes. We tested the orange-red (620 nm) R-TL emission of quartz extracted from crustal xenoliths of some Quaternary Eifel volcanoes which were heated during the eruption. The R-TL emission of quartz appears to be suitable because of its high saturation dose which should allow for dating >1 Ma, and because of the lack of anomalous fading as reported in literature. Comparing our first apparent TL ages with new laser Ar/Ar ages from small autogenic phlogopit crystals we found, however, unexpected age underestimations for some samples. Further test relate this observation to the so-called anomalous fading of the quartz separates. Apparently, the temperature experienced by the xenolithic quartz grains during eruption is relevant for their TL stability characteristics. By improving and adjusting R-TL measurement protocols we were so far able to reproduce some 14C and Ar/Ar ages in the range of ca 40 ka to ca 600 ka. Our continuing work will focus on establishing R-TL dating of heated xenolithic quartz as a reliable method for Upper and Middle Pleistocene volcanic events.
García-González, Ricardo; Aldezabal, Arantza; Laskurain, Nere Amaia; Margalida, Antoni; Novoa, Claude
2016-01-01
The Pyrenean rock ptarmigan (Lagopus muta pyrenaica) is the southernmost subspecies of the species in Europe and is considered threatened as a consequence of changes in landscape, human pressure, climate change, and low genetic diversity. Previous studies have shown a relationship between the date of snowmelt and reproductive success in the Pyrenean ptarmigan. It is well established that birds laying early in the breeding season have higher reproductive success, but the specific mechanism for this relationship is debated. We present an explicative model of the relationship between snowmelt date and breeding success mediated by food quality for grouse in alpine environments. From microhistological analyses of 121 faecal samples collected during three years in the Canigou Massif (Eastern Pyrenees), and the assessment of the chemical composition of the main dietary components, we estimated the potential quality of individual diets. Potential dietary quality was correlated with free-urate faecal N, a proxy of the digestible protein content ingested by ptarmigan, and both were correlated with phenological stage of consumed plants, which in turn depends on snowmelt date. Our findings suggest that the average snowmelt date is subject to a strong interannual variability influencing laying date. In years of early snowmelt, hens benefit from a longer period of high quality food resources potentially leading to a higher breeding success. On the contrary, in years of late snowmelt, hens begin their breeding period in poorer nutrient condition because the peaks of protein content of their main food items are delayed with respect to laying date, hence reducing breeding performance. We discuss the possible mismatch between breeding and snowmelt timing. PMID:26849356
78 FR 41942 - Standing Rock Sioux Tribe; Major Disaster and Related Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-12
.... FEMA-4123-DR; Docket ID FEMA-2013-0001] Standing Rock Sioux Tribe; Major Disaster and Related... Presidential declaration of a major disaster for the Standing Rock Sioux Tribe (FEMA-4123-DR), dated June 25...''), as follows: I have determined that the damage to the lands associated with the Standing Rock Sioux...
Thermoluminescence dating of Hawaiian basalt
May, Rodd James
1979-01-01
The thermoluminescence (TL) properties of plagioclase separates from 11 independently dated alkalic basalts 4,500 years to 3.3 million years old and 17 tholeiitic basalts 16 years to 450,000 years old from the Hawaiian Islands were investigated for the purpose of developing a TL dating method for young volcanic rocks. Ratios of natural to artificial TL intensity, when normalized for natural radiation dose rates, were used to quantify the thermoluminescence response of individual samples for age-determination purposes. The TL ratios for the alkalic basalt plagioclase were found to increase with age at a predictable exponential rate that permits the use of the equation for the best-fit line through a plot of the TL ratios relative to known age as a TL age equation. The equation is applicable to rocks ranging in composition from basaltic andesite to trachyte over the age range from about 2,000 to at least 250,000 years before present (B.P.). The TL ages for samples older than 50,000 years have a calculated precision of less than :t 10 percent and a potential estimated accuracy relative to potassium-argon ages of approximately :t 10 percent. An attempt to develop a similar dating curve for the tholeiitic basalts was not as successful, primarily because the dose rates are on the average lower than those for the alkalic basalts by a factor of 6, resulting in lower TL intensities in the tholeiitic basalts for samples of equivalent age, and also because the age distribution of dated material is inadequate. The basic TL properties of the plagioclase from the two rock types are similar, however, and TL dating of tholeiitic basalts should eventually be feasible over the age range 10,000 to at least 200,000 years B.P. The average composition of the plagioclase separates from the alkalic basalts ranges from oligoclase to andesine; compositional variations within this range have no apparent effect on the TL ratios. The average composition of the plagioclase from the tholeiitic basalts is labradorite. The natural radiogenic dose rates for the alkalic basalts calculated on the basis of assumed secular equilibrium range from 0.228 to 0.462 rad per year and average 0.335 rad per year exclusive of the cosmic-ray energy dose and with the alpha-particle component equal to one-tenth of the total alpha decay energy. The TL measurements were made using material of a 37 to 44-micrometer size range; the crushing required during sample preparation was found to have a negligible effect on natural TL. Both natural and artificial TL were filtered to the bandwidth 3,500 A to 5,000 A to restrict the light detected to that from the plagioclase emission peak centered at about 4,500 A and associated with structural defects. Within this bandwidth, the natural TL from both the alkalic and tholeiitic basalt plagioclase consists of a single peak with a maximum amplitude at about 350?C; the artificial TL glow curves produced by an exposure of the drained samples to a standard dose of X-radiation consist of four broad, variably overlapping peaks with maxima at about 110?C, 150?C, 225?C, and 300?C. The maximum amplitude of the 350?C natural and 300?C artificial TL peaks, both produced by the same general activation energy distribution of trapping centers, were used for TL dating. The high-temperature artificial TL peak occurs at a lower temperature than the corresponding natural TL peak owing to the presence of a large number of electrons retained in traps near the lower end of the trap-depth energy range in samples whose TL is measured a short time after intense artificial irradiation. These traps remain essentially empty in the natural environment owing to spontaneous decay and do not produce measurable low-temperature natural TL peaks. With prolonged storage after irradiation, the 300?C artificial TL peak migrates to higher temperatures and decreases in amplitude.
Unusual central Nevada geologic terranes produced by Late Devonian Antler orogeny and Alamo impact
Poole, Forrest G.; Sandberg, Charles
2015-01-01
Detailed geologic maps at scales of 1:8,000 and 1:10,000 document the conclusions, interpretations, and hypotheses presented in Chapters 1 and 2, respectively. Identification and dating of Paleozoic rock units are accomplished by means of nearly a hundred acid-dissolved carbonate conodont samples and at least 50 collections of conodonts on siltstone bedding planes that were identified either in the field or later in the office.
NASA Technical Reports Server (NTRS)
Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.
1992-01-01
Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.
Active microbial biofilms in deep poor porous continental subsurface rocks.
Escudero, Cristina; Vera, Mario; Oggerin, Monike; Amils, Ricardo
2018-01-24
Deep continental subsurface is defined as oligotrophic environments where microorganisms present a very low metabolic rate. To date, due to the energetic cost of production and maintenance of biofilms, their existence has not been considered in poor porous subsurface rocks. We applied fluorescence in situ hybridization techniques and confocal laser scanning microscopy in samples from a continental deep drilling project to analyze the prokaryotic diversity and distribution and the possible existence of biofilms. Our results show the existence of natural microbial biofilms at all checked depths of the Iberian Pyrite Belt (IPB) subsurface and the co-occurrence of bacteria and archaea in this environment. This observation suggests that multi-species biofilms may be a common and widespread lifestyle in subsurface environments.
Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.
2011-01-01
The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons, are included here in the AGDB and will be added to the NGDB. The AGDB data provided here are the most accurate and complete to date, and should be useful for a wide variety of geochemical studies. The AGDB data provided in the linked database may be updated or changed periodically. The data on the DVD and in the data downloads provided with this report are current as of date of publication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jull, A.J.T.
Since 1981 we have operated an NSF Accelerator Mass Spectrometry (AMS) Facility at the University of Arizona. The AMS method allows us to use very small samples of carbon, <1 mg for radiocarbon dating in contrast to earlier counting techniques. This has opened a vast array of applications of radiocarbon dating that was difficult to do before AMS because of sample size limitations of decay counting. Some of the many applications of AMS include paleoclimatic studies, archaeological research and the age of first settlement of North America by man, dating of art works and artifacts, fall times and terrestrial residencemore » ages of meteorites, production of {sup 14}C in lunar samples by galactic and solar cosmic rays, studies of in situ {sup 14}C produced by cosmic ray spallation in rocks and ice, and studies of {sup 14}C in groundwater dissolved inorganic carbon and dissolved organic carbon. At our laboratory, we have also successfully applied AMS {sup 14}C to dating of many types of textiles, including silks and linens, art works, documents and artifacts fabricated from wood, parchment, ivory, and bone. The results for many of these samples are often important in questions of the authenticity of these works of art and artifacts. Our studies have encompassed a wide range of art works ranging from the Dead Sea Scrolls, the Shroud of Turin, and the Chinese silk trade to the works of Raphael, Rembrandt, and Picasso. Recently, we also dated the Vinland Map, a controversial document that shows the eastern coast of North America apparently using information from Viking voyages.« less
LA-ICP-MS Pb-U Dating of Young Zircons from the Kos-Nisyros Volcanic Centre, SE Aegean Arc (Greece)
NASA Astrophysics Data System (ADS)
Guillong, M.; Von Quadt, A.; Peytcheva, I.; Bachmann, O.
2014-12-01
Zircon Pb-U dating has become a key technique for answering many important questions in geosciences. This paper describes a new LA-ICP-MS approach. We show, using previously dated samples of a large quaternary rhyolitic eruption in the Kos-Nisyros volcanic centre (the 161 ka Kos Plateau Tuff), that the precision of our LA-ICP-MS method is as good as via SHRIMP, while ID-TIMS measurements confirm the accuracy. Gradational age distribution over >140 ka of the Kos zircons and the near-absence of inherited cores indicate near-continuous crystallisation in a growing magma reservoir with little input from wall rocks. Previously undated silicic eruptions from Nisyros volcano (Lower Pumice, Nikia Flow, Upper Pumice), which are stratigraphically constrained to have happened after the Kos Plateau Tuff, are dated to be younger than respectively 124 ± 35 ka, 111 ± 42 ka and 70 ± 24 ka. Samples younger than 1 Ma were corrected for initial thorium disequilibrium using a new formula that also accounts for disequilibrium in 230Th decay. Guillong, M. et al., 2014, JAAS, 29, p. 963-967; doi: 10.1039/c4ja00009a.
NASA Technical Reports Server (NTRS)
Dymek, R. F.; Albee, A. L.; Chodos, A. A.; Wasserburg, G. J.
1976-01-01
Results are presented for petrographic and electron microprobe studies of the isotopically dated A, B, C, and rho basaltic rock fragments separated from the howardite Kapoeta. Other lithic clasts and numerous mineral fragments in thin sections of Kapoeta are investigated in order to outline the range in lithology and chemistry of the source materials from which the Kapoeta meteorite is derived. The data obtained are compared to those from other meteorite and lunar samples, with particular reference to the observational consequences for the evolution of the Kapoeta parent body. A major conclusion is that there is no clearcut evidence for young magmatism on the Kapoeta parent body. The observations preclude the interpretation that the Kapoeta is a simple mixture of eucrites and diogenites. In contrast to the moon, a source of anorthositic rocks does not appear to have been present on the Kapoeta parent body which involved chiefly pyroxene. The FeO-MnO relationships suggest that the source of the materials in the Kapoeta parent planet are fundamentally related.
40Ar/39Ar dates from alkaline intrusions of the northern Crazy Mountains, south-central Montana
NASA Astrophysics Data System (ADS)
Harlan, S. S.
2005-05-01
The Crazy Mountains basin of south-central Montana is a complex foreland basin that formed during the interaction of thin-skinned, decollement-style folds of the Montana thrust belt and the basement-involved folds and thrust faults of the Rocky Mountain foreland province. Near the depositional center of the basin, synorogenic strata of the Paleocene Fort Union Formation have been intruded and locally thermally metamorphosed by strongly alkaline to subalkaline Tertiary intrusive rocks. The subalkaline rocks are found mostly in the southern Crazy Mountains and form stocks (Big Timber stock, Loco Mountain stock), radiating dikes and sills. With the exception of the Ibex Mountain sill (?), the alkaline rocks are restricted to the northern Crazy Mountains. New 40Ar/39Ar dates are reported from the strongly alkaline rocks, including the Comb Creek stock and dike swarm, the Ibex Mountain sill(?), and sills from the Robinson anticline intrusive complex. The alkaline rocks of the Robinson anticline intrusive complex are exposed in the easternmost folds of the Cordilleran fold and thrust belt, but despite their arcuate and apparently folded map geometry they have been shown to post-date folding. Hornblende from a trachyte sill in the Robinson anticline intrusive complex yielded a relatively simple age spectrum with a weighted mean of 50.61 ± 0.14 Ma (2σ), which probably records the age of sill emplacement. Nepheline syenite and mafic nepheline syenites of the Comb Creek stock and a dike from its radial dike swarm, two sills from the Robinson antlicline intrusive complex, and the Ibex Mountains sill(?) gave biotite plateau dates ranging from 50.03 to 50.22 Ma, with 2σ errors of ± 0.11 to 0.19 Ma. Because these dates are from fairly small, hypabyssal intrusions, they must have cooled quickly and thus these dates closely approximate the emplacement age of the intrusions. These data indicate that the strongly alkaline intrusions were emplaced during a fairly restricted interval of time at about 50.1 Ma. The dates from the alkaline rocks are somewhat older than dates from the subalkaline Big Timber stock in the southern Crazy Mountains, which gave biotite 40Ar/39Ar dates of about 49.3 Ma (du Bray and Harlan, 1996). However, because these dates represent cooling through closure temperatures of about 350° C, they are minimum estimates for the age of the stock. The limited span of 40Ar/39Ar dates between the alkaline and subalkaline rocks of the Crazy Mountains intrusions (i.e., 50.6 to 49.2 Ma) indicates that the magmas represented by these different geochemical groups were closely associated in both time and space, with emplacement occurring in as little as 1.5 Ma. On a regional scale, the 49-51 Ma age is similar to that of most of the igneous centers of the Central Montana alkalic province and is coeval with the peak of widespread volcanism in the Absaroka-Gallatin volcanic field immediately to the south of the Crazy Mountains Basin.
Curiosity Rock or Soil Sampling Sites on Mars, Through November 2016
2016-12-13
nal Caption Released with Image: This graphic maps locations of the sites where NASA's Curiosity Mars rover collected its first 19 rock or soil samples for analysis by laboratory instruments inside the vehicle. It also presents images of the drilled holes where 15 rock-powder samples were acquired. Curiosity scooped two soil samples at each of the other two sites: Rocknest and Gobabeb. The diameter of each drill hole is about 0.6 inch (1.6 centimeters), slightly smaller than a U.S. dime. The images used here are raw color, as recorded by the rover's Mars Hand Lens Imager (MAHLI) camera. Notice the differences in color of the material at different drilling sites. For the map, north is toward the upper left corner. The scale bar represents 2 kilometers (1.2 miles). The base map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The latest sample site included is "Sebina,"where Curiosity drilled into bedrock of the Murray formation on Oct. 20, 2016, during the 1,495th Martian day, or sol, of the mission. Curiosity landed in August 2012 on the plain (named Aeolis Palus) near Mount Sharp (or Aeolis Mons). The drilling dates for the first 13 rock samples collected are, by location: "John Klein" on Feb. 8, 2013 (Sol 182); "Cumberland" on May 19, 2013 (Sol 279); "Windjana" on May 5, 2014 (Sol 621); "Confidence Hills" on Sept. 24, 2014 (Sol 759); "Mojave" on Jan. 29, 2015 (Sol 882); "Telegraph Peak" on Feb. 24, 2015 (Sol 908); "Buckskin" on July 30, 2015 (Sol 1060); "Big Sky" on Sept. 29, 2015 (Sol 1119); "Greenhorn" on Oct. 18, 2015 (Sol 1137); "Lubango" on April 23, 2016 (Sol 1320); "Okoruso" on May 5, 2016 (Sol 1332); "Oudam" on June 4, 2016 (Sol 1361); "Quela" on Sept. 18, 2016 (Sol 1464). http://photojournal.jpl.nasa.gov/catalog/PIA21254
NASA Astrophysics Data System (ADS)
Potts, Nicola J.; Barnes, Jessica J.; Tartèse, Romain; Franchi, Ian A.; Anand, Mahesh
2018-06-01
Compared to most other planetary materials in the Solar System, some lunar rocks display high δ37Cl signatures. Loss of Cl in a H ≪ Cl environment has been invoked to explain the heavy signatures observed in lunar samples, either during volcanic eruptions onto the lunar surface or during large scale degassing of the lunar magma ocean. To explore the conditions under which Cl isotope fractionation occurred in lunar basaltic melts, five Apollo 14 crystalline samples were selected (14053,19, 14072,13, 14073,9, 14310,171 along with basaltic clast 14321,1482) for in situ analysis of Cl isotopes using secondary ion mass spectrometry. Cl isotopes were measured within the mineral apatite, with δ37Cl values ranging from +14.6 ± 1.6‰ to +40.0 ± 2.9‰. These values expand the range previously reported for apatite in lunar rocks, and include some of the heaviest Cl isotope compositions measured in lunar samples to date. The data here do not display a trend between increasing rare earth elements contents and δ37Cl values, reported in previous studies. Other processes that can explain the wide inter- and intra-sample variability of δ37Cl values are explored. Magmatic degassing is suggested to have potentially played a role in fractionating Cl isotope in these samples. Degassing alone, however, could not create the wide variability in isotopic signatures. Our favored hypothesis, to explain small scale heterogeneity, is late-stage interaction with a volatile-rich gas phase, originating from devolatilization of lunar surface regolith rocks ∼4 billion years ago. This period coincides with vapor-induced metasomastism recorded in other lunar samples collected at the Apollo 16 and 17 landing sites, pointing to the possibility of widespread volatile-induced metasomatism on the lunar nearside at that time, potentially attributed to the Imbrium formation event.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-24
...; Withdrawal of National Forest System Land for Steamboat Rock Picnic Grounds; South Dakota AGENCY: Bureau of... the Steamboat Rock Picnic Grounds within the Black Hills National Forest in South Dakota. DATES... Steamboat Rock Picnic Grounds. Order By virtue of the authority vested in the Secretary of the Interior by...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-19
... Extension of Existing Information Collection; Rock Burst Control Plan, Metal and Nonmetal Mines AGENCY: Mine... extension of the information collection for 30 CFR 57.3461 Rock Bursts. DATES: All comments must be received... contains the request for an extension of the existing collection of information in 30 CFR 57.3461 Rock...
Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah
Solum, J.G.; van der Pluijm, B.A.; Peacor, D.R.
2005-01-01
Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to ???40% in 1Md illite relative to protolith, whereas altered protolith in the damage zone is enriched ???40% in illite-smectite relative to gouge and up to ???50% relative to protolith. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using 40Ar/39Ar dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite-smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1Md) gouge illite (63??2 Ma) and illite-smectite in the damage zone (60??2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration. The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite-smectite-bearing rocks in the damage zone. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Selby, D.
2011-12-01
Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In addition to these examples, several studies have presented precise dates for Phanerozoic marine organic-rich units that are in excellent agreement with biostratigraphic determinations. A recent Re-Os study of the Woodford Shale (that was deposited throughout the Frasnian and Famennian) has provided important time markers as well as suggesting that the sedimentation rate of the Formation was relatively constant for ~20 Ma. To date only marine organic-rich sedimentary rocks have been utilized for Re-Os geochronology. However, lacustrine sedimentary rocks provide an invaluable archive of continental geological processes responding to tectonic, climatic and magmatic influences. Correlating these rocks to global geological phenomena requires accurate geochronological frameworks. The organic-rich lacustrine sedimentary units of the Eocene Green River Formation are enriched is Re and Os comparable to that of marine units. The Re-Os dates for the Green River Formation from the Uinta basin are 48.5 ± 0.6 Ma and 49.2 ± 1.0 Ma. These dates are in excellent agreement with Ar/Ar and U/Pb dates of interbedded tuffs in the GRF, therefore demonstrating that lacustrine units can be used for Re-Os geochronology in addition to marine organic-rich units.
A Triassic to Cretaceous Sundaland-Pacific subduction margin in West Sarawak, Borneo
NASA Astrophysics Data System (ADS)
Breitfeld, H. Tim; Hall, Robert; Galin, Thomson; Forster, Margaret A.; BouDagher-Fadel, Marcelle K.
2017-01-01
Metamorphic rocks in West Sarawak are poorly exposed and studied. They were previously assumed to be pre-Carboniferous basement but had never been dated. New 40Ar/39Ar ages from white mica in quartz-mica schists reveal metamorphism between c. 216 to 220 Ma. The metamorphic rocks are associated with Triassic acid and basic igneous rocks, which indicate widespread magmatism. New U-Pb dating of zircons from the Jagoi Granodiorite indicates Triassic magmatism at c. 208 Ma and c. 240 Ma. U-Pb dating of zircons from volcaniclastic sediments of the Sadong and Kuching Formations confirms contemporaneous volcanism. The magmatic activity is interpreted to represent a Triassic subduction margin in westernmost West Sarawak with sediments deposited in a forearc basin derived from the magmatic arc at the Sundaland-Pacific margin. West Sarawak and NW Kalimantan are underlain by continental crust that was already part of Sundaland or accreted to Sundaland in the Triassic. One metabasite sample, also previously assumed to be pre-Carboniferous basement, yielded Early Cretaceous 40Ar/39Ar ages. They are interpreted to indicate resumption of subduction which led to deposition of volcaniclastic sediments and widespread magmatism. U-Pb ages from detrital zircons in the Cretaceous Pedawan Formation are similar to those from the Schwaner granites of NW Kalimantan, and the Pedawan Formation is interpreted as part of a Cretaceous forearc basin containing material eroded from a magmatic arc that extended from Vietnam to west Borneo. The youngest U-Pb ages from zircons in a tuff layer from the uppermost part of the Pedawan Formation indicate that volcanic activity continued until c. 86 to 88 Ma when subduction terminated.
NASA Astrophysics Data System (ADS)
Cho, Yuichiro; Kameda, Shingo; Okuno, Mamoru; Horiuchi, Misa; Shibasaki, Kazuo; Wagatsuma, Ryo; Aida, Yusuke; Miura, Yayoi N.; Yoshioka, Kazuo; Okazaki, Ryuji; Sugita, Seiji
2017-10-01
Mass spectrometry has been widely used in lander missions to characterize the volatiles in rocks and soils on planetary surfaces. A good vacuum seal is very important for introducing such solid samples to a vacuum chamber and ejecting them. However, multiple measurements require many metal gaskets, leading to extra weight and complexity for the instruments. In this study, we investigate the capability of three kinds of elastomeric O-rings (Viton, Nexus-SLT, and Nexus-FV) as vacuum seals for mass spectrometric measurements, particularly for in situ K-Ar dating on Mars. First, thermal cycle tests revealed that low-temperature-resistant O-rings can maintain pressure <10-5 Pa at -60 °C under 1 bar ambient pressure, whereas Viton O-rings leaked at -25 °C. Then, the amount of 40Ar due to outgassing from the O-rings and permeation under the ambient pressure of 650 Pa or 3 Pa was measured and compared with the amounts of 40Ar that a flight-equivalent laser would liberate from potential target Martian rocks. The measured amounts were <1% of that a target rock with 5000 ppm K2O and an age of 4.2 Ga would yield. These results suggest that a Viton O-ring can maintain the Ar blank low under the Mars atmospheric pressure when temperatures are higher than -25 °C. A double O-ring seal using the low-temperature-resistant elastomers would be an alternative approach at lower temperatures. The elastomeric O-rings would be useful for constructing a small and light-weighted mass spectrometric instrument for in situ K-Ar dating on Mars.
NASA Technical Reports Server (NTRS)
Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles
2006-01-01
Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.
Considerations for successful cosmogenic 3He dating in accessory phases
NASA Astrophysics Data System (ADS)
Amidon, W. H.; Farley, K. A.; Rood, D. H.
2008-12-01
We have been working to develop cosmogenic 3He dating of phases other than the commonly dated olivine and pyroxene, especially apatite and zircon. Recent work by Dunai et al. underscores that cosmogenic 3He dating is complicated by 3He production via 6Li(n,α) 3H --> 3He. The reacting thermal neutrons can be produced from three distinct sources; nucleogenic processes (3Henuc), muon interactions (3Hemu), and by high-energy "cosmogenic" neutrons (3Hecn). Accurate cosmogenic 3He dating requires determination of the relative fractions of Li-derived and spallation derived 3He. An important complication for the fine-grained phases we are investigating is that both spallation and the 6Li reaction eject high energy particles, with consequences for redistribution of 3He among phases in a rock. Although shielded samples can be used to estimate 3Henuc, they do not conatin the 3Hecn component produced in the near surface. To calculate this component, we propose a procedure in which the bulk rock chemistry, helium closure age, 3He concentration, grain size and Li content of the target mineral are measured in a shielded sample. The average Li content of the adjacent minerals can then be calculated, which in turn allows calculation of the 3Hecn component in surface exposed samples of the same lithology. If identical grain sizes are used in the shielded and surface exposed samples, then "effective" Li can be calculated directly from the shielded sample, and it may not be necessary to measure Li at all. To help validate our theoretical understanding of Li-3He production, and to constrain the geologic contexts in which cosmogenic 3He dating with zircon and apatite is likely to be successful, results are presented from four different field locations. For example, results from ~18 Ky old moraines in the Sierra Nevada show that the combination of low Li contents and high closure ages (>50 My) creates a small 3Hecn component (2%) but a large 3Henuc component (40-70%) for zircon and apatite. In contrast the combination of high Li contents and a young closure age (0.6 My) in rhyolite from the Coso volcanic field leads to a large 3Hecn component (30%) and small 3Henuc component (5%) in zircon. Analysis of samples from a variety of lithologies shows that zircon and apatite tend to be low in Li (1-10 ppm), but are vulnerable to implantation of 3He from adjacent minerals due to their small grain size, especially from minerals like biotite and hornblende. This point is well illustrated by data from both the Sierra Nevada and Coso examples, in which there is a strong correlation between grain size and 3He concentration for zircons due to implantation. In contrast, very large zircons (150>125 um width) obtained from shielded samples of the Shoshone Falls rhyolite (SW Idaho) do not contain a significant implanted component. Thus, successful 3He dating of accessory phases requires low Li content (<10 ppm) in the target mineral and either 1) low Li in adjacent minerals, or 2) the use of large grain sizes (>100 um). In high-Li cases, the fraction of 3Henuc is minimized in samples with young helium closure ages or longer duration of exposure. However because the 3Hecn/3Hespall ratio is fixed for a given Li content, longer exposure will not reduce the fraction of 3Hecn.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
.... 0910131363-0087-02] RIN 0648-XY29 Fisheries of the Exclusive Economic Zone Off Alaska; Reallocation of Rock...; reallocation. SUMMARY: NMFS is reallocating the projected unused amount of the 2010 rock sole total allowable... necessary to allow the 2010 total allowable catch of rock sole to be fully harvested. DATES: Effective...
76 FR 30934 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
.... Applicants: Synergics Roth Rock Wind Energy, LLC, Synergics Roth Rock North Wind Energy, L, Gestamp Eolica S.L. Description: Amendment to Application of Synergics Roth Rock Wind Energy, LLC, et. al. Filed Date... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice...
NASA Astrophysics Data System (ADS)
Mottram, Catherine M.; Warren, Clare J.; Halton, Alison M.; Kelley, Simon P.; Harris, Nigel B. W.
2015-12-01
40Ar/39Ar dating of metamorphic rocks sometimes yields complicated datasets which are difficult to interpret in terms of timescales of the metamorphic cycle. Single-grain fusion and step-heating data were obtained for rocks sampled through a major thrust-sense shear zone (the Main Central Thrust) and the associated inverted metamorphic zone in the Sikkim region of the eastern Himalaya. This transect provides a natural laboratory to explore factors influencing apparent 40Ar/39Ar ages in similar lithologies at a variety of metamorphic pressure and temperature (P-T) conditions. The 40Ar/39Ar dataset records progressively younger apparent age populations and a decrease in within-sample dispersion with increasing temperature through the sequence. The white mica populations span 2-9 Ma within each sample in the structurally lower levels (garnet grade) but only 0-3 Ma at structurally higher levels (kyanite-sillimanite grade). Mean white mica single-grain fusion population ages vary from 16.2 ± 3.9 Ma (2σ) to 13.2 ± 1.3 Ma (2σ) from lowest to highest levels. White mica step-heating data from the same samples yields plateau ages from 14.27 ± 0.13 Ma to 12.96 ± 0.05 Ma. Biotite yield older apparent age populations with mean single-grain fusion dates varying from 74.7 ± 11.8 Ma (2σ) at the lowest structural levels to 18.6 ± 4.7 Ma (2σ) at the highest structural levels; the step-heating plateaux are commonly disturbed. Temperatures > 600 °C at pressures of 0.4-0.8 GPa sustained over > 5 Ma, appear to be required for white mica and biotite ages to be consistent with diffusive, open-system cooling. At lower temperatures, and/or over shorter metamorphic timescales, more 40Ar is retained than results from simple diffusion models suggest. Diffusion modelling of Ar in white mica from the highest structural levels suggests that the high-temperature rocks cooled at a rate of 50-80 °C Ma- 1, consistent with rapid thrusting, extrusion and exhumation along the Main Central Thrust during the mid-Miocene.
Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran)
NASA Astrophysics Data System (ADS)
Ghalamghash, J.; Mousavi, S. Z.; Hassanzadeh, J.; Schmitt, A. K.
2016-11-01
Sabalan Volcano (NW Iran) is an isolated voluminous (4821 m elevation; > 800 km2) composite volcano that is located within the Arabia-Eurasia collision zone. Its edifice was assembled by recurrent eruptions of trachyandesite and dacite magma falling into a relatively restricted compositional range (56-67% SiO2) with high-K calc-alkaline and adakitic trace element (Sr/Y) signatures. Previous K-Ar dating suggested protracted eruptive activity between 5.6 and 1.4 Ma, and a two stage evolution which resulted in the construction of the Paleo- and Neo-Sabalan edifices, respectively. The presence of a topographic moat surrounding Neo-Sabalan and volcanic breccias with locally intense hydrothermal alteration are indicative of intermittent caldera collapse of the central part of Paleo-Sabalan. Volcanic debris-flow and debris-avalanche deposits indicate earlier episodes of volcanic edifice collapse during the Paleo-Sabalan stage. In the Neo-Sabalan stage, three dacitic domes extruded to form the summits of Sabalan (Soltan, Heram, and Kasra). Ignimbrites and minor pumice fall-out deposits are exposed in strongly dissected drainages that in part have breached the caldera depression. Lavas and pyroclastic rocks are varyingly porphyritic with Paleo-Sabalan rocks being trachyandesites carrying abundant phenocrysts (plagioclase + amphibole + pyroxene + biotite). The Neo-Sabalan rocks are slightly more evolved and include dacitic compositions with phenocrysts of plagioclase + amphibole ± alkali-feldspar ± quartz. All Sabalan rock types share a common accessory assemblage (oxides + apatite + zircon). High spatial resolution and sensitivity U-Pb geochronology using Secondary Ionization Mass Spectrometry yielded two clusters of zircon ages which range from 4.5 to 1.3 Ma and 545 to 149 ka, respectively (all ages are averages of multiple determinations per sample). U-Th zircon geochronology for selected Neo-Sabalan rocks agrees with the U-Pb ages, with the youngest zircon rims dating to ca. 110 ka. Because zircon crystallization predates eruption, this age represents the upper limit for the youngest eruptions of Sabalan. Valley-filling ignimbrites yielded variable U-Pb zircon ages which argue against these pyroclastic rocks being generated in a single caldera forming event. These results indicate that eruptions occurred more recently than previously indicated by K-Ar dating. Paleo-Sabalan and Neo-Sabalan volcanic rocks have similar geochemical characteristics, including enrichment of LILE and LREE relative to HFSE and HREE, respectively, and prominent negative Ti, Nb, and Ta anomalies. The trachyandesitic to dacitic rocks of Sabalan also share negative Eu anomalies. This, together with horizontal or slightly increasing Y vs. Rb trends, indicates fractionation of plagioclase-amphibole or plagioclase-clinopyroxene assemblages with negligible crustal assimilation (based on low and invariant Rb/Th). High degrees of mantle partial melting are inferred from high (La/Yb)N (from 28 to 48). Overall, the subduction-affinity of Sabalan volcanic rocks agrees with models of melt generation following a Quaternary slab break-off event coeval with continental collision.
New Advances in Re-Os Geochronology of Organic-rich Sedimentary Rocks.
NASA Astrophysics Data System (ADS)
Creaser, R. A.; Selby, D.; Kendall, B. S.
2003-12-01
Geochronology using 187Re-187Os is applicable to limited rock and mineral matrices, but one valuable application is the determination of depositional ages for organic-rich clastic sedimentary rocks like black shales. Clastic sedimentary rocks, in most cases, do not yield depositional ages using other radioactive isotope methods, but host much of Earth's fossil record upon which the relative geological timescale is based. As such, Re-Os dating of black shales has potentially wide application in timescale calibration studies and basin analysis, if sufficiently high precision and accuracy could be achieved. This goal requires detailed, systematic studies and evaluation of factors like standard compound stoichiometry, geologic effects, and the 187Re decay constant. Ongoing studies have resulted in an improved understanding of the abilities, limitations and systematics of the Re-Os geochronometer in black shales. First-order knowledge of the effects of processes like hydrocarbon maturation and low-grade metamorphism is now established. Hydrocarbon maturation does not impact the ability of the Re-Os geochronometer to determine depositional ages from black shales. The Re-Os age determined for the Exshaw Fm of western Canada is accurate within 2σ analytical uncertainty of the known age of the unit (U-Pb monazite from ash, conodont biostratigraphy). This suggests that the large improvement in precision attained for Re-Os dating of black shales by Cohen et al (ESPL 1999) over the pioneering work of Ravizza & Turekian (GCA 1989), relates to advances in analytical methodologies and sampling strategies, rather than a lack of disturbance by hydrocarbon maturation. We have found that a significant reduction in isochron scatter can be achieved by using an alternate dissolution medium, which preferentially attacks organic matter in which Re and Os are largely concentrated. This likely results from a more limited release of detrital Os and Re held in silicate materials during dissolution, compared with the inverse aqua regia medium used for Carius tube analysis. Using these "organic-selective" dissolution techniques, precise depositional ages have now been obtained from samples with very low TOC contents ( ˜0.5%), meaning that a greater range of clastic sedimentary rocks is amenable for Re-Os age dating. Well-fitted Re-Os isochrons of plausible geological age have also been determined from low-TOC shales subjected to chlorite-grade regional metamorphism. These results further illustrate the wide, but currently underutilized, potential of the Re-Os geochronometer in shales. The precision of age data attainable by the Re-Os system directly from black shales can be better than +/- 1% uncertainty (2σ , derived from isochron regression analysis), and the derived ages are demonstrably accurate.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Qi; Zhang, Shuan-Hong; Zhao, Yue; Liu, Jian-Min
2018-03-01
Some Devonian magmatic rocks have been identified from the northern margin of the North China Block (NCB) in recent years. However, their petrogenesis and tectonic setting are still highly controversial. Here we present new geochronological, Sr-Nd-Hf isotopic and whole-rock chemical data on several newly identified and previously reported Devonian alkaline complexes, including mafic-ultramafic rocks (pyroxenites and gabbros), alkaline rocks (syenites, monzonites) and alkaline granites in the northern NCB. We firstly identified some mafic-ultramafic rocks coeval with monzonite and quartz monzonite in the Sandaogou and Wulanhada alkaline intrusions. New zircon U-Pb dating of 16 samples from the Baicaigou, Gaojiacun, Sandaogou, Wulanhada and Chifeng alkaline intrusions combined with previous geochronological results indicate that the Devonian alkaline rocks emplaced during the early-middle Devonian at around 400-380 Ma and constitute an E-W-trending alkaline magmatic belt that extend ca. 900 km long along the northern margin of the NCB. Whole-rock geochemical and Sr-Nd-Hf isotopic data reveal that the Devonian alkaline rocks were mainly originated from partial melting of a variably enriched lithospheric mantle with different involvement of ancient lower crustal component and fractional crystallization. The Devonian alkaline magmatic belt rocks in the northern NCB are characterized by very weak or no deformations and were most likely related to post-collision extension after arc-continent collision between the Bainaimiao island arc and the northern margin of North China Craton during the latest Silurian. Partial melting of subcontinental lithospheric mantle to produce the Devonian alkaline magmatic rocks suggests that the northern North China Craton has an inhomogeneous, variably enriched subcontinental lithospheric mantle and was characterized by significant vertical crustal growth during the Devonian period.
Measurements of I-129 in meteorites and lunar rock by tandem accelerator mass spectrometry
NASA Technical Reports Server (NTRS)
Nizhiizumi, K.; Arnold, J. R.; Elmore, D.; Gove, H. E.; Honda, M.
1983-01-01
Precise measurements of the half-life of I-129 in three different meteorites and one lunar surface rock are reported. The meteorite source of I-129 was produced by cosmic ray secondary neutron reactions on Te, while the source in lunar materials in spallation on barium and rare earth elements. The Abee, Allende, and Dhajala meteorites were examined, together with the lunar rock 14310. Details of the process used to extract the iodine are provided. The Abee and Allende samples exhibited a production of 0.5 atom/min per gm of Te from the (n,2n) reaction and 0.05 atom/min/gm for the (n,gamma) reaction. The I-129 is concluded to be a viable tool for long-lived cosmogenic nuclide studies. Further work to extend the data to include the constancy of the cosmic ray flux, the meteorite bombardment history, and the cosmic exposure age dating by means of the I-129 and Xe-129 method is indicated.
NASA Astrophysics Data System (ADS)
Rodriguez Trejo, A.; Alva-Valdivia, L. M.; Nieto Calleja, R.; Jimenez, S.
2016-12-01
Archeointensity results are presented from 7 archeological sites of the Maya Zone, southeast Mexico: Chiapas, Yucatan and Quintana Roo, distributed geographically over a 500,000 Km2 area over the Yucatan Peninsula. The sites corresponds to over 250 samples from Palenque, Chichén-Itzá, Flor de Mayo, El Mirador, Oxtancah, Busiljá and Mensabak. All the artifact sites correspond from the Preclasic to Posclasic period (1000 b.C. to 1600 a.C.), which represent the most important period in Mesoamerica. The laboratory experiments for rock magnetism includes the suscpetibility vs. temperature curves (KT), hysteresis loop, first order reversal curves analysis (FORC), IRM coercivity unmixing and thermal and AF demagnetization. Archaeointensity were carried out using previously selected samples that accomplish the quality criteria, using the Thellier - Thellier methology and the Coe check modification. These results will be used to construct a secular variation curve for intensity in this region, which eventually could be used for dating many archeological materials of unknown age.
Lunar regolith dynamics based on analysis of the cosmogenic radionuclides Na-22, Al-26, and Mn-53
NASA Technical Reports Server (NTRS)
Fruchter, J. S.; Rancitelli, L. A.; Laul, J. C.; Perkins, R. W.
1977-01-01
Depth profiles of Na-22 and Al-26 in the upper portions of five lunar cores are analyzed. From the analyses, it is concluded that the natural gardening processes on the lunar surface result in mixing of the regolith to a depth of 2-3 cm over a time period which is short compared with the half-life of Al-26 (0.73 m.y.). It is also concluded that the rotary drill processes which were used to obtain the deep drill samples generally resulted in loss and/or mixing of the upper portions of the cores. In contrast, the near-surface regions of the drive tube cores appear to have a well-preserved stratigraphy. Analysis of Mn-53 in samples of six lunar rocks helps substantiate the accuracy of age date estimates by other means, and provides definite information that the total lunar surface exposure of two of these rocks has occurred during a single surface event which continued to their collection.
NASA Astrophysics Data System (ADS)
Bowring, S. A.
2010-12-01
Over the past two decades, U-Pb geochronology by ID-TIMS has been refined to achieve internal (analytical) uncertainties on a single grain analysis of ± ~ 0.1-0.2%, and 0.05% or better on weighted mean dates. This level of precision enables unprecedented evaluation of the rates and durations of geological processes, from magma chamber evolution to mass extinctions and recoveries. The increased precision, however, exposes complexity in magmatic/volcanic systems and highlights the importance of corrections related to disequilibrium partitioning of intermediate daughter products, and raises questions as to how best to interpret the complex spectrum of dates characteristic of many volcanic rocks. In addition, the increased precision requires renewed emphasis on the accuracy of U decay constants, the isotopic composition of U, the calibration of isotopic tracers, and the accurate propagation of uncertainties It is now commonplace in the high precision dating of volcanic ash-beds to analyze 5-20 single grains of zircon in an attempt to resolve the eruption/depositional age. Data sets with dispersion far in excess of analytical uncertainties are interpreted to reflect Pb-loss, inheritance, and protracted crystallization, often supported with zircon chemistry. In most cases, a weighted mean of the youngest reproducible dates is interpreted as the time of eruption/deposition. Crystallization histories of silicic magmatic systems recovered from plutonic rocks may also be protracted, though may not be directly applicable to silicic eruptions; each sample must be evaluated independently. A key to robust interpretations is the integration high-spatial resolution zircon trace element geochemistry with high-precision ID-TIMS analyses. The EARTHTIME initiative has focused on many of these issues, and the larger subject of constructing a timeline for earth history using both U-Pb and Ar-Ar chronometers. Despite continuing improvements in both, comparing dates for the same rock with both chronometers is not straightforward. Compelling issues range from pre-eruptive magma chamber residence, recognizing open system behavior, accurately correcting for disequilibrium amounts of 230Th and 231Pa, precise and accurate dates of fluence monitors for 40Ar/39Ar, and inter-laboratory biases. At present, despite the level of internal precision achievable by each technique, obstacles remain to combining both chronometers.
The Potassium-Argon Laser Experiment (karle): In Situ Geochronology for Planetary Missions
NASA Technical Reports Server (NTRS)
Cohen, B. A.
2016-01-01
Isotopic dating is an essential tool to establish an absolute chronology for geological events. It enables a planet's crystallization history, magmatic evolution, and alteration to be placed into the framework of solar system history. The capability for in situ geochronology will open up the ability for this crucial measurement to be accomplished as part of lander or rover complement. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. Appropriate application of in situ dating will enable geochronology on more terrains than can be reached with sample-return missions to the Moon, Mars, asteroids, outer planetary satellites, and other bodies that contain rocky components. The capability of flight instruments to conduct in situ geochronology is called out in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap as needing development to serve the community's needs. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ K-Ar isotopic dating [1], but it failed to communicate and was lost. The first in situ K-Ar date on Mars, using SAM and APXS measurements on the Cumberland mudstone [2], yielded an age of 4.21 +/- 0.35 Ga and validated the idea of K-Ar dating on other planets, though the Curiosity method is not purpose-built for dating and requires many assumptions that degrade its precision. To get more precise and meaningful ages, multiple groups are developing dedicated in situ dating instruments.
Microprobe monazite geochronology: new techniques for dating deformation and metamorphism
NASA Astrophysics Data System (ADS)
Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.
2003-04-01
High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic dating techniques. They allow geochronology to be incorporated into the microstructural analytical process, resulting in a new level of integration of time (t) into P-T-D histories.
Pederson, Joel L.; Chapot, Melissa S.; Simms, Steven R.; Sohbati, Reza; Rittenour, Tammy M.; Murray, Andrew S.; Cox, Gary
2014-01-01
Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostratigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock’s exposure duration before that time. Results provide a maximum possible age, a minimum age, and an exposure time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, although our age result of A.D. ∼1–1100 coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region. PMID:25157162
NASA Astrophysics Data System (ADS)
Kasanzu, C.; Beucher, R.; Brown, R. W.; Persano, C.; Stuart, F.
2011-12-01
Apatite (U-Th)/he thermochronometry is one of the most widely used methods of quantifying thermal histories of rocks within the vicinity of the surface. Theoretical and practical development carried out during the last decade, among which was the release of affordable LASERs, have led to standard practice of analyzing single grain rather than multigrain aliquots. The standard theoretical basis for interpreting these ages assumes that the technique is used on full grains. However, the natural weak cleavage of apatite leads to fragmentation of these individual prismatic crystals during the rock crushing and mineral separation process. Apatites are most often broken along a weak cleavage perpendicular to the c-axis. It is therefore common practice to analyze fragments of whole grains, not complete crystals. It is also well known that dating often leads to single ages being more dispersed than expected whatever the efforts to avoid perturbations on the He system. Using a theoretical numerical model and considering both axial and radial diffusion, we demonstrate thata largepart (most?) of the dispersion is due to analyses of single apatite fragments. This effect is larger for older grains which have exprienced a slow cooling history and have well rounded diffusive profiles. Ages are a strongfunction of the fragment size (length specifically), we show that ages from apatite fragments with 1 prismatic termination (1T) can be used to retrieve the helium diffusion profile, provided a sufficient number of single fragment analyses are carried out. The shape of the helium diffusion profile provides a strong constraint on the style of the thermal history and so we propose to use single crystal fragment analyses to extract a mean diffusion profile, and deduce the thermal history of the sample. In order to test these ideas, we performed a set of experiments with natural samples and semi-synthetic grains of apatite. Synthetic grains are obtained by drilling cores of various length/width ratios within standard Durango crystals while natural grains are separated from a deep borehole in south-Africa (BK1) and from the Australian craton. Several experiences are presented: 1) (U-Th)/He dating of about 100 1T single-fragment aliquots of different shape ratio from the BK1 borehole; 2) (U-Th)/He dating of 20 2T single-fragment aliquot from an Australian sample previously dated following standard procedure. 3) (U-Th)/He dating of synthetic fragmentsfrom synthetic grains previously degassed by a known percentageusing a thermo-regulated furnace. The results of the experiments lead to important new insight into the natural dispersion of (U-Th)/He single-grain ages. They show that far from being problematic, highly dispersed data may indeed contain first-order information on the thermal history of rocks. We discuss all the details of the standard (U-Th)/He approach such as the effects of temporally variable diffusivity (e.g. radiation damage models), zonation of U and Th and arbitrary grain size variations.
NASA Astrophysics Data System (ADS)
Brill, Dominik; May, Simon Matthias; Mhammdi, Nadia; King, Georgina; Brückner, Helmut
2017-04-01
Fields of wave-emplaced blocks and boulders represent impressive evidence of cyclone and tsunami flooding over Holocene time scales. Unfortunately, their use for coastal hazard assessment is in many cases impeded by the absence of appropriate dating approaches, which are needed to generate robust chronologies. The commonly applied AMS-14C, U/Th or ESR dating of coral-reef rocks and marine organisms attached to the clasts depends on a - mostly hypothetical - coincidence between the organisms' death and boulder displacement, and inferred event chronologies may be biased by the marine 14C-reservoir effect and reworked organisms. Here we discuss the potential of the recently developed optically stimulated luminescence (OSL) surface exposure dating technique to directly date the relocation process of wave-emplaced boulders. By measuring the depth-dependent resetting of luminescence signals in exposed rock surfaces and comparing it to the signal-depth profiles of known-age samples, OSL surface exposure dating may be capable to model direct depositional ages for boulder transport. Thereby, it promises to overcome the limitations of existing dating techniques, and to decipher complex transport histories of clasts that underwent multiple phases of exposure and burial. The concept and some first results of OSL surface exposure dating shall be presented for coastal boulders from the Rabat coast, Morocco, where the preconditions for successful dating are promising: (i) Several coastal boulders show clear indication of overturning during wave transport in the form of downward-facing bio-eroded surfaces; (ii) the boulders are composed of different types of sandstone that contain quartz and feldspar, the required dosimeters for OSL dating; (iii) all boulders are of Holocene age and, therefore, in the dating range of OSL surface exposure dating. The main challenges for a successful application are the intensive bio-erosion and weathering of some surfaces exposed after transport, and the need for method calibration using surfaces with similar lithology and known exposure ages. However, in the best case, OSL surface exposure dating will provide quantitative information about the frequency-magnitude relationship of extreme wave events at the Rabat coast, in particular determining whether severe tsunami-induced flooding can be expected (e.g. during the 1755 Lisbon tsunami and similar events), or if boulders were only moved during flooding by exceptional winter storms.
12. Photograph of a photograph in possession of Rock Island ...
12. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. BIRD'S-EYE RENDERING; LOOKING SW. TNT BUILDING (SEE HAER NO. IL-20V) IS SHOWN AT THE UPPER LEFT, ATTACHED BY OVERHEAD PASSAGEWAYS TO THE BUILDING'S SOUTH ELEVATION. RENDERING PREPARED BY WESTINGHOUSE-CHURCH-KERR COMPANY OF NEW YORK. DATED APRIL 18, 1917. - Rock Island Arsenal, Building No. 250, Gillespie Avenue between Ramsey Street & South Avenue, Rock Island, Rock Island County, IL
NASA Astrophysics Data System (ADS)
Urann, B.; Cheadle, M. J.; John, B. E.; Dick, H. J.
2016-12-01
Slow spreading ridges display distinct geomorphologic features, often interpreted as long-lived detachment faults, where mafic and ultramafic rocks are exposed at the seafloor. Many bathymetric features in these regions are viewed as the result of tectonic processes (long lived detachment faults), however other features are clearly the result of mass wasting. Here we report zircon U-Pb dates from four gabbro and Fe-Ti oxide gabbro dredge samples recovered from the North Segment on the western flank of the mid-Atlantic ridge (MAR) at 16°N. Initial SIMS U-Pb zircon dating using the Stanford-USGS SHRIMP-RG ion-microprobe yield 230 Th-corrected zircon 206Pb/238U dates within error of one another. The two westernmost samples are separated by 14km along strike, and come from dredges on the footwall of a high-angle normal fault. They have dates of 1.112 +/-0.083 Ma and 1.181 +/- 0.074Ma, and both lie 12-13km west of the present day axial volcanic ridge, These samples therefore yield a spreading rate of 12km/Ma, as expected for this part of the MAR. The two eastern samples lie up to 4.5 km east of the western samples and yield dates of 1.14_/-0.55Ma and 1,221+/-0.027Ma, indistinguishable from those of the samples to the west. Given the predicted spreading rate of 12 km/Ma, these samples should be 0.375Ma younger than those to the west, and should yield dates of 0.74Ma. To account for the similarity in age, we suggest that mass wasting and large landslides from the high angle fault scarps displaced as much as 40km3 of material into the axial valley, dispersing gabbro of similar age over a wide area. This interpretation is consistent with the available multi-beam bathymetry that can be explained in terms of large landslides flowing from the bounding fault scarps into the axial valley towards the present day axial volcanic ridge. If correct, this interpretation has significant implications for evaluating potential tsunami hazards at mid-ocean ridges.
von Rohden, Christoph; Kreuzer, Andreas; Chen, Zongyu; Aeschbach-Hertig, Werner
2010-09-01
We employed environmental tracers ((3)H-(3)He, SF(6)) in a study investigating the groundwater recharge in the North China Plain (NCP), a sedimentary aquifer system consisting of fluvial and alluvial river deposits near the city of Shijiazhuang. The (3)H-(3)He dating method revealed reasonable results for the young groundwater with ages covering the range of recent to ~40 a. SF(6) samples were taken in parallel for independent dating and to compare the applicability of both methods. However, the SF(6)-results are influenced and, in part, dominated by a systematic non-atmospheric component, revealing that the dating with SF(6) is unreliable in this region. A correlation of non-atmospheric SF(6) and (3)H-(3)He ages suggests a continuous accumulation of natural SF(6) in the groundwater of the NCP aquifers. Although terrigenic SF(6) has previously been associated with crystalline or igneous rocks, our results indicate that it can also be accumulated in sandy aquifers on the timescale relevant for SF(6) dating.
NASA Astrophysics Data System (ADS)
Mauche, Renée; Faure, Gunter; Jones, Lois M.; Hoefs, Jochen
1989-01-01
The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using λ(87Rb)=1.42 × 10-11y-1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents. New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock. The δ 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.
Role of the Prospect Rock Fault in the Exhumation of High Pressure Rocks in North-Central Vermont
NASA Astrophysics Data System (ADS)
Tam, E.; Webb, L. E.; Aiken, C. L.
2017-12-01
The Prospect Rock Fault (PRF) is key to our interpretation of regional deformation and exhumation of blueschist and eclogite-facies rocks in the Tillotson Peak Complex (TPC) during the Taconic Orogeny. The TPC is in the footwall of the PRF in the eastern limb of the Green Mountain Anticlinorium. In the TPC, the dominant foliation is S2 and E-W trending F2 folds parallel L2 lineations, which run orthogonal to regional N-S trending folds associated with the Taconic Orogeny. This structural trend has possible analogies with HP-UHP terranes in Papua New Guinea and China. The PRF itself is folded by F2 folds. Presently, there is a lack of consensus about the structural evolution of the PRF and its role in the exhumation of the TPC, and studies have not reconciled the formation of the E-W folds and lineations to a regional model. Oriented samples and structural data were collected from the footwall of the PRF over several transects. Samples were processed into orthogonal thin sections for microstructural analyses and for 40Ar/39Ar step-heating of white mica. Preliminary results show a range of ages from 458.6 ± 2.0 Ma to 420.0 ± 2.7 Ma. The oldest ages are just slightly younger, yet concordant, with published and new 40Ar/39Ar ages from the TPC. The dominant foliation in the PRF samples, S2, is defined in thin section by mica and quartz microlithons, and oriented mica grains. S1 is only locally preserved in some mica domains and albite/garnet inclusion trails. S3 appears as crenulations of S2, with no significant new mineral crystallization. In the field, L2 lineations are defined by mineral and quartz rods, and L3 lineations are defined as intersection lineations on S2 surfaces. The relationships between ages and microstructures are consistent younger ages being associated with increased presence of S3 crenulation foliations, which appeared in structurally lower areas. Samples with older ages display dominant S2 foliations and lack S3 crenulations, and were sourced from structurally higher areas. Our results suggest the PRF played a role in exhumation of the TPC and ages obtained are closely aligned with deformation ages constrained from 40Ar/39Ar dating in southern Quebec for the Taconic D2 and Salinian D3 deformation. These dates may aid to further correlation tectonostratographic models between southern Quebec and northern Vermont.
Spotl, C.; Kunk, Michael J.; Ramseyer, K.; Longstaffe, F.J.
1998-01-01
This paper is included in the Special Publication entitled 'Dating and duration of fluid flow and fluid-rock interaction', edited by J. Parnell. Feldspar is a common authigenic constituent in Permian carbonate rocks which occur as tectonically isolated blocks within the evaporitic Haselgebirge melange in the Northern Calcareous Alps (NCA). Coexisting with pyrite, anhydrite, (saddle) dolomite, magnesite, fluorite and calcite, K-feldspar and minor albite record an event of regionally extensive interaction of hot brines with carbonate rocks. Detailed petrographic, crystallographic and geochemical studies reveal a variability in crystal size and shape, Al-Si ordering, elemental and stable isotopic compositions of the K-feldspar, which is only partially consistent with the traditional view of authigenic feldspar as a well-ordered, compositionally pure mineral. 40Ar-39Ar step- heating measurements of authigenic potassium feldspar from several localities yield two age populations, an older one of 145-154 Ma, and a younger one of c.90-97 Ma. Most age spectra reflect cooling through the argon retention temperature interval, which was rapid in some localities (as indicated by plateau ages) and slower in others. Rb-Sr isotope data are more difficult to interpret, because in many K-feldspar samples they are controlled largely by Sr-bearing inclusions. The Jurassic 40Ar-39Ar dates are interpreted as minimum ages of feldspar growth and hence imply that fluid-rock interaction is likely to be simultaneous with or to slightly predate melange formation. Deformation associated with the closure and subduction of the Meliata-Hallstatt ocean south of the NCA during the Upper Jurassic is regarded as the principal geodynamic driving force for both enhanced fluid circulation and melange formation. Some localities were reheated beyond the argon retention temperature for microcline during mid-Cretaceous nappe stacking of the NCA, thus obliterating the older signal.
NASA Astrophysics Data System (ADS)
Li, Linlin; Shi, Yuruo; Williams, Ian S.; Anderson, J. Lawford; Wu, Zhonghai; Wang, Shubing
2017-08-01
SHRIMP zircon Pb/U dating of Cenozoic volcanic rocks in the Tengchong area, western Yunnan Province, China, shows that the dacite and andesitic breccia lavas from Qushi village were intruded at 480 ± 10 ka and 800 ± 40 ka, respectively. Moreover, Pb/U dating of trachyandesite from Tuantian village and olivine basalt from Wuhe village give weighted mean 206Pb/238U ages of 2.82 ± 0.08 Ma and 12.28 ± 0.30 Ma. Corrections for initial 230Th disequilibrium of zircon were used for the former two younger ages. The Tengchong volcanic rocks have a large range of SiO2 (48.6-66.9 wt.%) and mostly belong to a high-K calc-alkaline series. The lavas originated from heterogeneous sources and were modified by subsequent fractional crystallization. The REE and other trace element patterns of the Tengchong volcanic rocks resemble magmas having a large component of continental crust. All have similar degrees of LREE and HREE fractionation and are enriched in LILE, La, Ce and Pb, with depletions in Nb, Ta, Ti, Sr and P relative to primitive mantle. Zircon δ18O values of 6.96 ± 0.17 and 7.01 ± 0.24‰ and highly varied negative εHf(t) values of - 1.5 to - 11.0 and - 10.3 to - 13.7, as well as the presence of inherited zircon grains in the studied samples, indicate that the magmas contain crustal material on a large scale. The Tengchong volcanic rocks have HFSE ratios (e.g., Nb/Ta, La/Nb, Zr/Y) similar to continental flood basalts, indicative of an intra-plate extensional tectonic setting. Widespread distributed faults might have facilitated upwelling of mantle-derived melts and eruptions from shallow crustal magma chambers to form the large volcanic field.
Wilson, Frederic H.; Shew, Nora B.
1982-01-01
Early and preliminary results of potassiumargon dating work on samples from 12 sites in the Ugashik quadrangle indicate a continuation of the geologic trends seen in the Chignik and Sutwik Island quadrangles to the south (Wilson, 1980). Tertiary volcanic and hypabyssal rocks apparently fall into two age groups: early Tertiary-late Eocene to earliest Miocene and late Tertiary and Quaternary-late Miocene to Holocene (fig. 53).
Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.
2000-01-01
Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in porphyroblastic granite gneiss suggests that the Short Hill fault might be a Grenvillian structure that was reactivated in the Paleozoic. The timing of Proterozoic deformations is constrained by crystallization ages of the gneissic rocks. D1 occurred between about 1145 and 1075 Ma (or possibly between about 1145 and 1128 Ma). D2 and D3 must be younger than about 1050 Ma. Ages of Mesoproterozoic granitic rocks of the northern Blue Ridge are similar to rocks in other Grenville terranes of the eastern USA, including the Adirondacks and Hudson Highlands. However, comparisons with conventional U-Pb ages of granulite-grade rocks from the central and southern Appalachians may be specious because these ages may actually be mixtures of ages of cores and overgrowths.
The Deep-Sea Benthos in the Gulf of Mexico.
context has been a collection (by biological dredge) of rocks from the Sigsbee Knolls that date to Carboniferous age. Since the oldest rocks known...from any ocean basin up to this time are of Cretaceous age, the present discovery provides the oldest rock (318 million years) found in any ocean basin
NASA Astrophysics Data System (ADS)
Calvo-Rathert, M.; Bogalo, M.; Gogichaishvili, A.; Vegas-Tubia, N.; Sologashvili, J.; Villalain, J.
2009-05-01
A paleomagnetic, rock-magnetic and paleointensity study was carried out on 21 basaltic lava flows belonging to four different sequences of late Pliocene age from southern Georgia (Caucasus): Diliska (5 flows), Kvemo Orozmani (5 flows), Dmanisi (11 flows) and Zemo Karabulaki (3 flows). Paleomagnetic analysis generally showed the presence of a single component (mainly in the Dmanisi sequence) but also two more or less superimposed components in several other cases. All sites except one clearly displayed a normal-polarity characteristic component. Susceptibility-versus-temperature curves measured in argon atmosphere on whole- rock powdered samples yielded low-Ti titanomagnetite as main carrier of remanence, although a lower Tc- component (300-400C) was also observed in several cases. Both reversible and non-reversible k-T curves were measured. A pilot paleointensity study was performed with the Coe method on two samples of each of those sites considered suitable after interpretation of rock-magnetic and paleomagnetic results. The pilot study showed that reliable paleointensity results were mainly obtained from sites of the Dmanisi sequence. This thick sequence of basaltic lava flows records the upper end of the normal-polarity Olduvai subchron, a fact confirmed by 40Ar/39Ar dating of the uppermost lava flow and overlying volcanogenic ashes, which yields ages of 1.8 to 1.85 My. A new paleointensity experiment was carried out only on samples belonging to the Dmanisi sequence. Although this work is still in progress, first results show that paleointensities are low, their values lying between 10 and 20 µT in many cases, and not being higher than 30 µT. For comparison, present day field is 47 µT.
Interpretation of K-Ar dates of illitic clays from sedimentary rocks aided by modeling
Srodon, J.; Clauer, Norbert; Eberl, D.D.D.
2002-01-01
K-Ar dates of illitic clays from sedimentary rocks may contain "mixed ages," i.e., may have ages that are intermediate between the ages of end-member events. Two phenomena that may cause mixed ages are: (1) long-lasting reaction during the burial illitization of smectite: and (2) physical mixing of detrital and diagenetic components. The first phenomenon was investigated by simulation of illitization reactions using a nucleation and growth mechanism. These calculations indicate that values for mixed ages are related to burial history: for an equivalent length of reaction time, fast burial followed by slow burial produces much older mixed ages than slow burial followed by fast. The type of reaction that occured in a rock can be determined from the distribution of ages with respect to the thickness of illite crystals. Dating of artificial mixtures confirms a non-linear relation between mixed ages and the proportions of the components. Vertical variation of K-Ar age dates from Gulf Coast shales can be modeled by assuming diagenetic illitization that overprints a subtle vertical trend (presumably of sedimentary origin) in detrital mineral content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, R.C.; DuBarton, A.; Edwards, S.
1993-12-31
Archaeological investigations were initiated at Sample Unit 19--25 to retrieve information concerning settlement and subsistence data on the aboriginal hunter and gatherers in the area. Studies included collection and mapping of 35.4 acres at site 26NY1408 and excavation and mapping of 0.02 acres at site 26NY7847. Cultural resources include two rock and brush structures and associated caches and a large lithic toolstone source area and lithic artifact scatter. Temporally diagnostic artifacts indicate periodic use throughout the last 12,000 years; however dates associated with projectile points indicate most use was in the Middle and Late Archaic. Radiocarbon dates from the rockmore » and brush structures at site 26NY7847 indicate a construction date of A.D. 1640 and repair between A.D. 1800 and 1950 for feature 1 and between A.D. 1330 and 1390 and repair at A.D. 1410 for feature 2. The dates associated with feature 2 place its construction significantly earlier than similar structures found elsewhere on Pahute Mesa. Activity areas appear to reflect temporary use of the area for procurement of available lithic and faunal resources and the manufacture of tools.« less
Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism
Asmeroma, Y.; Damon, P.; Shafiqullah, M.; Dickinson, W.R.; Zartman, R.E.
1991-01-01
We report a nine-point RbSr whole-rock isochron age of 70??3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ?? 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO2 content as low as 57 wt.%, are susceptible to complete resetting. The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism. ?? 1991.
NASA Astrophysics Data System (ADS)
Angiboust, Samuel; Hyppolito, Thais; Glodny, Johannes; Cambeses, Aitor; Monié, Patrick; Garcia-Casco, Antonio; Calderon, Mauricio; Juliani, Caetano
2017-04-01
The Diego de Almagro Island preserves one of the rare remnants of the Mesozoic Chilean paleo-accretionary wedge. This complex, formed by MOR-basalts interleaved with metasedimentary rocks, comprises three major tectonic units with distinct P-T-t paths: the HP granulite (Lazaro unit), the garnet amphibolite (GA) and the blueschist (BS) units. HP granulite-facies metamorphic conditions in the Lazaro Unit are attested by Grt-Cpx-Zo-Prg assemblages associated with trondhjemitic leucosomes (c. 1.3 GPa, 750°C). U-Pb SHRIMP dating of zircon metamorphic rims yields a homogeneous age population of 162 ± 2 Ma for this HT event, in agreement with Sm-Nd dating of peritectic garnet (163 ± 2 Ma and 163 ± 18 Ma). In situ white mica Ar-Ar dating and multi-mineral Rb-Sr dating of LT mylonites (c. 450°C) along the base of the Lazaro Unit reveals partial resetting of HT assemblages during deformation between 115 and 72 Ma. GA unit rocks, structurally below the Lazaro unit, locally preserve eclogite facies parageneses (c. 570°C, 1.7 GPa) that underwent a pervasive stage of amphibolitization during decompression down to 1.3 GPa. U-Pb dating of zircon metamorphic rims and Rb-Sr dating indicate that amphibolitization in GA unit took place at 125-120 Ma. GA unit rocks have been also lately overprinted by another HP-LT assemblage as shown by Si-richer phengite rims and small blue amphibole overgrowths. Conversely, the underlying BS unit does not show strong amphibolite facies overprint as seen in GA and Lazaro units and exhibits slightly cooler peak metamorphic conditions (c. 520°C, 1.7 GPa). Rb-Sr and Ar-Ar dating of these blueschists yield deformation ages between 80 and 70 Ma, i.e. 50 Ma younger than the overlying rocks from the GA unit, and 90 Ma younger than Lazaro unit HP-granulites. This new report sheds light on the formation of the youngest and deepest HP rocks exposed along the Chilean subduction margin. The Diego de Almagro Island represents a unique window onto long-term tectonic processes rooted below the base of the accretionary wedge (c. 40-50 km). The exceptionally long residence time of the earlier accreted material -almost 100 Ma-, enables the record of multiple thermal gradient fluctuations and highlights the variability of the subduction interface thermal structure over tens of millions yrs.
Surface dating of bricks, an application of luminescence techniques
NASA Astrophysics Data System (ADS)
Galli, Anna; Martini, Marco; Maspero, Francesco; Panzeri, Laura; Sibilia, Emanuela
2014-05-01
Luminescence techniques are a powerful tool to date archaeological ceramic materials and geological sediments. Thermoluminescence (TL) is widely used for bricks dating to reconstruct the chronology of urban complexes and the development of human cultures. However, it can sometimes be inconclusive, since TL assesses the firing period of bricks, which can be reused, even several centuries later. This problem can be circumvented using a dating technique based on a resetting event different from the last heating. OSL (Optically Stimulated Luminescence) exploits the last light exposition of the brick surface, which resets the light-sensitive electron traps until the surface is definitely shielded by mortar and superimposed bricks. This advanced application (surface dating) has been successfully attempted on rocks, marble and stone artifacts, but not yet on bricks. A recent conservation campaign at the Certosa di Pavia gave the opportunity to sample some bricks belonging to a XVII century collapsed wall, still tied to their mortars. This was an advantageous condition to test this technique, comparing the dating results with precise historical data. This attempt gave satisfactory results, allowing to identify bricks surely reused and to fully confirm that the edification of the perimetral wall occurred at the end of XVII century.
NASA Astrophysics Data System (ADS)
Gallach, Xavi; Ogier, Christophe; Ravanel, Ludovic; Deline, Philip; Carcaillet, Julien
2017-04-01
Rockfalls and rock avalanches are active processes in the Mont Blanc massif, with infrastructure and alpinists at risk. Thanks to a network of observers (hut keepers, mountain guides, alpinists) set up in 2007 present rockfalls are well surveyed and documented. Rockfall frequency over the past 150 years has been studied by comparison of historical photographs, showing that it strongly increased during the three last decades, especially during hot periods like the summer of 2003 and 2015, due to permafrost degradation driven by the climate change. In order to decipher the possible relationship between rockfall occurrence and the warmest periods of the Lateglacial and the Holocene, we start to study the morphodynamics of some selected high-elevated (>3000 m a.s.l.) rockwalls of the massif on a long timescale. Contrary to low altitude, deglaciated sites where study of large rockfall deposits allows to quantify frequency and magnitude of the process, rockfalls that detached from high-elevated rockwalls are no more noticeable as debris were absorbed and evacuated by the glaciers. Therefore, our study focuses on the rockfall scars. Their 10Be dating gives us the rock surface exposure age from present to far beyond the Last Glacial Maximum, interpreted as the rockfall ages. TCN dating of rockfalls has been carried out at the Aiguille du Midi in 2007 (Boehlert et al., 2008), and three other sites in the Mont Blanc massif in 2011 (Gallach et al., submitted). Here we present a new data set of rockfall dating carried out in 2015 that improves the 2007 and 2011 data. Furthermore, a relationship between the colour of the Mont Blanc granite and its exposure age has been shown: fresh rock surface is light grey (e.g. in recent rockfall scars) whereas weathered rock surface is in the range grey to orange/red: the redder a rock surface, the older its age. Here, reflectance spectroscopy is used to quantify the granite surface colour. Böhlert, R., Gruber, S., Egli, M., Maisch, M., Brandová, D., Haeberli, W., Ivy-Ochs, S., Christl, M., Kubik, P.W., Deline, P. (2008). Comparison of exposure ages and spectral propierties of rock surfaces in steep, high alpine rock walls of Aiguille du Midi, France. Proceedings of the 9th International Conference on Permafrost, 143-148. Gallach, X. et al. (submitted). Timing of rockfalls in the Mont Blanc massif (western Alps). Evidences from surface exposure dating with cosmogenic 10Be. Landslides.
Church, S.E.; Fey, D.L.; Marot, M.E.
2005-01-01
Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn occurred as a result of chemical precipitation of these metals from ground water upstream in the Red River. Comparisons of the geochemistry of the post-1979 sediment core with both mine wastes and with premining sediment from the vicinity of the Questa mine indicate that both are possible sources for this new component of sediment. Existing data have not resolved this enigma.
NASA Astrophysics Data System (ADS)
Glynn, Sarah; Wiedenbeck, Michael; Master, Sharad; Frei, Dirk
2015-04-01
The Choma-Kalomo Block is a north-east trending, Mesoproterozoic terrane located in southern Zambia. It is composed of as yet undated gneissic basement with a high-grade metamorphosed supracrustal metasedimentary sequence, which is intruded by hornblende granites and gneisses of the Choma-Kalomo Batholith, that is dated between ca. 1.37 and 1.18 Ga. Our new zircon U-Pb age data on metasedimentary rocks of the Choma-Kalomo Block identifies samples of different ages, with slightly different provenances. The oldest metasedimentary rock is a muscovite-biotite schist, which has only Palaeoproterozoic detrital zircons, the two age clusters around 2.03-2.02 Ga and 1.8-1.9 Ga, correspond to the ages of granitic intrusion, and metamorphism, in the Magondi Mobile Belt on the western side of the Archaean Zimbabwe Craton. The second sample is a garnetiferous paragneiss, which contains both Palaeoproterozoic (2.04 Ga), and Mesoproterozoic zircons, ca. 1.36 Ga, derived from the granites of the Choma-Kalomo Batholith. The third sample is a biotite-muscovite schist, in which the detrital zircon ages fall into four separate clusters: ca. 3.39 Ga, ca. 2.7-2.6 Ga, ca. 2.1-1.7 Ga (with a peak at ca. 1.18 Ga), and 1.55 - 1.28 Ga. The Archaean zircons in this sample are derived from the Zimbabwe Craton, while the Palaeoproterozoic samples come from the Magondi belt, and the youngest zircons come from both phases of the Choma-Kalomo Batholith. A possible connection between the Choma-Kalomo Block and the Dete-Kamativi Inlier - some 150 km to the south-east in western Zimbabwe - has been proposed on the basis of similarities in the nature of their Sn-Ta-muscovite pegmatite mineralisation. The Dete-Kamativi Inlier, which is part of the Magondi Mobile Belt, is a window into Palaeoproterozoic north-east trending belts of deformed and metamorphosed supracrustal rocks. By dating localities which we suspect form the basement to the surrounding younger sediments, along with selected pegmatites from within the inlier itself; we have concluded that the Choma-Kalomo Block and Dete-Kamativi Inlier are, in fact, coeval. Preliminary results for a number of these granites and gneisses give ages between 2.05 and 2.02 Ga; correlating well with the 2.03-2.02 Ga ages of detrital zircons from the Choma-Kalomo Block. While these basement rocks are not Archaean in age, we have identified Archaean aged zircons in both the Choma-Kalomo Block and the Dete-Kamativi Inlier, making them the Western most occurrences of Archaean granitoids, implying that the Zimbabwe Craton extends much further west under the Magondi Belt than previously thought.
NASA Astrophysics Data System (ADS)
Shi, Guanzhong; Wang, Hua; Liu, Entao; Huang, Chuanyan; Zhao, Jianxin; Song, Guangzeng; Liang, Chao
2018-04-01
The petrogenesis of the Permian magmatic rocks in the Shalazhashan Belt is helpful for us to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB) in the northern margin of the Alxa Block. The Permian volcanic rocks in the Shalazhashan Belt include basalts, trachyandesites and trachydacites. Our study shows that two basalt samples have negative εNd(t) values (-5.4 to -1.5) and higher radiogenic Pb values, which are relevant to the ancient subcontinental lithospheric mantle. One basalt sample has positive εNd(t) value (+10) representing mafic juvenile crust and is derived from depleted asthenosphere. The trachyandesites are dated at 284 ± 3 Ma with εNd(t) = +2.7 to +8.0; ISr = 0.7052 to 0.7057, and they are generated by different degrees of mixing between mafic magmas and crustal melts. The trachydacites have high εNd(t) values and slightly higher ISr contents, suggesting the derivation from juvenile sources with crustal contamination. The isotopic comparisons of the Permian magmatic rocks of the Shalazhashan Belt, the Nuru-Langshan Belt (representing the northern margin of the Alxa Block), the Solonker Belt (Mandula area) and the northern margin of the North China Craton (Bayan Obo area) indicate that the radiogenic isotopic compositions have an increasingly evolved trend from the south (the northern margins of the Alxa Block and the North China Craton) to the north (the Shalazhashan Belt and the Solonker Belt). Three end-member components are involved to generate the Permian magmatic rocks: the ancient subcontinental lithospheric mantle, the mafic juvenile crust or newly underplated mafic rocks that were originated from depleted asthenosphere, and the ancient crust. The rocks correlative with the mafic juvenile crust or newly underplated mafic rocks are predominantly distributed along the Shalazhashan Belt and the Solonker Belt, and the rocks derived from ancient, enriched subcontinental lithospheric mantle are mainly distributed along the northern margins of the Alxa Block and the North China Craton. The magmatic rock types, isotopic features and their temporal, spatial distributions suggest an extensional regime probably related to rifting.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... License. SUMMARY: Pursuant to the Mineral Leasing Act of 1920, as amended by the Federal Coal Leasing..., Wyoming. DATES: This notice of invitation was published in the Rock Springs Daily Rocket-Miner once each... 82003; and, Bureau of Land Management, Rock Springs Field Office, 280 Highway 191 North, Rock Springs...
Geochemistry and stratigraphic relations of middle Proterozoic rocks of the New Jersey Highlands
Volkert, Richard A.; Drake, Avery Ala
1999-01-01
Middle Proterozoic rocks of the New Jersey Highlands consist of a basement of dacitic, tonalitic, trondhjemitic, and charnockitic rocks that constitute the Losee metamorphic suite. These rocks are unconformably overlain by a layered supracrustal sequence of quartzo-feldspathic and calcareous rocks. Abundant sheets of hornblende- and biotite-bearing rocks of the Byram intrusive suite and clinopyroxene-bearing rocks of the Lake Hopatcong intrusive suite were synkinematically emplaced at about 1,090 Ma. These intrusive suites constitute the Vernon Supersuite. The postorogenic Mount Eve Granite has been dated at 1,020?4 Ma and is confined to the extreme northern Highlands.
New Ages for Gorgona Island, Colombia: Implications for Previous Petrogenetic and Tectonic Models
NASA Astrophysics Data System (ADS)
Serrano Duran, L.; Lopez Martinez, M.; Ferrari, L.
2007-05-01
The Gorgona Island, located 50 km to the west of the Colombian Pacific coast, is the only known site with Phanerozoic komatiites in the world besides a key element in several reconstruction of the interaction between the Caribbean and the South America Plate. The Gorgona komatiites are part of an igneous complex that also includes picritic basalts and breccias, gabbros and peridotites (dunites and wherlites), and is covered by deformed mid-Eocene and younger underformed marine sediments. Datings of the igneous rocks were only performed on basalts and include an 86 Ma K-Ar age, an 88.9 ± 1.2 Ma weighted mean of four Ar-Ar ages and an 89.2 ± 5.2 Ma Re-Os isochron age from basalts. Gorgona rocks are affected by reverse faulting with a general eastward vergence. The island is the only subaerially exposed part of a NE elongated sliver accreted in a dextral transpressional regime to the South America continental margin between the Late Eocene and the Early Miocene. Petrologic studies found large spread in radiogenic isotopes and incompatible trace element ratios in Gorgona ultramafic rocks, which have been interpreted as requiring at least two different sources of: 1) a depleted mantle responsible for the generation of the komatiites and most basalts, and 2) an enriched mantle responsible for some rarer enriched basalts and picrites. Despite the large compositional and isotopic heterogeneity the most common interpretation is that the Gorgona ultramafic rocks are the product of a single mantle plume, although it has recently proposed that this would be a separate plume from that generating the bulk of the Caribbean plateau at ~90 Ma. Our new study focused on the geochronology of the Gorgona igneous suite as we consider that this tectonically and petrologically complex island is unlike to have such a narrow age range. We attempted to date eight samples of komatiites, basalts and gabbros by Ar-Ar laser step heating. For four of these samples we successfully obtain reliable plateau and/or isochron ages. Only one basaltic sample, located in the western coast, yielded an age comparable with those previously reported in the literature. For two basalts intercalated with komatiites and a gabbro exposed in the north-eastern coast of the island we obtained younger ages, similar to those reported for some mafic and ultramafic rocks along the Pacific coast of Colombia. The two sets of ages for the ultramafic suite of Gorgona also correspond to different petrologic types. The depleted rocks in the eastern coast are younger than the enriched basalts and picrites located in the southern and western part of the island with ages around 90 Ma, suggesting a more complex tectonic evolution with the accretion of at least two different blocks. This eventually questions the "single plume" model for the formation of the Gorgona Island plateau.
Potassium-argon (argon-argon), structural fabrics
Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon
2014-01-01
Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...
Locosselli, Giuliano Maselli; Cardim, Ricardo Henrique; Ceccantini, Gregório
2016-05-01
We aimed to understand the effect of rock outcrops on the growth of Podocarpus lambertii within a microrefuge. Our hypothesis holds that the growth and survival of this species depend on the regional climate decoupling provided by rock outcrops. To test this hypothesis, we characterized the microclimate of (1) surrounding vegetation, (2) rock outcrop corridors, and (3) adjacencies. We assessed population structure by collecting data of specimen stem diameter and height. We also assessed differences between vegetation associated or not with outcrops using satellite imaging. For dendrochronological analyses, we sampled 42 individuals. Tree rings of 31 individuals were dated, and climate-growth relationships were tested. Rock outcrops produce a favorable microclimate by reducing average temperature by 4.9 °C and increasing average air humidity by 12 %. They also reduce the variability of atmospheric temperature by 42 % and air humidity by 20 % supporting a vegetation with higher leaf area index. Within this vegetation, specimen height was strongly constrained by the outcrop height. Although temperature and precipitation modulate this species growth, temperature-induced stress is the key limiting growth factor for this population of P. lambertii. We conclude that this species growth and survival depend on the presence of rock outcrops. These topography elements decouple regional climate in a favorable way for this species growth. However, these benefits are restricted to the areas sheltered by rock outcrops. Although this microrefuge supported P. lambertii growth so far, it is unclear whether this protection would be sufficient to withstand the stress of future climate changes.
NASA Astrophysics Data System (ADS)
Wolf, D. E.; Andronicos, C. L.; Vervoort, J. D.; Mansfield, M.
2008-12-01
We present new Lu-Hf garnet ages that constrain the timing of deformation and metamorphism in the Western Metamorphic Belt (WMB), near Prince Rupert, British Columbia. We examined four samples of grt- bearing schist collected within the aureole to the Ecstall Pluton in the WMB. Garnets were separated from these rocks and dated using the Lu-Hf method at Washington State University. We determined geologically meaningful ages from three of these samples. The tectonic history of the Prince Rupert area is marked by phases of transpressive deformation, which included the development of crustal scale strike-slip shear zones and thrust slices with inverted metamorphic gradients. The Grenville Channel shear zone (GCSZ) is a crustal-scale sinistral-slip shear zone over 300 km long that strikes NW with a steep dip and shallow lineation. The GCSZ cuts through the WMB, a ductile fold and thrust belt composed of gneiss and schist with an inverted metamorphic sequence. Index minerals range from: chl and chd-grade units at the bottom of the sequence, str-bearing rocks in the middle, and ky-grt schist and local migmatites at the top of the thrust stack. The WMB was deformed and intruded by the Ecstall Pluton after the inverted metamorphic sequence had formed. The Ecstall is an epi-bearing hbl-qtz diorite emplaced between 91 and 93.5±1 Ma (Butler et al., 2001). Sample G-16A from Kumeleon Inlet (W of the Ecstall pluton) is a schist containing grt+biot+musc+qtz+epi+amph+sil, with small (<1 mm) euhedral grt. Kinematic indicators, including grt porphyroclasts, indicate left-lateral, top to the south, strike-slip shear. This sample yields a Lu-Hf age of 102±3.6 Ma (2σ, MSWD=1.5) based on seven grt and three whole-rock fractions, and a P-T estimate of 5.5±1 kbar and 590°±50° C from garnet-biotite thermobarometry. Sample 98-114A from Ridley Island (NW of Ecstall pluton) is a schist containing musc+biot+qtz+grt+ky+plag+chl+ill and with syn-tectonic euhedral garnet (1 cm). Grt contains sigmoidal inclusion trails that suggest rotation during left lateral shear, consistent with shear bands and C-S fabrics developed in the matrix of the sample. Grt in the sample produced a twelve-point isochron of 107.3±2.6 Ma (2σ, MSWD=1.6), indicating deformation and metamorphism at this time. Sample 06B-57, a garnet amphibolite migmatite from the inner aureole of the Ecstall pluton, contains grt up to 4 cm in diameter concentrated in leucosome layers. Qtz inclusion trails are consistent with rotation during reverse shear (pluton-side up), in addition to meso-scale folds, shear bands and dike arrays in adjacent rocks. This sample had complex systematics that record an older age of ~105 Ma with a younger overprinting of 90- 94 Ma during pluton emplacement. Pegmatite dikes contained within the Ecstall occur at high angles to the magmatic foliation, normal to the pluton margins, and indicate that the pluton was not folded after the pegmatite dikes were intruded. These new ages directly date garnet growth during metamorphism and deformation in the Prince Rupert area, and show that development of the inverted metamorphic sequence predated emplacement of the Ecstall pluton by 10 to 15 Ma. The data further indicate that left lateral strike slip shearing occurred between 107 and 102 Ma, at the same time much of the North American Cordillera was undergoing major contractional deformation.
NASA Astrophysics Data System (ADS)
Clauer, N.; Lewan, M. D.; Dolan, M. P.; Chaudhuri, S.; Curtis, J. B.
2014-04-01
Progressive maturation of the Eocene Kreyenhagen Shale from the San Joaquin Basin of California was studied by combining mineralogical and chemical analyses with K-Ar dating of whole rocks and <2 μm clay fractions from naturally buried samples and laboratory induced maturation by hydrous pyrolysis of an immature outcrop sample. The K-Ar age decreases from 89.9 ± 3.9 and 72.4 ± 4.2 Ma for the outcrop whole rock and its <2 μm fraction, respectively, to 29.7 ± 1.5 and 21.0 ± 0.7 Ma for the equivalent materials buried to 5167 m. The natural maturation does not produce K-Ar ages in the historical sense, but rather K/Ar ratios of relative K and radiogenic 40Ar amounts resulting from a combined crystallization of authigenic and alteration of initial detrital K-bearing minerals of the rocks. The Al/K ratio of the naturally matured rocks is essentially constant for the entire depth sequence, indicating that there is no detectable variation in the crystallo-chemical organization of the K-bearing alumino-silicates with depth. No supply of K from outside of the rock volumes occurred, which indicates a closed-system behavior for it. Conversely, the content of the total organic carbon (TOC) content decreases significantly with burial, based on the progressive increasing Al/TOC ratio of the whole rocks. The initial varied mineralogy and chemistry of the rocks and their <2 μm fractions resulting from differences in detrital sources and depositional settings give scattered results that homogenize progressively during burial due to increased authigenesis, and concomitant increased alteration of the detrital material. Hydrous pyrolysis was intended to alleviate the problem of mineral and chemical variations in initially deposited rocks of naturally matured sequences. However, experiments on aliquots from thermally immature Kreyenhagen Shale outcrop sample did not mimic the results from naturally buried samples. Experiments conducted for 72 h at temperatures from 270 to 365 °C did not induce significant changes at temperatures above 310 °C in the mineralogical composition and K-Ar ages of the rock and <2 μm fraction. The K-Ar ages of the <2 μm fraction range from 72.4 ± 4.2 Ma in the outcrop sample to 62.4 ± 3.4 Ma in the sample heated the most at 365 °C for 216 h. This slight decrease in age outlines some loss of radiogenic 40Ar, together with losses of organic matter as oil, gas, and aqueous organic species. Large amounts of smectite layers in the illite-smectite mixed layers of the pyrolyzed outcrop <2 μm fraction remain during thermal experiments, especially above 310 °C. With no illitization detected above 310 °C, smectite appears to have inhibited rather than promoted generation of expelled oil from decomposition of bitumen. This hindrance is interpreted to result from bitumen impregnating the smectite interlayer sites and rock matrix. Bitumen remains in the <2 μm fraction despite leaching with H2O2. Its presence in the smectite interlayers is apparent by the inability of the clay fraction to fully expand or collapse once bitumen generation from the thermal decomposition of the kerogen is completed, and by almost invariable K-Ar ages confirming for the lack of any K supply and/or radiogenic 40Ar removal. This suggests that once bitumen impregnates the porosity of a progressively maturing source rock, the pore system is no longer wetted by water and smectite to illite conversion ceases. Experimental attempts to evaluate the smectite conversion to illite should preferentially use low-TOC rocks to avoid inhibition of the reaction by bitumen impregnation.
NASA Astrophysics Data System (ADS)
Dorn, Ronald I.
2014-10-01
In order to respond to the general paucity of information on the chronology of ubiquitous small rock falls and slides that litter the slopes of desert mountain ranges, a case study in the Sonoran Desert reveals new insight into the desert geomorphology of mountain slopes. Rock falls and rock slides in the McDowell Mountains that abut metropolitan Phoenix, USA, fall in three chronometric groupings dated by conventional radiocarbon and rock varnish microlamination methods. First, the oldest events are > 74 ka and take the form of stable colluvial boulder fields - positive relief features that are tens of meters long and a few meters wide. Second, randomly sampled slides and falls of various sizes and positions wasted during wetter periods of the terminal Pleistocene and Holocene. Third, an anomalous clustering of slides and falls occurred during the late Medieval Warm Period (Medieval Climatic Anomaly) when an extreme storm was a possible but unlikely trigger. One speculative hypothesis for the cluster of Medieval Warm Period events is that a small to moderate sized earthquake shook heavily shattered bedrock - close to failure - just enough to cause a spate of rock falls and slides. A second speculative hypothesis is that this dry period enhanced physical weathering processes such as dirt cracking. However, the reasons for the recent clustering of rock falls remain enigmatic. While the temporal distribution of slides and falls suggests a minimal hazard potential for homes and roads on the margins of the McDowell Mountains, this finding may not necessary match other desert ranges in metropolitan Phoenix or mountains with different rock types and structures that abut other arid urban centers.
Age of metamorphic events : petrochronology and hygrochronology
NASA Astrophysics Data System (ADS)
Bosse, Valerie; Villa, Igor M.
2017-04-01
Geodynamic models of the lithosphere require quantitative data from natural samples. Time is a key parameter: it allows to calculate rates and duration of geological processes and provides informations about the involved physical processes (Vance et al. 2003). Large-scale orogenic models require linking geochronological data with other parameters: structures, kinematics, magmatic and metamorphic petrology (P-T-A-X conditions), thermobarometric evolution of the lithosphere, chemical dynamics (Muller, 2003). This requires geochronometers that are both powerful chemical and petrological tracers. In-situ techniques allow dating a mineral in its petrological-microstructural environment. Getting a "date" has become quite easy... But what do we date in the end ? What is the link between the numbers obtained from the mass spectrometer and the age of the metamorphic event we are trying to date ? How can we transform the date into a geological meaningful age ? What do we learn about the behavior of the geochronometer minerals? Now that we can perform precise dating on very small samples directly in the studied rock, it is important to improve the way we interpret the ages to give them more pertinence in the geodynamic context. We propose to discuss the Th/U/Pb system isotopic closure in various metamorphic contexts using our published examples of in situ dating on monazite and zircon (Bosse et al. 2009; Didier et al. 2014, 2015). The studied examples show that (i) fluid assisted dissolution-precipitation processes rather than temperature-dependent solid diffusion predominantly govern the closure of the Th/U/Pb system (ii) monazite and zircon are sensitive to the interaction with fluids of specific composition (F, CO2, K ...), even at low temperature (iii) in the absence of fluids, monazite is able to record HT events and to retain this information in poly-orogenic contexts or during partial melting events (iv) complex chemical and isotopic zonations, well known in monazite, reflect the interaction with the surrounding mineral assemblages. An often neglected observation is that the K-Ar chronometer minerals show similar patterns of isotopic inheritance closely tied to relict patches and heterochemical retrogression phases (Villa and Williams 2013). Isotopic closure in the U-Pb and K-Ar systems follows the same principle: thermal diffusion is very slow, dissolution and reprecipitation are several orders of magnitude faster. This means that both U-Pb and K-Ar mineral chronometers are hygrochronometers. The interpretation of the ages of the different domains cannot be decoupled from the geochemical and petrological context. The focus on petrology also requires, following Villa (1998, 2016), that the ages measured in metamorphic rocks no longer can be used in geodynamic models according to the "closure temperature" concept as originally defined by Dodson (1973). Bosse et al. (2009) Chem Geol 261: 286 Didier et al. (2014) Chem Geol 381: 206 Didier et al. (2015) Contrib Mineral Petrol 170: 45 Dodson (1973) Contrib Mineral Petrol 40: 259 Muller (2003) EPSL, 206: 237 Villa (1998) Terra Nova 10: 42 Villa (2016) Chem Geol 420: 1 Villa & Williams (2013) In: Harlov & Austrheim (eds.), Metasomatism and the Chemical Transformation of Rock. Springer, p171
Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California
Morrow, C.A.; Lockner, D.A.
2006-01-01
The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.
Geochemical Investigation of Saddlebag Lake Roof Pendant and Lee Vining Intrusive Suite Origins
NASA Astrophysics Data System (ADS)
Wonderly, A.; Canchola, J.; Putirka, K. D.
2009-12-01
Our study is to determine to what extent volcanic rocks from the Saddlebag Lake Roof Pendant (SLRP) represent the erupted complement of the Sierra Nevada Batholith (SNB). SLRP formation is thought to be prior to or synchronous with Sierra Nevada orogeny. Age dates of the SLRP are similar to age dates from the Lee Vining Intrusive Suite (LVIS), so the LVIS may be the plutonic equivalent of the SLRP (Kistler and Fleck 1994). A hypothesized analog between SLRP-LVIS is the Wilson Ridge Pluton (WRP)-River Mountains (RM) complex in southern Nevada, which is a dismembered volcanic complex offset by normal faulting (Honn and Smith, 2008). WRP and RM trace element data from Honn and Smith plot very similar on a Hf-Th-Ta ternary diagram, and Sr and Nd isotope analyses also indicate that the Nevada rocks are co-magmatic. Our goal is to conduct geochemical tests to determine whether the SLRP and LVIS are co-genetic. Our preliminary data support the possibility that the SLRP may provide a window into the magmatic evolutionary processes that led to the development of the LVIS, and the SNB generally. Eighteen samples were collected from the SLRP; major element compositions of whole rocks yield similar weight percents of major oxides for some published data from the LVIS (Bateman et al. 1984). Our SLRP samples, though, trend to higher MgO, Fe2O3, Al2O3, and CaO, lower in SiO2 and Na2O+K2O. If the SLRP and LVIS are indeed related, the SLRP samples may represent some of the less-differentiated liquids from which the LVIS was derived. We were only able to find one basalt (51.2 wgt % SiO2), albeit with very low MgO (2.17 wt %), which may give clues as to the origin of the LVIS. If the mafic enclaves in the LVIS were once liquid, then the SLRP basalts should be comparable to mafic enclaves in composition. We are also analyzing mafic enclaves from the LVIS to explore whether these are liquid precursors to Sierra Nevada Batholith granites.
Post-peak metamorphic evolution of the Sumdo eclogite from the Lhasa terrane of southeast Tibet
NASA Astrophysics Data System (ADS)
Cao, Dadi; Cheng, Hao; Zhang, Lingmin; Wang, Ke
2017-08-01
A reconstruction of the pressure-temperature-time (P-T-t) path of high-pressure eclogite-facies rocks in subduction zones may reveal important information about the tectono-metamorphic processes that occur at great depths along the plate interface. The majority of studies have focused on prograde to peak metamorphism of these rocks, whereas after-peak metamorphism has received less attention. Herein, we present a detailed petrological, pseudosection modeling and radiometric dating study of a retrograded eclogite sample from the Sumdo ultrahigh pressure belt of the Lhasa terrane, Tibet. Mineral chemical variations, textural discontinuities and thermodynamic modeling suggest that the eclogite underwent an exhumation-heating period. Petrographic observations and phase equilibria modeling suggest that the garnet cores formed at the pressure peak (∼2.5 GPa and ∼520 °C) within the lawsonite eclogite-facies and garnet rims (∼1.5 GPa and <650 °C) grew during post-peak amphibole eclogite-facies metamorphism. The metamorphic evolution of the Sumdo eclogite is characterized by a clockwise P-T path with a heating stage during early exhumation, a finding that conflicts with previously reported heating-compression P-T paths for the Sumdo eclogite. A garnet-whole rock Lu-Hf age of 266.6 ± 0.7 Ma, which is consistent with the loosely constrained zircon U-Pb age of 261 ± 15 Ma within uncertainty, was obtained for the sample. The peak metamorphic temperature of the sample is lower than the Lu-Hf closure temperature of garnet, which combined with the general core-to-rim decrease in the Mn and Lu concentrations and the occurrence of a second maximum Lu peak in the inner rim, is consistent with the Lu-Hf system skewing to the age of the garnet inner rim. Thus the Lu-Hf age likely reflects late eclogite-facies metamorphism. The new U-Pb and Lu-Hf ages, together with previously published radiometric dating results, suggest that the overall growth of garnet spans an interval of ∼7 million years, which is a minimum estimate of the duration of the eclogite-facies metamorphism of the Sumdo eclogite.
Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico
NASA Astrophysics Data System (ADS)
Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.
2007-05-01
The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.
Geological evolution of the Antongil Craton, NE Madagascar
Schofield, D.I.; Thomas, Ronald J.; Goodenough, K.M.; De Waele, B.; Pitfield, P.E.J.; Key, R.M.; Bauer, W.; Walsh, G.J.; Lidke, D.J.; Ralison, A.V.; Rabarimanana, M.; Rafahatelo, J.-M.; Randriamananjara, T.
2010-01-01
The Antongil Craton, along with the Masora and Antananarivo cratons, make up the fundamental Archaean building blocks of the island of Madagascar. They were juxtaposed during the late-Neoproterozoic to early Palaeozoic assembly of Gondwana. In this paper we give a synthesis of the geology of the Antongil Craton and present previously published and new geochemical and U-Pb zircon analyses to provide an event history for its evolution.The oldest rocks in the Antongil Craton form a nucleus of tonalitic gneiss, characteristic of Palaeo-Mesoarchaean cratons globally, including phases dated between 3320 ?? 14. Ma to 3231 ?? 6. Ma and 3187 ?? 2. Ma to 3154 ?? 5. Ma. A series of mafic dykes was intruded into the Mesoarchaean tonalites and a sedimentary succession was deposited on the craton prior to pervasive deformation and migmatisation of the region. The age of deposition of the metasediments has been constrained from a volcanic horizon to around 3178 ?? 2. Ma and subject to migmatisation at around 2597 ?? 49. Ma. A subsequent magmatic episode generated voluminous, weakly foliated granitic rocks, that also included additions from both reworked older crustal material and younger source components. An earlier granodiorite-dominated assemblage, dated between 2570 ?? 18. Ma and 2542 ?? 5. Ma, is largely exposed in xenoliths and more continuously in the northern part of the craton, while a later monzogranite-dominated phase, dated between 2531 ?? 13. Ma and 2513 ?? 0.4. Ma is more widely developed. Together these record the stabilisation of the craton, attested to by the intrusion of a younger dyke swarm, the age of which is constrained by a sample of metagabbro dated at 2147 ?? 6. Ma, providing the first evidence for Palaeoproterozoic rocks from the Antongil Craton.The youngest events recorded in the isotopic record of the Antongil Craton are reflected in metamorphism, neocrystallisation and Pb-loss at 792 ?? 130. Ma to 763 ?? 13. Ma and 553 ?? 68. Ma. These events are interpreted as being the only manifestation of the Pan-African orogeny seen in the craton, which led to the assembly of the tectonic blocks that comprise the island. ?? 2010 NERC.
NASA Astrophysics Data System (ADS)
Pendleton, S.; Miller, G. H.
2014-12-01
Recent summer warming has now raised the equilibrium line above almost all ice caps on Baffin Island, resulting in surface lowering and marginal recession everywhere. As cold-based ice recedes it frequently exposes in situ tundra plants that were living at the time ice expanded across the site. Radiocarbon dates for each plant records when cold summers dropped regional snowline below the site, killing the plants, and snowline remained below the site until the collection date. The kill dates also represent the last time that the climate was warm enough to expose the sampling location. Seventy-six vegetation samples collected in 2013 from the Penny Ice Cap region have been dated, with significant age populations at ~0.5, 1.8, 2.3, and 3.6 ka. The absence of ages around ~1, 2, 3, 4.5, and 5.5 ka suggest periods of either no snowline depression or stability. Sixteen vegetation samples returned ages of >45 ka (2 revisited sites from 2010, 14 new). It is postulated that these radiocarbon dead samples were last exposed during the last interglaciation (~120 ka), the last time climate was as warm as present. In addition to plant collections, bedrock exposures at the ice margins were sampled for 26Al/10Be cosmogenic nuclide dating. Seven samples from and around the Penny Ice cap have returned maximum exposure ages from ~ 0.6-0.9 ma and total histories of ~0.6-1.5 ma. In general, samples from the larger Penny Ice Cap exhibited lower amounts of exposure (~20% of total history) than those samples from smaller, localized ice caps (~55%). Radiocarbon dead sites north of the Penny Ice cap experienced significantly more exposure over their lifetimes than their counterparts east of the Penny Ice cap, suggesting significant differences in local and regional land ice fluctuations over the last 2 million years. Utilizing both the method of in situ moss and 26Al/10Be dating provides new insight into both the recent activity and long-term evolution of ice on Baffin Island. In particular these new data help to shed light on how late Holocene coolings affect both large and small ice bodies and how this behavior is represented in the longer-term burial/exposure record contained within the rock surface.
Holocene changes in sea level: Evidence in Micronesia
Shepard, F.P.; Curray, Joseph R.; Newman, W.A.; Bloom, A.L.; Newell, N.D.; Tracey, J.I.; Veeh, H.H.
1967-01-01
Investigation of 33 islands, scattered widely across the Caroline and Marshall Island groups in the Central Pacific revealed no emerged reefs in which corals had unquestionably formed in situ, or other direct evidence of postglacial high stands of sea level. Low unconsolidated rock terraces and ridges of reef-flat islands, mostly lying between tide levels, were composed of rubble conglomerates; carbon-14 dating of 11 samples from the conglomerates so far may suggest a former slightly higher sea level (nine samples range between 1890 and 3450 and one approaches 4500 years ago). However, recent hurricanes have produced ridges of comparable height and material, and in the same areas relics from World War II have been found cemented in place. Thus these datings do not in themselves necessarily indicate formerly higher sea levels. Rubble tracts are produced by storms under present conditions without any change in datum, and there seems to be no compelling evidence that they were not so developed during various periods in the past.
McHugh, John B.; Miller, W. Roger
1989-01-01
In the spring of 1984, a hydrogeochemical survey was conducted in the Kingdom of Saudi Arabia to test ground water as a sampling medium in exploration for mineral deposits. Eighty-one water samples (mostly from wells) were collected. The samples were analysed for the presence and concentration of major cations and anions, as well as a suite of trace elements. Most of the water samples contained high concentrations of dissolved salts. The majority of the samples showed no significant amounts of the trace elements. A few well-water samples contained moderately anomalous concentrations of zinc, molybdenum, and uranium. These anomalies could be due to salinity effects, contamination, or the proximity of mineral sources. This survey has established some baseline water-chemistry data, especially for the trace metals, which to date have not been reported in ground water in the Kingdom of Saudi Arabia.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... Investment Officer, Vanguard, dated May 3, 2012; and Letter from Leonard J. Amoruso, General Counsel, Knight..., BlackRock, Inc., dated July 11, 2012; Letter from Stanislav Dolgopolov, Assistant Adjunct Professor..., Esq., NASDAQ, dated September 7, 2012, and email from Ed Knight, NASDAQ, dated September 19, 2012. \\9...
Core Cutting Test with Vertical Rock Cutting Rig (VRCR)
NASA Astrophysics Data System (ADS)
Yasar, Serdar; Osman Yilmaz, Ali
2017-12-01
Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.
NASA Astrophysics Data System (ADS)
Amato, J. M.; Miller, E. L.; Gehrels, G.
2003-12-01
Metamorphic rocks of Seward Peninsula have been divided into two groups based on their metamorphic grade and history: The Nome Group and the Kigluaik Group. Although it is sometime been assumed that the higher structural position of the Nome Group versus the Kigluaik Group indicates the Kigluaik Group is older, this relationship and the age of the protoliths of these rocks has never been well-established. The Nome Group includes (delete the) lower grade blueschist and greenschist facies rocks which are widespread across the Seward Peninsula (delete) Rock types include pelitic schist, more mafic chlorite-white mica-albite schist, marble, quartzite, and metabasite. An early metamorphic event (pre-120 Ma) occurred at high pressure and relatively low temperature, and is everywhere overprinted by younger deformation and greenschist facies Rare eclogite facies assemblages are preserved in metabasites, and garnet-glaucophane in some of the pelitic schists. The Kigluaik Group includes upper greenschist to granulite facies rocks that are exposed in the core of a gneiss dome. They record a younger event (~91 Ma) that occurred at higher temperatures and resulted in partial thermal overprinting of the Nome Group and upper greenschist to granulite facies assemblages forming in the Kigluaik Group. The Kigluaik Group and equivalent rocks in the Bendeleben and Darby Mountains represent at least in part similar protoliths to many of the units in the Nome Group (Till and Dumoulin, 1994). The boundary between the rocks of the Nome Group and those clearly affected by the second metamorphic event is placed arbitrarily at the "Biotite-in" isograd along the flanks of the gneiss dome. In order to assess the protolith ages and source rock ages for these units, detrital zircon ages were obtained from three samples from the Nome Group, with Kigluaik Group ages forthcoming. LA-MC-ICPMS U/Pb isotope analysis was used for dating. Two samples were collected from the western Kigluaik Mountains near Eldorado Creek and one further south along the Feather River. Each sample yielded 90-105 analyses and all uncertainties are 1 sigma. Chlorite schist MC-74 has a range of ages from the two youngest grains at 484 +/- 18 Ma and 510 +/- 7 Ma to 2984 +/- 2 Ma. Chlorite schist LMC-30 has a youngest grain at 521 +/- 2 Ma and an oldest grain of 2027 +/- 12. Quartz-mica schist LMC-58 also has a youngest grain at 521 +/- 2 Ma and an oldest grain of 2655 +/- 7 Ma. All three therefore have lower Paleozoic zircons, suggesting Lower Cambrian or younger depositional ages. Combining the data from all three rocks results in peaks on a cumulative probability plot at (in descending order of importance): 600 Ma, 683 Ma, 1593 Ma, 522 Ma, and 2985 Ma, with several smaller peaks between 774-1540 Ma and 1685-1960 Ma. Published ages from Nome Group orthogneisses are 680 Ma, suggesting the samples so far analyzed are likely in part sourced from local basement rocks that were eroded to provide ~680 Ma detrital zircons to sedimentary protoliths of part of the Nome Group.
NASA Astrophysics Data System (ADS)
Zhao, Xianfu; Wang, Zongqi; Liu, Chenglin; Li, Chao; Jiao, Pengcheng; Zhao, Yanjun; Zhang, Fan
2018-02-01
Evaporite dating has been an open problem. The study investigates the Re-Os isotopic system in the organic-rich sedimentary rocks to constrain the infilling of sedimentary basin and related geological events. In the Mboukoumassi potash deposit in the Republic of Congo (Congo-Brazzaville) in West Africa, several layers of organic-rich dark shale were found in the evaporite series. Through drilling core, the dark shale in the evaporite is found to satisfy the requirements of Re-Os isotope test. The result shows that the Re-Os isochron age of the dark shale in the study area ranges from 78.7 ± 1.1 to 96 ± 7 Ma, which is the first precise age of the Mboukoumassi potash deposit in the Republic of Congo (Congo-Brazzaville), West Africa. Therefore, the age of deposition of this set of evaporite may be Cenomanian-Turonian, which is younger than the age previously thought (around 113-125Ma, Aptian). The Re-Os isotopic dating technique used for the pioneering study on the precise dating of the Mboukoumassi potash deposit provides a new approach to the study of the sedimentary age of ancient evaporite deposits. The initial 187Os/188Os value decreasing from 2.02 ± 0.21 to 0.982 ± 0.03 for the core sample reflects the source rock chang along the core, and this is consistent with the geological evolution of the basin.
Harlan, S.S.; Snee, L.W.; Geissman, J.W.
1996-01-01
Independence volcano is a major volcanic complex in the lower part of the Absaroka Volcanic Supergroup (AVS) of Montana and Wyoming. Recently reported Rb-Sr mineral dates from the complex give apparent ages of 91 and 84 Ma, whereas field relationships and the physical and compositional similarity of the rocks with other dated parts of the AVS indicate an Early to Middle Eocene age for eruption and deposition. To resolve the conflict between age assignments based on stratigraphic correlations and Rb-Sr dates, we report new paleomagnetic data and 40Ar/39Ar dates for Independence volcano. Paleomagnetic data for the stock and an and andesite plug that cuts the stock are well grouped, of reverse polarity, and yield a virtual geomagnetic pole that is essentially identical to Late Cretaceous and Tertiary reference poles. The reverse polarity indicates that the magnetization of these rocks is probably younger than the Cretaceous normal superchron, or less than about 83.5 Ma. Hornblende from a volcanic breccia near the base of the volcanic pile gives a 40Ar/39Ar age of 51.57 Ma, whereas biotites from a dacite sill and a granodiorite stock that forms the core of the volcano give dates that range from 49.96 to 48.50 Ma. These dates record the age of eruption and intrusion of these rocks and clearly show that the age of Independence volcano is Early to Middle Eocene, consistent with stratigraphic relations. We suggest that the Rb-Sr mineral dates from the Independence stock and related intrusions are unreliable.
From Field to the Web: Management and Publication of Geoscience Samples in CSIRO Mineral Resources
NASA Astrophysics Data System (ADS)
Devaraju, A.; Klump, J. F.; Tey, V.; Fraser, R.; Reid, N.; Brown, A.; Golodoniuc, P.
2016-12-01
Inaccessible samples are an obstacle to the reproducibility of research and may cause waste of time and resources through duplication of sample collection and management. Within the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mineral Resources there are various research communities who collect or generate physical samples as part of their field studies and analytical processes. Materials can be varied and could be rock, soil, plant materials, water, and even synthetic materials. Given the wide range of applications in CSIRO, each researcher or project may follow their own method of collecting, curating and documenting samples. In many cases samples and their documentation are often only available to the sample collector. For example, the Australian Resources Research Centre stores rock samples and research collections dating as far back as the 1970s. Collecting these samples again would be prohibitively expensive and in some cases impossible because the site has been mined out. These samples would not be easily discoverable by others without an online sample catalog. We identify some of the organizational and technical challenges to provide unambiguous and systematic access to geoscience samples, and present their solutions (e.g., workflow, persistent identifier and tools). We present the workflow starting from field sampling to sample publication on the Web, and describe how the International Geo Sample Number (IGSN) can be applied to identify samples along the process. In our test case geoscientific samples are collected as part of the Capricorn Distal Footprints project, a collaboration project between the CSIRO, the Geological Survey of Western Australia, academic institutions and industry partners. We conclude by summarizing the values of our solutions in terms of sample management and publication.
Kellogg, K.S.; Harlan, S.S.
2007-01-01
Detailed 40Ar/39Ar dating and paleomagnetic analysis of dacite porphyry sills and dikes that intrude Cretaceous sedimentary rocks in the northern Madison Range in southwestern Montana show that Laramide shortening was essentially complete by ???69 Ma. A negative paleomagnetic fold test indicates that Laramide folding occurred before cooling of the dacite sills and dikes at ???69 Ma. Laramide deformation began synchronous with deposition of the Livingston Formation rocks at ???79 Ma. These results are consistent with previous observations in the region that show the onset of Laramide deformation in the northern Rocky Mountains becoming progressively younger toward the east. 40Ar/39Ar dating of additional igneous rocks in the northern Madison Valley and around Norris, Montana better define post-Laramide tectonomagmatic events in the region, including Eocene-Oligocene volcanism and Basin and Range crustal extension. Dates from three rhyolitic intrusions near Red Mountain are between 48.71 ?? 0.18 Ma and 49.42 ?? 0.18 Ma, similar to the dates from basal silicic flows of the Virginia City volcanic field (part of the southwest Montana volcanic province), suggesting that the Red Mountain intrusions may have been the sources for some of the early extrusive rocks. Magmatism in the Virginia City volcanic field became generally more mafic with time, and a ???30-Ma basalt flow near Norris is considered a late, outlying member of the volcanic field. A tuff along the east side of the Madison Valley half graben yielded a early middle Miocene date (16.2 ?? 0.19 Ma), suggesting that accelerated crustal extension and associated rapid basin sedimentation probably began in the early Miocene, slightly earlier than previous estimates.
Apollo 15 impact melts, the age of Imbrium, and the Earth-Moon impact cataclysm
NASA Technical Reports Server (NTRS)
Ryder, Graham; Dalrymple, G. Brent
1992-01-01
The early impact history of the lunar surface is of critical importance in understanding the evolution of both the primitive Moon and the Earth, as well as the corresponding populations of planetesimals in Earth-crossing orbits. Two endmember hypotheses call for greatly dissimilar impact dynamics. One is a heavy continuous (declining) bombardment from about 4.5 Ga to 3.85 Ga. The other is that an intense but brief bombardment at about 3.85 +/- Ga was responsible for producing the visible lunar landforms and for the common 3.8-3.9 Ga ages of highland rocks. The Apennine Front, the main topographic ring of the Imbrium Basin, was sampled on the Apollo 15 mission. The Apollo 15 impact melts show a diversity of chemical compositions, indicating their origin in at least several different impact events. The few attempts at dating them have generally not produced convincing ages, despite their importance. Thus, we chose to investigate the ages of melt rock samples from the Apennine Front, because of their stratigraphic importance yet lack of previous age definition.
Petrologic constraints on the origin of the Moon: Evidence from Apollo 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, J.W.; Taylor, L.A.
1984-01-01
The Fra Mauro breccias at Apollo 14 contain distinctive suites of mare basalts and highland crustal rocks that contrast significantly with equivalent rocks from other Apollo sites. These contrasts imply lateral heterogeneity of the lunar crust and mantle on a regional scale. This heterogeneity may date back to the earliest stages of lunar accretion and differentiation. Current theories requiring a Moon-wide crust of Ferroan Anorthosite are based largely on samples from Apollo 16, where all but a few samples represent the FAN suite. However, at the nearside sites, FAN is either scarce (A-15) or virtually absent (A-12, A-14, A-17). Itmore » is suggested that the compositional variations could be accounted for by the acceleration of a large mass of material (e.g., 0.1 to 0.2 moon masses) late in the crystallization history of the magma ocean. Besides adding fresh, primordial material, this would remelt a large pocket of crust and mantle, thereby allowing a second distillation to occur in the resulting magma sea.« less
Detail view of date stone marking the founding of the ...
Detail view of date stone marking the founding of the Emmanuel Christian Community Church congregation - Reformed Episcopal Church of the Rock of Ages, 1210 West Lanvale Street, Baltimore, Independent City, MD
ChemCam Exploration of the rocks and soils of Gale Crater from “Rocknest” to “Yellow Knife Bay”
NASA Astrophysics Data System (ADS)
Blaney, Diana L.; Clegg, S. M.; Anderson, R.; Wiens, R.; Maurice, S.; Gasnault, O.; Barraclough, B.; Berger, G.; Bridges, J. C.; Bridges, N.; Clark, B.; Dyar, M. D.; Edgar, L.; Ehlmann, B.; Goetz, W.; Kah, L.; King, P.; Lanza, N.; Madsen, M.; LeMouelic, S.; Mangold, N.; Meslin, P. Y.; Newsom, H.; Ollila, A.; Rowland, S.; Schmidt, M.; Schröder, S.; Tokar, R.; MSL Science Team
2013-10-01
At the Rocknest location in Gale Crater, ChemCam collected measurements of the rocks surrounding the sandsheet. These rocks are potential in place outcrop related to the larger Yellowknife Bay exposure. ChemCam utilizes Laser Induced Breakdown Spectroscopy to provide elemental composition at distances up to 7 m from the rover. Analysis spot size ranges from 350 μm to 550 μm depending on range. A given analysis spot is fired upon repeatedly by the laser (generally from 30-50 laser shots) and the emission spectra from each laser shots is recorded. Elemental compositions are derived from the spectra vial a Partial Least Squares analysis model based a spectral library of ~70 certified standards collected on the flight instrument before launch. To date more than 60,000 spectra have been obtained on close to 2,000 observation points covering several hundred rock and soil samples. At Rocknest, even though each rock had a variety of textures, the chemistry of each rock varied in a similar manner. The rocks showed no evidence for widespread coatings or rinds. However, there was evidence for calcium sulfate (based on a linear relationship between CaO and SO4), and excess iron oxides (based on increased FeO not associated with SiO2 in specific rock targets). The detection of sulfates, ferric iron oxides and the overall chemistry of the rocks suggest that nearby felsic and olivine-rich material were cemented together by iron oxide cement. Results from the Rocknest area will be compared to other ChemCam results from other rocks at Yellowknife Bay and their geochemical/geological relationship will be presented. Implications for habitability of these deposits will also be discussed. Acknowledgement: This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Funding from the Canadian Space Agency for King and Schmidt.
NASA Technical Reports Server (NTRS)
Ralston, S. J.; Hausrath, E. M.; Tschauner, O.; Rampe, E. B.; Christoffersen, R.
2018-01-01
Investigations with the CheMin Xray Diffractometer (XRD) onboard the Curiosity rover in Gale Crater demonstrate that all rock and soil samples measured to date contain approximately 15-70 weight percentage X-ray amorphous materials. The diffuse scattering hump from the X-ray amorphous materials in CheMin XRD patterns can be fit with a combination of allophane, ferrihydrite, and rhyolitic and basaltic glass. Because of the iron-rich nature of Mars' surface, Fe-rich poorly-crystalline phases, such as hisingerite, may be present in addition to allophane.
Testing the Limits to Accurate Comminution Dates: A Progress Report
NASA Astrophysics Data System (ADS)
Piccione, G.; Blackburn, T.; Edwards, G. H.
2017-12-01
The ability to resolve the timing of fine particle production holds potential for contributing to several Earth Science sub-disciplines including glaciology, eolian and fluvial geomorphology, soil production, and fault dynamics. A relatively new geochronologic tool, U-series comminution dating, has shown potential to directly date the timing of particle comminution. This system's sensitivity to particle size arises from a physical disequilibrium in the 238U decay chain generated by the ejected loss of intermediate daughter products (e.g. 234U). It is the goal of this ongoing study to develop and test analytical procedures to improve the accuracy of comminution dating. In the geologic settings explored by previous studies, comminution dates integrate both the time of particle transport and time since deposition. To better test the accuracy of comminution dates, our study focuses on settings where silt has experienced little to no transport time, specifically, glacial moraines in the Eastern Sierras and Rock Avalanches in the San Gabriel Mountains, both locations with existing independent geochronologic constraints. Previous studies demonstrate the dependency of U-series comminution date on grain size and shape. Here we show that mineralogy of samples also plays a role, possibly controlled by the uranium content and crystal bond strength. To separate samples by size and mineralogy, we use dry sonic-sieving, density and magnetic separation. Non-detrital materials deposited on the rim of comminuted grains have an isotopic composition that is unrelated to the isotopic evolution since comminution and therefore must be removed through a multi-step leaching procedure. Leaching is complicated by the fact that areas within the comminuted crystal that have experienced physical fractionation are contained within damaged zones and are prone to being leached themselves, which removes areas of interest from the crystal. We present progress made on a sample processing method developed to alleviate complications that affect comminution age measurements. Initial 234U/238U measurements for untreated silt from an 800ka Sierran glacial till are up to 6% above secular equilibrium, while samples processed with this method have measured ratios as low as 3% below secular equilibrium.
Rock pushing and sampling under rocks on Mars
Moore, H.J.; Liebes, S.; Crouch, D.S.; Clark, L.V.
1978-01-01
Viking Lander 2 acquired samples on Mars from beneath two rocks, where living organisms and organic molecules would be protected from ultraviolet radiation. Selection of rocks to be moved was based on scientific and engineering considerations, including rock size, rock shape, burial depth, and location in a sample field. Rock locations and topography were established using the computerized interactive video-stereophotogrammetric system and plotted on vertical profiles and in plan view. Sampler commands were developed and tested on Earth using a full-size lander and surface mock-up. The use of power by the sampler motor correlates with rock movements, which were by plowing, skidding, and rolling. Provenance of the samples was determined by measurements and interpretation of pictures and positions of the sampler arm. Analytical results demonstrate that the samples were, in fact, from beneath the rocks. Results from the Gas Chromatograph-Mass Spectrometer of the Molecular Analysis experiment and the Gas Exchange instrument of the Biology experiment indicate that more adsorbed(?) water occurs in samples under rocks than in samples exposed to the sun. This is consistent with terrestrial arid environments, where more moisture occurs in near-surface soil un- der rocks than in surrounding soil because the net heat flow is toward the soil beneath the rock and the rock cap inhibits evaporation. Inorganic analyses show that samples of soil from under the rocks have significantly less iron than soil exposed to the sun. The scientific significance of analyses of samples under the rocks is only partly evaluated, but some facts are clear. Detectable quantities of martian organic molecules were not found in the sample from under a rock by the Molecular Analysis experiment. The Biology experiments did not find definitive evidence for Earth-like living organisms in their sample. Significant amounts of adsorbed water may be present in the martian regolith. The response of the soil from under a rock to the aqueous nutrient in the Gas Exchange instrument indicates that adsorbed water and hydrates play an important role in the oxidation potential of the soil. The rock surfaces are strong, because they did not scratch, chip or spall when the sampler pushed them. Fresh surfaces of soil and the undersides of rocks were exposed so that they could be imaged in color. A ledge of soil adhered to one rock that tilted, showing that a crust forms near the surface of Mars. The reason for low amounts of iron in the sampIes from under the rocks is not known at this time.
Age of the moon: An isotopic study of uranium-thorium-lead systematics of lunar samples
Tatsumoto, M.; Rosholt, J.N.
1970-01-01
Concentrations of U, Th, and Pb in Apollo 11 samples studied are low (U. 0.16 to 0.87; Th, 0.53 to 3.4; Pb, 0.29 to 1.7, in ppm) but the extremely radiogenic lead in samples allows radiometric dating. The fine dust and the breccia have a concordant age of 4.66 billion years on the basis of 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios. This age is comparable with the age of meteorites and with the age generally accepted for the earth. Six crystalline and vesicular samples are distinctly younger than the dust and breccia. The 238U/235U ratio is the same as that in earth rocks, and 234U is in radioactive equilibrium with parent 238U.
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Nordahl, Bobo; Bunkholt, Halvor; Nicolaisen, Magnus; Jarna, Alexandra; Iversen, Sverre; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.
2015-11-01
The unstable rock slope database is developed and maintained by the Geological Survey of Norway as part of the systematic mapping of unstable rock slopes in Norway. This mapping aims to detect catastrophic rock slope failures before they occur. More than 250 unstable slopes with post-glacial deformation are detected up to now. The main aims of the unstable rock slope database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, as well as hazard and risk classification. Feature classes and tables linked to the main feature class include different scenarios of an unstable rock slope, field observation points, sampling points for dating, displacement measurement stations, lineaments, unstable areas, run-out areas, areas affected by secondary effects, along with tables for hazard and risk classification and URL links to further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through an online map service. Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site. Areas of possible rock avalanche run-out and their secondary effects displayed in the online map service, along with hazard and risk assessments, will become important tools for land-use planning. The present database will further evolve in the coming years as the systematic mapping progresses and as available techniques and tools evolve.
Temporal trends in nitrate and selected pesticides in Mid-Atlantic ground water.
Debrewer, Linda M; Ator, Scott W; Denver, Judith M
2008-01-01
Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with changing land and chemical uses when interpreting trends in regional ground-water quality.
Biogeography of serpentinite-hosted microbial ecosystems
NASA Astrophysics Data System (ADS)
Brazelton, W.; Cardace, D.; Fruh-Green, G.; Lang, S. Q.; Lilley, M. D.; Morrill, P. L.; Szponar, N.; Twing, K. I.; Schrenk, M. O.
2012-12-01
Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). To date, however, the "serpentinite microbiome" is poorly constrained- almost nothing is known about the microbial diversity endemic to rocks actively undergoing serpentinization. Through the Census of Deep Life, we have obtained 16S rRNA gene pyrotag sequences from fluids and rocks from serpentinizing ophiolites in California, Canada, and Italy. The samples include high pH serpentinite springs, presumably representative of deeper environments within the ophiolite complex, wells which directly access subsurface aquifers, and rocks obtained from drill cores into serpentinites. These data represent a unique opportunity to examine biogeographic patterns among a restricted set of microbial taxa that are adapted to similar environmental conditions and are inhabiting sites with related geological histories. In general, our results point to potentially H2-utilizing Betaproteobacteria thriving in shallow, oxic-anoxic transition zones and anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These general taxonomic and biogeochemical trends were also observed in seafloor Lost City hydrothermal chimneys, indicating that we are beginning to identify a core serpentinite microbial community that spans marine and continental settings.
NASA Astrophysics Data System (ADS)
Rossoni, Marco B.; Bastos Neto, Artur C.; Souza, Valmir S.; Marques, Juliana C.; Dantas, Elton; Botelho, Nilson F.; Giovannini, Arthur L.; Pereira, Vitor P.
2017-12-01
We present results of U-Pb dating (by MC-ICP-MS) of zircons from samples that cover all of the known lithotypes in the Seis Lagos Carbonatite Complex and associated lateritic mineralization (the Morro dos Seis Lagos Nb deposit). The host rock (gneiss) yielded an age of 1828 ± 09 Ma interpreted as the crystallization time of this unit. The altered feldspar vein in the same gneiss yielded an age of 1839 ± 29 Ma. Carbonatite samples provided 3 groups of ages. The first group comprises inherited zircons with ages compatible with the gneissic host rock: 1819 ± 10 Ma (superior intercept), 1826 ± 5 Ma (concordant age), and 1812 ± 27 Ma (superior intercept), all from the Orosirian. The second and the third group of ages are from the same carbonatite sample: the superior intercept age of 1525 ± 21 Ma (MSWD = 0.77) and the superior intercept age of 1328 ± 58 Ma (MSWD = 1.4). The mineralogical study indicates that the ∼1.3 Ga zircons have affinity with carbonatite. It is, however, a tendence rather than a well-defined result. The data allow state that the age of 1328 ± 58 Ma represents the maximum age of the carbonatite. Without the same certainty, we consider that the data suggest that this age may be the carbonatite age, whose emplacement would have been related to the evolution of the K'Mudku belt. The best age obtained in laterite samples (a superior intercept age of 1828 ± 12 Ma) is considered the age of the main source for the inherited zircons related to the gneissic host rock.
Investigations of lunar materials
NASA Technical Reports Server (NTRS)
Comstock, G. M.; Fvwaraye, A. O.; Fleischer, R. L.; Hart, H. R., Jr.
1972-01-01
The investigations were directed at determining the radiation history and surface chronology of lunar materials using the etched particle track technique. The major lunar materials studied are the igneous rocks and double core from Apollo 12, the breccia and soil samples from Apollo 14, and the core samples from Luna 16. In the course of this work two new and potentially important observations were made: (1) Cosmic ray-induced spallation-recoil tracks were identified. The density of such tracks, when compared with the density of tracks induced by a known flux of accelerator protons, yields the time of exposure of a sample within the top meter or two of moon's surface. (2) Natural, fine scale plastic deformation was found to have fragmented pre-existing charged particle tracks, allowing the dating of the mechanical event causing the deformation.
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.; Li, Z.-H.; Miller, J. S.; Brinckerhoff, W. B.; Clegg, S. M.; Mahaffy, P. R.; Swindle, T. D.; Wiens, R. C.
2013-01-01
Absolute dating of planetary samples is an essential tool to establish the chronology of geological events, including crystallization history, magmatic evolution, and alteration. We are addressing this challenge by developing the Potassium (K) -- Argon Laser Experiment (KArLE), building on previous work to develop a K-Ar in situ instrument. KArLE ablates a rock sample, determines the K in the plasma state using laser-induced breakdown spectroscopy (LIBS), measures the liberated Ar using quadrupole mass spectrometry (QMS), and relates the two by the volume of the ablated pit using laser confocal microscopy (LCM). Our goal is for the KArLE instrument to be capable of determining the age of several kinds of planetary samples to address a wide range of geochronolgy problems in planetary science.
Rb-Sr ages from phengite inclusions in garnets from high pressure rocks of the Swiss Western Alps
NASA Astrophysics Data System (ADS)
de Meyer, Caroline M. C.; Baumgartner, Lukas P.; Beard, Brian L.; Johnson, Clark M.
2014-06-01
The Zermatt-Saas Fee Zone (ZSZ) was subducted to eclogite-facies conditions, reaching peak pressures and temperatures of 20-28 kbar and 500-630 °C. The rocks were partially overprinted under greenschist-facies conditions during exhumation. Previous Rb-Sr isochron ages obtained on matrix phengites in metasediments of the ZSZ have been interpreted to date early exhumation of the ZSZ. Here we present new Rb-Sr geochronology on phengite inclusions in garnets to date prograde growth of garnets. We show that garnet acted as a shield for the included phengites, limiting Rb and Sr isotope exchange with the bulk rock, upon complete enclosure of the mica, during garnet growth, even if peak metamorphism exceeded the Rb-Sr blocking temperature. Similarly, garnet isolated the micas from the matrix during subsequent recrystallization due to fluid infiltration or deformation during exhumation. Phengite inclusion ages for two metapelitic samples from the same locality (Triftji) are 44.86±0.49 Ma and 43.6±1.8 Ma, and are about 4 m.y. older than the corresponding matrix mica ages of 40.01±0.51 Ma and 39.5±1.1 Ma, respectively. The results confirm previous Sm-Nd and Lu-Hf geochronology on the ZSZ that indicated protracted garnet growth during prograde metamorphism, and confirm that at least parts of the ZSZ underwent peak metamorphic HP conditions less than 43 m.y. ago, followed by rapid exhumation to upper greenschist-facies conditions around 40 Ma ago.
61. Picking Floor, Large Pile of Waste Rock and Wood ...
61. Picking Floor, Large Pile of Waste Rock and Wood date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre, PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA
NASA Astrophysics Data System (ADS)
Holder, R. M.; Hacker, B. R.
2017-12-01
Calc-silicate rocks are often overlooked as sources of pressure-temperature-time data in granulite-UHT metamorphic terranes due to the strong dependence of calc-silicate mineral assemblages on complex fluid compositions and a lack of thermodynamic data on common high-temperature calc-silicate minerals such as scapolite. In the Ediacaran-Cambrian UHT rocks of southern Madagascar, clinopyroxene-scapolite-feldspar-quartz-zircon-titanite calc-silicate rocks are wide-spread. U-Pb dates of 540-520 Ma from unaltered portions of titanite correspond to cooling of the rocks through upper-amphibolite facies and indicate UHT metamorphism occurred before 540 Ma. Zr concentrations in these domains preserve growth temperatures of 900-950 °C, consistent with peak temperatures calculated by pseudosection modeling of nearby osumilite-bearing gneisses. Younger U-Pb dates (510-490 Ma) correspond to fluid-mediated Pb loss from titanite grains, which occurred below their diffusive Pb-closure temperature, along fractures. The extent of fluid alteration is seen clearly in back-scattered electron images and Zr-, Al-, Fe-, Ce-, and Nb-concentration maps. Laser-ablation depth profiling of idioblastic titanite grains shows preserved Pb diffusion profiles at grain rims, but there is no evidence for Zr diffusion, indicating that it was effectively immobile even at UHT.
Provenance studies by fission-track dating of zircon-etching and counting procedures
Naeser, N.D.; Zeitler, P.K.; Naeser, C.W.; Cerveny, P.F.
1987-01-01
In sedimentary rocks that have not been heated to high enough temperatures to anneal fission tracks in zircon (greater than ≈ 160°C), fission-track ages of individual detrital zircon grains provide valuable information about the source rocks eroded to form the sediments. The success of such studies depends, however, on the degree to which the ages determined from the detrital suite accurately portray the range of grain ages that are present in the suite. This in turn depends to a large extent on using counting and, in particular, etching procedures that permit proper sampling of grains with a wide range of age and uranium concentrations. Results are reported here of an experimental study of a ‘detrital’ zircon suite manufactured from several zircon populations of known age. This study suggests that multiple etches are required when a complete spectrum of ages in a zircon suite is desired.
Provenance studies by fission-track dating of zircon-etching and counting procedures
Naeser, Nancy D.; Zeitler, Peter K.; Naeser, Charles W.; Cerveny, Philip F.
1987-01-01
In sedimentary rocks that have not been heated to high enough temperatures to anneal fission tracks in zircon (greater than approximately equals 160 degree C), fission-track ages of individual detrital zircon grains provide valuable information about the source rocks eroded to form the sediments. The success of such studies depends, however, on the degree to which the ages determined from the detrital suite accurately portray the range of grain ages that are present in the suite. This in turn depends to a large extent on using counting and, in particular, etching procedures that permit proper sampling of grains with a wide range of age and uranium concentrations. Results are reported here of an experimental study of a 'detrital' zircon suite manufactured from several zircon populations of known age. This study suggests that multiple etches are required when a complete spectrum of ages in a zircon suite is desired.
Potocić, Nenad; Cosić, Tomislav; Pilas, Ivan
2005-10-01
As a part of a broader research into the nutrition of silver fir (Abies alba Mill.), the variation of calcium concentrations was investigated in needles and soil in two subsequent, climatologically diverse years. Statistically significant differences between plots were determined in Ca concentrations in soils. Concentrations of Ca in needles were statistically different regarding plot, defoliation class, sampling date within the same year and also between years. Fir trees on acid-rock based soils had lower, often inadequate concentrations of Ca in needles; the opposite was true for trees growing on Ca-rich soils. Trees of lower vitality generally exhibited poor Ca nutrition. Drought in the second year of research caused poor absorption of Ca on all plots and in all defoliation classes, but the combined influence of climate and soil properties affected especially trees of low vitality on acid-rock based soils.
Westernmost Tian Shan (Uzbekistan): Magmatism and Exhumation
NASA Astrophysics Data System (ADS)
Abdulhameed, Sanaa; Ratchbacher, Lothar; Gagala, Lukasz; Jonkheere, Raymond
2014-05-01
The westernmost segment of the Tian Shan comprises the Ghissar-Alai Range of Tajikistan and Uzbekistan; its southwestern promontory contains the Baysunta crystalline massif. This orocline extends northwest of the Pamir and southeast of the Turan platform and forms the (north) western margin of the intra-orogenic Afghan-Tajik basin that was inverted during the India-Asia collision, mainly as a result of the gravitational collapse of the Pamir Plateau. The area contains Paleozoic slope and shelf clastics mantling crystalline basement rocks, altogether intruded by massif granitoids; it hides the cryptic Late Paleozoic South Ghissar suture. In Uzbekistan, the crystalline basement rocks of the westernmost Tien Shan are involved in the folding and thrusting of the Jurassic to Neogene sediments of the Afghan-Tajik basin, spectacularly proving thick-skinned deformation and demonstrating basement involvement below the Jurassic evaporate décollement underneath the Afghan-Tajik basin. We sampled the crystalline basement rocks of the Tian Shan of Uzbekistan to constrain the formation of the enigmatic Baysunta block and date the crystallization and high-grade metamorphism of the granitoids and associated metamorphic rocks of the Ghissar range; we employed U-Pb zircon geochronology. To time the deformation and exhumation of the fold-and thrust belt of the westernmost Afghan-Tajik basin, we used apatite fission-track thermochronology. Concordant U-Pb crystallization ages of zircons in the orthogneiss and paragneiss comprise 620 to 300 Ma; the Neoproterozoic ages imply a correlation of the Baysunta block with the Garm crystalline massif of the central Ghissar-Alai range of northeastern Tajikistan. The youngest zircon crystallization ages from granitoids are ~220 Ma, revealing enigmatically young magmatism, post-dating the last known collision event by >50 Ma. Together with 270-240 Ma meta-basaltic dykes and stocks in Tajikistan, they may trace a regional post-orogenic delamination event. The apatite fission-track thermochronology suggests a two-phase exhumation history. Exhumation/cooling within the age range of ~17 and 4 Ma and clustering around 10 Ma date slip along the thick-skinned thrusts. This demonstrates the impact of the India-Asia collision on the edge of the Turan platform, far northwest of the western edge of the collision zone. Ages from the northwestern edge of the study area cover 197 to 69 Ma; they trace a fossil partial annealing zone. They show that the Tian Shan along the margin of the Turan platform was never covered by sedimentary rocks >3 km thick.
Johnson, Gordon R.
1983-01-01
Dry bulk density and grain density measurements were made on 182 samples of igneous, sedimentary, and metamorphic rocks from various world-wide localities. Total porosity values and both water-accessible and helium-accessible porosities were calculated from the density data. Magnetic susceptibility measurements were made on the solid samples and permeability and streaming potentials were concurrently measured on most samples. Dry bulk densities obtained using two methods of volume determination, namely direct measurement and Archlmedes principle, were nearly equivalent for most samples. Grain densities obtained on powdered samples were typically greater than grain densities obtained on solid samples, but differences were usually small. Sedimentary rocks had the highest percentage of occluded porosity per rock volume whereas metamorphic rocks had the highest percentage of occluded porosity per total porosity. There was no apparent direct relationship between permeability and streaming potential for most samples, although there were indications of such a relationship in the rock group consisting of granites, aplites, and syenites. Most rock types or groups of similar rock types of low permeability had, when averaged, comparable levels of streaming potential per unit of permeability. Three calcite samples had negative streaming potentials.
Rock sample brought to earth from the Apollo 12 lunar landing mission
NASA Technical Reports Server (NTRS)
1969-01-01
A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.
Uranium series, volcanic rocks
Vazquez, Jorge A.
2014-01-01
Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).
Tysdal, R.G.; Marvin, R.F.; Dewitt, E.
1986-01-01
Dating of orogenic rock units in the central part of the Madison Range shows that Laramide deformation was virtually completed by the end of the Cretaceous. Early Campanian K-Ar dates of about 79 m.y. were obtained from welded tuffs in the basal part of the Livingston Formation, a volcanic and volcaniclastic assemblage that is conformable with underlying Cretaceous clastic rocks and with the overlying Sphinx Conglomerate. The Sphinx and the Livingston were deformed by the Hilgard fault system which extends along the western side of the southern two-thirds of the range. This north-trending fault system represents the culmination of Laramide shortening within the range. Dating of hornblende indicates an approximate date of 68-69 m.y. B.P. for emplacement of the igneous suite. The dacite postdates movement along faults of the Hilgard fault system, and postdates the synorogenic Sphinx Conglomerate. -from Authors
Device Acquires and Retains Rock or Ice Samples
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Backes, Paul G.
2009-01-01
The Rock Baller is a sample acquisition tool that improves sample retention. The basic elements of the Rock Baller are the tool rotation axis, the hub, the two jaws, and the cutting blades, which are located on each of the jaws. The entire device rotates about the tool rotation axis, which is aligned parallel to the nominal normal direction of the parent rock surface. Both jaws also rotate about the jaw axis, which is perpendicular to the tool rotation axis, at a rate much slower than the rotation about the tool rotation axis. This movement gradually closes the jaws into a nearly continuous hemispherical shell that encloses the sample as it is cut from the parent rock. When required the jaws are opened to release the sample. The hemispherical cutting method eliminates the sample retention problems associated with existing sample acquisition methods that employ conventional cylindrical cutting. The resulting samples are hemispherical, or nearly hemispherical, and as a result the aspect ratio (sample depth relative to sample radius) is essentially fixed. This fixed sample aspect ratio may be considered a drawback of the Rock Baller method, as samples with a higher aspect ratio (more depth, less width) may be considered more scientifically valuable because such samples would allow for a broader inspection of the geological record. This aspect ratio issue can be ameliorated if the Rock Baller is paired with a device similar to the Rock Abrasion Tool (RAT) used on the Mars Exploration Rovers. The RAT could be used to first grind into the surface of the parent rock, after which the Rock Baller would extract a sample from a depth inside the rock that would not have been possible without first using the RAT. Other potential applications for this technology include medical applications such as the removal of tissue samples or tumors from the body, particularly during endoscopic, laparoscopic, or thoracoscopic surgeries.
Emsian synorogenic paleogeography of the Maine Applachians
Bradley, D.; Tucker, R.
2002-01-01
The Acadian deformation front in the northern Appalachians of Maine and New Hampshire can now be closely located during the early Emsian (Early Devonian; 408-406 Ma). Tight correlations between paleontologically and isotopically dated rocks are possible only because of a new 408-Ma time scale tie point for the early Emsian. The deformation front lay between a belt of Lower Devonian flysch and molasse that were deposited in an Acadian foreland basin and had not yet been folded and a belt of early Emsian plutons that intruded folded Lower Devonian rocks. This plutonic belt includes the newly dated Ore Mountain gabbro (U/Pb; 406 Ma), which hosts magmatic-sulfide mineralization. Along the deformation front, a 407-Ma pluton that locally truncates Acadian folds (Katahdin) was the feeder to volcanic rocks (Traveler Rhyolite; 406-407 Ma) that are part of the foreland-basin succession involved in these same folds. The Emsian igneous rocks thus define a syncollisional magmatic province that straddled the deformation front. These findings bear on three alternative subduction geometries for the Acadian collision.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Noble, S. K.; Keller, L. P.
2014-01-01
Space weathering on the Moon and other airless bodies modifies the surfaces of regolith grains as well as the space-exposed surfaces of larger rocks and boulders. As space weathering witness plates, rocks and boulders are distinguished from regolith grains based on their ability to persist as physically intact substrates over longer time scales before being disaggregated by impact processes. Because lunar surfaces, including exposed rocks, quickly develop an optically thick layer of patina, it is important to understand the compositional relationship between patinas and their underlying rock substrates, particularly to support remote-sensing of rocky lunar terrains. Based on analytical TEM techniques, supported by focused ion beam (FIB) cross-sectioning, we have begun to systematize the multi-layer microstructural complexity of patinas on rock samples with a range of space exposure histories. Our on-going work has particularly focused on lunar rock 76015, both because it has a long (approx. 22 my) exposure history, and because its surface was exposed to patina development approximately 1 m off the regolith surface on a boulder in the Apollo 17 Station 6 boulder field. Potential sources for the 76015 patina therefore include impact-melted and vaporized material derived from the local rock substrate, as well as from the mix of large boulders and regolith in the Station 6 area. While similar, there are differences in the mineralogy and chemistry of the rocks and regolith at Station 6. We were interested to see if these, or other sources, could be distinguished in the average composition, as well as the compositional nanostratigraphy of the 76015 patina. To date we have acquired a total of 9 TEM FIB cross-sections from the 76015 patina, giving us reasonable confidence of being able to arrive at an integrated average for the patina major element composition based on analytical TEM methods.
NASA Astrophysics Data System (ADS)
Picazo, S.; Manatschal, G.; Cannat, M.
2013-12-01
The exhumation of upper mantle rocks along detachment faults is widespread at Mid-Ocean Ridges and at the Ocean-Continent Transition (OCT) of rifted continental margins. Thermo-mechanical models indicate that significant strain softening of the fault rocks in the footwall is required in order to produce such large fault offsets. Our work focuses on deformation textures, and the associated mineralogy in ultramafic rocks sampled in the upper levels of the footwall next to the exhumation fault. We present two OCT examples, the Totalp relict of a paleo-Tethys OCT exposed in SE Switzerland, and the Iberian distal margin (ODP Leg 173 Site 1070). We built a new geological map and a section of the Totalp unit near Davos (SE Switzerland) and interpreted this area as a local exposure of a paleo-seafloor that is formed by an exhumed detachment surface and serpentinized peridotites. The top of the exhumed mantle rocks is made of ophicalcites that resulted from the carbonation of serpentine under static conditions at the seafloor. The ophicalcites preserve depositional contacts with Upper Jurassic to Lower Cretaceous pelagic sediments. These sequences did not exceed prehnite-pumpellyite metamorphic facies conditions, and locally escaped Alpine deformation. Thin mylonitic shear zones as well as foliated amphibole-bearing ultramafic rocks have been mapped. The age of these rocks and the link with the final exhumation history are yet unknown but since amphibole-bearing ultramafic rocks can be found as clasts in cataclasites related to the detachment fault, they pre-date detachment faulting. Our petrostructural study of the exhumed serpentinized rocks also reveals a deformation gradient from cataclasis to gouge formation within 150m in the footwall of the proposed paleo-detachment fault. This deformation postdates serpentinization. It involves a component of plastic deformation of serpentine in the most highly strained intervals that has suffered pronounced grain-size reduction and a polyphase cataclastic overprint.
A Proof of Concept for In-Situ Lunar Dating
NASA Astrophysics Data System (ADS)
Anderson, F. S.; Whitaker, T.; Levine, J.; Draper, D. S.; Harris, W.; Olansen, J.; Devolites, J.
2015-12-01
We have obtained improved 87Rb-87Sr isochrons for the Duluth Gabbro, an analog for lunar KREEP rocks, using a prototype spaceflight laser ablation resonance ionization mass spectrometer (LARIMS). The near-side of the Moon comprises previously un-sampled, KREEP rich, young-lunar basalts critical for calibrating the <3.5 Ga history of the Moon, and hence the solar system, since 3.5 Ga. Measurement of the Duluth Gabbro is a proof of concept of lunar in-situ dating to constrain lunar history. Using a novel normalization approach, and by correcting for matrix-dependent isotope effects, we have been able to obtain a date of 1100 ± 200 Ma (Figure 1), compared to the previously established thermal ionization mass spectrometry measurement of 1096 ± 14 Ma. The precision of LARIMS is sufficient to constrain the current 1 Ga uncertainty of the lunar flux curve, allowing us to reassess the timing of peak lunar volcanism, and constrain lunar thermal evolution. Furthermore, an updated lunar flux curve has implications throughout the solar system. For example, Mars could have undergone a longer epoch of voluminous, shield-forming volcanism and associated mantle evolution, as well as a longer era of abundant volatiles and hence potential habitability. These alternative chronologies could even affect our understanding of the evolution of life on Earth: under the classic chronology, life is thought to have originated after the dwindling of bombardment, but under the alternative chronology, it might have appeared during heavy bombardment. In order to resolve the science questions regarding the history of the Moon, and in light of the Duluth Gabbro results, we recently proposed a Discovery mission called MARE: The Moon Age and Regolith Explorer. MARE would accomplish these goals by landing on a young, nearside lunar basalt flow southwest of Aristarchus that has a crater density corresponding to a highly uncertain absolute age, collecting >10 rock samples, and assessing their radioisotopic age, geochemistry, and mineralogy.
NASA Astrophysics Data System (ADS)
Zimmerman, S. H.; Hemming, S. R.; Kent, D. V.
2008-12-01
Advance and retreat of mountain glaciers are important indicators of climate variability, but the most direct proxy record, mapping and dating of moraines, is by nature discontinous. The Sierra Nevada form the western boundary of the Mono Lake basin, and the proximity of the large Pleistocene lake to the glacial canyons of the Sierra presents a rare opportunity to examine glacial variability in a continuous, well-dated lacustrine sequence. We have applied a geochemical proxy for rock flour to the glacial silts of the late Pleistocene Wilson Creek Formation, but because it is time- and sample-intensive, another method is required for a high-resolution record. Previous microscopic examination, thermomagnetic measurements, XRD analysis, and new isothermal remnant magnetization (IRM) acquisition curves show that the magnetic mineralogy is dominated by fine-grained, unaltered magnetite. Bulk measurements show strong susceptibility (mean ~ 16 x 10- 6 m3/kg) and remanent magnetization (mean IRM ~ 10-2 Am2/kg) compared to diluting components (carbonate, smectite, rhyolitic ash). The Wilson Creek type section sediments also contain a coarse lithic fraction, quantified by counting the >2cm clasts in outcrop and the >425 μm fraction in the bulk sediment. Susceptibility, IRM, and ARM (anhysteretic remnant magnetization) are quite similar throughout the type section, with the abundance of coarse lithic fraction correlative to the ratio k/IRM. Because the magnetic fraction of the rock flour is fine-grained magnetite, IRM should capture the changes in concentration of flour through time, and the major features of the (low-resolution) geochemical flour proxy record are identifiable in the IRM record. Flux-correction of the IRM results in a rock flour proxy record with major peaks between 36 and 48 ka, similar to a rock flour record from neighboring Owens Lake. This regional glacial signal contrasts with peaks in coarse lithics between 58 and 68 ka in the Wilson Creek record; coupled with coeval high lake levels and a lack of geomorphic evidence of glacier-lake interaction, this is taken to indicate that the rafting was due to shore ice, rather than glacial icebergs.
Two modes of orogenic collapse of the Pamir plateau recorded by titanite
NASA Astrophysics Data System (ADS)
Stearns, M. A.; Hacker, B. R.; Ratschbacher, L.; Rutte, D.; Kylander-Clark, A. R.
2013-12-01
Processes that operate in the mid- to lower crust during and following continent-continent collision are important for understanding how orogenic plateaux transition from thickening to collapse. In the central and southern Pamir, mid- to lower crustal rocks crop out in two belts of extensional domes. The central Pamir domes were exhumed by symmetrical N-S extension. In contrast, the southern Pamir domes were exhumed by asymmetrical top to the south (NNW-SSE) extension via a rolling-hinge detachment. To investigate the high-temperature exhumation history, titanites were dated using LASS (laser ablation split stream-ICP-MS). A multi-collector ICP was used to collect U-Pb isotopic ratios and a single collector ICP-MS was used to measure trace-element abundances. The data indicate that the central Pamir domes began exhumation synchronously at ~17 Ma. Titanite from the southern Pamir record two periods of protracted (re)crystallization: older metamorphic dates ranging from ~35-18 Ma and younger igneous and metamorphic dates from ~15-7 Ma. Samples with single populations of titanite dates are present throughout both groups. Samples with more-complex date populations typically have distinct trace-element (e.g., Sr, Y, Zr, and Nb) groups that can be used to distinguish different date populations (e.g., older dates may have higher Zr and younger dates lower Zr). The distinct early exhumation histories of the north and south Pamir require either a diachronous single process or two semi-independent processes. The N to S sequence of exhumation, ranges of dates, and overall extension directions may be related to two important plate-tectonic events inferred from seismic data: 1) breakoff of the northward subducting Indian slab around ~20 Ma, and 2) southward subduction and northwestward rollback of the Asian lithosphere between ~15-10 Ma based on geodetic convergence rates and Benioff zone length. We interpret these two lithospheric-detachment events to have driven the exhumation in the Pamir by changing the gravitational potential energy and boundary forces of the plateau.
NASA Astrophysics Data System (ADS)
Mercier, Denis; Coquin, Julien; Feuillet, Thierry; Decaulne, Armelle; Cossart, Etienne; Jónsson, Helgi Pall; Sæmundsson, Þorstein
2017-11-01
In Iceland there are numerous rock-slope failures, especially in the Tertiary basaltic formations of the northern, eastern and northwestern regions. The temporal pattern of rock-slope failures is fundamental for understanding post-glacial events. In the Skagafjörður district, central northern Iceland, 17 rock-slope failures were investigated to determine the age of their occurrence. A geomorphic survey was carried out to identify and characterize landform units, both on the rock-slope failures and in their immediate vicinity. In this coastal area, we used geomorphological stacking which included the relationship between rock-slope failures and raised beaches caused by glacial isostatic rebounds, the chronology of which was established in previous studies. We searched for depressions on the rock-slope failures to then excavate a series of pits and map the stratigraphy. The resulting stratigraphic framework was then validated using (i) radiocarbon dating of wood remains, and (ii) tephrochronology, both of which were complemented by age-depth model calibration. The results confirm that all the rock-slope failures potentially occurred before the Boreal (8 ka), while 94% occurred before the Preboreal (10 ka). They all potentially occurred after the glacial retreat following the maximal ice extent and the Preboreal. More precisely, 11 of them potentially occurred between the Preboreal and the first half of the Holocene. This study demonstrates the relationship between the deglaciation and destabilization of slopes during the paraglacial phase (debuttressing, decompression, glacial isostatic rebound, seismic activity, etc.), which are also controlling factors favouring landsliding, but are difficult to identify for each individual rock-slope failure.
Geological evolution of the Neoproterozoic Bemarivo Belt, northern Madagascar
Thomas, Ronald J.; De Waele, B.; Schofield, D.I.; Goodenough, K.M.; Horstwood, M.; Tucker, R.; Bauer, W.; Annells, R.; Howard, K. J.; Walsh, G.; Rabarimanana, M.; Rafahatelo, J.-M.; Ralison, A.V.; Randriamananjara, T.
2009-01-01
The broadly east-west trending, Late Neoproterozoic Bemarivo Belt in northern Madagascar has been re-surveyed at 1:100 000 scale as part of a large multi-disciplinary World Bank-sponsored project. The work included acquisition of 14 U-Pb zircon dates and whole-rock major and trace element geochemical data of representative rocks. The belt has previously been modelled as a juvenile Neoproterozoic arc and our findings broadly support that model. The integrated datasets indicate that the Bemarivo Belt is separated by a major ductile shear zone into northern and southern "terranes", each with different lithostratigraphy and ages. However, both formed as Neoproterozoic arc/marginal basin assemblages that were translated southwards over the north-south trending domains of "cratonic" Madagascar, during the main collisional phase of the East African Orogeny at ca. 540 Ma. The older, southern terrane consists of a sequence of high-grade paragneisses (Sahantaha Group), which were derived from a Palaeoproterozoic source and formed a marginal sequence to the Archaean cratons to the south. These rocks are intruded by an extensive suite of arc-generated metamorphosed plutonic rocks, known as the Antsirabe Nord Suite. Four samples from this suite yielded U-Pb SHRIMP ages at ca. 750 Ma. The northern terrane consists of three groups of metamorphosed supracrustal rocks, including a possible Archaean sequence (Betsiaka Group: maximum depositional age approximately 2477 Ma) and two volcano-sedimentary sequences (high-grade Milanoa Group: maximum depositional age approximately 750 Ma; low grade Daraina Group: extrusive age = 720-740 Ma). These supracrustal rocks are intruded by another suite of arc-generated metamorphosed plutonic rocks, known as the Manambato Suite, 4 samples of which gave U-Pb SHRIMP ages between 705 and 718 Ma. Whole-rock geochemical data confirm the calc-alkaline, arc-related nature of the plutonic rocks. The volcanic rocks of the Daraina and Milanoa groups also show characteristics of arc-related magmatism, but include both calc-alkaline and tholeiitic compositions. It is not certain when the two Bemarivo terranes were juxtaposed, but ages from metamorphic rims on zircon suggest that both the northern and southern terranes were accreted to the northern cratonic margin of Madagascar at about 540-530 Ma. Terrane accretion included the assembly of the Archaean Antongil and Antananarivo cratons and the high-grade Neoproterozoic Anaboriana Belt. Late- to post-tectonic granitoids of the Maevarano Suite, the youngest plutons of which gave ca. 520 Ma ages, intrude all terranes in northern Madagascar showing that terrane accretion was completed by this time. ?? 2009 Natural Environment Research Council (NERC).
NASA Astrophysics Data System (ADS)
Moeller, A.; Kraus, K.; Herms, P.; Appel, P.; Raase, P.
2014-12-01
Rutile U-Pb thermochronology is applied successfully by both TIMS and beam methods to date cooling events in mafic and metapelitic rocks, as well as in detrital studies. The Zr-in-rutile thermometer is very robust to thermal diffusion, and generally requires complete recrystallization to change recorded crystallization temperatures. Evidence for diffusion of HFSE elements in rutile is sparse; whereas U-Pb chronology generally records diffusion controlled cooling from the last event. This study follows conventional thermobarometry and U-Pb TIMS results on monazite, sphene and rutile of Möller et al. (1995) establishing a 2 Ga eclogite facies event from MORB-like metabasic, and metapelitic rocks in the Usagaran Orogen of Tanzania, interpreted to be the oldest outcrops of subduction-related eclogites. Rutile from both rock types were discordant near a ca. 500 Ma lower intercept, confirming a thermal overprint postulated on the basis of K-Ar and Rb-Sr mica ages by e.g. Wendt et al. (1972). The age of the eclogite-facies event was confirmed by U-Pb zircon dating of a 1991±2 Ma crosscutting pegmatite (Collins et al., 1999). We present in situ LA-ICP-MS rutile petrochronology on five metabasic and metapelitic eclogite facies samples with variable retrograde amphibolite-facies recrystallization. Thermometry confirms conventional Fe-Mg results, including higher peak temperatures in metabasites. Traverses on rutile inclusions in large garnet prophyroblasts in metapelites show increasing temperatures from cores outwards and a slight decrease towards outermost rims, with peak T coinciding with highest Mg# and highest grossular content, hence consistent with preservation of prograde zoning in the garnets and a brief eclogite facies event. Large rutiles (800μm) in recrystallized samples record temperature zoning profiles. U-Pb results show inheritance of near concordant 2 Ga domains, but dominantly confirm the ca. 490 Ma amphibolite facies overprint. The study is an excellent example of the potential of in-situ rutile petrochronology in complex, polymetamorphic rocks when meticulous attention is given to textural context. Möller et al., 1995, Geology, v. 23, p. 1067-1070. Collins et al., 2004, Earth Planet. Sci. Lett., v. 224, p. 175-192. Wendt et al., 1972, 24th Internat. Geol. Congr., Proc., p. 295-314.
Pleistocene cave art from Sulawesi, Indonesia.
Aubert, M; Brumm, A; Ramli, M; Sutikna, T; Saptomo, E W; Hakim, B; Morwood, M J; van den Bergh, G D; Kinsley, L; Dosseto, A
2014-10-09
Archaeologists have long been puzzled by the appearance in Europe ∼40-35 thousand years (kyr) ago of a rich corpus of sophisticated artworks, including parietal art (that is, paintings, drawings and engravings on immobile rock surfaces) and portable art (for example, carved figurines), and the absence or scarcity of equivalent, well-dated evidence elsewhere, especially along early human migration routes in South Asia and the Far East, including Wallacea and Australia, where modern humans (Homo sapiens) were established by 50 kyr ago. Here, using uranium-series dating of coralloid speleothems directly associated with 12 human hand stencils and two figurative animal depictions from seven cave sites in the Maros karsts of Sulawesi, we show that rock art traditions on this Indonesian island are at least compatible in age with the oldest European art. The earliest dated image from Maros, with a minimum age of 39.9 kyr, is now the oldest known hand stencil in the world. In addition, a painting of a babirusa ('pig-deer') made at least 35.4 kyr ago is among the earliest dated figurative depictions worldwide, if not the earliest one. Among the implications, it can now be demonstrated that humans were producing rock art by ∼40 kyr ago at opposite ends of the Pleistocene Eurasian world.
Aquifer susceptibility in Virginia, 1998-2000
Nelms, David L.; Harlow, George E.; Plummer, Niel; Busenberg, Eurybiades
2003-01-01
The U.S. Geological Survey (USGS), in cooperation with the Virginia Department of Health, sampled water from 171 wells and springs across the Commonwealth of Virginia between 1998 and 2000 as part of the Virginia Aquifer Susceptibility study. Most of the sites sampled are public water supplies that are part of the comprehensive Source Water Assessment Program for the Commonwealth. The fundamental premise of the study was that the identification of young waters (less than 50 years) by multiple environmental tracers could be used as a guide for classifying aquifers in terms of susceptibility to contamination from near-surface sources. Environmental tracers, including chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), tritium (3H), and tritium/helium-3 (3H/3He), and carbon isotopes (14C and d13C) were used to determine the age of water discharging from wells and springs. Concentrations of CFCs greater than 5 picograms per kilogram and 3H concentrations greater than 0.6 tritium unit were used as thresholds to indicate that parts of the aquifer sampled have a component of young water and are, therefore, susceptible to near-surface contamination. Concentrations of CFCs exceeded the susceptibility threshold in 22 percent of the wells and in one spring sampled in the Coastal Plain regional aquifer systems. About 74 percent of the samples from wells with the top of the first water zone less than 100 feet below land surface exceeded the threshold values, and water supplies developed in the upper 100 feet of the Coastal Plain are considered to be susceptible to contamination from near-surface sources. The maximum depth to the top of the screened interval for wells that contained CFCs was less than 150 feet. Wells completed in the deep confined aquifers in the Coastal Plain generally contain water older than 1,000 years, as indicated by carbon-14 dating, and are not considered to be susceptible to contamination under natural conditions. All of the water samples from wells and springs in the fractured-rock terrains (the Appalachian Plateaus, Valley and Ridge, Blue Ridge, and Piedmont regional aquifer systems) contained concentrations of CFCs and 3H greater than one or both of the thresholds. Because all of the water samples exceeded at least one of the threshold values, young water is present throughout most of these regional aquifer systems; therefore, water supplies developed in these systems are susceptible to contamination from near-surface sources. No relation between well depth and presence of CFCs is evident from samples in the fractured-rock terrains. More than 95 percent of the samples for which the dating methods were applicable contained waters with apparent ages less than 35 years. About 5 percent of these samples, most of which were from the Blue Ridge and Piedmont regional aquifer systems, contained young waters with apparent ages of less than 5 years. Most of the samples from the Valley and Ridge Carbonate, Blue Ridge, and Piedmont regional aquifer systems had young water fractions of more than 50 percent, whereas samples from the Coastal Plain Shallow and Appalachian Plateaus regional aquifer systems contained less than 40 percent young waters. Concentrations of CFCs in excess of air-water equilibrium, which can indicate that nonatmospheric sources (such as sewage effluent) have introduced CFCs into the ground-water system, were measured in 6 and 48 percent of the water samples from the Coastal Plain and fractured-rock regional aquifer systems, respectively. The nitrate (NO3) concentrations greater than the USGS detection level of 0.05 milligrams per liter generally increase as the apparent age of the young water fraction decreases, with the highest NO3 concentrations for samples in which one or more of the CFCs are above modern atmospheric mixing ratios (commonly referred to as 'contaminated' for ground-water dating purposes). Most of the samples in which NO3 was detected w
Microstructural controls on the macroscopic behavior of geo-architected rock samples
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Pyrak-Nolte, L. J.
2017-12-01
Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
NASA Astrophysics Data System (ADS)
Reyer, D.; Philipp, S. L.
2014-09-01
Information about geomechanical and physical rock properties, particularly uniaxial compressive strength (UCS), are needed for geomechanical model development and updating with logging-while-drilling methods to minimise costs and risks of the drilling process. The following parameters with importance at different stages of geothermal exploitation and drilling are presented for typical sedimentary and volcanic rocks of the Northwest German Basin (NWGB): physical (P wave velocities, porosity, and bulk and grain density) and geomechanical parameters (UCS, static Young's modulus, destruction work and indirect tensile strength both perpendicular and parallel to bedding) for 35 rock samples from quarries and 14 core samples of sandstones and carbonate rocks. With regression analyses (linear- and non-linear) empirical relations are developed to predict UCS values from all other parameters. Analyses focus on sedimentary rocks and were repeated separately for clastic rock samples or carbonate rock samples as well as for outcrop samples or core samples. Empirical relations have high statistical significance for Young's modulus, tensile strength and destruction work; for physical properties, there is a wider scatter of data and prediction of UCS is less precise. For most relations, properties of core samples plot within the scatter of outcrop samples and lie within the 90% prediction bands of developed regression functions. The results indicate the applicability of empirical relations that are based on outcrop data on questions related to drilling operations when the database contains a sufficient number of samples with varying rock properties. The presented equations may help to predict UCS values for sedimentary rocks at depth, and thus develop suitable geomechanical models for the adaptation of the drilling strategy on rock mechanical conditions in the NWGB.
Eurekan deformation on Prins Karls Forland, Svalbard - new insights from Ar40/Ar39 muscovite dating
NASA Astrophysics Data System (ADS)
Faehnrich, Karol; Schneider, David; Manecki, Maciej; Czerny, Jerzy; Myhre, Per Inge; Majka, Jarosław; Kośmińska, Karolina; Barnes, Christopher; Maraszewska, Maria
2017-04-01
Eurekan deformation has been proven to be a complex sequence of tectonic episodes, dominated by compression in the Circum Arctic region. It was associated with early Cenozoic collision of Eurasia, North America and Greenland plates producing fold-thrust belt style of deformation. Timing of this enigmatic event has not yet been extensively resolved by radiometric dating (Piepjohn et al. 2016, Journal of the Geological Society, 173(6), 1007-1024). Reinhardt et al. (2013, Z. Dt. Ges. Geowiss., 164 (1), 131-147) dated syn-tectonic volcanic ashes at c. 60 Ma and 54 Ma on Ellesmere Island, Canada. Tagner et al. (2011, Earth and Planetary Science Letters, 303(3), 203-214) interpreted c. 49-47 Ma 40Ar/39Ar ages on trachyte flows in northern Greenland as peak compression during the Eurekan event. On Svalbard, Tessensohn et al. (2001, Geologisches Jahrbuch, B 91, 83-104) reported K/Ar whole rock ages ranging from c. 67 to 49 Ma for the slates from Svartfjella-Eidembukta-Daudmannsodden Lineament. Bentonite layers in the Central Tertiary Basin are as young as c. 56 Ma (Charles et al. 2011, Geochem. Geophys. Geosyst., 12, 1-19), predating latest deformation. Moreover, Barnes et al (2017, in prep.) applied (U-Th)/He thermochronology along the western margin of Svalbard and resolved Early to Middle Eocene heating, likely documenting burial related to thrusting. Here we present new results from 40Ar/39Ar muscovite dating of ductile to brittle shear zone on Prins Karls Forland, Svalbard, indicating Eurekan age of thrusting. Prins Karls Forland is dominated by Neoproterozoic siliciclastic metasediments (comprising Caledonian basement) regionally metamorphosed to greenschist facies conditions. A ˜1 km wide ductile to brittle shear zone (the Bouréefjellet shear zone) separates the amphibolite facies Pinkie Unit from the lower grade upper structural unit, the Grampianfjella Formation (Faehnrich et al. 2016, EGU 2016). The age of the amphibolite facies metamorphism (c. 370-355 Ma) indicates Ellesmerian tectonism, unlike other higher grade rocks on Svalbard (Kośmińska et al. 2016, EGU 2016). Ten metasedimentary rocks from within the shear zone were collected for dating, with eight muscovite crystals dated per sample via 40Ar/39Ar total fusion. High strain is evinced by mylonitic fabric, mica fish or C' shear zones. Moreover, quartz was dynamically recrystallized with significant grain boundary migration. There is notable age dispersion between the samples with weighted mean ages varying from 45 up to 103 Ma and single grain ages are more than 300 Ma, reflecting partial recrystallization and resetting during Eurekan deformation. Younger ages were obtained from lower structural levels, yielding dates of 44 to 54 Ma for the Eurekan deformation on Prins Karls Forland. We suggest that an Ellesmerian ductile shear zone was reactivated during Eocene (commencing as early as 54 Ma) progressing to brittle conditions which continued after 44 Ma. These are the first documented Eurekan 40Ar/39Ar muscovite deformation ages from Svalbard, and enable to better distinguish individual stages of the Eurekan deformation in the Eocene improving our understanding of relative plate tectonic movements. This work is partially funded by AGH research grant no 11.11.140.319 and the NCN research projects 2013/11/N/ST10/00357 and 2015/17/B/ST10/03114.
NASA Astrophysics Data System (ADS)
Viola, Giulio; Torgersen, Espen; Mazzarini, Francesco; Musumeci, Giovanni; Garofalo, Paolo Stefano; van der Lelij, Roelant
2017-04-01
The northern Apennines accommodated the closure of the Liguro-Piemontese Ocean along the European and Adriatic continental margins. Crustal shortening via folding, eastward thrusting and stacking of oceanic and continental units during the westward subduction of Adria beneath the European plate shaped the orogenic prism starting in the Eocene and continuing to the Middle Miocene. Intrusive and volcanic rocks between 8.4 and 3 Ma crop out extensively in the northern Tyrrhenian Sea, and their emplacement in the inner portion of the belt is commonly interpreted as resulting from major crustal extension related to the Late Miocene-Pliocene opening of the northern Tyrrhenian Sea as a backarc basin. On the Island of Elba, which exposes the westernmost portion of the prism, the low-angle Zuccale fault (ZF) is generally interpreted as a major low-angle normal fault (LANF) whose Late Miocene activity would have greatly facilitated regional E-W extension in the geodynamic framework of the opening of the northern Tyrrhenian Sea between 10 and 5 Ma. In order to better constrain the kinematic meaning of the ZF and the timing of these important events, we have used the K-Ar method to date a set of brittle-ductile and brittle fault rocks cut by the ZF and sampled from its immediate footwall. A last sample from the brittle ZF itself is currently also being dated. The dated deformation zones in the ZF footwall are both thrusts with top-to-the east kinematics. They are undoubtedly cut by the brittle ZF and thus predate it; they are 1) the Calanchiole shear zone, formed by strongly sheared carbonate hornfelses and 2) the Capo Norsi fault, a brittle fault zone within serpentinites of the Ligurian sequence. While the Calanchiole shear zone developed coevally with the c. 6.2 Ma Porto Azzurro (PA) monzogranite, the Capo Norsi thrust led to the internal stacking of the PA contact aureole, and separates an upper complex that did not experience contact metamorphism from the underlying medium-grade hornfels rocks of the contact aureole at c. 6.2 Ma. K-Ar ages were produced from synkinematic illite separated from multiple grain sizes, with the goal to discriminate the role of clay synkinematic authigenesis and thus date the last increment of deformation. The age of the dated finest fraction constrains the age of the Calanchiole shear zone to 6.14±0.64 Ma (<0.1 µm fraction) and of the Capo Norsi thrust to 4.9±0.27 Ma (<0.4 µm fraction). Our results are fully consistent with the existing data and importantly provide the first direct dating of brittle deformation in the Apennines. In combination with field, kinematic and regional considerations, they undoubtedly constrain a Late Miocene-Early Pliocene regional compressive stress state, with the brittle ZF likely being its latest expression. This followed an earlier phase of upper crustal extension, presumably active since ˜16 Ma and was in turn followed by renewed extension. Compression at that time requires a re-evaluation of the geodynamic models of the evolution of the northern Apennines orogenic prism.
Rock and Core Repository Coming Digital
NASA Astrophysics Data System (ADS)
Maicher, Doris; Fleischer, Dirk; Czerniak, Andreas
2016-04-01
In times of whole city centres being available by a mouse click in 3D to virtually walk through, reality sometimes becomes neglected. The reality of scientific sample collections not being digitised to the essence of molecules, isotopes and electrons becomes unbelievable to the upgrowing generation of scientists. Just like any other geological institute the Helmholtz Centre for Ocean Research GEOMAR accumulated thousands of specimen. The samples, collected mainly during marine expeditions, date back as far as 1964. Today GEOMAR houses a central geological sample collection of at least 17 000 m of sediment core and more than 4 500 boxes with hard rock samples and refined sample specimen. This repository, having been dormant, missed the onset of the interconnected digital age. Physical samples without barcodes, QR codes or RFID tags need to be migrated and reconnected, urgently. In our use case, GEOMAR opted for the International Geo Sample Number IGSN as the persistent identifier. Consequentially, the software CurationDIS by smartcube GmbH as the central component of this project was selected. The software is designed to handle acquisition and administration of sample material and sample archiving in storage places. In addition, the software allows direct embedding of IGSN. We plan to adopt IGSN as a future asset, while for the initial inventory taking of our sample material, simple but unique QR codes act as "bridging identifiers" during the process. Currently we compile an overview of the broad variety of sample types and their associated data. QR-coding of the boxes of rock samples and sediment cores is near completion, delineating their location in the repository and linking a particular sample to any information available about the object. Planning is in progress to streamline the flow from receiving new samples to their curation to sharing samples and information publically. Additionally, interface planning for linkage to GEOMAR databases OceanRep (publications) and OSIS (expeditions) as well as for external data retrieval are in the pipeline. Looking ahead to implement IGSN, taking on board lessons learned from earlier generations, it will enable to comply with our institute's open science policy. Also it will allow to register newly collected samples already during ship expeditions. They thus receive their "birth certificate" contemporarily in this ever faster revolving scientific world.
NASA Astrophysics Data System (ADS)
Rioux, Matthew; Garber, Joshua; Bauer, Ann; Bowring, Samuel; Searle, Michael; Kelemen, Peter; Hacker, Bradley
2016-10-01
The Semail (Oman-United Arab Emirates) and other Tethyan-type ophiolites are underlain by a sole consisting of greenschist- to granulite-facies metamorphic rocks. As preserved remnants of the underthrust plate, sole exposures can be used to better understand the formation and obduction of ophiolites. Early models envisioned that the metamorphic sole of the Semail ophiolite formed as a result of thrusting of the hot ophiolite lithosphere over adjacent oceanic crust during initial emplacement; however, calculated pressures from granulite-facies mineral assemblages in the sole suggest the metamorphic rocks formed at >35 km depth, and are too high to be explained by the currently preserved thickness of ophiolite crust and mantle (up to 15-20 km). We have used high-precision U-Pb zircon dating to study the formation and evolution of the metamorphic sole at two well-studied localities. Our previous research and new results show that the ophiolite crust formed from 96.12-95.50 Ma. Our new dates from the Sumeini and Wadi Tayin sole localities indicate peak metamorphism at 96.16 and 94.82 Ma (±0.022 to 0.035 Ma), respectively. The dates from the Sumeini sole locality show for the first time that the metamorphic rocks formed either prior to or during formation of the ophiolite crust, and were later juxtaposed with the base of the ophiolite. These data, combined with existing geochemical constraints, are best explained by formation of the ophiolite in a supra-subduction zone setting, with metamorphism of the sole rocks occurring in a subducted slab. The 1.3 Ma difference between the Wadi Tayin and Sumeini dates indicates that, in contrast to current models, the highest-grade rocks at different sole localities underwent metamorphism, and may have returned up the subduction channel, at different times.
New age data on the geological evolution of Southern India
NASA Technical Reports Server (NTRS)
Taylor, Paul N.; Chadwick, B.; Friend, C. R. L.; Ramakrishnan, M.; Moorbath, Stephen; Viswanatha, M. N.
1988-01-01
The Peninsular Gneisses of Southern India developed over a period of several hundred Ma in the middle-to-late Archaean. Gneisses in the Gorur-Hassan area of southern Karnataka are the oldest recognized constituents: Beckinsale et al. reported a preliminary Rb-Sr whole-rock isochron age of 33558 + or - 66 Ma, but further Rb-Sr and Pb/Pb whole-rock isochron determinations indicate a slightly younger, though more precise age of ca 3305 Ma (R. D. Beckinsale, Pers. Comm.). It is well established that the Peninsular Gneisses constitute basement on which the Dharwar schist belts were deposited. Well-documented exposures of unconformities, with basal quartz pebble conglomerates of the Dharwar Supergroup overlying Peninsular Gneisses, have been reported from the Chikmagalur and Chitradurga areas, and basement gneisses in these two areas have been dated by Rb-Sr and Pb/Pb whole-rock isochron methods at ca 3150 Ma and ca 3000 Ma respectively. Dharwar supracrustal rocks of the Chitradurga schist belt are intruded by the Chitradurga Granite, dated by a Pb/Pb whole-rock isochron at 2605 + or - 18 Ma. These results indicate that the Dharwar Supergroup in the Chitradurga belt was deposited between 3000 Ma and 2600 Ma.
Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain
2016-01-01
Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (<50 μm) crystallites intergrown with rare xenotime, thorite, apatite, and magnetite; and (2) coarse euhedral, glassy, bright-yellow grains similar to typical igneous or metamorphic monazite. Trace element abundances (including REE patterns) were determined on selected grains of monazite (both morphologies) and xenotime. Zircon grains from two samples of host rhyolite and two late felsic dikes collected underground at Pea Ridge were also dated. Additional geochronology done on breccia pipe minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454.6 ± 9.6 Ma, and matrix xenotime (in situ)—1468.0 ± 8.0 Ma. Two slightly older ages of cores are about 1478 Ma. The young age of rims on the coarse glassy monazite coincides with an Re-Os age of 1440.6 ± 9.2 Ma determined in this study for molybdenite intergrown with quartz and allanite, and with the age of monazite inclusions in apatite from the magnetite ore (Neymark et al., 2016). A 40Ar/39Ar age of 1473 ± 1 Ma was obtained for muscovite from a breccia pipe sample.Geochronology and trace element geochemical data suggest that the granular matrix monazite and xenotime (in polygonal texture), and cores of coarse glassy monazite precipitated from hydrothermal fluids during breccia pipes formation at about 1465 Ma. The second episode of mineral growth at ca. 1443 Ma may be related to faulting and fluid flow that rebrecciated the pipes. The ca. 10-m.y. gap between the ages of host volcanic rocks and breccia pipe monazite and xenotime suggests that breccia pipe mineral formation cannot be related to the felsic magmatism represented by the rhyolitic volcanic rocks, and hence is linked to a different magmatic-hydrothermal system.
Geohydrology of rocks penetrated by test well USW H-4, Yucca Mountain, Nye County, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, M.S. Jr.; Eshom, E.P.; Thordarson, W.
This report presents the results of hydraulic testing of rocks penetrated by USW H-4, one of several test wells drilled in the southwestern part of the Nevada Test Site, in cooperation with the US Department of Energy, for investigations related to the isolation of high-level radioactive wastes in volcanic tuffs of Tertiary age. All rocks penetrated by the test well to its total depth of 1219 meters were volcanic. Static water level was at a depth of 519 meters below land surface. Hydraulic-head measurements made at successively lower depths during drilling in this test hole indicate no noticeable head change.more » A radioactive-tracer, borehole-flow survey indicated that the two most productive zones in this borehole occurred in the upper part of the Bullfrog Member, depth interval from 721 to 731.5 meters, and in the underlying upper part of the Tram Member, depth interval from 864 to 920 meters, both in the Crater Flat Tuff. Hydraulic coefficients calculated from pumping-test data indicate that transmissivity ranged from 200 to 790 meters squared per day. The hydraulic conductivity ranged from 0.29 to 1.1 meters per day. Chemical analysis of water pumped from the saturated part of the borehole (composite sample) indicates that the water is typical of water produced from tuffaceous rocks in southern Nevada. The water is predominantly a sodium bicarbonate type with small concentrations of calcium, magnesium, and sulfate. The apparent age of this composite water sample was determined by a carbon-14 date to be 17,200 years before present. 24 refs., 10 figs., 8 tabs.« less
Magnetism and the history of the moon
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Carnes, J. G.
1973-01-01
All lunar samples measured to date contain a weak but stable remanent magnetization of lunar origin. The magnetization is carried by metallic iron and is considered to be caused by cooling from above the Curie point in the presence of a magnetic field. Although at present the moon does not have a global field, the remanent magnetization of the rock samples and the presence of magnetic anomalies, both on the near and far side of the moon, imply that the moon experienced a magnetic field during some portion of its history. The field could have been generated in a liquid iron core sustaining a self-exciting dynamo, but there are some basic thermal and geochemical objections that need to be resolved.
Krüner, A; Byerly, G R; Lowe, D R
1991-04-01
We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.
NASA Astrophysics Data System (ADS)
Farnsworth, L. B.; Kelly, M. A.; Axford, Y.; Bromley, G. R.; Osterberg, E. C.; Howley, J. A.; Zimmerman, S. R. H.; Jackson, M. S.; Lasher, G. E.; McFarlin, J. M.
2015-12-01
Defining the late glacial and Holocene fluctuations of the Greenland Ice Sheet (GrIS) margin, particularly during periods that were as warm or warmer than present, provides a longer-term perspective on present ice margin fluctuations and informs how the GrIS may respond to future climate conditions. We focus on mapping and dating past GrIS extents in the Nunatarssuaq region of northwestern Greenland. During the summer of 2014, we conducted geomorphic mapping and collected rock samples for 10Be surface exposure dating as well as subfossil plant samples for 14C dating. We also obtained sediment cores from an ice-proximal lake. Preliminary 10Be ages of boulders deposited during deglaciation of the GrIS subsequent to the Last Glacial Maximum range from ~30-15 ka. The apparently older ages of some samples indicate the presence of 10Be inherited from prior periods of exposure. These ages suggest deglaciation occurred by ~15 ka however further data are needed to test this hypothesis. Subfossil plants exposed at the GrIS margin on shear planes date to ~ 4.6-4.8 cal. ka BP and indicate less extensive ice during middle Holocene time. Additional radiocarbon ages from in situ subfossil plants on a nunatak date to ~3.1 cal. ka BP. Geomorphic mapping of glacial landforms near Nordsø, a large proglacial lake, including grounding lines, moraines, paleo-shorelines, and deltas, indicate the existence of a higher lake level that resulted from a more extensive GrIS margin likely during Holocene time. A fresh drift limit, characterized by unweathered, lichen-free clasts approximately 30-50 m distal to the modern GrIS margin, is estimated to be late Holocene in age. 10Be dating of samples from these geomorphic features is in progress. Radiocarbon ages of subfossil plants exposed by recent retreat of the GrIS margin suggest that the GrIS was at or behind its present location at AD ~1650-1800 and ~1816-1889. Results thus far indicate that the GrIS margin in northwestern Greenland responded sensitively to Holocene climate changes. Ongoing research will improve the chronological constraints on these fluctuations.
Levine, Jonathan; Whitaker, Tom J.
2015-01-01
Rationale We report new 87Rb‐87Sr isochron data for the Duluth Gabbro, obtained with a laser ablation resonance ionization mass spectrometer that is a prototype spaceflight instrument. The gabbro has a Rb abundance and a range of Rb/Sr ratios that are similar to those of KREEP‐rich basalts found on the nearside of the Moon. Dating of previously un‐sampled young lunar basalts, which generally have a KREEP‐rich composition, is critical for understanding the bombardment history of the Moon since 3.5 Ga, which in turn informs the chronology of the solar system. Measurements of lunar analogs like the Duluth Gabbro are a proof of concept for in situ dating of rocks on the Moon to constrain lunar history. Methods Using the laser ablation resonance ionization mass spectrometer we ablated hundreds of locations on a sample, and at each one measured the relative abundances of the isotopes of Rb and Sr. A delay between the resonant photoionization processes separates the elements in time, eliminating the potential interference between 87Rb and 87Sr. This enables the determination of 87Rb‐87Sr isochron ages without sophisticated sample preparation that would be impractical in a spaceflight context. Results We successfully dated the Duluth Gabbro to 800 ± 300 Ma using traditional isochron methods like those used in our earlier analysis of the Martian meteorite Zagami. However, we were able to improve this to 1100 ± 200 Ma, an accuracy of <1σ, using a novel normalization approach. Both these results agree with the age determined by Faure et al. in 1969, but our novel normalization improves our precision. Conclusions Demonstrating that this technique can be used for measurements at this level of difficulty makes ~32% of the lunar nearside amenable to in situ dating, which can complement or supplement a sample return program. Given these results and the scientific value of dating young lunar basalts, we have recently proposed a spaceflight mission called the Moon Age and Regolith Explorer (MARE). © 2015 The Authors and Southwest Research Institute. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26212160
Full-Vector Geomagnetic Field Records for the Late Quaternary from El Hierro and the Eifel
NASA Astrophysics Data System (ADS)
Monster, M.; de Groot, L. V.; Dekkers, M. J.; van Galen, J. P.; Kuiper, K.; Langemeijer, J.; Wiarda, L. R.
2015-12-01
Twenty-eight flows in the age range of c. 100 to c. 500 ka were sampled on the island of El Hierro (Canary Islands, Spain) and twelve in the Eifel (Germany). All sites from the Eifel had been previously dated, whereas the ages of the El Hierro flows were approximated by stratigraphic and directional coherency with a dated section c. 4 km to the north-east. Additionally, seven flows were dated using the ThermoFisher Helix multi-collector mass spectrometer at VU University Amsterdam (the Netherlands). The rocks were subjected to standard rock magnetic and palaeomagnetic experiments. Palaeodirections were obtained using both thermal and alternating-field demagnetisation techniques. Apart from two sites that appear to have been struck by lightning, all sites yielded reliable palaeodirections. Absolute palaeointensities were obtained using three different methods: IZZI-Thellier, the multispecimen protocol and the calibrated pseudo-Thellier technique. Nineteen sites from El Hierro and all twelve sites from the Eifel passed the selection criteria for one or more of these methods, with the pseudo-Thellier technique having the highest success rate (c. 35% for El Hierro and 55% for the Eifel). The palaeointensities obtained for El Hierro were mostly between 20 and 40 μT and for the Eifel between 20 and 50 μT, both with a tendency to be somewhat low compared to the present-day field of c. 39 μT and c. 49 μT, respectively. The pseudo-Thellier and multispecimen methods generally yielded lower palaeointensities than IZZI-Thellier, but no clear trend was visible.
The evolution of methods for establishing evolutionary timescales
2016-01-01
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325838
The evolution of methods for establishing evolutionary timescales.
Donoghue, Philip C J; Yang, Ziheng
2016-07-19
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.
2011-01-01
Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.
Study of sample drilling techniques for Mars sample return missions
NASA Technical Reports Server (NTRS)
Mitchell, D. C.; Harris, P. T.
1980-01-01
To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.
NASA Astrophysics Data System (ADS)
Slama, J.; Pedersen, R. B.; Kosler, J.; Kandilarov, A.; Hendriks, B. W. H.
2009-04-01
Geochronologic and geochemical data derived from sea-floor samples dredged from the Jan Mayen Fracture Zone together with seismic data provide new insight into the tectonomagmatic evolution of the Jan Mayen Ridge. Based on the seismic data, the Jan Mayen Ridge is believed to represent an off-rifted fragment of East Greenland continental lithosphere that since early Miocene has drifted 400 km into the North Atlantic as a result of sea-floor spreading along the Kolbeinsey Ridge. At present the Jan Mayen Ridge is uniquely located at the Mid-Atlantic Ridge north of Iceland. During the recent G.O.SARS research cruises a suite of volcanic rocks, as well as sandstones and conglomerates that are predominantly made up of volcaniclastic material were recovered from the southern escarpment of Jan Mayen Fracture Zone east of Jan Mayen. The conglomerates contain carbonate shell fragments that yielded 87Sr/86Sr age of ca. 32 Ma, which probably reflects the time of deposition of these volcano-sedimentary rocks. U-Pb ages of detrital zircon from the samples show age distribution consistent with an East Greenland source region characterized by a wide age pattern with significant Archaean and Early Proterozoic component. A population of angular zircons provides the youngest ages around 30 Ma, which are consistent with the Sr-age data from the shell fragment. These young zircons are most likely derived from the local volcanic material and do accordingly date the volcanic activity. Chemical analyses of individual volcanic clasts in the conglomerates show that they belong to the trachytic suite, and correspond mainly to hawaiites and trachyandesites. They are geochemically very similar to the recent volcanic rocks of the Jan Mayen Island. The maximum age of some of the volcanic clasts obtained by Ar-Ar whole-rock dating is consistent with the age of the youngest detrital zircons and with the Sr-age of the shell fragment. The new data suggest that the alkaline volcanism in the Jan Mayen area may be traced 30 My back in time. It is yet unknown however, whether or not the volcanic activity has been continuous since that time. The lack of a significant crustal contamination of the volcanic rocks of the Jan Mayen Ridge and in the Jan Mayen Fracture Zone is consistent with the results of seismic survey that suggests an existence of continental lithosphere beneath the northern part of the Jan Mayen Ridge farther south of the Jan Mayen Fracture Zone, i.e. farther from the volcanic center. Geophysical data suggest that spreading along the Kolbeinsey Ridge started ca. 25 My ago. The ca. 30 Ma magmatic event recorded in the dredged samples from the Jan Mayen Fracture Zone seems to reflect an episode of alkaline break-up magmatism associated with the off-rifting of the Jan Mayen micro-continent.
NASA Astrophysics Data System (ADS)
Southall, David W.; Wilson, Peter; Dunlop, Paul; Schnabel, Christoph; Rodés, Ángel; Gulliver, Pauline; Xu, Sheng
2017-05-01
The temporal pattern of postglacial rock-slope failure in a glaciated upland area of Ireland (the western margin of the Antrim Lava Group) was evaluated using both 36Cl exposure dating of surface boulders on run-out debris and 14C dating of basal organic soils from depressions on the debris. The majority of the 36Cl ages ( 21-15 ka) indicate that major failures occurred during or immediately following local deglaciation ( 18-17 ka). Other ages ( 14-9 ka) suggest some later, smaller-scale failures during the Lateglacial and/or early Holocene. The 14C ages (2.36-0.15 cal ka BP) indicate the very late onset of organic accumulation and do not provide close limiting age constraints. Rock-slope failure during or immediately following local deglaciation was probably in response to some combination of glacial debuttressing, slope steepening and paraglacial stress release. Later failures may have been triggered by seismic activity associated with glacio-isostatic crustal uplift and/or permafrost degradation consequent upon climate change. The 36Cl ages support the findings of previous studies that show the deglacial - Lateglacial period in northwest Ireland and Scotland to have been one of enhanced rock-slope failure. Table S2 Concentrations of main elements (as oxides) etc.
1969-11-28
S69-60354 (29 Nov. 1969) --- A scientist's gloved hand holds one of the numerous rock samples brought back to Earth from the Apollo 12 lunar landing mission. The rocks are under thorough examination in the Manned Spacecraft Center's (MSC) Lunar Receiving Laboratory (LRL). This sample is a highly shattered basaltic rock with a thin black-glass coating on five of its six sides. Glass fills fractures and cements the rock together. The rock appears to have been shattered and thrown out by a meteorite impact explosion and coated with molten rock material before the rock fell to the surface.
NASA Technical Reports Server (NTRS)
Nehru, C. E.; Warner, R. D.; Keil, K.; Taylor, G. J.
1978-01-01
Rake samples 72559 and 78527 are annealed rocks of ANT-suite mineralogy and bulk composition. The rocks were presumably derived from ancient lunar highland ANT rocks of cumulate origin. Sample 72559 is polymict and its precursors were anorthositic-troctolitic in composition. Sample 78527 is monomict and of noritic derivation. The precursors were brecciated due to impact processes; 72559 shows evidence of some impact melting. The samples were thermally metamorphosed forming rocks with granoblastic matrix textures. Coexisting matrix pyroxenes indicate equilibration temperatures of 950-1000 C for both rocks. Accessory opaque oxide minerals in the rocks show rather wide compositional variations. These probably primarily reflect compositional ranges inherited from the precursor/s with little integranular equilibration among them during metamorphism.
Evaluation of Ages in the Lunar Highlands with Implications for the Evolution of the Moon
NASA Astrophysics Data System (ADS)
Borg, L. E.; Gaffney, A. M.; Carlson, R. W.
2012-12-01
The lunar highlands are composed of rocks from the ferroan anorthosite (FAN) and Mg-suites. These samples have been extensively studied because they record most of the major events associated with the formation and evolution of the Earth's Moon. Despite their potential to constrain the timing of these events, chronologic investigations are often ambiguous; in most cases because absolute ages and/or initial isotopic compositions are inconsistent with stratigraphic and petrologic relationships of various rock suites inferred from mineralogical and geochemical studies. The problem is exacerbated by the fact that most samples are difficult to date due to their small size and nearly monomineralic nature, as well as isotopic disturbances associated with impacts. Here several criteria are used to assess the reliability of lunar ages, including: (1) concordance between multiple chronometers, (2) linearity of individual isochrons, (3) resistance of the chronometers to disruption by impact or contamination, (4) consistency between initial isotopic compositions and the petrogenisis of samples, and (5) reasonableness of the elemental concentrations of mineral fractions. If only those samples that meet 4 out of 5 of these criteria are used to constrain lunar chronology many of the apparent conflicts between chronometry and petrology disappear. For example, this analysis demonstrates that the most ancient ages reported for lunar samples are some of the least reliable. The oldest ages determined on both FAN and Mg-suite highland rocks with confidence are in fact ~4.35 Ga. This age is concordant with 142Nd mare source formation ages and a peak in zircon ages, suggesting it represents a major event at ~4.35 Ga. In contrast, several apparently reliable KREEP model ages are older at ~4.48 Ga. If these older model ages are correct, they may represent the solidification age of the Moon, whereas the 4.35 Ga event could reflect secondary magmatism and cumulate re-equilibration associated with density overturn of primordial magma ocean cumulates.
Hawaiian submarine manganese-iron oxide crusts - A dating tool?
Moore, J.G.; Clague, D.A.
2004-01-01
Black manganese-iron oxide crusts form on most exposed rock on the ocean floor. Such crusts are well developed on the steep lava slopes of the Hawaiian Ridge and have been sampled during dredging and submersible dives. The crusts also occur on fragments detached from bedrock by mass wasting, on submerged coral reefs, and on poorly lithified sedimentary rocks. The thickness of the crusts was measured on samples collected since 1965 on the Hawaiian Ridge from 140 dive or dredge localities. Fifty-nine (42%) of the sites were collected in 2001 by remotely operated vehicles (ROVs). The thinner crusts on many samples apparently result from post-depositional breakage, landsliding, and intermittent burial of outcrops by sediment. The maximum crust thickness was selected from each dredge or dive site to best represent crusts on the original rock surface at that site. The measurements show an irregular progressive thickening of the crusts toward the northwest-i.e., progressive thickening toward the older volcanic features with increasing distance from the Hawaiian hotspot. Comparison of the maximum crust thickness with radiometric ages of related subaerial features supports previous studies that indicate a crust-growth rate of about 2.5 mm/m.y. The thickness information not only allows a comparison of the relative exposure ages of two or more features offshore from different volcanoes, but also provides specific age estimates of volcanic and landslide deposits. The data indicate that some of the landslide blocks within the south Kona landslide are the oldest exposed rock on Mauna Loa, Kilauea, or Loihi volcanoes. Crusts on the floors of submarine canyons off Kohala and East Molokai volcanoes indicate that these canyons are no longer serving as channelways for downslope, sediment-laden currents. Mahukona volcano was approximately synchronous with Hilo Ridge, both being younger than Hana Ridge. The Nuuanu landslide is considerably older than the Wailau landslide. The Waianae landslide southwest of Oahu has yielded samples with the greatest manganese-iron oxide crusts (9.5 mm thick) and therefore apparently represents the oldest submarine material yet found in the study area. The submarine volcanic field 100 km southwest of Oahu is apparently younger than the Waianae landslide. ?? 2004 Geological Society of America.
An evaluation of the zircon method of isotopic dating in the Southern Arabian Craton
Cooper, J.A.; Stacey, J.S.; Stoeser, D.G.; Fleck, R.J.
1979-01-01
A zircon study has been made on eleven samples of igneous rocks from the Saudi Arabian Craton. Ages of sized and magnetic fractions of zircon concentrates show variable degrees of discordance which seem to result from a very young disturbance that produces linear arrays in the Concordia plot. Model age calculations based on a statistically and geologically reasonable lower intercept produce very consistent internal relationships. The Pan African Orogeny, considered to be responsible for loss of radiogenic argon and strontium from minerals of many rocks, does not appear to have affected the zircon data, even though uplift had exposed the rocks of the Arabian Shield at that time. Tonalite, granodiorite, and crosscutting leucoadamellite bodies in the southern part of the An Nimas Bathylith yield ages in the time range 820-760 Ma. A narrow time range of 660 to 665 million years was indicated for ages of widely separated and compositionally different intrusive bodies all to the east of the An Nimas Bathylith. This work suggests that the younger end of the age spectrum established from regional K-Ar and Rb-Sr measurements may be underestimated, and that magmatic activity could be more episodic than previously assumed.
Conodonts of the western Paleozoic and Triassic belt, Klamath Mountains, California and Oregon
Irwin, William P.; Wardlaw, Bruce R.; Kaplan, T.A.
1983-01-01
Conodonts were extracted from 32 samples of limestone and 5 samples of chert obtained from the Western Paleozoic and Triassic belt of the Klamath Mountains province. Triassic conodonts were found in 17 samples, and late Paleozoic conodonts in 7 samples. Conodonts of the remaining 13 samples cannot be dated more closely than early or middle Paleozoic through Triassic. The late Paleozoic conodonts are restricted to the North Fork and Hayfork terranes. The Hayfork terrane also contains Early, Middle, and Late Triassic conodonts; mostly Neogondolella. Conodonts from samples of the Rattlesnake Creek terrane and the northern undivided part of the belt are all Late Triassic and are generally Epigondolella. The conodont data support the concept that many of the limestone bodies are olistoliths or tectonic blocks in melange. Color alteration of the conodonts indicates that the rocks of the Western Paleozoic and Triassic belt have been heated to temperatures between 300 degrees and 500 degrees C during regional tectonism.
In situ detrital zircon (U-Th)/He thermochronology
NASA Astrophysics Data System (ADS)
Tripathy, A.; Monteleone, B. D.; van Soest, M. C.; Hodges, K.; Hourigan, J. K.
2010-12-01
Detrital studies of both sand and rock are relevant to many problems, ranging from the climate and tectonics feedback debate to the long-term record of orogenic evolution. When applying the conventional (U-Th)/He technique to such studies, two important issues arise. Often, only euhedral grains are permissible for analysis in order to make simple geometric corrections for α-recoil. In detrital samples, this is problematic because euhedral grains can be scarce due to mechanical abrasion during transport, and potentially introduce bias in favour of more proximally sourced grains. Second, inherent to detrital studies is the need to date many grains (>100) per sample to ensure a representative sampling of the sediment source region, thus making robust conventional detrital studies both expensive and time-consuming. UV laser microprobes can improve this by permitting careful targeting of the grain interior away from the α-ejection zone, rendering the α-recoil correction unnecessary, thus eliminating bias toward euhedral grains. In the Noble Gas, Geochemistry, and Geochronology Laboratory at ASU, apatite and zircon have been successfully dated using in situ methods. For this study, the conventional and in situ techniques are compared by dating zircons from a modern river sand that drains a small catchment in the Mesozoic-Cenozoic Ladakh Batholith in NW India. This sample has a simple provenance, which allows us to demonstrate the robustness of the in situ method. Moreover, different microbeam techniques will be explored to establish the most efficient approach to obtain accurate and precise U-Th concentrations using synrock, which is our powdered, homogenized, and reconstituted zircon-rock standard. Without this, such in situ U-Th data would be difficult to obtain. 117 zircons were dated using the conventional (U-Th)/He method, revealing dates ranging from 9.70±0.35 to 106.6±3.5 Ma (2σ) with the major mode at 26 Ma. For comparison, 44 grains were dated using the in situ method, utilizing SIMS to determine the U-Th concentrations. The major mode is the same as the conventional dataset, with only single outliers missing from the in situ dataset. The in situ method is described as follows: Zircons are polished and imaged using cathodoluminesence to guide laser spot placement. Then, each grain is ablated with a 193nm ArF Excimer laser using 20-35µm beam sizes and depths of 10-17µm. After purification, 4He is analyzed on a ThermoScientific Helix Split Flight Tube mass spectrometer. U-Th concentrations are measured on the polished mount using a Cameca IMS 6f by placing a 60µm diameter beam directly over the He laser pit to cover the surface area contributing to the measured He. In theory, using LA-ICP-MS to obtain U-Th concentrations could be a faster, cheaper, but possibly less precise, technique. However, using laser ablation would allow pit sizes that average the U-Th concentration over the volume of material available that contributes to the measured He, thus accounting for intracrystalline α-recoil effects. Preliminary data on slabs of Sri Lankan zircon suggest this could be a viable method, but will require further exploration and refinement.
Palaeomagnetic constraints on the age of Lomo Negro volcanic eruption (El Hierro, Canary Islands)
NASA Astrophysics Data System (ADS)
Villasante-Marcos, Víctor; Pavón-Carrasco, Francisco Javier
2014-12-01
A palaeomagnetic study has been carried out in 29 cores drilled at six different sites from the volcanic products of Lomo Negro eruption (El Hierro, Canary Islands, Spain). Systematic thermal and alternating field demagnetization of the samples' natural remanent magnetization revealed a northward, stable palaeomagnetic direction similar in all the samples. Rock magnetic experiments indicate that this palaeomagnetic component is carried by a mixture of high-Ti and low-Ti titanomagnetite crystals typical of basaltic lithologies that have experienced a significant degree of oxyexsolution during subaerial cooling. The well constrained palaeomagnetic direction of Lomo Negro lavas was used to perform a palaeomagnetic dating of the volcanic event, using the SHA.DIF.14k global geomagnetic model restricted for the last 3000 yr. It can be unambiguously concluded that Lomo Negro eruption occurred well before the previously proposed date of 1793 AD, with three different age ranges being statistically possible during the last 3 ka: 115 BC-7 AD, 410-626 AD and 1499-1602 AD. The calibration of a previously published non-calibrated 14C dating suggests a XVI c. date for Lomo Negro eruption. This conclusion leaves open the possibility that the seismic crisis occurred at El Hierro in 1793 AD was related to an intrusive magmatic event that either did not reach the surface or either culminated in an unregistered submarine eruption similar to the one occurred in 2011-2012 at the southern off-shore ridge of the island.
NASA Astrophysics Data System (ADS)
Foutrakis, Panagiotis M.; Anastasakis, George
2018-05-01
Methana peninsula shows the longest recorded volcanic history at the western end of the South Aegean Active Volcanic Arc, including volcanic products from the Upper Pliocene to recent times. The volcanic rocks comprise widespread dacite domes and andesite lava flows from several small volcanic centers and are only imprecisely dated. In this paper, the integrated analysis of swath bathymetry, side scan sonar data, and high resolution seismic reflection profiles correlated with core samples, has allowed detailed mapping, characterization and precise chronological identification of the Pausanias submarine volcanic field activity offshore northern Methana. Six volcanic cones or domes are recognized, typically 1-3 km in diameter, some elongated NE-SW and some with a small central crater. On their flanks, the acoustically reflective volcanic rocks pass laterally into incoherent transparent seismic facies interpreted as volcaniclastic deposits, possibly including hyaloclastites, that interfinger with the regional basin sediments. A sea-bottom hummocky field, is interpreted as volcanic avalanche and appears to be the submarine continuation of the volcaniclastic apron of northern Methana peninsula. A robust chronostratigraphic framework has been established, based on the recognition of shoreline progradational units and their connection with Quaternary eustatic sea level cycles. Relative dating of the different phases of submarine volcanic activity during the Upper Quaternary has been achieved by correlating the imaged volcaniclastic flows, interlayered within the chronostratigraphically dated sediments. Dating by stratigraphic position, relative to 2D imaged eustatic sea level clinoform wedges appears to be more precise than radiometric methods on land. Three main submarine Volcanic Events (VE) are recognized: VE3 at 450 ka, a less precisely dated interval at 200-130 ka (VE2), and VE1 at 14 ka. Based on chronostratigraphic constraints, subsidence rates of 0.16 (±0.008) m/ka in-between Marine Isotopic Stages 6 and 12 and 0.19 (±0.009) m/ka in-between Marine Isotopic Stages 12 and 16 were estimated for the marine basin north of Methana. The morphological similarity to the onshore volcanoes of Methana Peninsula implies that magmatic constructive processes were dominant, regardless of whether in air or in water. The Upper Quaternary submarine volcanic rocks of Methana differ from those known from stratovolcanoes elsewhere in the Mediterranean, (e.g. Kos-Nisyros, Stromboli) and in other volcanic arcs (e.g., Montserrat, St Vincent), in the submarine development of domes or small cones, the paucity of volcano flank failure deposits and the lack of explosive events. Pausanias volcanic products date the onset of NE-SW faulting as well as the following tectonic phase of E-W striking faults, possibly related to basin inversion, caused by a major rifting phase that also affected most of the South Aegean Arc and the adjacent Gulfs of Corinth and Argolikos.
Quantitative texture analysis of talc in mantle hydrated mylonites
NASA Astrophysics Data System (ADS)
Benitez-Perez, J. M.; Gomez Barreiro, J.; Wenk, H. R.; Vogel, S. C.; Soda, Y.; Voltolini, M.; Martinez-Catalan, J. R.
2014-12-01
A quantitative texture analysis of talc-serpentinite mylonites developed in highly deformed ultramafic rocks from different orogenic contexts have been done with neutorn diffraction at HIPPO (Los Álamos National Laboratory). Mineral assemblage, metamorphic evolution and deformative fabric of these samples could be correlated with those verified along the shallow levels (<100km; <5GPa) of a subduction zone. The hydration of mantle (ultramafic) rocks at those levels it is likely to occur dynamically, with important implications on seismogenesis. Given the high anisotropy of the major phases in the samples (i.e. talc and antigorite) it is expected to influence seismic anisotropy of the whole system, in the presence of texture. However to date there was no data on the crystallographic preferred orientation of talc and examples of antigorite textures are very limited. We explore the contribution of talc texture to the seismic anisotropy of mantle hydrated mylonites. Acknowledgements: This work has been funded by research project CGL2011-22728 of Spanish Ministry of Economy and Competitiveness. JGB and JMBP are grateful to the Ramón y Cajal and FPI funding programs. Access to HIPPO (LANSCE) to conduct diffraction experiments is kindly acknowledged.
NASA Technical Reports Server (NTRS)
Reimold, W. U.; Nyquist, L. E.; Bansal, B. M.; Shih, C.-Y.; Weismann, H.; Wooden, J. L.; Mackinnon, I. D. R.
1985-01-01
The North Ray Crater Target Rock Consortium was formed to study a large number of rake samples collected at Apollo 16 stations 11 and 13 with comparative chemical, mineralogical, and chronological techniques in order to provide a larger data base for the discussion of lunar highland evolution in the vicinity of the Apollo 16 landing region. The present investigation is concerned with Rb-Sr and Sm-Nd isotopic analyses of a number of whole-rock samples of feldspathic microporhyritic (FM) impact melt, a sample type especially abundant among the North Ray crater (station 11) sample collection. Aspects of sample mineralogy and analytical procedures are discussed, taking into account FM impact melt rocks 6715 and 63538, intergranular impact melt rock 67775, subophitic impact melt rock 67747, subophitic impact melt rock 67559, and studies based on the utilization of electron microscopy and mass spectroscopy.
K-Ar age constrains on chemically weathered granitic basement rocks (saprolites) in Scandinavia
NASA Astrophysics Data System (ADS)
Margreth, Annina; Fredin, Ola; Viola, Giulio; Knies, Jochen; Sørlie, Ronald; Lie, Jan-Erik; Margrethe Grandal, Else; Zwingmann, Horst; Vogt, Christoph
2017-04-01
Remnants of in-situ weathered bedrock, saprolite, are found in several locations in Scandinavia. Saprolites contain important information about past climate conditions and landscape evolution, although their age and genesis are commonly difficult to constrain. It is generally thought that clay-poor, coarse-grained (arêne) saprolites, mostly occurring as thin regolith blankets or in larger outcrops, formed in temperate climate during the Cenozoic, whereas clay-rich (argillic) saprolites, commonly restricted to small, fracture-bounded outcrops, formed in (sub-)tropical climate during the Mesozoic. Recent methodological and conceptual advances in K-Ar dating of illite-bearing fault rocks have been applied to date clay-rich saprolites. To test the K-Ar dating technique for saprolites, we first selected an offshore site in the Viking Graben of the North Sea, where weathered and fractured granitic basement highs have been drilled during petroleum exploration, and an abandoned kaolin mine in Southern Sweden. Both targets provide independent age control through the presence of overlying Mesozoic sedimentary rocks. Clay-rich saprolites occurring in fractured basement rocks were additionally sampled in a joint valley landscape on the southwestern coast of Norway, which can be regarded as the possible onland correlative to the offshore basement high. In order to offer a sound interpretation of the obtained K-Ar ages, the mineralogical and chemical composition of the saprolites requires a thorough characterization. Scanning electron microscopy of thin sections, integrated by XRD and XRF analysis, reveals the progressive transformation of primary granitic rock minerals into secondary clay minerals. The authigenesis of illite is particularly important to understand, since it is the only K-bearing clay mineral that can be dated by the K-Ar method. K-feldspars and mica are the common primary K-bearing minerals, from which illite can be formed. While progressive leaching of interlayer potassium is observed in micas without significant modification of the mineral structure, K-feldspars are gradually dissolved with concomitant precipitation of illite, smectite and kaolinite. Individual illite minerals are difficult to identify, but low-K contents in smectite point to small amounts of illite-interlayers. This finding is supported by XRD patterns (powder analyses on clay size fractions) that lack a clear 10 Å peak indicating the presence of illite/mica, but show a prominent and slight asymmetric 14 Å peak representing smectite with potential low (<10 %) illite-interlayer content. In agreement with previous models of diminishing contamination of protolithic K-bearing phases in the finest grain size fractions, K-Ar ages invariably decrease with grain size suggesting that the finest grain-size is predominantly composed of authigenic, syn-weathering illite, whose age can thus be used to constrain the timing of saprolitization. The obtained Late Permian to Late Triassic ages i) are in accordance with independent age constraints supporting previous hypotheses of intense chemical weathering during the Mesozoic and ii) correlate with similar K-Ar ages obtained from nearby brittle faults suggesting a genetic relationship between weathering and brittle deformation. The combined investigation and K-Ar dating of illite-bearing fractured and weathered bedrock provides new insights into the tectonic and climatic evolution of the Scandinavian landscape prior to the major, and often obliterating, Quaternary glaciations.
Rock sampling. [apparatus for controlling particle size
NASA Technical Reports Server (NTRS)
Blum, P. (Inventor)
1971-01-01
An apparatus for sampling rock and other brittle materials and for controlling resultant particle sizes is described. The device includes grinding means for cutting grooves in the rock surface and to provide a grouping of thin, shallow, parallel ridges and cutter means to reduce these ridges to a powder specimen. Collection means is provided for the powder. The invention relates to rock grinding and particularly to the sampling of rock specimens with good size control.
Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; Wooden, J.L.
2008-01-01
New U-Pb zircon ages, geochemistry, and Nd isotopic data are presented from three localities in the Paleoproterozoic Mazatzal province of southern New Mexico, United States. These data help in understanding the source regions and tectonic setting of magmatism from 1680 to 1620 Ma, the timing of the Mazatzal orogeny, the nature of postorogenic maginatism, Proterozoic plate tectonics, and provide a link between Mazatzal subblocks in Arizona and northern New Mexico. The data indicate a period from 1680 to 1650 Ma in which juvenile felsic granitoids were formed, and a later event between 1646 and 1633 Ma, when these rocks were deformed together with sedimentary rocks. No evidence of pre-1680 Ma rocks or inherited zircons was observed. The igneous rocks have ENd(t) from -1.2 to +4.3 with most between +2 and +4, suggesting a mantle source or derivation from similar-aged crust. Nd isotope and trace element concentrations are consistent with models for typical are magmatism. Detrital zircon ages from metasedimentary rocks indicate that sedimentation occurred until at least 1646 Ma. Both local and Yavapai province sources contributed to the detritus. All of the samples older than ca. 1650 Ma are deformed, whereas undeformed porphyroblasts were found in the contact aureole of a previously dated 1633 Ma gabbro. Regionally, the Mlazatzal orogeny occurred mainly between 1654 and 1643 Ma, during final accretion of a series of island arcs and intervening basins that may have amalgamated offshore. Rhyolite magmatism in the southern Mazatzal province was coeval with gabbro intrusions at 1633 Ma and this bimodal magmatism may have been related to extensional processes following arc accretion. ?? 2007 Geological Society of America.
Kilbuck terrane: Oldest known rocks in Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Box, S.E.; Moll-Stalcup, E.J.; Wooden, J.L.
1990-12-01
The Kilbuck terrane in southwestern Alaska is a narrow, thin crustal sliver or flake of amphibolite facies orthogneiss. The igneous protolith of this gneiss was a suite of subduction-related plutonic rocks. U-Pb data on zircons from trondhjemitic and granitic samples yield upper-intercept (igneous) ages of 2,070 {plus minus}16 and 2,040 {plus minus}74 Ma, respectively. Nd isotope data from these rocks suggest that a diorite-tonalite-trondhjemite suite ({epsilon}{sub Nd}(T) = +2.1 to +2.7; T is time of crystallization) evolved from partial melts of depleted mantle with no discernible contamination by older crust, whereas a coeval granitic pluton ({epsilon}{sub Nd}(T) = {minus}5.7) containsmore » a significant component derived from Archean crust. Orthogneisses with similar age and Nd isotope characteristics are found in the Idono complex 250 km to the north. Early Proterozoic rocks are unknown elsewhere in Alaska. However, Phanerozoic plutons cutting several continental terranes in Alaska (southern Brooks Range and Ruby, Seward, and Yukon-Tanana terranes) have Nd isotope compositions indicative of Early Proterozoic (or older) crustal components that could be correlative with rocks of the Kilbuck terrane. Rocks with similar igneous ages in cratonal North America are rare, and those few that are known have Nd isotope compositions distinct from those of the Kilbuck terrane. Conversely, provinces with Nd model ages of 2.0-2.1 Ga are characterized by extensive 1.8 Ga or younger plutonism, which is unknown in the Kilbuck terrane. At present the case for a North American parentage of the Kilbuck terrane is not compelling. The possibility that the Kilbuck terrane was displaced from provinces of similar age in other cratons (e.g., Australian, Baltic, Guiana, and west African shields), or from the poorly dated Siberian craton, cannot be excluded.« less
,
1982-01-01
Potassium-argon dating of volcanic and hypabyssal rocks from the Ugashik quadrangle by F. H. Wilson and Nora Shew indicates that these rocks fall into the same two age groupings as those of the Chignik and Sutwik Island quadrangles to the south. Rocks of late Eocene to earliest Miocene and latest Miocene to Holocene age are found in both areas. Preliminary mapping by R. L. Detterman, J. E. Case, and F. H. Wilson indicates a major break in the trend to the west. This offset occurs in the vicinity of Wide and Puale Bays.
Wilson, Frederic H.; Detterman, Robert L.; Silberman, Miles L.
1978-01-01
Preliminary potassium-argon dating of intrusive rocks and altered zones in the Chignik and Sutwik Island quadrangles of the Alaska Peninsula seems to indicate at least three and possibly four Tertiary ages of alteration and mineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroener, A.; Eyal, M.; Eyal, Y.
1990-06-01
The authors report {sup 207}Pb/{sup 206}Pb single-zircon evaporation ages for early Pan-African rocks from southern Israel and the northeastern Sinai Peninsula, the northernmost extension of the Arabian-Nubian shield. The oldest rocks are metamorphic schists of presumed island-arc derivation; detrital zircons date the source terrain at ca. 800-820 Ma. A major phase of tonalite-trondhjemite plutonism occurred at ca. 760-780 Ma; more evolved granitic rocks were emplaced at about 745 Ma. A metagabbro-metadiorite complex reflects the youngest igneous phase at ca. 640 Ma. We find no evidence for pre-Pan-African crust, and our data document important crust-forming events that correlate with similar episodesmore » elsewhere in the shield. The widespread presence of early Pan-African juvenile rocks (i.e., ca. 760-850 Ma) in many parts of the Arabian-Nubian shield makes this period the most important in the magmatic history of the shield and supports earlier suggestions for unusually high crust-production rates.« less
Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa.
Toulkeridis, T; Goldstein, S L; Clauer, N; Kroner, A; Lowe, D R
1994-03-01
Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.
Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa
NASA Technical Reports Server (NTRS)
Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.
1994-01-01
Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.
NASA Astrophysics Data System (ADS)
Heineke, Caroline; Niedermann, Samuel; Hetzel, Ralf; Akal, Cüneyt
2015-04-01
The Kula volcanic field is the youngest volcanic province in western Anatolia and covers an area of about 600 km2 around the town Kula (Richardson-Bunbury, 1996). Its alkali basalts formed by melting of an isotopically depleted mantle in a region of long-lived continental extension and asthenospheric upwelling (Prelevic et al., 2012). Based on morphological criteria and 40Ar/39Ar dating, four phases of Quaternary activity have been distinguished in the Kula volcanic field (Richardson-Bunbury, 1996; Westaway et al., 2006). The youngest lava flows are thought to be Holocene in age, but so far only one sample from this group was dated by 40Ar/39Ar at 7±2 ka (Westaway et al., 2006). In this study, we analysed cosmogenic 3He in olivine phenocrysts from three basalt flows and one cinder cone to resolve the Holocene history of volcanic eruptions in more detail. In addition, we applied 10Be exposure dating to two quartz-bearing xenoliths found at the surface of one flow and at the top of one cinder cone. The exposure ages fall in the range between ~500 and ~3000 years, demonstrating that the youngest volcanic activity is Late Holocene in age and therefore distinctly younger than previously envisaged. Our results show that the Late Holocene lava flows are not coeval but formed over a period of a few thousand years. We conclude that surface exposure dating of very young volcanic rocks provides a powerful alternative to 40Ar/39Ar dating. References Prelevic, D., Akal, C. Foley, S.F., Romer, R.L., Stracke, A. and van den Bogaard, P. (2012). Ultrapotassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, 53, 1019-1055. Richardson-Bunbury, J.M. (1996). The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, 133, 275-283. Westaway, R., Guillou, H., Yurtmen, S., Beck, A., Bridgland, D., Demir, T., Scaillet, S. and Rowbotham, G. (2006). Late Cenozoic uplift of western Turkey: Improved dating of the Kula Quaternary volcanic field and numerical modelling of the Gediz River terrace staircase. Global and Planetary Change, 51, 131-171.
NASA Astrophysics Data System (ADS)
Huang, Wentao; Dupont-Nivet, Guillaume; Lippert, Peter C.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Guo, Zhaojie; Waldrip, Ross; Li, Xiaochun; Zhang, Xiaoran; Liu, Dongdong; Kapp, Paul
2015-01-01
Paleomagnetic dating of the India-Asia collision hinges on determining the Paleogene latitude of the Lhasa terrane (southern Tibet). Reported latitudes range from 5°N to 30°N, however, leading to contrasting paleogeographic interpretations. Here we report new data from the Eocene Linzizong volcanic rocks in the Nanmulin Basin, which previously yielded data suggesting a low paleolatitude ( 10°N). New zircon U-Pb dates indicate an age of 52 Ma. Negative fold tests, however, demonstrate that the isolated characteristic remanent magnetizations, with notably varying inclinations, are not primary. Rock magnetic analyses, end-member modeling of isothermal remanent magnetization acquisition curves, and petrographic observations are consistent with variable degrees of posttilting remagnetization due to low-temperature alteration of primary magmatic titanomagnetite and the formation of secondary pigmentary hematite that unblock simultaneously. Previously reported paleomagnetic data from the Nanmulin Basin implying low paleolatitude should thus not be used to estimate the time and latitude of the India-Asia collision. We show that the paleomagnetic inclinations vary linearly with the contribution of secondary hematite to saturation isothermal remanent magnetization. We tentatively propose a new method to recover a primary remanence with inclination of 38.1° (35.7°, 40.5°) (95% significance) and a secondary remanence with inclination of 42.9° (41.5°,44.4°) (95% significance). The paleolatitude defined by the modeled primary remanence—21°N (19.8°N, 23.1°N)—is consistent with the regional compilation of published results from pristine volcanic rocks and sedimentary rocks of the upper Linzizong Group corrected for inclination shallowing. The start of the Tibetan Himalaya-Asia collision was situated at 20°N and took place by 50 Ma.
Manning, Andrew H.; Caine, Jonathan S.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine G.
2009-01-01
Handcart Gulch is an alpine watershed along the Continental Divide in the Colorado Rocky Mountain Front Range. It contains an unmined mineral deposit typical of many hydrothermal mineral deposits in the intermountain west, composed primarily of pyrite with trace metals including copper and molybdenum. Springs and the trunk stream have a natural pH value of 3 to 4. The U.S. Geological Survey began integrated research activities at the site in 2003 with the objective of better understanding geologic, geochemical, and hydrologic controls on naturally occurring acid-rock drainage in alpine watersheds. Characterizing the role of groundwater was of particular interest because mountain watersheds containing metallic mineral deposits are often underlain by complexly deformed crystalline rocks in which groundwater flow is poorly understood. Site infrastructure currently includes 4 deep monitoring wells high in the watershed (300– 1,200 ft deep), 4 bedrock (100–170 ft deep) and 5 shallow (10–30 ft deep) monitoring wells along the trunk stream, a stream gage, and a meteorological station. Work to date at the site includes: geologic mapping and structural analysis; surface sample and drill core mineralogic characterization; geophysical borehole logging; aquifer testing; monitoring of groundwater hydraulic heads and streamflows; a stream tracer dilution study; repeated sampling of surface and groundwater for geochemical analyses, including major and trace elements, several isotopes, and groundwater age dating; and construction of groundwater flow models. The unique dataset collected at Handcart Gulch has yielded several important findings about bedrock groundwater flow at the site. Most importantly, we find that bedrock bulk permeability is nontrivial and that bedrock groundwater apparently constitutes a substantial fraction of the hydrologic budget. This means that bedrock groundwater commonly may be an underappreciated component of the hydrologic system in studies of alpine watersheds. Additionally, despite the complexity of the fracture controlled aquifer system, it appears that it can be represented with a relatively simple conceptual model and can be treated as an equivalent porous medium at the watershed scale. Interpretation of existing data, collection of new monitoring data, and efforts to link geochemical and hydrologic processes through modeling are ongoing at the site.
Introduction to the Apollo collections. Part 1: Lunar igneous rocks
NASA Technical Reports Server (NTRS)
Mcgee, P. E.; Warner, J. L.; Simonds, C. H.
1977-01-01
The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traub, David; Nguyen, Jason
The Slick Rock, Colorado, Processing Sites are referred to as the Slick Rock West Processing Site (SRK05) and the Slick Rock East Processing Site (SRK06). This annual event involved sampling both sites for a total of 16 monitoring wells and 6 surface water locations as required by the 2006 Draft Final Ground Water Compliance Action Plan for the Slick Rock, Colorado, Processing Sites (GCAP). A domestic well was also sampled at a property adjacent to the Slick Rock East site at the request of the landowner.
The Usability of Rock-Like Materials for Numerical Studies on Rocks
NASA Astrophysics Data System (ADS)
Zengin, Enes; Abiddin Erguler, Zeynal
2017-04-01
The approaches of synthetic rock material and mass are widely used by many researchers for understanding the failure behavior of different rocks. In order to model the failure behavior of rock material, researchers take advantageous of different techniques and software. But, the majority of all these instruments are based on distinct element method (DEM). For modeling the failure behavior of rocks, and so to create a fundamental synthetic rock material model, it is required to perform related laboratory experiments for providing strength parameters. In modelling studies, model calibration processes are performed by using parameters of intact rocks such as porosity, grain size, modulus of elasticity and Poisson ratio. In some cases, it can be difficult or even impossible to acquire representative rock samples for laboratory experiments from heavily jointed rock masses and vuggy rocks. Considering this limitation, in this study, it was aimed to investigate the applicability of rock-like material (e.g. concrete) to understand and model the failure behavior of rock materials having complex inherent structures. For this purpose, concrete samples having a mixture of %65 cement dust and %35 water were utilized. Accordingly, intact concrete samples representing rocks were prepared in laboratory conditions and their physical properties such as porosity, pore size and density etc. were determined. In addition, to acquire the mechanical parameters of concrete samples, uniaxial compressive strength (UCS) tests were also performed by simultaneously measuring strain during testing. The measured physical and mechanical properties of these extracted concrete samples were used to create synthetic material and then uniaxial compressive tests were modeled and performed by using two dimensional discontinuum program known as Particle Flow Code (PFC2D). After modeling studies in PFC2D, approximately similar failure mechanism and testing results were achieved from both experimental and artificial simulations. The results obtained from these laboratory tests and modelling studies were compared with the other researcher's studies in respect to failure mechanism of different type of rocks. It can be concluded that there is similar failure mechanism between concrete and rock materials. Therefore, the results obtained from concrete samples that would be prepared at different porosity and pore sizes can be used in future studies in selection micro-mechanical and physical properties to constitute synthetic rock materials for understanding failure mechanism of rocks having complex inherent structures such as vuggy rocks or heavily jointed rock masses.
NASA Astrophysics Data System (ADS)
Yugsi Molina, F. X.; Hermanns, R. L.; Crosta, G. B.; Dehls, J.; Sosio, R.; Sepúlveda, S. A.
2012-04-01
Iquique is a city of about 215,000 inhabitants (Chilean national census 2002) settled on one of the seismic gaps in the South American subduction zone, where a M >8 earthquake with overdue return periods of ca. 100 yr is expected in the near future. The city has only two access roads coming from the east and south. The road to the east comes down along the escarpment that connects the Coastal Cordillera to the Coastal Plain. The road has been blocked by small magnitude earthquake-triggered landslides at least once in recent years. The second road, coming from the south, crosses along the Coastal Plain and connects the city to the airport where at least ten ancient debris deposits related to rock avalanches are found. These facts show the importance of determining the effects of a future high magnitude earthquake on the stability of the slopes in the area and the impact of possible slope failures on people, infrastructure and emergency management. The present work covers an area of approximately 130 km2 parallel to the coastline to the south of Iquique, divided into the two main morphological units briefly mentioned above. The eastern part corresponds to the Coastal Cordillera, a set of smoothed hills and shallow valleys that reaches up to 1200 m asl. This sector is limited to the west by a steep escarpment followed by the Coastal Plain and a narrow emerged marine plateau (1-3 km wide) locally overlaid by deposits of recent rock avalanches. Rock avalanche events have recurrently occurred at two sites to the north and center of the study area on the Coastal Cordillera escarpment. Another major single event has been mapped to the south. Marls, red and black shales, and shallow marine glauconitic deposits from Jurassic constitute the source rock for the rock avalanches in all sites. Clusters of deposits are found in the first two sites (retrogressive advance) with younger events running shorter distances and partially overlaying the older ones. Multiple lobes have been mapped characterized by well defined lateral levees and clear internal morphological features (ridges and furrows, hummocks). Rock avalanche run out simulations have been carried out to back analyze the sites using DAN 3D and a 3 m pixel resolution digital elevation model (DEM) obtained from stereoscopic Geoeye-1 images to assess parameters that controlled propagation mechanism and impact area extent of the events. The older lobes were dated by radiocarbon methods. Results indicate ages higher than 40,000 yr BP for the northern site. The second site could only be dated relatively with an underlying terrace that resulted older than the age limit of radiocarbon dating (43.500 yr BP). All the deposits are positioned well above (40-70 m) the present sea level rise, and at the reported uplift rates for the area, they could be associated to events older than some hundreds of thousand years. A more complete record of the failure history of the sites will be obtained when results of cosmogenic nuclides (CN) and luminescence dating will become available later this year. Several other smaller rock avalanches have been mapped in the study area. Satellite-based radar interferometry (InSAR) was performed using ERS-1 and ERS-2 scenes from 1995-2000 as well as ENVISAT ASAR scenes from 2004-2010. Both datasets show only small deformation in the area. This deformation includes sliding of small surficial slope deposits and subsidence apparently due to local groundwater withdrawal. No deformation of bedrock along the escarpment edge is observed. Results show that only major rock avalanches could reach the main access roads to Iquique and currently no large slope segments show signs of large displacement rates. Moreover, there is no strong correlation between M > 8 earthquakes return periods and age of the dated deposits, which implies that large rock avalanches could have been triggered by other factors. Hence, from a hazard and risk perspective, it is unlikely that large rock avalanches, that could block the access roads to the city, would occur in the near future. Results from CN and luminescence dating will help to get a better understanding of the conditioning and triggering of past events.
The Potassium-Argon Laser Experiment (KArLE): Design Concepts
NASA Technical Reports Server (NTRS)
Cho, Y.; Cohen, B. A.
2017-01-01
The absolute ages of geologic events are fundamental information for understanding the timing and duration of surface processes on planetary bodies. Absolute ages can place a planet's history in the context of the solar system evolution. For example, "when was Mars warm and wet?" is one of the key questions of planetary science. If Mars was warm and wet until 3.7 billion years ago, for instance, it suggests that Mars was still warm and wet when life appeared on Earth. Mars history has been discussed so far based on crater chronology, but the current constraints for Martian chronology models come from the cratering history of the Moon [1]. Moreover, the lunar chronology model itself is fraught with uncertainty because our understanding of lunar chronology is constrained only in a few time periods and itself needs further investigation relating crater-counting ages to absolute ages [2]. Although sample return missions would provide highly accurate radiometric ages of returned samples, they are very expensive and technically challenging. In situ geochronology is highly valuable because they would have larger number of mission opportunities and the capability of iterative measurements for multiple rocks from multiple geologic units. The capability of flight instruments to perform in situ dating is required in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ potassium-argon (K-Ar) dating [3], but it did not happen because of the communication failure to the spacecraft. The first in situ K-Ar dating on Mars, using SAM and APXS measurements on the Cumberland mudstone [4], yielded an age of 4.21 +/- 0.35 Ga and validated the idea of K-Ar dating on other planets. However, the Curiosity method is not purposebuilt for dating and requires many assumptions that degrade its accuracy. To obtain more accurate and meaningful ages, multiple groups are developing dedicated in situ dating instruments [5-8].
NASA Astrophysics Data System (ADS)
Kośmińska, Karolina; Spear, Frank; Majka, Jarosław
2017-04-01
We present the results of quartz-in-garnet (QuiG) Raman barometry coupled with P-T-X-M diagrams, trace element thermometry, and monazite dating from metapelites of the Pinkie unit on Prins Karls Forland, western Svalbard. This unconventional approach, which combines traditional and novel thermobarometry techniques as well as dating results, provides the opportunity to decipher the pressure-temperature-time (P-T-t) metamorphic evolution of these highly deformed rocks, for which the P-T conditions could not have been obtained using traditional techniques. The Pinkie unit is comprised of Barrovian-type zones expressed by the following three mineral assemblages: Grt+St+Ms+Bt+Pl+Q, Grt+St+Ky+Ms+Bt+Pl+Q and Grt+Ky+Ms+Bt+Pl+Q. The metamorphic assemblages have been strongly affected by pervasive mylonitization. Two generations of garnet are present. Early garnet-I forms large (up to 2 mm) anhedral and inclusion-rich porphyroblasts that are strongly deformed with resorbed rims. Its composition varies from Alm81Grs5Prp11Sps3 in the core to Alm84Grs4Prp10Sps2 in the rim for a St-bearing sample. St-Ky bearing metapelites contain garnet-I, which is characterized by Alm88Grs2Prp8Sps2 in the core and Alm89Grs2Prp8Sps1 in the rim. In the Ky-bearing sample garnet-I composition is varying from Alm77Grs4Prp11Sps8 in the core to Alm83Grs4Prp9Sps4 in the rim. Garnet-II is characterized by small (up to 0.5 mm) euhedral grains that locally overgrows garnet-I. It contains very scarce inclusions, mostly quartz. Grt-II composition is very similar in all Pinkie unit samples and is characterized by Alm80Grs11Prp8Sps1(0). The measured maximum shift of the 464 cm-1 Raman band for quartz in garnet-I is 1.05 cm-1 for St-bearing samples, 1.80 cm-1 for St-Ky bearing rocks, and 2.10 cm-1 for Ky-bearing samples, respectively. The highest shift obtained for inclusions in garnet-II is 2.7 cm-1. Monazite-in-garnet thermometry combined with the QuiG yielded P-T conditions of garnet-I nucleation as follows: ca. 590 C at 7.5 kbar for St-bearing metapelites, 570C at 8.5 kbar for St-Ky-bearing rocks, and 630 C at 10 kbar for Ky-bearing samples. The P-T-X-M diagrams calculated using the Fortran program GIBBS were used to examine how the garnet composition varies as a function of pressure and temperature. These diagrams suggest that a decrease in temperature and increase in pressure after garnet-I growth is needed to produce garnet-II. These results together with the QuiG results for garnet-II are consistent with late garnet nucleating and growing during mylonitization at 450-500 C and 10-12 kbar; thus an anti-clockwise P-T path is proposed for the Pinkie metapelites. Three monazite populations have been distinguished based on the textural observations and chemical investigations. The first population (high Th) gives an age of 373 Ma, which represents initial monazite growth during diagenesis or under low grade conditions. The second population (highest Y) yields an age of 359 Ma, and the third population (lower Y) gives an age of 355Ma. Monazite dating results coupled with the above P-T data provide constrain the amphibolite facies metamorphism to have occurred between 359-355 Ma. This study is supported by the Fulbright Junior Advanced Research Award (to KK), NCN project No 2013/11/N/ST10/00357 and AGH grant No 11.11.140.319.
Intrinsic And Extrinsic Controls On Unsteady Deformation Rates, Northern Apennine Mountains, Italy
NASA Astrophysics Data System (ADS)
Anastasio, D. J.; Gunderson, K. L.; Pazzaglia, F. J.; Kodama, K. P.
2017-12-01
The slip rates of faults in the Northern Apennine Mountains were unsteady at 104-105 year timescales during the Neogene and Quaternary. Fault slip rates were recovered from growth strata and uplifted fluvial terraces associated with the Salsomaggiore, Quatto Castella, and Castevetro fault-related folds, sampled along the Stirone, Enza, and Panaro Rivers, respectively. The forelimb stratigraphy of each anticline was dated using rock magnetic-based cyclostratigraphy, which varies with Milankovitch periodicity, multispecies biostratigraphy, magnetostratigraphy, OSL luminescence dating, TCN burial dating, and radiocarbon dating of uplifted and folded fluvial terraces. Fault slip magnitudes were constrained with trishear forward models. We observed decoupled deformation and sediment accumulation rates at each structure. From 3.5Ma deformation of a thick and thin-skinned thrusts was temporally variable and controlled by intrinsic rock processes, whereas, the more regional Pede-Apenninic thrust fault, a thick-skinned thrust underlying the mountain front, was likely activated because of extrinsic forcing from foreland basin sedimentation rate accelerations since 1.4Ma. We found that reconstructed slip rate variability increased as the time resolution increased. The reconstructed slip history of the thin-skinned thrust faults was characterized relatively long, slow fold growth and associated fault slip, punctuated by shorter, more rapid periods limb rotation, and slip on the underlying thrust fault timed asynchronously. Thrust fault slip rates slip rates were ≤ 0.1 to 6 mm/yr at these intermediate timescales. The variability of slip rates on the thrusts is likely related to strain partitioning neighboring faults within the orogenic wedge. The studied structures slowed down at 1Ma when there was a switch to slower synchronous fault slip coincident with orogenic wedge thickening due to the emplacement of the out of sequence Pene-Apenninic thrust fault that was emplaced at 1.4±0.7 mm/yr. Both tectonic control and climate controlled variability on syntectonic sedimentation was observed in the growth sections.
NASA Astrophysics Data System (ADS)
Nóbile, Julieta C.; Collo, Gilda; Dávila, Federico M.; Martina, Federico; Wemmer, Klaus
2015-12-01
The Argentine broken foreland has been the subject of continuous research to determine the uplift and exhumation history of the region. High-elevation mountains are the result of N-S reverse faults that disrupted a W-E Miocene Andean foreland basin. In the Sierra de Ambato (northern Argentine broken foreland) the reverse faults offset Neogene sedimentary rocks (Aconquija Fm., ˜9 Ma) and affect the basement comprising Paleozoic metamorphic rocks that have been dated at ˜477-470 Ma. In order to establish a chronology of these faults affecting the previous continuous basin we date the formation age of clay minerals associated with fault gouge using the K-Ar dating technique. Clay mineral formation is a fundamental process in the evolution of faults under the brittle regime (<<300 °C). K-Ar ages (9 fractions from 3 samples collected along a transect in the Sierra de Ambato) vary from Late Devonian to Late Triassic (˜360-220 Ma). This age distribution can be explained by a long lasting brittle deformation history with a minimum age of ˜360 Ma and a last clay minerals forming event at ˜220 Ma. Moreover, given the progression of apparent ages decreasing from coarse to fine size fractions (˜360-311 Ma for 2-1 μm grain size fraction, ˜326-286 Ma for 1-0.2 μm and ˜291-219 Ma of <0.2 μm), we modeled discrete deformation events at ˜417 Ma (ending of the Famatinian cycle), ˜317-326 Ma (end of Gondwanic orogeny), and ˜194-279 Ma (Early Permian - Jurassic deformation). According to our data, the Neogene reactivation would not have affected the K-Ar system neither generated a significant clay minerals crystallization in the fault gouge, although an exhumation of more than 2 Km is recorded in this period from stratigraphic data.
Big slow movers: a look at weathered-rock slides in Western North Carolina
Rebecca S. Latham; Richard M. Wooten; Anne C. Witt; Stephen J. Fuemmeler; Kenneth a. Gillon; Thomas J. Douglas; Jennifer B. Bauer; Barton D. Clinton
2007-01-01
The North Carolina Geological Survey (NCGS) is currently implementing a landslide hazard-mapping program in western North Carolina authorized by the North Carolina Hurricane Recovery Act of 2005. To date, over 2700 landslides and landslide deposits have been documented. A small number of these landslides are relatively large, slow-moving, weathered-rock slides...
Publications - GMC 255 | Alaska Division of Geological & Geophysical
and Facilities Staff Seismic and Well Data Data Reports Contact Us Frequently Asked Questions Ask a ARCO Alaska Inc. Rock Flour #1 well Authors: Unknown Publication Date: 1995 Publisher: Alaska Division reflectance data from cuttings (1,600-7,170') of the ARCO Alaska Inc. Rock Flour #1 well: Alaska Division of
Publications - GMC 325 | Alaska Division of Geological & Geophysical
(Hydrocarbon-Show) evaluation for 4 Husky Oil NPR Operations Inc. wells, and Source-Rock evaluation for 4 Husky Oil NPR Operations Inc. wells Authors: Huizinga, B.J. Publication Date: Jan 2006 Publisher: Alaska ) evaluation for 4 Husky Oil NPR Operations Inc. wells, and Source-Rock evaluation for 4 Husky Oil NPR
Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission
NASA Technical Reports Server (NTRS)
Brunner, Christopher W.
2005-01-01
In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.
Uranium in NIMROC standard igneous rock samples
NASA Technical Reports Server (NTRS)
Rowe, M. W.; Herndon, J. M.
1976-01-01
Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.
NASA Astrophysics Data System (ADS)
Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas
2017-12-01
The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process-related metamorphism but, more likely, metamorphism related to continental collision.
NASA Astrophysics Data System (ADS)
Wang, Qing; Zhu, Di-Cheng; Liu, An-Lin; Cawood, Peter A.; Liu, Sheng-Ao; Xia, Ying; Chen, Yue; Wang, Hao; Zhang, Liang-Liang; Zhao, Zhi-Dan
2018-04-01
Survival of the Lhasa Terrane during its drift across the Tethyan Ocean and subsequent collision with Asia was likely maintained by mechanical coupling between its ancient lithospheric mantle and the overlying crust. Evidence for this coupling is provided by geochronological and geochemical data from high-Mg dioritic porphyrite dikes that intruded into granodiorites with dioritic enclaves within the Nixiong Batholith in the western segment of the central Lhasa subterrane, southern Tibet. Zircon LA-ICP-MS U-Pb dating indicates synchronous emplacement of dioritic porphyrite dikes (113.9 ± 2 Ma), dioritic enclaves (113.9 ± 1 Ma), and host granodiorites (113.1 ± 2 Ma). The hornblende-bearing granodiorites are metaluminous to weakly peraluminous (A/CNK = 0.95-1.05) and belong to high-K calc-alkaline I-type granite. These rocks are characterized by low Mg# (37-43), negative zircon εHf(t) values (-6.8 to -1.2), and negative whole-rock εNd(t) values (-8.1 to -5.4), suggestive of derivation through anatexis of ancient lower crust. The two least-mixed or contaminated dioritic porphyrite dike samples have high MgO (8.46-8.74 wt%), high Mg# (69-70), and high abundances of compatible elements (e.g., Cr = 673-646 ppm, Ni = 177-189 ppm), which are close to those of primitive magma. They are high-K calc-alkaline and show negative whole-rock εNd(t) values (-1.9 to -1.2), indicating that these samples are most likely derived from the partial melting of ancient lithospheric mantle that was metasomatized by slab-derived fluids. The dioritic enclave samples are metaluminous high-K calc-alkaline and have varying negative whole-rock εNd(t) values (-7.8 to -3.7), which are interpreted as the result of magma mixing between the ancient lower crust-derived melts and asthenospheric mantle- (rather than lithospheric mantle-) derived melts. The Nd isotope mantle model ages of the least-mixed or contaminated high-Mg dioritic porphyrite dike samples (1.1-1.4 Ga) are close to the Nd isotope two-stage model ages (1.3-1.6 Ga) and the zircon Hf isotope crustal model ages (1.1-1.5 Ga) of the ancient lower crust-derived granodiorites, indicating that the lithospheric mantle of the western segment of the central Lhasa subterrane is mechanically coupled to the overlying crust at 114 Ma. In combination with the Proterozoic crustal rocks documented in the central and eastern segments of the central Lhasa subterrane, we propose that this coupling enabled it to resist subduction during accretion to Asia.
NASA Astrophysics Data System (ADS)
Paulsen, T. S.; Demosthenous, C.; Wilson, T. J.; Millan, C.
2009-12-01
The ANDRILL MIS (McMurdo Ice Shelf) Drilling Project obtained over 1200 meters of Neogene sedimentary and volcanic rocks in 2006/2007. Systematic fracture logging of the AND-1B core identified 1,475 natural fractures, i.e. pre-existing fractures in the rock intersected by coring. The most abundant natural fractures are normal faults and calcite veins; reverse faults, brecciated zones, and sedimentary intrusions are also present. In order to better understand Neogene deformation patterns within the southern Terror Rift, we have been conducting strain analyses on mechanically twinned calcite within healed fractures in the drill core. Twinning strains using all of the data from each sample studied to date range from 2% to 10%. The cleaned data (20% of the largest magnitude deviations removed) typically show ≤30% negative expected values, consistent with a single deformation episode or multiple ~coaxial deformation episodes. The majority of the samples record horizontal extension, similar to strain patterns expected in a normal fault regime and/or vertical sedimentary compaction in a continental rift system. The morphology, width, and intensity of twins in the samples suggest that twinning typically occurred at temperatures <170° C. Twinning intensities suggest differential stress magnitudes that caused the twinning ranged from 216 to 295 MPa.
NASA Astrophysics Data System (ADS)
Nam, Tran Ngoc; Toriumi, Mitsuhiro; Sano, Yuji; Terada, Kentaro; Thang, Ta Trong
2003-05-01
Orthogneissic rocks coexisting with migmatites and containing small amphibolite lenses are exposed in the center of the metamorphic belt which runs parallel to the Day Nui Con Voi-Red River shear zone in northern Viet Nam. The orthogneiss complex has given some radiogenic dates of Early Proterozoic and Late Archean, which are the oldest ages ever registered for the Southeast Asian continent. Zircon grains separated from three samples of the orthogneiss complex have been dated to establish the protolith age and the timing of high-grade tectonothermal events in the complex. Sixty-five SHRIMP U-Th-Pb analyses of these zircons define three age groups of 2.84-2.91, 2.36, and 1.96 Ga. The age groups correspond to three periods of zircon generation. The oldest ˜2.9 Ga cores indicate a minimum age for the protolith of the orthogneiss complex. Two younger generations (including ˜2.36 Ga outer-cores and ˜1.96 Ga rims) probably grew during later high-grade tectono-metamorphic events, which were previously suggested by K-Ar and 40Ar/ 39Ar cooling ages of ˜2.0 Ga for synkinematic hornblendes. An early thermal history of the orthogneiss complex has been constrained, including a primary magma-crystallization stage starting at ˜2.9 Ga, followed by two Early Proterozoic (˜2.36 and ˜1.96 Ga) high-grade tectonothermal events. The ca. 2.9 Ga protolith age of the orthogneiss complex documented in this study provides new convincing evidence for the presence of Archean rocks in Indochina, and clearly indicates that the crustal evolution of northern Viet Nam started as early as Late Archean time.
NASA Astrophysics Data System (ADS)
Viglietti, Pia A.; Frei, Dirk; Rubidge, Bruce S.; Smith, Roger M. H.
2018-07-01
Detrital zircon U-Pb age dating was used for provenance determination and maximum age of deposition for the Upper Permian (upper Teekloof and Balfour formations) and Lower Triassic (Katberg Formation) lithostratigraphic subdivisions of the Beaufort Group of South Africa's Karoo Basin. Ten samples were analysed using laser ablation - single collector - magnetic sectorfield - inductively coupled plasma - mass spectrometry (LA-SF-ICP-MS). The results reveal a dominant Late Carboniferous-Late Permian population (250 ± 5 Ma - 339 ± 5 Ma), a secondary Cambrian-Neoproterozoic (489 ± 5 Ma to 878 ± 24 Ma) population, a minor Mesoproterozoic (908 ± 24 Ma to 1308 ± 23) population, and minor occurrences of Devonian, Ordovician, Proterozoic and Archean zircon grains. Multiple lines of evidence (e.g. roundness and fragmentary nature of zircons, palaeo-current directions, and previous work), suggest the older zircon populations are related to sedimentary recycling in the Gondwanide Orogeny. The youngest and dominant population contain elongate euhedral grains interpreted to be directly derived from their protolith. Since zircons form in felsic igneous rocks, and no igneous rocks of Late Permian age occur in the Karoo Basin, these findings suggest significant input of volcanic material by ash falls. These results support sedimentological and palaeontological data for a Lopingian (Late Permian) age for the upper Beaufort Group, but contradict previous workers who retrieved Early Triassic dates from zircons in ashes for the Beaufort and Ecca Groups. Pb-loss not revealed by resolvable discordance on the concordia diagram, and metamictization of natural zircons are not factored into the conclusions of earlier workers.
NASA Astrophysics Data System (ADS)
Barker, A. K.; Coogan, L. A.; Gillis, K. M.; Weis, D.
2008-06-01
Fluid flow through the axial hydrothermal system at fast spreading ridges is investigated using the Sr-isotopic composition of upper crustal samples recovered from a tectonic window at Pito Deep (NE Easter microplate). Samples from the sheeted dike complex collected away from macroscopic evidence of channelized fluid flow, such as faults and centimeter-scale hydrothermal veins, show a range of 87Sr/86Sr from 0.7025 to 0.7030 averaging 0.70276 relative to a protolith with 87Sr/86Sr of ˜0.7024. There is no systematic variation in 87Sr/86Sr with depth in the sheeted dike complex. Comparison of these new data with the two other localities that similar data sets exist for (ODP Hole 504B and the Hess Deep tectonic window) reveals that the extent of Sr-isotope exchange is similar in all of these locations. Models that assume that fluid-rock reaction occurs during one-dimensional (recharge) flow lead to significant decreases in the predicted extent of isotopic modification of the rock with depth in the crust. These model results show systematic misfits when compared with the data that can only be avoided if the fluid flow is assumed to be focused in isolated channels with very slow fluid-rock exchange. In this scenario the fluid at the base of the crust is little modified in 87Sr/86Sr from seawater and thus unlike vent fluids. Additionally, this model predicts that some rocks should show no change from the fresh-rock 87Sr/86Sr, but this is not observed. Alternatively, models in which fluid-rock reaction occurs during upflow (discharge) as well as downflow, or in which fluids are recirculated within the hydrothermal system, can reproduce the observed lack of variation in 87Sr/86Sr with depth in the crust. Minimum time-integrated fluid fluxes, calculated from mass balance, are between 1.5 and 2.6 × 106 kg m-2 for all areas studied to date. However, new evidence from both the rocks and a compilation of vent fluid compositions demonstrates that some Sr is leached from the crust. Because this leaching lowers the fluid 87Sr/86Sr without changing the rock 87Sr/86Sr, these mass balance models must underestimate the time-integrated fluid flux. Additionally, these values do not account for fluid flow that is channelized within the crust.
30 CFR 33.7 - Date for conducting tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Date for conducting tests. 33.7 Section 33.7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General...
30 CFR 33.7 - Date for conducting tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Date for conducting tests. 33.7 Section 33.7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General...
30 CFR 33.7 - Date for conducting tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Date for conducting tests. 33.7 Section 33.7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General...
30 CFR 33.7 - Date for conducting tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Date for conducting tests. 33.7 Section 33.7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General...
30 CFR 33.7 - Date for conducting tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Date for conducting tests. 33.7 Section 33.7 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS DUST COLLECTORS FOR USE IN CONNECTION WITH ROCK DRILLING IN COAL MINES General...
189. Photocopy of drawing, Twin Falls Canal Company, date unknown. ...
189. Photocopy of drawing, Twin Falls Canal Company, date unknown. ROCK CREEK CROSSING, LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; BLUEPRINT. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID
U.S. Geological Survey silicate rock standards
Flanagan, F.J.
1967-01-01
The U.S. Geological Survey has processed six silicate rocks to provide new reference samples to supplement G-1 and W-1. Complete conventional, rapid rock, and spectrochemical analyses by the U.S. Geological Survey are reported for a granite (replacement for G-1), a granodiorite, an andesite, a peridotite, a dunite, and a basalt. Analyses of variance for nickel, chromium, copper, and zirconium in each rock sample showed that for these elements, the rocks can be considered homogeneous. Spectrochemical estimates are given for the nickel, chromium, copper, and zirconium contents of the samples. The petrography of five of the six rocks is described and CIPW norms are presented. ?? 1967.
NASA Astrophysics Data System (ADS)
Bacon, C. R.
2007-12-01
In the ten years since publication of M. Reid et al.'s seminal paper on zircon ages from rhyolites (EPSL 150:2-39, 1997) >20 papers have appeared on SIMS 238U-230Th and 238U-206Pb geochronology of zircon from silicic volcanic rocks, plutonic xenoliths, and young intrusions. In some cases, as well as for U-Pb studies of Tertiary granitoids, plutonic samples are interpreted in the context of related volcanism. These geochronologic data have advanced conceptual models of silicic magma genesis and pluton construction. Of fundamental importance are discoveries that zircons in volcanic rocks typically pre-date eruption by 10's to 100's of kyr and that multiple zircon populations are common; these crystals are "antecrysts" recycled from intrusive rocks or crystal mush of the system that vented. Resolving such age differences is possible with U-Th at <300 ka but is challenging with U-Pb, where SIMS precision limits resolution of differences on the order of 100 kyr for Pleistocene-Miocene zircons. Cathodoluminescence (CL) imaging of polished crystals guides beam placement but leads to sampling bias that favors high-U regions. Thus, although model-age histograms and relative probability plots identify zircon age populations, they are unlikely to accurately define relative abundances of age groups. Microbeam analysis collects data for the entire volume sampled but only SIMS depth-profiling into crystal faces can spatially resolve fine zones. ID-TIMS analysis of CL-imaged zircon fragments can improve U-Pb precision. SIMS complements geochronology with trace element fingerprints of zircon growth environments and enables Ti-in-zircon thermometry. Literature examples illustrate recent findings: (1) rhyodacite lava at Crater Lake contains zircons derived from late Pleistocene granodiorite represented by blocks ejected in the caldera-forming eruption; (2) zircons in Mount St. Helens dacites grew at sub-eruption temperatures and pre-date eruptions by up to 250 kyr; (3) Miocene plutons near Mount Rainier and the Colorado River were emplaced and crystallized in pulses over ~2-3-Myr periods, some with coeval volcanics; and (4) Cretaceous batholiths in the Sierra Nevada and North Cascades preserve evidence of assembly over as much as 10 Myr; individual samples contain zircons that crystallized during intervals of >1 Myr. Zircon ages and wide-ranging trace element concentrations suggest crystallization mainly in differentiated melt pockets in high-crystallinity magmas that may repeatedly freeze and thaw. Some high-Th/U, incompatible-element rich, spongy textured zircons grew very late, in the presence of oxidizing fluid. Not all zircons survive recycling into undersaturated magmas, in which zircon will dissolve given enough time, depending on temperature and dissolved volatiles. Recent zircon geochronologic results for volcanic and plutonic rocks lend credence to the "mush model" of rhyolite genesis and batholith consolidation. Crystal-poor rhyolites and leucogranites are melts segregated by compaction or gas-driven filter pressing from granitoid crystal mush emplaced incrementally in the middle to upper crust and powered by basaltic magma repeatedly injected into the lower reaches of the mush column. Balance between heat loss and basaltic influx determines whether the mush freezes or partially thaws at any given time, blurs internal contacts in resulting plutons, and can produce large volumes of crystal-rich ignimbrite or rapid separation and eruption of crystal-poor rhyolite. Lifetimes of the largest volcano-plutonic systems, such as the Altiplano-Puna or Southern Rocky Mountains volcanic fields, are comparable to the ~10 Myr of the Tuolumne Intrusive Suite.
NASA Astrophysics Data System (ADS)
van Soest, M. C.; Cooper, F. J.; Wartho, J.; Hodges, K.; Buchner, E.; Schmieder, M.; Koeberl, C.
2010-12-01
Dating of impact-related material is difficult especially when pristine impact melt is unavailable. In the absence of such melts, most geochronometers in shocked basement or melt-poor impact rocks yield only partially reset or non-reset ages. In such cases, application of the low closure temperature apatite and zircon (U-Th)/He geochronometers can be successful, since impact-related physical and thermal shock should reset the He systematics in both minerals in most materials affected by the impact. For a proof of concept study on the well-studied Ries impact structure, we (U-Th)/He dated apatites (14.08 ± 0.26 Ma 2σ, n = 5) and zircons (14.26 ± 0.31 Ma 2σ, n = 10) from two Aumühle quarry suevite samples and one Polsingen quarry impact melt rock, which was dated at 14.37 ± 0.30 Ma (2σ) using Ar-Ar stepwise heating of recrystallized K-feldspar melt (Buchner et al., 2010). The (U-Th)/He ages agree well with the 14.37 Ma age, but are slightly younger than the suggested age of 14.59 ± 0.20 Ma (2σ - based on recent, post 1995, Ar-Ar data, Buchner et al., 2010) for the impact structure. However, among the 27 zircons dated, 6 were partially reset (>16Ma), and 11 zircons yielded younger dates (<13.5 Ma).The younger dates are problematic for successful (U-Th)/He dating of impact structures of unknown age, as they would be identified incorrectly as the age of the impact event. The cause for these younger dates may be: a) partial He loss due to a post-impact thermal event, which at Ries is unlikely as there is no geological evidence for such an event; b) compromised He retention due to metamictization by progressive radiation damage; or c) compromised He retention due to impact shock-related effects. The latter two causes can produce similar visual effects on zircon and the He loss mechanism is also similar, i.e. changes in the zircon crystal structure on a micro scale. However, the effects of these processes on zircon have been documented extensively by non-destructive analytical methods such as Raman spectroscopy, single crystal XRD, and SEM. These techniques have provided a means to distinguish shock from radiation damage effects, based on the presence of the high pressure zircon polymorph reidite, at shock levels >20 GPa (Wittmann et al., 2006). In order to establish if these effects can be identified in individual zircons before undertaking (U-Th)/He dating, and thus if these analytical methods can be used to pre-select suitable zircons for dating, 30 Ries zircons have been picked, based on euhedral shape and size, from two suevite samples for non-destructive geochemical and crystal structure studies prior to (U-Th)/He dating. Initial results from Raman spectroscopy indicate reidite is present in >80% of the grains, providing clear evidence for shock, while other grains show extensive amorphization likely due to extreme shock or radiation damage. References: Buchner et al. (2010) MAPS 45, 5: 662-674; Wittman et al. (2006) MAPS 41, 3: 433-454.
Sample Return Mission to the South Pole Aitken Basin
NASA Astrophysics Data System (ADS)
Duke, M. B.; Clark, B. C.; Gamber, T.; Lucey, P. G.; Ryder, G.; Taylor, G. J.
1999-01-01
The South Pole Aitken Basin (SPA) is the largest and oldest observed feature on the Moon. Compositional and topographic data from Galileo, Clementine, and Lunar Prospector have demonstrated that SPA represents a distinctive major lunar terrane, which has not been sampled either by sample return missions (Apollo, Luna) or by lunar meteorites. The floor of SPA is characterized by mafic compositions enriched in Fe, Ti, and Th in comparison to its surroundings. This composition may represent melt rocks from the SPA event, which would be mixtures of the preexisting crust and mantle rocks. However, the Fe content is higher than expected, and the large Apollo basin, within SPA, exposes deeper material with lower iron content. Some of the Fe enrichment may represent mare and cryptomare deposits. No model adequately accounts for all of the characteristics of the SPA and disagreements are fundamental. Is mantle material exposed or contained as fragments in melt rock and breccias? If impact melt is present, did the vast sheet differentiate? Was the initial mantle and crust compositionally different from other regions of the Moon? Was the impact event somehow peculiar, (e.g., a low-velocity impact)? The precise time of formation of the SPA is unknown, being limited only by the initial differentiation of the Moon and the age of the Imbrium event, believed to be 3.9 b.y. The questions raised by the SPA can be addressed only with detailed sample analysis. Analysis of the melt rocks, fragments in breccias, and basalts of SPA can address several highly significant problems for the Moon and the history of the solar system. The time of formation of SPA, based on analysis of melt rocks formed in the event. would put limits on the period of intense bombardment of the Moon, which has been inferred by some to include a "terminal cataclysm." If close to 3.9 Ga, the presumed age of the Imbrium Basin, the SPA date would confirm the lunar cataclysm. This episode, if it occurred, would have affected all of the planets of the inner solar system, and in particular, could have been critical to the history of life on Earth. If the SPA is significantly older, a more orderly cratering history may be inferred. Secondly, melt-rock compositions and clasts in melt rocks or breccias may yield evidence of the composition of the lunar mantle, which could have been penetrated by the impact or exposed by the rebound process that occurred after the impact. Thirdly, study of mare and cryptomare basalts could yield further constraints on the age of SPA and the thermal history of the crust and mantle in that region. The integration of these data may allow inferences to be made on the nature of the impacting body. Secondary science objectives in samples from the SPA could include analysis of the regolith for the latitudinal effects of solar wind irradiation, which should be reduced from its equatorial values; possible remnant magnetization of very old basalts; and evidence for Imbrium Basin ejecta and KREEP materials. If a sampling site is chosen close enough to the poles, it is possible that indirect evidence of polar-ice deposits may be found in the form of oxidized or hydrated regolith constituents. A sample return mission to the Moon may be possible within the constraints of NASA's Discovery Program. Recent progress in the development of sample return canisters for Genesis, Stardust, and Mars Sample Return missions suggests that a small capsule can be returned directly to the ground without a parachute, thus reducing its mass and complexity. Return of a 1-kg sample from the lunar surface would appear to be compatible with a Delta 11 class launch from Earth, or possibly with a piggyback opportunity on a commercial launch to GEO. A total mission price tag on the order of 100 million would be a goal. Target date would be late 2002. Samples would be returned to the curatorial facility at the Johnson Space Center for description and allocation for investigations. Concentration of milligram-to gram-sized rocklets is a very effective strategy for sample studies of the lunar regolith. A rake accomplished this type of sampling in the Apollo missions. For the SPA sample return mission, either a small rover or an arm on a lander would deliver regolith to a sieving mechanism that retains fragments in the 1-10 mm size range. Approximately 10% of the mass of Apollo 16 regolith samples, which were from possibly similar highland terrain, consisted of fragments in the size range. To return 1 kg of rock fragments, about 5 x 103 cubic cm of regolith would have to be sampled. Warren et al. suggested 7-10 mm as the optimum size for individual samples, which would require more regolith to be sieved. This mission would represent the first lander mission to the lunar farside and, as such, would require that a communication link be established with the Earth. A growing number of assets at the Sun-Earth L-1 libration point may provide access to a viable communication link, avoiding the need for a communications orbiter. The mission need only be designed to last through a single lunar day, which could make it relatively straightforward; if a rover is chosen as the implementation for sampling, it may be possible to keep the rover alive for longer. This would be a cost/benefit tradeoff to be determined as part of the mission analysis. Issues on which the lunar sample community should make input include: identification of additional scientific problems that can be addressed by samples from SPA; choice of landing site to maximize the probability of addressing the first-order problems; sample size and the distribution between regolith and rocklet samples; details of sample collection (range from lander, depth, avoidance of contamination from lander); and environmental control constraints on samples (maximum temperatures, acceptable leak rates on Earth). Additional information is contained in the original
Genetic Aspects of Gold Mineralization at Some Occurrences in the Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Abd El Monsef, M.; Slobodník, M.; Salem, I. A.
2012-04-01
The Eastern Desert of Egypt is well known as a gold-mining area since ancient times, there're more than 95 gold deposits and occurrences spread the whole area covered by the basement rocks of Precambrian age. The basement rocks of the Eastern Desert of Egypt constitute the Nubian Shield that has formed a continuous part of the Arabian-Nubian Shield before the opening of Red Sea (Oligocene-Early Miocene). Commonly, the system of gold-bearing quartz veins in the Eastern Desert is clearly structural controlled related to brittle-ductile shear zones that mostly developed during late deformational stages of the evolution history for basement rocks in the Eastern Desert. This running study principally aims to contribute the mineral resource potential of the gold deposits in Egypt, so particularly Fatira, Gidami and Atalla occurrences have been involved into a comprehensive study based on field, structural, mineralogical, geochemical and genetic investigations. It is intended to better understanding for the characteristics, distribution controls, conditions and age of mineralization in relation to the age of the hosting rocks intrusion to find if there're genetic links between the gold mineralization and the evolution of the host intrusive complex. Several authors suggested that the gold mineralization was related to the intrusion of the (postorogenic) Younger granites. Other authors interpret these deposits as products of hydrothermal activity induced either by metamorphism or cooling effects of early Paleozoic magmatism or as combined metamorphic/magmatic episodes. The prime focus will be directed to the ore itself and the associated hydrothermal alteration zones based on detailed maps and well-distributed samples network and geochemical anomalies distribution. The laboratory studies included microscopic examination (reflecting and transmitting microscopy) to allow for determination of the hosting rocks types and mineralogical changes related to the gold mineralization in each area and revealing the ore mineralogy and the ore textures, geochemical analyses (including rare earth elements) are to be used in order to determine the tectonic setting and magmatic evolution of the host intrusions, scanning electron microscope, microprobe analysis, stable isotopes and fluid inclusions will serve as a new part of this study in detection of the origin and the physico-chemical conditions (P-T condition) for the gold precipitation, Age dating of the host intrusion and mineralization will be based on K-Ar for dating potassium-bearing minerals in fresh host rocks and hydrothermal mineral phases.
Houser, Brenda B.; Peters, Lisa; Esser, Richard P.; Gettings, Mark E.
2004-01-01
The Tucson Basin is a relatively large late Cenozoic extensional basin developed in the upper plate of the Catalina detachment fault in the southern Basin and Range Province, southeastern Arizona. In 1972, Exxon Company, U.S.A., drilled an exploration well (Exxon State (32)-1) near the center of the Tucson Basin that penetrated 3,658 m (12,001 ft) of sedimentary and volcanic rocks above granitoid basement. Detailed study of cuttings and geophysical logs of the Exxon State well has led to revision of the previously reported subsurface stratigraphy for the basin and provided new insight into its depositional and tectonic history. There is evidence that detachment faulting and uplift of the adjacent Catalina core complex on the north have affected the subsurface geometry of the basin. The gravity anomaly map of the Tucson Basin indicates that the locations of subbasins along the north-trending axis of the main basin coincide with the intersection of this axis with west-southwest projections of synforms in the adjacent core complex. In other words, the subbasins overlie synforms and the ridges between subbasins overlie antiforms. The Exxon State well was drilled near the center of one of the subbasins. The Exxon well was drilled to a total depth of 3,827 m (12,556 ft), and penetrated the following stratigraphic section: Pleistocene(?) to middle(?) Miocene upper basin-fill sedimentary rocks (0-908 m [0-2,980 ft]) lower basin-fill sedimentary rocks (908-1,880 m [2,980-6,170 ft]) lower Miocene and upper Oligocene Pantano Formation (1,880-2,516 m [6,170-8,256 ft]) upper Oligocene to Paleocene(?) volcanic and sedimentary rocks (2,516-3,056 m [8,256-10,026 ft]) Lower Cretaceous to Upper Jurassic Bisbee Group (3,056-3,658 m [10,026-12,001 ft]) pre-Late Jurassic granitoid plutonic rock (3,658-3,827 m [12,001- 12,556 ft]). Stratigraphy and Tectonic History of the Tucson Basin, Pima County, Arizona, Based on the Exxon State (32)-1 Well The 1,880 m (6,170 ft) of basin-fill sedimentary rocks consist of alluvial-fan, alluvial-plain, and playa facies. The uppermost unit, a 341-m-thick (1,120-ft) lower Pleistocene and upper Pliocene alluvial-fan deposit (named the Cienega Creek fan in this study), is an important aquifer in the Tucson basin. The facies change at the base of the alluvial fan may prove to be recognizable in well data throughout much of the basin. The well data show that a sharp boundary at 908 m (2,980 ft) separates relatively unconsolidated and undeformed upper basin fill from denser, significantly faulted lower basin fill, indicating that there were two stages of basin filling in the Tucson basin as in other basins of the region. The two stages apparently occurred during times of differing tectonic style in the region. In the Tucson area the Pantano Formation, which contains an andesite flow dated at about 25 Ma, fills a syntectonic basin in the hanging wall of the Catalina detachment fault, reflecting middle Tertiary extension on the fault. The formation in the well is 636 m thick (2,086 ft) and consists of alluvial-fan, playa, and lacustrine sedimentary facies, a lava flow, and rock- avalanche deposits. Analysis of the geophysical logs indicates that a K-Ar date of 23.4 Ma reported previously for the Pantano interval of the well was obtained on selected cuttings collected from a rock-avalanche deposit near the base of the unit and, thus, does not date the Pantano Formation. The middle Tertiary volcanic and sedimentary rocks have an aggregate thickness of 540 m (1,770 ft). We obtained a new 40Ar/ 39Ar age of 26.91+0.18 Ma on biotite sampled at a depth of 2,584-2,609 m (8,478-8,560 ft) from a 169-m-thick (554-ft) silicic tuff in this interval. The volcanic rocks probably correlate with other middle Tertiary volcanic rocks of the area, and the sedimentary rocks may correlate with the Cloudburst and Mineta Formations exposed on the flanks of the San Pedro Basin to the northeast. The Bisbee Group in the Exxon well is 602 m (1,975 f
A method for development of a system of identification for Appalachian coal-bearing rocks
Ferm, J.C.; Weisenfluh, G.A.; Smith, G.C.
2002-01-01
The number of observable properties of sedimentary rocks is large and numerous classifications have been proposed for describing them. Some rock classifications, however, may be disadvantageous in situations such as logging rock core during coal exploration programs, where speed and simplicity are the essence. After experimenting with a number of formats for logging rock core in the Appalachian coal fields, a method of using color photographs accompanied by a rock name and numeric code was selected. In order to generate a representative collection of rocks to be photographed, sample methods were devised to produce a representative collection, and empirically based techniques were devised to identify repeatedly recognizable rock types. A number of cores representing the stratigraphic and geographic range of the region were sampled so that every megascopically recognizable variety was included in the collection; the frequency of samples of any variety reflects the frequency with which it would be encountered during logging. In order to generate repeatedly recognizable rock classes, the samples were sorted to display variation in grain size, mineral composition, color, and sedimentary structures. Class boundaries for each property were selected on the basis of existing, widely accepted limits and the precision with which these limits could be recognized. The process of sorting the core samples demonstrated relationships between rock properties and indicated that similar methods, applied to other groups of rocks, could yield more widely applicable field classifications. ?? 2002 Elsevier Science B.V. All rights reserved.
Temporal trends in nitrate and selected pesticides in mid-atlantic ground water
Debrewer, L.M.; Ator, S.W.; Denver, J.M.
2008-01-01
Evaluating long-term temporal trends in regional ground-water quality is complicated by variable hydrogeologic conditions and typically slow flow, and such trends have rarely been directly measured. Ground-water samples were collected over near-decadal and annual intervals from unconfined aquifers in agricultural areas of the Mid-Atlantic region, including fractured carbonate rocks in the Great Valley, Potomac River Basin, and unconsolidated sediments on the Delmarva Peninsula. Concentrations of nitrate and selected pesticides and degradates were compared among sampling events and to apparent recharge dates. Observed temporal trends are related to changes in land use and chemical applications, and to hydrogeology and climate. Insignificant differences in nitrate concentrations in the Great Valley between 1993 and 2002 are consistent with relatively steady fertilizer application during respective recharge periods and are likely related to drought conditions in the later sampling period. Detecting trends in Great Valley ground water is complicated by long open boreholes characteristic of wells sampled in this setting which facilitate significant ground-water mixing. Decreasing atrazine and prometon concentrations, however, reflect reported changes in usage. On the Delmarva Peninsula between 1988 and 2001, median nitrate concentrations increased 2 mg per liter in aerobic ground water, reflecting increasing fertilizer applications. Correlations between selected pesticide compounds and apparent recharge date are similarly related to changing land use and chemical application. Observed trends in the two settings demonstrate the importance of considering hydrogeology and recharge date along with, changing land and chemical uses when interpreting trends in regional ground-water quality. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Study on strontium isotope abundance-ratio measurements by using a 13-MeV proton beam
NASA Astrophysics Data System (ADS)
Jeong, Cheol-Ki; Jang, Han; Lee, Goung-Jin
2016-09-01
The Rb-Sr dating method is used in dating Paleozoic and Precambrian rocks. This method measures the 87Rb and the 87Sr concentrations by using thermal ionization mass spectrometry (TIMS) [J. Hefne et al., Inter. J. Phys. Sci. 3(1), 28 (2008)]. In addition, it calculates the initial 87Sr/86Sr ratio to increase the reliability of Rb-Sr dating. In this study, the 87Sr/86Sr ratio was measured by using a 13-MeV proton accelerator. Proton kinetic energies are in the range of tens of megaelectronvolts, and protons have large absorption cross-sections for ( p, n) reactions with most substances. After absorbing a proton with such a high kinetic energy, an element is converted into a nuclide with its atomic number increased by one via nuclear transmutation. These nuclides usually have short half-lives and return to the original state through radioactive decay. When a strontium sample is irradiated with protons, nuclear transmutation occurs; thus, the strontium isotope present in the sample changes to a yttrium isotope, which is an activated radioisotope. Based on this, the 87Sr/86Sr ratio was calculated by analyzing the gamma-rays emitted by each yttrium isotope. The KIRAMS-13 cyclotron at the Cyclotron Center of Chosun University, where 13-MeV protons can be extracted, was utilized in our experiment. The 87Sr/86Sr isotope ratio was computed for samples irradiated with these protons, and the result was similar to the isotope ratio for the Standard Reference Material, i.e., 98.2 ± 3.4%. As part of the analysis, proton activation analyses were performed using 13-MeV protons, and the experimental results of this research suggest a possible approach for measuring the strontium-isotope abundance ratio of samples.
Frictional behaviour of sandstone: A sample-size dependent triaxial investigation
NASA Astrophysics Data System (ADS)
Roshan, Hamid; Masoumi, Hossein; Regenauer-Lieb, Klaus
2017-01-01
Frictional behaviour of rocks from the initial stage of loading to final shear displacement along the formed shear plane has been widely investigated in the past. However the effect of sample size on such frictional behaviour has not attracted much attention. This is mainly related to the limitations in rock testing facilities as well as the complex mechanisms involved in sample-size dependent frictional behaviour of rocks. In this study, a suite of advanced triaxial experiments was performed on Gosford sandstone samples at different sizes and confining pressures. The post-peak response of the rock along the formed shear plane has been captured for the analysis with particular interest in sample-size dependency. Several important phenomena have been observed from the results of this study: a) the rate of transition from brittleness to ductility in rock is sample-size dependent where the relatively smaller samples showed faster transition toward ductility at any confining pressure; b) the sample size influences the angle of formed shear band and c) the friction coefficient of the formed shear plane is sample-size dependent where the relatively smaller sample exhibits lower friction coefficient compared to larger samples. We interpret our results in terms of a thermodynamics approach in which the frictional properties for finite deformation are viewed as encompassing a multitude of ephemeral slipping surfaces prior to the formation of the through going fracture. The final fracture itself is seen as a result of the self-organisation of a sufficiently large ensemble of micro-slip surfaces and therefore consistent in terms of the theory of thermodynamics. This assumption vindicates the use of classical rock mechanics experiments to constrain failure of pressure sensitive rocks and the future imaging of these micro-slips opens an exciting path for research in rock failure mechanisms.
du Bray, Edward A.; Aleinikoff, John N.; Lund, Karen
2012-01-01
The Late Cretaceous Boulder batholith in southwest Montana consists of the Butte Granite and a group of associated smaller intrusions emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and into the Late Cretaceous Elkhorn Mountains Volcanics. The Boulder batholith is dominated by the voluminous Butte Granite, which is surrounded by as many as a dozen individually named, peripheral intrusions. These granodiorite, monzogranite, and minor syenogranite intrusions contain varying abundances of plagioclase, alkali feldspar, quartz, biotite, hornblende, rare clinopyroxene, and opaque oxide minerals. Mafic, intermediate, and felsic subsets of the Boulder batholith intrusions are defined principally on the basis of color index. Most Boulder batholith plutons have inequigranular to seriate textures although several are porphyritic and some are granophyric (and locally miarolitic). Most of these plutons are medium grained but several of the more felsic and granophyric intrusions are fine grained. Petrographic characteristics, especially relative abundances of constituent minerals, are distinctive and foster reasonably unambiguous identification of individual intrusions. Seventeen samples from plutons of the Boulder batholith were dated by SHRIMP (Sensitive High Resolution Ion Microprobe) zircon U-Pb geochronology. Three samples of the Butte Granite show that this large pluton may be composite, having formed during two episodes of magmatism at about 76.7 ± 0.5 Ma (2 samples) and 74.7 ± 0.6 million years ago (Ma) (1 sample). However, petrographic and chemical data are inconsistent with the Butte Granite consisting of separate, compositionally distinct intrusions. Accordingly, solidification of magma represented by the Butte Granite appears to have spanned about 2 million year (m.y.). The remaining Boulder batholith plutons were emplaced during a 6-10 m.y. span (81.7 ± 1.4 Ma to 73.7 ± 0.6 Ma). The compositional characteristics of these plutons are similar to those of moderately differentiated subduction-related magmas. The plutons form relatively coherent, distinct but broadly overlapping major oxide composition clusters or linear arrays on geochemical variation diagrams. Rock compositions are subalkaline, magnesian, calc-alkalic to calcic, and metaluminous to weakly peraluminous. The Butte Granite intrusion is homogeneous with respect to major oxide abundances. Each of the plutons is also characterized by distinct trace element abundances although absolute trace element abundance variations are relatively minor. Limited Sr and Nd isotope data for whole-rock samples of the Boulder batholith are more radiogenic than those for plutonic rocks of western Idaho, eastern Oregon, the Salmon River suture, and most of the Big Belt Mountains. Initial strontium (Sri) values are low and epsilon neodymium (εNd) values are comparable relative to those of other southwest Montana basement and Mesozoic intrusive rocks. Importantly, although the Boulder batholith hosts significant mineral deposits, including the world-class Butte Cu-Ag deposit, ore metal abundances in the Butte Granite, as well as in its peripheral plutons, are not elevated but are comparable to global average abundances in igneous rocks.
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Cabane, M.; Webster, C. R.
2008-01-01
The 2009 Mars Science Laboratory (MSL) with a substantially larger payload capability that any other Mars rover, to date, is designed to quantitatively assess a local region on Mars as a potential habitat for present or past life. Its goals are (1) to assess past or present biological potential of a target environment, (2) to characterize geology and geochemistry at the MSL landing site, and (3) to investigate planetary processes that influence habitability. The Sample Analysis at Mars (SAM) Suite, in its final stages of integration and test, enables a sensitive search for organic molecules and chemical and isotopic analysis of martian volatiles. MSL contact and remote surface and subsurface survey Instruments establish context for these measurements and facilitate sample identification and selection. The SAM instruments are a gas chromatograph (GC), a mass spectrometer (MS), and a tunable laser spectrometer (TLS). These together with supporting sample manipulation and gas processing devices are designed to analyze either the atmospheric composition or gases extracted from solid phase samples such as rocks and fines. For example, one of the core SAM experiment sequences heats a small powdered sample of a Mars rock or soil from ambient to -1300 K in a controlled manner while continuously monitoring evolved gases. This is followed by GCMS analysis of released organics. The general chemical survey is complemented by a specific search for molecular classes that may be relevant to life including atmospheric methane and its carbon isotope with the TLS and biomarkers with the GCMS.
NASA Astrophysics Data System (ADS)
Gao, Feng; Cai, Chengzheng; Yang, Yugui
2018-06-01
As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.
Mei, Leung; Lesure, Frank Gardner
1978-01-01
Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.
Rait, Norma; Lesure, Frank Gardner
1978-01-01
Semiquantitative emission spectrographic analyses for 64 elements on 43 stream sediment and 73 rock samples from Peters Mountain Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are in Universal Transverse Mercator (UTM) coordinates. Brie[ descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.
Wood, David B.
2007-11-01
Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.
182W in Modern Ocean Island Basalts
NASA Astrophysics Data System (ADS)
Mundl, A.; Touboul, M.; Walker, R. J.; Jackson, M. G.; Kurz, M. D.; Day, J. M.; Horan, M. F.; Helz, R. L.
2016-12-01
The short lived Hf-W isotopic system (182Hf → 182W, t½ = 8.9 Ma) can be used as an important tracer for very early geochemical processes in the Earth's mantle, as well as for possible detection of core-mantle interactions. To date, most high precision 182W/184W data have been obtained for ancient rocks, with most of these characterized by having positive 182W anomalies. Here we report data for modern ocean island basalts (OIB). Although most OIB examined to date show no 182W anomalies, some basalts from Hawaii and Samoa are characterized by well-resolved negative anomalies with µ182W values ranging to -16 (µ182W is the ppm deviation in 182W/184W of a sample relative to a terrestrial reference standard). Further, for both OIB systems the W isotopic data are negatively correlated with 3He/4He, whereby the samples with the lowest µ182W values are characterized by the highest 3He/4He. Thus, both OIB systems sample one or more primordial reservoirs. A primordial mantle domain characterized by negative 182W anomalies could have been created as a result of silicate crystal-liquid fractionation, such as by a magma ocean process, within the first 50 Ma of Solar System history. Tungsten is similarly incompatible to U and Th (from which 4He is generated), so it is difficult to envision a single-stage, early Earth process that would lead to the low Hf/W and high He/(U+Th) implied by the observed correlation. A second option is that the mantle sources of the 182W-depleted, 3He/4He-enriched basalts contain a core component. This is difficult to reconcile with the normal abundances of highly siderophile elements in the rocks. Positive 182W anomalies have been reported for high-3He/4He samples from the 60 Ma Baffin Bay picrites, so isotopically anomalous W is accessed by modern OIB and flood basalt systems from at least two high 3He/4He domains.
Developing Zircon as a Probe of Planetary Impact History
NASA Astrophysics Data System (ADS)
Wielicki, Matthew
2014-12-01
The identification of Meteor Crater in Arizona as an extraterrestrial impact by Eugene Shoemaker provided the first evidence of this geologic phenomenon and opened the door to a new field of research that has eventually lead to the identification of over ~150 terrestrial impact structures. Subsequently impacts have been evoked in the formation of the moon, delivery of volatiles and bio-precursors to early Earth, creation of habitats for the earliest life and, in more recent times, major mass extinction events. However, understanding the impact flux to the Earth-Moon system has been complicated by the constant weathering and erosion at Earth's surface and the complex nature of impactite samples such that only a hand full of terrestrial craters have been accurately and precisely dated. Currently 40Ar/39Ar step-heating analysis of impactite samples is commonly used to infer impact ages but can be problematic due to the presence of relic clasts, incomplete 40Ar outgassing or excess 40Ar, and recoil and shock effects. The work presented here attempts to develop zircon geochronology to probe planetary impact histories as an alternative to current methods and provides another tool by which to constrain the bolide flux to the Earth-Moon system. Zircon has become the premier geo-chronometer in earth science and geochemical investigation of Hadean zircon from Western Australia has challenged the long-standing, popular conception that the near-surface Hadean Earth was an uninhabitable and hellish world; Zircons may preserve environmental information regarding their formation and thus provide a rare window into conditions on early Earth. Isotopic and petrologic analyses of these ancient grains have been interpreted to suggest that early Earth was more habitable than previously envisioned, with water oceans, continental crust, and possibly even plate tectonics. The Hadean is also suspected to be a time of major planetary bombardment however identifying impact signatures within the Hadean population remains difficult and this study hopes to develop criteria to recognize impact zircon and possibly provide constraints on the early impactor flux. Five large terrestrial craters, Vredefort and Morokweng, South Africa, Sudbury and Manicouagan, Canada, and Popigai, Russia, are the focus of this study as smaller craters do not have the energy to produce thick melt sheets, which persist over time-scales sufficient for crystallization of zircon, permitting geochemical and geochronological analysis. Geochemical analysis of these impact-produced zircons yields similar chemical signatures to endogenic igneous zircon from crustal melts and highlights the need for well-developed criteria for discriminating impact and endogenic grains for impact geochronology. One such criterion is modeling of impact zircon crystallization temperature spectra for simulated impact events on targets of varying composition. Provided some assumptions the zircon crystallization spectra can be estimated from well established Zr systematics in crustal melts. Results for impacts into an Archean terrestrial surface (used as a proxy for the Hadean as little to no rock record exists >4.0 Ga) yields a crystallization spectra significantly higher than that reported for the Hadean zircon population and appears to rule out impacts as a dominant source for these ancient grains. When no dateable impact melt sheet exists, either due to the lack of energy of the impact itself or from subsequent erosion at Earth's surface, loss of radiogenic lead, Pb*, has been suggested as an alternative method to date the event. Pb*-loss was investigated from target rocks from Vredefort and Morokweng and suggests that Pb* diffusion, even in zircon isolated from shocked and brecciated target rocks, is remarkably slow. This may explain the seeming lack of 'reset' zircon in terrestrial impactites. Little is known about Pb* diffusion pathways associated with shock microstructures introduced during impact cratering and future diffusion studies may provide better constraints on this problem. Although little disturbance was identified in Pb* of target zircon, other low temperature geochronometers, zircon (U-Th)/He dating in this case, have been shown to be completely 'reset' and accurately date impacts. Zircon (U-Th)/He ages isolated from the target rock below ~850 m of well-dated impact melt at Morokweng yield ages consistent with the impact melt sheet and provide an alternative tool to dating events where such melts no longer exists. This geochronometer was also applied to impactites from Popigai, Russia and results in an age that is significantly younger than that reported in the literature and coincident with the Eocene-Oligocene boundary mass extinction event however the lack of any impact signatures at this boundary is puzzling. Constraining the impact flux to the Earth-Moon system not only allows for a better understanding into early Earth evolution and the formation of a habitable planet but also provides constraints on the modern impactor flux, important criteria for estimating the likelihood of future impact events. Zircon geochronology offers an exciting new tool by which to date impact events and has the potential to assist understanding of complex impactite samples from terrestrial craters and future sample return missions.
Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland
NASA Astrophysics Data System (ADS)
Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan
2015-06-01
The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.
Stewart, John H.
2007-01-01
INTRODUCTION The map was prepared to outline the basic information on where Neoproterozoic rocks are present in the World, and of the lithologic character of these rocks. The information provides a better understanding of major Neoproterozoic tectonic subdivisions useful in paleogeographic and plate tectonic reconstructions. The time frame of the map is within the middle and late Neoproterozoic from approximately 870 to 540 Ma and is after widespread Mesoproterozoic Grenville-age collisional events that are considered to have formed the hypothetical supercontinent of Rodinia. Much of the time represented by the map is interpreted to be during the fragmentation of Rodinia. The recognition of Neoproterozoic rocks is commonly difficult because of limited isotopic or paloeontological dating. Thus, some rocks shown on the map could be older or younger than the age indicated. However, at the scale of the map the the problem may be minor. Enough information seems to be available to indicate the general age of the rocks. Many of the successions contain diamictite deposits considered to be glaciogenic and dated as middle or late Neoproterozoic. These deposits thus show a rough correlation of middle and late Neoproterozoic rocks of the world. The map is a Richardson map projection, except for Antarctica which is a polar projection. The map was prepared from about 650 references, shown in the text linked below under 'Sources of Information', used to outline distribution patterns, determine rock types, and provide information on the regional and local geologic framework of the rocks. The focus of the references is on the geologic information needed to prepare the map. Other information, such as plate tectonic reconstructions or paleomagnetic studies is generally not included. The 'Sources of Information' lists references alphabetically for each of 14 regions. In brackets is a code for each area. These codes provide help in locating the specific regions in the references.
Dating the last Neanderthals in Central Iberia - New evidence from Abrigo del Molino, Segovia, Spain
NASA Astrophysics Data System (ADS)
Kehl, Martin; Álvarez-Alonso, David; de Andrés-Herrero, María; Díez-Herrero, Andrés; Klasen, Nicole; Rojo-Hernández, Julio; Weniger, Gerd-Christian
2017-04-01
The timing of Neanderthal disappearance in the Iberian Peninsula is a hotly debated subject in Palaeolithic archaeology. Several studies suggested a late survival in South and Central Iberia until about 32,000 year ago (ka), but were probably subject to significant age underestimation due to contamination of dating samples and/or lack of stratigraphic integrity. More recently, Late Neanderthal presence was dated to no later than 38 ka. In Central Iberia, few archaeological sites contain Mousterian levels attesting occupation by Neanderthals. The newly discovered rock shelter of Abrigo del Molino contains chronologically well-constraint Mousterian levels, which, according to radiocarbon dating on bone, place the latest Neanderthal occupation to around 42-44 ka and within Greenland interstadial 11. Accumulation of these levels took place after deposition of fluvial and slope sediments, dated to around 46 ± 3.5 ka using luminescence techniques, and probably correlating with Greenland stadial 13 including Heinrich event 5. Micromorphological evidence of banded sediment fabrics suggests frost dynamics pointing to cold climate conditions during that time in Central Spain. Abrigo del Molino thus provides a detailed and chronologically well-constrained record on Late Neanderthal presence and morphodynamic change in Central Iberia during times of millennial-scale climate changes. The site gives further evidence for an early rather than late disappearance of Neanderthals in Iberia.
NASA Astrophysics Data System (ADS)
Verma, A.; Bourke, M. C.; Osinski, G.; Viles, H. A.; Blanco, J. D. R.
2017-12-01
Impact cratering is an important geological process that affects all planetary bodies in our solar system. As rock breakdown plays an important role in the evolution of landforms and sediments, it is important to assess the role of inheritance in the subsequent breakdown of impacted rocks.The shock pressure of several gigapascals generated during the impact can exceed the effective strength of target lithology by three to four orders of magnitude and is responsible for melting, vaporisation, shock metamorphism, fracturing and fragmentation of rocks. Environmental conditions and heterogeneities in rock properties exert an important control in rock breakdown. Similar to other subaerial rocks, impacted rocks are affected by a range of rock breakdown processes. In order to better understand the role of inheritance of the impact on rock breakdown, a rock breakdown experiment was conducted in a simulated environmental cabinet under conditions similar to the arid conditions found at the Meteor Crater site. We sampled Moenkopi and Coconino Sandstone from the Meteor Crater impact site in Arizona. For comparison, samples were also collected at control sites close by that have similar rock formations but did not undergo impact. Several established techniques (X-ray CT, SEM, Equotip, SfM) were used to characterise the rock samples before the environmental cabinet experiments. Our laboratory analysis (XRD, SEM, optical microscopy, X-ray CT) on impacted rock samples from Meteor Crater, show that rock porosity and permeability changes due to compaction and fracturing during impact. There were no high-pressure polymorphs of quartz or glass detected in XRD analysis. We ran the experiments on a total of 28 petrophysically characterised 5x5x5 cm sample blocks of Coconino and Moenkopi Sandstone (24 impacted rocks and 4 non-impacted). The results will be presented at the AGU Fall meeting 2017.
NASA Astrophysics Data System (ADS)
Evenson, N. S.; Reiners, P. W.; Spencer, J. E.
2012-12-01
The Buckskin-Rawhide-Harcuvar detachment fault is one of the largest and youngest extensional detachment faults on Earth. It is also associated with abundant deposits of specular hematite with less common Pb, Zn, Ag, Au, and Mn mineralization. Mineralization is thought to be the result of movement of basin brines along the active detachment and subsidiary normal faults, with circulation driven by the heat of the uplifted footwall rocks of the Harcuvar metamorphic core complex. (U/Th)-He dating of specular hematite from the Buckskin-Rawhide detachment system, and Mn oxide minerals from syn-extensional clastic sedimentary rocks directly above the detachment fault, yield ages primarily between 16-10 Ma. These ages are consistent with low-temperature apatite (U/Th)-He and fission track cooling ages from the Rawhide Mountains and other ranges along the detachment. This suggests that Fe and Mn mineralization occurred during a period of rapid footwall exhumation that was underway by ~16 Ma. Aliquots from four hematite samples from the eastern Rawhide Mountains yielded weighted mean ages of 12.1 ± 0.24 Ma, 12.8 ± 0.15 Ma, 13.1 ± 0.17 Ma, and 13.8 ± 0.20 Ma (all uncertainties as 2-sigma standard error). These ages are similar to apatite (U/Th)-He and fission track ages of nearby samples, and display a SW to NE-younging trend when projected parallel to the extension direction, consistent with findings from previous low-T thermochronology studies. Three hematite samples from the western Rawhide and Buckskin Mountains yield more dispersed ages than samples in the eastern part of the core complex. Published apatite fission-track and (U/Th)-He dates from the Rawhide and Buckskin Mountains fall between 16-10 Ma. These ages are interpreted to represent the timing of final tectonic exhumation and fault-driven fluid circulation along the detachment. Average ages for one hematite sample fall in this age range, but one other is younger (9.5 Ma) and another is substantially older (35 Ma). The older age age may indicate the presence of excess He in fluid inclusions. The younger age could indicate that hydrothermal circulation outlasted exhumation by several million years, or other unknown complications to the system. (U/Th)-He analysis of two samples of manganese oxides from the Artillery Mountains yielded weighted mean ages of 13.8 ± 0.20 and 8.12 ± 0.13 Ma. Both ages are consistent with the age of host strata, and suggest that these dates record near-surface mineralization that occurred shortly after the syn-extension host sandstone and conglomerate were deposited. Our results suggest that hematite and manganese oxide (U/Th)-He systems can provide information about the timing of faulting and related fluid flow/mineralization events. With further development in this and other localities, these systems have the potential to provide valuable insights that until now have been difficult or impossible to obtain by other methods.
Using X-ray Fluorescence to Date Petroglyphs
NASA Astrophysics Data System (ADS)
McNeil, James
2009-10-01
Petroglyphs were created by ancient peoples of the Colorado Plateau who pecked figures of cultural or religious significance into the desert varnish, the ubiquitous dark patina covering the rock surfaces of the region. Manganese (Mn) is a significant elemental component of desert varnish that is often at trace levels in the substrate rock. As such, F. Lytle has shown that under certain conditions, it may be possible to estimate the age of petroglpyhs using Mn levels. In this work we use x-ray fluorescence to measure Mn levels in the desert varnish of petroglyphs and then use dated graffiti to attempt to calibrate the Mn level with age. Preliminary results from petroglyph panels in eastern Utah will be presented.
Effects of Contaminated Fluids on Complex Moduli in Porous Rocks; Lab and Field.
NASA Astrophysics Data System (ADS)
Spetzler, H.; Snieder, R.; Zhang, J.
2006-12-01
The interaction between fluids and porous rocks has been measured in the laboratory and in a controlled field experiment. In the laboratory we measured the static and dynamic effect of various contaminated fluids on the wettability, capillary pressure and other flow properties on geometrically simple surfaces. The characteristics of the menisci were quantified by measuring the forces required to deform and move them. Rate dependent surface tension and contact angles describe the hysteresis of the contact line motion. Finally we used geometrically complex surfaces, i.e. real rocks, and observed similar behavior. Then we did a field experiment where we could controllably irrigate a test volume and observe changes in deformation. At low deformation rates, where viscous deformation of the fluid is negligible, the dynamic hystereses of menisci deformation become the dominant mechanism for changes in complex moduli of partially fluid saturated rocks. In the laboratory for contaminated samples we observe attenuation increasing from below 1 Hz to 1 mHz, the limit of our patience in making these measurements. In the field we used microseisms and solid Earth tides as low frequency deformation sources. In the case of the tides we compare changes in observed tilt with theoretical site specific tidal tilts. Preliminary theoretical modeling suggests that indeed small changes in the moduli should be observable in changes in tilt response. In this paper we present our laboratory results and the field data and analysis to date.
Nuclear chemistry of returned lunar samples: Nuclide analysis by gamma-ray spectrometry
NASA Technical Reports Server (NTRS)
Kelley, G. D.; Eldridge, J. S.
1972-01-01
Concentrations of primordial radioelements and of cosmogenic radionuclides in crystalline rocks, breccias, and soils from the Ocean of Storms were determined. Concentrations of K, Th, U, Al-26, and Na-22 were determined for seven clastic or brecciated rocks, three sieved samples of fines, and one composite sample of sawdust from the cutting of a fragmental rock, all from samples obtained on the Apollo 14 mission. The K, Th, and U concentrations and cogmogenic radionuclide abundances in rocks and soils from Apollo 15 are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.
1981-02-01
A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less
69. Photocopy of General Arrangement of Engine Room. Basalt Rock ...
69. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (right side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
68. Photocopy of General Arrangement of Engine Room. Basalt Rock ...
68. Photocopy of General Arrangement of Engine Room. Basalt Rock Co. Inc., Shipbuilding Division, Napa, California. Coast Guard Headquarters Drawing No. 540-WAGL-4000-2 (left side), dated July 1943. Original drawing property of the U.S. Coast Guard. - U.S. Coast Guard Cutter WHITE HEATH, USGS Integrated Support Command Boston, 427 Commercial Street, Boston, Suffolk County, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
.... Visual inspection by Colorado State University, Laboratory of Public Archaeology, of the skeletal... Ute tribes. Also, the burial was located directly underneath a rock art panel that is consistent with the Early Ute Historic Style of rock art found in the region. Site 5RB699 dated Fremont and Ute...
NASA Astrophysics Data System (ADS)
Abbassene, F.; Bellon, H.; Chazot, G.; Ouabadi, A.
2013-12-01
The ''Petite Kabylie'' corresponds to the eastern Algerian coastal magmatic chain outcropping from Jijel to the west, up to the plain of Annaba to the east. In this area, the Collo-Bougaroun volcano-plutonic complex, of ca. 300 km2, comprises (1) granular rocks, mainly cordierite bearing peraluminous granites, (2) gabbros that occur at the northern and southern parts of Cap Bougaroun pluton where they are associated with ultramafic rocks and form the layered complex of Yadene?; (3) microgranular rocks, mainly microgranites, that outcrop at the eastern part of the Bougaroun pluton, in Collo basin and El Milia, microdiorites in Bouserdoum and some doleritic or microgabbroic metric veins at Cap Bougaroun and (4) of rhyolitic lava in Kef Cheraïa. The Bougaroun complex form a huge elliptical batholite along a major axis of 20km oriented ENE- WSW that intrudes serpentinized peridotites and kinzigites of the Bougaroun basement to the east. This granitic pluton gives time constraints as it induces deformation and contact metamorphism of the Oligo-Miocene Kabyle sediments of Collo-Oued Zhour basin in the south. These sediments reach the Upper Burdigalien which suggests that the lower limit of emplacement of this granite is coeval at least with this age. The majority of these magmatic rocks show subalkaline affinity with strong enrichment (0.13 to 4.13 %) in K2O during fractionation to calc-alkaline and high-K calc-alkaline affinity for the most differentiated rocks. The felsic rocks (granites, microgranites and rhyolites) are marked by a significant crustal contamination (ξNd = -10, I Sr = 0.720, δ18O = +12 ‰ [1], [2]) during their petrogenesis. However, the presence of basic rocks (gabbros and dolerites) that are depleted in K2O (0.13 to 0.44%) provides information on mantle composition and origin of magmas. The geochemical data on these rocks are discussed in the very particular geodynamic context of the northern Algerian margin.Twenty-four 40K-40Ar analyses were performed on whole rock and separated grain minerals (biotite, quartz and feldspar) from some granites. Grains were chosen in 150-300 μm separates. The obtained results from mineral separates from the granites and gabbros scatter between 21 and 16 Ma. These results appear older compared to field observations that fixe the age of pluton intrusion around 16-17 Ma. Several assumptions are made on the possible origin of the possible excess argon, particularly during crustal contamination of magmas and differentiation processes. Syn-late or post-magmatic hydrothermal alteration is also considered. The Chetaïbi-Cap Fer area shows mafic (gabbro, basalt), intermediate (diorite) and felsic rocks (microgranite and rhyolite) that were emplaced either as lava-flows, sills, dykes or laccoliths intruding Miocene sediments. 14 samples were dated by K/Ar whole rock method and in some cases biotite and quartz & feldspar separates. The results show three groups: between 16 and 15Ma, about 14Ma and about 13Ma. We consider that three distinct magmatic events are responsible for their emplacement.These results agree well with the overall geodynamic context of Algerian margin which was structured during three tangential tectonic events, dated respectively 17 Ma, 15 Ma and 9 Ma.
Chemical-abrasion SIMS dating of zircon from the Eocene Caetano caldera, Nevada
NASA Astrophysics Data System (ADS)
Colgan, J.; Watts, K. E.; John, D. A.; Henry, C. D.; Coble, M. A.; Vazquez, J. A.
2012-12-01
The Eocene Caetano caldera in northern Nevada formed during eruption of ~1100 km3 of crystal-rich rhyolite. Miocene extension cut the caldera into a set of fault blocks that expose minor pre-caldera volcanic rocks, two units of intracaldera Caetano Tuff up to 4 km thick, ash-flow tuff feeder dikes and ring-fracture intrusions, caldera collapse breccias, and post-collapse resurgent intrusions. Single-crystal 40Ar/39Ar sanidine dates on all parts of the caldera system overlap, yielding a 34.01 ± 0.05 Ma (n=17, Fish Canyon sanidine = 28.201 Ma) age for the eruption. 40Ar/39Ar dating also documents several preceding episodes of magmatism: 35.69 ± 0.06 Ma (sanidine, n =13) rhyolite dikes in the nearby Cortez gold district, 35.21 ± 0.18 Ma (plagioclase, n=1) andesite lava underlying Caetano Tuff, and a 38.90 ± 0.11 Ma (biotite, n=1), dacite dike in the northeastern caldera wall. Extensive U-Pb SHRIMP dating of zircon from both the Cortez dikes and all phases of the Caetano system suggests continuous magmatism from 40-34 Ma. However, all samples contain at least some—sometimes many—zircons with U-Pb ages younger than the 34.0 Ma argon age. To determine if anomalously young zircon ages are due to Pb-loss, we analyzed representative samples of the upper Caetano Tuff and the Redrock Canyon resurgent pluton with and without chemical abrasion to mitigate Pb-loss. Bulk zircon separates were annealed at 850°C for 48 hours, then chemically abraded with 10:1 HF/HNO3 vapor in a Parr bomb at 225°C for 8 hours, based on protocols outlined by Mattinson (2005). Both treated and untreated zircons from the same sample were mounted in epoxy and polished to their midsections, then imaged on the SEM using BSE and CL. The SHRIMP-RG at Stanford University was used to determine U-Pb ages and trace element concentrations in single spots for ~25 to 30 individual zircons per sample, using a round-robin procedure and two zircon age standards (R33 and 080) to monitor external precision. Analyses revealed distinctly different age populations for the abraded and untreated zircons. The chemically abraded populations yielded unimodal zircon age distributions with mean ages that overlap with the 40Ar/39Ar age. Untreated zircon populations yielded mean ages 0.9-1.5 Ma younger than the 40Ar/39Ar. In the untreated populations, 50-60% of zircon ages are younger than 34.0 Ma at 1σ, versus 15-20% in the chemically abraded populations. Comparison of trace element data from treated and untreated populations indicates that trace element concentrations are apparently unaffected by the chemical abrasion procedure. Further experiments are underway, but we tentatively conclude that chemical abrasion is effective for removing damaged Pb-loss portions of zircons while still enabling high spatial resolution U-Pb dating and trace element analysis. It appears to be a relatively fast and low-cost way to improve the accuracy of SIMS dating of large populations of zircon from Tertiary and older plutonic and volcanic rocks where Pb-loss is frequently an issue.
NASA Astrophysics Data System (ADS)
Platzman, E. S.; Lund, S.; Camoin, G.; Thouveny, N.
2009-12-01
In areas far away from active plate boundaries and previously glaciated regions, ecologically sensitive coral reefs provide an ideal laboratory for studying the timing and extent of deglaciation events as well as climatic change/variability at sub-millennial timescales. We have studied the Post Last-Glacial-Maximum (Post-LGM) coral reef terrace sediments recovered from the island of Tahiti on IODP Expedition 310. Samples for magnetic analysis were obtained from 632 meters of core from three reef tracts (Maraa, Tiarei, Faaa) surrounding the island (37 holes at 22 sites). The Post-LGM sediments are composed of >95% carbonate residing in a mixture of macroscopic framework corals, encrusting coralline algae, and bacterial microbialites (60% of the total core volume). Detailed paleomagnetic and rock magnetic measurements indicate that the microbialites carry a strong and stable natural magnetic remanence residing almost entirely in titanomagnetite derived from the Tahitian volcanic edifice. Within each tract, paleomagnetic results (inclination, relative paleointensity) were correlated to build a composite magnetic stratigraphy, which we could then compile with radiocarbon dates to develop an absolute chronostratigraphy. At the Maraa tract, for example, we use 54 radiocarbon dates to date our composite section to 7,500 to 13,500 cal. ybp. and demonstrate that the reef developed in a smooth and coherent manner over this interval. Overlaying the chronostratigraphy on measurements of the variation in magnetic properties including susceptibility, ARM, and IRM we can monitor changes in concentration, composition and grainsize of the influx of volcanogenic sediment over time. The ARM, IRM, and CHI intensities (normalized to sample weight) show a single strong peak between~9-10,000 years ago. We also observe a ~500-yr cyclicity in magnetic grain size and a clear increase in grain size associated with the Younger Dryas that we interpret to be related to rainfall variability. The rainfall variability, driven on both a global and regional scale, ultimately results from changes in western Pacific sea-surface temperatures (SST) that drive the island monsoon. Comparison with other proxy data will allow us to build up a detailed climate picture of this key postglacial period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, L T; Williams, I S; Woodhead, J A
1980-10-01
Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannotmore » account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.« less
NASA Astrophysics Data System (ADS)
Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.
2018-02-01
We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.
Brocker, M.; Klemd, R.; Cosca, M.; Brock, W.; Larionov, A.N.; Rodionov, N.
2009-01-01
The Orlica–Śnieżnik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370- to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c.370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country-rock gneiss from the location Nowa Wieś suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt-forming high-temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh-temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages (Anczkiewicz et al., 2007).
Preliminary report on radiocarbon dating of cryptoendolithic microorganisms
NASA Technical Reports Server (NTRS)
Bonani, G.; Friedmann, E. I.; Ocampo-Friedmann, R.; McKay, C. P.; Woelfli, W.
1988-01-01
The existence of microbial communities living inside desert rocks has been reported by FRIEDMANN et al. (1967, 1976), first in rocks collected from the hot and dry Negev desert and later in rocks in the frigid Ross Desert of Southern Victoria Land, Antarctica. The extremely inhospitable climatic conditions in both places has led to the suggestion that these organisms have very low rates of metabolism and may, in addition, be very old (FRIEDMANN 1982). Our preliminary measurements showed a 14C deficiency indicating a carbon age in the order of magnitude of 10(3) years.
The Polar Rock Repository: Rescuing Polar Collections for New Research
NASA Astrophysics Data System (ADS)
Grunow, A.
2016-12-01
Geological field expeditions in polar regions are logistically difficult, financially expensive and can have a significant environmental impact on pristine regions. The scarcity of outcrop in Antarctica (98% ice-covered) makes previously collected rock samples very valuable to the science community. NSF recognized the need for preserving rock, dredge, and terrestrial core samples from polar areas and created the Polar Rock Repository (PRR). The PRR collection allows for full and open access to both samples and metadata via the PRR website. In addition to the physical samples and their basic metadata, the PRR archives supporting materials from the collector, field notebooks, images of the samples, field maps, air photos, thin sections and any associated bibliography/DOI's. Many of these supporting materials are unique. More than 40,000 samples are available from the PRR for scientific analysis to researchers around the globe. Most of the samples cataloged at the PRR were collected more than 30 years ago, some more than 100 years ago. The rock samples and metadata are made available online through an advanced search engine for the PRR website. This allows scientists to "drill down" into search results using categories and look-up object fields similar to websites like Amazon. Results can be viewed in a table, downloaded as a spreadsheet, or plotted on an interactive map that supports display of satellite imagery and bathymetry layers. Samples can be requested by placing them in the `shopping cart'. These old sample collections have been repeatedly used by scientists from around the world. One data request involved locating coal deposits in Antarctica for a global compilation and another for looking at the redox state of batholithic rocks from the Antarctic Peninsula using magnetic susceptibilities of PRR rocks. Sample usage has also included non-traditional geologic studies, such as a search for monopoles in Cenozoic volcanic samples, and remote sensing/spectral imaging of Transantarctic Mountains rocks. Rescuing these collections from universities that no longer want to store the rocks or from researchers who no longer need the samples has resulted in many new publications, new proposals and enormous cost and environmental savings to the U.S. Antarctic science program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, B.M.
1978-02-01
A complex sequence of Oligocene-age volcanic and volcaniclastic rocks form a major volcanic center in the Picacho area of the southeasternmost Chocolate Mountains, Imperial County, California. Basal-volcanic rocks consist of lava flows and flow breccia of trachybasalt, pyroxene rhyodacite, and pyroxene dacite (32 My old). These volcanic rocks locally overlie fanglomerate and rest unconformably on pre-Cenozoic basement rocks. South and southeast of a prominent arcuate fault zone in the central part of the area, the rhyolite ignimbrite (26 My old) forms a major ash-flow sheet. In the southwestern part of the Picacho area the rhyolite ignimbrite interfingers with and ismore » overlain by dacite flows and laharic breccia. The rhyolite ignimbrite and the dacite of Picacho Peak are overlapped by lava flows and breccia of pyroxene andesite (25 My old) that locally rest on pre-Cenozoic basement rocks. The volcanic rocks of the Picacho area form a slightly bimodal volcanic suite consisting chiefly of silicic volcanic rocks with subordinate andesite. Late Miocene augite-olivine basalt is most similar in major-element abundances to transitional alkali-olivine basalt of the Basin and Range province. Normal separation faults in the Picacho area trend northwest and north parallel to major linear mountain ranges in the region. The areal distribution of the 26-My-old rhyolite ignimbrite and the local presence of megabreccia and fanglomerate flanking probable paleohighs suggest that the ignimbrite was erupted over irregular topography controlled by northwest- and north-trending probable basin-range faults. These relations date the inception of faulting in southeasternmost California at pre-26 and probably pre-32 My ago. A transition of basaltic volcanism in the area is dated at 13 My ago. 9 figures, 2 tables.« less
Wang, Qi; Wang, Rongrong; He, Linyan; Sheng, Xiafang
2017-05-01
Bacteria play important roles in rock weathering, elemental cycling, and soil formation. However, little is known about the weathering potential and population of bacteria inhabiting surfaces of rocks. In this study, we isolated bacteria from the top, middle, and bottom rock samples along a hillside of a rock (trachyte) mountain as well as adjacent soils and characterized rock-weathering behaviors and populations of the bacteria. Per gram of rock or surface soil, 10 6 -10 7 colony forming units were obtained and total 192 bacteria were isolated. Laboratory rock dissolution experiments indicated that the proportions of the highly effective Fe (ranging from 67 to 92 %), Al (ranging from 40 to 48 %), and Cu (ranging from 54 to 81 %) solubilizers were significantly higher in the top rock and soil samples, while the proportion of the highly effective Si (56 %) solubilizers was significantly higher in the middle rock samples. Furthermore, 78, 96, and 6 % of bacteria from the top rocks, soils, and middle rocks, respectively, significantly acidified the culture medium (pH < 4.0) in the rock dissolution process. Most rock-weathering bacteria (79 %) from the rocks were different to those from the soils and most of them (species level) have not been previously reported. Furthermore, location-specific rock-weathering bacterial populations were found and Bacillus species were the most (66 %) frequently isolated rock-weathering bacteria in the rocks based on cultivation methods. Notably, the top rocks and soils had the highest and lowest diversity of rock-weathering bacterial populations, respectively. The results suggested location-related differences in element (Si, Al, Fe, and Cu) releasing effectiveness and communities of rock-weathering bacteria along the hillside of the rock mountain.
Lü, Wen-Chao; Yang, Zhi-Jun; Zhou, Yong-Zhang; Li, Hong-Zhong; Zeng, Xiang-Qing; Chen, Qing; Liang, Jin; Zeng, Chang-Yu
2013-05-01
The XRD, FTIR and Raman spectrum were employed to study the characters of quartz from three types of rock samples, which are mineralized rock sample, near ore body rock sample and far away from ore body rock sample in Heliao lead-zinc polymetallic ore district. The research shows that the quartz in the mineralized rock and far away from ore body rock is pure, while the quartz in near ore body rock contains a small amount of impurities. But such small amounts of impurities did not cause apparent change in the quartz lattice parameters. From far away from ore body rock-->near ore body rock-->mineralized rock, the crystallinity and order degree of quartz are higher and higher. And the quartz in the mineralized rock has a trend to change into low symmetry quartz. It's a unique to mineralized rock that the quartz's absorption peak at 1 050 cm(-1) was split into two strongest ones. It can be used as the signs of whether exists mineralization. The cause for the quartz microstructure changes may be related to the activities of late mineralized hydrothermal fluids. Late hydrothermal influence was very weak to the quartz far away from ore body rock. And through the impact of the multi-stage hydrothermal effect, the quartz in mineralized rock may be purified by recrystallization and structural adjustment. However the quartz in near ore body rock didn't have enough hydrothermal influence, so it's not pure. Genealogy research technology is a useful technique for in-depth exploration of study area mineralization process and metallogenic regularity.
Rong, Guan; Liu, Guang; Zhou, Chuang-bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677
Rong, Guan; Liu, Guang; Hou, Di; Zhou, Chuang-Bing
2013-01-01
Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied.
Paleomagnetic Analysis Using SQUID Microscopy
NASA Technical Reports Server (NTRS)
Weiss, Benjamin P.; Lima, Eduardo A.; Fong, Luis E.; Baudenbacher, Franz J.
2007-01-01
Superconducting quantum interference device (SQUID) microscopes are a new generation of instruments that map magnetic fields with unprecedented spatial resolution and moment sensitivity. Unlike standard rock magnetometers, SQUID microscopes map magnetic fields rather than measuring magnetic moments such that the sample magnetization pattern must be retrieved from source model fits to the measured field data. In this paper, we presented the first direct comparison between paleomagnetic analyses on natural samples using joint measurements from SQUID microscopy and moment magnetometry. We demonstrated that in combination with apriori geologic and petrographic data, SQUID microscopy can accurately characterize the magnetization of lunar glass spherules and Hawaiian basalt. The bulk moment magnitude and direction of these samples inferred from inversions of SQUID microscopy data match direct measurements on the same samples using moment magnetometry. In addition, these inversions provide unique constraints on the magnetization distribution within the sample. These measurements are among the most sensitive and highest resolution quantitative paleomagnetic studies of natural remanent magnetization to date. We expect that this technique will be able to extend many other standard paleomagnetic techniques to previously inaccessible microscale samples.
NASA Astrophysics Data System (ADS)
Lin, W.; Yang, X.; Tadai, O.; Zeng, X.; Yeh, E. C.; Yu, C.; Hatakeda, K.; Xu, H.; Xu, Z.
2016-12-01
As a result of the earthquake rupture propagation, stress on the earthquake fault and in the hanging wall and in the footwall coseismically drops. Based on the thermo-elasticity theory, the temperature of rocks may change associated with coseismic stress change at the same time as their elastic deformation. This coseismic temperature change is one of the physics of earthquake rupture propagation, however has not been noted and expressly addressed before. To understand this temperature issue, we conducted laboratory experiments to quantitatively investigate temperatures response of rocks to rapid stress change of various typical rocks. Consequently, we developed a hydrostatic compression experimental equipment for rock samples with a high resolution temperature measuring system. This enable us to rapidly load and/or unload the confining pressure. As experimental rock samples, we collected 15 representative rocks from various scientific drilling projects and outcrops of earthquake faults, and quarries in the world. The rock types include sandstone, siltstone, limestone, granite, basalt, tuff etc. Based on the classical thermo-elastic theory, a conventional relationship between the temperature change (dT) of rock samples and the confining pressure change (dP) in the hydrostatic compression system under adiabatic condition can be expressed as a linear function. Therefore, we can measure the adiabatic pressure derivative of temperature (dT/dP) directly by monitoring changes of rock sample temperature and confining pressure during the rapidly loading and unloading processes. As preliminary results of the experiments, the data of 15 rock samples showed that i) the adiabatic pressure derivative of temperature (dT/dP) of most rocks are about 1.5 6.2 mK/MPa; ii) the dT/dP of sedimentary rocks is larger than igneous and metamorphic rocks; iii) a good linear correlation between dT/dP and the rock's bulk modulus was recognized.
Cooperative investigation of precision and accuracy: In chemical analysis of silicate rocks
Schlecht, W.G.
1951-01-01
This is the preliminary report of the first extensive program ever organized to study the analysis of igneous rocks, a study sponsored by the United States Geological Survey, the Massachusetts Institute of Technology, and the Geophysical Laboratory of the Carnegie Institution of Washington. Large samples of two typical igneous rocks, a granite and a diabase, were carefully prepared and divided. Small samples (about 70 grams) of each were sent to 25 rock-analysis laboratories throughout the world; analyses of one or both samples were reported by 34 analysts in these laboratories. The results, which showed rather large discrepancies, are presented in histograms. The great discordance in results reflects the present unsatisfactory state of rock analysis. It is hoped that the ultimate establishment of standard samples and procedures will contribute to the improvement of quality of analyses. The two rock samples have also been thoroughly studied spectrographically and petrographically. Detailed reports of all the studies will be published.
Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldeman, D.L.; Amy, P.S.; White, D.C.
1994-08-01
The abundance of viable microorganisms recovered from deep subsurface volcanic rock samples increased after rock perturbation and storage for 1 week at 4{degrees}C, while the diversity and evenness of recoverable heterotrophic bacterial communities generally decreased. One sample of each morphologically distinct colony type, recovered both before and after storage of U12n rock samples, was purified and characterized by fatty acid methyl ester (MIDI) and API rapid NFT strips. As determined by MIDI cluster analysis, the composition of the recoverable microbial communities changed with storage of rock samples; some groups of organisms were recovered only before, only after, or at bothmore » sample times. In general, the isolates recovered only after storage of rock samples had a greater ability to utilize the carbohydrates included in API test strips and had faster generation times than isolates recovered only on initial plating. The nutritional versatility and faster growth rates of organisms recovered in higher proportions after sample storage provide evidence that some microbial community changes may be due to the proliferation of a few bacterial types. However, because some new genera are recovered only after storage, the possibility also exists that dormant bacterial types are resuscitated during sample perturbation and storage. 30 refs., 1 fig., 5 tabs.« less
Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts
Coleman, James
2016-01-01
The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.
Application of K-Ar Dating to the Chronology of Young Volcanic Centers
NASA Astrophysics Data System (ADS)
Lanphere, M. A.
2003-12-01
K-Ar dating and a derivative technique, 40Ar/39Ar dating, are methods of high-precision chronology applicable to young volcanic centers. Cascade volcanoes studied in detail by several USGS volcanologists, Duane Champion paleomagetist, and me include Mt. Baker, WA; Mt. Rainier, WA; Mt. Adams, WA; Mt. Hood, OR; Crater Lake, OR; and Medicine Lake, CA. For Mt. Adams using detailed geologic mapping by Hildreth and Fierstein and 74 K-Ar ages for 63 mapped units, Hildreth and Lanphere established a detailed chronology for the stratovolcano. Good agreement has been achieved for K-Ar ages and 40Ar/39Ar ages of rocks from Mt. Adams as young as 36 ka. A similar detailed chronology has been established for other Cascade volcanoes using andesites, in particular. These chronologies often take 10 years or more to develop. Major advantages of the 40Ar/39Ar technique are the ability to work with small sample sizes and the possibility to push the technique to very young ages. The Campanian Ignimbrite erupted from the Campi Flegrei crater near Naples, Italy is an example of the use of small samples. Nine incremental-heating ages were determined on samples of sanidine ranging in size from 47 mg to 67 mg. These samples yielded ages for the Campanian Ignimbrite ranging from 37.1 +/- 0.75 ka to 39.5 +/- 0.62 ka and averaging 38.1 +/- 0.8 ka. Other workers have proposed 40Ar/39Ar ages for the Campanian Ignimbrite of 37.1 +/- 0.4 ka and 39.3 +/- 0.1 ka. An example of the use of 40Ar/39Ar dating of very young samples is the Christian Era (CE) age of the Vesuvius eruption of year 79. Eight packets of sanidine weighing 213-296 mg from two localities, Casti Amanti in Pompeii and Villa Poppea in nearby Oplontis, yielded a weighted-mean incremental-heating age of 1924 +/- 66 years. The known age for the CE 79 eruption of Vesuvius is 1924 years. Earlier studies of Vesuvius by other workers yielded an 40Ar/39Ar age for the Villa Poppea locality of 1922 +/- 72 years.
Cosmogenic nuclides in football-sized rocks.
NASA Technical Reports Server (NTRS)
Wahlen, M.; Honda, M.; Imamura, M.; Fruchter, J. S.; Finkel, R. C.; Kohl, C. P.; Arnold, J. R.; Reedy, R. C.
1972-01-01
The activity of long- and short-lived isotopes in a series of samples from a vertical column through the center of rock 14321 was measured. Rock 14321 is a 9 kg fragmental rock whose orientation was photographically documented on the lunar surface. Also investigated was a sample from the lower portion of rock 14310, where, in order to study target effects, two different density fractions (mineral separates) were analyzed. A few nuclides in a sample from the comprehensive fines 14259 were measured. This material has been collected largely from the top centimeter of the lunar soil. The study of the deep samples of 14321 and 14310 provided values for the activity of isotopes at points where only effects produced by galactic cosmic rays are significant.
Rock sample brought to earth from the Apollo 12 lunar landing mission
1969-12-04
S69-60909 (November 1969) --- A close-up view of lunar sample 12,052 under observation in the Manned Spacecraft Center's Lunar Receiving Laboratory (LRL). Astronauts Charles Conrad Jr., and Alan L. Bean collected several rocks and samples of finer lunar matter during their Apollo 12 lunar landing mission extravehicular activity (EVA). This particular sample was picked up during the second space walk (EVA) on Nov. 20, 1969. It is a typically fine-grained crystalline rock with a concentration of holes on the left part of the exposed side. These holes are called vesicles and have been identified as gas bubbles formed during the crystallization of the rock. Several glass-lined pits can be seen on the surface of the rock.
NASA Astrophysics Data System (ADS)
Wang, Meng; Zhang, Jinjiang; Zhang, Bo; Liu, Kai; Chen, Youxin; Zheng, Yanrong
2018-03-01
The closure of the North Tianshan Ocean between the Junggar Terrane and the Yili Block is a longtime debated issue in literature, because of the different understanding of the Carboniferous volcanic rocks in the northern margin of the Yili Block. This study presents new geochronological and whole-rock geochemical data for the granitic rocks from the Borohoro pluton to provide constraints on the tectonic regime for the northern West Tianshan during the Carboniferous. LA-ICP-MS U-Pb dating results reveal two magmatic phases for the Borohoro pluton. The former magmatic activity in the Early Carboniferous formed the fine-grained granodiorite (332 Ma). The later magmatic activity occurred during the Late Carboniferous (305-300 Ma), forming a diversity of granitic rocks, involving quartz diorite, granodiorite and granite. Geochemical and mineralogical studies reveal that the studied granitic rocks from the Borohoro pluton all belong to metaluminous to weakly peraluminous, calc-alkaline I-type granites. They are characterized by enrichment in LILEs relative to HFSEs, and depletion of Nb, Ti and P, typical of continental arc-type granites. The intermediate SiO2, high Al2O3, and relatively low Fe2O3T, MgO and TiO2 contents reflect that these granitic rocks are mainly crust-derived. But the high Mg# values for most samples and the occurrence of microgranular mafic enclaves indicate that their magma sources were mixed by mantle-derived components. Especially, the Late Carboniferous rocks define an elegant mixing trend in both the Rb-Rb/V and the 1/V-Rb/V diagrams, consistent with mixing between magmas from subcontinental lithospheric mantle and mafic lower crust. Taking into consideration of the facts that all the Devonian to Carboniferous granitoids belong to calc-alkaline I-type granites, and granitoids of A-type didn't appear until the Early Permian, we suggest that the subduction of the North Tianshan Ocean continued to the Late Carboniferous, generating the granitic rocks of the Borohoro pluton.
Rockballer Sample Acquisition Tool
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Cook, Brant T.
2013-01-01
It would be desirable to acquire rock and/or ice samples that extend below the surface of the parent rock or ice in extraterrestrial environments such as the Moon, Mars, comets, and asteroids. Such samples would allow measurements to be made further back into the geologic history of the rock, providing critical insight into the history of the local environment and the solar system. Such samples could also be necessary for sample return mission architectures that would acquire samples from extraterrestrial environments for return to Earth for more detailed scientific investigation.
NASA Astrophysics Data System (ADS)
Kunakkuzin, Evgeniy; Bayanova, Tamara; Serov, Pavel; Borisenko, Elena
2015-04-01
Monchetundra massif is located in the central part of the Kola Peninsula (Russia) and it is the south-eastern part of the Main Ridge Intrusion. Monchetundra massif together with well-known layered mafic-ultramafic PGE-bearing intrusions in the Fennoscandian shield such as the Fedorovo-Pansky complex, the mt. Generalskaya, the Monchepluton is of interest as a target for the PGE prospecting (Mitrofanov et al. 2006; Nerovich et al., 2009; Grokhovskaya et al., 2003). According to some previously researchers (Nazimova, Rayan, 2008, Nerovich et al., 2009, Layered intrusions…p.1, 2004) rocks of the Monchetundra massif is subdivided into two to five syngenetic zones. Hence the last isotope-geochronological and isotope-geochemical data revealed that the massif includes at least four groups of mafic rocks distinguished by formation ages (Bayanova et al., 2010). The aim of this work is to present Sm-Nd dating results of trachytoid gabbronorites, which are the second mafic rocks group in the Monchetundra massif. The Sm-Nd investigations for these rocks were carried out for the first time. The second group of mafic rocks comprises of medium-grained and coarse-grained mesocratic gabbronorites of trachytoid texture, with they characterized by well-preserved primary magmatic minerals and gabbro-ophitic texture. The U-Pb ages on single zircon-baddeleyite for these rocks recently obtained (2505 ± 6 Ma, 2501 ± 8 Ma, 2504.4±2.7 Ma and 2507.5±7.7 Ma (Layered intrusions…p.1., 2004, Borisenko et al., 2013)). Two samples of trachytoid gabbronorites were selected to study these rocks by Sm-Nd isotopic method. Mineral isochrons plotted from plagioclase, ortho- and clinopyroxene and whole-rock minerals gave ages of 2496±27 (MSWD = 0.9; ɛNd = -1.6±0.5) and 2492±55 Ma (MSWD = 0.5; ɛNd = -1.7±0.5). The new Sm-Nd ages obtained are close to the U-Pb data on zircons and baddeleyites for this rocks group and consider as oridin of second mafic rocks group. All investigations are devoted to memory of academician RAS, professor F. Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogeny of ore deposits. The researches are conducted with the financial support of RFBR 13-05-00493, OFI-M 13-05-12055, IGCP-SIDA 599.
Dusel-Bacon, Cynthia; Aleinikoff, John N.; Premo, Wayne R.; Paradis, Suzanne; Lohr-Schmidt, Ilana; Gough, Larry P.; Day, Warren C.
2007-01-01
This paper summarizes the results of field and laboratory investigations, including whole-rock geochemistry and radiogenic isotopes, of outcrop and drill core samples from volcanogenic massive sulfide (VMS) deposits and associated metaigneous rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range (see fig. 1 of Editors’ Preface and Overview). U-Pb zircon igneous crystallization ages from felsic rocks indicate a prolonged period of Late Devonian to Early Mississippian (373±3 to 357±4 million years before present, or Ma) magmatism. This magmatism occurred in a basinal setting along the ancient Pacific margin of North America. The siliceous and carbonaceous compositions of metasedimentary rocks, Precambrian model ages based on U-Pb dating of zircon and neodymium ages, and for some units, radiogenic neodymium isotopic compositions and whole-rock trace-element ratios similar to those of continental crust are evidence for this setting. Red Mountain (also known as Dry Creek) and WTF, two of the largest VMS deposits, are hosted in peralkaline metarhyolite of the Mystic Creek Member of the Totatlanika Schist. The Mystic Creek Member is distinctive in having high concentrations of high-field-strength elements (HFSE) and rare-earth elements (REE), indicative of formation in a within-plate (extensional) setting. Mystic Creek metarhyolite is associated with alkalic, within-plate basalt of the Chute Creek Member; neodymium isotopic data indicate an enriched mantle component for both members of this bimodal (rhyolite-basalt) suite. Anderson Mountain, the other significant VMS deposit, is hosted by the Wood River assemblage. Metaigneous rocks in the Wood River assemblage span a wide compositional range, including andesitic rocks, which are characteristic of arc volcanism. Our data suggest that the Mystic Creek Member likely formed in an extensional, back-arc basin that was associated with an outboard continental-margin volcanic arc that included rocks of the Wood River assemblage. We suggest that elevated HFSE and REE trace-element contents of metavolcanic rocks, whose major-element composition may have been altered, are an important prospecting tool for rocks of VMS deposit potential in east-central Alaska.
CRE dating on the scarps of large landslides affecting the Belledonne massif ( French Alps)
NASA Astrophysics Data System (ADS)
Lebrouc, V.; Baillet, L.; Schwartz, S.; Jongmans, D.; Gamond, J. F.; Bourles, D.; Le Roux, O.; Carcaillet, J.; Braucher, R.
2012-04-01
The southwestern edge of the Belledonne Massif (French Alps) consists of micaschists unconformably covered with Mesozoic sediments and Quaternary deposits. The morphology corresponds to a glacial plateau (Mont Sec plateau) bordered by steep slopes (around 40°), where moraines and peat bog subsist. The massif is incised by the East-West trending Romanche valley that was shaped by several cycles of quaternary glaciations and deglaciations. Slopes are affected by several active or past large scale rock mass instabilities. Cosmic Ray Exposure (CRE) dating was applied on the head scarps of three large landslides, one of which being the active Séchilienne landslide whose headscarp was already dated by Leroux et al. [2009]. Dating results suggest a concomitant initiation of these instabilities at about 7 ± 2 10Be ka, thousands years after the total downwastage of the valley. A different kinematic behaviour was however observed on two contiguous landslides for which continuous exposure profiles were obtained. On the Séchilienne landslide, 23 samples were collected from internal and lateral scarps, as well as on polished bedrock surfaces, with the aim of dating the internal kinematics of the landslide. Preliminary dating results obtained on polished surfaces and near the top of the scarps show unexpected low 10Be concentrations, suggesting the existence of thin moraine or peat bog deposits masking the bedrock, which have been subsequently eroded. The minimum thickness of these deposits was estimated assuming a constant denudation rate over time. Exposure date profiles show that the studied lateral and internal scarps were initiated at the same period as the Sechilienne headscarp. An increase in the exposure rate was also observed between 2 and 1 ka, in agreement with that evidenced along the headscarp. Forty other samples have been collected in the landslide to corroborate these results. Reference Le Roux, O., S. Schwartz , J.-F. Gamond, D. Jongmans, D. Bourles, R. Braucher, W. Mahaney, J. Carcaillet, and L. Leanni (2009). CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics. Earth and Planetary Science Letters, Vol. 280, 236-245.
Pb-Pb systematics of lunar rocks: differentiation, magmatic and impact history of the Moon
NASA Astrophysics Data System (ADS)
Nemchin, A.; Martin, W.; Norman, M. D.; Snape, J.; Bellucci, J. J.; Grange, M.
2016-12-01
Two independent decay chains in U-Pb system allow the determination of both ages and initial isotope compositions by analyzing only Pb in the samples. A typical Pb analysis represents a mixture of radiogenic Pb produced from the in situ U decay, initial Pb and laboratory contamination. Utilizing the ability of ion probes to analyse 10-30 micrometer-sized spots in the samples while avoiding fractures and other imperfections that commonly host contamination, permits extraction of pure lunar Pb compositions from the three component mixtures. This results in both accurate and precise ages of the rocks and their initial compositions. Lunar Mare and KREEP basalts postdating the major lunar bombardment are likely to represent such three component mixtures and are therefore appropriate for this approach, also giving an opportunity to investigate Pb evolution in their sources. A source evolution model constrained using available data indicates a major differentiation on the Moon at 4376±18 Ma and very radiogenic lunar mantle at this time. This age is likely to reflect the mean time of KREEP formation during the last stage of Magma Ocean differentiation. Rocks older than about 3.9 Ga are more complex than basalts and may include an extra Pb component, if modified by impacts. An example of this is presented by Pb-Pb data obtained for the anorthosite sample 62236, where the age of the rock is determined as 4367±29 Ma from analyses of CPx lamellae inside the large Opx grains: however large plagioclase crystals do not contain Pb in quantities sufficient for ion probe analysis, precluding determination of the initial Pb composition of the sample. Most of Pb is found in the brecciated parts of the anorthosite between the large grains. The composition of this Pb is similar to the initial Pb of 3909±17 Ma Apollo 16 breccia 66095, suggesting that is was injected into the anorthosite during a 3.9 Ga impact. Similar ca 3.9 Ga ages were determined for 1-2 millimeter size feldspathic clasts from several Apollo 14 breccias, where they are likely to date Pb homogenization during the Imbrium impact. Combined with U-Pb data obtained previously using U-bearing minerals such as zircon and phosphates, the new Pb-Pb data sets open an opportunity for a detailed chronological and isotopic investigation of lunar differentiation, magmatic evolution and impact history.
Mei, Leung; Fletcher, J.D.; Rait, Norma; Lesure, F.G.
1978-01-01
Semiquantitative emission spectrographic analyses for 64 elements on 95 stream sediment and 122 rock samples from Mountain Lake Wilderness Study Area, Giles and Craig Counties, Virginia and Monroe County, West Virginia, are reported here in detail. Locations for all samples are in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of these iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc than in average sandstone, but they do not suggest the presence of economic deposits of these metals. A few samples of Tuscarora Quartzite contain moderate amounts of manganese. These are from a submarginal manganese resource. No other obviously anomalous-values related to mineralized rock are present in the data.
NASA Astrophysics Data System (ADS)
KIM, T.; KIM, Y.; Lee, I.; Lee, J.; Woo, J.
2015-12-01
The study areas, Lichen Hills and Outback Nunatak are located in the Northern Victoria Land which is close to Pacific Ocean side of Transantarctic Mountain (TAM), Antarctica. According to the study of Zeller and Dreschoff (1990), the radioactivity values of Lichen hills and Frontier Mt. area in the Victoria Land were very high. To identify the geochemical characteristics of granitic rocks in these areas, 13 samples of Lichen Hills rocks and 4 samples of Outback Nunatak rocks are analyzed. For mineralogical study, samples were observed in macroscale as well as microscale including microscope electron probe analysis. Rock samples of Lichen Hills, Outback Nunatak are mainly leucogranite and granitic pegmatite. These rock samples are composed of quartz, k-feldspar, plagioclase, muscovite, garnet, tourmaline like granite. In SEM-EDS analysis, the observed light colored minerals show relatively high Th, U, Dy, Ce, Nb concentration. This suggests that rock samples may contain minerals such as fergusonite, monazite, thorite, allanite, karnasurtite which are considered to be REE-bearing minerals. Samples of related rocks have been analyzed in terms of major, trace and rare earth element (REE) concentrations using X-ray fluorescence (XRF) spectrometer and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). As concentration of SiO2 increase, Al2O3, TiO2, Fe2O3, MgO, P2O5 concentration decrease and Na2O, K2O, MnO concentration increase. Analyzed trace elements and REE are normalized using CI Chondrite, Primitive mantle. The normalized data show that LREE are enriched compared to HREE. The distinct negative anomalies of Eu, Sr are observed, indicating that rock-forming melts are fairly processed state of fractional crystallization. It means that Th, U, Nb, Ta are much enriched in the melts.
NASA Astrophysics Data System (ADS)
Santiago Pullarello, José; Derron, Marc-Henri; Penna, Ivanna; Leiva, Alicia; Jaboyadoff, Michel
2017-04-01
Active mountain fronts are subject to large scale slope collapses which have the capacity to run long distances on piedmont areas. Along time, fluvial activity and other gravitatory processes can intensively erode and mask primary features related to the collapses. Therefore, to reconstruct the history of their occurrence, further analyses are needed, e.g. sedimentologic analyses. This work focuses on the occurrence of large rock avalanches in the Vinchina region, La Rioja (28°43'27.81'' S / 68°00'25.42'' W) on the western side of the Famatina range(Argentina). Here, photointerpretation of high resolution satellite images (Google Earth) allowed us to identify two rock avalanches, main scarps developed at 2575 and 2750 m a.s.l. . There are no absolute ages for these deposits, however, comparing their preservation degree with those dated further north (in similar climatic and landscape dynamics contexts [i]), we can suggest these rock avalanches took place during the Pleistocene. We carried out a fieldwork survey in this remote area, including classical landslide mapping, structural analysis, deposits characterization and sampling. The deposits reach the valley bottom (at around 1700 m a.s.l.) with runouts about 5 and 5.3 km long. In one of the cases, the morphology of the deposit is well preserved, allowing to reconstruct accurately its extension. However, in the second case, the deposits are strongly eroded by courses draining the mountain front, therefore further analyses should be done to reconstruct its extension. In addition to morphologic interpretations, a multiscale grain-size analysis was done to differentiate rock avalanches from other hillslope deposits: (1) 3D surface models of surface plots (5x5m) have been built by SfM photogrammetry; 2) classical sieving and 3) laser grain-size analysis of deposits. Samples were collected on different parts of the slope, but also along cross sections through the avalanche deposit. This deposits characterization will be combined with results from mapping and image analysis in order to provide a first description of the sequence and extension of events related to the evolution of this mountain front. [i] Hermanns et Strecker, Structural and lithological controls on large Quaternary rock avalanches (sturzstroms) in arid northwestern Argentina, Geological Society of America Bulletin 1999.
Optical dating of the anastasia formation, northeastern florida, USA
Burdette, K.E.; Rink, J.W.; Means, G.H.; Portell, R.W.
2009-01-01
The single-aliquot regenerative-dose (SAR) procedure was used to obtain optically stimulated luminescence ages to determine the depositional age of the upper part of the Anastasia Formation. This unit, which crops out along the east coast of Florida, is one of the most culturally and economically important coquina deposits in North America. Rock samples from the upper three meters of exposure at three locations were collected. Additional materials for paleontological analysis were also taken. Based on our samples, the luminescence ages of the Anastasia Formation are well within marine isotope stage 5, which is supported by the results of Osmond et al. (1970) based on U/Th ages. The associated fossil assemblages support our luminescence age determinations. Associated fossils fall within the Rancholabrean North American Land Mammal Age (300 10 ka) and the fossil mollusk assemblage consists entirely of modern species.
NASA Astrophysics Data System (ADS)
Kern, A. N.; Kulakov, E.; Smirnov, A. V.; Diehl, J. F.; Chamberlain, K.
2012-12-01
The ≈1.1 Ga alkaline intrusive Coldwell Complex (Ontario, Canada) is a part of the Mid-Continental Rift system (MCRS) and is thought to be emplaced in three distinct magmatic episodes (e.g., Currie, Geological Survey of Canada Bulletin, 287, 43pp, 1980). The complex is one of two MCRS rock suites that presumably record multiple geomagnetic reversals. In a prior paleomagnetic study, Lewchuk and Symons (Tectonophysics, 184, 73-86, 1990) reported that rocks representing episodes I (the earliest) and III are reversely (R) magnetized but their mean directions are significantly different. Rocks of the western side of the complex representing episode II yielded normal (N) magnetizations with the mean direction passing a reversal test with respect to both R directions. Here we report new paleomagnetic results from the Coldwell Complex based on a more extensive dataset and modern experimental techniques. We have collected core samples from 42 sites along the Trans-Canadian Highway 17 (six to ten cores per site), including all the sites previously studied by Lewchuk and Symons (1990). Additionally, we have sampled 11 sites off the highway, north of Marathon and near Middleton. Characteristic remanent magnetizations (ChRM) have been isolated by thermal and alternating field demagnetization, and the site-mean paleomagnetic directions have been categorized according to the existing three episode model of magmatism. In contrast to Lewchuk and Symons (1990), we have found that the mean directions for episodes I (D=114.4°, I=-67.1°, α95=4.9°, K=65.7, N=13) and III (D=108.5°, I=-62.9°, α95=5.2°, K=51.4, N=16) are statistically indistinguishable at 95 percent confidence using the reversal test (classification B) of McFadden (GJI, 103, 725-729, 1990). The normal polarity mean direction of episode II (D=299.7°, I=61.8°, α95=3.8°, K=162.1, N=9) is antipodal to the directions of episodes I and III taken separately (classification B), as well as to the mean direction calculated from all reversely magnetized sites combined (classification A). These results may indicate that the reversal asymmetry seen in some MCRS rocks is not a result of an unusual long-standing non-dipole field. Our observations suggest that the three-episode emplacement model may need to be reconsidered. For example, the rocks of episodes I and III may represent a single magmatic event, or two magmatic pulses separated by a very brief time interval. The robustness of our interpretations, however, ultimately depends on precise radiometric dating of the Coldwell Complex rocks representing different magmatic episodes. Along with our paleomagnetic study, high-precision U-Pb zircon dating is in progress, with anticipated precisions of ±0.02%.
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to... Methods Used and Adopted by the Association of Fertilizer and Phosphate Chemists (AFPC). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock...
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to..., Bartow, Florida 33831, (863) 534-9755, http://afpc.net, [email protected]). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock or obtain...
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to..., Bartow, Florida 33831, (863) 534-9755, http://afpc.net, [email protected]). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock or obtain...
40 CFR 98.264 - Monitoring and QA/QC requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements. (a) You must obtain a monthly grab sample of phosphate rock directly from the rock being fed to..., Bartow, Florida 33831, (863) 534-9755, http://afpc.net, [email protected]). If phosphate rock is obtained from more than one origin in a month, you must obtain a sample from each origin of rock or obtain...
LUNAR SAMPLES - APOLLO 11 - MSC
1969-07-28
S69-45025 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory at the Manned Spacecraft Center. The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity on July 20, 1969.
Dynamics of erosion in a compressional mountain range revealed by 10Be paleoerosion rates
NASA Astrophysics Data System (ADS)
Val, P.; Hoke, G. D.; Fosdick, J. C.; Wittmann, H.
2015-12-01
The temporal evolution of erosion over million-year timescales is key to understanding the evolution of mountain ranges and adjacent fold-and-thrust belts. While models of orogenic wedge evolution predict an instantaneous response of erosion to pulses of rock uplift, stream-power based landscape evolution models predict catchment-wide erosion maxima that lag behind a rock uplift pulse. Here, we explore the relationships between rock uplift, erosion, and sediment deposition in the Argentine Precordillera fold-and-thrust belt at 30°S where extensive previous work documents deformation, climate and sediment accumulation histories. Sandstone samples spanning 8.8 to 1.8 Ma were collected from the previously dated wedge-top (Iglesia) and foredeep basins (Bermejo) for quartz purification and 10Be extraction. 10Be concentrations due to burial and exhumation were estimated and subtracted from the measured concentrations and yielded the inherited 10Be concentrations, which were then corrected for sample magnetostratigraphic age. The inherited concentrations were then used to calculate paleoerosion rates. We modeled various pre-burial and post-burial exposure scenarios in order to assess potential sources of uncertainty in the recovered paleoerosion rates. The modeling results reveal that pre-burial and post-burial exposure periods only marginally affect our results. By combining the 10Be-derived paleoerosion rates and geomorphic observations with detrital zircon provenance, we document the isolation of the wedge-top basin, which was later reconnected by an upstream migrating pulse of erosion in a process that was directly controlled by thrust activity and base level. The data further indicate that the attainment of maximum upland erosion rates lags maximum rates of deformation and subsidence over million-year timescales. The magnitudes and causes of the erosional delays shed new light on the catchment erosional response to tectonic deformation and rock uplift in orogenic wedges.
The search for the cause of the low albedo of the moon
NASA Technical Reports Server (NTRS)
Gold, T.; Bilson, E.; Baron, R. L.
1975-01-01
Experimentation concerning lunar weathering and its effect on the albedo of the surface cover consisted of: (1) determination of the surface chemical composition of lunar soil and ground-up rock samples by Auger electron spectroscopy, (2) measurement of the optical albedo of these samples, and (3) proton or alpha-particle irradiation of terrestrial rock chips and rock powders and of ground-up lunar rock samples in order to determine the optical and surface chemical effect of simulated solar wind.
[High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].
Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan
2015-09-01
In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.
PBF Reactor Building (PER620). Construction view shows native lava rock ...
PBF Reactor Building (PER-620). Construction view shows native lava rock surrounding basement excavation and general complexity of planning required to build the PBF. A three-inch low-pressure air line protrudes from wall just below left center. Date: February 21, 1967. Photographer: Larry Page. INEEL negative no. 67-1125 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
A process for reducing rocks and concentrating heavy minerals
Strong, Thomas R.; Driscoll, Rhonda L.
2016-03-30
Once the rock is reduced to grains, it is necessary to separate the grains into paramagnetic and nonparamagnetic and heavy and light mineral fractions. In separating grains by property, those minerals chemically suited for radiometric dating are abundantly concentrated. Grams of mineralogical material can then be analyzed and characterized by multiple methods including trace element chemistry, laser ablation, and in particular, ion geochronology.
Ammunition Cost Research Study
1976-06-01
LIBRARY TECHNICAL REPORT Gerald W. Kalal Patrick J. Gannon COST ANALYSIS DIVISION (DRSAR-CPE) HEADQUARTERS, U.S. ARMY ARMAMENT COMMAND ROCK ISLAND... Kalal trick J. Gannon COST ANALYSIS DIVISION (DRSAR-CPE) HEADQUARTERS, U.S. ARMY ARMAMENT COMMAND ROCK ISLAND, ILLINOIS 61201 I UNCLASSIFIED...4. DESCRIPTIVE NOTES (Type ot report and Inclusive date») Technical Report 8- AU THOR(S> (flral name, middle Initial, laat name) Gerald W. Kalal
The rock avalanche of the Mt. Peron (Eastern Alps, Italy): new insights from 36Cl exposure dating
NASA Astrophysics Data System (ADS)
Martin, Silvana; Ivy-ochs, Susan; Alfimov, Vasili; Vockenhuber, %Christof; Surian, Nicola; Campedel, Paolo; Rigo, Manuel; Viganò, Alfio; De Zorzi, Manuel
2016-04-01
In the Late Pleistocene, in the southern side of the Eastern Alps (Veneto region, Italy), when the glacier tongues retreated from the end moraine system areas towards the Dolomitic region, large rock avalanches took place. In the Belluno Valley, occupied by the Piave river, the left side is represented by the Belluno Prealps range, corresponding to the northern flank of a km-scale WSW-ENE oriented alpine syncline formed by rocks from Late Triassic to Late Tertiary in age. The Mt. Peron, belonging to this mountain range, shows its southern lower slope covered by debris cones with scattered boulders and its higher slope, corresponding to the scarp, made of vertical rock strata. At the foot of Mt. Peron, at a distance varying from 500 to 4500 m, there is a 4.5 km2 fan like area delimited by a perimeter of about 15 km. This is a hilly area of poortly sorted, chaotic deposits composed of heterogeneous debris, sandy and silty gravels, angular blocks and very large boulders of carbonatic rocks up to 20 m in diameter. The average thickness of the deposit was estimated to be 80 m, with maximum of 120 m. According to previous works, the main event occurred during the first phases of deglaciation, between 17,000 and 15,000 years BP. Popular stories narrate about two legendary villages destroyed by a mass of stones rolling down in the valley. This is confirmed by archeological findings in the Piave valley which indicate the presence of almost one pre-historic settlement dating 40000-20000 years a B.P., (i.e. before the Last Glacial Maximum).. Recent 36Cl exposure dating have yielded historical ages for both the boulders at the foot of the Mt Peron and those located a few km far from the main scarp. According to these exposure ages we can not exclude the hypothesis that earthquakes related to the Venetian faults could have played a key role for triggering of the rock avalanche and that the main gravitational event took place in historical times rather than during the deglaciation.
Hematite-rich fracture fill at Meridiani Planum, Mars: Implications for fluid chemistry
NASA Astrophysics Data System (ADS)
Yen, Albert; Mittlefehldt, David; Morris, Richard; Gellert, Ralf
The Mars Exploration Rover Opportunity has been operating at the surface of Mars for over 2100 sols and has driven a distance of approximately 20 km. Throughout the traverse, outcrop rocks with margins and fracture fill resistant to erosion have been imaged and analyzed in detail by the Müssbauer (MB) spectrometer and the Alpha Particle X-ray Spectrometer (APXS). A recent APXS analysis of an outcrop block excavated by a young impact crater shows a coating with the highest concentration of iron measured by either rover, not including the iron-nickel meteorites. Texturally, this sample (referred to as "Chocolate Hills -Aloya") appears as a cemented collection of partially fragmented "blueberries." With the exception of an el-evated sulfur content, the elemental chemistry of this particular sample is entirely consistent with other analyses of hematite spherules at Merdiani Planum. As a result, it is difficult to determine whether this coating, which may have been filling a fracture in outcrop rocks prior to disruption by the impact, was simply an agglomeration of spherules or a result of a more complicated aqueous process. In contrast, a number of other fracture-filling exposures and erosion-resistant rinds have been analyzed by the APXS and MB instruments showing significant concentrations of iron in the form of hematite without the texture of spherule fragments. In one of these samples, a broken piece of fracture fill within Victoria crater referred to as "Dorsal," showed over 50% of the iron in hematite, the highest Mn concentration of any sample measured by the rovers, and elevated levels of Cl and Br. While the Fe:Mn ratio of the Dorsal analyses are comparable to that of Gusev and Meridiani basalts, it is clear that chemistry of this sample cannot be completely explained by a simple mixing of outcrop and blueberry compositions. A likely formation process for fracture fill and certain rinds involves the infiltration of iron-rich fluids post-dating the development of subsurface cracks. Mineral precipitates from these fluids resulted in hematite-rich zones within the outcrop rocks.
NASA Astrophysics Data System (ADS)
Samson, S. D.; D'Lemos, R. S.; Blichert-Toft, J.; Vervoort, J.
2003-03-01
New U-Pb dates, combined with Nd and Hf isotopic data, from rocks within the Port Morvan area of the Baie de St Brieuc region of Brittany identify a unique portion of the Neoproterozoic Cadomia terrane. Two gneisses near Port Morvan yielded U-Pb dates of 754.6±0.8 Ma and 746.0±0.9 Ma, ages that are more than 130 Myr older than the oldest units formed during the main phase of early Cadomian magmatism. Two trondhjemite boulders from the monogenetic facies of the Cesson conglomerate yielded identical ages of 665.2±0.5 Ma and 665.5±0.7 Ma, and a cobble from the polygenetic facies yields a 207Pb- 206Pb date of 637±2 Ma. Individual detrital zircons from a sandstone associated with the Cesson conglomerates yield concordant U-Pb dates ranging from 650±3 Ma to 624.1±0.6 Ma. Initial ɛNd values for the rocks in this region range from +5.0 to +6.6, indicative of a substantial input from depleted mantle. Initial ɛHf values determined on zircons from these Neoproterozoic rocks, including the detrital zircons, range from +6.7 to +14.5, consistent with the Nd isotopic results. Maximum initial ɛHf values for two 2 Ga Icartian gneisses, considered basement to Cadomia, average +8.4 and +8.7. In contrast to the results of the Port Morvan rocks, 616-608 Ma syn-tectonic intrusions from Normandy and the British Channel Islands all have negative initial ɛNd values (-10.4 to -8.3) consistent with significant contamination by ancient crust such as the 2 Ga gneisses. The oldest arc-related magmas should have interacted most extensively with Cadomian basement, buffering younger mantle-derived magmas that were generated in subsequent magmatic episodes. The rocks within the Port Morvan region are thus inconsistent as examples of the earliest Cadomian intrusions as they show no evidence of interaction with 2 Ga basement. Instead, the older ages and mantle-like isotopic composition of these rocks suggest they are part of an independent terrane that formed prior to, and independently from, the Cadomian arc. Possible terrane-scale structural boundaries have recently been identified, including the newly recognized Port Morvan thrust fault and the NW-dipping Main Cadomian thrust.
Weathering process in Sør Rondane Mountains, East Antarctica
NASA Astrophysics Data System (ADS)
Kanamaru, T.; Suganuma, Y.; Oiwane, H.; Miura, M.; Okuno, J.; Hayakawa, H.
2016-12-01
Weathering process under the hyper-arid and hypothermal environment is a key to understand the geomorphogic process and landscape evolution in Antarctica and on Mars. A nunber of studies have focused on weathering process of basaltic rocks in Antarctica, however, the nature of the weathering process of plutonic type rock, a common rock type on the Earth, have been less focused and remain unclear. Here, we report the physical/chemical weathering process of the granitic rocks obtained from Dronning Maud Land in East Antarctica based on a multiplicity of petrological approaches. Loss on Ignition (LOI) and major element composition of the crust and core of the rock samples indicate that chemical weathering process in this area seems to be very limited. The microscopic observations and laser-Raman micro spectroscopy for thin sections from the crust and core indicate that goethite grains are formed mainly in the vein around the crust, which is consistent with the higher Fe3+/Fe2+ contrast from the core to crust. A negative correlation between the rock hardness and color strength index (CSI) values also indicate that crust of rock samples tend to less hard than core due to cracking of the rock samples and following goethite formation. On the other hand, EPMA analysis indicates that original Fe-Ti oxide grains in the core of rock samples are damaged by weathering, and altered to hematite, and to non-stoichiometric Fe-Ti compound associated with ilmenite grans in case of the higher relative height samples. These reveal that the weathering process of the plutonic rocks under the hyper-cold and hypothermal environment are mainly controlled by oxidation, including iron hydroxide formation in the veins formed by mechanical distraction, and Fe-Ti oxide alteration in rock interior.
LUNAR SAMPLES - APOLLO XVI - JSC
1975-03-18
S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.
NASA Astrophysics Data System (ADS)
Knapp, Sibylle; Gilli, Adrian; Anselmetti, Flavio S.; Hajdas, Irka
2016-04-01
Lateglacial and Holocene rock-slope failures occur often as multistage failures where paraglacial adjustment and stress adaptation are hypothesised to control stages of detachment. However, we have only limited datasets to reconstruct detailed stages of large multistage rock-slope failures, and still aim at improving our models in terms of geohazard assessment. Here we use lake sediments, well-established for paleoclimate and paleoseismological reconstruction, with a focus on the reconstruction of rock-slope failures. We present a unique inventory from Lake Oeschinen (Bernese Alps, Switzerland) covering about 2.4 kyrs of rock-slope failure history. The lake sediments have been analysed using sediment-core analysis, radiocarbon dating and seismic-to-core and core-to-core correlations, and these were linked to historical and meteorological records. The results imply that the lake is significantly younger than the ~9 kyrs old Kandersteg rock avalanche (Tinner et al., 2005) and shows multiple rock-slope failures, two of which could be C14-dated. Several events detached from the same area potentially initiated by prehistoric earthquakes (Monecke et al., 2006) and later from stress relaxation processes. The data imply unexpected short recurrence rates that can be related to certain detachment scarps and also help to understand the generation of a historical lake-outburst flood. Here we show how polymethodical analysis of lake sediments can help to decipher massive multistage rock-slope failure. References Monecke, K., Anselmetti, F.S., Becker, A., Schnellmann, M., Sturm, M., Giardini, D., 2006. Earthquake-induced deformation structures in lake deposits: A Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geologicae Helvetiae, 99(3), 343-362. Tinner, W., Kaltenrieder, P., Soom, M., Zwahlen, P., Schmidhalter, M., Boschetti, A., Schlüchter, C., 2005. Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die damalige Umwelt. Eclogae Geologicae Helvetiae, 98(1), 83-95.
Cooling Spheres and Accumulating Lead: The History of Attempts to Date the Earth's Formation.
ERIC Educational Resources Information Center
Brush, Stephen G.
1987-01-01
Presents a chronology of scientific efforts designed to determine the age of the earth. Summarizes scientists' attempts at dating the planet's formation, including the examination of lead in the environment, the calculation of the earth's cooling temperature and time, the study of geological sedimentation and the analysis of moon rocks. (TW)
Carroll, R.D.
1969-01-01
A statistical analysis was made of the relationship of various acoustic parameters of volcanic rocks to compressional wave velocities for data obtained in a volcanic region in Nevada. Some additional samples, chiefly granitic rocks, were also included in the study to extend the range of parameters and the variety of siliceous rock types sampled. Laboratory acoustic measurements obtained on 62 dry core samples were grouped with similar measurements obtained from geophysical logging devices at several depth intervals in a hole from which 15 of the core samples had been obtained. The effects of lithostatic and hydrostatic load on changing the rock acoustic parameters measured in the hole were noticeable when compared with the laboratory measurements on the same core. The results of the analyses determined by grouping all of the data, however, indicate that dynamic Young's, shear and bulk modulus, shear velocity, shear and compressional characteristic impedance, as well as amplitude and energy reflection coefficients may be reliably estimated on the basis of the compressional wave velocities of the rocks investigated. Less precise estimates can be made of density based on the rock compressional velocity. The possible extension of these relationships to include many siliceous rocks is suggested. ?? 1969.
NASA Technical Reports Server (NTRS)
Peters, Gregory
2010-01-01
A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni/Cad rechargeable battery. Power usage was less than 1 Wh/ cm3 even when sampling strong basalts, so many samples could be taken on a single battery charge.
Palandzhyan, S.A.; Layer, P.W.; Patton, W.W.; Khanchuk, A.I.
2011-01-01
Isotope datings of amphibole-bearing mafics and metamafics in the northern part of the Anadyr-Koryak region allow clarification of the time of magmatic and metamorphic processes, which are synchronous with certain stages of the geodynamic development of the northwest segment of the Pacific mobile belt in the Phanerozoic. To define the 40Ar/39Ar age of amphiboles, eight samples of amphibole gabbroids and metamafics were selected during field work from five massifs representing ophiolites and mafic plutons of the island arc. Rocks from terranes of three foldbelts: 1) Pekulnei (Chukotka region), 2) Ust-Belaya (West Koryak region), and 3) the Tamvatnei and El'gevayam subterranes of the Mainits terrane (Koryak-Kamchatka region), were studied. The isotope investigations enabled us to divide the studied amphiboles into two groups varying in rock petrographic features. The first was represented by gabbroids of the Svetlorechensk massif of the Pekulnei Range and by ophiolites of the Tamvatnei Mts.; their magmatic amphiboles show the distribution of argon isotopes in the form of clearly distinguished plateau with an age ranging within 120-129 Ma. The second group includes metamorphic amphiboles of metagabbroids and apogabbro amphibolites of the Ust-Belaya Mts., Pekulnei and Kenkeren ranges (El'gevayam subterranes). Their age spectra show loss of argon and do not provide well defined plateaus the datings obtained for them are interpreted as minimum ages. Dates of amphiboles from the metagabbro of the upper tectonic plate of the Ust-Belaya allochthon points to metamorphism in the suprasubduction environment in the fragment of Late Neoproterozoic oceanic lithosphere in Middle-Late Devonian time, long before the Uda-Murgal island arc system was formed. The amphibolite metamorphism in the dunite-clinopyroxenite-metagabbro Pekulnei sequence was dated to occur at the Permian-Triassic boundary. The age of amphiboles from gabbrodiorites of the Kenkeren Range was dated to be Early Jurassic that confirmed their assignment to the El'gevayam volcanic-plutonic assemblage. These data are consistent with geological concepts and make more precise the available age dates. Neocomian-Aptian 40Ar/39Ar age of amphibolites from the Pekulnei and Tamvatnei gabbroids make evident that mafics of these terranes (varying in geodynamic formation settings and in petrogenesis) were generated in later stages of the development of the West Pekulnei and Mainits-Algan Middle-Late Jurassic-Early Cretaceous island arc systems, presumably due to breakup of island arcs in the Neocomian. ?? 2011 Pleiades Publishing, Ltd.
NASA Astrophysics Data System (ADS)
Klath, J. F.; Koppers, A. A.; Heaton, D. E.; Schnur, S.
2013-12-01
In this study we systematically explore how acid leaching can be used to reduce the negative effects of seawater alteration on the 40Ar/39Ar age dating of submarine basalts. Koppers et al (2000) showed that acid leaching of groundmass samples generated more consistent ages as well as ages more concordant with phenocrystic mineral phases, compared to samples that were left untreated. By studying the effects of progressively increasing the strength and length of acid treatment, we will show how acid leaching of groundmass separates reduces alteration while leaving the initial eruption signature intact. Samples were chosen from the Walvis ridge hotspot trail in the southeast Atlantic. Three samples were selected based on degree and style of alteration. Two samples (basalt and basaltic andesite) appear highly altered in thin section. The basalt contains diffuse iddingsite alteration that is pervasive throughout the groundmass. The basaltic andesite displays focused secondary mineral phases within and around abundant vesicles. The third sample, a trachyte, shows relatively minor degrees of alteration in thin section. These groundmass separates were divided into four splits and treated with a progressively stronger acid and for longer duration. One split from each rock was left untreated to act as a baseline. Of the other three splits from each sample, one was treated with a mild leach (1N HCl and 1N HNO3), one a strong leach (1N HCl, 1N HNO3, 6N HCl, and 3N HNO3), and lastly the strong leach performed twice. The samples were then handpicked to remove any remaining visible alteration. The untreated samples were picked as well, removing the most distinctly altered grains. All splits were analyzed by electron microprobe, x-ray fluorescence (XRF) and the incremental heating 40Ar/39Ar dating method. We will report on the results of an image analysis of microprobe backscatter images and elemental maps taken of individual groundmass grains. This analysis will show the location of alteration within the groundmass and how it is changing as acid leaching strength and duration progresses. We will discuss bulk composition comparisons as well as how depletions and enrichments vary amongst major and trace elements. Lastly, we will report 40Ar/39Ar step heating results, in particular K/Ca ratios and age spectra, to better understand the effect of leaching strength on the effective removal of groundmass alteration during 40Ar/39Ar age dating.
The apollo 15 lunar samples: A preliminary description
Gast, P.W.; Phinney, W.C.; Duke, M.B.; Silver, L.T.; Hubbard, N.J.; Heiken, G.H.; Butler, P.; McKay, D.S.; Warner, J.L.; Morrison, D.A.; Horz, F.; Head, J.; Lofgren, G.E.; Ridley, W.I.; Reid, A.M.; Wilshire, H.; Lindsay, J.F.; Carrier, W.D.; Jakes, P.; Bass, M.N.; Brett, P.R.; Jackson, E.D.; Rhodes, J.M.; Bansal, B.M.; Wainwright, J.E.; Parker, K.A.; Rodgers, K.V.; Keith, J.E.; Clark, R.S.; Schonfeld, E.; Bennett, L.; Robbins, Martha M.; Portenier, W.; Bogard, D.D.; Hart, W.R.; Hirsch, W.C.; Wilkin, R.B.; Gibson, E.K.; Moore, C.B.; Lewis, C.F.
1972-01-01
Samples returned from the Apollo 15 site consist of mare basalts and breccias with a variety of premare igneous rocks. The mare basalts are from at least two different lava flows. The bulk chemical compositions and textures of these rocks confirm the previous conclusion that the lunar maria consist of a series of extrusive volcanic rocks that are rich in iron and poor in sodium. The breccias contain abundant clasts of anorthositic fragments along with clasts of basaltic rocks much richer in plagioclase than the mare basalts. These two rock types also occur as common components in soil samples from this site. The rocks and soils from both the front and mare region exhibit a variety of shock characteristics that can best be ascribed to ray material from the craters Aristillus or Autolycus.
Sm-Nd dating of the giant Sullivan Pb-Zn-Ag deposit, British Columbia
Jiang, Shao-Yong; Slack, John F.; Palmer, Martin R.
2000-01-01
We report here Sm and Nd isotope data for hydrothermal tourmalinites and sulfide ores from the giant Sullivan Pb-Zn-Ag deposit, which occurs in the lower part of the Mesoproterozoic Purcell (Belt) Supergroup. Whole-rock samples of quartz-tourmaline tourmalinite from the footwall alteration pipe yield a Sm-Nd isochron age of 1470 ± 59 Ma, recording synsedimentary B metasomatism of clastic sediments during early evolution of the Sullivan hydrothermal system. Data for variably altered (chloritized and/or albitized) tourmalinites from the hanging wall of the deposit, which are believed to have formed originally ca. 1470 Ma, define a younger 1076 ± 77 Ma isochron because of resetting of Sm and Nd isotopes during Grenvillian metamorphism. HCl leachates of bedded Pb-Zn ore yield a Sm-Nd isochron age of 1451 ± 46 Ma, which is consistent with syngenetic-exhalative mineralization ca. 1470 Ma; this age could also reflect a slightly younger, epigenetic hydrothermal event. Results obtained for the Sullivan deposit indicate that the Sm-Nd geochronometer has the potential to directly date mineralization and alteration in stratabound sulfide deposits that are not amenable to dating by other isotope methods.
Ar-40/Ar-39 ages and cosmic ray exposure ages of Apollo 14 samples.
NASA Technical Reports Server (NTRS)
Turner, G.; Huneke, J. C.; Podosek, F. A.; Wasserburg, G. J.
1971-01-01
We have used the Ar-40/Ar-39 dating technique on eight samples of Apollo 14 rocks (14053, 14310), breccia fragments (14321), and soil fragments (14001, 14167). The large basalt fragments give reasonable Ar-40/Ar-39 release patterns and yield well defined crystallization ages of 3.89-3.95 aeons. Correlation of the Ar-40/Ar-39 release patterns with Ar-39/Ar-37 patterns showed that the low temperature fractions with high radiogenic argon loss came from K-rich phases. A highly shocked sample and fragments included in the breccia yield complex release patterns with a low temperature peak. The total argon age of these fragments is 3.95 aeons. Cosmic ray exposure ages on these samples are obtained from the ratio of spallogenic Ar-38 to reactor induced Ar-37 and show a distinct grouping of low exposure ages of 26 m.y. correlated with Cone crater. Other samples have exposure ages of more than 260 m.y. and identify material with a more complex integrated cosmic age exposure history.
The United States Polar Rock Repository: A geological resource for the Earth science community
Grunow, Annie M.; Elliot, David H.; Codispoti, Julie E.
2007-01-01
The United States Polar Rock Repository (USPRR) is a U. S. national facility designed for the permanent curatorial preservation of rock samples, along with associated materials such as field notes, annotated air photos and maps, raw analytic data, paleomagnetic cores, ground rock and mineral residues, thin sections, and microfossil mounts, microslides and residues from Polar areas. This facility was established by the Office of Polar Programs at the U. S. National Science Foundation (NSF) to minimize redundant sample collecting, and also because the extreme cold and hazardous field conditions make fieldwork costly and difficult. The repository provides, along with an on-line database of sample information, an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient and effective. This latter aspect should reduce the environmental impact of conducting research in sensitive Polar Regions. The USPRR also provides samples for educational outreach. Rock samples may be borrowed for research or educational purposes as well as for museum exhibits.
Carbonate and silicate rock standards for cosmogenic 36Cl
NASA Astrophysics Data System (ADS)
Mechernich, Silke; Dunai, Tibor J.; Binnie, Steven A.; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred; Benedetti, Lucilla; Schimmelpfennig, Irene; Phillips, Fred; Marrero, Shasta; Akif Sarıkaya, Mehmet; Gregory, Laura C.; Phillips, Richard J.; Wilcken, Klaus; Simon, Krista; Fink, David
2017-04-01
The number of studies using cosmogenic nuclides has increased multi-fold during the last two decades and several new dedicated target preparation laboratories and Accelerator Mass Spectrometry (AMS) facilities have been established. Each facility uses sample preparation and AMS measurement techniques particular to their needs. It is thus desirable to have community-accepted and well characterized rock standards available for routine processing using identical target preparation procedures and AMS measurement methods as carried out for samples of unknown cosmogenic nuclide concentrations. The usefulness of such natural standards is that they allow more rigorous quality control, for example, the long-term reproducibility of results and hence measurement precision, or the testing of new target preparation techniques or newly established laboratories. This is particularly pertinent for in-situ 36Cl studies due to the multiplicity of 36Cl production pathways that requires a variety of elemental and isotopic determinations in addition to AMS 36Cl assay. We have prepared two natural rock samples (denoted CoCal-N and CoFsp-N) to serve as standard material for in situ-produced cosmogenic 36Cl analysis. The sample CoCal-N is a pure limestone prepared from pebbles in a Namibian lag deposit, while the alkali-feldspar CoFsp-N is derived from a single crystal in a Namibian pegmatite. The sample preparation took place at the University of Cologne, where first any impurities were removed manually from both standards. CoCal-N was leached in 10 % HNO3 to remove the outer rim, and afterwards crushed and sieved to 250-500 μm size fractions. CoFsp-N was crushed, sieved to 250-500 μm size fractions and then leached in 1% HNO3 / 1% HF until 20% of the sample were removed. Both standards were thoroughly mixed using a rotating sample splitter before being distributed to other laboratories. To date, a total of 28 CoCal-N aliquots (between 2 and 16 aliquots per facility) and 31 CoFsp-N aliquots (between 2 and 20 aliquots per facility) have been analyzed by six target preparation laboratories employing five different AMS facilities. Currently, the internal reproducibility of the measurements underlines the homogeneity of both standards. The inter-laboratory comparison suggests low over-dispersion. Further measurements are pending and should allow meaningful statistical analysis. Both standard materials are freely available and can be obtained from Tibor Dunai tdunai@uni-koeln.de).
Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.
2014-01-01
Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years ago with eruption of the tuff of Round Mountain. The Manhattan caldera south of the Mount Jefferson caldera and northwest of the Big Ten Peak caldera formed in association with eruption of a series of tuffs, principally the Round Rock Formation, mostly ash-flow tuff, about 24.4 million years ago. Extensive 40Ar/39Ar dating of about 60 samples that represent many of the Tertiary extrusive and intrusive rocks in the southern Toquima Range provides precise ages that refine the chronology of previously dated units. New geochronologic data indicate that the petrogenetically related Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas formed during a period of about 560,000 years. Electron microprobe analyses of phenocrysts from 20 samples of six dated units underscore inferred petrogenetic relations among some of these units. In particular, compositions of augite, hornblende, and biotite in tuffs erupted from the Corcoran Canyon, Ryecroft Canyon, and Mount Jefferson calderas are similar, which suggests that magmas represented by these tuffs have similar petrogenetic histories. The unique occurrence of hypersthene in Isom-type tuff confirms its derivation from a source beyond the southern Toquima Range.
LUNAR SAMPLES - APOLLO XI - MSC
1969-07-28
S69-45009 (27 July 1969) --- This is the first lunar sample that was photographed in detail in the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC). The photograph shows a granular, fine-grained, mafic (iron magnesium rich) rock. At this early stage of the examination, this rock appears similar to several igneous rock types found on Earth. The scale is printed backwards due to the photographic configuration in the Vacuum Chamber. The sample number is 10003. This rock was among the samples collected by astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. during their lunar surface extravehicular activity (EVA) on July 20, 1969.
Lead isotopes and trace metals in dust at Yucca Mountain
Kwak, Loretta; Neymark, Leonid A.; Peterman, Zell E.
2008-01-01
Lead (Pb)-isotope compositions and trace-metal concentrations were determined for samples of dust collected from underground and surface locations at and near the proposed radioactive waste repository at Yucca Mountain, Nevada. Rare earth element concentrations in the dust samples from the underground tunnels are similar to those in wholerock samples of the repository host rocks (Miocene Tiva Canyon Tuff and Topopah Spring Tuff), supporting interpretation that the subsurface dust is mainly composed of rock comminuted during tunnel construction. Other trace metals (arsenic, cadmium, cobalt, chromium, copper, manganese, nickel, lead, antimony, thallium, and zinc) are variably enriched in the subsurface dust samples relative to the average concentrations in the host rocks. Average concentrations of arsenic and lead in dust samples, high concentrations of which can cause corrosion of waste canisters, have enrichment factors from 1.2 to 1.6 and are insignificant relative to the range of concentrations for these metals observed in the host rock samples. Most dust samples from surface sites also are enriched in many of these trace metals relative to average repository host rocks. At least some of these enrichments may be artifacts of sampling. Plotted on a 208Pb/206Pb-207Pb/206Pb graph, Pb-isotope compositions of dust samples from underground sites form a mixing line extending from host-rock Pb-isotope compositions towards compositions of many of the dust samples from surface sites; however, combined Pb concentration and isotope data indicate the presence of a Pbenriched component in the subsurface dust that is not derived from host rock or surface dust and may derive from anthropogenic materials introduced into the underground environment.
Geology of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia
Afifi, A.M.
1990-01-01
Major-element data show that the Mahd Group was produced from separate basaltic and dacitic-rhyolitic magmas that overlapped without mixing. The alkalis and alkaline-earth elements were particularly mobile during metamorphism (which caused widespread albitization of feldspars) and also during hydrothermal alteration (which added secondary microcline). This mobility adversely affected rubidium-strontium whole-rock systematics, which makes whole-rock isochron dates obtained from these rocks questionable. The new geological data presented here are combined with the geochronologic data of Calvez and Kemp (1982) to re-interpret the geologic history of this area.
1969-11-26
S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.
Investigation of rock samples by neutron diffraction and ultrasonic sounding
NASA Astrophysics Data System (ADS)
Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.
2000-03-01
The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.
NASA Astrophysics Data System (ADS)
Brumley, K.; Miller, E. L.; Mayer, L. A.; Andronikov, A.; Wooden, J. L.; Dumitru, T. A.; Elliott, B.; Gehrels, G. E.; Mukasa, S. B.
2010-12-01
In 2008-2009, twelve dredges were taken aboard the USCGC Healy from outcrops along the Alpha Ridge, Northern Chukchi Borderland, Northwind Ridge and the Chukchi Plateau in the Arctic Ocean as part of the U.S. Extended Continental Shelf Project. To ensure sampling of outcrop, steep bathymetric slopes (>40°) with little mud cover were identified with multibeam sonar and targeted for dredging. The first dredge from Alpha Ridge yielded volcaniclastic sedimentary rocks deposited from a phreatomagmatic eruption in shallow water (<200m). This is inconsistent with tectonic reconstructions suggesting that the Alpha Ridge was created as an oceanic plateau on deep oceanic crust of the Canada Basin. Another dredge, taken from the northern tip of Northwind Ridge, yielded metasedimentary rocks deformed under greenschist facies conditions (chlorite+white mica). These rocks are intruded and/or overlain by mid-Cretaceous alkalic basalts, also taken in this dredge, and dated by 40Ar/39Ar (plagioclase separate) to be 112±1 Ma. The metasedimentary rocks, from this single dredge, range in grain size from mud to coarse sandstone and grit which all contain grains and sub-angular clasts of volcanic, plutonic, metamorphic and fine grained sedimentary rocks as well as monocrystalline quartz, potassium feldspar, and plagioclase. All of these samples display the same bedding to foliation angle and lithology, which further indicates that they were dredged from in situ outcrop and are not random samples of ice rafted debris. Based on grain size variations and graded beds, they are interpreted as Silurian gravity flow deposits fed by proximal syn-orogenic and/or magmatic arc sources. Detrital zircons were separated from four sandstone samples of the Northwind Ridge dredge, and their U-Pb single grain ages determined by LA-MC-ICPMS and SHRIMP, (N= 393). Their detrital zircon populations are dominated by euhedral first-cycle zircon ca. 430 and 980 Ma with lesser older recycled zircons between ~1500 and 2800 Ma. The zircon age distributions of the Northwind Ridge rocks are similar to detrital zircon suites analyzed from pre-Mississippian strata penetrated by the Topogoruk well drill core, North Slope, Alaska, and to those of Devonian clastic strata from northwestern Svalbard (Petterson, 2009) and could provide a tie point between these two areas. A possible reconstruction would involve restoring the Chukchi Borderland and Alpha Ridge to the Lomonosov Ridge proximal to Svalbard. This solution is quite different from that proposed by Grantz et al (1998) based on fragments of undeformed Paleozoic platform carbonate breccias from piston cores taken along the central Northwind Ridge. In that model the Chukchi Borderland and Northern Alaska have a shared depositional history with Arctic Canada. A new model is needed to solve the complication of an undeformed carbonate sequence in the central Northwind Ridge, and the deformed syn-orogenic/arc deposits described here from the northern Chukchi Borderland.
van der Pluijm, B.A.; Vrolijk, P.J.; Pevear, D.R.; Hall, C.M.; Solum, J.
2006-01-01
Fault rocks from the classic Rocky Mountain foreland fold-and-thrust belt in south-western Canada were dated by Ar analysis of clay grain-size fractions. Using X-ray diffraction quantification of the detrital and authigenic component of each fraction, these determinations give ages for individual faults in the area (illite age analysis). The resulting ages cluster around 72 and 52 Ma (here called the Rundle and McConnell pulses, respectively), challenging the traditional view of gradual forward progression of faulting and thrust-belt history of the area. The recognition of spatially and temporally restricted deformation episodes offers field support for theoretical models of critically stressed wedges, which result in geologically reasonable strain rates for the area. In addition to regional considerations, this study highlights the potential of direct dating of shallow fault rocks for our understanding of upper-crustal kinematics and regional tectonic analysis of ancient orogens. ?? 2006 Geological Society of America.
Dating paleo-seismic faulting in the Taiwan Mountain Belt
NASA Astrophysics Data System (ADS)
Lo, C. H.; Wu, C. Y.; Chu, H. T.; Yui, T. F.
2017-12-01
In-situ 40Ar/39Ar laser microprobe dating was carried out on the Hoping pseudotachylite from a mylonite-fault zone in the metamorphosed basement complex of the active Taiwan Mountain Belt to determine the timing of the responsible earthquake(s). The dating results, distributed between 3.2 to 1.6 Ma with errors ranging 0.2 1.1 Ma, were derived from a combination of two Ar isotopic system end-members with inverse isochron ages of 1.55±0.05 and 2.87±0.07 Ma, respectively. Fault melt was found mixed with ultracataclasis in petrographical observations, therefore the older inverse isochron end-member may be attributed to the relic wall rock Ar isotopic system contained in micro-breccia as published 40Ar/39Ar mylonitization ages from 4.1 to 3.0 Ma. Without significant Ar loss expected, the young 1.6 Ma end-member represents the Ar isotopic system and age of the exact pseudotachylite. Seismic faulting therefore occurred during basement rock exhumation in the Taiwanese hinterland.
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2017-01-01
Impact-melt samples from Apollo Luna are 3.85-4.1 Ga, tied to Imbrium, Serenitatis, Crisium, Nectaris, plus other craters? May have been caused by destabilization of material in early solar system by dynamic forces such as gas drag and gravitational interactions Coincident with the oldest rocks on the Earth and later than the earliest isotopic signs of life on Earth. Earth was already a planet with oceans, plate tectonics, and single celled life What was happening on the Moon before 3.9 Ga affected the course of life on Earth, the structure of our Solar System, and the dynamics of extra solar planetary systems.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Piper, David J. W.; Papoutsa, Angeliki
2018-01-01
Major intra-continental shear zones developed during the later stages of continental collision in a back-arc setting are sites of prolonged magmatism. Mantle metasomatism results from both melting of subducted sediments and oceanic crust. In the Cobequid Fault Zone of the northern Appalachians, back-arc A-type granites and gabbros dated ca. 360 Ma are locally intruded by lamprophyric dykes dated ca. 335 Ma. All the lamprophyres are kersantites with biotite and albite, lesser ilmenite, titanite and fluorapatite, and minor magmatic calcite, allanite, pyrite, magnetite, quartz and K-feldspar in some samples. The lamprophyres show enrichment in Rb, Ba, K, Th and REE and classify as calc-alkaline lamprophyre on the basis of biotite and whole rock chemistry. Pb isotopes lie on a mixing line between normal mantle-derived gabbro and OIB magma. Nd isotopes range from 1.3-3.5 εNdt, a little lower than in local gabbro. Most lamprophyres have δ18O = 3.8-4.4‰. Country rock is cut by pyrite-(Mg)-chlorite veins with euhedral allanite crystals that resemble the lamprophyres mineralogically, with the Mg-chlorite representing chloritized glass. Early Carboniferous unenriched mafic dykes and minor volcanic rocks are widespread along the major active strike-slip fault zones. The lamprophyres are geographically restricted to within 10 km of a small granitoid pluton with some sodic amphibole and widespread albitization. This was displaced by early Carboniferous strike-slip faulting from its original position close to the large Wentworth Pluton, the site of mantle-derived sodic amphibole granite, a major late gabbro pluton, and a volcanic carapace several kilometres thick, previously demonstrated to be the site of mantle upwelling and metasomatism. The age of the lamprophyres implies that enriched source material in upper lithospheric mantle or lower crust was displaced 50 km by crustal scale strike-slip faulting after enrichment by the mantle upwelling before lamprophyre emplacement. This indicates a multi-stage process to emplace lamprophyric magma.
A Precise 6 Ma Start Date for Fluvial Incision of the Northeastern Colorado Plateau Canyonlands
NASA Astrophysics Data System (ADS)
Thomson, S. N.; Soreghan, G. S.; Reiners, P. W.; Peyton, S. L.; Murray, K. E.
2015-12-01
Outstanding questions regarding late Cenozoic Colorado Plateau landscape evolution include: (1) the relative roles of isostatic rebound as result Colorado River incision versus longer-term geodynamic processes in driving overall rock uplift of the plateau; and (2) whether incision was triggered by river integration or by a change in deep-seated mantle lithosphere dynamics. A key to answering these questions is to date more precisely the onset of incision to refine previous estimates of between 6 and 10 Ma. We present new low-temperature thermochronologic results from bedrock and deep borehole samples in the northeastern Colorado Plateau to show that rapid river incision began here at 6 Ma (5.93±0.66 Ma) with incision rates increasing from 15-50 m/Myr to 160-200 m/Myr. The onset time is constrained independently by both inverse time-temperature modeling and by the break-in-slope in fission track age-elevation relationships. This new time constraint has several important implications. First, the coincidence in time with 5.97-5.3 Ma integration of the lower Colorado River through the Grand Canyon to the Gulf of California strongly favors downstream river integration triggering carving of the canyonlands of the upper Colorado River system. Second, it implies integration of the entire Colorado River system in less than 2 million years. Third, rock uplift of the plateau driven by the flexural isostatic response to river incision is restricted to just the last 6 Ma, as is associated increased sediment budget. Fourth, incision starting at 6 Ma means that previous estimates of upper Colorado River incision rates based on 10-12 Ma basalt datum levels are too low. This also changes the dependency of measured time interval on incision rate from a non-steady-state negative power-law dependence (exponent of -0.24) to a near steady-state dependence (exponent of 0.07) meaning that long-term upper Colorado river incision rates can provide a reliable proxy for rock uplift rates.
NASA Astrophysics Data System (ADS)
Clift, Peter D.; Carter, Andrew; Campbell, Ian H.; Pringle, Malcolm S.; van Lap, Nguyen; Allen, Charlotte M.; Hodges, Kip V.; Tan, Mai Thanh
2006-10-01
Sand samples from the mouths of the Red and Mekong Rivers were analyzed to determine the provenance and exhumation history of their source regions. U-Pb dating of detrital zircon grains shows that the main sources comprise crust formed within the Yangtze Craton and during the Triassic Indosinian Orogeny. Indosinian grains in the Mekong are younger (210-240 Ma) than those in the Red River (230-290 Ma), suggesting preferential erosion of the Qiangtang Block of Tibet into the Mekong. The Red River has a higher proportion of 700-800 Ma grains originally derived from the Yangtze Craton. 40Ar/39Ar dating of muscovite grains demonstrates that rocks cooled during the Indosinian Orogeny are dominant in both rivers, although the Mekong also shows a grain population cooling at 150-200 Ma that is not seen in the Red River and which is probably of original Qiangtang Block origin. Conversely, the Red River contains a significant mica population (350-500 Ma) eroded from the Yangtze Craton. High-grade metamorphic rocks exposed in the Cenozoic shear zones of southeast Tibet-Yunnan are minority sources to the rivers. However, apatite and zircon fission track ages show evidence for the dominant sources, especially in the Red River, only being exhumed through the shallowest 5-3 km of the crust since ˜25 Ma. The thermochronology data are consistent with erosion of recycled sediment from the inverted Simao and Chuxiong Basins, from gorges that incise the eastern flank of the plateau. Average Neogene exhumation rates are 104-191 m/Myr in the Red River basin, which is within error of the 178 ± 35 m/Myr estimated from Pleistocene sediment volumes. Sparse fission track data from the Mekong River support the Ar-Ar and U-Pb ages in favoring tectonically driven rock uplift and gorge incision as the dominant control on erosion, with precipitation being an important secondary influence.
Steltenpohl, M.G.; Mueller, P.M.; Heatherington, A.L.; Hanley, T.B.; Wooden, J.L.
2008-01-01
The poorly known, suspect, Uchee terrane occupies a critical tectonic position with regard to how and when peri-Gondwanan (Carolina) and Gondwanan (Suwannee) terranes were sutured to Laurentia. It lies sandwiched between Laurentian(?) continental basement exposed in the Pine Mountain window and adjacent buried Gondwanan crust of the Suwannee terrane. The Uchee terrane has been proposed as both a septum of Piedmont rocks that once was continuous across the erosionally breached Pine Mountain window or part of the Carolina zone. To help resolve this issue, we conducted U-Pb (SHRIMP-RG) (sensitive high-resolution ion microprobe-reverse geometry) zircon studies and whole-rock isotopic analyses of principal metasedimentary and metaplutonic units. U-Pb ages for zircons from the Phenix City Gneiss suggest igneous crystallization at ca. 620 Ma, inheritance ca. 1000 to ca. 1700 Ma, and a ca. 300 Ma (Alleghanian) overprint recorded by zircon rims. Zircons from the metasedimentary/metavolcaniclastic Moffits Mill Schist yield bimodal dates at ca. 620 and 640 Ma. The 620 to 640 Ma dates make these rocks age-equivalent to the oldest parts of the Carolina slate belt (Virgilina and Savannah River) and strongly suggest a Gondwanan (Pan-African and/or Trans-Brasiliano) origin for the Uchee terrane. Alternatively, the Uchee terrane may be correlative with metamorphic basement of the Suwannee terrane. The ca. 300 Ma overgrowths on zircons are compatible with previously reported 295 to 288 Ma 40Ar/39Ar hornblende dates on Uchee terrane rocks, which were interpreted to indicate deep tectonic burial of the Uchee terrane contemporaneous with the Alleghanian orogeny recorded in the foreland. Temperature-time paths for the Uchee terrane are similar to that of the Pine Mountain terrane, indicating a minimum age of ca. 295 Ma for docking. In terms of tectono-metamorphic history of the Uchee terrane, it is important to note that no evidence for intermediate "Appalachian" dates (e.g, Acadian or Taconian) has been reported. This younger history, together with the ages of metaigneous rocks and evidence for pre-Grenville basement, suggests the Uchee terrane is likely of Gondwanan origin and may he related to Carolina zone terranes that accreted during the Alleghanian orogeny. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Boyet, M.; Carlson, R.; Borg, L.; Connelly, J.; Horan, M.
2012-04-01
The isotopic similarity in O, Mo, W, Si, and Fe between lunar and terrestrial samples suggests that the two planetary bodies were equilibrated in the energetic aftermath of the giant impact that gave birth to the Moon [1]. Coupled 142Nd-143Nd isotope systematics of lunar samples including both low-Ti and high-Ti mare basalts along with KREEP basalts have been used to constrain the age of crystallization of the lunar interior [2-5]. These studies show that the Sm-Nd system in the lunar mantle closed in the interval of 180-250 Ma after the beginning of solar system formation, depending on the model considered for lunar mantle differentiation (1 or 2 stage-model and initial lunar Sm/Nd ratio). Does this age represent the age of Moon formation? A prolonged lunar magma ocean (LMO) might be expected given the insulating effect of the thick plagioclase crust, so closure of the Sm-Nd system in the lunar mantle, particularly in a late stage LMO component like KREEP, might substantially post-date lunar formation. We have recently determined a new age of 4360±3 Ma for the ferroan anorthosite (FAN) 60025 using the 207Pb-206Pb, 147Sm-143Nd and 146Sm-142Nd isotope systems [6]. This study is the first in which a single sample of FAN yielded consistent ages from multiple isotope dating techniques, strongly suggesting that this age indicates the time at which the sample crystallized. In order to pursue the question of whether Moon formation occurred over 100 Ma after solar system formation, we have investigated a number of lunar rocks sampling the highland crust from both the FAN and the Mg-suite groups. Internal Sm-Nd isochron on the norite 77215 yields an age of 4296±20 Ma, in agreement with the young age determined on 60025. We will show that our new data obtained on the 146Sm-142Nd systematics of the lunar crust support the scenario of a relative young age for the Moon. Thus, these results offer a unique opportunity to better constrain the composition of the terrestrial mantle at the time of the giant impact. Sm-Nd isotope data obtained on the oldest lunar samples will be modelled and compared to the different geochemical estimates proposed for the Hadean mantle composition coming from coupled 146,147Sm-142,143Nd isotope studies performed on both 4.3 Ga old samples from the Nuvvuagittuq greenstone belt [7] and 3.7 Ga old rocks from the Isua Supracrustal Belt [8-11]. [1] Pahlevan and Stevenson, 2007. EPSL 262, 438 ; [2] Nyquist et al., 1995. GCA 59, 2817 ; [3] Rankenburg et al., 2006. Science 312, 1369 ; [4] Boyet and Carlson, 2007. EPSL 262, 505 ; [5] Brandon et al., 2009. GCA 73, 6421 ; [6] Borg et al., 2011. Nature 477, 70 ; [7] O'Neil et al., 2008. Science 321, 1828 ; [8] Boyet et al., 2003. EPSL 214, 427 ; [9] Caro et al., 2003. Nature 423, 428 ; [10] Bennett et al., 2007. Science 318, 1907 ; [11] Rizo et al., EPSL 312, 267.
Probabilistic Rock Slope Engineering.
1984-06-01
4 U rmy Corps PROBABILISTIC ROCK SLOPE ENGINEERING by Stanley M. Miller jGeotechnical Engineer 509 E. Calle Avenue Tucson, Arizona 85705 Co N 00 IFI...NUMBERS Geological Engineer CW71 1ork Unit 31755 509 E. Calle Avenue, Tucson, Arizona 85705 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE...communication, J. P. Sa,.-1Iy, Inspiration Consolidated Copper Co., Inspiration, Ariz., 1980. Personal communication, R. D. Call, Pincock, Allen, and
Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine
Gates, Olcott; Moench, R.H.
1981-01-01
Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and titanium and poorer in magnesium and nickel than the Silurian basalts; and the Eastport Formation has rhyolites and silicic dacites that have higher average SiO2 and K2O contents and higher ratios of FeO* to MgO than the Silurian ones. The younger Devonian assemblage is represented by one sample of basalt from a flow in red beds of the post-Acadian Upper Devonian Perry Formation, and by three samples from pre-Acadian diabases that intrude the Leighton and Hersey Formations. These rocks are even richer in titanium and iron and poorer in magnesium and nickel than the older Devonian basalts. Post-Acadian granitic plutons exposed along the coastal belt for which analyses are available are tentatively included in the younger Devonian assemblage. The most conspicuous features of the coastal volcanics and associated intrusives are the preponderance of rocks of basaltic composition ( < 52 percent SiO2 ) in the Silurian assemblage, and the near absence in all assemblages of intermediate rocks having 57-67 percent SiO2 (calculated without volatiles). All the rocks are variably altered spilites and keratophyres. The basaltic types are adequately defined, however, by eight samples of least altered basalts having calcic plagioclase, clinopyroxene, and 0.5 percent or less CO2 , The more altered basalts are variably enriched or depleted in Na2O, K2O, and CaO relative to the least altered ones. In the silicic rocks no primary ferromagnesian minerals are preserved. The Na2O and K2O contents of the silicic rocks are erratic; they are approximately reciprocal, possibly owing to alkali exchange while the rocks were still glassy. We propose that the coastal volcanic belt extended along an axis of thermal swelling in the Earth's mantle and upward intrusion of partially melted mantle into the sialic Avalonian crust. These processes were accompanied by shoaling and emergence of the belt, and they produced the bimodal volcanism. Tholeiitic basaltic melts segregated from mantle material
NASA Astrophysics Data System (ADS)
Dan, Wei; Wang, Qiang; Zhang, Xiu-Zheng; Zhang, Chunfu; Tang, Gong-Jian; Wang, Jun; Ou, Quan; Hao, Lu-Lu; Qi, Yue
2018-05-01
Recognizing the early-developed intra-oceanic arc is important in revealing the early evolution of East Paleo-Tethys Ocean. In this study, new SIMS zircon U-Pb dating, O-Hf isotopes, and whole-rock geochemical data are reported for the newly-discovered Late Devonian-Early Carboniferous arc in Qiangtang, central Tibet. New dating results reveal that the eastern Riwanchaka volcanic rocks were formed at 370-365 Ma and were intruded by the 360 Ma Gangma Co alkali feldspar granites. The volcanic rocks consist of basalts, andesites, dacites, and rhyodacites, whose geochemistry is similar to that typical of subduction-related volcanism. The basalts and andesites were generated by partial melting of the fluid and sediment-melt metasomatized mantle, respectively. The rhyodacites and dacites were probably derived from the fractional crystallization of andesites and from partial melting of the juvenile underplated mafic rocks, respectively. The Gangma Co alkali feldspar granites are A-type granites, and were possibly derived by partial melting of juvenile underplated mafic rocks in a post-collisional setting. The 370-365 Ma volcanic arc was characterized by basalts with oceanic arc-like Ce/Yb ratios and by rhyodacites with mantle-like or slightly higher zircon δ18O values, and it was associated with the contemporary ophiolites. Thus, we propose that it is the earliest intra-oceanic arc in the East Paleo-Tethys Ocean, and was accreted to the Northern Qiangtang Terrane during 365-360 Ma.
Rock physics properties of some lunar samples
NASA Technical Reports Server (NTRS)
Warren, N.; Trice, R.; Anderson, O. L.; Soga, N.
1973-01-01
Linear strains and acoustic velocity data for lunar samples under uniaxial and hydrostatic loading are presented. Elastic properties are presented for 60335,20; 15555,68; 15498,23; and 12063,97. Internal friction data are summarized for a number of artificial lunar glasses with compositions similar to lunar rocks 12009, 12012, 14305, 15021, and 15555. Zero porosity model-rock moduli are calculated for a number of lunar model-rocks, with mineralogies similar to Apollo 12, 14, and 16 rocks. Model-rock calculations indicate that rock types in the troctolitic composition range may provide reasonable modeling of the lunar upper mantle. Model calculations involving pore crack effects are compatible with a strong dependence of rock moduli on pore strain, and therefore of rock velocities on nonhydrostatic loading. The high velocity of rocks under uniaxial loading appears to be compatible with, and may aid in, interpretation of near-surface velocity profiles observed in the active seismic experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, C.J.; Spooner, E.T.C.; Hall, C.M.
Mineralization at McClean occurs in elongate pods at the unconformity between the Athabasca sandstone sequence and the underlying Archean/Aphebian basement. Laser probe /sup 40/Ar//sup 39/Ar and conventional K/Ar dates were obtained on illites from the following environments (i) alteration halo around high grade U(-Ni-Co) mineralization, (ii) recrystallized sedimentary layers within the sandstone sequence, (iii) interstitial to quartz grains in sandstone, and (iv) regolith. The alteration halo illites gave ages between 1321+/-44 and 1002+/-33 Ma (n=20) which are in good agreement with published U-Pb dates on other U deposits in the area. One sample was analyzed twice, and gave a significantmore » age difference of 20 Ma. Hence the age range is interpreted as being either a reflection of variable argon retentivity or due to continued hydrothermal activity (i.e. U mineralization) or a combination of both. Dates obtained on (ii), (iii) and (iv) were 1438-1038 (n=8), 1459-1113 (n=3) and 1482-1262 (n=6) Ma respectively. The older ages are in good agreement with a published Rb-Sr whole rock age of 1470 Ma on tuffaceous sediments from the Athabasca group. The spread to younger ages is interpreted as due to resetting by the hot (approx. 200/sup 0/C) formation water which transported the U, and variable argon retentivity. Diffusion studies on a single sample of illite from the sedimentary sequence indicate a low blocking temperature of about 140/sup 0/C and imply that there have been very low temperatures in the area for the last 1000 Ma.« less