Science.gov

Sample records for daughter cell formation

  1. A Novel Actin-Related Protein Is Associated with Daughter Cell Formation in Toxoplasma gondii▿ †

    PubMed Central

    Gordon, Jennifer L.; Beatty, Wandy L.; Sibley, L. David

    2008-01-01

    Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites. PMID:18408052

  2. Mechanisms of daughter cell-size control during cell division.

    PubMed

    Kiyomitsu, Tomomi

    2015-05-01

    Daughter cell size is tightly regulated during cell division. In animal cells, the position of the anaphase spindle specifies the cell cleavage site to dictate the relative size of the daughter cells. Although spindle orientation is regulated by dynein-dependent cortical pulling forces exerted on astral microtubules in many cell types, it was unclear how these forces are precisely regulated to center or displace the spindle. Recently, intrinsic signals derived from chromosomes or spindle poles have been demonstrated to regulate dynein-dependent pulling forces in symmetrically dividing cells. Unexpectedly, myosin-dependent contractile forces have also been shown to control spindle position by altering the cellular boundaries during anaphase. In this review, I discuss how dynein- and myosin-dependent forces are coordinately regulated to control daughter cell size. PMID:25548067

  3. Mitotic Exit and Separation of Mother and Daughter Cells

    PubMed Central

    Weiss, Eric L.

    2012-01-01

    Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical parts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle. PMID:23212898

  4. Asymmetrical cell division in Blepharisma japonicum: difference between daughter cells in mating-type expression.

    PubMed

    Miyake, A; Harumoto, T

    1990-09-01

    In cell division of high-frequency-selfers in the ciliate Blepharisma japonicum, daughter cells are different in mating-type expression. The anterior daughter cell is mating type I. The posterior daughter cell is mating type II at first and then changes to mating type I after about 24 h. The anteroposterior polarity of predivision cells appears to correlate with the asymmetrical cell division. This work introduces a unicellular organism about the size of microscopic metazoa as a model system for the study of asymmetrical cell division, which is particularly important in developmental processes.

  5. Parent stem cells can serve as niches for their daughter cells.

    PubMed

    Pardo-Saganta, Ana; Tata, Purushothama Rao; Law, Brandon M; Saez, Borja; Chow, Ryan Dz-Wei; Prabhu, Mythili; Gridley, Thomas; Rajagopal, Jayaraj

    2015-07-30

    Stem cells integrate inputs from multiple sources. Stem cell niches provide signals that promote stem cell maintenance, while differentiated daughter cells are known to provide feedback signals to regulate stem cell replication and differentiation. Recently, stem cells have been shown to regulate themselves using an autocrine mechanism. The existence of a 'stem cell niche' was first postulated by Schofield in 1978 to define local environments necessary for the maintenance of haematopoietic stem cells. Since then, an increasing body of work has focused on defining stem cell niches. Yet little is known about how progenitor cell and differentiated cell numbers and proportions are maintained. In the airway epithelium, basal cells function as stem/progenitor cells that can both self-renew and produce differentiated secretory cells and ciliated cells. Secretory cells also act as transit-amplifying cells that eventually differentiate into post-mitotic ciliated cells . Here we describe a mode of cell regulation in which adult mammalian stem/progenitor cells relay a forward signal to their own progeny. Surprisingly, this forward signal is shown to be necessary for daughter cell maintenance. Using a combination of cell ablation, lineage tracing and signalling pathway modulation, we show that airway basal stem/progenitor cells continuously supply a Notch ligand to their daughter secretory cells. Without these forward signals, the secretory progenitor cell pool fails to be maintained and secretory cells execute a terminal differentiation program and convert into ciliated cells. Thus, a parent stem/progenitor cell can serve as a functional daughter cell niche.

  6. Parents' Marital Distress, Divorce, and Remarriage: Links with Daughters' Early Family Formation Transitions

    ERIC Educational Resources Information Center

    Amato, Paul R.; Kane, Jennifer B.

    2011-01-01

    The authors used data from the Add Health study to estimate the effects of parents' marital status and relationship distress on daughters' early family formation transitions. Outcomes included traditional transitions (marriage and marital births) and nontraditional transitions (cohabitation and nonmarital births). Relationship distress among…

  7. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.

    2016-01-01

    ABSTRACT Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae. PMID:27578753

  8. Centriole amplification by mother and daughter centrioles differs in multiciliated cells.

    PubMed

    Al Jord, Adel; Lemaître, Anne-Iris; Delgehyr, Nathalie; Faucourt, Marion; Spassky, Nathalie; Meunier, Alice

    2014-12-01

    The semi-conservative centrosome duplication in cycling cells gives rise to a centrosome composed of a mother and a newly formed daughter centriole. Both centrioles are regarded as equivalent in their ability to form new centrioles and their symmetric duplication is crucial for cell division homeostasis. Multiciliated cells do not use the archetypal duplication program and instead form more than a hundred centrioles that are required for the growth of motile cilia and the efficient propelling of physiological fluids. The majority of these new centrioles are thought to appear de novo, that is, independently from the centrosome, around electron-dense structures called deuterosomes. Their origin remains unknown. Using live imaging combined with correlative super-resolution light and electron microscopy, we show that all new centrioles derive from the pre-existing progenitor cell centrosome through multiple rounds of procentriole seeding. Moreover, we establish that only the daughter centrosomal centriole contributes to deuterosome formation, and thus to over ninety per cent of the final centriole population. This unexpected centriolar asymmetry grants new perspectives when studying cilia-related diseases and pathological centriole amplification observed in cycling cells and associated with microcephaly and cancer.

  9. Polarized myosin produces unequal-size daughters during asymmetric cell division.

    PubMed

    Ou, Guangshuo; Stuurman, Nico; D'Ambrosio, Michael; Vale, Ronald D

    2010-10-29

    Asymmetric positioning of the mitotic spindle before cytokinesis can produce different-sized daughter cells that have distinct fates. Here, we found an asymmetric division in the Caenorhabditis elegans Q neuroblast lineage that began with a centered spindle but generated different-sized daughters, the smaller (anterior) of which underwent apoptosis. During this division, more myosin II accumulated anteriorly, suggesting that asymmetric contractile forces might produce different-sized daughters. Indeed, partial inactivation of anterior myosin by chromophore-assisted laser inactivation created a more symmetric division and allowed the survival and differentiation of the anterior daughter. Thus, the balance of myosin activity on the two sides of a dividing cell can govern the size and fate of the daughters.

  10. The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1.

    PubMed

    Colombi, Paolo; Webster, Brant M; Fröhlich, Florian; Lusk, C Patrick

    2013-10-28

    Nuclear pore complexes (NPCs) are essential protein assemblies that span the nuclear envelope and establish nuclear-cytoplasmic compartmentalization. We have investigated mechanisms that control NPC number in mother and daughter cells during the asymmetric division of budding yeast. By simultaneously tracking existing NPCs and newly synthesized NPC protomers (nups) through anaphase, we uncovered a pool of the central channel nup Nsp1 that is actively targeted to the bud in association with endoplasmic reticulum. Bud targeting required an intact actin cytoskeleton and the class V myosin, Myo2. Selective inhibition of cytoplasmic Nsp1 or inactivation of Myo2 reduced the inheritance of NPCs in daughter cells, leading to a daughter-specific loss of viability. Our data are consistent with a model in which Nsp1 releases a barrier that otherwise prevents NPC passage through the bud neck. It further supports the finding that NPC inheritance, not de novo NPC assembly, is primarily responsible for controlling NPC number in daughter cells.

  11. A synthetic circuit for selectively arresting daughter cells to create aging populations

    PubMed Central

    Afonso, Bruno; Silver, Pamela A.; Ajo-Franklin, Caroline M.

    2010-01-01

    The ability to engineer genetic programs governing cell fate will permit new safeguards for engineered organisms and will further the biological understanding of differentiation and aging. Here, we have designed, built and implemented a genetic device in the budding yeast Saccharomyces cerevisiae that controls cell-cycle progression selectively in daughter cells. The synthetic device was built in a modular fashion by combining timing elements that are coupled to the cell cycle, i.e. cell-cycle specific promoters and protein degradation domains, and an enzymatic domain which conditionally confers cell arrest. Thus, in the presence of a drug, the device is designed to arrest growth of only newly-divided daughter cells in the population. Indeed, while the engineered cells grow normally in the absence of drug, with the drug the engineered cells display reduced, linear growth on the population level. Fluorescence microscopy of single cells shows that the device induces cell arrest exclusively in daughter cells and radically shifts the age distribution of the resulting population towards older cells. This device, termed the ‘daughter arrester’, provides a blueprint for more advanced devices that mimic developmental processes by having control over cell growth and death. PMID:20150416

  12. A synthetic circuit for selectively arresting daughter cells to create aging populations.

    PubMed

    Afonso, Bruno; Silver, Pamela A; Ajo-Franklin, Caroline M

    2010-05-01

    The ability to engineer genetic programs governing cell fate will permit new safeguards for engineered organisms and will further the biological understanding of differentiation and aging. Here, we have designed, built and implemented a genetic device in the budding yeast Saccharomyces cerevisiae that controls cell-cycle progression selectively in daughter cells. The synthetic device was built in a modular fashion by combining timing elements that are coupled to the cell cycle, i.e. cell-cycle specific promoters and protein degradation domains, and an enzymatic domain which conditionally confers cell arrest. Thus, in the presence of a drug, the device is designed to arrest growth of only newly-divided daughter cells in the population. Indeed, while the engineered cells grow normally in the absence of drug, with the drug the engineered cells display reduced, linear growth on the population level. Fluorescence microscopy of single cells shows that the device induces cell arrest exclusively in daughter cells and radically shifts the age distribution of the resulting population towards older cells. This device, termed the 'daughter arrester', provides a blueprint for more advanced devices that mimic developmental processes by having control over cell growth and death.

  13. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.; Rojas, Enrique R.; Koslover, Elena F.; Lee, Timothy K.; Huang, Kerwyn Casey; Theriot, Julie A.

    2016-01-01

    When Staphylococcus aureus undergoes cytokinesis, it builds a septum generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds (“popping”), without detectable changes in cell volume. The likelihood of popping depended on cell wall stress, and the separating cells split open asymmetrically leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Finally, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring, and exhibits hallmarks of mechanical crack propagation. PMID:25931560

  14. Discontinuous Cyclone Movement of Mediterranean cyclones identified through formation analysis of daughter cyclones

    NASA Astrophysics Data System (ADS)

    Ziv, Baruch; Saaroni, Hadas; Harpaz, Tzvi

    2016-04-01

    A new algorithm developed performs an automated classification methodology for daughter cyclones (DCs) formation, with respect to the thermal field of the parent cyclones (PCs). The classification has been applied to winter Mediterranean Cyclones. The algorithm assigns a DC to one of seven types, according to the following considerations: Has the cyclone formed on a front? Is that a cold, a warm or a quasi-stationary front? Is this front part of the frontal system of the PC or of a non-parental system? If none of the above applies, has the cyclone formed within the warm sector? The measures used are the temperature gradient, temperature advection and temperature Laplacian, computed at the formation location of the DC and the temperature difference between the DC and the PC, each derived from the 850-hPa wind and temperature fields. Out of 4,303 DCs analyzed, 85% were identified to belong to one of the 7 predefined types, implying that 15% cannot be related to either baroclinic or thermal factors. More than half were formed at their PCs' frontal system, third on a non-parental frontal system and only 13% within the warm sector of the PC. Most of the cyclones, formed on the PC's cold front, were found at mountain lee locations, whereas cyclones formed on the warm front were generated mostly over the Aegean and the Adriatic Sea. The new methodology exposed a unique DC formation which is actually a Discontinuous Cyclone Movement (DCM), imposed by an encounter with geographical forcing. This formation was identified in 5.9% of the DC formations and is characterized by the following features: 1) parent-daughter distance (d) <1000 Km, 2) the area enclosed by the inner isobar surrounding both the PC and the DC should be less than 2d, 3) the PC should last no more than 18 hours after the DC has been first detected. DCM events found among DCs formed on warm fronts of PCs, to their east, are suggested as a mechanism which enables the PC to cross topographic barriers

  15. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate.

    PubMed

    Yu, Tian-Ying; Shi, Dong-Qiao; Jia, Peng-Fei; Tang, Jun; Li, Hong-Ju; Liu, Jie; Yang, Wei-Cai

    2016-03-01

    Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis. PMID:27014878

  16. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate

    PubMed Central

    Jia, Peng-Fei; Tang, Jun; Li, Hong-Ju; Liu, Jie; Yang, Wei-Cai

    2016-01-01

    Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis. PMID:27014878

  17. Within-herd heritability estimated with daughter-parent regression for yield and somatic cell score.

    PubMed

    Dechow, C D; Norman, H D

    2007-01-01

    Estimates of heritability within herd (h(WH)(2) ) that were generated with daughter-dam regression, daughter-sire regression, and REML were compared, and effects of adjusting lactation records for within-herd heritability on genetic evaluations were evaluated. Holstein records for milk, fat, and protein yields and somatic cell score (SCS) from the USDA national database represented herds in the US Northeast, Southeast, Midwest, and West. Four data subsets (457 to 499 herds) were randomly selected, and a large-herd subset included the 15 largest herds from the West and 10 largest herds from other regions. Subset heritabilities for yield and SCS were estimated assuming a regression model that included fixed covariates for effects of dam yield or SCS, sire predicted transmitting ability (PTA) for yield or SCS, herd-year-season of calving, and age within parity. Dam records and sire PTA were nested within herd as random covariates to generate within-herd heritability estimates that were regressed toward mean h(WH)(2) for the random subset. Heritabilities were estimated with REML using sire models (REML(SIRE)), sire-maternal grandsire models (REML(MGS)), and animal models (REML(ANIM)) for each herd individually in the large-herd subset. Phenotypic variance for each herd was estimated from herd residual variance after adjusting for effects of year-season and age within parity. Deviations from herd-year-season mean were standardized to constant genetic variance across herds, and records were weighted according to estimated error variance to accommodate h(WH)(2) when estimating breeding values. Mean h(WH)(2) tended to be higher with daughter-dam regression (0.35 for milk yield) than with daughter-sire regression (0.24 for milk yield). Heritability estimates varied widely across herds (0.04 to 0.67 for milk yield estimated with daughter-dam regression), and h(WH)(2) deviated from subset means more for large herds than for small herds. Correlation with REML(ANIM) h(WH)(2

  18. Multi-vesicular pulmonary hydatid cyst, the potent underestimated factor in the formation of daughter cysts of pulmonary hydatid disease.

    PubMed

    Sokouti, Mohsen; Sokouti, Babak; Shokouhi, Behrooz; Rahimi-Rad, Mohammad Hossein

    2015-01-01

    Pulmonary multi-vesicular hydatid disease (HD) with Echinococcus granulosus is rare. A 28-year-old woman presented to our center with cough and respiratory distress. Chest x-ray and computerized tomography scan revealed bilateral giant cysts with water-lily sign (ruptured hydatid cysts). The left cyst was in vicinity of heart. With thoracotomy cysts of both lungs were removed. Thousands of translucent, homogenized small daughter cysts were discovered from the left side cyst. Pathologic examinations revealed the ruptured hydatid cysts of both lungs with daughter cysts on the left lung cyst. To best of our knowledge probably this is the first report of multi-vesicular HD in lung. We suppose that the heart pulsation was effective in the formation of daughter cysts.

  19. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    PubMed Central

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis. PMID:26283799

  20. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells.

    PubMed

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob; Oestergaard, Vibe H; Lisby, Michael

    2015-08-17

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis.

  1. A new factor stimulating peptidoglycan hydrolysis to separate daughter cells in Caulobacter crescentus.

    PubMed

    Collier, Justine

    2010-07-01

    Cell division in Gram-negative bacteria involves the co-ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin-like protein FtsZ into a Z-ring at mid-cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z-ring constriction, inner- and outer-membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs-Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid-cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast-growth conditions. State-of-the-art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM-depleted cells compared with wild-type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.

  2. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  3. Daughter Cell Identity Emerges from the Interplay of Cdc42, Septins, and Exocytosis

    PubMed Central

    Okada, Satoshi; Leda, Marcin; Hanna, Julia; Savage, Natasha S.; Bi, Erfei; Goryachev, Andrew B.

    2013-01-01

    Summary Asymmetric cell division plays a crucial role in cell differentiation, unequal replicative senescence, and stem cell maintenance. In budding yeast, the identities of mother and daughter cells begin to diverge at bud emergence when distinct plasma-membrane domains are formed and separated by a septin ring. However, the mechanisms underlying this transformation remain unknown. Here, we show that septins recruited to the site of polarization by Cdc42-GTP inhibit Cdc42 activity in a negative feedback loop, and this inhibition depends on Cdc42 GTPase-activating proteins. Combining live-cell imaging and computational modeling, we demonstrate that the septin ring is sculpted by polarized exocytosis, which creates a hole in the accumulating septin density and relieves the inhibition of Cdc42. The nascent ring generates a sharp boundary that confines the Cdc42 activity and exocytosis strictly to its enclosure and thus clearly delineates the daughter cell identity. Our findings define a fundamental mechanism underlying eukaryotic cell fate differentiation. PMID:23906065

  4. Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast

    PubMed Central

    Narayan, Monisha; Chou, Ching-Shan; Park, Hay-Oak

    2013-01-01

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model. PMID:23437206

  5. Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation.

    PubMed

    Ruggiero, Alessia; Marasco, Daniela; Squeglia, Flavia; Soldini, Silvia; Pedone, Emilia; Pedone, Carlo; Berisio, Rita

    2010-09-01

    Cell separation depends on cell-wall hydrolases that cleave the peptidoglycan layer connecting daughter cells. In Mycobacterium tuberculosis, this process is governed by the predicted endopeptidase RipA. In the absence of this enzyme, the bacterium is unable to divide and exhibits an abnormal phenotype. We here report the crystal structure of a relevant portion of RipA, containing its catalytic-domain and an extra-domain of hitherto unknown function. The structure clearly demonstrates that RipA is produced as a zymogen, which needs to be activated to achieve cell-division. Bacterial cell-wall degradation assays and proteolysis experiments strongly suggest that activation occurs via proteolytic processing of a fully solvent exposed loop identified in the crystal structure. Indeed, proteolytic cleavage at this loop produces an activated form, consisting of the sole catalytic domain. Our work provides the first evidence of self-inhibition in cell-disconnecting enzymes and opens a field for the design of novel antitubercular therapeutics.

  6. A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae.

    PubMed Central

    Lai, Chi-Yung; Jaruga, Ewa; Borghouts, Corina; Jazwinski, S Michal

    2002-01-01

    The yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, or budding. In each cell division, the daughter cell is usually smaller and younger than the mother cell, as defined by the number of divisions it can potentially complete before it dies. Although individual yeast cells have a limited life span, this age asymmetry between mother and daughter ensures that the yeast strain remains immortal. To understand the mechanisms underlying age asymmetry, we have isolated temperature-sensitive mutants that have limited growth capacity. One of these clonal-senescence mutants was in ATP2, the gene encoding the beta-subunit of mitochondrial F(1), F(0)-ATPase. A point mutation in this gene caused a valine-to-isoleucine substitution at the ninetieth amino acid of the mature polypeptide. This mutation did not affect the growth rate on a nonfermentable carbon source. Life-span determinations following temperature shift-down showed that the clonal-senescence phenotype results from a loss of age asymmetry at 36 degrees, such that daughters are born old. It was characterized by a loss of mitochondrial membrane potential followed by the lack of proper segregation of active mitochondria to daughter cells. This was associated with a change in mitochondrial morphology and distribution in the mother cell and ultimately resulted in the generation of cells totally lacking mitochondria. The results indicate that segregation of active mitochondria to daughter cells is important for maintenance of age asymmetry and raise the possibility that mitochondrial dysfunction may be a normal cause of aging. The finding that dysfunctional mitochondria accumulated in yeasts as they aged and the propensity for old mother cells to produce daughters depleted of active mitochondria lend support to this notion. We propose, more generally, that age asymmetry depends on partition of active and undamaged cellular components to the progeny and that this "filter" breaks down with age. PMID

  7. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    PubMed Central

    Bivik, Caroline; MacDonald, Ryan B.; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-01-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  8. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling.

    PubMed

    Bivik, Caroline; MacDonald, Ryan B; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-04-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  9. Formative cell divisions: principal determinants of plant morphogenesis.

    PubMed

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  10. Formative cell divisions: principal determinants of plant morphogenesis.

    PubMed

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation. PMID:23248201

  11. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    PubMed

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  12. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals “aging factors” and mechanism of lifespan asymmetry

    PubMed Central

    Yang, Jing; McCormick, Mark A.; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K.; Li, Hao

    2015-01-01

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials (“aging factors”) through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms. PMID:26351681

  13. Raising Strong Daughters.

    ERIC Educational Resources Information Center

    Gadeberg, Jeanette

    In response to an alarming drop in girls' self-esteem in early adolescence, this parents' guide provides suggestions for raising daughters to become confident, healthy, and independent. Chapter 1, "Yesterday's Daughters," examines how cultural messages inhibit girls' development. Chapter 2, "Raising an Opinionated Daughter," suggests how to help…

  14. Microdosimetry of astatine-211 single-cell irradiation: role of daughter polonium-211 diffusion.

    PubMed

    Palm, Stig; Humm, John L; Rundqvist, Robert; Jacobsson, Lars

    2004-02-01

    A microdosimetric analysis of previously published data on 211At-albumin, free 211At, and 211At-C215 irradiation of Colo-205 cells in a slowly rotating single-cell suspension is presented. A custom-built computer program based on the Monte Carlo method was used to simulate the irradiation and the energy deposition in individual cell nuclei. Separate simulations were made for the assumption that the 211Po atom stays in the position where it is created, and that it diffuses away. The mean event number at which 37% of all cells survived, n37, and the frequency mean specific energy per event, zF, were estimated. The Poisson distribution of events and simulated single and multievent distributions of specific energy were used to find the single-cell specific energy at which the probability of survival is reduced to 37%, z37. The calculated single-cell radiosensitivity values show that 211Po atoms, created on a cell surface by the decay of 211At atoms, will diffuse from the cell during its life-span. The increasing distance to the cell nucleus will drastically decrease the probability of the emitted alpha particle to hit the nucleus. This will result in fewer alpha-particle events in the cell nucleus. For dispersed cells, the diffusion of 211Po atoms will reduce the total dose from cell-bound 211At by a factor of 2.

  15. Microdosimetry of astatine-211 single-cell irradiation: role of daughter polonium-211 diffusion.

    PubMed

    Palm, Stig; Humm, John L; Rundqvist, Robert; Jacobsson, Lars

    2004-02-01

    A microdosimetric analysis of previously published data on 211At-albumin, free 211At, and 211At-C215 irradiation of Colo-205 cells in a slowly rotating single-cell suspension is presented. A custom-built computer program based on the Monte Carlo method was used to simulate the irradiation and the energy deposition in individual cell nuclei. Separate simulations were made for the assumption that the 211Po atom stays in the position where it is created, and that it diffuses away. The mean event number at which 37% of all cells survived, n37, and the frequency mean specific energy per event, zF, were estimated. The Poisson distribution of events and simulated single and multievent distributions of specific energy were used to find the single-cell specific energy at which the probability of survival is reduced to 37%, z37. The calculated single-cell radiosensitivity values show that 211Po atoms, created on a cell surface by the decay of 211At atoms, will diffuse from the cell during its life-span. The increasing distance to the cell nucleus will drastically decrease the probability of the emitted alpha particle to hit the nucleus. This will result in fewer alpha-particle events in the cell nucleus. For dispersed cells, the diffusion of 211Po atoms will reduce the total dose from cell-bound 211At by a factor of 2. PMID:15000607

  16. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells.

    PubMed

    Moreno, Alberto; Carrington, Jamie T; Albergante, Luca; Al Mamun, Mohammed; Haagensen, Emma J; Komseli, Eirini-Stavroula; Gorgoulis, Vassilis G; Newman, Timothy J; Blow, J Julian

    2016-09-27

    To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are "licensed" by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin-a "double fork stall" (DFS)-replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle. PMID:27516545

  17. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells

    PubMed Central

    Moreno, Alberto; Carrington, Jamie T.; Al Mamun, Mohammed; Haagensen, Emma J.; Komseli, Eirini-Stavroula; Gorgoulis, Vassilis G.; Newman, Timothy J.; Blow, J. Julian

    2016-01-01

    To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are “licensed” by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin—a “double fork stall” (DFS)—replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle. PMID:27516545

  18. Role of polarized cell divisions in zebrafish neural tube formation.

    PubMed

    Clarke, Jon

    2009-04-01

    Development of epithelial cell polarity and morphogenesis of a central lumen are essential prerequisites for the formation of the vertebrate neural tube. In teleost fish embryos this first involves the formation of a solid neural rod structure that then undergoes a process of cavitation to form a lumen. This process is initiated from a neural plate that has a distinct organization compared to other vertebrates, and involves complex cell intercalations and rearrangements. A key element is a mode of polarized cell division that generates daughters with mirror-image apico-basal polarity. These mirror-symmetric divisions have powerful morphogenetic influence because when they occur in ectopic locations they orchestrate the development of ectopic apical and basal specializations and the development of ectopic neural tubes.

  19. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  20. Clonal mature adipocyte production of proliferative-competent daughter cells requires lipid export prior to cell division

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous in vitro observations have been published to show that mature adipocytes may resume proliferation and begin to populate the adipofibroblast fraction or form other cell types. In the present study, we evaluated clonal cultures of mature pig-derived adipocytes as they began to reestablish the...

  1. Your Daughter's First Gynecological Exam

    MedlinePlus

    ... issues to discuss. Stress to your daughter the importance of answering these questions truthfully, even though she might feel uncomfortable about it. For example, the health professional can help determine, based on your daughter's sexual ...

  2. [To begin to believe. Working notes on a mother-daughter incest case and its implications on the formation of the pre-transitional object].

    PubMed

    Haineault, D L

    1990-11-01

    Most psychoanalytic literature dealing with incest holds the premise that the act took place between a parent and a child of opposite sex. Incidentally, most of these cases involve a father-daughter incest (e.g. research by Julien Bigras). However, this is only one of four mathematically possible combinations. For instance, we tend to underestimate the occurrences and, consequently, the repercussions of mother-daughter incest relationships. The biological and psychological importance of the mother in the child's development radically influences the mother-daughter incest. In the reactualizing of transference, analysts, especially if they are female, often find themselves confronted with some of the most fundamental choices in the life of an infant, such as to live or to die, to grow or to cease to grow. It then becomes crucial to understand the most primitive components of the infant's early life. In such a case, an analyst must consult some of the most complex theoretical work covering the subject. The author, for her part, has greatly referred to the experiences of Renatta Gaddini, who insists on the importance of developing a pretransitional space during the analysis. This pretransitional space, however, is useless if the analyst is unable to follow it up by becoming a transformational object in the eyes of the patient, in the way described by Christopher Bollas: an object suggesting that the patient relive the steps leading from pre-thought to thought, from real to symbolic. Indeed, Bollas' research has allowed the author to develop a more accurate vision of what is at stake. At the same time, she was able to assess the amount of work still needed in that area of study, an area which, up to this day, offers only very little research to support the author's exploration.

  3. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells.

    PubMed

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-08-16

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum. PMID:27506799

  4. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division

    PubMed Central

    Oliva, María A.

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex. PMID:27668216

  5. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division

    PubMed Central

    Oliva, María A.

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  6. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    PubMed

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex. PMID:27668216

  7. Autophagosome formation in mammalian cells.

    PubMed

    Burman, Chloe; Ktistakis, Nicholas T

    2010-12-01

    Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

  8. Positioning of polarity formation by extracellular signaling during asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim

    2016-07-01

    Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which ultimately generates cell diversity. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of different PAR proteins on the membrane along the anterior-posterior axis. However, the phenomenon of polarity reversal has been observed in which the axis of asymmetric cell division of the P2 and P3 cells is formed in an opposite manner to that of the P0 and P1 cells. The extracellular signal MES-1/SRC-1 has been shown to induce polarity reversal, but the detailed mechanism remains elusive. Here, using a mathematical model, I explore the mechanism by which MES-1/SRC-1 signaling can induce polarity reversal and ultimately affect the process of polarity formation. I show that a positive correlation between SRC-1 and the on-rate of PAR-2 is the essential mechanism underlying polarity reversal, providing a mathematical basis for the orientation of cell polarity patterns.

  9. We Are Our Mothers' Daughters?

    ERIC Educational Resources Information Center

    Grady, Marilyn L.; LaCost, Barbara Y.

    2004-01-01

    Writing that makes one think, writing that enriches one's understanding of the past and present, that's what Cokie Roberts' book, "We Are Our Mothers' Daughters" provides, and that, too, is what the authors of this issue of the "Journal of Women in Educational Leadership" provide. Roberts' background as a news analyst covering politics, Congress…

  10. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  11. Formation and separation of root border cells.

    PubMed

    Driouich, Azeddine; Durand, Caroline; Vicré-Gibouin, Maïté

    2007-01-01

    Plant roots release a large number of border cells into the rhizosphere, which are believed to play a key role in root development and health. The formation and loss of these cells from the root cap region is a developmentally regulated process that is also controlled by phytohormones and environmental factors. The separation of border cells involves the complete dissociation of individual cells from each other and from root tissue. This process requires the activity of cell wall-degrading enzymes that solubilize the cell wall connections between cells. We present and discuss the solubilization process with an emphasis on pectin-degrading enzymes as well as the recently discovered root border-like cells of Arabidopsis thaliana.

  12. Parent characteristics linked with daughters' attachment styles.

    PubMed

    Kilmann, Peter R; Vendemia, Jennifer M C; Parnell, Michele M; Urbaniak, Geoffrey C

    2009-01-01

    This study investigated links between parent characteristics and daughters' attachment styles for 90 female undergraduates and their married biological parents. Parents with a secure attachment pattern were rated as more accepting, less controlling, more competent, and more consistent in showing love and affection to their daughter in contrast to parents with an insecure attachment pattern. Significant positive associations were found between mothers' fearful attachment scores and the fearful, preoccupied, and dismissive attachment scores of daughters. Daughters of matched secure parents were more likely to report a secure attachment style, while daughters of matched insecure parents were more likely to report an insecure attachment style.

  13. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  14. Mutagenicity of radon and radon daughters

    SciTech Connect

    Evans, H.H.

    1991-01-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  15. Orphan radon daughters at Denver Radium site

    SciTech Connect

    Holub, R.F.; Droullard, R.F.; Davis, T.H.

    1992-12-31

    During 18 mo of sampling airborne radioactively at a National Priority List ({open_quotes}Superfund{close_quotes}) site in metroPOlitan Denver, Bureau of mines personnel discovered radon daughters that are not supported by the parent radon gas. We refer to them as {open_quotes}orphan{close_quotes} daughters because the parent, radon, is not present in sufficient concentration to support the measured daughter products. Measurements of the {open_quotes}orphan{close_quotes} daughters were made continuously, using the Bureau-developed radon and working-level (radon-daughter) monitors. The data showed high equilibrium ratios, ranging from 0.7 to 3.5, for long periods of time. Repeated, high-volume, 15-min grab samples were made, using the modified Tsivoglou method, to measure radon daughters, to which thoron daughters contributed 26 {+-} 12%. On average 28 {+-} 6% of the particulate activity was contributed by thoron daughters. Most samples were mixtures in which the {sup 218}Po concentration was lower than that of {sup 214}Pb and {sup 214}Bi, in agreement with the high-equilibrium factors obtained from the continuous sampling data. In view of the short half-life of radon progeny, we conclude that the source of the orphan daughters is not far from the Superfund sites. The mechanism of this phenomenon is not understood at this time, but we will discuss its possible significance in evaluating population doses.

  16. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  17. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  18. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  19. Organochlorine formation in magnesium electrowinning cells.

    PubMed

    Deutscher, R L; Cathro, K J

    2001-04-01

    The formation of organochlorines during the electrolytic production of magnesium was investigated using a laboratory-scale electrolytic cell having a graphite anode, a liquid aluminium alloy cathode, and a molten chloride electrolyte. The cell was operated at current densities ranging from 3000 to 10,000 A m(-2) and at temperatures ranging from 660 degrees C to 750 degrees C. Organochlorines were adsorbed from the cell off-gases onto silica gel, extracted with hexane, and determined by gas chromatography. All compounds identified were fully chlorinated aliphatic and aromatic compounds, the major components being hexachlorobutadiene, hexachlorobenzene, hexachloroethylene, and octachlorostyrene. The total amount of organochlorines per tonne of magnesium produced decreased with electrolysis time and with current density and increased with operating temperature; it was also dependent on the type of graphite employed. The output of organochlorines varied from 5 to 20 g t(-1) of magnesium. PMID:11297394

  20. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation

    PubMed Central

    Zeng, Gefei; Taylor, Sarah M.; McColm, Janet R.; Kappas, Nicholas C.; Kearney, Joseph B.; Williams, Lucy H.; Hartnett, Mary E.; Bautch, Victoria L.

    2007-01-01

    New blood vessel formation requires the coordination of endothelial cell division and the morphogenetic movements of vessel expansion, but it is not known how this integration occurs. Here, we show that endothelial cells regulate division orientation during the earliest stages of blood vessel formation, in response to morphogenetic cues. In embryonic stem (ES) cell–derived vessels that do not experience flow, the plane of endothelial cytokinesis was oriented perpendicular to the vessel long axis. We also demonstrated regulated cleavage orientation in vivo, in flow-exposed forming retinal vessels. Daughter nuclei moved away from the cleavage plane after division, suggesting that regulation of endothelial division orientation effectively extends vessel length in these developing vascular beds. A gain-of-function mutation in VEGF signaling increased randomization of endothelial division orientation, and this effect was rescued by a transgene, indicating that regulation of division orientation is a novel mechanism whereby VEGF signaling affects vessel morphogenesis. Thus, our findings show that endothelial cell division and morphogenesis are integrated in developing vessels by flow-independent mechanisms that involve VEGF signaling, and this cross talk is likely to be critical to proper vessel morphogenesis. PMID:17068148

  1. Mother-Daughter Communication Patterns Re Sexuality.

    ERIC Educational Resources Information Center

    Fox, Greer L.

    After a review of the literature on teenage sexual behavior and contraceptive practice and their consequences, this paper presents a brief description of a research project on mother-daughter communication patterns, which is intended to investigate the influence of female parents on the sexual and contraceptive behavior of teenage daughters. It…

  2. Contribution of radon and radon daughters to respiratory cancer

    SciTech Connect

    Harley, N.; Samet, J.M.; Cross, F.T.; Hess, T.; Muller, J.; Thomas, D.

    1986-12-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime.

  3. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  4. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    polyelectrolyte layer functioning as the surface dipole formation layer to provide better electrical contact with the photoactive layer. Due to the effectiveness of the conjugated polyelectrolyte layer, performance improvement was also observed. Furthermore, other issues regarding the semi-transparent tandem solar cells (e.g., photocurrent matching, exterior color tuning, and transparency tuning) are all explored to optimize best performance. In Chapter 5 and 6, the architectures of double- and triple-junction tandem solar cells are explored. Theoretically, triple-junction tandem solar cells with three photoactive absorbers with cascaded energy bandgaps have the potential to achieve higher performance, in comparison with double-junction tandem solar cells. Such expectations can be ascribed to the minimized carrier thermalization loss and further improved light absorption. However, the design of triple-junction solar cells often involves sophisticated multiple layer deposition as well as substantial optimization. Therefore, there is a lack of successful demonstrations of triple-junction solar cells outperforming the double-junction counterparts. To solve the incompatible issues related to the layer deposition in the fabrication, we proposed a novel architecture of inverted-structure tandem solar cells with newly designed interconnecting layers. Our design of interconnecting layers does not only focus on maintaining the orthogonal solution processing advantages, but also provides an excellent compatibility in the energy level alignment to allow different absorber materials to be used. Furthermore, we also explored the light management inside the double- and triple-junction tandem solar cells. The study of light management was carried out through optical simulation method based transfer matrix formalism. The intention is to obtain a balanced photocurrent output from each subcells inside the tandem solar cell, thus the minimal recombination loss at the contact of interconnecting

  5. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  6. Neurons derive from the more apical daughter in asymmetric divisions in the zebrafish neural tube.

    PubMed

    Alexandre, Paula; Reugels, Alexander M; Barker, David; Blanc, Eric; Clarke, Jonathan D W

    2010-06-01

    In the developing CNS, asymmetric cell division is critical for maintaining the balanced production of differentiating neurons while renewing the population of neural progenitors. In invertebrates, this process depends on asymmetric inheritance of fate determinants during progenitor divisions. A similar mechanism is widely believed to underlie asymmetrically fated divisions in vertebrates, but compelling evidence for this is missing. We used live imaging of individual progenitors in the intact zebrafish embryo CNS to test this hypothesis. We found that asymmetric inheritance of a subcellular domain is strongly correlated with asymmetric daughter fates and our results reveal an unexpected feature of this process. The daughter cell destined to become a neuron was derived from the more apical of the two daughters, whereas the more basal daughter inherited the basal process and replenished the apical progenitor pool.

  7. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation

    PubMed Central

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-01-01

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase. PMID:26293378

  8. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation.

    PubMed

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-08-21

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase.

  9. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  10. Centrobin controls mother-daughter centriole asymmetry in Drosophila neuroblasts.

    PubMed

    Januschke, J; Reina, J; Llamazares, S; Bertran, T; Rossi, F; Roig, J; Gonzalez, C

    2013-03-01

    During interphase in Drosophila neuroblasts, the Centrobin (CNB)-positive daughter centriole retains pericentriolar material (PCM) and organizes an aster that is a key determinant of the orientation of cell division. Here we show that daughter centrioles depleted of CNB cannot fulfil this function whereas mother centrioles that carry ectopic CNB can. CNB co-precipitates with a set of centrosomal proteins that include γ-TUB, ANA2, CNN, SAS-4, ASL, DGRIP71, POLO and SAS-6. Following chemical inhibition of POLO or removal of three POLO phosphorylation sites present in CNB, the interphase microtubule aster is lost. These results demonstrate that centriolar CNB localization is both necessary and sufficient to enable centrioles to retain PCM and organize the interphase aster in Drosophila neuroblasts. They also reveal an interphase function for POLO in this process that seems to have co-opted part of the protein network involved in mitotic centrosome maturation. PMID:23354166

  11. Role of the N-Acetylmuramoyl-l-Alanyl Amidase, AmiA, of Helicobacter pylori in Peptidoglycan Metabolism, Daughter Cell Separation, and Virulence.

    PubMed

    Chaput, Catherine; Ecobichon, Chantal; Pouradier, Nadine; Rousselle, Jean-Claude; Namane, Abdelkader; Boneca, Ivo G

    2016-09-01

    The human gastric pathogen, Helicobacter pylori, is becoming increasingly resistant to most available antibiotics. Peptidoglycan (PG) metabolism is essential to eubacteria, hence, an excellent target for the development of new therapeutic strategies. However, our knowledge on PG metabolism in H. pylori remains poor. We have further characterized an isogenic mutant of the amiA gene encoding a N-acetylmuramoyl-l-alanyl amidase. The amiA mutant displayed long chains of unseparated cells, an impaired motility despite the presence of intact flagella and a tolerance to amoxicillin. Interestingly, the amiA mutant was impaired in colonizing the mouse stomach suggesting that AmiA is a valid target in H. pylori for the development of new antibiotics. Using reverse phase high-pressure liquid chromatography, we analyzed the PG muropeptide composition and glycan chain length distribution of strain 26695 and its amiA mutant. The analysis showed that H. pylori lacked muropeptides with a degree of cross-linking higher than dimeric muropeptides. The amiA mutant was also characterized by a decrease of muropeptides carrying 1,6-anhydro-N-acetylmuramic acid residues, which represent the ends of the glycan chains. This correlated with an increase of very long glycan strands in the amiA mutant. It is suggested that these longer glycan strands are trademarks of the division site. Taken together, we show that the low redundancy on genes involved in PG maturation supports H. pylori as an actractive alternative model to study PG metabolism and cell shape regulation. PMID:27447281

  12. Role of the N-Acetylmuramoyl-l-Alanyl Amidase, AmiA, of Helicobacter pylori in Peptidoglycan Metabolism, Daughter Cell Separation, and Virulence

    PubMed Central

    Chaput, Catherine; Ecobichon, Chantal; Pouradier, Nadine; Rousselle, Jean-Claude; Namane, Abdelkader

    2016-01-01

    The human gastric pathogen, Helicobacter pylori, is becoming increasingly resistant to most available antibiotics. Peptidoglycan (PG) metabolism is essential to eubacteria, hence, an excellent target for the development of new therapeutic strategies. However, our knowledge on PG metabolism in H. pylori remains poor. We have further characterized an isogenic mutant of the amiA gene encoding a N-acetylmuramoyl-l-alanyl amidase. The amiA mutant displayed long chains of unseparated cells, an impaired motility despite the presence of intact flagella and a tolerance to amoxicillin. Interestingly, the amiA mutant was impaired in colonizing the mouse stomach suggesting that AmiA is a valid target in H. pylori for the development of new antibiotics. Using reverse phase high-pressure liquid chromatography, we analyzed the PG muropeptide composition and glycan chain length distribution of strain 26695 and its amiA mutant. The analysis showed that H. pylori lacked muropeptides with a degree of cross-linking higher than dimeric muropeptides. The amiA mutant was also characterized by a decrease of muropeptides carrying 1,6-anhydro-N-acetylmuramic acid residues, which represent the ends of the glycan chains. This correlated with an increase of very long glycan strands in the amiA mutant. It is suggested that these longer glycan strands are trademarks of the division site. Taken together, we show that the low redundancy on genes involved in PG maturation supports H. pylori as an actractive alternative model to study PG metabolism and cell shape regulation. PMID:27447281

  13. Adult Daughters' Descriptions of Their Mother-Daughter Relationship in the Context of Chronic Conflict.

    PubMed

    Pickering, Carolyn E Z; Mentes, Janet C; Moon, Ailee; Pieters, Huibrie C; Phillips, Linda R

    2015-01-01

    The purpose of this article is to describe, from the perspective of the adult daughter, the mother-daughter relationship in the context of chronic conflict. Grounded theory methodology was used. An online recruitment strategy was used to identify a sample of adult daughters (N = 13) who self-identified as having an abusive relationship with their aging mother. Data collection was completed through semi-structured telephone interviews. Daughters framed their relationship around their perceptions of past childhood injustices. These injustices invoked strong negative emotions. Daughters had equally strong motivations for sustaining the relationship, driven by desire to reconcile their negative experience through seeking validation and futile-hoping as well as a sense of obligation to do due diligence. Together these factors created an environment of inevitable confrontation and a relationship defined by chronic conflict. Findings from the study provide theoretical insights to the conceptualization of aggression, power relationships, and the development of elder abuse and neglect. PMID:26421508

  14. Adult Daughters' Descriptions of Their Mother-Daughter Relationship in the Context of Chronic Conflict.

    PubMed

    Pickering, Carolyn E Z; Mentes, Janet C; Moon, Ailee; Pieters, Huibrie C; Phillips, Linda R

    2015-01-01

    The purpose of this article is to describe, from the perspective of the adult daughter, the mother-daughter relationship in the context of chronic conflict. Grounded theory methodology was used. An online recruitment strategy was used to identify a sample of adult daughters (N = 13) who self-identified as having an abusive relationship with their aging mother. Data collection was completed through semi-structured telephone interviews. Daughters framed their relationship around their perceptions of past childhood injustices. These injustices invoked strong negative emotions. Daughters had equally strong motivations for sustaining the relationship, driven by desire to reconcile their negative experience through seeking validation and futile-hoping as well as a sense of obligation to do due diligence. Together these factors created an environment of inevitable confrontation and a relationship defined by chronic conflict. Findings from the study provide theoretical insights to the conceptualization of aggression, power relationships, and the development of elder abuse and neglect.

  15. Korean American mother and daughter communication on women's health topics.

    PubMed

    Park, Wansoo; Grindel, Cecelia Gatson

    2007-01-01

    The purpose of this study was to explore communication patterns about health behaviors and lifestyles between Korean mothers and daughters living in the United States. Demographic and general health information was also collected. Semi-structured interviews were conducted with nine Korean mother and daughter dyads. Korean mothers talked with their daughters about healthy diets and exercise but relied on daughters' schools to provide much of their daughters'health education information related to growth and developmental changes and women's health issues such as screening and HIV prevention practice. Intervention models to enhance mother/daughter health communication and to improve mothers' self care need to be investigated.

  16. Formation and cultivation of medaka primordial germ cells.

    PubMed

    Li, Zhendong; Li, Mingyou; Hong, Ni; Yi, Meisheng; Hong, Yunhan

    2014-07-01

    Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

  17. Melancholic Mothering: Mothers, Daughters and Family Violence

    ERIC Educational Resources Information Center

    Kenway, Jane; Fahey, Johannah

    2008-01-01

    Through selected theories of melancholia, this paper seeks to shed some fresh interpretive light on the reproduction and disruption of gender, violence and family turmoil across generations of mothers and daughters. The originality of the paper lies in its exploratory deployment of theories of melancholia to consider issues of women, violence and…

  18. Humanistic Treatment of Father-Daughter Incest.

    ERIC Educational Resources Information Center

    Giarretto, Henry

    1978-01-01

    Following a case study of father-daughter incest, the author comments on the prevalence of incest and describes Santa Clara County's Child Sexual Abuse Treatment Program (CSATP). The founding of CSATP, its treatment model for incestuous families, and its preliminary results are covered. (SJL)

  19. Sons, Daughters, and Intergenerational Social Support.

    ERIC Educational Resources Information Center

    Spitze, Glenna; Logan, John

    1990-01-01

    Examined effects of the number and gender composition of children on the receipt of social support by older persons. Effects varied with type of support: having daughters was most salient for telephone contact, while frequency of visiting was affected by both gender and number of children. (Author/TE)

  20. Zoonotic Anatrichosomiasis in a Mother and Daughter

    PubMed Central

    Hellstein, John W.; Lanzel, Emily A.

    2014-01-01

    Zoonotic anatrichosomiasis in a mother and daughter is reported. Both presented with a 10-week history of multiple painful oral ulcers. Biopsy specimens revealed the presence of small, coiled trichuroid nematodes with distinctive morphological features, including stichocytes and paired bacillary bands. This represents an unusual infection by a zoonotic Anatrichosoma species. PMID:24899034

  1. Conflict sources and responses in mother-daughter relationships: perspectives of adult daughters of aging immigrant women.

    PubMed

    Usita, Paul M; Du Bois, Barbara C

    2005-01-01

    Mother-daughter conflict sources and responses among immigrant families are not well understood. In the research reported here, in-depth interview data about conflict were collected from 11 adult daughters of Japanese immigrant mothers. Conflict sources were mothers' unsolicited advice, daughters and mothers not living up to expectations of the other, and daughters' independence of mothers. Responses to conflict included voicing concerns, displaying loyalty, and utilizing the assistance of family. Comparisons between immigrant and nonimmigrant mother-daughter dyads' conflict experiences are discussed, and suggestions for future research on mother-daughter conflict within the immigrant context are provided. PMID:15914425

  2. Perivascular mast cells regulate vein graft neointimal formation and remodeling

    PubMed Central

    Grassia, Gianluca; Cambrook, Helen; Ialenti, Armando; MacRitchie, Neil; Carberry, Jaclyn; Lawrence, Catherine

    2015-01-01

    Objective. Emerging evidence suggests an important role for mast cells in vein graft failure. This study addressed the hypothesis that perivascular mast cells regulate in situ vascular inflammatory and proliferative responses and subsequent vein graft neointimal lesion formation, using an optimized local mast cell reconstitution method. Methods and Results. Neointimal hyperplasia was induced by insertion of a vein graft into the right carotid artery in wild type and mast cell deficient KitW−sh/W−sh mice. In some experiments, mast cells were reconstituted systemically (tail vein injection of bone marrow-derived mast cells) or locally (directly into the right neck area) prior to vein grafting. Vein graft neointimal lesion formation was significantly (P < 0.05) reduced in KitW−sh/W−sh mice. Mast cell deficiency reduced the number of proliferating cells, and inhibited L-selectin, CCL2, M-CSF and MIP-3α expression in the vein grafts. Local but not systemic mast cell reconstitution restored a perivascular mast cell population that subsequently promoted neointimal formation in mast cell deficient mice. Conclusion. Our data demonstrate that perivascular mast cells play a key role in promoting neointima formation by inducing local acute inflammatory and proliferative responses. These results suggest that ex vivo intraoperative targeting of mast cells may have therapeutic potential for the prevention of pathological vein graft remodeling. PMID:26312183

  3. In Vivo Generation of Neural Stem Cells Through Teratoma Formation.

    PubMed

    Hong, Yean Ju; Kim, Jong Soo; Choi, Hyun Woo; Song, Hyuk; Park, Chankyu; Do, Jeong Tae

    2016-09-01

    Pluripotent stem cells have the potential to differentiate into all cell types of the body in vitro through embryoid body formation or in vivo through teratoma formation. In this study, we attempted to generate in vivo neural stem cells (NSCs) differentiated through teratoma formation using Olig2-GFP transgenic embryonic stem cells (ESCs). After 4 to 6 weeks of injection with Olig2-GFP transgenic ESCs, Olig2-GFP(+) NSCs were identified in teratomas formed in immunodeficient mice. Interestingly, 4-week-old teratomas contained higher percentage of Olig2-GFP(+) cells (∼11%) than 6-week-old teratomas (∼3%). These in vivo-derived NSCs expressed common NSC markers (Nestin and Sox2) and differentiated into terminal neuronal and glial lineages. These results suggest that pure NSC populations exhibiting properties similar to those of brain-derived NSCs can be established through teratoma formation. PMID:27439546

  4. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers.

    PubMed

    Sofou, Stavroula; Kappel, Barry J; Jaggi, Jaspreet S; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2007-01-01

    Targeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters. Retention of (225)Ac daughters at the target increases efficacy; escape and distribution throughout the body increases toxicity. During circulation, molecular carriers conjugated to (225)Ac cannot retain any of the daughters. We previously proposed liposomal encapsulation of (225)Ac to retain the daughters, whose retention was shown to be liposome-size dependent. However, daughter retention was lower than expected: 22% of theoretical maximum decreasing to 14%, partially due to the binding of (225)Ac to the phospholipid membrane. In this study, Multivesicular liposomes (MUVELs) composed of different phospholipids were developed to increase daughter retention. MUVELs are large liposomes with entrapped smaller lipid-vesicles containing (225)Ac. PEGylated MUVELs stably retained over time 98% of encapsulated (225)Ac. Retention of (213)Bi, the last daughter, was 31% of the theoretical maximum retention of (213)Bi for the liposome sizes studied. MUVELs were conjugated to an anti-HER2/neu antibody (immunolabeled MUVELs) and were evaluated in vitro with SKOV3-NMP2 ovarian cancer cells, exhibiting significant cellular internalization (83%). This work demonstrates that immunolabeled MUVELs might be able to deliver higher fractions of generated alpha-particles per targeted (225)Ac compared to the relative fractions of alpha-particles delivered by (225)Ac-labeled molecular carriers.

  5. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers.

    PubMed

    Sofou, Stavroula; Kappel, Barry J; Jaggi, Jaspreet S; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2007-01-01

    Targeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters. Retention of (225)Ac daughters at the target increases efficacy; escape and distribution throughout the body increases toxicity. During circulation, molecular carriers conjugated to (225)Ac cannot retain any of the daughters. We previously proposed liposomal encapsulation of (225)Ac to retain the daughters, whose retention was shown to be liposome-size dependent. However, daughter retention was lower than expected: 22% of theoretical maximum decreasing to 14%, partially due to the binding of (225)Ac to the phospholipid membrane. In this study, Multivesicular liposomes (MUVELs) composed of different phospholipids were developed to increase daughter retention. MUVELs are large liposomes with entrapped smaller lipid-vesicles containing (225)Ac. PEGylated MUVELs stably retained over time 98% of encapsulated (225)Ac. Retention of (213)Bi, the last daughter, was 31% of the theoretical maximum retention of (213)Bi for the liposome sizes studied. MUVELs were conjugated to an anti-HER2/neu antibody (immunolabeled MUVELs) and were evaluated in vitro with SKOV3-NMP2 ovarian cancer cells, exhibiting significant cellular internalization (83%). This work demonstrates that immunolabeled MUVELs might be able to deliver higher fractions of generated alpha-particles per targeted (225)Ac compared to the relative fractions of alpha-particles delivered by (225)Ac-labeled molecular carriers. PMID:17935286

  6. Asterless licenses daughter centrioles to duplicate for the first time in Drosophila embryos.

    PubMed

    Novak, Zsofia A; Conduit, Paul T; Wainman, Alan; Raff, Jordan W

    2014-06-01

    Centrioles form centrosomes and cilia, and defects in any of these three organelles are associated with human disease [1]. Centrioles duplicate once per cell cycle, when a mother centriole assembles an adjacent daughter during S phase. Daughter centrioles cannot support the assembly of another daughter until they mature into mothers during the next cell cycle [2-5]. The molecular nature of this daughter-to-mother transition remains mysterious. Pioneering studies in C. elegans identified a set of core proteins essential for centriole duplication [6-12], and a similar set have now been identified in other species [10, 13-18]. The protein kinase ZYG-1/Sak/Plk4 recruits the inner centriole cartwheel components SAS-6 and SAS-5/Ana2/STIL, which then recruit SAS-4/CPAP, which in turn helps assemble the outer centriole microtubules [19, 20]. In flies and humans, the Asterless/Cep152 protein interacts with Sak/Plk4 and Sas-4/CPAP and is required for centriole duplication, although its precise role in the assembly pathway is unclear [21-24]. Here, we show that Asl is not incorporated into daughter centrioles as they assemble during S phase but is only incorporated once mother and daughter separate at the end of mitosis. The initial incorporation of Asterless (Asl) is irreversible, requires DSas-4, and, crucially, is essential for daughter centrioles to mature into mothers that can support centriole duplication. We therefore propose a "dual-licensing" model of centriole duplication, in which Asl incorporation provides a permanent primary license to allow new centrioles to duplicate for the first time, while centriole disengagement provides a reduplication license to allow mother centrioles to duplicate again.

  7. Pattern formation by vascular mesenchymal cells

    NASA Astrophysics Data System (ADS)

    Garfinkel, Alan; Tintut, Yin; Petrasek, Danny; Boström, Kristina; Demer, Linda L.

    2004-06-01

    In embryogenesis, immature mesenchymal cells aggregate and organize into patterned tissues. Later in life, a pathological recapitulation of this process takes place in atherosclerotic lesions, when vascular mesenchymal cells organize into trabecular bone tissue within the artery wall. Here we show that multipotential adult vascular mesenchymal cells self-organize in vitro into patterns that are predicted by a mathematical model based on molecular morphogens interacting in a reaction-diffusion process. We identify activator and inhibitor morphogens for stripe, spot, and labyrinthine patterns and confirm the model predictions in vitro. Thus, reaction-diffusion principles may play a significant role in morphogenetic processes in adult mesenchymal cells.

  8. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  9. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  10. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  11. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  12. Paternal smoking habits affect the reproductive life span of daughters.

    PubMed

    Fukuda, Misao; Fukuda, Kiyomi; Shimizu, Takashi; Nobunaga, Miho; Andersen, Elisabeth Wreford; Byskov, Anne Grete; Andersen, Claus Yding

    2011-06-30

    The present study assessed whether the smoking habits of fathers around the time of conception affected the period in which daughters experienced menstrual cycles (i.e., the reproductive life span). The study revealed that the smoking habits of the farther shortened the daughters' reproductive life span compared with daughters whose fathers did not smoke.

  13. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  14. Suppression of T cell-induced osteoclast formation

    SciTech Connect

    Karieb, Sahar; Fox, Simon W.

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  15. Cancer risk in DES daughters

    PubMed Central

    Verloop, Janneke; van Leeuwen, Flora E.; Helmerhorst, Theo J. M.; van Boven, Hester H.

    2010-01-01

    Objective We examined long-term risk of cancer in women exposed to diethylstilbestrol (DES) in utero. Methods A total of 12,091 DES-exposed women in the Netherlands were followed prospectively from December 1992 till June 2008. Cancer incidence was assessed through linkage with the Dutch pathology database (PALGA) and the Netherlands Cancer Registry and compared with the Dutch female population. Results A total of 348 medically verified cancers occurred; median age at end of follow-up was 44.0 years. No overall increased risk of cancer was found (standardized incidence ratio [SIR] = 1.01; 95% confidence interval [CI] = 0.91, 1.13). The risk of clear cell adenocarcinoma of the vagina and cervix (CCA) was statistically significantly increased (SIR = 24.23; 95% CI = 8.89, 52.74); the elevated risk persisted above 40 years of age. The risk of melanoma diagnosed before age 40 was increased (SIR = 1.59; 95% CI = 1.08, 2.26). No excess risks were found for other sites, including breast cancer. Conclusions Except for an elevated risk of CCA, persisting at older ages, and an increased risk of melanoma at young ages, we found no increased risk of cancer. Longer follow-up is warranted to examine cancer risk at ages when cancer occurs more frequently. Electronic supplementary material The online version of this article (doi:10.1007/s10552-010-9526-5) contains supplementary material, which is available to authorized users. PMID:20204493

  16. Endogenous formation of morphine in human cells.

    PubMed

    Poeaknapo, Chotima; Schmidt, Jürgen; Brandsch, Matthias; Dräger, Birgit; Zenk, Meinhart H

    2004-09-28

    Morphine is a plant (opium poppy)-derived alkaloid and one of the strongest known analgesic compounds. Studies from several laboratories have suggested that animal and human tissue or fluids contain trace amounts of morphine. Its origin in mammals has been believed to be of dietary origin. Here, we address the question of whether morphine is of endogenous origin or derived from exogenous sources. Benzylisoquinoline alkaloids present in human neuroblastoma cells (SH-SY5Y) and human pancreas carcinoma cells (DAN-G) were identified by GC/tandem MS (MS/MS) as norlaudanosoline (DAN-G), reticuline (DAN-G and SH-SY5Y), and morphine (10 nM, SH-SY5Y). The stereochemistry of reticuline was determined to be 1-(S). Growth of the SH-SY5Y cell line in the presence of (18)O(2) led to the [(18)O]-labeled morphine that had the molecular weight 4 mass units higher than if grown in (16)O(2), indicating the presence of two atoms of (18)O per molecule of morphine. Growth of DAN-G cells in an (18)O(2) atmosphere yielded norlaudanosoline and (S)-reticuline, both labeled at only two of the four oxygen atoms. This result clearly demonstrates that all three alkaloids are of biosynthetic origin and suggests that norlaudanosoline and (S)-reticuline are endogenous precursors of morphine. Feeding of [ring-(13)C(6)]-tyramine, [1-(13)C, N-(13)CH(3)]-(S)-reticuline and [N-CD(3)]-thebaine to the neuroblastoma cells led each to the position-specific labeling of morphine, as established by GC/MS/MS. Without doubt, human cells can produce the alkaloid morphine. The studies presented here serve as a platform for the exploration of the function of "endogenous morphine" in the neurosciences and immunosciences.

  17. Signaling events in pathogen-induced macrophage foam cell formation.

    PubMed

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.

  18. Daughters mimic sterile neutrinos (almost!) perfectly

    SciTech Connect

    Hasenkamp, Jasper

    2014-09-01

    Since only recently, cosmological observations are sensitive to hot dark matter (HDM) admixtures with sub-eV mass, m{sub hdm}{sup eff} < eV, that are not fully-thermalised, Δ N{sub eff} < 1. We argue that their almost automatic interpretation as a sterile neutrino species is neither from theoretical nor practical parsimony principles preferred over HDM formed by decay products (daughters) of an out-of-equilibrium particle decay. While daughters mimic sterile neutrinos in N{sub eff} and m{sub hdm}{sup eff}, there are opportunities to assess this possibility in likelihood analyses. Connecting cosmological parameters and moments of momentum distribution functions, we show that—also in the case of mass-degenerate daughters with indistinguishable main physical effects—the mimicry breaks down when the next moment, the skewness, is considered. Predicted differences of order one in the root-mean-squares of absolute momenta are too small for current sensitivities.

  19. The cell equator - more than poles apart.

    PubMed

    Dhar, Pawan

    2004-03-01

    Cytokinesis is the last ritual of a dividing cell. Determining the position and horizon of the cell furrow is important for equal distribution of cytoplasmic content between the two daughter cells. The traditional view promotes a classical sequence of bipolar spindle formation followed by cytokinesis. However, a new understanding has recently emerged that uncouples these events. The cell-furrow formation seems to ignore spindle polarity and is instead dependent on the stability and dynamics of cortical microtubules.

  20. WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation.

    PubMed

    Ouspenskaia, Tamara; Matos, Irina; Mertz, Aaron F; Fiore, Vincent F; Fuchs, Elaine

    2016-01-14

    Adult stem cell (SC) maintenance and differentiation are known to depend on signals received from the niche. Here, however, we demonstrate a mechanism for SC specification and regulation that is niche independent. Using immunofluorescence, live imaging, genetics, cell-cycle analyses, in utero lentiviral transduction, and lineage-tracing, we show that in developing hair buds, SCs are born from asymmetric divisions that differentially display WNT and SHH signaling. Displaced WNT(lo) suprabasal daughters become SCs that respond to paracrine SHH and symmetrically expand. By contrast, basal daughters remain WNT(hi). They express but do not respond to SHH and hence maintain slow-cycling, asymmetric divisions. Over time, they become short-lived progenitors, generating differentiating daughters rather than SCs. Thus, in contrast to an established niche that harbors a fixed SC pool whose expelled progeny differentiate, asymmetric divisions first specify and displace early SCs into an environment conducive to expansion and later restrict their numbers by switching asymmetric fates. PMID:26771489

  1. Alpha particle spectra and microdosimetry of radon daughters

    SciTech Connect

    Caswell, R.S.; Coyne, J.J.

    1992-12-31

    We are interested in understanding the physics of the process by which radon-daughter alpha particles irradiate cells, leading to the induction of cancer. We are focusing initially on two aspects: the alpha spectra incident upon cells, which are needed for input to biophysical models of cancer induction; and microdosimetric spectra and parameters which give information on radiation quality. Adapting an analytical method previously developed for neutron radiation, we have calculated the alpha-particle slowing-down spectra (the spectra incident upon cells) and, subsequently, the microdosimetric spectra and parameters for various cell nuclei or site diameters. Results will be presented from three modes of program operation. MODE 1 is for the thin, plane source of radon-daughter activity adjacent to the epithelium. MODE 2 is for the thick source layer (the mucous-serous layer) adjacent to the epithelium. MODE4 is for cylindrical airways of various radii, lined by the mucous-serous layer. MODE 1 is most useful for understanding the problem; MODE 4 is most anatomically relevant. MODE 3 is not discussed in this paper. Alpha-particle spectra and microdosimetric spectra and parameters are studied as a function of cell depth, {sup 218}Po/{sup 214}Po ratio, airway radius, and cell nucleus or the site size. Also available from the calculation is mean dose as a function of depth below the airway surface. The results described here are available on personal computer diskettes. We are beginning to compare our studies with the calculations of other workers and plan to extend the calculations to the nanometer target level.

  2. The Formation of Germ Cell for Organizational Learning

    ERIC Educational Resources Information Center

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  3. Cell-fusion method to visualize interphase nuclear pore formation.

    PubMed

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods.

  4. Single cell pattern formation and transient cytoskeletal arrays

    PubMed Central

    Bement, William M.; von Dassow, George

    2015-01-01

    A major goal of developmental biology is to explain the emergence of pattern in cell layers, tissues and organs. Developmental biologists now accept that reaction diffusion-based mechanisms are broadly employed in developing organisms to direct pattern formation. Here we briefly consider these mechanisms and then apply some of the concepts derived from them to several processes that occur in single cells: wound repair, yeast budding, and cytokinesis. Two conclusions emerge from this analysis: first, there is considerable overlap at the level of general mechanisms between developmental and single cell pattern formation; second, dynamic structures based on the actin cytoskeleton may be far more ordered than is generally recognized. PMID:24529246

  5. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    PubMed

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  6. Shared vision between fathers and daughters in family businesses: the determining factor that transforms daughters into successors.

    PubMed

    Overbeke, Kathy K; Bilimoria, Diana; Somers, Toni

    2015-01-01

    Family businesses are critical to the United States economy, employing 63% of the workforce and generating 57% of GDP (University of Vermont, 2014). Family business continuity, however, remains elusive as approximately 70% of family businesses do not survive the second generation (Poza, 2013). In order to augment our understanding of how next generation leaders are chosen in family businesses, we examine daughter succession. Using a sample of pairs of family business fathers and daughters and drawing on an earlier study of the dearth of successor daughters in family businesses (Overbeke et al., 2013), we reveal that shared vision between fathers and daughters is central to daughter succession. Self-efficacy and gender norms influence shared vision and when fathers and daughters share a vision for the future of the company, daughters are likely to be transformed into successors.

  7. Shared vision between fathers and daughters in family businesses: the determining factor that transforms daughters into successors

    PubMed Central

    Overbeke, Kathy K.; Bilimoria, Diana; Somers, Toni

    2015-01-01

    Family businesses are critical to the United States economy, employing 63% of the workforce and generating 57% of GDP (University of Vermont, 2014). Family business continuity, however, remains elusive as approximately 70% of family businesses do not survive the second generation (Poza, 2013). In order to augment our understanding of how next generation leaders are chosen in family businesses, we examine daughter succession. Using a sample of pairs of family business fathers and daughters and drawing on an earlier study of the dearth of successor daughters in family businesses (Overbeke et al., 2013), we reveal that shared vision between fathers and daughters is central to daughter succession. Self-efficacy and gender norms influence shared vision and when fathers and daughters share a vision for the future of the company, daughters are likely to be transformed into successors. PMID:26074830

  8. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes.

    PubMed

    Pelosi, Emanuele; Forabosco, Antonino; Schlessinger, David

    2011-03-01

    Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.

  9. Enhanced product formation in continuous fermentations with microbial cell recycle

    SciTech Connect

    Bull, D.N.; Young, M.D.

    1981-02-01

    The effect of partial recycle of microbial cells on the operation of a chemostat has been investigated for two fermentations. Stable steady states with and without partial cell recycle were obtained for the conversion of d-sorbitol to L-sorbose by Gluconobacter oxydans subsp. suboxydans 1916B and for the conversion of glucose to 2-ketogluconic acid by Serratia marcescens NRRl B-486. The employment of partial cell recycle dramatically increased product formation rates for both fermentations.

  10. Tracing behavior of endothelial cells promotes vascular network formation.

    PubMed

    Yasuda, Noriko; Sekine, Hidekazu; Bise, Ryoma; Okano, Teruo; Shimizu, Tatsuya

    2016-05-01

    The in vitro formation of network structures derived from endothelial cells in grafts before transplantation contributes to earlier engraftment. In a previous study, endothelial cells migrated to form a net-shaped structure in co-culture. However, the specific network formation behavior of endothelial cells during migration remains unclear. In this study, we demonstrated the tracing behavior and cell cycle of endothelial cells using Fucci-labeled (Fluorescent Ubiquitination-based Cell Cycle Indicator) endothelial cells. Here, we observed the co-culture of Fucci-labeled human umbilical vein endothelial cells (HUVECs) together with normal human dermal fibroblasts (NHDFs) using time-lapse imaging and analyzed by multicellular concurrent tracking. In the G0/G1 period, HUVECs migrate faster than in the S/G2/M period, because G0/G1 is the mobile phase and S/G2/M is the proliferation phase in the cell cycle. When HUVECs are co-cultured, they tend to move randomly until they find existing tracks that they then follow to form clusters. Extracellular matrix (ECM) staining showed that collagen IV, laminin and thrombospondin deposited in accordance with endothelial cell networks. Therefore the HUVECs may migrate on the secreted ECM and exhibit tracing behavior, where the HUVECs migrate toward each other. These results suggested that ECM and a cell phase contributed to form a network by accelerating cell migration.

  11. Cell-adhesion molecules in memory formation.

    PubMed

    Schmidt, R

    1995-01-23

    After learning events the CNS of higher organisms selects, which acquired informations are permanently stored as a memory trace. This period of memory consolidation is susceptible to interference by biochemical inhibitors of transcription and translation. Ependymin is a specific CNS glycoprotein functionally involved in memory consolidation in goldfish: after active shock-avoidance conditioning ependymin mRNA is rapidly induced in meningeal fibroblasts followed by enhanced synthesis and secretion of several closely related forms of the protein. Intracranial injections of anti-ependymin antisera or antisense oligodeoxynucleotides interfere specifically with memory consolidation, indicating that only de novo synthesized ependymin molecules are involved. Ependymin is capable of directing the growth of central axons in vitro and participates in neuronal regeneration in situ, presumably by its HNK-1 cell-adhesion epitope. Experiments reviewed in this article suggest a model that involves two regulation mechanisms for the function of ependymin in behavioural plasticity: while hormones appear to determine, how much of this cell adhesion molecule is synthesized after learning, local changes of metal cation concentrations in the micro-environment of activated neurons may polymerize ependymin at those synapses, that have to be consolidated to improve their efficacy for future use.

  12. Mutagenicity of radon and radon daughters. Annual progress report

    SciTech Connect

    Evans, H.H.

    1991-12-01

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT{sup {minus}} mutants. Eleven radon-induced HPRT{sup {minus}} mutants have been isolated, and will be analyzed in a similar fashion. 9 figs.

  13. Radon and radon daughter measurements in solar buildings.

    PubMed

    George, A C; Knutson, E O; Franklin, H

    1983-08-01

    Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating, showed no significant excess in concentrations over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's limit of 3 pCi/l. for continuous exposure in uncontrolled areas. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal. It appears that the slightly elevated indoor radon concentrations result from the local geological formations and from the tightening of the buildings rather than as a result of the solar heating technology. PMID:6885442

  14. Parents' personality clusters and eating disordered daughters' personality and psychopathology.

    PubMed

    Amianto, Federico; Ercole, Roberta; Marzola, Enrica; Abbate Daga, Giovanni; Fassino, Secondo

    2015-11-30

    The present study explores how parents' personality clusters relate to their eating disordered daughters' personality and psychopathology. Mothers and fathers were tested with the Temperament Character Inventory. Their daughters were assessed with the following: Temperament and Character Inventory, Eating Disorder Inventory-2, Symptom Checklist-90, Parental Bonding Instrument, Attachment Style Questionnaire, and Family Assessment Device. Daughters' personality traits and psychopathology scores were compared between clusters. Daughters' features were related to those of their parents. Explosive/adventurous mothers were found to relate to their daughters' borderline personality profile and more severe interoceptive awareness. Mothers' immaturity was correlated to their daughters' higher character immaturity, inadequacy, and depressive feelings. Fathers who were explosive/methodic correlated with their daughters' character immaturity, severe eating, and general psychopathology. Fathers' character immaturity only marginally related to their daughters' specific features. Both parents' temperament clusters and mothers' character clusters related to patients' personality and eating psychopathology. The cluster approach to personality-related dynamics of families with an individual affected by an eating disorder expands the knowledge on the relationship between parents' characteristics and daughters' illness, suggesting complex and unique relationships correlating parents' personality traits to their daughters' disorder.

  15. Pulp stem cells: implication in reparative dentin formation.

    PubMed

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth. PMID:24698687

  16. Formation of dimethylthioarsenicals in red blood cells

    SciTech Connect

    Naranmandura, Hua; Suzuki, Kazuo T.

    2008-03-15

    The bladder and skin are the primary targets for arsenic-induced carcinogenicity in mammals. Thioarsenicals dimethylmonothioarsinic (DMMTA{sup V}) and dimethyldithioarsinic (DMDTA{sup V}) acids are common urinary metabolites, the former being much more toxic than non-thiolated dimethylarsinic acid (DMA{sup V}) and comparable to dimethylarsinous acid (DMA{sup III}) in epidermoid cells, suggesting that the metabolic production of thioarsenicals may be a risk factor for the development of cancer in these organs. To reveal their production sites (tissues/body fluids), we examined the uptake and transformation of the four dimethylated arsenicals by incubation with rat and human red blood cells (RBCs). Although DMA{sup V} and DMDTA{sup V} were not taken up by either type of RBCs, DMA{sup III} and DMMTA{sup V} were taken up by both (more efficiently by rat ones), though DMMTA{sup V} was taken up slowly, and then the arsenic transformed into DMDTA{sup V} was excreted from both types of animal RBCs. On the other hand, although DMA{sup III} taken up rapidly by rat RBCs was retained in the RBCs, that taken up by human RBCs was immediately transformed into DMMTA{sup V} and then excreted into the incubation medium without being retained in the RBCs. In a separate experiment, arsenic remaining in primary rat hepatocytes after incubation with 1.5 {mu}M DMA{sup III} was recovered from the incubation medium in the forms of DMA{sup V} and DMMTA{sup V} in the presence of human RBCs, but not in the presence of rat RBCs (in which the arsenic was bound to hemoglobin). Thus, DMMTA{sup V} was detected in the medium only in the presence of human RBCs and increased with incubation time. It was proposed that arsenic is excreted from hepatocytes into the bloodstream in the form of DMA{sup III} and then taken up by RBCs in humans, where it is transformed into DMMTA{sup V} and then excreted again into the bloodstream.

  17. Live cell interferometry quantifies dynamics of biomass partitioning during cytokinesis.

    PubMed

    Zangle, Thomas A; Teitell, Michael A; Reed, Jason

    2014-01-01

    The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning. PMID:25531652

  18. Contraction-induced cluster formation in cardiac cell culture

    NASA Astrophysics Data System (ADS)

    Harada, Takahiro; Isomura, Akihiro; Yoshikawa, Kenichi

    2008-11-01

    The evolution of the spatial arrangement of cells in a primary culture of cardiac tissue derived from newborn rats was studied experimentally over an extended period. It was found that cells attract each other spontaneously to form a clustered structure over the timescale of several days. These clusters exhibit spontaneous rhythmic contraction and have been confirmed to consist of cardiac muscle cells. The addition of a contraction inhibitor (2,3-butanedione-2-monoxime) to the culture medium resulted in the inhibition of both the spontaneous contractions exhibited by the cells as well as the formation of clusters. Furthermore, the formation of clusters is suppressed when high concentrations of collagen are used for coating the substratum to which the cells adhere. From these experimental observations, it was deduced that the cells are mechanically stressed by the tension associated with repeated contractions and that this results in the cells becoming compact and attracting each other, finally resulting in the formation of clusters. This process can be interpreted as modulation of a cellular network by the activity associated with contraction, which could be employed to control cellular networks by modifying the dynamics associated with the contractions in cardiac tissue culture.

  19. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  20. The Impact of Mother-Daughter Communication on Daughter's Sexual Knowledge, Behavior and Contraceptive Use.

    ERIC Educational Resources Information Center

    Fox, Greer Litton; Inazu, Judith K.

    Family background variables such as race, religion, and gender of household head emerged as significant predictors of communication about sex in interviews conducted with a sample of mothers and teenage daughters. A suprising finding was a strong positive association between family religion and early sexual communication, although this may reflect…

  1. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  2. Tracing haematopoietic stem cell formation at single-cell resolution.

    PubMed

    Zhou, Fan; Li, Xianlong; Wang, Weili; Zhu, Ping; Zhou, Jie; He, Wenyan; Ding, Meng; Xiong, Fuyin; Zheng, Xiaona; Li, Zhuan; Ni, Yanli; Mu, Xiaohuan; Wen, Lu; Cheng, Tao; Lan, Yu; Yuan, Weiping; Tang, Fuchou; Liu, Bing

    2016-05-18

    Haematopoietic stem cells (HSCs) are derived early from embryonic precursors, such as haemogenic endothelial cells and pre-haematopoietic stem cells (pre-HSCs), the molecular identity of which still remains elusive. Here we use potent surface markers to capture the nascent pre-HSCs at high purity, as rigorously validated by single-cell-initiated serial transplantation. Then we apply single-cell RNA sequencing to analyse endothelial cells, CD45(-) and CD45(+) pre-HSCs in the aorta-gonad-mesonephros region, and HSCs in fetal liver. Pre-HSCs show unique features in transcriptional machinery, arterial signature, metabolism state, signalling pathway, and transcription factor network. Functionally, activation of mechanistic targets of rapamycin (mTOR) is shown to be indispensable for the emergence of HSCs but not haematopoietic progenitors. Transcriptome data-based functional analysis reveals remarkable heterogeneity in cell-cycle status of pre-HSCs. Finally, the core molecular signature of pre-HSCs is identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating stepwise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical applications.

  3. Tracing haematopoietic stem cell formation at single-cell resolution.

    PubMed

    Zhou, Fan; Li, Xianlong; Wang, Weili; Zhu, Ping; Zhou, Jie; He, Wenyan; Ding, Meng; Xiong, Fuyin; Zheng, Xiaona; Li, Zhuan; Ni, Yanli; Mu, Xiaohuan; Wen, Lu; Cheng, Tao; Lan, Yu; Yuan, Weiping; Tang, Fuchou; Liu, Bing

    2016-05-26

    Haematopoietic stem cells (HSCs) are derived early from embryonic precursors, such as haemogenic endothelial cells and pre-haematopoietic stem cells (pre-HSCs), the molecular identity of which still remains elusive. Here we use potent surface markers to capture the nascent pre-HSCs at high purity, as rigorously validated by single-cell-initiated serial transplantation. Then we apply single-cell RNA sequencing to analyse endothelial cells, CD45(-) and CD45(+) pre-HSCs in the aorta-gonad-mesonephros region, and HSCs in fetal liver. Pre-HSCs show unique features in transcriptional machinery, arterial signature, metabolism state, signalling pathway, and transcription factor network. Functionally, activation of mechanistic targets of rapamycin (mTOR) is shown to be indispensable for the emergence of HSCs but not haematopoietic progenitors. Transcriptome data-based functional analysis reveals remarkable heterogeneity in cell-cycle status of pre-HSCs. Finally, the core molecular signature of pre-HSCs is identified. Collectively, our work paves the way for dissection of complex molecular mechanisms regulating stepwise generation of HSCs in vivo, informing future efforts to engineer HSCs for clinical applications. PMID:27225119

  4. Drosophila neural stem cells in brain development and tumor formation.

    PubMed

    Jiang, Yanrui; Reichert, Heinrich

    2014-01-01

    Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the central nervous system. Significant progress has been made in understanding the mechanisms regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages. Deregulation of these mechanisms can lead to severe developmental defects and the formation of malignant brain tumors. Here, the authors review the molecular genetics of Drosophila neuroblasts and discuss some recent advances in stem cell and cancer biology using this model system.

  5. Feminist attitudes and mother-daughter relationships in adolescence.

    PubMed

    Notar, M; McDaniel, S A

    1986-01-01

    In spite of the growing amount of research on women's issues, there are few empirical studies of mother-daughter relationships, and almost none on the effects of the major women's movement of our times on relationships between mothers and daughters. In this study of late adolescent daughters' perceptions of their relationships with their mothers, two alternative hypotheses are examined: (1) feminism, with its emphasis on bonding among women, strengthens relations between adolescent daughters and their mothers, or (2) feminism as a force of social change, both attitudinal and behavioral, weakens the adolescent daughter-mother relationship. Based on 102 questionnaires completed by university-age women in the winter of 1983, it was found that the majority of daughters who have a good relationship with their mothers see both themselves and their mothers as feminist. However, these daughters do not attribute their positive mother-daughter relationship explicitly to feminism. For the minority of daughters who claim to have a poor relationship with their mothers, they attribute the problems to feminism.

  6. Streptomycin favors biofilm formation by altering cell surface properties.

    PubMed

    Kumar, Amit; Ting, Yen-Peng

    2016-10-01

    Studies have shown that external stress induces biofilm formation, but the underlying details are not clearly understood. This study investigates the changes in cell surface properties leading to increase in biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa in the presence of streptomycin. Bacterial attachment in the presence and absence of streptomycin was quantified by fluorescence spectroscopy. In addition, cell surface charge and contact angle were measured and the free energy barrier for attachment was modeled using extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. Peptides from bacterial cell surface were shaved by protease treatment and identified with ultra-performance liquid chromatography (UPLC)-QTOF and a homology search program SPIDER. Biofilm formation increased significantly in the presence of streptomycin (10 mg/L) in the culture. Bacterial cell surface charge reduced, and hydrophobicity increased leading to a net decrease in the free energy barrier for attachment. Extracellular matrix-binding protein was positively regulated in S. aureus under stress, indicating stronger interaction between bacterial cells and solid surface. In addition, several other proteins including biofilm regulatory proteins, multidrug efflux pumps, transporters, signaling proteins, and virulence factors were differentially expressed on bacterial cell surface, which is indicative of a strong stress response by bacteria to streptomycin treatment. PMID:27568380

  7. Cell autonomous roles of Nedd4 in craniofacial bone formation.

    PubMed

    Wiszniak, Sophie; Harvey, Natasha; Schwarz, Quenten

    2016-02-01

    Nedd4 is an E3 ubiquitin ligase that has an essential role in craniofacial development. However, how and when Nedd4 controls skull formation is ill defined. Here we have used a collection of complementary genetic mouse models to dissect the cell-autonomous roles of Nedd4 in the formation of neural crest cell derived cranial bone. Removal of Nedd4 specifically from neural crest cells leads to profound craniofacial defects with marked reduction of cranial bone that was preceded by hypoplasia of bone forming osteoblasts. Removal of Nedd4 after differentiation of neural crest cells into progenitors of chondrocytes and osteoblasts also led to profound deficiency of craniofacial bone in the absence of cartilage defects. Notably, these skull malformations were conserved when Nedd4 was specifically removed from the osteoblast lineage after specification of osteoblast precursors from mesenchymal skeletal progenitors. We further show that absence of Nedd4 in pre-osteoblasts results in decreased cell proliferation and altered osteogenic differentiation. Taken together our data demonstrate a novel cell-autonomous role for Nedd4 in promoting expansion of the osteoblast progenitor pool to control craniofacial development. Nedd4 mutant mice therefore represent a unique mouse model of craniofacial anomalies that provide an ideal resource to explore the cell-intrinsic mechanisms of neural crest cells in craniofacial morphogenesis. PMID:26681395

  8. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  9. In vitro myelin formation using embryonic stem cells.

    PubMed

    Kerman, Bilal E; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S; Fitzpatrick, James A J; Jappelli, Roberto; Chandross, Karen J; August, Paul; Gage, Fred H

    2015-06-15

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation.

  10. Proteoglycans support proper granule formation in pancreatic acinar cells.

    PubMed

    Aroso, Miguel; Agricola, Brigitte; Hacker, Christian; Schrader, Michael

    2015-10-01

    Zymogen granules (ZG) are specialized organelles in the exocrine pancreas which allow digestive enzyme storage and regulated secretion. The molecular mechanisms of their biogenesis and the sorting of zymogens are still incompletely understood. Here, we investigated the role of proteoglycans in granule formation and secretion of zymogens in pancreatic AR42J cells, an acinar model system. Cupromeronic Blue cytochemistry and biochemical studies revealed an association of proteoglycans primarily with the granule membrane. Removal of proteoglycans by carbonate treatment led to a loss of membrane curvature indicating a supportive role in the maintenance of membrane shape and stability. Chemical inhibition of proteoglycan synthesis impaired the formation of normal electron-dense granules in AR42J cells and resulted in the formation of unusually small granule structures. These structures still contained the zymogen carboxypeptidase, a cargo molecule of secretory granules, but migrated to lighter fractions after density gradient centrifugation. Furthermore, the basal secretion of amylase was increased in AR42J cells after inhibitor treatment. In addition, irregular-shaped granules appeared in pancreatic lobules. We conclude that the assembly of a proteoglycan scaffold at the ZG membrane is supporting efficient packaging of zymogens and the proper formation of stimulus-competent storage granules in acinar cells of the pancreas.

  11. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis.

    PubMed

    Dhonukshe, Pankaj; Baluska, Frantisek; Schlicht, Markus; Hlavacka, Andrej; Samaj, Jozef; Friml, Jirí; Gadella, Theodorus W J

    2006-01-01

    Dividing plant cells perform a remarkable task of building a new cell wall within the cytoplasm in a few minutes. A long-standing paradigm claims that this primordial cell wall, known as the cell plate, is generated by delivery of newly synthesized material from Golgi apparatus-originated secretory vesicles. Here, we show that, in diverse plant species, cell surface material, including plasma membrane proteins, cell wall components, and exogenously applied endocytic tracers, is rapidly delivered to the forming cell plate. Importantly, this occurs even when de novo protein synthesis is blocked. In addition, cytokinesis-specific syntaxin KNOLLE as well as plasma membrane (PM) resident proteins localize to endosomes that fuse to initiate the cell plate. The rate of endocytosis is strongly enhanced during cell plate formation, and its genetic or pharmacological inhibition leads to cytokinesis defects. Our results reveal that endocytic delivery of cell surface material significantly contributes to cell plate formation during plant cytokinesis.

  12. Actomyosin Ring Formation and Tension Generation in Eukaryotic Cytokinesis.

    PubMed

    Cheffings, Thomas H; Burroughs, Nigel J; Balasubramanian, Mohan K

    2016-08-01

    Cell division facilitated by a contractile ring is an almost universal feature across all branches of cellular life, with the notable exception of higher plants. In all organisms that use a contractile ring for cell division, the process of cytokinesis can be divided into four distinct stages. Firstly, the cell needs to specify a location at which to place the cell division ring to ensure proper separation of the cell contents into two daughter cells. Secondly, the cell needs to be able to transport all the necessary components to this region, and construct the cell division ring reliably and efficiently. Thirdly, the cell division ring needs to generate contractile stress in a regulated manner, to physically cleave the mother cell into two daughter cells. Finally, the ring must be disassembled to allow for the final abscission and separation of the daughter cells. In this review, we will discuss some of the proposed mechanisms by which eukaryotic cells are able to complete the first three of these stages. While there is a good understanding of the mechanisms of division site specification in most organisms, and the mechanisms of actomyosin ring formation are well studied in fission and budding yeast, there is relatively poor understanding of how actomyosin interactions are able to generate contractile stresses during ring constriction, although a number of models have been proposed. We also discuss a number of myosin motor-independent mechanisms that have been proposed to generate contractile stress in various organisms. PMID:27505246

  13. Solvent effect on columnar formation in solar-cell geometry

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Sosa-Vargas, L.; Takanishi, Y.; Kim, K. H.; Kim, Y. S.; Park, Y. W.; Yamamoto, J.; Labardi, M.; Lagerwall, J. P. F.; Shimizu, Y.; Scalia, G.

    2016-03-01

    The efficiency of the conduction of photocurrent in discotic liquid crystals is known to depend on the quality of the columnar organization. Solvents have shown to be able to influence the formation of wire structures on substrates promoting very long and ordered wired formations or bulkier structures depending on the affinity of the solvent with parts of the molecular structure of discotics. Here we present a study on the effect of solvents when the liquid crystal is confined between two substrates with the columns running perpendicular to them, geometry used in solar cells. We focused on toluene and dodecane, solvents that have shown to promote on substrates the formation of aligned and long nanowires and bulk large and isolated fibers, respectively. The phase transition behavior indicates that toluene does not interfere with the columnar formation while dodecane strongly influence increasing the disorder in the structure.

  14. Sphere formation permits Oct4 reprogramming of ciliary body epithelial cells into induced pluripotent stem cells.

    PubMed

    Ni, Aiguo; Wu, Ming Jing; Chavala, Sai H

    2014-12-15

    Somatic cells can be reprogrammed to induced pluripotent stem (iPS) cells by defined sets of transcription factors. We previously described reprogramming of monolayer-cultured adult mouse ciliary body epithelial (CE) cells by Oct4 and Klf4, but not with Oct4 alone. In this study, we report that Oct4 alone is sufficient to reprogram CE cells to iPS cells through sphere formation. Furthermore, we demonstrate that sphere formation induces a partial reprogramming state characterized by expression of retinal progenitor markers, upregulation of reprogramming transcription factors, such as Sall4 and Nanog, demethylation in the promoter regions of pluripotency associated genes, and mesenchymal to epithelial transition. The Oct4-iPS cells maintained normal karyotypes, expressed markers for pluripotent stem cells, and were capable of differentiating into derivatives of all three embryonic germ layers in vivo and in vitro. These findings suggest that sphere formation may render somatic cells more susceptible to reprogramming.

  15. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  16. Characterization of Commercial Li-ion Cells in Pouch Format

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2014-01-01

    The li-ion pouch design cells exhibit similar behavior under off-nominal conditions as those in metal cans that do not have the internal safety devices. Safety should be well characterized before batteries are designed. Some of the li-ion pouch cell designs studied in this program reacted most violently to overcharge conditions at the medium rates but were tolerant to overcharge at very low rates. Some pouch cell designs have higher tolerance to vacuum exposures than some others. A comparison of the pouch material itself does not show a correlation between this tolerance and the number of layers or composition of the pouch indicating that this is a property of the electrode stack design inside the pouch. Reduced pressure (8 to 10 psi) test environments show that the extent of capacity degradation under reduced pressure environments is much less than that observed under vacuum conditions. Lithium-ion Pouch format cells are not necessarily true polymer cells.

  17. The Wilson Report: Moms, Dads, Daughters and Sports.

    ERIC Educational Resources Information Center

    Diagnostic Research Inc., Los Angeles, CA.

    A report is given on the results of a nationwide survey (N=1,004 parents, 513 daughters) studying the influence of parents and family factors on girls' participation in sports. A large majority of parents regarded participation in sports as an important part of their daughters' development, and that it is as important for girls to be involved in…

  18. Incest and Its Meaning: The Perspectives of Fathers and Daughters.

    ERIC Educational Resources Information Center

    Phelan, Patricia

    1995-01-01

    Interviews with 40 fathers and stepfathers and 44 biologic daughters and stepdaughters involved in incestuous activity revealed their recollection of events, their thoughts, and interpretations. Fathers' thoughts were dominated by themes of sexual gratification, control, power, anger, and rights and responsibilities; daughters reported disbelief,…

  19. Adolescents with Nonresident Fathers: Are Daughters More Disadvantaged than Sons?

    ERIC Educational Resources Information Center

    Mitchell, Katherine Stamps; Booth, Alan; King, Valarie

    2009-01-01

    This study examined sons' and daughters' involvement with nonresident fathers and associated outcomes (N = 4,663). Results indicated that sons and daughters reported equal involvement with nonresident fathers on most measures of father investment, although sons reported more overnight visits, sports, and movies and feeling closer to their fathers…

  20. Posttraumatic Stress in Women with Breast Cancer and Their Daughters.

    ERIC Educational Resources Information Center

    Boyer, Bret A.; Bubel, Denise; Jacobs, Sheri R.; Knolls, Michelle L.; Harwell, Valerie D.; Goscicka, Magdalena; Keegan, Anne

    2002-01-01

    Twenty-one percent of the surveyed women (N=133) with cancer and 13% of their daughters (N=64) reported symptoms of posttraumatic stress disorder (PTSD). Prevalence of PTSD symptoms in daughters appears comparable to women with breast cancer. Discusses intergenerational patterns in reaction to breast cancer. (JDM)

  1. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  2. [Mother-daughter relationship as a motive for "late" pregnancy].

    PubMed

    Langer, M

    1990-01-01

    Two cases of elder multiparae are presented, who conceived a "late" pregnancy subsequent to their daughters' pregnancies. Both women shared specific pregnancy motives, which stemmed from unresolved conflicts in the mother-daughter--relationship. A second cluster of motives focuses around the wish to compensate for the perceived loss of youthfulness and reproductive ability or the loss of a partner in a symbiotic relationship.

  3. Effect of supercooling and cell volume on intracellular ice formation.

    PubMed

    Prickett, Richelle C; Marquez-Curtis, Leah A; Elliott, Janet A W; McGann, Locksley E

    2015-04-01

    Intracellular ice formation (IIF) has been linked to death of cells cryopreserved in suspension. It has been assumed that cells can be supercooled by 2 to 10°C before IIF occurs, but measurements of the degree of supercooling that cells can tolerate are often confounded by changing extracellular temperature and solutions of different osmolality (which affect the cell volume). The purpose of this study was to examine how the incidence of IIF in the absence of cryoprotectants is affected by the degree of supercooling and cell volume. Human umbilical vein endothelial cells were suspended in isotonic (300 mOsm) and hypertonic (∼600 to 700 mOsm) solutions and exposed to supercooling ranging from 2 to 10°C before extracellular ice was nucleated. The number of cells undergoing IIF was examined in a cryostage (based on the darkening of cells upon intracellular freezing ("flashing")) as a function of the degree of supercooling, and cell survival post-thaw was assessed using a membrane integrity assay. We found that while the incidence of IIF increased with supercooling in both isotonic and hypertonic solutions, it was higher in the isotonic solution at any given degree of supercooling. Since cells in hypertonic solution were shrunken due to water efflux, we hypothesized that the difference in IIF behavior could be attributed to the decreased volume of cells in the hypertonic solution. Our results confirm that cells with a smaller diameter before extracellular ice nucleation have a decreased probability of IIF and suggest that cell volume could play a more significant role in the incidence of IIF than the extracellular ice nucleation temperature. PMID:25707695

  4. Effect of supercooling and cell volume on intracellular ice formation.

    PubMed

    Prickett, Richelle C; Marquez-Curtis, Leah A; Elliott, Janet A W; McGann, Locksley E

    2015-04-01

    Intracellular ice formation (IIF) has been linked to death of cells cryopreserved in suspension. It has been assumed that cells can be supercooled by 2 to 10°C before IIF occurs, but measurements of the degree of supercooling that cells can tolerate are often confounded by changing extracellular temperature and solutions of different osmolality (which affect the cell volume). The purpose of this study was to examine how the incidence of IIF in the absence of cryoprotectants is affected by the degree of supercooling and cell volume. Human umbilical vein endothelial cells were suspended in isotonic (300 mOsm) and hypertonic (∼600 to 700 mOsm) solutions and exposed to supercooling ranging from 2 to 10°C before extracellular ice was nucleated. The number of cells undergoing IIF was examined in a cryostage (based on the darkening of cells upon intracellular freezing ("flashing")) as a function of the degree of supercooling, and cell survival post-thaw was assessed using a membrane integrity assay. We found that while the incidence of IIF increased with supercooling in both isotonic and hypertonic solutions, it was higher in the isotonic solution at any given degree of supercooling. Since cells in hypertonic solution were shrunken due to water efflux, we hypothesized that the difference in IIF behavior could be attributed to the decreased volume of cells in the hypertonic solution. Our results confirm that cells with a smaller diameter before extracellular ice nucleation have a decreased probability of IIF and suggest that cell volume could play a more significant role in the incidence of IIF than the extracellular ice nucleation temperature.

  5. Genomics, genetics, and cell biology of magnetosome formation.

    PubMed

    Jogler, Christian; Schüler, Dirk

    2009-01-01

    Magnetosomes are specialized organelles for magnetic navigation that comprise membrane-enveloped, nano-sized crystals of a magnetic iron mineral; they are formed by a diverse group of magnetotactic bacteria (MTB). The synthesis of magnetosomes involves strict genetic control over intracellular differentiation, biomineralization, and their assembly into highly ordered chains. Physicochemical control over biomineralization is achieved by compartmentalization within vesicles of the magnetosome membrane, which is a phospholipid bilayer associated with a specific set of proteins that have known or suspected functions in vesicle formation, iron transport, control of crystallization, and arrangement of magnetite particles. Magnetosome formation is genetically complex, and relevant genes are predominantly located in several operons within a conserved genomic magnetosome island that has been likely transferred horizontally and subsequently adapted between diverse MTB during evolution. This review summarizes the recent progress in our understanding of magnetobacterial cell biology, genomics, and the genetic control of magnetosome formation and magnetotaxis.

  6. A hydrodynamic microchip for formation of continuous cell chains

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, Khashayar; Zhang, Wei; Tang, Shi-Yang; Nasabi, Mahyar; Soffe, Rebecca; Tovar-Lopez, Francisco J.; Rajadas, Jayakumar; Mitchell, Arnan

    2014-05-01

    Here, we demonstrate the unique features of a hydrodynamic based microchip for creating continuous chains of model yeast cells. The system consists of a disk shaped microfluidic structure, containing narrow orifices that connect the main channel to an array of spoke channels. Negative pressure provided by a syringe pump draws fluid from the main channel through the narrow orifices. After cleaning process, a thin layer of water is left between the glass substrate and the polydimethylsiloxane microchip, enabling leakage beneath the channel walls. A mechanical clamp is used to adjust the operation of the microchip. Relaxing the clamp allows leakage of liquid beneath the walls in a controllable fashion, leading to formation of a long cell chain evenly distributed along the channel wall. The unique features of the microchip are demonstrated by creating long chains of yeast cells and model 15 μm polystyrene particles along the side wall and analysing the hydrogen peroxide induced death of patterned cells.

  7. A peptide antagonist disrupts NK cell inhibitory synapse formation.

    PubMed

    Borhis, Gwenoline; Ahmed, Parvin S; Mbiribindi, Bérénice; Naiyer, Mohammed M; Davis, Daniel M; Purbhoo, Marco A; Khakoo, Salim I

    2013-03-15

    Productive engagement of MHC class I by inhibitory NK cell receptors depends on the peptide bound by the MHC class I molecule. Peptide:MHC complexes that bind weakly to killer cell Ig-like receptors (KIRs) can antagonize the inhibition mediated by high-affinity peptide:MHC complexes and cause NK cell activation. We show that low-affinity peptide:MHC complexes stall inhibitory signaling at the step of Src homology protein tyrosine phosphatase 1 recruitment and do not go on to form the KIR microclusters induced by high-affinity peptide:MHC, which are associated with Vav dephosphorylation and downstream signaling. Furthermore, the low-affinity peptide:MHC complexes prevented the formation of KIR microclusters by high-affinity peptide:MHC. Thus, peptide antagonism of NK cells is an active phenomenon of inhibitory synapse disruption.

  8. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  9. Blockade of mast cell activation reduces cutaneous scar formation.

    PubMed

    Chen, Lin; Schrementi, Megan E; Ranzer, Matthew J; Wilgus, Traci A; DiPietro, Luisa A

    2014-01-01

    Damage to the skin initiates a cascade of well-orchestrated events that ultimately leads to repair of the wound. The inflammatory response is key to wound healing both through preventing infection and stimulating proliferation and remodeling of the skin. Mast cells within the tissue are one of the first immune cells to respond to trauma, and upon activation they release pro-inflammatory molecules to initiate recruitment of leukocytes and promote a vascular response in the tissue. Additionally, mast cells stimulate collagen synthesis by dermal fibroblasts, suggesting they may also influence scar formation. To examine the contribution of mast cells in tissue repair, we determined the effects the mast cell inhibitor, disodium cromoglycate (DSCG), on several parameters of dermal repair including, inflammation, re-epithelialization, collagen fiber organization, collagen ultrastructure, scar width and wound breaking strength. Mice treated with DSCG had significantly reduced levels of the inflammatory cytokines IL-1α, IL-1β, and CXCL1. Although DSCG treatment reduced the production of inflammatory mediators, the rate of re-epithelialization was not affected. Compared to control, inhibition of mast cell activity caused a significant decrease in scar width along with accelerated collagen re-organization. Despite the reduced scar width, DSCG treatment did not affect the breaking strength of the healed tissue. Tryptase β1 exclusively produced by mast cells was found to increase significantly in the course of wound healing. However, DSCG treatment did not change its level in the wounds. These results indicate that blockade of mast cell activation reduces scar formation and inflammation without further weakening the healed wound.

  10. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    PubMed Central

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  11. Arabidopsis CSLD5 Functions in Cell Plate Formation in a Cell Cycle-Dependent Manner[OPEN

    PubMed Central

    2016-01-01

    In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. Here, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of these divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex. PMID:27354558

  12. Lawson Wilkins: recollections by his daughter.

    PubMed

    McMaster, Elizabeth Wilkins

    2014-01-01

    Lawson Wilkins is well known as the "father" of the field of pediatric endocrinology, and his scientific accomplishments and legacy are thoroughly documented in this edition and elsewhere. Less well known, though, is what the man himself was like. Here, his daughter, Elizabeth McMaster, recalls the personal side of Dr. Wilkins including his upbringing as the son of a prominent Baltimore doctor, his medical education, establishment of a successful pediatric practice, and eventually the founding of the endocrine clinic at Johns Hopkins. Interwoven with anecdotes and reminiscences, this account provides a vivid sense of Wilkins' personality and life, from his boisterous nature and devotion to his family and career, to the tragic personal losses he endured. He was a man who threw himself fully into everything he did, whether it was making his own liqueur during Prohibition, collecting specimens from abnormally large circus performers as part of his earliest endocrine research, arranging raucous, impromptu singing parties, sailing the Chesapeake with friends, writing a definitive textbook of Pediatric Endocrinology, training a legion of fellows, or the pioneering work for which he is still known today. PMID:25024712

  13. Lawson Wilkins: recollections by his daughter

    PubMed Central

    2014-01-01

    Lawson Wilkins is well known as the “father” of the field of pediatric endocrinology, and his scientific accomplishments and legacy are thoroughly documented in this edition and elsewhere. Less well known, though, is what the man himself was like. Here, his daughter, Elizabeth McMaster, recalls the personal side of Dr. Wilkins including his upbringing as the son of a prominent Baltimore doctor, his medical education, establishment of a successful pediatric practice, and eventually the founding of the endocrine clinic at Johns Hopkins. Interwoven with anecdotes and reminiscences, this account provides a vivid sense of Wilkins’ personality and life, from his boisterous nature and devotion to his family and career, to the tragic personal losses he endured. He was a man who threw himself fully into everything he did, whether it was making his own liqueur during Prohibition, collecting specimens from abnormally large circus performers as part of his earliest endocrine research, arranging raucous, impromptu singing parties, sailing the Chesapeake with friends, writing a definitive textbook of Pediatric Endocrinology, training a legion of fellows, or the pioneering work for which he is still known today. PMID:25024712

  14. [A new technic for LE cell formation. Preliminary report].

    PubMed

    Gómez-Estrada, H; Fernández-Quintero, P; Toro-Pérez, A; Arellando-Blanco, J; Ochoa Díaz-López, H; Tapia-Arizmendi, G

    1976-01-01

    In special designed vials using coverslides glued to segments of polyethilene test tubes of 0.15 ml of fibrin free blood were incubated during 45 min to 37 degrees C in a humid chamber. Blood samples were obtained from patients with disseminated Lupus erythematosus (DLE) and normal subjects (N). Adhered polymorpho-nuclear cells (PNC) to glass were washed with Hank's solution; immediately 0.15 ml of DLE or N serum containing 5X10(6) lymphocytes (L) were added to culture cells and incubated at 37 degrees C during 30 min. Lymphocytes were previously incubated at 37 degrees C during 30 min with either N serum or DLE serum. Thereafter the segment of polyethilene test tube was detached from coverslides and cells attached to glass was washed with Hank's solution and stained with Wright solution. PMN of DLE and N in presence of L of DLE and N incubated with fresh serum of DLE formed 5 to 15% of LE cells. Determining factor for LE cells formation is the serum of DLE. Slides contained only PMN and LE cells which make easy the observation of results. All possible combinations with PMN and DLE serum and N serum allowed inclusion of several negative or positive control groups.

  15. Vesicle Size Regulates Nanotube Formation in the Cell

    PubMed Central

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-01-01

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100–200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500–1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling. PMID:27052881

  16. Vesicle Size Regulates Nanotube Formation in the Cell.

    PubMed

    Su, Qian Peter; Du, Wanqing; Ji, Qinghua; Xue, Boxin; Jiang, Dong; Zhu, Yueyao; Lou, Jizhong; Yu, Li; Sun, Yujie

    2016-04-07

    Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 μm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling.

  17. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  18. [Factors affecting plaque formation by Lassa virus in Vero cells].

    PubMed

    Lukashevich, I S; Vasiuchkov, A D; Mar'iankova, R F; Votiakov, V I

    1982-01-01

    The method of Porterfield and Allison was adapted for titration of the infectious activity of Lassa virus by the plaque formation in Vero cells. The virus was cloned, and the effect of the time of adsorption, pH, temperature, as well as polycations (DEAD-dextran, protamine sulphate) dimethylsuphoxide (DMSO), and trypsin added during adsorption or into the agar overlay on the effectiveness of plaque production by Lassa virus (virus titres, plaque size) were studied. The optimal adsorption time was found to be 1 1/2-2 hours, pH 8.0. The number of plaques produced by the virus was approximately similar at 35 degrees C. The substances under study did not enhance the efficacy of plaque formation, on the contrary, DMSO and high concentrations of polycations decreased plaque size.

  19. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors.

  20. Regulation of contractile ring formation and septation in Schizosaccharomyces pombe.

    PubMed

    Willet, Alaina H; McDonald, Nathan A; Gould, Kathleen L

    2015-12-01

    The fission yeast Schizosaccharomyces pombe has become a powerful model organism for cytokinesis studies, propelled by pioneering genetic screens in the 1980s and 1990s. S. pombe cells are rod-shaped and divide similarly to mammalian cells, utilizing a medially-placed actin-and myosin-based contractile ring. A cell wall division septum is deposited behind the constricting ring, forming the new ends of each daughter cell. Here we discuss recent advances in our understanding of the regulation of contractile ring formation through formin proteins and the role of the division septum in S. pombe cell division.

  1. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell-cell contact fluidity.

    PubMed

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit; Mège, René-Marc

    2015-07-20

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell-cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell-cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell-cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell-cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell-cell contact fluidity.

  2. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    PubMed

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  3. Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells

    SciTech Connect

    Amemiya, Yosuke; Kawano, Keiko; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Noriyuki; Nakamura, Chikashi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We examined the insertion efficiency of nanoneedles into fibroblast and neural cells. Black-Right-Pointing-Pointer Nanofilms formed on cell surfaces improved the insertion efficiency of nanoneedles. Black-Right-Pointing-Pointer Nanofilms improved the insertion efficiency even in Y27632-treated cells. -- Abstract: A nanoneedle, an atomic force microscope (AFM) tip etched to 200 nm in diameter and 10 {mu}m in length, can be inserted into cells with the aid of an AFM and has been used to introduce functional molecules into cells and to analyze intracellular information with minimal cell damage. However, some cell lines have shown low insertion efficiency of the nanoneedle. Improvement in the insertion efficiency of a nanoneedle into such cells is a significant issue for nanoneedle-based cell manipulation and analysis. Here, we have formed nanofilms composed of extracellular matrix molecules on cell surfaces and found that the formation of the nanofilms improved insertion efficiency of a nanoneedle into fibroblast and neural cells. The nanofilms were shown to improve insertion efficiency even in cells in which the formation of actin stress fibers was inhibited by the ROCK inhibitor Y27632, suggesting that the nanofilms with the mesh structure directly contributed to the improved insertion efficiency of a nanoneedle.

  4. Residential radon daughter monitor based on alpha spectroscopy

    SciTech Connect

    Nazaroff, W.W.

    1980-05-01

    The radioactive daughters of radon-222 pose a serious indoor air quality problem in some circumstances. A technique for measuring the concentrations of these radioisotopes in air is presented. The method involves drawing air through a filter; then, for two time intervals after sampling, counting the alpha decays from polonium-218 and polonium-214 on the filter. The time intervals are optimized to yield the maximum resolution between the individual daughter concentrations. For a total measurement time of 50 minutes, individual daughter concentrations of 1.0 nanocuries per cubic meter are measured with an uncertainty of 20%. A prototype of a field monitor based on this technique is described, as is a field test in which the prototype was used to measure radon daughter concentrations as a function of ventilation conditions in an energy-efficient house.

  5. Mother-daughter in vitro fertilization triplet surrogate pregnancy.

    PubMed

    Michelow, M C; Bernstein, J; Jacobson, M J; McLoughlin, J L; Rubenstein, D; Hacking, A I; Preddy, S; Van der Wat, I J

    1988-02-01

    A successful triplet pregnancy has been established in a surrogate gestational mother following the transfer of five embryos fertilized in vitro. The oocytes were donated by her biological daughter, and the sperm obtained from the daughter's husband. The daughter's infertility followed a total abdominal hysterectomy performed for a postpartum hemorrhage as a result of a placenta accreta. Synchronization of both their menstrual cycles was obtained using oral contraceptive suppression for 2 months, followed by stimulation of both the surrogate gestational mother and her daughter such that embryo transfer would occur at least 48 hr after the surrogate gestational mother's own ovulation. This case raises a number of medical, social, psychological, and ethical issues. PMID:3367072

  6. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  7. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  8. Upward Communication About Cancer Screening—Adolescent Daughter to Mother

    PubMed Central

    MOSAVEL, MAGHBOEBA; PORTS, KATIE A.

    2015-01-01

    Substantial breast and cervical cancer disparities exist in the United States, particularly among African American women with low social economic status. There is considerable potential for discussions about cancer prevention between mothers and daughters. However, upward communication, from child to parent, remains a relatively novel research area, and it remains unclear how receptive mothers would be to messages from their daughter about cancer, a topic that may be considered culturally inappropriate for daughters to initiate. In this study, we simulated cancer message delivery to daughters and then conducted direct observation of daughters as they recalled and shared the message with their mother or female elder. We found that daughters were able to successfully recall and deliver a cancer appeal to their mother and mothers were generally receptive to this message. Not only did mothers listen to their daughters’ appeals, but also daughters’ knowledge of cancer was considerably improved by the opportunity to educate her female elder. Moreover, daughters’ nonverbal communication suggested a surprisingly relaxed demeanor. The potential of young people to impact the screening behavior of their female elders is very promising in terms of reducing cancer disparities. PMID:25848895

  9. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  10. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  11. Mothers' and Fathers' Perceptions of Their Adolescent Daughters' Shape, Weight, and Body Esteem: Are They Accurate?

    ERIC Educational Resources Information Center

    Geller, Josie; Srikameswaran, Suja; Zaitsoff, Shannon L.; Cockell, Sarah J.; Poole, Gary D.

    2003-01-01

    Examined parents' awareness of their daughters' attitudes, beliefs, and feelings about their bodies. Sixty-six adolescent daughters completed an eating disorder scale, a body figure rating scale, and made ratings of their shape and weight. Greater discrepancies between parents' estimates of daughters' body esteem and daughters' self-reported body…

  12. Mother-daughter and father-daughter attachment of college student ACOAs.

    PubMed

    Kelley, Michelle L; French, Alexis; Schroeder, Valarie; Bountress, Kaitlin; Fals-Stewart, William; Steer, Kate; Cooke, Cathy G

    2008-01-01

    This 2005 study compared parent-child attachment in 89 American female Adult Children of Alcoholics (ACOAs) as compared to 201 non-ACOAs. Women attended a large university in the southeastern United States. Participants categorized as ACOA on the Children of Alcoholics Screen Test (CAST; Jones, 1983) reported significantly more negative affect and less support from their fathers as indicated on the Parental Attachment Questionnaire (Kenney, 1987). When results were examined by the gender of the alcohol-abusing(1) parent, participants who suspected their fathers were problem drinkers did not differ from non-ACOAs in their attachment to either parent. As compared to non-ACOAs, women who self-identified as daughters of problem-drinking mothers reported poorer attachment both to mothers and fathers. PMID:18752160

  13. DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium.

    PubMed

    Korhonen, Hanna Maria; Yadav, Ram Prakash; Da Ros, Matteo; Chalmel, Frédéric; Zimmermann, Céline; Toppari, Jorma; Nef, Serge; Kotaja, Noora

    2015-12-01

    The endonuclease DICER that processes micro-RNAs and small interfering RNAs is essential for normal spermatogenesis and male fertility. We previously showed that the deletion of Dicer1 gene in postnatal spermatogonia in mice using Ngn3 promoter-driven Cre expression caused severe defects in the morphogenesis of haploid spermatid to mature spermatozoon, including problems in cell polarization and nuclear elongation. In this study, we further analyzed the same mouse model and revealed that absence of functional DICER in differentiating male germ cells induces disorganization of the cell-cell junctions in the seminiferous epithelium. We detected discontinuous and irregular apical ectoplasmic specializations between elongating spermatids and Sertoli cells. The defective anchoring of spermatids to Sertoli cells caused a premature release of spermatids into the lumen. Our findings may help also explain the abnormal elongation process of remaining spermatids because these junctions and the correct positioning of germ cells in the epithelium are critically important for the progression of spermiogenesis. Interestingly, cell adhesion-related genes were generally upregulated in Dicer1 knockout germ cells. Claudin 5 ( Cldn5 ) was among the most upregulated genes and we show that the polarized localization of CLAUDIN5 in the apical ectoplasmic specializations was lost in Dicer1 knockout spermatids. Our results suggest that DICER-dependent pathways control the formation and organization of cell-cell junctions in the seminiferous epithelium via the regulation of cell adhesion-related genes. PMID:26510868

  14. Carbon onions as nanoscopic pressure cells for diamond formation

    NASA Astrophysics Data System (ADS)

    Banhart, F.; Ajayan, P. M.

    1996-08-01

    SPHERICAL particles of carbon consisting of concentric graphite-like shells ('carbon onions') can be formed by electron irradiation of graphitic carbon materials1,2. Here we report that, when such particles are heated to ~700 °C and irradiated with electrons, their cores can be transformed to diamond. Under these conditions the spacing between layers in the carbon onions decreases from 0.31 in the outer shells (slightly less than the 0.34-nm layer spacing of graphite) to about 0.22 nm in the core, indicating considerable compression towards the particle centres. We find that this compression allows diamond to nucleate-in effect the carbon onions act as nanoscopic pressure cells for diamond formation.

  15. Myosin II-mediated cell shape changes and cell intercalation contribute to primitive streak formation

    PubMed Central

    Song, Feifei; Sang, Helen M.; Martin, René; Knölker, Hans-Joachim; MacDonald, Michael P; Weijer, Cornelis J

    2016-01-01

    Primitive streak formation in the chick embryo involves large scale highly coordinated flows of over 100.000 cells in the epiblast. These large scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combined light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression as well as asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localisation and direction of which correlate strongly with the appearance of active Myosin II cables in aligned apical junctions in neighbouring cells. Use of a class specific Myosin inhibitors and gene specific knockdowns show that apical contraction and intercalation are Myosin II dependent and also reveal critical roles for Myosin I and Myosin V family members in the assembly of junctional Myosin II cables. PMID:25812521

  16. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    PubMed

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  17. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. PMID:26572774

  18. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  19. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  20. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  1. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii.

    PubMed

    Martins-Duarte, Érica S; Carias, Maira; Vommaro, Rossiane; Surolia, Namita; de Souza, Wanderley

    2016-09-01

    The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division. PMID:27457282

  2. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii.

    PubMed

    Martins-Duarte, Érica S; Carias, Maira; Vommaro, Rossiane; Surolia, Namita; de Souza, Wanderley

    2016-09-01

    The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division.

  3. [Formation of spontaneous and immune rosettes by the cells of the thymus and other formations of the rabbit lymphoid system].

    PubMed

    Grinevich, Iu A

    1975-11-01

    Only T1--RFC (rosette-forming cells) are revealed in the thymus of nonimmunized rabbits. Their number is 2--2.5 times less than in the palatine tonsils, submaxillary lymph nodes and the spleen. T2--RFC are present in these lymphoid formations. There is an increase in the T1--RFC in the thymus after the intravenous immunization of rabbits with sheep erythrocytes. In other lymphoid formations the correlation of the population of cells of the thymus origin altered as a result of increase in the number of T2--RFC. B--RFC accumulated in considerable amounts. Dynamics of T2 and B--RFC accumulation in the lymphoid formations corresponded to the highest antibody titres in the rabbit blood. In the formation of primary immune response the amount of the T1 and T2-RFC in the formations of rabbit lymphoid system depended on the dose of the antigen. PMID:1221703

  4. Hyaluronan cable formation by ocular trabecular meshwork cells.

    PubMed

    Sun, Ying Ying; Keller, Kate E

    2015-10-01

    :polycytidylic acid (polyI:C), a potent inducer of HA cables, and outflow rates were monitored for 72 h. PolyI:C had no significant effect on outflow resistance in porcine anterior segments perfused at physiological pressure. Collectively, HAS gene expression, HA concentration and configuration are differentially modified in response to several treatments that induce ECM remodeling in TM cells. In ocular TM cells, our data suggests that the most important determinant of HA cable formation appears to be the ratio of HA chains produced by the different HAS genes. However, the act of rearranging pericellular HA into cable-like structures does not appear to influence aqueous outflow resistance.

  5. Hyaluronan cable formation by ocular trabecular meshwork cells.

    PubMed

    Sun, Ying Ying; Keller, Kate E

    2015-10-01

    :polycytidylic acid (polyI:C), a potent inducer of HA cables, and outflow rates were monitored for 72 h. PolyI:C had no significant effect on outflow resistance in porcine anterior segments perfused at physiological pressure. Collectively, HAS gene expression, HA concentration and configuration are differentially modified in response to several treatments that induce ECM remodeling in TM cells. In ocular TM cells, our data suggests that the most important determinant of HA cable formation appears to be the ratio of HA chains produced by the different HAS genes. However, the act of rearranging pericellular HA into cable-like structures does not appear to influence aqueous outflow resistance. PMID:26247678

  6. Phosphoribosylpyrophosphate Synthetase 1 Knockdown Suppresses Tumor Formation of Glioma CD133+ Cells Through Upregulating Cell Apoptosis.

    PubMed

    Li, Chen; Yan, Zhongjie; Cao, Xuhua; Zhang, Xiaowei; Yang, Liang

    2016-10-01

    Relapse is the main cause of mortality in patients with glioblastoma multiforme (GBM). Treatment options involve surgical resection followed by a combination of radiotheraphy and chemotherapy with temozolomide. Several genes and genetic pathways have been identified to contribute to therapeutic resistance, giving rise to recurrence of the malignancy. In the last decades, glioma stem cells (GSCs) with the capacity of self-renewal have been demonstrated to maintain tumor propagation and treatment resistance. Here, we isolated CD133-positive (CD133+) and CD133-negative (CD133-) cells from glioblastoma U98G and U87MG cell lines. The role of phosphoribosylpyrophosphate synthetase 1 (PRPS1), which catalyzes the first step of the synthesis of nucleotide, in proliferation and apoptosis was investigated. We found that PRPS1 had a remarkable effect on cell proliferation and sphere formation in both CD133+ and CD133- cells. Compared to CD133- cells, CD133+ cells exhibited more significant results in cell apoptosis assay. CD133+ T98G and U87MG cells were used in xenograft mouse model of tumor formation. Interestingly, the mice implanted with PRPS1 knockdown T98G or U87MG stem cells exhibited prolonged survival time and reduced tumor volume. By immunostaining caspase-3 in tumor tissues of these mice, we demonstrated that the apoptotic activities in tumor cells were positively correlated to the survival time but negatively correlated to PRPS1 expression. Our results indicate that PRPS1 plays an important role in proliferation and apoptosis in GSCs and provide new clues for potential PRPS1-targeted therapy in GBM treatment. PMID:27343059

  7. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    SciTech Connect

    Fair, D. L.; Justice, D. D.; Woodard Jr., K. E.

    1985-07-09

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs.

  8. Radon and radon daughter levels in energy efficient housing.

    PubMed

    McGregor, R G; Walker, W B; Létourneau, E G

    1985-10-01

    Radon and radon daughter concentrations have been measured in 33 "energy-efficient" homes in a small subdivision in Kanata, Ontario. Integrated radon measurements were determined over three month periods for a year using solid state nuclear track detectors. Radon and radon daughter grab sample determinations were made during corresponding periods and confirm the distributions of the integrated radon measurements. Annual average individual home radon concentrations show an 8 fold concentration range between homes. This variability in radon concentrations is not reflected in the range of air exchange rates for the homes. A distinct seasonal variation is noted for the median values of the radon and radon daughter concentrations and the equilibrium factor F in the dwellings.

  9. Polymer Solar Cells: Solubility Controls Fiber Network Formation.

    PubMed

    van Franeker, Jacobus J; Heintges, Gaël H L; Schaefer, Charley; Portale, Giuseppe; Li, Weiwei; Wienk, Martijn M; van der Schoot, Paul; Janssen, René A J

    2015-09-16

    The photoactive layer of polymer solar cells is commonly processed from a four-component solution, containing a semiconducting polymer and a fullerene derivative dissolved in a solvent-cosolvent mixture. The nanoscale dimensions of the polymer-fullerene morphology that is formed upon drying determines the solar cell performance, but the fundamental processes that govern the size of the phase-separated polymer and fullerene domains are poorly understood. Here, we investigate morphology formation of an alternating copolymer of diketopyrrolopyrrole and a thiophene-phenyl-thiophene oligomer (PDPPTPT) with relatively long 2-decyltetradecyl (DT) side chains blended with [6,6]-phenyl-C71-butyric acid methyl ester. During solvent evaporation the polymer crystallizes into a fibrous network. The typical width of these fibers is analyzed by quantification of transmission electron microscopic images, and is mainly determined by the solubility of the polymer in the cosolvent and the molecular weight of the polymer. A higher molecular weight corresponds to a lower solubility and film processing results in a smaller fiber width. Surprisingly, the fiber width is not related to the drying rate or the amount of cosolvent. We have made solar cells with fiber widths ranging from 28 to 68 nm and found an inverse relation between fiber width and photocurrent. Finally, by mixing two cosolvents, we develop a ternary solvent system to tune the fiber width. We propose a model based on nucleation-and-growth which can explain these measurements. Our results show that the width of the semicrystalline polymer fibers is not the result of a frozen dynamical state, but determined by the nucleation induced by the polymer solubility.

  10. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    SciTech Connect

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S.

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  11. Self-organization and advective transport in the cell polarity formation for asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim; Shibata, Tatsuo

    2015-10-01

    Anterior-Posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. The mechanism of AP formation of Caenorhabditis elegans embryo is characterized into the three processes: (i) membrane association and dissociation of posterior and anterior proteins, (ii) diffusion into the membrane and cytosol, and (iii) active cortical and cytoplasmic flows induced by the contraction of the acto-myosin cortex. We explored the mechanism of symmetry breaking and AP polarity formation using self-recruitment model of posterior proteins. We found that the AP polarity pattern is established over wide range in the total mass of polarity proteins and the diffusion ratio in the cytosol to the membrane. We also showed that the advective transport in both membrane and cytosol during the establishment phase affects optimal time interval of establishment and positioning of the posterior domain, and plays a role to increase the robustness in the AP polarity formation by reducing the number of posterior domains for the sensitivity of initial conditions. We also demonstrated that a proper ratio of the total mass to cell size robustly regulate the length scale of the posterior domain.

  12. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations

    PubMed Central

    Tabaei, Seyed R.; Park, Jae Hyeok; Na, Kyuhwan; Chung, Seok; Zhdanov, Vladimir P.

    2016-01-01

    The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells. PMID:27571565

  13. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations.

    PubMed

    Wang, Yan; Kim, Myung Hee; Tabaei, Seyed R; Park, Jae Hyeok; Na, Kyuhwan; Chung, Seok; Zhdanov, Vladimir P; Cho, Nam-Joon

    2016-01-01

    The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells. PMID:27571565

  14. Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact.

    PubMed

    Vasilopoulos, Georgios; Painter, Kevin J

    2016-03-01

    Pattern formation via direct cell to cell contact has received considerable attention over the years. In particular the lateral-inhibition mechanism observed in the Notch signalling pathway can generate a regular periodic pattern of differential cell activity, and has been proposed to explain the emergence of patterns in various tissues and organs. The majority of models of this system have focussed on short-range contacts: a cell signals only to its nearest neighbours and the resulting patterns tend to be of fine-scale "salt and pepper" nature. The capacity of certain cells to extend signalling filopodia (cytonemes) over multiple cell lengths, however, inserts a long-range or non-local component into this process. Here we explore how long range signalling can impact on pattern formation. Specifically, we extend a standard model for Notch-like lateral inhibition to include cytoneme-mediated signalling, and investigate how pattern formation depends on the spatial distribution of signal from the signalling cell. We show that a variety of patterns can be obtained, ranging from a sparse pattern of single isolated cells to larger clusters or stripes.

  15. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    PubMed

    Seirin Lee, Sungrim

    2016-09-01

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning.

  16. What women with breast cancer discuss with clinicians about risk for their adolescent daughters.

    PubMed

    Maloney, Erin; Edgerson, Shawna; Robson, Mark; Offit, Ken; Brown, Richard; Bylund, Carma; Kissane, David W

    2012-01-01

    Recorded conversations between women undergoing BRCA genetic counseling with clinicians (N = 16) and follow-up consultation letters (N = 16) were analyzed to determine how and when communicating genetic risk information to women's adolescent daughters is discussed. Themes from conversations included mothers' worries about their daughters, perceptions of their daughters' coping, educational information, and clinicians' willingness or reluctance to communicate directly with daughters about their genetic risk. Letters referred to daughters when informing mothers about autosomal dominant inheritance patterns, psychosocial considerations, and screening recommendations. Results inform the value of educating mothers about how they might discuss these issues with their adolescent daughters.

  17. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.

    PubMed

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan

    2012-08-10

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.

  18. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis.

    PubMed

    Tawk, Marcel; Araya, Claudio; Lyons, Dave A; Reugels, Alexander M; Girdler, Gemma C; Bayley, Philippa R; Hyde, David R; Tada, Masazumi; Clarke, Jonathan D W

    2007-04-12

    The development of cell polarity is an essential prerequisite for tissue morphogenesis during embryogenesis, particularly in the development of epithelia. In addition, oriented cell division can have a powerful influence on tissue morphogenesis. Here we identify a novel mode of polarized cell division that generates pairs of neural progenitors with mirror-symmetric polarity in the developing zebrafish neural tube and has dramatic consequences for the organization of embryonic tissue. We show that during neural rod formation the polarity protein Pard3 is localized to the cleavage furrow of dividing progenitors, and then mirror-symmetrically inherited by the two daughter cells. This allows the daughter cells to integrate into opposite sides of the developing neural tube. Furthermore, these mirror-symmetric divisions have powerful morphogenetic influence: when forced to occur in ectopic locations during neurulation, they orchestrate the development of mirror-image pattern formation and the consequent generation of ectopic neural tubes.

  19. Expression of an accessory cell phenotype by hairy cells during lymphocyte colony formation in agar culture.

    PubMed

    Farcet, J P; Gourdin, M F; Testa, U; Andre, C; Jouault, H; Reyes, F

    1983-01-01

    Human T lymphocytes require the cooperation of accessory cells to generate lymphocyte colonies in agar culture under PHA stimulation. Various hairy cell enriched fractions, as well as normal monocytes, have been found to be able to initiate colony formation by normal lymphocytes. Leukemic monocytes from CMML patients were also effective, but not the leukemic lymphocytes from CLL patients. The phenotype expressed by HC in agar colonies was further studied using cell surface and enzymatic markers. We have concluded that HC in agar culture in the presence of both normal T lymphocytes and PHA lose the B phenotype that they express in vivo and function like an accessory cell in contrast to normal or leukemic B lymphocytes. PMID:6601222

  20. A mathematical model of cell equilibrium and joint cell formation in multiple myeloma.

    PubMed

    Koenders, M A; Saso, R

    2016-02-01

    In Multiple Myeloma Bone Disease healthy bone remodelling is affected by tumour cells by means of paracrine cytokinetic signalling in such a way that osteoclast formation is enhanced and the growth of osteoblast cells inhibited. The participating cytokines are described in the literature. Osteoclast-induced myeloma cell growth is also reported. Based on existing mathematical models for healthy bone remodelling a three-way equilibrium model is presented for osteoclasts, osteoblasts and myeloma cell populations to describe the progress of the illness in a scenario in which there is a secular increase in the cytokinetic interactive effectiveness of paracrine processes. The equilibrium state for the system is obtained. The paracrine interactive effectiveness is explored by parameter variation and the stable region in the parameter space is identified. Then recently-discovered joint myeloma-osteoclast cells are added to the model to describe the populations inside lytic lesions. It transpires that their presence expands the available parameter space for stable equilibrium, thus permitting a detrimental, larger population of osteoclasts and myeloma cells. A possible relapse mechanism for the illness is explored by letting joint cells dissociate. The mathematics then permits the evaluation of the evolution of the cell populations as a function of time during relapse.

  1. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  2. Traditional and Nontraditional Mothers' Communication with their Daughters and Sons.

    ERIC Educational Resources Information Center

    Weitzman, Nancy; And Others

    1985-01-01

    When maternal communication with two-and-one-half- to three-and-one-half-year-old children was analyzed, significant differences between mothers' speech to daughters and sons were found. Males consistently received more verbal stimulation of the type thought to facilitate cognitive development. Differential treatment of girls and boys was lessened…

  3. Discovering and Constructing Our Identities: Reading "The Favorite Daughter"

    ERIC Educational Resources Information Center

    Elijah, Rosebud

    2014-01-01

    For everyone--children, parents, teachers--who have experienced instances in their lives where they have been teased, alienated, isolated, shunned, Allen Say gives us the beautifully illustrated book "The Favorite Daughter." In this book (a Notable Social Studies Trade Book for 2013), author and illustrator Say wraps and unwraps issues…

  4. Dissident Daughters? The Psychic Life of Class Inheritance

    ERIC Educational Resources Information Center

    Hey, Valerie; George, Rosalyn

    2013-01-01

    This paper arose through a chance meeting between the two authors who are feminist mothers of teenage and 20 years plus daughters. We were attending an Economic and Social Research Council-funded seminar focusing on "new femininities" in the light of post-feminism and their worth and currency within the new politics of consumption and lifestyle.…

  5. Daughters of Tradition: An Educational Program for Girls.

    ERIC Educational Resources Information Center

    Simonelli, Richard

    2001-01-01

    Daughters of Tradition is a facilitated educational program that addresses current issues such as alcohol and drug abuse, domestic violence, and the empowerment of young American Indian women, in a way that blends the spiritual, emotional, mental, physical, and cultural parts of living into a seamless whole. Mind mapping and journal keeping affirm…

  6. Hoping for a Phoenix: Shanghai Fathers and Their Daughters

    ERIC Educational Resources Information Center

    Xu, Qiong; Yeung, Wei-Jun Jean

    2013-01-01

    Intergenerational relationships and gender roles in China are in transition because of ideational and structural changes resulting from social movements and policies in the past half a century. Using a mixed-methods design, we examine Shanghai fathers' involvement in their adolescent daughters' lives. In contrast to traditional…

  7. Father-Daughter Incest: Data from an Anonymous Computerized Survey

    ERIC Educational Resources Information Center

    Stroebel, Sandra S.; O'Keefe, Stephen L.; Beard, Keith W.; Kuo, Shih-Ya; Swindell, Samuel V. S.; Kommor, Martin J.

    2012-01-01

    Retrospective data were entered anonymously by 1,521 adult women using computer-assisted self-interview. Nineteen were classified as victims of father-daughter incest, and 241 were classified as victims of sexual abuse by an adult other than their father before reaching 18 years of age. The remaining 1,261 served as controls. Incest victims were…

  8. When Daughter's Sexual Abuse Is an Injury to Mother's Narcissism.

    ERIC Educational Resources Information Center

    DePinho, Connie Maria

    The mother's reaction to the disclosure of sexual abuse is often dramatic and her particular type of response in turn affects the daughter's coping mechanisms to deal with the abuse and the disclosure. The type of symptoms developed are thus considered in part dependent on the mother's reaction. Mothers of children who have been sexually abused…

  9. Humor in Father-Daughter Immigration Narratives of Resistance

    ERIC Educational Resources Information Center

    Gallo, Sarah

    2016-01-01

    This article draws from an ethnography on Mexican immigrant fathers and their children to examine humor in immigration narratives as acts of resistance. The analysis focuses on the devices employed by a father and daughter during their everyday talk and co-narration of an incident with police officers. Findings illustrate how the form and content…

  10. A Case Study of a Mother/Daughter Science Club.

    ERIC Educational Resources Information Center

    Chandler, Frances Tate; Parsons, Sharon

    This paper describes a case study of a Mother/Daughter Science Club which was established to explore the issue of adolescent girls' increasingly negative attitudes towards science and math. Data was collected on participants' (n=40, 20 pre-adolescent fifth-grade girls and their mothers) attitudes toward math and science through the use of…

  11. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    PubMed

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs.

  12. Multagenicity of radon and radon daughters. Final technical report, January 1, 1993--December 31, 1996

    SciTech Connect

    Evans, H.H.

    1997-06-01

    The objective of this research was to investigate the dose-response relationship with regard to the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence was studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions was investigated by comparing the response of L5178Y strains that differ in their ability to rejoin X radiation-induced DNA double strand breaks. The nature of radon/radon daughter-induced mutational lesions in human lymphoblasts was also investigated.

  13. Energy deposition and radiation quality of radon and radon daughters. Final report

    SciTech Connect

    Karam, L.R.; Caswell, R.S.

    1996-09-09

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of {sup 218}Po and {sup 214}Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny.

  14. A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis.

    PubMed

    Patra, Bishnubrata; Chen, Ying-Hua; Peng, Chien-Chung; Lin, Shiang-Chi; Lee, Chau-Hwang; Tung, Yi-Chung

    2013-01-01

    Culture of cells as three-dimensional (3D) aggregates, named spheroids, possesses great potential to improve in vitro cell models for basic biomedical research. However, such cell spheroid models are often complicated, cumbersome, and expensive compared to conventional Petri-dish cell cultures. In this work, we developed a simple microfluidic device for cell spheroid formation, culture, and harvesting. Using this device, cells could form uniformly sized spheroids due to strong cell-cell interactions and the spatial confinement of microfluidic culture chambers. We demonstrated cell spheroid formation and culture in the designed devices using embryonic stem cells, carcinoma cells, and fibroblasts. We further scaled up the device capable of simultaneously forming and culturing 5000 spheroids in a single chip. Finally, we demonstrated harvesting of the cultured spheroids from the device with a simple setup. The harvested spheroids possess great integrity, and the cells can be exploited for further flow cytometry assays due to the ample cell numbers. PMID:24396525

  15. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  16. The Daughter's Disenchantment: Incest as Pedagogy in Fairy Tales and Kathryn Harrison's the Kiss

    ERIC Educational Resources Information Center

    Marshall, Elizabeth

    2004-01-01

    The Kiss, is described as a controversial memoir about father-daughter incest that disturbed the cultural silence in a "well heeled" home. The emotional and psychological terrain of the daughter's experience is discussed.

  17. Cutaneous leiomyomatosis in a mother and daughter*

    PubMed Central

    Lencastre, André; Cabete, Joana; Gonçalves, Rui; João, Alexandre; Fidalgo, Ana

    2013-01-01

    A 34-year-old woman with no known medical history was evaluated for multiple painful brown nodules and papules on the anterior aspect of the trunk. She mentioned a history of similar cutaneous findings on her mother. Biopsies of three lesions revealed piloleiomyomata. Renal and adrenal ultrasound revealed an isolated simple cortical cyst, and pelvic and endovaginal ultrasound revealed two uterine myomata. The clinical diagnosis of hereditary leiomyomatosis and renal cell cancer was corroborated by the identification of a heterozygous variant on exon 5 of the fumarate hydratase gene (c.578C>T p.T193I). Identification of the tumor piloleiomyoma should alert the dermatologist to this rare genodermatosis, which is associated with an increased risk of renal cell tumors, demanding multidisciplinary follow-up, and personal and family counseling. PMID:24346898

  18. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina.

    PubMed

    Shimmen, Teruo; Wakabayashi, Akiko

    2008-10-01

    Internodal cells of Chara corallina form alkaline bands on their surface upon illumination via photosynthesis. In the present study, the effect of KCl on alkaline band formation was analyzed. When the extracellular KCl concentration was increased, alkaline band formation was extensively inhibited. Electrophysiological analysis unequivocally showed the need for inner negative membrane potential for alkaline band formation.

  19. Synthesis of metal nanoparticles inside living human cells based on the intracellular formation process.

    PubMed

    El-Said, Waleed A; Cho, Hyeon-Yeol; Yea, Cheol-Heon; Choi, Jeong-Woo

    2014-02-12

    Intracellular and extracellular formation of Au and Ag NPs with different sizes and shapes using human cells has been developed as green method, which does not require the use of any reducing agents. Also, the cell lysis is used for production of different metal NPs. Our results demonstrate that treatment of human cells with various metal ions cause cell fixation.

  20. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    SciTech Connect

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho . E-mail: keesh@korea.ac.kr

    2005-08-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear {beta}-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear {beta}-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3{beta} activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.

  1. Homework Headaches: How I Got My Special Needs Daughter to Do Homework

    ERIC Educational Resources Information Center

    Frye, Cyndi

    2007-01-01

    In this article, the author, a graduate student in special education, relates how she got her daughter with special needs to do homework. Her daughter's temper tantrums, when asked to do her homework, ruined the whole evening for their family. The author describes her daughter's homework intervention program which she developed and implemented.…

  2. Comparison of Fathers of Daughters with and without Maladaptive Eating Attitudes.

    ERIC Educational Resources Information Center

    Eme, Robert F.; Danielak, Mary Hanes

    1995-01-01

    Analysis of family perceptions of 22 daughters (age 15) with and 88 daughters without maladaptive eating attitudes showed that daughters with maladaptive attitudes reported problems with fathers on communication, problem solving, autonomy, and expression of warmth and problems with their mothers in communication and expression of warmth. Parents…

  3. Daughters-in-Law and Stress in Two-Generation Farm Families.

    ERIC Educational Resources Information Center

    Marotz-Baden, Ramona; Mattheis, Claudia

    1994-01-01

    Tested proposition that high levels of stress in daughters-in-law in two-generation farm families are correlated with daughters-in-law's lack of integration into extended family and family business systems among 54 daughters-in-law. Quality of relationship with in-laws and perceived lack of decision-making responsibility were significantly…

  4. Maternal Depressive Symptoms and Achievement-Related Outcomes among Adolescent Daughters: Variations by Family Structure.

    ERIC Educational Resources Information Center

    Silverberg, Susan B.; And Others

    1996-01-01

    Examined whether early adolescent females' school grades, educational aspirations, educational expectations, and the discrepancy between aspirations and expectations could be predicted by maternal depressive symptoms in 44 mother-daughter dyads. Found that for only the single-mother and daughter subsample, depression scores predicted daughters'…

  5. Daughter's Perceptions of Being Mothered by an Incest Survivor: A Phenomenological Study.

    ERIC Educational Resources Information Center

    Voth, Peggy Funk; Tutty, Leslie M.

    1999-01-01

    Presents results of an analysis on the experiences of daughters of incest survivors. Reports that daughters responded with a lack of affection toward their mothers, and had complications in differentiation and integration of a negative self-view. Notes that mother's ultimate disclosure of incest history helped the daughter offset difficulties.…

  6. Daughter neglect, women's work, and marriage: Pakistan and Bangladesh compared.

    PubMed

    Miller, B D

    1984-01-01

    This article looks at juvenile sex ratios, juvenile mortality, women's work roles and marriage patterns in Pakistan and bangladesh in order to assess whether patterns previously observed in India, namely, daughter neglect in the northwest and equal juvenile sex ratios in the eastern part of the country, are carried over into the 2 adjacent nations, Pakistan and Bangladesh, respectively. The Indian study indicates that nationwide sex ratio data, sample survey data on childhood mortality, longitudinal population records in several locations and ethonographic evidence all point to inequalities in mortality as the prime cause of unbalanced sex ratios. The juvenile sex ratios of Pakistan and Bangladesh are very different from 1 another. Whereas there are no regional contrasts among juvenile sex ratios within Bangladesh, it is greater within Pakistan. Sex ratio data correspond roughly to what the mortality data indicate in terms of the contrast between Pakistan and Bangladesh. The evidence on juvenile mortality in both countries is too scant to support an airtight argument that juvenile females in Pakistan have much higher mortality rates than boys, while mortality rates are more balanced in Bangladesh. But the existing evidence clearly points to that conclusion. The immediate causes of the greater sex-differential mortality in Pakistan cannot be documented in the available ethnographic literature. Biased allocation of food, medical care, and love might be operating. Looking at the economic and sociocultural complex that promotes much differences between Pakistan and Bangladesh, it is argued that, in both countries, class-based variations in both women's work and marriage patterns exist and are important. It is hypothesized that females in Pakistan are little valued for agricultural labor, and pose an economic liability on their families who need to provide a large dowry with her marriage to compensate for the daughter's low economic utility to the agrucultural workforce

  7. Daughter neglect, women's work, and marriage: Pakistan and Bangladesh compared.

    PubMed

    Miller, B D

    1984-01-01

    This article looks at juvenile sex ratios, juvenile mortality, women's work roles and marriage patterns in Pakistan and bangladesh in order to assess whether patterns previously observed in India, namely, daughter neglect in the northwest and equal juvenile sex ratios in the eastern part of the country, are carried over into the 2 adjacent nations, Pakistan and Bangladesh, respectively. The Indian study indicates that nationwide sex ratio data, sample survey data on childhood mortality, longitudinal population records in several locations and ethonographic evidence all point to inequalities in mortality as the prime cause of unbalanced sex ratios. The juvenile sex ratios of Pakistan and Bangladesh are very different from 1 another. Whereas there are no regional contrasts among juvenile sex ratios within Bangladesh, it is greater within Pakistan. Sex ratio data correspond roughly to what the mortality data indicate in terms of the contrast between Pakistan and Bangladesh. The evidence on juvenile mortality in both countries is too scant to support an airtight argument that juvenile females in Pakistan have much higher mortality rates than boys, while mortality rates are more balanced in Bangladesh. But the existing evidence clearly points to that conclusion. The immediate causes of the greater sex-differential mortality in Pakistan cannot be documented in the available ethnographic literature. Biased allocation of food, medical care, and love might be operating. Looking at the economic and sociocultural complex that promotes much differences between Pakistan and Bangladesh, it is argued that, in both countries, class-based variations in both women's work and marriage patterns exist and are important. It is hypothesized that females in Pakistan are little valued for agricultural labor, and pose an economic liability on their families who need to provide a large dowry with her marriage to compensate for the daughter's low economic utility to the agrucultural workforce

  8. (Mutagenicity of radon and radon daughters)

    SciTech Connect

    Not Available

    1990-01-01

    The current objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence will be studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions will be investigated by comparing the response of L5178Y strains which differ in their ability to rejoin X radiation-induced DNA double-strand breaks. This report discusses progress incurred from 4/1/1988--10/1/1990. 5 refs., 9 figs., 6 tabs.

  9. BCL6 interacting corepressor contributes to germinal center T follicular helper cell formation and B cell helper function

    PubMed Central

    Yang, Jessica A.; Tubo, Noah J.; Gearhart, Micah D.; Bardwell, Vivian J.; Jenkins, Marc K.

    2015-01-01

    CD4+ germinal center (GC) T follicular helper (GC-Tfh) cells help B cells become long-lived plasma cells and memory cells. The transcriptional repressor BCL6 plays a key role in GC-Tfh formation by inhibiting the expression of genes that promote differentiation into other lineages. We determined whether BCOR, a component of a Polycomb repressive complex that interacts with the BCL6 BTB domain, influences GC-Tfh differentiation. T cell-targeted BCOR deficiency led to a substantial loss of peptide:MHCII-specific GC-Tfh cells following Listeria monocytogenes infection and a 2-fold decrease following immunization with a peptide in CFA. The reduction in GC-Tfh cells was associated with diminished plasma cell and GC B cell formation. Thus, T cell-expressed BCOR is critical for optimal GC-Tfh differentiation and humoral immunity. PMID:25964495

  10. The formation of electronically excited species in the human multiple myeloma cell suspension

    PubMed Central

    Rác, Marek; Sedlářová, Michaela; Pospíšil, Pavel

    2015-01-01

    In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls 3(R = O)*. The kinetics of 3(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of 3(R = O)*, the formation of singlet oxygen (1O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of 1O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of 1O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of 3(R = O)* and 1O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed. PMID:25744165

  11. Attitudes and Beliefs of African Immigrant Mothers Living in the US Towards Providing Comprehensive Sex Education to Daughters Aged 12-17 Years: A Pilot Study.

    PubMed

    Agbemenu, Kafuli; Terry, Martha Ann; Hannan, Margaret; Kitutu, Julius; Doswell, Willa

    2016-10-01

    The literature currently contains no comprehensive sex education (CSE) interventions targeting the African immigrant population. African immigrant mothers have been inhibited by several factors from providing their daughters with CSE. The primary aim of this study was to identify attitudes and beliefs of Sub-Saharan immigrant mothers living in the United States towards providing comprehensive sex education to their daughters aged 12-17 years. The study utilized a one-time anonymous nine-question survey. Fifteen women who met the inclusion criteria completed the study survey online or via paper format. African immigrant mothers are willing to allow comprehensive sex to be taught in schools and at home. Accepted education appears to range from religious and moral teaching to some factual information. This research will potentially assist in the designing of more culturally appropriate comprehensive sex education programs for African immigrant mothers and their daughters.

  12. Attitudes and Beliefs of African Immigrant Mothers Living in the US Towards Providing Comprehensive Sex Education to Daughters Aged 12-17 Years: A Pilot Study.

    PubMed

    Agbemenu, Kafuli; Terry, Martha Ann; Hannan, Margaret; Kitutu, Julius; Doswell, Willa

    2016-10-01

    The literature currently contains no comprehensive sex education (CSE) interventions targeting the African immigrant population. African immigrant mothers have been inhibited by several factors from providing their daughters with CSE. The primary aim of this study was to identify attitudes and beliefs of Sub-Saharan immigrant mothers living in the United States towards providing comprehensive sex education to their daughters aged 12-17 years. The study utilized a one-time anonymous nine-question survey. Fifteen women who met the inclusion criteria completed the study survey online or via paper format. African immigrant mothers are willing to allow comprehensive sex to be taught in schools and at home. Accepted education appears to range from religious and moral teaching to some factual information. This research will potentially assist in the designing of more culturally appropriate comprehensive sex education programs for African immigrant mothers and their daughters. PMID:26438661

  13. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters?

    PubMed

    de Kruijff, Robin M; Wolterbeek, Hubert T; Denkova, Antonia G

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  14. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters?

    PubMed Central

    de Kruijff, Robin M.; Wolterbeek, Hubert T.; Denkova, Antonia G.

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  15. Biodistribution of 225Ra citrate in mice: retention of daughter radioisotopes in bone.

    PubMed

    Kennel, Stephen J; Lankford, Trish; Garland, Marc; Sundberg, John P; Mirzadeh, Saed

    2005-11-01

    Alpha-particle-emitting radionuclides have potential for therapy of localized disease due to their high linear energy transformation and short pathlengths. Radiometals that home naturally to bone can be exploited for this purpose, and 223Ra (t(1/2)=11.4 days) recently has been studied for therapy of bone tumors in mice and rats. Actinium-225 (t(1/2)=10 days) is also an attractive radioisotope for endoradiotherapy. In a single decay of a 225Ac nucleus and its subsequent decay daughters, over 27 MeV ( approximately 90% of total energy) is released by sequential emission of four alpha particles, ranging in energy from 5.7 to 8.4 MeV. Although Ac3+ does not home naturally to bone, its parent radioisotope 225Ra (beta(-), t(1/2)=15 days) can be used as an in vivo source for 225Ac. Thus, injection of 225Ra takes advantage of the bone-homing properties of radium coupled with the significant amount of energy released from the 225Ac decay chain. Our data confirm that a large fraction of radium citrate injected intravenously into mice localizes rapidly in bone. Injected doses per gram (ID/g) for 225Ra range from 25% in skull to about 10% in sternum. Once deposited, the 225Ra remains in the bone with a biological half life of >40 days. Furthermore, >95% of the daughter radioisotope, 225Ac, is retained in the bone. However, a significant fraction of one of the daughter radioisotopes, 213Bi, is found in kidney. The biodistribution data indicate that 225Ra injection should be a powerful agent for killing cells associated with bone; however, the toxicity of this radioisotope which is similar to that of other alpha emitters limits the dose that can be tolerated. PMID:16253811

  16. Velo-facio-skeletal syndrome in a mother and daughter

    SciTech Connect

    Teebi, A.S.; Meyn, M.S.; Meyers-Seifer, C.H.

    1995-07-31

    We present a woman and her daughter with an apparently new short stature syndrome associated with facial and skeletal anomalies and hypernasality. Manifestations included hypertelorism with broad and high nasal bridge, epicanthal folds, narrow and high arched palate, mild mesomelic brachymelia, short broad hands, prominent finger pads, hyperextensibility of hand joints, small feet, nasal voice, and normal intelligence. The mother had short stubby thumbs and the daughter had posteriorly angulated ears and delayed bone age. The morphology of the nose and the hypernasality are reminiscent to those in the velo-cardio-facial syndrome. High resolution banding and fluorescent in situ hybridization studies showed no evidence of 22q11 deletions. Differentiation from Aarskog syndrome and Robinow syndrome is discussed. 9 refs., 5 figs., 3 tabs.

  17. A father marries his daughters: a case of incestuous polygamy.

    PubMed

    Myers, Wade C; Brasington, Steve J

    2002-09-01

    Polygamy is a risk factor for incest. This case report of incest and polygamy portrays the dynamics that dominated this family's identity. The father indoctrinated and groomed his biological daughter and stepdaughter for sexual gratification in a cult-like atmosphere, and secretly married both of them. He justified his acts to the family members under the guise of religion, but he later denied allegations of polygamy and sexual contact with his daughters when confronted by the authorities. Ultimately, his parental rights were terminated in family court. The authors interviewed the primary victim and reviewed extensive evidence, including videotapes of the victims talking with detectives and also privately amongst each other. Videotape dialogue excerpts capture how these young girls individually coped with the sexual abuse and responded to becoming child wives in a polygamous family. Criminal charges ultimately were not pursued because the key witness refused to testify against her biological father.

  18. Short-lived Rn-222 daughters in cryogenic liquids

    SciTech Connect

    Pelczar, Krzysztof; Frodyma, Nikodem; Wójcik, Marcin

    2013-08-08

    In this paper a detection method of α emitters from {sup 222}Rn decay chain, present in cryogenic liquids, using bare Si-PIN diodes immersed in the liquids is presented. Properties of ionized {sup 222}Rn daughters deduced from conducted measurements are outlined. Life-time of positive ions was found to be of the order of 10 s, and nonzero content of electronegative ions was observed.

  19. Short-lived Rn-222 daughters in cryogenic liquids

    NASA Astrophysics Data System (ADS)

    Pelczar, Krzysztof; Frodyma, Nikodem; Wójcik, Marcin

    2013-08-01

    In this paper a detection method of α emitters from 222Rn decay chain, present in cryogenic liquids, using bare Si-PIN diodes immersed in the liquids is presented. Properties of ionized 222Rn daughters deduced from conducted measurements are outlined. Life-time of positive ions was found to be of the order of 10 s, and nonzero content of electronegative ions was observed.

  20. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells

    PubMed Central

    WANG, YING; XU, SHAO-LIN; XU, WEN-JING; YANG, HAI-YAN; HU, PING; LI, YU-XIN

    2016-01-01

    Incidents associated with methanol intoxication resulting from the consumption of fake wine occur not infrequently worldwide. Certain individuals are made blind due to methanol poisoning. The present study aimed to investigate the effects of sodium formate exposure on photoreceptor cells (661W cells). The 661W cells were exposed to sodium formate for 6–24 h and cell viability was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Subsequently, the 661W cells were exposed to 15 or 30 mM sodium formate for 24 h. The level of apoptosis was determined using Hoechst 33342/propidium iodide staining, visualizing the cells under a fluorescence microscope, and annexin V-fluorescein isothiocyanate staining, using flow cytometric analysis. Intracellular reactive oxygen species (ROS) were measured using 2′,7′-dichlorofluorescein diacetate (DCFH-DA) staining, followed by flow cytometric analysis. Autophagy of the 661W cells was measured by monodansylcadaverine staining. The activation of phosphorylated c-Jun N-terminal kinase (p-JNK), B-cell lymphoma (Bcl-2), Bcl-2-associated X protein, cleaved caspase-3, cleaved caspase-9 and microtubule-associated protein 1A/1B-light chain 3 (LC3) was assessed by western blotting. The effects of Z-VAD-fmk (a pan-caspase inhibitor) and SP600125 (a JNK inhibitor) on the viability of the sodium formate-induced 661W cells were determined using an MTT assay. Sodium formate treatment induced a decrease in the viability of the 661W cells in a time- and a dose-dependent manner. In addition, sodium formate at concentrations of 15 or 30 mM markedly increased the level of apoptosis and the ROS levels, as measured by DCFH-DA staining of the 661W cells. Additionally, 661W cells exposed to sodium formate for 24 h exhibited increased levels of p-JNK, Bax, cleaved caspase-3, cleaved caspase-9 and LC3II (the phosphatidylethanolamine-modified form of LC3), although the level of Bcl-2 was decreased

  1. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  2. Single cell motility and trail formation in populations of microglia

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  3. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC. PMID:26510492

  4. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC.

  5. Foreign Body Giant Cell Formation Is Preceded by Lamellipodia Formation and Can Be Attenuated by Inhibition of Rac1 Activation

    PubMed Central

    Jay, Steven M.; Skokos, Eleni; Laiwalla, Farah; Krady, Marie-Marthe; Kyriakides, Themis R.

    2007-01-01

    Macrophages that are recruited to the site of implanted biomaterials undergo fusion to form surface-damaging foreign body giant cells. Exposure of peripheral blood monocytes to interleukin-4 can recapitulate the fusion process in vitro. In this study, we used interleukin-4 to induce multinucleation of murine bone marrow-derived macrophages and observed changes in cell shape, including elongation and lamellipodia formation, before fusion. Because cytoskeletal rearrangements are regulated by small GTPases, we examined the effects of inhibitors of Rho kinase (Y-32885) and Rac activation (NSC23766) on fusion. Y-32885 did not prevent cytoskeletal changes or fusion but limited the extent of multinucleation. NSC23766, on the other hand, inhibited lamellipodia formation and fusion in a dose-dependent manner. In addition, we found that in control cells, these changes were preceded by Rac1 activation. However, NSC23766 did not block the uptake of polystyrene microspheres. Likewise, short interfering RNA knockdown of Rac1 limited fusion without limiting phagocytosis. Thus, phagocytosis and fusion can be partially decoupled based on their susceptibility to NSC23766. Furthermore, poly(ethylene-co-vinyl acetate) scaffolds containing NSC23766 attenuated foreign body giant cell formation in vivo. These observations suggest that targeting Rac1 activation could protect biomaterials without compromising the ability of macrophages to perform beneficial phagocytic functions at implantation sites. PMID:17556592

  6. Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation.

    PubMed

    Jay, Steven M; Skokos, Eleni; Laiwalla, Farah; Krady, Marie-Marthe; Kyriakides, Themis R

    2007-08-01

    Macrophages that are recruited to the site of implanted biomaterials undergo fusion to form surface-damaging foreign body giant cells. Exposure of peripheral blood monocytes to interleukin-4 can recapitulate the fusion process in vitro. In this study, we used interleukin-4 to induce multinucleation of murine bone marrow-derived macrophages and observed changes in cell shape, including elongation and lamellipodia formation, before fusion. Because cytoskeletal rearrangements are regulated by small GTPases, we examined the effects of inhibitors of Rho kinase (Y-32885) and Rac activation (NSC23766) on fusion. Y-32885 did not prevent cytoskeletal changes or fusion but limited the extent of multinucleation. NSC23766, on the other hand, inhibited lamellipodia formation and fusion in a dose-dependent manner. In addition, we found that in control cells, these changes were preceded by Rac1 activation. However, NSC23766 did not block the uptake of polystyrene microspheres. Likewise, short interfering RNA knockdown of Rac1 limited fusion without limiting phagocytosis. Thus, phagocytosis and fusion can be partially decoupled based on their susceptibility to NSC23766. Furthermore, poly(ethylene-co-vinyl acetate) scaffolds containing NSC23766 attenuated foreign body giant cell formation in vivo. These observations suggest that targeting Rac1 activation could protect biomaterials without compromising the ability of macrophages to perform beneficial phagocytic functions at implantation sites.

  7. Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation

    PubMed Central

    Nebel, Merle; Zhang, Bo; Odoardi, Francesca; Flügel, Alexander; Potter, Barry V. L.; Guse, Andreas H.

    2016-01-01

    Nicotinic acid adenine dinucleotide phosphate (NAADP) has been implicated as an initial Ca2+ trigger in T cell Ca2+ signalling, but its role in formation of the immune synapse in CD4+ effector T cells has not been analysed. CD4+ T cells are activated by the interaction with peptide-MHCII complexes on the surface of antigen-presenting cells. Establishing a two-cell system including primary rat CD4+ T cells specific for myelin basic protein and rat astrocytes enabled us to mirror this activation process in vitro and to analyse Ca2+ signalling, cell shape changes and motility in T cells during formation and maintenance of the immune synapse. After immune synapse formation, T cells showed strong, antigen-dependent increases in free cytosolic calcium concentration ([Ca2+]i). Analysis of cell shape and motility revealed rounding and immobilization of T cells depending on the amplitude of the Ca2+ signal. NAADP-antagonist BZ194 effectively blocked Ca2+ signals in T cells evoked by the interaction with antigen-presenting astrocytes. BZ194 reduced the percentage of T cells showing high Ca2+ signals thereby supporting the proposed trigger function of NAADP for global Ca2+ signalling. Taken together, the NAADP signalling pathway is further confirmed as a promising target for specific pharmacological intervention to modulate T cell activation. PMID:27747143

  8. Aurora B–mediated localized delays in nuclear envelope formation facilitate inclusion of late-segregating chromosome fragments

    PubMed Central

    Karg, Travis; Warecki, Brandt; Sullivan, William

    2015-01-01

    To determine how chromosome segregation is coordinated with nuclear envelope formation (NEF), we examined the dynamics of NEF in the presence of lagging acentric chromosomes in Drosophila neuroblasts. Acentric chromosomes often exhibit delayed but ultimately successful segregation and incorporation into daughter nuclei. However, it is unknown whether these late-segregating acentric fragments influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we show that acentric chromosomes induce highly localized delays in the reassembly of the nuclear envelope. These delays result in a gap in the nuclear envelope that facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized delays of nuclear envelope reassembly require Aurora B kinase activity. In cells with reduced Aurora B activity, there is a decrease in the frequency of local nuclear envelope reassembly delays, resulting in an increase in the frequency of acentric-bearing, lamin-coated micronuclei. These studies reveal a novel role of Aurora B in maintaining genomic integrity by promoting the formation of a passageway in the nuclear envelope through which late-segregating acentric chromosomes enter the telophase daughter nucleus. PMID:25877868

  9. Radon-daughter exposures in energy-efficient buildings

    SciTech Connect

    Nero, A.V.; Berk, J.V.; Boegel, M.L.; Hollowell, C.D.; Ingersoll, J.G.; Nazaroff, W.W.

    1981-10-01

    A radon concentration of 1 pCi/1 (37 Bq/m/sup 3/) appears to lie in the range that is typical for air inside US residential buildings. Moreover, some US residences have concentrations higher than 1 pCi/1, sometimes by an order of magnitude, implying significant individual risk to occupants. For typical radon daughter equilibrium ratios, this concentration corresponds to a radon daughter exposure rate of 0.2 working level months (WLM) per year. This exposure rate may account for a significant lung cancer incidence if data on lung cancers per unit exposure in miners are applicable to such low exposures. Reductions in air exchange rates may rise the typical exposure rate and even increase it to unacceptable levels in some cases. Measures that reduce energy use by reducing natural infiltration or mechanical ventilation in new or retrofit buildings are therefore undergoing severe scrutiny. Lawrence Berkeley Laboratory has performed measurements in buildings specifically designed to use energy efficiently or utilize solar heating. In many of these buildings radon concentrations appear to arise primarily from soil underlying the buildings. Measures to control higher levels, e.g., by mechanical ventilation with heat recuperation, appear to be economical. However, to evaluate energy-saving programs adequately requires a much more comprehensive characterization of radon sources (for example, by geographical area) and a much fuller understanding of the dynamics of radon and its daughters indoors than now exist.

  10. Common bile duct obstruction caused by the hydatid daughter cysts.

    PubMed

    Busić, Zeljko; Amić, Enio; Servis, Draien; Predrijevac, Mladen; Stipancić, Igor; Busić, Dubravka

    2004-06-01

    Echinococcosis is a human parasitary disease. In 2002, 29 new cases of liver echinococcosis were recorded in Croatia. Liver is the most common site of hydatid cysts. Nine patients with echinoccocal liver disease were operated in our department in 2002. Here we present a case where a patient with verified hydatid cyst in the left liver lobe developed high fever, jaundice, nausea, vomiting and pain in the upper abdomen. The symptoms were initially ascribed to the acute cholangitis. After unsuccessful antibiotic treatment, computerized tomography and endoscopic retrograde cholangiopancreatography (ERCP) were performed, demonstrating daughter cysts in the common bile duct. During ERCP, papilotomy was made and daughter cysts were extracted. Hydatid cyst was surgically removed, and a communication between the cyst and left hepatic duct was noted during surgery. Pericystectomy, choledochotomy, removal of remaining daughter cysts from the common bile duct, and sutures of left hepatic duct were performed. The patient recovered fully after the surgery. One of the possible complications of the liver hydatid cysts is the communication between cyst and the biliary tree. Such communications are usually asymptomatic, but symptoms can also mimic acute cholangitis and jaundice, which may lead to the misdiagnosis of the patient's condition.

  11. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  12. Talking about familial breast cancer risk: topics and strategies to enhance mother-daughter interactions.

    PubMed

    Fisher, Carla L; Maloney, Erin; Glogowski, Emily; Hurley, Karen; Edgerson, Shawna; Lichtenthal, Wendy G; Kissane, David; Bylund, Carma

    2014-04-01

    A hereditary cancer predisposition can rattle families, creating dysfunctional interactions. Families need assistance navigating conversations about risk. Because mothers and daughters uniquely share breast cancer experiences and risk, there is a particular need for practitioners to assist them with communication. Three focus groups were conducted with 11 mothers with an elevated cancer risk (with adolescent daughters) receiving genetic counseling. We explored three inquiries to capture mother-daughter communication: emergent challenging topics (e.g., health-promotion behavior, daughter's risk, mother's risk of death), factors complicating discussions (e.g., balancing what to share and when, guilt and blaming, confusion about risk and prevention), and strategies enhancing conversations initiated by mothers (e.g., paying attention to daughter's cues) or practitioners (e.g., inviting daughters to appointments). Findings suggested that mothers struggle to balance eliciting daughters' concerns, providing them with support, and imparting knowledge without overwhelming them. We offer mothers and practitioners guidance to help facilitate these conversations.

  13. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux.

    PubMed

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis.

  14. Claudin-4 is required for vasculogenic mimicry formation in human breast cancer cells.

    PubMed

    Cui, Yong-Feng; Liu, An-Heng; An, Dai-Zhi; Sun, Ru-Bao; Shi, Yun; Shi, Yun-Xiang; Shi, Miao; Zhang, Qiang; Wang, Li-Li; Feng, Qiong; Pan, Gui-Lan; Wang, Qiang

    2015-05-10

    Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. Claudins are aberrantly expressed in aggressive breast cancer. However, the relationship between claudins and VM formation is not clear. We examined VM in two human breast cancer cell lines with different aggressive capabilities (MDA-MB-231 and MCF-7 cells) and one human umbilical vein endothelial cell line (HUVEC). Both HUVEC and MDA-MB-231 cells formed vascular channels in Matrigel cultures, while MCF-7 cells did not. Western blot analysis revealed a possible correlation between claudin-4 and -6 expression in breast cancer cell lines and tumor aggressiveness, with protein levels correlating with the ability to form vascular channels. Treatment of MDA-MB-231 and HUVEC cells with claudin-4 monoclonal antibodies completely inhibited the ability of cells to form vascular channels. Moreover, knockdown of claudin-4 by short hairpin RNA completely inhibited tubule formation in MDA-MB-231 cells. Overexpression of claudin-4 in MCF-7 cells induced formation of vascular channels. Immunocytochemistry revealed that membranous claudin-4 protein was significantly associated with vascular channel formation. Collectively, these results indicate that claudin-4 may play a critical role in VM in human breast cancer cells, opening new opportunities to improve aggressive breast cancer therapy. PMID:25871476

  15. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  16. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  17. The muscle satellite cell at 50: the formative years

    PubMed Central

    2011-01-01

    In February 1961, Alexander Mauro described a cell 'wedged' between the plasma membrane of the muscle fibre and the surrounding basement membrane. He postulated that it could be a dormant myoblast, poised to repair muscle when needed. In the same month, Bernard Katz also reported a cell in a similar location on muscle spindles, suggesting that it was associated with development and growth of intrafusal muscle fibres. Both Mauro and Katz used the term 'satellite cell' in relation to their discoveries. Today, the muscle satellite cell is widely accepted as the resident stem cell of skeletal muscle, supplying myoblasts for growth, homeostasis and repair. Since 2011 marks both the 50th anniversary of the discovery of the satellite cell, and the launch of Skeletal Muscle, it seems an opportune moment to summarise the seminal events in the history of research into muscle regeneration. We start with the 19th-century pioneers who showed that muscle had a regenerative capacity, through to the descriptions from the mid-20th century of the underlying cellular mechanisms. The journey of the satellite cell from electron microscope curio, to its gradual acceptance as a bona fide myoblast precursor, is then charted: work that provided the foundations for our understanding of the role of the satellite cell. Finally, the rapid progress in the age of molecular biology is briefly discussed, and some ongoing debates on satellite cell function highlighted. PMID:21849021

  18. Thrombospondin 1 promotes synaptic formation in bone marrow-derived neuron-like cells.

    PubMed

    Huang, Yun; Lu, Mingnan; Guo, Weitao; Zeng, Rong; Wang, Bin; Wang, Huaibo

    2013-04-01

    In this study, a combination of growth factors was used to induce bone marrow mesenchymal stem cells differentiation into neuron-like cells, in a broader attempt to observe the role of thrombospondin 1 in synapse formation. Results showed that there was no significant difference in the differentiation rate of neuron-like cells between bone marrow mesenchymal stem cells with thrombospondin induction and those without. However, the cell shape was more complex and the neurites were dendritic, with unipolar, bipolar or multipolar morphologies, after induction with thrombospondin 1. The induced cells were similar in morphology to normal neurites. Immunohistochemical staining showed that the number of positive cells for postsynaptic density protein 95 and synaptophysin 1 protein was significantly increased after induction with thrombospondin 1. These findings indicate that thrombospondin 1 promotes synapse formation in neuron-like cells that are differentiated from bone marrow mesenchymal stem cells.

  19. Robust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization

    NASA Astrophysics Data System (ADS)

    Vafaeinezhad, Moghadaseh; Kia, Reza; Shahnazari-Shahrezaei, Parisa

    2016-11-01

    Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and worker assignment is implemented with uncertain scenario-based data. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all possible future scenarios. In this research, miscellaneous cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming model is developed to formulate the related robust dynamic cell formation problem. The objective function seeks to minimize total costs including machine constant, machine procurement, machine relocation, machine operation, inter-cell and intra-cell movement, overtime, shifting labors between cells and inventory holding. Finally, a case study is carried out to display the robustness and effectiveness of the proposed model. The tradeoff between solution robustness and model robustness is also analyzed in the obtained results.

  20. Endothelial cell motility, coordination and pattern formation during vasculogenesis.

    PubMed

    Czirok, Andras

    2013-01-01

    How vascular networks assemble is a fundamental problem of developmental biology that also has medical importance. To explain the organizational principles behind vascular patterning, we must understand how can tissue level structures be controlled through cell behavior patterns like motility and adhesion that, in turn, are determined by biochemical signal transduction processes? We discuss the various ideas that have been proposed as mechanisms for vascular network assembly: cell motility guided by extracellular matrix alignment (contact guidance), chemotaxis guided by paracrine and autocrine morphogens, and multicellular sprouting guided by cell-cell contacts. All of these processes yield emergent patterns, thus endothelial cells can form an interconnected structure autonomously, without guidance from an external pre-pattern.

  1. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation.

    PubMed

    Brinkmann, Benjamin F; Steinbacher, Tim; Hartmann, Christian; Kummer, Daniel; Pajonczyk, Denise; Mirzapourshafiyi, Fatemeh; Nakayama, Masanori; Weide, Thomas; Gerke, Volker; Ebnet, Klaus

    2016-09-15

    Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell-cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.

  2. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  3. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  4. MMP7 is required to mediate cell invasion and tumor formation upon Plakophilin3 loss.

    PubMed

    Basu, Srikanta; Thorat, Rahul; Dalal, Sorab N

    2015-01-01

    Plakophilin3 (PKP3) loss results in increased transformation in multiple cell lines in vitro and increased tumor formation in vivo. A microarray analysis performed in the PKP3 knockdown clones, identified an inflammation associated gene signature in cell lines derived from stratified epithelia as opposed to cell lines derived from simple epithelia. However, in contrast to the inflammation associated gene signature, the expression of MMP7 was increased upon PKP3 knockdown in all the cell lines tested. Using vector driven RNA interference, it was demonstrated that MMP7 was required for in-vitro cell migration and invasion and tumor formation in vivo. The increase in MMP7 levels was due to the increase in levels of the Phosphatase of Regenerating Liver3 (PRL3), which is observed upon PKP3 loss. The results suggest that MMP7 over-expression may be one of the mechanisms by which PKP3 loss leads to increased cell invasion and tumor formation.

  5. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  6. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation

    PubMed Central

    Mikhailyuk, Tatiana; Holzinger, Andreas; Massalski, Andrzej; Karsten, Ulf

    2014-01-01

    Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions. PMID:26504365

  7. The direct formate fuel cell with an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bartrom, Amy M.; Haan, John L.

    2012-09-01

    We demonstrate for the first time an operating Direct Formate Fuel Cell employing formate salts as the anode fuel, air or oxygen as the oxidant, a polymer anion exchange membrane, and metal catalysts at the anode and cathode. Operation of the DFFC at 60 °C using 1 M KOOCH and 2 M KOH as the anode fuel and electrolyte and oxygen gas at the cathode produces 144 mW cm-2 of peak power density, 181 mA cm-2 current density at 0.6 V, and an open circuit voltage of 0.931 V. This performance is competitive with alkaline Direct Liquid Fuel Cells (DLFCs) previously reported in the literature and demonstrates that formate fuel is a legitimate contender with alcohol fuels for alkaline DLFCs. A survey of the literature shows that a formate-oxygen fuel cell has a high theoretical potential, and the safe, renewable formate fuel does not poison the anode catalyst.

  8. Mind bomb 1 is required for pancreatic β-cell formation

    PubMed Central

    Horn, Signe; Kobberup, Sune; Jørgensen, Mette C.; Kalisz, Mark; Klein, Tino; Kageyama, Ryoichiro; Gegg, Moritz; Lickert, Heiko; Lindner, Jill; Magnuson, Mark A.; Kong, Young-Yun; Serup, Palle; Ahnfelt-Rønne, Jonas; Jensen, Jan N.

    2012-01-01

    During early pancreatic development, Notch signaling represses differentiation of endocrine cells and promotes proliferation of Nkx6-1+Ptf1a+ multipotent progenitor cells (MPCs). Later, antagonistic interactions between Nkx6 transcription factors and Ptf1a function to segregate MPCs into distal Nkx6-1−Ptf1a+ acinar progenitors and proximal Nkx6-1+Ptf1a− duct and β-cell progenitors. Distal cells are initially multipotent, but evolve into unipotent, acinar cell progenitors. Conversely, proximal cells are bipotent and give rise to duct cells and late-born endocrine cells, including the insulin producing β-cells. However, signals that regulate proximodistal (P-D) patterning and thus formation of β-cell progenitors are unknown. Here we show that Mind bomb 1 (Mib1) is required for correct P-D patterning of the developing pancreas and β-cell formation. We found that endoderm-specific inactivation of Mib1 caused a loss of Nkx6-1+Ptf1a− and Hnf1β+ cells and a corresponding loss of Neurog3+ endocrine progenitors and β-cells. An accompanying increase in Nkx6-1−Ptf1a+ and amylase+ cells, occupying the proximal domain, suggests that proximal cells adopt a distal fate in the absence of Mib1 activity. Impeding Notch-mediated transcriptional activation by conditional expression of dominant negative Mastermind-like 1 (Maml1) resulted in a similarly distorted P-D patterning and suppressed β-cell formation, as did conditional inactivation of the Notch target gene Hes1. Our results reveal iterative use of Notch in pancreatic development to ensure correct P-D patterning and adequate β-cell formation. PMID:22529374

  9. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    PubMed Central

    Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  10. Formation and persistence of 8-oxoguanine in rat lung cells as an important determinant for tumor formation following particle exposure.

    PubMed Central

    Nehls, P; Seiler, F; Rehn, B; Greferath, R; Bruch, J

    1997-01-01

    Exposure of rats to quartz (or various other particles) can lead to the development of lung tumors. At the moment, the mechanisms involved in particle-induced tumor formation are not clarified. However, it is suggested that inflammation, in conjunction with the production of reactive oxygen species (ROS) and an enhancement of epithelial cell proliferation, may play a key role in the development of lung tumors. ROS induces 8-oxoguanine (8-oxoGua) and other mutagenic DNA oxidation products, which can be converted to mutations in proliferating cells. Mutation formation in cancer-related genes is a critical event with respect to tumor formation. In this study we investigated the effects of quartz (DQ12) and of the nontumorigenic dust corundum on the induction of 8-oxoGua in the DNA of rat lung cells, as well as on cell proliferation and pulmonary inflammation. Wistar rats were exposed by intratracheal instillation to quartz (2.5 mg/rat) or corundum (2.5 mg/rat) suspended in physiological saline; control animals exposed to physiological saline or left untreated. Measurements were carried out 7, 21, and 90 days after the exposures. 8-oxoGua levels were determined in lung tissue sections at the single cell level by immunocytological assay using a rabbit anti-8-oxoGua antibody. After exposure to quartz, 8-oxoGua levels were significantly increased at all time points of investigation. Additionally, we observed inflammation and an enhanced cell proliferation. Exposure to corundum had no adverse effects on the lung; neither increased 8-oxoGua levels nor enhanced cell proliferation or inflammation were detected. These observations support the suggestion that inflammation associated with increased 8-oxoGua levels in lung cells and increased cell proliferation is an important determinant for particle-induced development of lung tumors in the rat. Images Figure 1. A i Figure 1. A ii Figure 1. A iii Figure 1. B Figure 1. B Figure 1. B Figure 1. C Figure 1. C Figure 1. C PMID

  11. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation

    NASA Astrophysics Data System (ADS)

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T.; Darnell, Max C.; Desai, Rajiv M.; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N.; Mooney, David J.

    2015-12-01

    The effectiveness of stem cell therapies has been hampered by cell death and limited control over fate. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype. Stem cell behaviour can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel’s elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel’s elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem cell behaviours in situ.

  12. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  13. Changes of transmembrane Ca2+ gradient in the formation of macrophage-derived foam cells.

    PubMed

    Yang, X; Zhang, Y; Huang, Y; Yang, F

    2000-02-01

    Macrophages from C57BL/6J mice, an animal susceptible to atherosclerosis, were chosen as target cells to study changes in the transmembrane Ca2+ gradient during the formation of macrophage-derived foam cells. The transmembrane Ca2+ gradients of single living cells were examined-using Fura-2/AM combined with Fluo-3/AM by laser scanning confocal microscopy. Exposure to Oxidized Low Density Lipoprotein, decreases the Ca2+ gradient across macrophage plasma membrane, but increases that across the nuclear membrane. The altered transmembrane Ca2+ gradients could induce the up-regulation of scavenger receptor in macrophages, resulting in the formation of foam cells.

  14. Numerical simulation of water transport and intracellular ice formation for freezing of endothelial cells.

    PubMed

    Zhao, G; Xu, Y; Ding, W P; Hu, M B

    2013-01-01

    Endothelial cell detachment may cause failure of blood vessel and corneal cryopreservation, and thus successful cryopreservation of endothelial cells is regarded to be the first step to optimize cryopreservation of endothelial cells containing tissues. In this study, the pre-determined biophysical parameters were incorporated into the model for intracellular ice formation (IIF) and the growth of intracellular ice crystals (ICG) to calculate cell water loss, supercooling of intracellular solution, intracellular ice formation and the growth of intracellular ice crystals. The optimal protocols were determined according to the combination effect of both solution injury and IIF injury.

  15. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation

    NASA Technical Reports Server (NTRS)

    Goldmann, Wolfgang H.; Ingber, Donald E.

    2002-01-01

    Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.

  16. Midbody remnant licenses primary cilia formation in epithelial cells.

    PubMed

    Ott, Carolyn M

    2016-08-01

    Tethered midbody remnants dancing across apical microvilli, encountering the centrosome, and beckoning forth a cilium-who would have guessed this is how polarized epithelial cells coordinate the end of mitosis and the beginning of ciliogenesis? New evidence from Bernabé-Rubio et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201601020) supports this emerging model. PMID:27482049

  17. Cementum matrix formation in vivo by cultured dental follicle cells.

    PubMed

    Handa, K; Saito, M; Yamauchi, M; Kiyono, T; Sato, S; Teranaka, T; Sampath Narayanan, A

    2002-11-01

    Dental follicle is the fibrous tissue that surrounds the developing tooth germ, and it is believed to contain progenitors for cementoblasts, periodontal ligament cells, and osteoblasts. In this study, we report the presence of cementoblast progenitors in cultures of bovine dental follicle cells and demonstrate their differentiation capacity. Bovine dental follicle cells (BDFC) obtained from tooth germs by collagenase digestion were compared with bovine alveolar bone osteoblasts (BAOB) and bovine periodontal ligament cells (BPDL) in vitro and in vivo. In culture, BDFC exhibited low levels of alkaline phosphatase activity and expressed mRNA for osteopontin (OP) and type I collagen (COLI), as well as low levels of osteocalcin (OC) mRNA. In contrast, cultured BAOB exhibited high alkaline phosphatase activity levels and expressed mRNA for OC, OP, COLI, and bone sialoprotein (BSP). To elucidate the differentiation capacity of BDFC in vivo, cells were transplanted into severe combined immunodeficiency (SCID) mice and analyzed after 4 weeks. Transplanted BDFC formed fibrous tissue and cementum-like matrix, which stained positive for anti-cementum attachment protein (CAP) monoclonal antibody (3G9), and expressed mRNA for OC, OP, COLI, and BSP. On the other hand, transplanted BAOB formed bone-like matrix, but were negative for anti-CAP monoclonal antibody. The BPDL transplants formed fibrous tissue that contained a few cells expressing CAP. These results indicate that cementoblast progenitors are present in BDFC, which can provide a useful model for investigating the molecular mechanisms of cementogenesis. PMID:12477575

  18. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    SciTech Connect

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi . E-mail: yokochi@aichi-med-u.ac.jp

    2007-08-24

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-{alpha} antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL). TNF-{alpha} might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-{kappa}B and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.

  19. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay

    PubMed Central

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-01-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF-7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot-based molecular targeted imaging techniques (which stained pan-cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF-7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot-based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology. PMID:27572664

  20. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  1. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology. PMID:27572664

  2. Mechanosensitive store-operated calcium entry regulates the formation of cell polarity.

    PubMed

    Huang, Yi-Wei; Chang, Shu-Jing; I-Chen Harn, Hans; Huang, Hui-Ting; Lin, Hsi-Hui; Shen, Meng-Ru; Tang, Ming-Jer; Chiu, Wen-Tai

    2015-09-01

    Ca(2+) -mediated formation of cell polarity is essential for directional migration which plays an important role in physiological and pathological processes in organisms. To examine the critical role of store-operated Ca(2+) entry, which is the major form of extracellular Ca(2+) influx in non-excitable cells, in the formation of cell polarity, we employed human bone osteosarcoma U2OS cells, which exhibit distinct morphological polarity during directional migration. Our analyses showed that Ca(2+) was concentrated at the rear end of cells and that extracellular Ca(2+) influx was important for cell polarization. Inhibition of store-operated Ca(2+) entry using specific inhibitors disrupted the formation of cell polarity in a dose-dependent manner. Moreover, the channelosomal components caveolin-1, TRPC1, and Orai1 were concentrated at the rear end of polarized cells. Knockdown of TRPC1 or a TRPC inhibitor, but not knockdown of Orai1, reduced cell polarization. Furthermore, disruption of lipid rafts or overexpression of caveolin-1 contributed to the downregulation of cell polarity. On the other hand, we also found that cell polarity, store-operated Ca(2+) entry activity, and cell stiffness were markedly decreased by low substrate rigidity, which may be caused by the disorganization of actin filaments and microtubules that occurs while regulating the activity of the mechanosensitive TRPC1 channel.

  3. Conversion of quiescent niche cells to somatic stem cells causes ectopic niche formation in the Drosophila testis

    PubMed Central

    Hétié, Phylis; de Cuevas, Margaret; Matunis, Erika

    2014-01-01

    Summary Adult stem cells reside in specialized regulatory microenvironments, or niches, where local signals ensure stem cell maintenance. The Drosophila testis contains a well-characterized niche wherein signals from post-mitotic hub cells promote maintenance of adjacent germline stem cells and somatic cyst stem cells (CySCs). Hub cells were considered to be terminally differentiated; here we show that they can give rise to CySCs. Genetic ablation of CySCs triggers hub cells to transiently exit quiescence, delaminate from the hub, and convert into functional CySCs. Ectopic Cyclin D-Cdk4 expression in hub cells is also sufficient to trigger their conversion into CySCs. In both cases, this conversion causes the formation of multiple ectopic niches over time. Therefore, our work provides a model for understanding how oncogenic mutations in quiescent niche cells could promote loss of quiescence, changes in cell fate, and aberrant niche expansion more generally. PMID:24746819

  4. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  5. Biophysical Properties of Scaffolds Modulate Human Blood Vessel Formation from Circulating Endothelial Colony-Forming Cells

    NASA Astrophysics Data System (ADS)

    Critser, Paul J.; Yoder, Mervin C.

    A functional vascular system forms early in development and is continually remodeled throughout the life of the organism. Impairment to the regeneration or repair of this system leads to tissue ischemia, dysfunction, and disease. The process of vascular formation and remodeling is complex, relying on local microenvironmental cues, cytokine signaling, and multiple cell types to function properly. Tissue engineering strategies have attempted to exploit these mechanisms to develop functional vascular networks for the generation of artificial tissues and therapeutic strategies to restore tissue homeostasis. The success of these strategies requires the isolation of appropriate progenitor cell sources which are straightforward to obtain, display high proliferative potential, and demonstrate an ability to form functional vessels. Several populations are of interest including endothelial colony-forming cells, a subpopulation of endothelial progenitor cells. Additionally, the development of scaffolds to deliver and support progenitor cell survival and function is crucial for the formation of functional vascular networks. The composition and biophysical properties of these scaffolds have been shown to modulate endothelial cell behavior and vessel formation. However, further investigation is needed to better understand how these mechanical properties and biophysical properties impact vessel formation. Additionally, several other cell populations are involved in neoangiogenesis and formation of tissue parenchyma and an understanding of the potential impact of these cell populations on the biophysical properties of scaffolds will also be needed to advance these strategies. This chapter examines how the biophysical properties of matrix scaffolds can influence vessel formation and remodeling and, in particular, the impact on in vivo human endothelial progenitor cell vessel formation.

  6. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    SciTech Connect

    Taru Sharma, G.; Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G.

    2012-08-03

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it

  7. Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating Halomonas venusta.

    PubMed

    Berlanga, Mercedes; Domènech, Òscar; Guerrero, Ricardo

    2014-12-01

    Biofilm development is characterized by distinct stages of initial attachment, microcolony formation and maturation (sessile cells), and final detachment (dispersal of new, planktonic cells). In this work we examined the influence of polyhydroxyalkanoate (PHA) accumulation on bacterial surface properties and biofilm formation on polystyrene in detached vs. planktonic cells of an environmental strain isolated from microbial mats, Halomonas venusta MAT28. This strain was cultured either in an artificial biofilm in which the cells were immobilized on alginate beads (sessile) or as free-swimming (planktonic) cells. For the two modes of growth, conditions allowing or preventing PHA accumulation were established. Cells detached from alginate beads and their planktonic counterparts were used to study cell surface properties and cellular adhesion on polystyrene. Detached cells showed a slightly higher affinity than planktonic cells for chloroform (Lewis-acid) and a greater hydrophobicity (affinity for hexadecane and hexane). Those surface characteristics of the detached cells may explain their better adhesion on polystyrene compared to planktonic cells. Adhesion to polystyrene was not significantly different between H. venusta cells that had accumulated PHA vs. those that did not. These observations suggest that the surface properties of detached cells clearly differ from those of planktonic cells and that for at least the first 48 h after detachment from alginate beads H. venusta retained the capacity of sessile cells to adhere to polystyrene and to form a biofilm. PMID:26421734

  8. Spore formation in Bacillus subtilis

    PubMed Central

    Tan, Irene S.; Ramamurthi, Kumaran S.

    2014-01-01

    Summary Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental program called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signaling, membrane remodeling, protein localization, and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications. PMID:24983526

  9. Spore formation in Bacillus subtilis.

    PubMed

    Tan, Irene S; Ramamurthi, Kumaran S

    2014-06-01

    Although prokaryotes ordinarily undergo binary fission to produce two identical daughter cells, some are able to undergo alternative developmental pathways that produce daughter cells of distinct cell morphology and fate. One such example is a developmental programme called sporulation in the bacterium Bacillus subtilis, which occurs under conditions of environmental stress. Sporulation has long been used as a model system to help elucidate basic processes of developmental biology including transcription regulation, intercellular signalling, membrane remodelling, protein localization and cell fate determination. This review highlights some of the recent work that has been done to further understand prokaryotic cell differentiation during sporulation and its potential applications. PMID:24983526

  10. De novo formation of centrosomes in vertebrate cells arrested during S phase.

    PubMed

    Khodjakov, Alexey; Rieder, Conly L; Sluder, Greenfield; Cassels, Grisel; Sibon, Ody; Wang, Chuo-Lung

    2002-09-30

    The centrosome usually replicates in a semiconservative fashion, i.e., new centrioles form in association with preexisting "maternal" centrioles. De novo formation of centrioles has been reported for a few highly specialized cell types but it has not been seen in vertebrate somatic cells. We find that when centrosomes are completely destroyed by laser microsurgery in CHO cells arrested in S phase by hydroxyurea, new centrosomes form by de novo assembly. Formation of new centrosomes occurs in two steps: approximately 5-8 h after ablation, clouds of pericentriolar material (PCM) containing gamma-tubulin and pericentrin appear in the cell. By 24 h, centrioles have formed inside of already well-developed PCM clouds. This de novo pathway leads to the formation of a random number of centrioles (2-14 per cell). Although clouds of PCM consistently form even when microtubules are completely disassembled by nocodazole, the centrioles are not assembled under these conditions.

  11. Infrared radiation suppresses ultraviolet B-induced sunburn-cell formation.

    PubMed

    Danno, K; Horio, T; Imamura, S

    1992-01-01

    Sunburn cell (SC) formation, a quantifiable measure of epidermal cell injury induced in mouse ear skin by ultraviolet-B (UVB) radiation (290-320 nm), was significantly decreased by pre-exposure to infrared radiation (IR), which elevated the surface temperature of ear lobes to 37-42 degrees C. An autoradiographic study demonstrated that the basal cell labelling indices were significantly reduced in a surface temperature-dependent manner by pre-exposure to IR. Taken together with our previous findings that SC formation depends upon the ratio of cycling to non-cycling cells, the present findings suggest that IR retards the cell cycle and, as a result, decreases SC formation. SC counts were not altered by post-UVB exposure to IR. The effect of IR or the IR-induced increase in surface temperature should be considered when studying cutaneous damage by UVB and sunlight.

  12. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-06-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  13. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-01-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis. PMID:27292795

  14. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    SciTech Connect

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  15. 3D in vitro cell culture models of tube formation.

    PubMed

    Zegers, Mirjam M

    2014-07-01

    Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo. PMID:24613912

  16. Investigation of Contact Formation during Silicon Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  17. Rapid Formation of Cell Aggregates and Spheroids Induced by a "Smart" Boronic Acid Copolymer.

    PubMed

    Amaral, Adérito J R; Pasparakis, George

    2016-09-01

    Cell surface engineering has emerged as a powerful approach to forming cell aggregates/spheroids and cell-biomaterial ensembles with significant uses in tissue engineering and cell therapeutics. Herein, we demonstrate that cell membrane remodeling with a thermoresponsive boronic acid copolymer induces the rapid formation of spheroids using either cancer or cardiac cell lines under conventional cell culture conditions at minute concentrations. It is shown that the formation of well-defined spheroids is accelerated by at least 24 h compared to non-polymer-treated controls, and, more importantly, the polymer allows for fine control of the aggregation kinetics owing to its stimulus response to temperature and glucose content. On the basis of its simplicity and effectiveness to promote cellular aggregation, this platform holds promise in three-dimensional tissue/tumor modeling and tissue engineering applications. PMID:27571512

  18. Brief report: serpin Spi2A as a novel modulator of hematopoietic progenitor cell formation.

    PubMed

    Li, Lei; Byrne, Susan M; Rainville, Nicole; Su, Su; Jachimowicz, Edward; Aucher, Anne; Davis, Daniel M; Ashton-Rickardt, Philip G; Wojchowski, Don M

    2014-09-01

    Prime regulation over hematopoietic progenitor cell (HPC) production is exerted by hematopoietins (HPs) and their Janus kinase-coupled receptors (HP-Rs). For HP/HP-R studies, one central challenge in determining specific effects involves the delineation of nonredundant signal transduction factors and their lineage restricted actions. Via loss-of-function studies, we define roles for an HP-regulated Serpina3g/Spi2A intracellular serpin during granulomyelocytic, B-cell, and hematopoietic stem cell (HSC) formation. In granulomyelocytic progenitors, granulocyte macrophage colony stimulating factor (GMCSF) strongly induced Serpina3g expression with Stat5 dependency. Spi2A-knockout (KO) led to 20-fold decreased CFU-GM formation, limited GMCSF-dependent granulocyte formation, and compromised neutrophil survival upon tumor necrosis factor alpha (TNF-α) exposure. In B-cell progenitors, Serpina3g was an interleukin-7 (IL7) target. Spi2A-KO elevated CFU-preB greater than sixfold and altered B-cell formation in competitive bone marrow transplant (BMT), and CpG challenge experiments. In HSCs, Serpina3g/Spi2A expression was also elevated. Spi2A-KO compromised LT-HSC proliferation (as well as lineage(neg) Sca1(pos) Kit(pos) (LSK) cell lysosomal integrity), and skewed LSK recovery post 5-FU. Spi2A therefore functions to modulate HP-regulated immune cell and HSC formation post-5-FU challenge.

  19. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe.

  20. Effect of deformations and orientations in 100Sn daughter radioactivity

    NASA Astrophysics Data System (ADS)

    Sawhney, Gudveen; Sharma, Kanishka; Sharma, Manoj K.; Gupta, Raj K.

    2016-05-01

    Based on the preformed cluster model (PCM), we have extended our earlier study to investigate the effects of nuclear deformations and orientations of nuclei in context of ground-state de-excitation of Xe to Gd parents, resulting in a doubly closed shell 100Sn daughter and the complementary clusters. The comparison is also made with spherical choice of fragments to extract exclusive picture of the dynamics involved. Since PCM is based on collective clusterization picture, the preformation and penetration probabilities are shown to get modified considerably by inclusion of the quadrupole deformations (β2i) alone, which in turn affects the decay half-lives of the clusters.

  1. Genetics and cell biology of magnetosome formation in magnetotactic bacteria.

    PubMed

    Schüler, Dirk

    2008-07-01

    The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.

  2. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  3. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    PubMed

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  4. NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells.

    PubMed

    Fantin, Alessandro; Lampropoulou, Anastasia; Gestri, Gaia; Raimondi, Claudio; Senatore, Valentina; Zachary, Ian; Ruhrberg, Christiana

    2015-06-16

    Sprouting blood vessels are led by filopodia-studded endothelial tip cells that respond to angiogenic signals. Mosaic lineage tracing previously revealed that NRP1 is essential for tip cell function, although its mechanistic role in tip cells remains poorly defined. Here, we show that NRP1 is dispensable for genetic tip cell identity. Instead, we find that NRP1 is essential to form the filopodial bursts that distinguish tip cells morphologically from neighboring stalk cells, because it enables the extracellular matrix (ECM)-induced activation of CDC42, a key regulator of filopodia formation. Accordingly, NRP1 knockdown and pharmacological CDC42 inhibition similarly impaired filopodia formation in vitro and in developing zebrafish in vivo. During mouse retinal angiogenesis, CDC42 inhibition impaired tip cell and vascular network formation, causing defects that resembled those due to loss of ECM-induced, but not VEGF-induced, NRP1 signaling. We conclude that NRP1 enables ECM-induced filopodia formation for tip cell function during sprouting angiogenesis. PMID:26051942

  5. Estimation of the biofilm formation of Escherichia coli K-12 by the cell number.

    PubMed

    Narisawa, Naoki; Furukawa, Soichi; Ogihara, Hirokazu; Yamasaki, Makari

    2005-01-01

    We developed a method of estimating the biofilm formation of Escherichia coli K-12 strains in microtiter-plate wells by the cell number. Regression lines between the cell number and absorbance of crystal violet that stained the E. coli biofilm consisted of high and low slope lines, respectively.

  6. Lipid body formation during maturation of human mast cells.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  7. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    PubMed Central

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2009-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allows axonal and dendritic processes to uniformly cover their synaptic fields. In a mechanistically similar fashion, homophilic repulsion mediated by Drosophila Dscam2 prevents processes from the same class of cells from occupying overlapping synaptic fields through a process called tiling. Genetic studies in the mouse visual system support the view that vertebrate DSCAM also promotes both self-avoidance and tiling. By contrast, DSCAM and DSCAM-L promote layer-specific targeting in the chick visual system, presumably through promoting homophilic adhesion. The fly and mouse studies underscore the importance of homophilic repulsion in regulating neural circuit assembly, whereas the chick studies suggest that DSCA Mproteins may mediate a variety of different recognition events during wiring in a context-dependent fashion. PMID:18837673

  8. Stochastic model explains formation of cell arrays on H/O-diamond patterns.

    PubMed

    Ukraintsev, Egor; Broz, Antonin; Hubalek Kalbacova, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Cell migration plays an important role in many biological systems. A relatively simple stochastic model is developed and used to describe cell behavior on chemically patterned substrates. The model is based on three parameters: the speed of cell movement (own and external), the probability of cell adhesion, and the probability of cell division on the substrate. The model is calibrated and validated by experimental data obtained on hydrogen- and oxygen-terminated patterns on diamond. Thereby, the simulations reveal that: (1) the difference in the cell movement speed on these surfaces (about 1.5×) is the key factor behind the formation of cell arrays on the patterns, (2) this difference is provided by the presence of fetal bovine serum (validated by experiments), and (3) the directional cell flow promotes the array formation. The model also predicts that the array formation requires mean distance of cell travel at least 10% of intended stripe width. The model is generally applicable for biosensors using diverse cells, materials, and structures.

  9. Bone formation in vitro and in nude mice by human osteosarcoma cells.

    PubMed

    Ogose, A; Motoyama, T; Hotta, T; Watanabe, H; Takahashi, H E

    1995-01-01

    Osteosarcomas contain variable amounts of bony tissue, but the mechanism of bone formation by osteosarcoma is not well understood. While a number of cultured human osteosarcoma cell lines have been established, they are maintained by different media and differ qualitatively with regard to bone formation. We examined different media for their ability to support bone formation in vitro and found the alpha-modification of Eagle's minimal essential medium supplemented with beta glycerophosphate was best for this purpose, because it contained the proper calcium and phosphate concentrations. Subsequently, we compared seven human osteosarcoma cell lines under the same experimental conditions to clarify their ability to induce bone formation. NOS-1 cells most frequently exhibited features of bone formation in vitro and in nude mice. Collagen synthesis by tumour cells themselves seemed to be the most important factor for bone volume. However, even HuO9 cells, which lacked collagen synthesis and failed to form bone in vitro, successfully formed tumours containing bone in nude mice. Histological analysis of HuO9 cells in diffusion chambers implanted in nude mice and the findings of polymerase chain reaction indicated that the phenomenon was probably due to bone morphogenetic protein.

  10. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    PubMed

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  11. Like Mother, Like Daughter? Dietary and Non-Dietary Bone Fracture Risk Factors in Mothers and Their Daughters

    PubMed Central

    SOBAS, Kamila; WADOLOWSKA, Lidia; SLOWINSKA, Malgorzata Anna; CZLAPKA-MATYASIK, Magdalena; WUENSTEL, Justyna; NIEDZWIEDZKA, Ewa

    2015-01-01

    Background: The aim of this study was to demonstrate similarities and differences between mothers and daughters regarding dietary and non-dietary risk factors for bone fractures and osteoporosis. Methods: The study was carried out in 2007–2010 on 712 mothers (29–59 years) and daughters (12–21 years) family pairs. In the sub-sample (170 family pairs) bone mineral density (BMD) was measured for the forearm by dual-energy x-ray absorptiometry (DXA). The consumption of dairy products was determined with a semi-quantitative food frequency questionnaire (ADOS-Ca) and calcium intake from the daily diet was calculated. Results: The presence of risk factors for bone fractures in mothers and daughters was significantly correlated. The Spearman rank coefficient for dietary factors of fracture risk was 0.87 (P<0.05) in whole sub-sample, 0.94 (P<0.05) in bottom tercile of BMD, 0.82 (P<0.05) in middle tercile of BMD, 0.54 (P>0.05) in upper tercile of BMD and for non-dietary factors of fracture risk was 0.83 (P<0.05) in whole sub-sample, 0.86 (P<0.05) in bottom tercile of BMD, 0.93 (P<0.05) in middle tercile of BMD, 0.65 (P<0.05) in upper tercile of BMD. Conclusions: Our results confirm the role of the family environment for bone health and document the stronger effect of negative factors of the family environment as compared to other positive factors on bone fracture risk. PMID:26576372

  12. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  13. Statistical analysis of clone formation in cultures of human stem cells.

    PubMed

    Bochkov, N P; Vinogradova, M S; Volkov, I K; Voronina, E S; Kuleshov, N P

    2011-08-01

    We performed a statistical analysis of clone formation from aneuploid cells (chromosomes 6, 8, 11, X) in cultures of bone marrow-derived human multipotent mesenchymal stromal cells by spontaneous level of aneuploidy at different terms of culturing (from 2 to 19 cell cycles). It was found that the duration of cell cycle increased from 65.6 h at passages 2-3 to 164.5 h at passage 12. The expected ratio of aneuploid cells was calculated using modeled 5, 10, 20 and 30% selective preference in reproduction. The size of samples for detecting 10, 25, and 50% increased level of aneuploidy was calculated. The presented principles for evaluation of aneuploid clone formation may be used to distinguish clones of any abnormal cells.

  14. Retention of Radium-225 and Its Daughter Radioisotopes in Bone

    SciTech Connect

    Mirzadeh, Saed; Garland, Marc A; Kennel, Steve J

    2008-01-01

    The natural bone seeking tendency of Ra+2, similar to the other alkali metal ions, coupled with the short range high LET of -particle emissions are an ideal combination for localized therapy, and recently 11.4 d 223Ra has been studied for therapy of bone tumors in rats and humans [1,2]. Actinium-225 is also an attractive radioisotope for endo-radiotherapy in a single decay chain from 225Ac, over 26 MeV (~70% of total) is carried by four - particles ranging in energy from 5.7 to 8.4 MeV [3,4]. Although Ac+3 does not home naturally to bone (rather to liver) [5,6], its parent, 225Ra ( -, t1/2 = 15 d), can be used as an in vivo source for 225Ac. A pivotal question for the 225Ra/225Ac in vivo generator system is whether translocation of the daughter nuclei occurs prior to or following the uptake of 225Ra by the bone. In order to assess potential collateral damage to soft tissue organs it is essential to quantitate the extent to which 225Ac is retained in organs following the uptake of 225Ra. We have attempted to answer these questions by investigating the extent of translocation of 225Ac and 213Bi, two daughter radioisotopes of 225Ra, following retention of initially pure 225Ra in bone in normal mice.

  15. Daughter praising, mother bashing: a case study from Hong Kong.

    PubMed

    Chan, Zenobia C Y; Ma, Joyce L C

    2004-02-01

    In this paper, we present the case of a mother and daughter in family therapy. We call for a critical examination of Western literature that describes how a mother praises her child. I illustrate how one observer (the first author) perceives the issue of maternal praise differently from other observers. To illustrate the interaction between this family and the family therapist (the second author), some representative vignettes of the sixth session have been extracted for discussion. Ten observers from the Chinese University of Hong Kong, 7 of whom were master's students and 3 were doctoral students, observed the therapy sessions from the adjoining room. The article is composed of four parts: (a) parental styles and relationships in families with an anorectic daughter literature review; (b) vignettes of the sixth family therapy session; (c) the observers' comments about the therapist; and (d) discussion. The paper concludes with a question of whether the impact of praise on a child's development in Western society functions in the same way and produces the same effects on a child's development as it does in Chinese society.

  16. Becoming the Parent of a GLB Son or Daughter

    PubMed Central

    GRAFSKY, ERIKA L.

    2014-01-01

    Recent research has documented the importance of parental reactions to disclosure for sexual minority youth (SMY) (e.g., Ryan, Huebner, Diaz, & Sanchez, 2009). The purpose of this study was to develop a deeper understanding of the parent perspective of the disclosure to family experience of SMY ages 14-21. In-depth interviews were conducted with eight parents in the United States who had experienced a child disclose their lesbian, gay, or bisexual (LGB) orientation to them. Constructivist grounded theory and symbolic interaction theory informed the methodology and data analysis for the project. Analysis revealed that the process of becoming the parent of an LGB son or daughter is an appropriate narrative to conceptualize the parental experience of the disclosure to family process. The findings highlight how disclosure introduces new roles into the existing family system, which affects the consideration and interpretation of the salience of particular identities, such as being the parent of an LGB son or daughter. Understanding how parents experience the disclosure to family process - particularly, how they understand and re-envision the meaning of being a parent - is crucial for research and intervention to help families become supportive of SMY. Limitations and suggestions for future research are presented. PMID:25685111

  17. Practical strategies for modulating foam cell formation and behavior.

    PubMed

    Uitz, Elisabeth; Bahadori, Babak; McCarty, Mark F; Moghadasian, Mohammed H

    2014-10-16

    Although high density lipoprotein (HDL)-mediated reverse cholesterol transport is crucial to the prevention and reversal of atheroma, a recent meta-analysis makes evident that current pharmaceutical strategies for modulating HDL cholesterol levels lower cardiovascular risk only to the extent that they concurrently decrease low density lipoprotein (LDL) cholesterol. This corresponds well with findings of a recent Mendelian randomization analysis, in which genetic polymorphisms associated with HDL cholesterol but no other known cardiovascular risk factors failed to predict risk for myocardial infarction. Although it is still seems appropriate to search for therapies that could improve the efficiency with which HDL particles induce reverse cholesterol transport, targeting HDL cholesterol levels per se with current measures appears to be futile. It may therefore be more promising to promote reverse cholesterol transport with agents that directly target foam cells. Macrophage expression of the cholesterol transport proteins adenosine triphosphate binding cassette transporter A1, adenosine triphosphate binding cassette transporter G1, and scavenger receptor class B member 1 is transcriptionally up-regulated by activated liver X receptors (LXR), whereas nuclear factor (NF)-kappaB antagonizes their expression. Taurine, which inhibits atherogenesis in rodent studies, has just been discovered to act as a weak agonist for LXRalpha. Conversely, it may be possible to oppose NF-kappaB activation in macrophages with a range of measures. Induction of heme oxygenase-1, which can be attained with phase 2 inducer phytochemicals such as lipoic acid and green tea catechins, promotes reverse cholesterol transport in macrophages and inhibits atherogenesis in rodents, likely due to, in large part, NF-kappaB antagonism. Inhibition of macrophage nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity with the spirulina-derived bilirubin-mimetic phycocyanobilin may also oppose

  18. Practical strategies for modulating foam cell formation and behavior

    PubMed Central

    Uitz, Elisabeth; Bahadori, Babak; McCarty, Mark F; Moghadasian, Mohammed H

    2014-01-01

    Although high density lipoprotein (HDL)-mediated reverse cholesterol transport is crucial to the prevention and reversal of atheroma, a recent meta-analysis makes evident that current pharmaceutical strategies for modulating HDL cholesterol levels lower cardiovascular risk only to the extent that they concurrently decrease low density lipoprotein (LDL) cholesterol. This corresponds well with findings of a recent Mendelian randomization analysis, in which genetic polymorphisms associated with HDL cholesterol but no other known cardiovascular risk factors failed to predict risk for myocardial infarction. Although it is still seems appropriate to search for therapies that could improve the efficiency with which HDL particles induce reverse cholesterol transport, targeting HDL cholesterol levels per se with current measures appears to be futile. It may therefore be more promising to promote reverse cholesterol transport with agents that directly target foam cells. Macrophage expression of the cholesterol transport proteins adenosine triphosphate binding cassette transporter A1, adenosine triphosphate binding cassette transporter G1, and scavenger receptor class B member 1 is transcriptionally up-regulated by activated liver X receptors (LXR), whereas nuclear factor (NF)-kappaB antagonizes their expression. Taurine, which inhibits atherogenesis in rodent studies, has just been discovered to act as a weak agonist for LXRalpha. Conversely, it may be possible to oppose NF-kappaB activation in macrophages with a range of measures. Induction of heme oxygenase-1, which can be attained with phase 2 inducer phytochemicals such as lipoic acid and green tea catechins, promotes reverse cholesterol transport in macrophages and inhibits atherogenesis in rodents, likely due to, in large part, NF-kappaB antagonism. Inhibition of macrophage nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity with the spirulina-derived bilirubin-mimetic phycocyanobilin may also oppose

  19. Quantitative comparison between microfluidic and microtiter plate formats for cell-based assays.

    PubMed

    Yin, Huabing; Pattrick, Nicola; Zhang, Xunli; Klauke, Norbert; Cordingley, Hayley C; Haswell, Steven J; Cooper, Jonathan M

    2008-01-01

    In this paper, we compare a quantitative cell-based assay measuring the intracellular Ca2+ response to the agonist uridine 5'-triphosphate in Chinese hamster ovary cells, in both microfluidic and microtiter formats. The study demonstrates that, under appropriate hydrodynamic conditions, there is an excellent agreement between traditional well-plate assays and those obtained on-chip for both suspended immobilized cells and cultured adherent cells. We also demonstrate that the on-chip assay, using adherent cells, provides the possibility of faster screening protocols with the potential for resolving subcellular information about local Ca2+ flux.

  20. Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel.

    PubMed

    Kinsella, J L; Grant, D S; Weeks, B S; Kleinman, H K

    1992-03-01

    Human umbilical vein endothelial cells differentiate within 12 h to form capillary-like networks of tube structures when the cells are plated on Matrigel, a mixture of basement membrane proteins. Nothing is known about the intracellular signaling events involved in this differentiation. As a first step to define the process, we investigated the possible role of protein kinase C activation by beta-phorbol 12-myristate 13-acetate (PMA) in regulating the formation of the tube structures. In this model, PMA increased tube formation several-fold in a dose-dependent manner with half-maximum stimulation of tube formation at approximately 5 nM PMA. In the absence of serum, essentially little or no tubes were formed on Matrigel unless PMA was added to the medium. Only active phorbol analogs increased tube formation, while the protein kinase C inhibitor, H-7, blocked tube formation. The protein kinase C activators and inhibitors were effective only when added at or just after plating of the cells and did not affect already formed tubes. This study suggests that protein kinase C is involved in the early events of in vitro endothelial cell tube formation on Matrigel.

  1. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells.

    PubMed

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J; Prior, Ian A; Criddle, David N; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V

    2015-02-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca(2+) concentration ([Ca(2+)]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as 'initiating' organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca(2+) influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca(2+) influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca(2+) entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca(2+) pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca(2+) elevation and endocytic vacuole formation.

  2. Collective Motion of Cells Mediates Segregation and Pattern Formation in Co-Cultures

    PubMed Central

    Méhes, Előd; Mones, Enys; Németh, Valéria; Vicsek, Tamás

    2012-01-01

    Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion. PMID:22359617

  3. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor.

    PubMed Central

    Horwood, N J; Udagawa, N; Elliott, J; Grail, D; Okamura, H; Kurimoto, M; Dunn, A R; Martin, T; Gillespie, M T

    1998-01-01

    IL-18 inhibits osteoclast (OCL) formation in vitro independent of IFN-gamma production, and this was abolished by the addition of neutralizing antibodies to GM-CSF. We now establish that IL-18 was unable to inhibit OCL formation in cocultures using GM-CSF-deficient mice (GM-CSF -/-). Reciprocal cocultures using either wild-type osteoblasts with GM-CSF -/- spleen cells or GM-CSF -/- osteoblasts with wild-type spleen cells were examined. Wild-type spleen cells were required to elicit a response to IL-18 indicating that cells of splenic origin were the IL-18 target. As T cells comprise a large proportion of the spleen cell population, the role of T cells in osteoclastogenesis was examined. Total T cells were removed and repleted in various combinations. Addition of wild-type T cells to a GM-CSF -/- coculture restored IL-18 inhibition of osteoclastogenesis. Major subsets of T cells, CD4+ and CD8+, were also individually depleted. Addition of either CD4+ or CD8+ wild-type T cells restored IL-18 action in a GM-CSF -/- background, while IL-18 was ineffective when either CD4+ or CD8+ GM-CSF -/- T cells were added to a wild-type coculture. These results highlight the involvement of T cells in IL-18-induced OCL inhibition and provide evidence for a new OCL inhibitory pathway whereby IL-18 inhibits OCL formation due to action upon T cells promoting the release of GM-CSF, which in turn acts upon OCL precursors. PMID:9449693

  4. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells. PMID:22696268

  5. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast.

    PubMed

    Neiman, A M

    1998-01-12

    Spore formation in yeast is an unusual form of cell division in which the daughter cells are formed within the mother cell cytoplasm. This division requires the de novo synthesis of a membrane compartment, termed the prospore membrane, which engulfs the daughter nuclei. The effect of mutations in late-acting genes on sporulation was investigated. Mutation of SEC1, SEC4, or SEC8 blocked spore formation, and electron microscopic analysis of the sec4-8 mutant indicated that this inability to produce spores was caused by a failure to form the prospore membrane. The soluble NSF attachment protein 25 (SNAP-25) homologue SEC9, by contrast, was not required for sporulation. The absence of a requirement for SEC9 was shown to be due to the sporulation-specific induction of a second, previously undescribed, SNAP-25 homologue, termed SPO20. These results define a developmentally regulated branch of the secretory pathway and suggest that spore morphogenesis in yeast proceeds by the targeting and fusion of secretory vesicles to form new plasma membranes in the interior of the mother cell. Consistent with this model, the extracellular proteins Gas1p and Cts1p were localized to an internal compartment in sporulating cells. Spore formation in yeast may be a useful model for understanding secretion-driven cell division events in a variety of plant and animal systems.

  6. Carbon Onions as Nanoscopic Pressure Cells for Diamond Formation

    NASA Astrophysics Data System (ADS)

    Banhart, Florian

    1997-03-01

    Concentric-shell carbon onions form under electron irradiation of different carbon precursors in an electron microscope. Carbon onions under irradiation at high temperature are in a state of high compression with a considerable decrease of the c-plane spacing towards the centre. Under prolonged irradiation at temperatures around 900 K the cores of the graphitic onions transform into diamond crystals (F. Banhart and P.M. Ajayan, Nature 382), 433 (1996). Hence, carbon onions can be thought of as nanoscopic pressure cells for the directly observable nucleation and growth of diamond from graphitic material. The diamond crystals grow under further irradiation until the whole graphitic particles have transformed to diamond. Apparently the conversion of the graphitic structure to diamond starts at high pressure and proceeds at decreasing, possibly even at zero pressure. The experiment is carried out in a transmission electron microscope which enables us to monitor this phase transformation in-situ on an atomic scale.

  7. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  8. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  9. Different Effects of BORIS/CTCFL on Stemness Gene Expression, Sphere Formation and Cell Survival in Epithelial Cancer Stem Cells.

    PubMed

    Alberti, Loredana; Losi, Lorena; Leyvraz, Serge; Benhattar, Jean

    2015-01-01

    Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

  10. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    PubMed Central

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  11. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface.

    PubMed

    Chen, Min-Huey; Chen, Yi-Jane; Liao, Chih-Chen; Chan, Yen-Hui; Lin, Chia-Yung; Chen, Rung-Shu; Young, Tai-Hong

    2009-09-15

    Tissue engineering of salivary glands offers the potential for future use in the treatment of patients with salivary hypofunction. Biocompatible materials that promote acinar cell aggregation and function in vitro are an essential part of salivary gland tissue engineering. In this study, rat parotid acinar cells assembled into three-dimensional aggregates above the polyvinyl alcohol (PVA)-coated surface. These aggregates developed compact acinar cell spheroids resembling in vivo physiological condition, which were different from the traditional monolayered morphology in vitro. Cells remained viable and with better functional activity in response to acetylcholine in the spheroids and could form monolayered acinar cells when they were reinoculated on tissue culture polystyrene wells. To interpret the phenomenon further, we proposed that the formation of acinar cell spheroids on the PVA is mediated by a balance between two competing forces: the interactions of cell-PVA and cell-cell. This study demonstrated the formation of functional cell spheroids above a PVA-coated surface may provide an in vitro system for investigating cell behaviors for tissue engineering of artificial salivary gland.

  12. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro

    PubMed Central

    ISLAM, Md. Rashedul; YAMAGAMI, Kazuki; YOSHII, Yuka; YAMAUCHI, Nobuhiko

    2016-01-01

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  13. Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro.

    PubMed

    Ahmad, Mansur; Khurana, Neerja R; Jaberi, Joby E

    2007-01-01

    For successful tissue engineering in surgical radiotherapy patients, irradiated endothelial cells (EC) must form new blood vessels to nourish and build connections with the engineered segment. Therefore, it is critical to understand neovasculogenesis by irradiated EC. The objective of this study was to determine the effects of ionizing radiation on endothelial cell proliferation and capillary-like structures (CLS) formation. Human Umbilical Vein Endothelial Cells (HUVEC) were irradiated with single or fractionated doses of radiation. Proliferation was determined by counting cells. CLS morphology was analyzed from photomicrographs. A single dose of 8 Gy radiation was highly lethal to HUVEC compared to lower dosage. A single dose had more of an inhibitory effect on cell proliferation compared to the same dose delivered in a fractionated manner. CLS formation began after cells reached confluency. To form a CLS, a single cell expanded, and a number of cells rearranged around its periphery in an oval fashion (mimicking a vessel wall). The central cell later disintegrated leaving a void, mimicking the lumen. Irradiated EC can form CLS, although they are fewer and smaller compared to those by sham cells. By disrupting the peripheral cells, >or=4 Gy doses significantly reduced the number of CLS. The disruptive affect was seen more with large CLS compared to small CLS. At different doses, the shapes of CLS were not significantly different. PMID:17028041

  14. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  15. In vivo bone formation by human bone marrow cells: effect of osteogenic culture supplements and cell densities.

    PubMed

    Mendes, S C; Van Den Brink, I; De Bruijn, J D; Van Blitterswijk, C A

    1998-12-01

    Bone marrow is known to contain a population of osteoprogenitor cells that can go through complete differentiation when cultured in a medium containing appropriate bioactive factors. In this study, porous particles of a calcium phosphate material were seeded with adult human bone marrow cells in the second passage. After an additional culture period of 1 wk in the particles, these hybrid constructs were subcutaneouslly implanted in nude mice with a survival period of 4 wk. The cell seeding densities range from 0-200 000 cells per particle and the cell culture system was designed to investigate the single and combined effects of dexamethasone and recombinant human bone morphogenetic protein 2 (rhBMP-2). The hybrid "material/tissue" constructs were processed for histology and the amount of de novo bone formation was quantified, for each culture condition, by histomorphometric techniques. The relative percentage of mineralized bone formation reached a maximal value of 19.77+/-5.06, for samples cultured in the presence of rhBMP-2 and with a seeding density of 200 000 cells/particle, compared to 0.52+/-0.45 for samples in which no cells had been cultured and had been incubated in culture medium supplemented with Dex and rhBMP-2. For the tested conditions and for the low cell numbers used in this study, rhBMP-2 proved to be an essential bioactive factor to obtain in vivo bone formation by our culture system. The results from this study prove the potential of cultured adult human bone marrow cells to initiate and accelerate de novo bone formation after transplantation into an ectopic site. PMID:15348953

  16. An improved model for nucleation-limited ice formation in living cells during freezing.

    PubMed

    Yi, Jingru; Liang, Xin M; Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications.

  17. An improved model for nucleation-limited ice formation in living cells during freezing.

    PubMed

    Yi, Jingru; Liang, Xin M; Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications. PMID:24852166

  18. Fate of toxic cyanobacterial cells and disinfection by-products formation after chlorination.

    PubMed

    Zamyadi, Arash; Ho, Lionel; Newcombe, Gayle; Bustamante, Heriberto; Prévost, Michèle

    2012-04-01

    Drinking water sources in many regions are subject to proliferation of toxic cyanobacteria (CB). Chlorination of source water containing toxic cyanobacterial cells for diverse treatment purposes might cause cell damage, toxin release and disinfection by-products (DBP) formation. There is limited information available on chlorination of different toxic CB cells and DBP formation potentials. This work: (1) determines the extent of lysis and toxins/taste and odor compound release in chlorinated natural water from CB cells (Anabaena circinalis, Microcystis aeruginosa, Cylindrospermopsis raciborskii, and Aphanizomenon issatsckenka) from laboratory cultures and natural blooms; (2) assesses the rates of oxidation of toxins by free chlorine under environmental conditions; (3) studies the DBP formation associated with the chlorination of CB cell suspensions. With chlorine exposure (CT) value of <4.0 mg min/L >60% cells lost viability causing toxin release. Cell membrane damage occurred faster than oxidation of released toxins. Kinetic analysis of the oxidation of toxins in natural water revealed significant differences in their susceptibility to chlorine, saxitoxins being the easiest to oxidize, followed by cylindrospermopsin and microcystin-LR. Furthermore, concentrations of trihalomethanes and haloacetic acids (<40 μg/L) and N-nitrosodimethylamine (<10 ng/L) as chlorination by-products were lower than the guideline values even at the highest CT value (220 mg min/L). However, the DBP concentrations in environmental bloom conditions with very high cell numbers were over the guideline values. PMID:21820143

  19. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells

    PubMed Central

    Adjibade, Pauline; St-Sauveur, Valérie Grenier; Huberdeau, Miguel Quevillon; Fournier, Marie-Josée; Savard, Andreanne; Coudert, Laetitia; Khandjian, Edouard W.; Mazroui, Rachid

    2015-01-01

    Stress granules (SGs) are cytoplasmic RNA multimeric bodies that form under stress conditions known to inhibit translation initiation. In most reported stress cases, the formation of SGs was associated with the cell recovery from stress and survival. In cells derived from cancer, SGs formation was shown to promote resistance to either proteasome inhibitors or 5-Fluorouracil used as chemotherapeutic agents. Despite these studies, the induction of SGs by chemotherapeutic drugs contributing to cancer cells resistance is still understudied. Here we identified sorafenib, a tyrosine kinase inhibitor used to treat hepatocarcinoma, as a potent chemotherapeutic inducer of SGs. The formation of SGs in sorafenib-treated hepatocarcionoma cells correlates with inhibition of translation initiation; both events requiring the phosphorylation of the translation initiation factor eIF2α. Further characterisation of the mechanism of sorafenib-induced SGs revealed PERK as the main eIF2α kinase responsible for SGs formation. Depletion experiments support the implication of PERK-eIF2α-SGs pathway in hepatocarcinoma cells resistance to sorafenib. This study also suggests the existence of an unexpected complex regulatory balance between SGs and phospho-eIF2α where SGs dampen the activation of the phospho-eIF2α-downstream ATF4 cell death pathway. PMID:26556863

  20. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells.

    PubMed

    Adjibade, Pauline; St-Sauveur, Valérie Grenier; Quevillon Huberdeau, Miguel; Fournier, Marie-Josée; Savard, Andreanne; Coudert, Laetitia; Khandjian, Edouard W; Mazroui, Rachid

    2015-12-22

    Stress granules (SGs) are cytoplasmic RNA multimeric bodies that form under stress conditions known to inhibit translation initiation. In most reported stress cases, the formation of SGs was associated with the cell recovery from stress and survival. In cells derived from cancer, SGs formation was shown to promote resistance to either proteasome inhibitors or 5-Fluorouracil used as chemotherapeutic agents. Despite these studies, the induction of SGs by chemotherapeutic drugs contributing to cancer cells resistance is still understudied. Here we identified sorafenib, a tyrosine kinase inhibitor used to treat hepatocarcinoma, as a potent chemotherapeutic inducer of SGs. The formation of SGs in sorafenib-treated hepatocarcionoma cells correlates with inhibition of translation initiation; both events requiring the phosphorylation of the translation initiation factor eIF2α. Further characterisation of the mechanism of sorafenib-induced SGs revealed PERK as the main eIF2α kinase responsible for SGs formation. Depletion experiments support the implication of PERK-eIF2α-SGs pathway in hepatocarcinoma cells resistance to sorafenib. This study also suggests the existence of an unexpected complex regulatory balance between SGs and phospho-eIF2α where SGs dampen the activation of the phospho-eIF2α-downstream ATF4 cell death pathway.

  1. mTOR Enhances Foam Cell Formation by Suppressing the Autophagy Pathway

    PubMed Central

    Li, Lingxia; Niu, Xiaolin; Dang, Xiaoyan; Li, Ping; Qu, Li; Bi, Xiaoju; Gao, Yanxia; Hu, Yanfen; Li, Manxiang; Qiao, Wanhai; Peng, Zhuo; Pan, Longfei

    2014-01-01

    Recently, autophagy has drawn more attention in cardiovascular disease as it has important roles in lipid metabolism. Mammalian target of rapamycin (mTOR) is a key regulator of autophagy; however, its effect on atherosclerosis and the underlying mechanism remains undefined. In this study, an obvious upregulation of mTOR and p-mTOR protein was observed in macrophage-derived foam cells. Blocking mTOR expression with specific small interference RNA (siRNA) dramatically suppressed foam cell formation, accompanied by a decrease of lipid deposition. Further mechanistic analysis indicated that suppressing mTOR expression significantly upregulated autophagic marker LC3 expression and downregulated autophagy substrate p62 levels, indicating that mTOR silencing triggered autophagosome formation. Moreover, blocking mTOR expression obviously accelerated neutral lipid delivery to lysosome and cholesterol efflux from foam cells, implying that mTOR could induce macrophage foam cell formation by suppressing autophagic pathway. Further, mTOR silencing significantly upregulated ULK1 expression, which was accounted for mTOR-induced foam cell formation via autophagic pathway as treatment with ULK1 siRNA dampened LC3-II levels and increased p62 expression, concomitant with lipid accumulation and decreased cholesterol efflux from foam cells. Together, our data provide an insight into how mTOR accelerates the pathological process of atherosclerosis. Accordingly, blocking mTOR levels may be a promising therapeutic agent against atherosclerotic complications. PMID:24512183

  2. Daughter preference and contraceptive-use in matrilineal tribal societies in Meghalaya, India.

    PubMed

    Narzary, Pralip Kumar; Sharma, Shilpi Mishra

    2013-06-01

    Although son preference in patrilineal society is an established fact, daughter preference in matrilineal society is not thoroughly examined. Very few studies have been carried out on the issue. This paper attempts to explore the daughter preference and contraceptive-use in matrilineal tribal societies in Meghalaya, India. Data from the National Family Health Survey 1998-1999 have been used in this study because, among the large-scale surveys, only this dataset allows identification of matrilineal sample. Mean, percentage, and standard deviation are computed in the present study. Further, the data have been cross-tabulated, and logistic regression has been run through SPSS (version 15). Among the ever-married matrilineal women, 17% desired more sons than daughters but 18.2% desired more daughters than sons. About 11% of ever-married women could achieve their desired sex composition of children. However, a very striking finding suggests that, even after achieving desired sex composition of children, as high as 61.8% of women were still not using contraception mainly because of programme factors while one-fourth were still depending on temporary methods. The rest 13.2% adopted terminal method of contraception, which calls for immediate attention of planners. With the increase in the number of sons but without daughter, contraceptive-use drastically decreased. The most desired sex composition of children seems to be two daughters and a son. Absence of daughter with increase in the total number of sons increased the desire for additional children. Every woman with two or more sons but without daughter wanted the next child to be a daughter. Thus, there are ample evidences to draw the conclusion that there is, in fact, a daughter preference in the matrilineal tribal societies in Meghalaya, India. Policy-makers may, thus, target the women who have achieved fertility and should ensure that daughter preference does not lead to the negligence to sons.

  3. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    PubMed Central

    Berny-Lang, MA; Aslan, JE; Tormoen, GW; Patel, IA; Bock, PE; Gruber, A

    2011-01-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently-labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions. PMID:21301066

  4. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Berny-Lang, M. A.; Aslan, J. E.; Tormoen, G. W.; Patel, I. A.; Bock, P. E.; Gruber, A.; McCarty, O. J. T.

    2011-02-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer, and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.

  5. Predictors of perceived benefits and drawbacks of using paid service among daughter and daughter-in-law caregivers of people with dementia.

    PubMed

    Moon, Heehyul

    2016-01-01

    This study examines the types of benefits and drawbacks of a sample of daughter and daughter-in-law caregivers (CG) of people with dementia and explores the predictors associated with the identified benefits and drawbacks. The current study used a secondary analysis of a purposive sample of 102 daughters or daughters-in-law living in Northeast Ohio who were required to be using at least 8 hours of paid services per week to help in caring for their care recipient (CR) with Alzheimer's disease or other memory problems. Logistic regression was used. All respondents answered that there were benefits of having the paid help, but 51% of them reported drawbacks as well. The analyses revealed that predictors of each identified benefit and drawback were different. Information about benefits and drawbacks of paid help is useful for service providers to design better services for CGs of people with dementia.

  6. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  7. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    NASA Astrophysics Data System (ADS)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  8. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals.

    PubMed

    van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol

    2015-04-01

    Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation.

  9. Inhibition of neurosphere formation in neural stem/progenitor cells by acrylamide.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chen, Mei-Shu; Ko, Ying-Chin; Chiu, Ing-Ming

    2015-01-01

    Previous studies showed that transplantation of cultured neural stem/progenitor cells (NSPCs) could improve functional recovery for various neurological diseases. This study aims to develop a stem cell-based model for predictive toxicology of development in the neurological system after acrylamide exposure. Treatment of mouse (KT98/F1B-GFP) and human (U-1240 MG/F1B-GFP) NSPCs with 0.5 mM acrylamide resulted in the inhibition of neurosphere formation (definition of self-renewal ability in NSPCs), but not inhibition of cell proliferation. Apoptosis and differentiation of KT98 (a precursor of KT98/F1B-GFP) and KT98/F1B-GFP are not observed in acrylamide-treated neurospheres. Analysis of secondary neurosphere formation and differentiation of neurons and glia illustrated that acrylamide-treated KT98 and KT98/F1B-GFP neurospheres retain the NSPC properties, such as self-renewal and differentiation capacity. Correlation of acrylamide-inhibited neurosphere formation with cell-cell adhesion was observed in mouse NSPCs by live cell image analysis and the presence of acrylamide. Protein expression levels of cell adhesion molecules [neural cell adhesion molecule (NCAM) and N-cadherin] and extracellular signal-regulated kinases (ERK) in acrylamide-treated KT98/F1B-GFP and U-1240 MG/F1B-GFP neurospheres demonstrated that NCAM decreased and phospho-ERK (pERK) increased, whereas expression of N-cadherin remained unchanged. Analysis of AKT (protein kinase B, PKB)/β-catenin pathway showed decrease in phospho-AKT (p-AKT) and cyclin D1 expression in acrylamide-treated neurospheres of KT98/F1B-GFP. Furthermore, PD98059, an ERK phosphorylation inhibitor, attenuated acrylamide-induced ERK phosphorylation, indicating that pERK contributed to the cell proliferation, but not in neurosphere formation in mouse NSPCs. Coimmunoprecipitation results of KT98/F1B-GFP cell lysates showed that the complex of NCAM and fibroblast growth factor receptor 1 (FGFR1) is present in the neurosphere, and the

  10. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system.

  11. Novel Nox inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells.

    PubMed

    Stielow, Claudia; Catar, Rusan A; Muller, Gregor; Wingler, Kirstin; Scheurer, Peter; Schmidt, Harald H H W; Morawietz, Henning

    2006-05-26

    In this study, we investigated effects of a novel NAD(P)H oxidase (Nox)-inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870) on oxidized low-density lipoprotein (oxLDL)-mediated reactive oxygen species (ROS) formation in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were cultured to confluence and ROS formation was induced with 50microg/ml oxLDL for 2h. ROS formation was detected by chemiluminescence (CL) using the Diogenes reagent. OxLDL induced ROS formation in human endothelial cells (171+/-12%; n=10, P<0.05 vs. control). This augmented ROS formation in response to oxLDL was completely inhibited by the Nox inhibitor VAS2870 (101+/-9%; n=7, P<0.05 vs. oxLDL). Similar results were obtained with superoxide dismutase (91+/-7%; n=7, P<0.05 vs. oxLDL). However, the Nox4 mRNA expression level was neither changed by oxLDL nor VAS2870. We conclude that VAS2870 could provide a novel strategy to inhibit the augmented endothelial superoxide anion formation in response to cardiovascular risk factors. PMID:16603125

  12. Diversity of mineral cell coverings and their formation processes: a review focused on the siliceous cell coverings.

    PubMed

    Mayama, Shigeki; Kuriyama, Asuka

    2002-08-01

    Mineral cell coverings are found in various protists. Some macroalgae accumulate calcium carbonate in the intercellular space, and some unicellular organisms use calcium carbonate or silica for the construction of loricas, scales, and frustules. Diatoms are representatives of those utilizing silica for the material of the cell covering called a frustule. The development of the frustule is initiated in a silica-deposition vesicle (SDV), which occurs just beneath the plasma membrane and, subsequently, the silicified cell covering expands its area, following the expansion of the SDV from valve face to valve mantle. Sequential valve development with whole valves is reviewed in several diatoms placed in different phylogenetic positions. Every diatom commences its valve formation from its pattern center and then develops by means of individual procedures. The results indicate that the valve development reflects the phylogeny of diatoms. In addition, recent progress in silica biomineralization is briefly reviewed, and the phylogeny of ability concerning siliceous cell covering formation is inferred.

  13. New Cell Surface Protein Involved in Biofilm Formation by Streptococcus parasanguinis ▿

    PubMed Central

    Liang, Xiaobo; Chen, Yi-Ywan M.; Ruiz, Teresa; Wu, Hui

    2011-01-01

    Dental biofilm formation is critical for maintaining the healthy microbial ecology of the oral cavity. Streptococci are predominant bacterial species in the oral cavity and play important roles in the initiation of plaque formation. In this study, we identified a new cell surface protein, BapA1, from Streptococcus parasanguinis FW213 and determined that BapA1 is critical for biofilm formation. Sequence analysis revealed that BapA1 possesses a typical cell wall-sorting signal for cell surface-anchored proteins from Gram-positive bacteria. No functional orthologue was reported in other streptococci. BapA1 possesses nine putative pilin isopeptide linker domains which are crucial for pilus assembly in a number of Gram-positive bacteria. Deletion of the 3′ portion of bapA1 generated a mutant that lacks surface-anchored BapA1 and abolishes formation of short fibrils on the cell surface. The mutant failed to form biofilms and exhibited reduced adherence to an in vitro tooth model. The BapA1 deficiency also inhibited bacterial autoaggregation. The N-terminal muramidase-released-protein-like domain mediated BapA1-BapA1 interactions, suggesting that BapA1-mediated cell-cell interactions are important for bacterial autoaggregation and biofilm formation. Furthermore, the BapA1-mediated bacterial adhesion and biofilm formation are independent of a fimbria-associated serine-rich repeat adhesin, Fap1, demonstrating that BapA1 is a new streptococcal adhesin. PMID:21576336

  14. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly.

  15. Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury.

    PubMed

    Yuchi, Yixing; Cai, Ying; Legein, Bart; De Groef, Sofie; Leuckx, Gunter; Coppens, Violette; Van Overmeire, Eva; Staels, Willem; De Leu, Nico; Martens, Geert; Van Ginderachter, Jo A; Heimberg, Harry; Van de Casteele, Mark

    2015-09-01

    Identifying pathways for β-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17β-estradiol (E2) and estrogen receptor (ER) signaling for stimulating β-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in β-cells. PDL-induced proliferation of β-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and β-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted β-cell formation. In the embryonic pancreas, β-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive β-cell replication and formation in mouse pancreas.

  16. Pattern formation by a cell surface-associated morphogen in Myxococcus xanthus

    PubMed Central

    Jelsbak, Lars; Søgaard-Andersen, Lotte

    2002-01-01

    In response to starvation, an unstructured population of identical Myxococcus xanthus cells rearranges into an asymmetric, stable pattern of multicellular fruiting bodies. Central to this pattern formation process are changes in organized cell movements from swarming to aggregation. Aggregation is induced by the cell surface-associated C-signal. To understand how aggregation is accomplished, we have analyzed how C-signal modulates cell behavior. We show that C-signal induces a motility response that includes increases in transient gliding speeds and in the duration of gliding intervals and decreases in stop and reversal frequencies. This response results in a switch in cell behavior from an oscillatory to a unidirectional type of behavior in which the net-distance traveled by a cell per minute is increased. We propose that the C-signal-dependent regulation of the reversal frequency is essential for aggregation and that the remaining C-signal-dependent changes in motility parameters contribute to aggregation by increasing the net-distance traveled by starving cells per minute. In our model for symmetry-breaking and aggregation, C-signal transmission is a local event involving direct contacts between cells that results in a global organization of cells. This pattern formation mechanism does not require a diffusible substance or other actions at a distance. Rather it depends on contact-induced changes in motility behavior to direct cells appropriately PMID:11842199

  17. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    PubMed

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. PMID:27122167

  18. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers' Intentions to Allow Their Daughters to Undergo Female Genital Mutilation.

    PubMed

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen's theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers' intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers' intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers' intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers' neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one's daughter. Based on our findings, we provide recommendations about how to curtail mothers' intentions to allow their daughters to undergo FGM.

  19. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers’ Intentions to Allow Their Daughters to Undergo Female Genital Mutilation

    PubMed Central

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen’s theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers’ intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers’ intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers’ intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers’ neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one’s daughter. Based on our findings, we provide recommendations about how to curtail mothers’ intentions to allow their daughters to undergo FGM. PMID:27031613

  20. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers' Intentions to Allow Their Daughters to Undergo Female Genital Mutilation.

    PubMed

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen's theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers' intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers' intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers' intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers' neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one's daughter. Based on our findings, we provide recommendations about how to curtail mothers' intentions to allow their daughters to undergo FGM. PMID:27031613

  1. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    PubMed

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P < 0.05) chloral hydrate, highlighting the bacterial phenotype's impact on the bacteria-derived DBPFP. Pipe material appeared to affect the DBPFP of bacteria, with 4-28% lower bromine incorporation factor for biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water.

  2. Dazl is a critical player for primordial germ cell formation in medaka

    PubMed Central

    Li, Mingyou; Zhu, Feng; Li, Zhendong; Hong, Ni; Hong, Yunhan

    2016-01-01

    The DAZ family genes boule, daz and dazl have conserved functions in primordial germ cell (PGC) migration, germ stem cell proliferation, differentiation and meiosis progression. It has remained unknown whether this family is required for PGC formation in developing embryos. Our recent study in the fish medaka (Oryzias latipes) has defined dnd as the critical PGC specifier and predicted the presence of additional factors essential for PGC formation. Here we report that dazl is a second key player for medaka PGC formation. Dazl knockdown did not prevent PGC formation even in the absence of normal somatic structures. It turned out that a high level of Dazl protein was maternally supplied and persisted until gastrulation, and hardly affected by two antisense morpholino oligos targeting the dazl RNA translation. Importantly, microinjection of a Dazl antibody remarkably reduced the number of PGCs and even completely abolished PGC formation without causing detectable somatic abnormality. Therefore, medaka PGC formation requires the Dazl protein as maternal germ plasm component, offering first evidence that dazl is a critical player in PGC formation in vivo. Our results demonstrate that antibody neutralization is a powerful tool to study the roles of maternal protein factors in PGC development in vivo. PMID:27328644

  3. Clonal distribution of osteoprogenitor cells in cultured chick periostea: Functional relationship to bone formation

    SciTech Connect

    McCulloch, C.A.; Fair, C.A.; Tenenbaum, H.C.; Limeback, H.; Homareau, R. )

    1990-08-01

    Folded explants of periosteum from embryonic chick calvaria form bone-like tissue when grown in the presence of ascorbic acid, organic phosphate, and dexamethasone. All osteoblast-like cells in these cultures arise de novo by differentiation of osteoprogenitor cells present in the periosteum. To study the spatial and functional relationships between bone formation and osteoprogenitor cells, cultures were continuously labeled with (3H)thymidine for periods of 1-5 days. Radioautographs of serial 2-microns plastic sections stained for alkaline phosphatase (AP) showed maximal labeling of 30% of fibroblastic (AP-negative) cells by 3 days while osteogenic cells (AP-positive) exhibited over 95% labeling by 5 days. No differential shifts in labeling indices, grain count histograms of fibroblastic and osteogenic cells or numbers of AP-positive cells were observed, indicating no significant recruitment of cells from the fibroblastic to the osteogenic compartment. Despite the continuous presence of (3H)thymidine, less than 35% of both osteoblasts and osteocytes were labeled at 5 days, indicating that only one-third of the osteoprogenitor cells had cycled prior to differentiation. Spatial clustering of (3H)thymidine-labeled cells was measured by computer-assisted morphometry and application of the Poisson distribution to assess contagion. Cluster size and number of labeled cells per cluster did not vary between 1-3 days, but the number of clusters increased 20-fold between Day 1 and Day 3. Three-dimensional reconstruction from serial sections showed that clusters formed long, tubular arrays of osteogenic cells up to eight cells in length and located within 2-3 cell layers from the bone surface. Selective killing of S-phase cells with two pulse labels of high specific activity (3H)thymidine at 1 and 2 days of culture completely blocked bone formation.

  4. Inhibitory effect of Adonis amurensis components on tube-like formation of human umbilical venous cells.

    PubMed

    You, Young-Jae; Kim, Yong; Nam, Nguyen-Hai; Ahn, Byung-Zun

    2003-05-01

    Antiangiogenic activity-guided fractionation and isolation carried out on the methanol extract of Adonis amurensis led to the identification of three compounds, namely cymarin, cymarol, and cymarilic acid. Amongst the three compounds, cymarilic acid was isolated from this plant for the first time. This compound showed no significant cytotoxicity against tumor cell lines but was found to be strongly inhibitory toward tube formation induced by human umbilical venous endothelial (HUVE) cells. Cymarin and cymarol exhibited potent cytotoxicity against a human solid tumor cell line A549 (human lung carcinoma), while being inactive on murine leukemic cells (L1210).

  5. Process for recovery of daughter isotopes from a source material

    DOEpatents

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  6. Richard III, Barer-Stoddart and the Daughter of Time.

    PubMed

    Evans, Robert G; McGrail, Kimberlyn M

    2008-02-01

    "Truth is the daughter of Time," said mystery writer Josephine Tey. This point, illustrated in her rehabilitation of the "villainous" King Richard III, is equally apt for a reconsideration of the 1991 Barer-Stoddart report on medical personnel. Canadian physicians have reviled these authors for "creating" a physician shortage by encouraging provincial cuts to medical school enrolment. Yet, data pre- and post-1991 are quite clear: their report did not and could not have had this effect. The physician-to-population ratio has been stable since 1989. Average physician hours of work have fallen, but per capita expenditures on physicians' services (inflation-adjusted) are rising rapidly. A flood of physicians from the major expansion of enrolments now in place threatens serious fiscal trouble over the next two decades, and is likely to pre-empt any significant system reform. PMID:19305764

  7. Reduction of radon daughter concentrations in structures. [UMTRA project

    SciTech Connect

    Not Available

    1982-12-01

    A structure was identified in Salt Lake City wherein uranium mill tailings had been used in the construction and where unusually high levels of radon daughter concentrations (RDC's) existed. The physical and radiological characteristics of the structure were assessed. Ventilation techniques were investigated to assess their effectiveness in reducing RDC's. A preferred set of equipment was identified, installed in the structure and operated to reduce RDC's. Parametric studies were conducted to determine if supplying fresh air or recirculating air through electrostatic precipitators is more effective in reducing RDC's. Fresh air was found to be more effective in reducing RDC's. RDC's have been reduced to levels at or near the target of 0.03 working level under optimal ventilation conditions. Natural gas consumption with the new equipment is about 39% higher than with the original equipment. Electrical energy usage and electrical demand are respectively 50 and 44% higher with the new equipment than with the original equipment. 16 refs., 14 figs., 8 tabs.

  8. Father-daughter incest: data from an anonymous computerized survey.

    PubMed

    Stroebel, Sandra S; O'Keefe, Stephen L; Beard, Keith W; Kuo, Shih-Ya; Swindell, Samuel V S; Kommor, Martin J

    2012-01-01

    Retrospective data were entered anonymously by 1,521 adult women using computer-assisted self-interview. Nineteen were classified as victims of father-daughter incest, and 241 were classified as victims of sexual abuse by an adult other than their father before reaching 18 years of age. The remaining 1,261 served as controls. Incest victims were more likely than controls to endorse feeling damaged, psychologically injured, estranged from one or both parents, and shamed by others when they tried to open up about their experience. They had been eroticized early on by the incest experience, and it interfered with their adult sexuality. Incest victims experienced coitus earlier than controls and after reaching age 18 had more sex partners and were more likely to have casual sex outside their primary relationship and engage in sex for money than controls. They also had worse scores on scales measuring depression, sexual satisfaction, and communication about sex than controls.

  9. Psychic loss in adult survivors of father-daughter incest.

    PubMed

    Wingerson, N

    1992-08-01

    Studies show that adult survivors of childhood incest comprise a significant percentage of female psychiatric patients. The varied and multidetermined presenting symptomatology of these patients frequently leads to misdiagnosis and treatment interventions that fail to address core issues of the incest experience. One such issue is the child's experience of the psychic loss of a physically present parent that is part of the emotional trauma of incest. The goal of this paper is to discuss psychic loss as a core element of the incest experience, particularly in father-daughter incest, and to describe the conditions of childhood mourning that inhibit successful resolution of this loss. Attention is addressed to the psychoanalytic understanding of mourning as a basis for interventions in the treatment of adult survivors.

  10. [The "daughterly" existence. Unanswered questions about the female Oedipus complex].

    PubMed

    Rohde-Dachser, C

    1990-01-01

    The author investigates the structural difficulties currently involved in arriving at a conclusive definition of the female Oedipus complex. She shows how Freud's theory of the female Oedipus complex, originally a theory of non-individuation, now figures as a theory of individuation, with old, partriarchally oriented constructs and modern ideas of emancipation having entered into complex combinations that can sometimes be disentangled only with difficulty. Finally, three aspects of the female Oedipus complex are examined: 1. its importance in the acquisition of female sexual identity, 2. its function as a locus for finding the heterosexual object, and 3. its role as a locus for the resolution or fixation of the "daughterly" existence. PMID:2288169

  11. Familial eosinophilic granulomatosis with polyangiitis in a mother and daughter

    PubMed Central

    Harmanci, Koray; Anil, Hulya; Kocak, Abdulkadir; Dinleyici, Ener Cagri

    2014-01-01

    A 17-year-old girl was admitted to our unit with weight loss, dyspnoea, arthralgia and sinusitis. Her medical history was noteworthy for bronchial asthma and she required systemic steroid therapy. Her mother had a history of eosinophilic granulomatosis with polyangiitis (EGPA). Laboratory tests revealed excessive eosinophilia and elevated erythrocyte sedimentation. The assay for peripheral antineutrophil cytoplasmic antibodies was negative. Histopathological examination of lung biopsy revealed EGPA. The patient was treated with methylpredinosolone; her eosinophil count normalised and she began to improve clinically and radiographically. There is no genetic factor to influence susceptibility to this disease. To the best of our knowledge, this is the second report of familial EGPA disease in the literature, with a mother and daughter both being affected. EGPA disease should be kept in mind in a patient with uncontrolled asthma and eosinophilia with a positive family history for EGPA. PMID:25368130

  12. Cenani-Lenz syndrome in father and daughter.

    PubMed

    De Smet, L; De Beer, P; Fryns, J P

    1996-01-01

    We present a father and daughter with typical clinical and radiological features of Cenani-Lenz syndrome. Cenani-Lenz syndrome has been delineated as a type of complete syndactyly resembling the spoon hand seen in Apert syndrome, with as important additional feature, the fusion of metacarpals and disorganization of the phalanges. Based on the observation of the syndrome in at least two affected siblings born to normal parents and the consanguinity in one family autosomal recessive inheritance was proposed. The findings in the present family could indicate that Cenani-Lenz syndrome may be genetically heterogeneous. Another possible explanation could be that the occurrence in affected siblings born to normal parents could be explained by gonadal mosaicism for an autosomal dominant gene.

  13. Removal of {sup 222}Rn daughters from metal surfaces

    SciTech Connect

    Zuzel, G.; Wojcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2015-08-17

    Removal of the long-lived {sup 222}Rn daughters ({sup 210}Pb, {sup 210}Bi and {sup 210}Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the {sup 210}Pb activity was tested using a HPGe spectrometer, for {sup 210}Bi a beta spectrometer and for {sup 210}Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for {sup 210}Pb, {sup 210}Bi and {sup 210}Po were between 200 and 400. Etching does not remove {sup 210}Po from copper but works very efficiently from germanium. Results obtained for {sup 210}Pb and {sup 210}Bi for etched stainless steel were worse but still slightly better than those achieved for copper.

  14. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-04-01

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications. PMID:19947917

  15. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-03-12

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications.

  16. Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells.

    PubMed

    Petrovská, Beáta; Jerábková, Hana; Kohoutová, Lucie; Cenklová, Vera; Pochylová, Žaneta; Gelová, Zuzana; Kocárová, Gabriela; Váchová, Lenka; Kurejová, Michaela; Tomastíková, Eva; Binarová, Pavla

    2013-11-01

    TPX2 performs multiple roles in microtubule organization. Previously, it was shown that plant AtTPX2 binds AtAurora1 kinase and colocalizes with microtubules in a cell cycle-specific manner. To elucidate the function of TPX2 further, this work analysed Arabidopsis cells overexpressing AtTPX2-GFP. Distinct arrays of bundled microtubules, decorated with AtTPX2-GFP, were formed in the vicinity of the nuclear envelope and in the nuclei of overexpressing cells. The microtubular arrays showed reduced sensitivity to anti-microtubular drugs. TPX2-mediated formation of nuclear/perinuclear microtubular arrays was not specific for the transition to mitosis and occurred independently of Aurora kinase. The fibres were not observed in cells with detectable programmed cell death and, in this respect, they differed from TPX2-dependent microtubular assemblies functioning in mammalian apoptosis. Colocalization and co-purification data confirmed the interaction of importin with AtTPX2-GFP. In cells with nuclear foci of overexpressed AtTPX2-GFP, strong nuclear signals for Ran and importin diminished when microtubular arrays were assembled. This observation suggests that TPX2-mediated microtubule formation might be triggered by a Ran cycle. Collectively, the data suggest that in the acentrosomal plant cell, in conjunction with importin, overexpressed AtTPX2 reinforces microtubule formation in the vicinity of chromatin and the nuclear envelope.

  17. Timing of natural menopause covaries with timing of birth of a first daughter: evidence for a mother-daughter evolutionary contract?

    PubMed

    Galbarczyk, A; Jasienska, G

    2013-06-01

    Age at natural menopause is characterized by significant variability, but the factors responsible for this observed variation are still not well recognized. Humans are cooperative breeders and non-reproducing grandmothers play important roles in raising children. We propose an evolutionary "mother-daughter contract" hypothesis that suggests that the oldest daughter helps her mother to raise younger siblings but, in return, expects her mother to cease her reproduction, shifting energy and time once her daughter's children are born. Data were collected by a questionnaire from 914 Polish postmenopausal women. From among those, 506 women, 44-98 years old, who had at least one child and who went through a natural menopause were included in the analysis. A woman's age at menopause was sensitive to the age at which she had her first daughter. The age of giving birth to the first daughter, even when she was not her first child, positively correlated with the age of the mother's menopause (N=332, p<0.02), while the age of giving birth to a first son did not have a statistically significant effect (N=332, p=0.36). Results of our study suggest that research on the menopausal transition should take into account mother-daughter relationships as potentially important determinants of the timing of menopause. PMID:23642798

  18. Timing of natural menopause covaries with timing of birth of a first daughter: evidence for a mother-daughter evolutionary contract?

    PubMed

    Galbarczyk, A; Jasienska, G

    2013-06-01

    Age at natural menopause is characterized by significant variability, but the factors responsible for this observed variation are still not well recognized. Humans are cooperative breeders and non-reproducing grandmothers play important roles in raising children. We propose an evolutionary "mother-daughter contract" hypothesis that suggests that the oldest daughter helps her mother to raise younger siblings but, in return, expects her mother to cease her reproduction, shifting energy and time once her daughter's children are born. Data were collected by a questionnaire from 914 Polish postmenopausal women. From among those, 506 women, 44-98 years old, who had at least one child and who went through a natural menopause were included in the analysis. A woman's age at menopause was sensitive to the age at which she had her first daughter. The age of giving birth to the first daughter, even when she was not her first child, positively correlated with the age of the mother's menopause (N=332, p<0.02), while the age of giving birth to a first son did not have a statistically significant effect (N=332, p=0.36). Results of our study suggest that research on the menopausal transition should take into account mother-daughter relationships as potentially important determinants of the timing of menopause.

  19. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos.

    PubMed

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-19

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis. PMID:26729872

  20. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos.

    PubMed

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-19

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis.

  1. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  2. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  3. Parental Communication to Three Daughters at Similar Time Periods across Two Contexts.

    ERIC Educational Resources Information Center

    Luetke-Stahlman, Barbara

    1992-01-01

    This article reports a study of the communication development (especially concerning effect of context on content and mean length of utterance) within a family consisting of hearing parents, two hearing daughters, and a newly adopted deaf daughter (aged 2:8-3:0). Findings suggested that play contexts were more conducive to language acquisition…

  4. Mothers’ Perspectives about Reproductive Health Discussions with Adolescent Daughters with Diabetes

    PubMed Central

    Hannan, Margaret; Happ, Mary Beth; Charron-Prochownik, Denise

    2010-01-01

    Purpose The purpose of this study was to explore mothers’ perspectives about reproductive health (RH) discussions with their adolescent daughters with diabetes. Methods This study of mothers used a sequential explanatory mixed method design with 2 phases. Phase 2, the focus of this report, was a qualitative descriptive study using open-ended semi-structured telephone interviews. Ten mothers from a larger study sample were selected by purposeful sampling. Qualitative content analysis techniques were used to analyze the interview transcripts. Results The following 4 themes describing mothers’ perspectives about RH discussions with their adolescent daughters with diabetes were identified: 1) maternal awareness; 2) maternal knowledge; 3) triggers for initiating RH discussions; and, 4) maternal fears/concerns. Several mothers were aware of their daughters’ sexual activity and were aware that their daughters should preplan a pregnancy. They knew that an unplanned pregnancy may have detrimental effects on their daughters’ health and feared that their daughters would have an unplanned pregnancy. A major trigger for mothers to initiate RH discussions was when a daughter had a steady boyfriend. Mothers’ fears and concerns were focused around their daughters having an unplanned pregnancy. Overall, mothers reported they were not comfortable with RH conversations. Conclusions Mothers fear unplanned pregnancies for their daughters with diabetes and want to discuss RH issues with them, but are uncomfortable doing so. Diabetes educators could be instrumental in educating and providing communication skills to mothers to help foster RH communication with their adolescent daughters with diabetes. PMID:19213674

  5. Dose assessment to inhalation exposure of indoor 222Rn daughters in Korea.

    PubMed

    Ha, C W; Chang, S Y; Lee, B H

    1992-10-01

    Long-term, average indoor 222Rn concentrations were measured in 12 residential areas by passive CR-39 radon cups. Corresponding equilibrium-equivalent concentration of radon daughters were derived. The resulting effective dose equivalent for the Korean population due to inhalation exposure of this equilibrium-equivalent concentration of radon daughters was then evaluated.

  6. Using the Theory of Planned Behavior to Predict Mothers' Intentions to Vaccinate Their Daughters against HPV

    ERIC Educational Resources Information Center

    Askelson, Natoshia M.; Campo, Shelly; Lowe, John B.; Smith, Sandi; Dennis, Leslie K.; Andsager, Julie

    2010-01-01

    This study assessed mothers' intentions to vaccinate their daughters against human papillomavirus (HPV) using the theory of planned behavior (TPB). Experience with sexually transmitted infections (STIs), beliefs about the vaccine encouraging sexual activity, and perception of daughters' risk for HPV were also examined for a relationship with…

  7. From Mother to Daughter: Changes in Intergenerational Educational and Occupational Mobility in Germany

    ERIC Educational Resources Information Center

    Minello, Alessandra; Blossfeld, Hans-Peter

    2014-01-01

    Recent decades have seen a dramatic expansion in the educational attainment and occupational opportunities of German women. Both the educational and occupational positions of the mothers and those of their daughters are continuously changing across cohorts. Our study aims to detect the probability of daughters to experience maternal-line…

  8. Caring for a Daughter with Intellectual Disabilities in Managing Menstruation: A Mother's Perspective

    ERIC Educational Resources Information Center

    Chou, Yueh-Ching; Lu, Zxy-Yann Jane

    2012-01-01

    Background: The concerns of mothers and their experiences while providing help to their daughters with intellectual disability (ID) and considerable support needs during menstruation have rarely been addressed. This qualitative study explored mothers' experiences and perceptions of managing their daughters' menstruation. Method: Twelve Taiwanese…

  9. Adolescent Daughters' Romantic Competence: The Role of Divorce, Quality of Parenting, and Maternal Romantic History

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Zlotnik, Aynat; Shachar-Shapira, Lital; Connolly, Jennifer; Bohr, Yvonne

    2012-01-01

    This study examined the links between parental divorce, quality of maternal parenting, spousal relationships and middle adolescent romantic competence in 80 mother-adolescent daughter pairs (40 divorced). Mothers were asked to describe their attitudes and behaviors with regard to their daughters' romantic behavior. In addition, mothers were…

  10. Low-Income Latina Mothers' Expectations for Their Pregnant Daughters' Autonomy and Interdependence

    ERIC Educational Resources Information Center

    Nadeem, Erum; Romo, Laura F.

    2008-01-01

    Forty-five pregnant Latina adolescents and their mothers (23 English-speaking, 22 Spanish-speaking) were videotaped conversing about feelings and plans related to the adolescent's pregnancy. The prevalence of the mothers' messages about the daughter's reliance on the family unit (interdependence) and the daughter's self-sufficiency (autonomy) were…

  11. She Has Great Spirit: Insight into Relationships between American Indian Dads and Daughters

    ERIC Educational Resources Information Center

    Reinhardt, Martin James; Perry Evenstad, Jan; Faircloth, Susan

    2012-01-01

    Data from this preliminary study, the American Indian--Dads and Daughters Survey, shed light on how American Indian fathers think and feel about their relationships with their daughters. Respondents represent an array of tribal affiliations, age, occupations, socioeconomic status, and geographical/geopolitical locations, helping to ensure that…

  12. Epistolary and Emotional Education: The Letters of an Irish Father to His Daughter, 1747-1752

    ERIC Educational Resources Information Center

    Ruberg, Willemijn

    2008-01-01

    The letters Bishop Edward Synge (1691-1762) wrote to his daughter Alicia (1733-1807) in 1747-1752 are discussed to show how correspondence from a father to a daughter could be used to teach a teenage girl how to spell and write letters. Moreover, these letters are an excellent source to show how emotional behaviour was taught. Instructions on…

  13. Internal and Interpersonal: The Family Transmission of Father-Daughter Incest.

    ERIC Educational Resources Information Center

    Greenspun, Wendy S.

    1994-01-01

    Utilizes psychoanalytic and family systems theories to describe dynamics in families with father-daughter incest. The pattern in incest is explained via the concept of projective identification; experiences of victimization are played out in the marriage. The victimized daughter is later triangulated into this marital dynamic, setting the stage…

  14. Common Themes in the Experiences of Mother-Daughter Incest Survivors: Implications for Counseling.

    ERIC Educational Resources Information Center

    Ogilvie, Beverly; Daniluk, Judith

    1995-01-01

    Studied mother-daughter incest. Common themes were extracted from in-depth interviews with survivors of mother-perpetrated sexual abuse, some of which parallel the experience of survivors of other forms of child sexual abuse, and some of which are more specific to mother-daughter incest. Discusses themes and counseling implications. (JBJ)

  15. How My Daughter Taught Me to Teach: The Importance of Active Communication

    ERIC Educational Resources Information Center

    Hunt-Gierut, Deborah

    2011-01-01

    In this article, the author shares how her daughter, who was diagnosed with a profound hearing loss when she was a year old, taught her to teach, and demonstrates the importance of active communication. Teaching her daughter English as her second language has posed many challenges, but has also revealed successful strategies that the author has…

  16. Marital and Parent-Child Relationships in Families with Daughters Who Have Eating Disorders

    ERIC Educational Resources Information Center

    Latzer, Yael; Lavee, Yoav; Gal, Sharon

    2009-01-01

    This study assesses and compares the relationship between parents' marital quality, parent-child relationship, and severity of eating-related psychopathology in families with and without eating disorders. Data are collected from the mother, father, and daughter of 30 families with a daughter diagnosed with anorexia or bulimia and from 30 matched…

  17. A Healthy Lifestyle Program for Latino Daughters and Mothers: The BOUNCE Overview and Process Evaluation

    ERIC Educational Resources Information Center

    Olvera, Norma N.; Knox, Brook; Scherer, Rhonda; Maldonado, Gabriela; Sharma, Shreela V.; Alastuey, Lisa; Bush, Jill A.

    2008-01-01

    Background: Few family-based healthy lifestyle programs for Latinos have been conducted, especially family programs targeting mother-daughter dyads. Purpose: To assess the acceptability and feasibility of the Behavior Opportunities Uniting Nutrition Counseling and Exercise (BOUNCE) program designed for Latino mother-daughter pairs. Methods: 92…

  18. Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation

    PubMed Central

    Zhao, Xin; Liu, Huan-Qiu; Li, Ji; Liu, Xiao-Liang

    2016-01-01

    Tumor growth and progression require new blood vessel formation to deliver nutrients and oxygen for further cell proliferation and to create a neovascular network exit for tumor cell metastasis. Endothelial progenitor cells (EPCs) are a bone marrow (BM)-derived stem cell population that circulates in the peripheral circulation and homes to the tumor bed to participate in new blood vessel formation. In addition to structural support to nascent vessels, these cells can also regulate the angiogenic process by paracrine secretion of a number of proangiogenic growth factors and cytokines, thus playing a crucial role in tumor neovascularization and development. Inhibition of EPC-mediated new vessel formation may be a promising therapeutic strategy in tumor treatment. EPC-mediated neovascularization is a complex process that includes multiple steps and requires a series of cytokines and modulators, thus understanding the underlying mechanisms may provide anti-neovasculogenesis targets that may be blocked for the prevention of tumor development. The present review stresses the process and contribution of EPCs to the formation of new blood vessels in solid tumors, in an attempt to gain an improved understanding of the underlying cellular and molecular mechanisms involved, and to provide a potential effective therapeutic target for cancer treatment. PMID:27446353

  19. Inhibitory effect of CGRP on osteoclast formation by mouse bone marrow cells treated with isoproterenol.

    PubMed

    Ishizuka, Kyoko; Hirukawa, Koji; Nakamura, Hiroshi; Togari, Akifumi

    2005-04-29

    The present study was designed to elucidate the mode of action of isoproterenol (Isp; adrenergic beta-agonist) and to characterize the effect of the calcitonin gene-related peptide (CGRP; sensory neuropeptide) on osteoclast formation induced by Isp in a mouse bone marrow culture system. Treatment of mouse bone marrow cells with Isp generated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) capable of excavating resorptive pits on dentine slices, and caused an increase in receptor activator of NF-kappaB ligand (RANKL) and a decrease in osteoprotegerin (OPG) production by the marrow cells. The osteoclast formation was significantly inhibited by OPG, suggesting the involvement of the RANKL-RANK system. CGRP inhibited the osteoclast formation caused by Isp or soluble RANKL (s-RANKL) but had no influence on RANKL or OPG production by the bone marrow cells treated with Isp, suggesting that CGRP inhibited the osteoclast formation by interfering with the action of RANKL produced by the Isp-treated bone marrow cells without affecting RANKL or OPG production. This in vitro data suggest the physiological interaction of sympathetic and sensory nerves in osteoclastogenesis in vivo. PMID:15814197

  20. Effects of intercellular junction protein expression on intracellular ice formation in mouse insulinoma cells.

    PubMed

    Higgins, Adam Z; Karlsson, Jens O M

    2013-11-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >-5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>-15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains

  1. Vesicle formation in the membrane of onion cells (Allium cepa) during rapid osmotic dehydration

    PubMed Central

    Assani, Akym; Moundanga, Sylvie; Beney, Laurent; Gervais, Patrick

    2009-01-01

    Background and Aims Optimization of osmotic dehydration in different plant cells has been investigated through the variation of parameters such as the nature of the sugar used, the concentration of osmotic solutions and the processing time. In micro-organisms such as the yeast, Saccharomyces cerevisiae, the exposure of a cell to a slow increase in osmotic pressure preserves cell viability after rehydration, while sudden dehydration involves a lower rate of cell viability, which could be due to membrane vesiculation. The aim of this work is to study cytoplasmic vesicle formation in onion epidermal cells (Allium cepa) as a function of the kinetics of osmotic pressure variation in the external medium. Methods Onion epidermal cells were submitted either to an osmotic shock or to a progressive osmotic shift from an osmotic pressure of 2 to 24 MPa to induce plasmolysis. After 30 min in the treatment solution, deplasmolysis was carried out. Cells were observed by microscopy during the whole cycle of dehydration–rehydration. Key Results The application of an osmotic shock to onion cells, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for <1 s, led to the formation of numerous exocytotic and osmocytic vesicles visualized through light and confocal microscopy. In contrast, after application of a progressive osmotic shift, from an initial osmotic pressure of 2 MPa to a final one of 24 MPa for 30 min, no vesicles were observed. Additionally, the absence of Hechtian strand connections led to the bursting of vesicles in the case of the osmotic shock. Conclusions It is concluded that the kinetics of osmotic dehydration strongly influence vesicle formation in onion cells, and that Hechtian strand connections between protoplasts and exocytotic vesicles are a prerequisite for successful deplasmolysis. These results suggest that a decrease in the area-to-volume ratio of a cell could cause cell death following an osmotic shock. PMID:19833611

  2. Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation.

    PubMed

    Ouyang, Liliang; Yao, Rui; Mao, Shuangshuang; Chen, Xi; Na, Jie; Sun, Wei

    2015-01-01

    With the ability to manipulate cells temporarily and spatially into three-dimensional (3D) tissue-like construct, 3D bioprinting technology was used in many studies to facilitate the recreation of complex cell niche and/or to better understand the regulation of stem cell proliferation and differentiation by cellular microenvironment factors. Embryonic stem cells (ESCs) have the capacity to differentiate into any specialized cell type of the animal body, generally via the formation of embryoid body (EB), which mimics the early stages of embryogenesis. In this study, extrusion-based 3D bioprinting technology was utilized for biofabricating ESCs into 3D cell-laden construct. The influence of 3D printing parameters on ESC viability, proliferation, maintenance of pluripotency and the rule of EB formation was systematically studied in this work. Results demonstrated that ESCs were successfully printed with hydrogel into 3D macroporous construct. Upon process optimization, about 90% ESCs remained alive after the process of bioprinting and cell-laden construct formation. ESCs continued proliferating into spheroid EBs in the hydrogel construct, while retaining the protein expression and gene expression of pluripotent markers, like octamer binding transcription factor 4, stage specific embryonic antigen 1 and Nanog. In this novel technology, EBs were formed through cell proliferation instead of aggregation, and the quantity of EBs was tuned by the initial cell density in the 3D bioprinting process. This study introduces the 3D bioprinting of ESCs into a 3D cell-laden hydrogel construct for the first time and showed the production of uniform, pluripotent, high-throughput and size-controllable EBs, which indicated strong potential in ESC large scale expansion, stem cell regulation and fabrication of tissue-like structure and drug screening studies.

  3. Oncostatin-M inhibits luteinizing hormone stimulated Leydig cell progenitor formation in vitro

    PubMed Central

    Teerds, Katja J; van Dissel-Emiliani, Federica MF; De Miguel, Maria P; de Boer-Brouwer, Mieke; Körting, Lina M; Rijntjes, Eddy

    2007-01-01

    Background The initial steps of stem Leydig cell differentiation into steroid producing progenitor cells are thought to take place independent of luteinizing hormone (LH), under the influence of locally produced factors such as leukaemia inhibitory factor (LIF), platelet derived growth factor A and stem cell factor. For the formation of a normal sized Leydig cell population in the adult testis, the presence of LH appears to be essential. Oncostatin M (OSM) is a multifunctional cytokine and member of the interleukin (IL)-6 family that also includes other cytokines such as LIF. In the rat OSM is highly expressed in the late fetal and neonatal testis, and may thus be a candidate factor involved in Leydig cell progenitor formation. Methods Interstitial cells were isolated from 13-day-old rat testes and cultured for 1, 3 or 8 days in the presence of different doses of OSM (range: 0.01 to 10 ng/ml) alone or in combination with LH (1 ng/ml). The effects of OSM and LH on cell proliferation were determined by incubating the cultures with [3H]thymidine or bromodeoxyuridine (BrdU). Developing progenitor cells were identified histochemically by the presence of the marker enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD). Results OSM, when added at a dose of 10 ng/ml, caused a nearly 2-fold increase in the percentage of Leydig cell progenitors after 8 days of culture. Immunohistochemical double labelling experiments with 3beta-HSD and BrdU antibodies showed that this increase was the result of differentiation of stem Leydig cells/precursor cells and not caused by proliferation of progenitor cells themselves. The addition of LH to the cultures consistently resulted in an increase in progenitor formation throughout the culture period. Surprisingly, when OSM and LH were added together, the LH induced rise in progenitor cells was significantly inhibited after 3 and 8 days of culture. Conclusion Taken together, the results of the present study suggest that locally produced OSM

  4. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol.

    PubMed

    Hayden, John M; Brachova, Libuse; Higgins, Karen; Obermiller, Lewis; Sevanian, Alex; Khandrika, Srikrishna; Reaven, Peter D

    2002-01-01

    Oxidized LDL (OxLDL) is composed of many potentially proatherogenic molecules, including oxysterols. Of the oxysterols, 7-ketocholesterol (7-KC) is found in relatively large abundance in OxLDL, as well as in atherosclerotic plaque and foam cells in vivo. Although there is evidence that 7-KC activates endothelial cells, its effect on monocytes is unknown. We tested the hypothesis that 7-KC may induce monocyte differentiation and promote foam cell formation. THP-1 cells were used as a monocyte model system and were treated with 7-KC over a range of concentrations from 0.5 to 10 microg/ml. Changes in cell adhesion properties, cell morphology, and expression of antigens characteristic of differentiated macrophages were monitored over a 7-day period. 7-KC promoted cells to firmly adhere and display morphologic features of differentiated macrophages; this effect was time and dose dependent and was markedly more potent than cholesterol treatment (45% of cells became adherent after 7 days of treatment with 7-KC at 10 microg/ml vs. less then 5% for control cells, P < 0.01). Similar effects were obtained when LDL enriched with 7-KC or OxLDL were added to THP-1 cells. 7-KC-differentiated cells expressed CD11b, CD36, and CD68, phagocytized latex beads, and formed lipid-laden foam cells after exposure to acetylated LDL or OxLDL. In contrast to 7-KC, oxysterols with known cell regulatory effects such as 25-hydroxycholesterol, 7beta-hydroxycholesterol, and (22R)-hydroxycholesterol did not effectively promote THP-1 differentiation. In conclusion, these results demonstrate for the first time that 7-KC, a prominent oxysterol formed in OxLDL by peroxidation of cholesterol, may play an important role in promoting monocyte differentiation and foam cell formation. These studies also suggest that 7-KC induces monocyte differentiation through a sterol-mediated regulatory pathway that remains to be characterized.

  5. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo.

    PubMed

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β₁-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in Ras(G12V)-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  6. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  7. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  8. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    PubMed

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications.

  9. Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells.

    PubMed

    Sato, Hiroki; Idiris, Alimjan; Miwa, Tatsuaki; Kumagai, Hiromichi

    2016-01-01

    Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells, but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications. PMID:27507707

  10. Microfabric Vessels for Embryoid Body Formation and Rapid Differentiation of Pluripotent Stem Cells

    PubMed Central

    Sato, Hiroki; Idiris, Alimjan; Miwa, Tatsuaki; Kumagai, Hiromichi

    2016-01-01

    Various scalable three-dimensional culture systems for regenerative medicine using human induced pluripotent stem cells (hiPSCs) have been developed to date. However, stable production of hiPSCs with homogeneous qualities still remains a challenge. Here, we describe a novel and simple embryoid body (EB) formation system using unique microfabricated culture vessels. Furthermore, this culture system is useful for high throughput EB formation and rapid generation of differentiated cells such as neural stem cells (NSCs) from hiPSCs. The period of NSC differentiation was significantly shortened under high EB density culture conditions. Simultaneous mass production of a pure population of NSCs was possible within 4 days. These results indicate that the novel culture system might not only become a unique tool to obtain new insights into developmental biology based on human stem cells, but also provide an important tractable platform for efficient and stable production of NSCs for clinical applications. PMID:27507707

  11. Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells.

    PubMed

    Taniguchi, Kenichiro; Shao, Yue; Townshend, Ryan F; Tsai, Yu-Hwai; DeLong, Cynthia J; Lopez, Shawn A; Gayen, Srimonta; Freddo, Andrew M; Chue, Deming J; Thomas, Dennis J; Spence, Jason R; Margolis, Benjamin; Kalantry, Sundeep; Fu, Jianping; O'Shea, K Sue; Gumucio, Deborah L

    2015-12-01

    We demonstrate that dissociated human pluripotent stem cells (PSCs) are intrinsically programmed to form lumens. PSCs form two-cell cysts with a shared apical domain within 20 hr of plating; these cysts collapse to form monolayers after 5 days. Expression of pluripotency markers is maintained throughout this time. In two-cell cysts, an apical domain, marked by EZRIN and atypical PKCζ, is surrounded by apically targeted organelles (early endosomes and Golgi). Molecularly, actin polymerization, regulated by ARP2/3 and mammalian diaphanous-related formin 1 (MDIA), promotes lumen formation, whereas actin contraction, mediated by MYOSIN-II, inhibits this process. Finally, we show that lumenal shape can be manipulated in bioengineered micro-wells. Since lumen formation is an indispensable step in early mammalian development, this system can provide a powerful model for investigation of this process in a controlled environment. Overall, our data establish that lumenogenesis is a fundamental cell biological property of human PSCs. PMID:26626176

  12. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  13. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.

    PubMed

    Ou, Tai-You; Wang, Gen-Shuh

    2016-05-01

    This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs.

  14. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.

    PubMed

    Ou, Tai-You; Wang, Gen-Shuh

    2016-05-01

    This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs. PMID:26894677

  15. Relationship Quality in Non-Cognitively Impaired Mother-Daughter Care Dyads: A Systematic Review.

    PubMed

    Solomon, Diane N; Hansen, Lissi; Baggs, Judith G; Lyons, Karen S

    2015-11-01

    More than 60 million Americans provide care to a family member; roughly two thirds are women providing care to aging mothers. Despite the protective nature of relationship quality, little attention has been given to its role in mother-daughter care dyads, particularly in mothers without cognitive impairment. A systematic appraisal of peer-reviewed, English language research was conducted. Nineteen articles met criteria. When relationship quality is positive, mother-daughter dyads enjoy rewards and mutuality, even when conflict occurs. Daughters grow more emotionally committed to mothers' over the care trajectory, despite increasing demands. Daughters' commitment deepens as mothers physically decline, and mothers remain engaged, emotional partners. When relationship quality is ambivalent or negative, burden, conflict, and blame conspire, creating a destructive cycle. Avenues for continuing study, including utilizing the dyad as the unit of analysis, troubled dyads, longitudinal assessment, and end of life context, are needed before interventions to improve mother-daughter relationship quality may be successfully implemented.

  16. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models.

  17. Influence of the mother's reproductive state on the hormonal status of daughters in marmosets (Callithrix kuhlii).

    PubMed

    Puffer, Alyssa M; Fite, Jeffrey E; French, Jeffrey A; Rukstalis, Michael; Hopkins, Elizabeth C; Patera, Kimberly J

    2004-09-01

    Behavioral and endocrine suppression of reproduction in subordinate females produces the high reproductive skew that characterizes callitrichid primate mating systems. Snowdon et al. [American Journal of Primatology 31:11-21, 1993] reported that the eldest daughters in tamarin families exhibit further endocrinological suppression immediately following the birth of siblings, and suggested that dominant females exert greater control over subordinate endocrinology during this energetically challenging phase of reproduction. We monitored the endocrine status of five Wied's black tufted-ear marmoset daughters before and after their mother delivered infants by measuring concentrations of urinary estradiol (E(2)), pregnanediol glucuronide (PdG), testosterone (T), and cortisol (CORT). Samples were collected from marmoset daughters 4 weeks prior to and 9 weeks following three consecutive sibling-litter births when the daughters were prepubertal (M=6.1 months of age), peripubertal (M=11.9 months), and postpubertal (M=17.6 months). The birth of infants was associated with reduced ovarian steroid excretion only in the prepubertal daughters. In contrast, ovarian steroid levels tended to increase in the postpubertal daughters. Urinary E(2) and T levels in the postpubertal daughters were 73.8% and 37.6% higher, respectively, in the 3 weeks following the birth of infants, relative to prepartum levels. In addition, peak urinary PdG concentrations in peri- and postpubertal daughters were equivalent to luteal phase concentrations in nonpregnant, breeding adult females, and all of the peri- and postpubertal daughters showed clear ovulatory cycles. Cortisol excretion did not change in response to the reproductive status of the mother, nor did the concentrations change across age. Our data suggest that marmoset daughters of potential breeding age are not hormonally suppressed during the mother's peripartum period or her return to fertility. These findings provide an additional example

  18. "Danger" conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells.

    PubMed

    Lavergne, S N; Wang, H; Callan, H E; Park, B K; Naisbitt, D J

    2009-11-01

    Antigen-presenting cells (APC) are thought to play an important role in the pathogenesis of drug-induced immune reactions. Various pathological factors can activate APC and therefore influence the immune equilibrium. It is interesting that several diseases have been associated with an increased rate of drug allergy. The aim of this project was to evaluate the impact of such "danger signals" on sulfamethoxazole (SMX) metabolism in human APC (peripheral blood mononuclear cells, Epstein-Barr virus-modified B lymphocytes, monocyte-derived dendritic cells, and two cell lines). APC were incubated with SMX (100 microM-2 mM; 5 min-24 h), in the presence of pathological factors: bacterial endotoxins (lipopolysaccharide and staphylococcal enterotoxin B), flu viral proteins, cytokines [interleukin (IL)-1beta, IL-6, IL-10; tumor necrosis factor-alpha; interferon-gamma; and transforming growth factor-beta], inflammatory molecules (prostaglandin E2, human serum complement, and activated protein C), oxidants (buthionine sulfoximine and H(2)O(2)), and hyperthermia (37.5-39.5 degrees C). Adduct formation was evaluated by enzyme-linked immunosorbent assay and confocal microscopy. SMX-protein adduct formation was time- and concentration-dependent for each cell type tested, in both physiological and danger conditions. A danger environment significantly increased the formation of SMX-protein adducts and significantly shortened the delay for their detection. An additive effect was observed with a combination of danger signals. Dimedone (chemical selectively binding cysteine sulfenic acid) and antioxidants decreased both baseline and danger-enhanced SMX-adduct formation. Various enzyme inhibitors were associated with a significant decrease in SMX-adduct levels, with a pattern varying depending on the cell type and the culture conditions. These results illustrate that danger signals enhance the formation of intracellular SMX-protein adducts in human APC. These findings might be relevant

  19. Effects of Nicotine on Streptococcus gordonii Growth, Biofilm Formation, and Cell Aggregation.

    PubMed

    Huang, R; Li, M; Ye, M; Yang, K; Xu, X; Gregory, R L

    2014-12-01

    Streptococcus gordonii is a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitate Porphyromonas gingivalis-S. gordonii dual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulates S. gordonii multiplication and aggregation. In the present study, S. gordonii planktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicated S. gordonii abpA, scaA, ccpA, and srtA were upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulates S. gordonii planktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.

  20. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo.

    PubMed

    Yang, Xuechao; Walboomers, X Frank; van den Beucken, Jeroen J J P; Bian, Zhuan; Fan, Mingwen; Jansen, John A

    2009-02-01

    The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor subpopulation from primary dental pulp-derived stem cells. In the current study, these cells were cultured with three different media: "BMP-plus" medium containing dexamethasone and 100 ng/mL of rhBMP-2, "odontogenic" medium containing dexamethasone, and "control" medium without supplements. The cell-scaffold complexes were cultured in these media for 1, 4, or 8 days before implantation. Histological analysis demonstrated that the cultures with BMP-plus and 4 days of culture gave the highest percentage of hard tissue formation per implant (36 +/- 9% of pore area). Real-time PCR confirmed these results. In conclusion, STRO-1-selected dental pulp stem cells show effective hard tissue formation in vivo, and a short in vitro culture period and addition of BMP-2 can enhance this effect. PMID:18652538

  1. MMP7 Is Required to Mediate Cell Invasion and Tumor Formation upon Plakophilin3 Loss

    PubMed Central

    Basu, Srikanta; Thorat, Rahul; Dalal, Sorab N.

    2015-01-01

    Plakophilin3 (PKP3) loss results in increased transformation in multiple cell lines in vitro and increased tumor formation in vivo. A microarray analysis performed in the PKP3 knockdown clones, identified an inflammation associated gene signature in cell lines derived from stratified epithelia as opposed to cell lines derived from simple epithelia. However, in contrast to the inflammation associated gene signature, the expression of MMP7 was increased upon PKP3 knockdown in all the cell lines tested. Using vector driven RNA interference, it was demonstrated that MMP7 was required for in-vitro cell migration and invasion and tumor formation in vivo. The increase in MMP7 levels was due to the increase in levels of the Phosphatase of Regenerating Liver3 (PRL3), which is observed upon PKP3 loss. The results suggest that MMP7 over-expression may be one of the mechanisms by which PKP3 loss leads to increased cell invasion and tumor formation. PMID:25875355

  2. Reggies/flotillins regulate E-cadherin-mediated cell contact formation by affecting EGFR trafficking.

    PubMed

    Solis, Gonzalo P; Schrock, Yvonne; Hülsbusch, Nikola; Wiechers, Marianne; Plattner, Helmut; Stuermer, Claudia A O

    2012-05-01

    The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.

  3. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    NASA Astrophysics Data System (ADS)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  4. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    PubMed

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces.

  5. Deletion of Brg1 causes abnormal hair cell planer polarity, hair cell anchorage, and scar formation in mouse cochlea

    PubMed Central

    Jin, Yecheng; Ren, Naixia; Li, Shiwei; Fu, Xiaolong; Sun, Xiaoyang; Men, Yuqin; Xu, Zhigang; Zhang, Jian; Xie, Yue; Xia, Ming; Gao, Jiangang

    2016-01-01

    Hair cells (HCs) are mechanosensors that play crucial roles in perceiving sound, acceleration, and fluid motion. The precise architecture of the auditory epithelium and its repair after HC loss is indispensable to the function of organ of Corti (OC). In this study, we showed that Brg1 was highly expressed in auditory HCs. Specific deletion of Brg1 in postnatal HCs resulted in rapid HC degeneration and profound deafness in mice. Further experiments showed that cell-intrinsic polarity of HCs was abolished, docking of outer hair cells (OHCs) by Deiter’s cells (DCs) failed, and scar formation in the reticular lamina was deficient. We demonstrated that Brg1 ablation disrupted the Gαi/Insc/LGN and aPKC asymmetric distributions, without overt effects on the core planer cell polarity (PCP) pathway. We also demonstrated that Brg1-deficient HCs underwent apoptosis, and that leakage in the reticular lamina caused by deficient scar formation shifted the mode of OHC death from apoptosis to necrosis. Together, these data demonstrated a requirement for Brg1 activity in HC development and suggested a role for Brg1 in the proper cellular structure formation of HCs. PMID:27255603

  6. Formation of Lignans(-)-Secoisolariciresinol and (-)-Matairesinol with Forsythia intermedia Cell-Free Extracts

    NASA Technical Reports Server (NTRS)

    Umezawa, Toshiaki; Davin, Laurence B.; Lewis, Norman G.

    1991-01-01

    In vivo labeling experiments of Forsythia intermedia plant tissue with [8-(C-14)]- and [9,9-(2)H2,OC(2)H3]coniferyl alcohols revealed that the lignans, (-)-secoisolariciresinol and (-)-matairesinol, were derived from two coniferyl alcohol molecules; no evidence for the formation of the corresponding (+)-enantiomers was found. Administration of (+/-)-[Ar-(H-3)] secoisolariciresinols to excised shoots of F.intermedia resulted in a significant conversion into (-)-matairesinol; again, the (+)-antipode was not detected. Experiments using cell-free extracts of F.intermedia confirmed and extended these findings. In the presence of NAD(P)H and H2O2, the cell-free extracts catalyzed the formation of (-)- secoisolariciresinol, with either [8-(C-14)]- or [9,9-(2)H2,OC(2)H3]coniferyl alcohols as substrates. The (+)- enantiomer was not formed. Finally, when either (-)-[Ar-(H-3)] or (+/-)-[Ar-(H-2)]secoisolariciresinols were used as substrates, in the presence of NAD(P), only (-)- and not (+)-matairesinol formation occurred. The other antipode, (+)-secoisolariciresinol, did not serve as a substrate for the formation of either (+)- or (-)-matairesinol. Thus, in F.intermedia, the formation of the lignan, (-)-secoisolariciresinol, occurs under strict stereochemical control, in a reaction or reactions requiring NAD(P)H and H2O2 as cofactors. This stereoselectivity is retained in the subsequent conversion into (-)-matairesinol, since (+)-secoisolariciresinol is not a substrate. These are the first two enzymes to be discovered in lignan formation.

  7. Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells.

    PubMed

    Matthies, Norah-Faye; Mulet-Sierra, Aillette; Jomha, Nadr M; Adesida, Adetola B

    2013-12-01

    The ultimate aim of this study was to assess the feasibility of using human bone marrow stromal cells (BMSCs) to supplement meniscus cells for meniscus tissue engineering and regeneration. Human menisci were harvested from three patients undergoing total knee replacements. Meniscus cells were released from the menisci after collagenase treatment. BMSCs were harvested from the iliac crest of three patients and were expanded in culture until passage 2. Primary meniscus cells and BMSCs were co-cultured in vitro in three-dimensional (3D) pellet culture at three different cell-cell ratios for 3 weeks under normal (21% O2 ) or low (3% O2 ) oxygen tension in the presence of serum-free chondrogenic medium. Pure BMSCs and pure meniscus cell pellets served as control groups. The tissue generated was assessed biochemically, histochemically and by quantitative RT-PCR. Co-cultures of primary meniscus cells and BMSCs resulted in tissue with increased (1.3-1.7-fold) deposition of proteoglycan (GAG) extracellular matrix (ECM) relative to tissues derived from BMSCs or meniscus cells alone under 21% O2 . GAG matrix formation was also enhanced (1.3-1.6-fold) under 3% O2 culture conditions. Alcian blue staining of generated tissue confirmed increased deposition of GAG-rich matrix. mRNA expression of type I collagen (COL1A2), type II collagen (COL2A1) and aggrecan were upregulated in co-cultured pellets. However, SOX9 and HIF-1α mRNA expression were not significantly modulated by co-culture. Co-culture of primary meniscus cells with BMSCs resulted in increased ECM formation. Co-delivery of meniscus cells and BMSCs can, in principle, be used in tissue engineering and regenerative medicine strategies to repair meniscus defects.

  8. Examining the Impact of Maternal Health, Race, and Socioeconomic Status on Daughter's Self-Rated Health Over Three Decades.

    PubMed

    Shippee, Tetyana P; Rowan, Kathleen; Sivagnanam, Kamesh; Oakes, J Michael

    2015-09-01

    This study examines the role of mother's health and socioeconomic status on daughter's self-rated health using data spanning three decades from the National Longitudinal Surveys of Mature Women and Young Women (N = 1,848 matched mother-daughter pairs; 1,201 White and 647 African American). Using nested growth curve models, we investigated whether mother's self-rated health affected the daughter's self-rated health and whether socioeconomic status mediated this relationship. Mother's health significantly influenced daughters' self-rated health, but the findings were mediated by mother's socioeconomic status. African American daughters reported lower self-rated health and experienced more decline over time compared with White daughters, accounting for mother's and daughter's covariates. Our findings reveal maternal health and resources as a significant predictor of daughters' self-rated health and confirm the role of socioeconomic status and racial disparities over time.

  9. Examining the Impact of Maternal Health, Race, and Socioeconomic Status on Daughter's Self-Rated Health Over Three Decades.

    PubMed

    Shippee, Tetyana P; Rowan, Kathleen; Sivagnanam, Kamesh; Oakes, J Michael

    2015-09-01

    This study examines the role of mother's health and socioeconomic status on daughter's self-rated health using data spanning three decades from the National Longitudinal Surveys of Mature Women and Young Women (N = 1,848 matched mother-daughter pairs; 1,201 White and 647 African American). Using nested growth curve models, we investigated whether mother's self-rated health affected the daughter's self-rated health and whether socioeconomic status mediated this relationship. Mother's health significantly influenced daughters' self-rated health, but the findings were mediated by mother's socioeconomic status. African American daughters reported lower self-rated health and experienced more decline over time compared with White daughters, accounting for mother's and daughter's covariates. Our findings reveal maternal health and resources as a significant predictor of daughters' self-rated health and confirm the role of socioeconomic status and racial disparities over time. PMID:26668178

  10. [Adult mother-daughter relationships and psychological well-being: attachment to mothers, depressive symptoms, and self-esteem].

    PubMed

    Kitamura, Kotomi

    2008-06-01

    This study examined how daughter's reported quality of their mother-daughter relationships during childhood and adulthood is related to their psychological well-being (depressive symptoms and self-esteem). A cross-sectional sample of 363 women, age 26 to 35 years, completed questionnaires. The association between the quality of daughters' relationships with their mothers and their psychological well-being depended on the daughters' marital and parental status. Regression estimates suggested that among single daughters and married daughters with children, childhood attachment dimensions (avoidance and anxiety) significantly contributed to psychological well-being, even after controlling for the effects of current closeness and excessive dependence. Current closeness, and excessive care seeking and care giving to their mother contributed to the psychological well-being of single daughters and married daughters without children, even after controlling for the effects of childhood attachment.

  11. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  12. Disturbance of the bacterial cell wall specifically interferes with biofilm formation.

    PubMed

    Bucher, Tabitha; Oppenheimer-Shaanan, Yaara; Savidor, Alon; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2015-12-01

    In nature, bacteria communicate via chemical cues and establish complex communities referred to as biofilms, wherein cells are held together by an extracellular matrix. Much research is focusing on small molecules that manipulate and prevent biofilm assembly by modifying cellular signalling pathways. However, the bacterial cell envelope, presenting the interface between bacterial cells and their surroundings, is largely overlooked. In our study, we identified specific targets within the biosynthesis pathways of the different cell wall components (peptidoglycan, wall teichoic acids and teichuronic acids) hampering biofilm formation and the anchoring of the extracellular matrix with a minimal effect on planktonic growth. In addition, we provide convincing evidence that biofilm hampering by transglycosylation inhibitors and D-Leucine triggers a highly specific response without changing the overall protein levels within the biofilm cells or the overall levels of the extracellular matrix components. The presented results emphasize the central role of the Gram-positive cell wall in biofilm development, resistance and sustainment.

  13. Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation.

    PubMed

    Lancaster, Oscar M; Le Berre, Maël; Dimitracopoulos, Andrea; Bonazzi, Daria; Zlotek-Zlotkiewicz, Ewa; Picone, Remigio; Duke, Thomas; Piel, Matthieu; Baum, Buzz

    2013-05-13

    Accurate animal cell division requires precise coordination of changes in the structure of the microtubule-based spindle and the actin-based cell cortex. Here, we use a series of perturbation experiments to dissect the relative roles of actin, cortical mechanics, and cell shape in spindle formation. We find that, whereas the actin cortex is largely dispensable for rounding and timely mitotic progression in isolated cells, it is needed to drive rounding to enable unperturbed spindle morphogenesis under conditions of confinement. Using different methods to limit mitotic cell height, we show that a failure to round up causes defects in spindle assembly, pole splitting, and a delay in mitotic progression. These defects can be rescued by increasing microtubule lengths and therefore appear to be a direct consequence of the limited reach of mitotic centrosome-nucleated microtubules. These findings help to explain why most animal cells round up as they enter mitosis.

  14. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment.

    PubMed Central

    Storz, J; Rott, R; Kaluza, G

    1981-01-01

    Plaque formation, replication, and related cytopathic functions of the enteropathogenic bovine coronavirus strain L9 in bovine fetal thyroid (BFTy) and bovine fetal brain (BFB) cells were investigated in the presence and absence of trypsin. Plaque formation was enhanced in both cell types. Plaques reached a size with an average diameter of 5 mm within 4 days with trypsin in the overlay, whereas their diameter remained less than 1 mm at this time after plating without trypsin in the overlay. Fusion of both cell types was observed 12 to 18 h after infection when trypsin was present in the medium. Fusion was not observed in infected BFB cell cultures and was rarely observed 48 h after infection of BFTy cells maintained with the trypsin-free medium. The largest polycaryons formed had 15 to 22 nuclei. They then lysed and detached. Cell fusion depended on de novo synthesis of hemagglutinin and infectivity. Fusion from without was not observed. Virus produced under trypsin-enhancing conditions accompanied by cell fusion did not lyse mouse erythrocytes that reacted with L9 coronavirus hemagglutinin. Trypsin-treated, infected BFTy cultures produced coronaviral particles that excluded stain from the envelope confinement. These virions had uniformly shorter surface projections than did the viral forms generated by trypsin-free cell cultures. Images PMID:7228403

  15. Matrix Elasticity of Void-Forming Hydrogels Controls Transplanted Stem Cell-Mediated Bone Formation

    PubMed Central

    Huebsch, Nathaniel; Lippens, Evi; Lee, Kangwon; Mehta, Manav; Koshy, Sandeep T; Darnell, Max C; Desai, Rajiv; Madl, Christopher M.; Xu, Maria; Zhao, Xuanhe; Chaudhuri, Ovijit; Verbeke, Catia; Kim, Woo Seob; Alim, Karen; Mammoto, Akiko; Ingber, Donald E.; Duda, Georg N; Mooney, David J.

    2015-01-01

    The effectiveness of stem-cell therapies has been hampered by cell death and limited control over fate1. These problems can be partially circumvented by using macroporous biomaterials that improve the survival of transplanted stem cells and provide molecular cues to direct cell phenotype2–4. Stem cell behavior can also be controlled in vitro by manipulating the elasticity of both porous and non-porous materials5–7, yet translation to therapeutic processes in vivo remains elusive. Here, by developing injectable, void-forming hydrogels that decouple pore formation from elasticity, we show that mesenchymal stem cell (MSC) osteogenesis in vitro, and cell deployment in vitro and in vivo, can be controlled by modifying, respectively, the hydrogel's elastic modulus or its chemistry. When the hydrogels were used to transplant MSCs, the hydrogel's elasticity regulated bone regeneration, with optimal bone formation at 60 kPa. Our findings show that biophysical cues can be harnessed to direct therapeutic stem-cell behaviors in situ. PMID:26366848

  16. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    PubMed Central

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  17. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    PubMed Central

    Wang, Dan; Tang, Jie

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources. PMID:27698675

  18. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    PubMed Central

    Wang, Dan; Tang, Jie

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources.

  19. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis

    PubMed Central

    Stein, Sokrates; Lohmann, Christine; Schäfer, Nicola; Hofmann, Janin; Rohrer, Lucia; Besler, Christian; Rothgiesser, Karin M.; Becher, Burkhard; Hottiger, Michael O.; Borén, Jan; McBurney, Michael W.; Landmesser, Ulf; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Aims Endothelial activation, macrophage infiltration, and foam cell formation are pivotal steps in atherogenesis. Our aim in this study was to analyse the role of SIRT1, a class III deacetylase with important metabolic functions, in plaque macrophages and atherogenesis. Methods and results Using partial SIRT1 deletion in atherosclerotic mice, we demonstrate that SIRT1 protects against atherosclerosis by reducing macrophage foam cell formation. Peritoneal macrophages from heterozygous SIRT1 mice accumulate more oxidized low-density lipoprotein (oxLDL), thereby promoting foam cell formation. Bone marrow-restricted SIRT1 deletion confirmed that SIRT1 function in macrophages is sufficient to decrease atherogenesis. Moreover, we show that SIRT1 reduces the uptake of oxLDL by diminishing the expression of lectin-like oxLDL receptor-1 (Lox-1) via suppression of the NF-κB signalling pathway. Conclusion Our findings demonstrate protective effects of SIRT1 in atherogenesis and suggest pharmacological SIRT1 activation as a novel anti-atherosclerotic strategy by reducing macrophage foam cell formation. PMID:20418343

  20. Free Energies of Formation Measurements on Solid-State Electrochemical Cells

    ERIC Educational Resources Information Center

    Rollino, J. A.; Aronson, S.

    1972-01-01

    A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)

  1. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells.

    PubMed

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  2. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome

    PubMed Central

    Sharda, Anish; Kim, Sarah H.; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C.

    2015-01-01

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6−/− mice after vascular injury. HPS6−/− platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5′-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6−/− mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336

  3. Stereotypical cell division orientation controls neural rod midline formation in zebrafish.

    PubMed

    Quesada-Hernández, Elena; Caneparo, Luca; Schneider, Sylvia; Winkler, Sylke; Liebling, Michael; Fraser, Scott E; Heisenberg, Carl-Philipp

    2010-11-01

    The development of multicellular organisms is dependent on the tight coordination between tissue growth and morphogenesis. The stereotypical orientation of cell divisions has been proposed to be a fundamental mechanism by which proliferating and growing tissues take shape. However, the actual contribution of stereotypical division orientation (SDO) to tissue morphogenesis is unclear. In zebrafish, cell divisions with stereotypical orientation have been implicated in both body-axis elongation and neural rod formation, although there is little direct evidence for a critical function of SDO in either of these processes. Here we show that SDO is required for formation of the neural rod midline during neurulation but dispensable for elongation of the body axis during gastrulation. Our data indicate that SDO during both gastrulation and neurulation is dependent on the noncanonical Wnt receptor Frizzled 7 (Fz7) and that interfering with cell division orientation leads to severe defects in neural rod midline formation but not body-axis elongation. These findings suggest a novel function for Fz7-controlled cell division orientation in neural rod midline formation during neurulation.

  4. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome.

    PubMed

    Sharda, Anish; Kim, Sarah H; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C; Furie, Bruce

    2015-03-01

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6(-/-) mice after vascular injury. HPS6(-/-) platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5'-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6(-/-) mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype. PMID:25593336

  5. Polyanhydride Nanovaccines Induce Germinal Center B Cell Formation and Sustained Serum Antibody Responses.

    PubMed

    Vela Ramirez, Julia E; Tygrett, Lorraine T; Hao, Jihua; Habte, Habtom H; Cho, Michael W; Greenspan, Neil S; Waldschmidt, Thomas J; Narasimhan, Balaji

    2016-06-01

    Biodegradable polymeric nanoparticle-based subunit vaccines have shown promising characteristics by enhancing antigen presentation and inducing protective immune responses when compared with soluble protein. Specifically, polyanhydride nanoparticle-based vaccines (i.e., nanovaccines) have been shown to successfully encapsulate and release antigens, activate B and T cells, and induce both antibody- and cell-mediated immunity towards a variety of immunogens. One of the characteristics of strong thymus-dependent antibody responses is the formation of germinal centers (GC) and the generation of GC B cells, which is part of the T helper cell driven cellular response. In order to further understand the role of nanovaccines in the induction of antigen-specific immune responses, their ability to induce germinal center B cell formation and isotype switching and the effects thereof on serum antibody responses were investigated in these studies. Polyanhydride nanovaccines based on 1,6-bis(p-carboxyphenoxy)hexane and 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane were used to subcutaneously administer a viral antigen. GC B cell formation and serum antibody responses induced by the nanovaccines were compared to that induced by alum-based vaccine formulations. It was demonstrated that a single dose of polyanhydride nanovaccines resulted in the formation of robust GCs and serum antibody in comparison to that induced by the alum-based formulation. This was attributed to the sustained release of antigen provided by the nanovaccines. When administered in a multiple dose regimen, the highest post-immunization titer and GC B cell number was enhanced, and the immune response induced by the nanovaccines was further sustained. These studies provide foundational information on the mechanism of action of polyanhydride nanovaccines. PMID:27319223

  6. Regulation of germinal center responses, memory B cells and plasma cell formation-an update.

    PubMed

    Corcoran, Lynn M; Tarlinton, David M

    2016-04-01

    Progress in understanding humoral immunity has been accelerated by the powerful experimental approaches of genetics, genomics and imaging. Excellent reviews of these advances appeared in 2015 in celebration of the 50th anniversary of the discovery of B cell and T cell lineages in the chicken. Here we provide a contemporary model of B cell differentiation, highlighting recent publications illuminating germinal center (GC), memory B cell and antibody-secreting plasma cell biology. The important contributions of CD4T cells to antibody responses have been thoroughly reviewed elsewhere.

  7. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    PubMed Central

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  8. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    PubMed

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  9. The role of proto-oncogene GLI1 in pituitary adenoma formation and cell survival regulation.

    PubMed

    Lampichler, Katharina; Ferrer, Patricio; Vila, Greisa; Lutz, Mirjam I; Wolf, Florian; Knosp, Engelbert; Wagner, Ludwig; Luger, Anton; Baumgartner-Parzer, Sabina

    2015-10-01

    The Hedgehog (Hh) pathway is an important regulator of early tissue patterning and stem cell propagation. It was found to be aberrantly activated in numerous types of human cancer and might be relevant in cancer stem cells. The identification of adult stem cells in the pituitary raised the question if tumor-initiating cells and Hh signaling are involved in pituitary adenoma formation. The present study aimed at the evaluation of Hh signaling in relation to stem cell and cell cycle markers in 30 human pituitary adenomas and in cultured murine adenoma cells. Therefore, expression levels of components of the Hh pathway, stem cell marker SOX2, cell cycle regulator tumor-protein 53 (TP53), proliferation marker Ki67 (MKI67) and superoxide dismutase 1 (SOD1) were evaluated in 30 human pituitary adenomas in comparison to control tissue. Modulation of cell function and target gene expression by the inhibition and activation of the Hh pathway were studied in murine adenoma cells. We show that transcription factor glioma-associated oncogene 1 (GLI1) is overexpressed in 87% of all pituitary adenomas. The expression of GLI1 significantly correlated with that of SOX2, TP53, MKI67 and SOD1. Inhibition of GLI1 resulted in the downregulation of the above genes and severe cell death in mouse adenoma cells. On the other hand, activation of the Hh pathway increased cell viability and target gene expression. In conclusion, our findings point toward an alternative, ligand-independent Hh pathway activation with GLI1 playing a major role in the cell survival of pituitary adenoma cells. PMID:26219678

  10. On the track of transfer cell formation by specialized plant-parasitic nematodes

    PubMed Central

    Rodiuc, Natalia; Vieira, Paulo; Banora, Mohamed Youssef; de Almeida Engler, Janice

    2014-01-01

    Transfer cells are ubiquitous plant cells that play an important role in plant development as well as in responses to biotic and abiotic stresses. They are highly specialized and differentiated cells playing a central role in the acquisition, distribution and exchange of nutrients. Their unique structural traits are characterized by augmented ingrowths of invaginated secondary wall material, unsheathed by an amplified area of plasma membrane enriched in a suite of solute transporters. Similar morphological features can be perceived in vascular root feeding cells induced by sedentary plant-parasitic nematodes, such as root-knot and cyst nematodes, in a wide range of plant hosts. Despite their close phylogenetic relationship, these obligatory biotrophic plant pathogens engage different approaches when reprogramming root cells into giant cells or syncytia, respectively. Both nematode feeding-cells types will serve as the main source of nutrients until the end of the nematode life cycle. In both cases, these nematodes are able to remarkably maneuver and reprogram plant host cells. In this review we will discuss the structure, function and formation of these specialized multinucleate cells that act as nutrient transfer cells accumulating and synthesizing components needed for survival and successful offspring of plant-parasitic nematodes. Plant cells with transfer-like functions are also a renowned subject of interest involving still poorly understood molecular and cellular transport processes. PMID:24847336

  11. Targeted Vezf1 null mutation impairs vascular structure formation during ES cell differentiation

    PubMed Central

    Zou, Zhongmin; Ocaya, Pauline A.; Sun, Huiquin; Kuhnert, Frank; Stuhlmann, Heidi

    2010-01-01

    Objective Vezf1 is an early zinc finger transcription factor that is essential for normal vascular development and functions in a dose-dependent manner. Here, we investigated the role of Vezf1 during processes of endothelial cell differentiation and maturation by studying mutant Vezf1 ES cells using the in vitro embryoid body differentiation model and the in vivo teratocarcinoma model. Methods and Results Vezf1−/− ES cell-derived embryoid bodies failed to form a well-organized vascular network and showed dramatic vascular sprouting defects. Our results indicate that the retinol pathway is an important mediator of Vezf1 function, and that loss of Vezf1 results in reduced retinol/Vitamin A signaling and aberrant extracellular matrix formation. Unexpectedly, we also uncovered defects during in vitro differentiation of Vezf1−/− ES cells along hematopoietic cell lineages. Vezf1−/− ES cell-derived teratocarcinomas were able to spontaneously differentiate into cell types of all three germ layers. However, histological and immunohistochemical examination of these tumors showed decreased cell proliferation, delayed differentiation, and large foci of cells with extensive deposition of extracellular matrix. Embryoid bodies and teratocarcinomas derived from heterozygous ES cells displayed an intermediate phenotype. Conclusion Together, these results suggest that Vezf1 is involved in early differentiation processes of the vasculature by regulating cell differentiation, proliferation, and ECM distribution and deposition. PMID:20431070

  12. Three-Dimensional Culture Assay to Explore Cancer Cell Invasiveness and Satellite Tumor Formation.

    PubMed

    Côté, Marie-France; Turcotte, Audrey; Doillon, Charles; Gobeil, Stephane

    2016-01-01

    Mammalian cell culture in monolayers is widely used to study various physiological and molecular processes. However, this approach to study growing cells often generates unwanted artifacts. Therefore, cell culture in a three-dimensional (3D) environment, often using extracellular matrix components, emerged as an interesting alternative due to its close similarity to the native in vivo tissue or organ. We developed a 3D cell culture system using two compartments, namely (i) a central compartment containing cancer cells embedded in a collagen gel acting as a pseudo-primary macrospherical tumor and (ii) a peripheral cell-free compartment made of a fibrin gel, i.e. an extracellular matrix component different from that used in the center, in which cancer cells can migrate (invasion front) and/or form microspherical tumors representing secondary or satellite tumors. The formation of satellite tumors in the peripheral compartment is remarkably correlated to the known aggressiveness or metastatic origin of the native tumor cells, which makes this 3D culture system unique. This cell culture approach might be considered to assess cancer cell invasiveness and motility, cell-extracellular matrix interactions and as a method to evaluate anti-cancer drug properties. PMID:27585303

  13. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana.

    PubMed

    Haecker, Achim; Gross-Hardt, Rita; Geiges, Bernd; Sarkar, Ananda; Breuninger, Holger; Herrmann, Marita; Laux, Thomas

    2004-02-01

    During embryonic pattern formation, the main body axes are established and cells of different developmental fates are specified from a single-cell zygote. Despite the fundamental importance of this process, in plants, the underlying mechanisms are largely unknown. We show that expression dynamics of novel WOX (WUSCHEL related homeobox) gene family members reveal early embryonic patterning events in Arabidopsis. WOX2 and WOX8 are co-expressed in the egg cell and zygote and become confined to the apical and basal daughter cells of the zygote, respectively, by its asymmetric division. WOX2 not only marks apical descendants of the zygote, but is also functionally required for their correct development, suggesting that the asymmetric division of the plant zygote separates determinants of apical and basal cell fates. WOX9 expression is initiated in the basal daughter cell of the zygote and subsequently shifts into the descendants of the apical daughter apparently in response to signaling from the embryo proper. Expression of WOX5 shows that identity of the quiescent center is initiated very early in the hypophyseal cell, and highlights molecular and developmental similarities between the stem cell niches of root and shoot meristems. Together, our data suggest that during plant embryogenesis region-specific transcription programs are initiated very early in single precursor cells and that WOX genes play an important role in this process.

  14. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  15. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  16. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  17. Effects of gradient magnetic force and diamagnetic torque on formation of osteoclast-like giant cell

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.; Ikehata, M.; Hirota, N.

    2009-03-01

    In bone tissue, two kinds of cells, osteoblast (OB) and osteoclast (OC), contribute to remodeling of bone. In the present study, a co-culture system of bone-forming cell (OB) and -dissolving cell (OC) was incubated in static magnetic fields of horizontal 14 T and vertical gradient 10 T. Effect of two kinds of magnetic fields was an inhibition of OC formation. Three kinds of mechanisms, magnetic orientation of OB, diamagnetic torque force acting on OC, and possible reduction of earth's gravity were discussed.

  18. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  19. The pesticide methoxychlor decreases myotube formation in cell culture by slowing myoblast proliferation.

    PubMed

    Steffens, Bradley W; Batia, Lyn M; Baarson, Chad J; Choi, Chang-Kun Charles; Grow, Wade A

    2007-08-01

    We studied the effect of the estrogenic pesticide methoxychlor (MXC) on skeletal muscle development using C2C12 cell culture. Myoblast cultures were exposed to various concentrations of MXC at various times during the process of myoblast fusion into myotubes. We observed that MXC exposure decreased myotube formation. In addition, we observed myoblasts with cytoplasmic vacuoles in cultures exposed to MXC. Because cytoplasmic vacuoles can be characteristic of cell death, apoptosis assays and trypan blue exclusion assays were performed. We found no difference in the frequency of apoptosis or in the frequency of cell death for cultures exposed to MXC and untreated cultures. Collectively, these results indicate that MXC exposure decreases myotube formation without causing cell death. In contrast, when cell proliferation was assessed, untreated cultures had a myoblast proliferation rate 50% greater than cultures exposed to MXC. We conclude that MXC decreases myotube formation at least in part by slowing myoblast proliferation. Furthermore, we suggest that direct exposure to MXC could affect skeletal muscle development in animals or humans, in addition to the defects in reproductive development that have previously been reported.

  20. Toxin YafQ increases persister cell formation by reducing indole signalling.

    PubMed

    Hu, Ying; Kwan, Brian W; Osbourne, Devon O; Benedik, Michael J; Wood, Thomas K

    2015-04-01

    Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites. Production of YafQ increased persister cell formation with multiple antibiotics, and by investigating changes in protein expression, we found that YafQ reduced tryptophanase levels (TnaA mRNA has 16 putative YafQ cleavage sites). Consistently, TnaA mRNA levels were also reduced by YafQ. Tryptophanase is activated in the stationary phase by the stationary-phase sigma factor RpoS, which was also reduced dramatically upon production of YafQ. Tryptophanase converts tryptophan into indole, and as expected, indole levels were reduced by the production of YafQ. Corroborating the effect of YafQ on persistence, addition of indole reduced persistence. Furthermore, persistence increased upon deleting tnaA, and persistence decreased upon adding tryptophan to the medium to increase indole levels. Also, YafQ production had a much smaller effect on persistence in a strain unable to produce indole. Therefore, YafQ increases persistence by reducing indole, and TA systems are related to cell signalling.

  1. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells

    SciTech Connect

    Grayson, Warren L.; Zhao, Feng; Bunnell, Bruce; Ma, Teng . E-mail: teng@eng.fsu.edu

    2007-07-06

    Changes in oxygen concentrations affect many of the innate characteristics of stem and progenitor cells. Human mesenchymal stem cells (hMSCs) were maintained under hypoxic atmospheres (2% O{sub 2}) for up to seven in vitro passages. This resulted in approximately 30-fold higher hMSC expansion over 6 weeks without loss of multi-lineage differentiation capabilities. Under hypoxia, hMSCs maintained their growth-rates even after reaching confluence, resulting in the formation of multiple cell layers. Hypoxic hMSCs also displayed differences in the cell and nuclear morphologies as well as enhanced ECM formation and organization. These changes in cellular characteristics were accompanied by higher mRNA levels of Oct-4 and HIF-2{alpha}, as well as increased expression levels of connexin-43, a protein used in gap junction formation. The results from this study demonstrated that oxygen concentrations affected many aspects of stem-cell physiology, including growth and in vitro development, and may be a critical parameter during expansion and differentiation.

  2. Ion bombardment induced formation of micro-craters in plant cell envelopes

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Vilaithong, T.; Brown, I. G.

    2006-01-01

    Ion beam bombardment of biological material has been recently applied for gene transfer in both plant and bacterial cells. A consistent physical mechanism for this significant result has not yet been developed. A fundamental question about the mechanism is the possible formation of pathways due to ion bombardment that are responsible for the gene transfer. We have carried out investigations of the effects of low-energy bombardment by both gaseous and metallic ion species of onion skin cells on their surface microstructure. Our experimental results reveal evidence demonstrating that the formation of micro-crater-like structures on the plant cell envelope surface is a general phenomenon consequent to ion bombardment, no matter what ion species, under certain ion beam conditions. The micro-craters are about 0.1-1 μm in size (diameter) and a few tens of nanometers in depth. The micro-crater formation process seems to be unrelated to the chemical composition of and rapid water evaporation from the cell envelope, but is associated with the special microstructure of the cell wall.

  3. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    DOE PAGESBeta

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; Liu, Ying X.; Wang, Kang-hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A.; Liu, Gang-yu

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less

  4. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    SciTech Connect

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; Liu, Ying X.; Wang, Kang-hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A.; Liu, Gang-yu

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.

  5. DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chickens.

    PubMed

    Lee, Hyung Chul; Choi, Hee Jung; Lee, Hyo Gun; Lim, Jeong Mook; Ono, Tamao; Han, Jae Yong

    2016-01-01

    The timing and biological events associated with germ cell specification in chickens have not been determined yet. In this study, we report the origin of primordial germ cells (PGCs) and germ plasm dynamics through investigation of the expression of the chicken homolog of deleted in azoospermia-like (cDAZL) gene during germ cell specification. Asymmetric localization of germ plasm in the center of oocytes from preovulatory follicle stages leads to PGCs being formed in the center. During cleavage stages, DAZL expression pattern changes from a subcellular localization to a diffuse form before and after zygotic genome activation. Meanwhile, PGCs exhibit transcriptional active status during their specification. In addition, knockdown studies of cDAZL, which result in reduced proliferation, aberrant gene expression profiles, and PGC apoptosis in vitro, suggest its possible roles for PGC formation in chicken. In conclusion, DAZL expression reveals formation and initial positioning of PGCs in chickens.

  6. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.

    2016-01-01

    Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371

  7. Vicenistatin induces early endosome-derived vacuole formation in mammalian cells.

    PubMed

    Nishiyama, Yuko; Ohmichi, Tomohiro; Kazami, Sayaka; Iwasaki, Hiroki; Mano, Kousuke; Nagumo, Yoko; Kudo, Fumitaka; Ichikawa, Sosaku; Iwabuchi, Yoshiharu; Kanoh, Naoki; Eguchi, Tadashi; Osada, Hiroyuki; Usui, Takeo

    2016-05-01

    Homotypic fusion of early endosomes is important for efficient protein trafficking and sorting. The key controller of this process is Rab5 which regulates several effectors and PtdInsPs levels, but whose mechanisms are largely unknown. Here, we report that vicenistatin, a natural product, enhanced homotypic fusion of early endosomes and induced the formation of large vacuole-like structures in mammalian cells. Unlike YM201636, another early endosome vacuolating compound, vicenistatin did not inhibit PIKfyve activity in vitro but activated Rab5-PAS pathway in cells. Furthermore, vicenistatin increased the membrane surface fluidity of cholesterol-containing liposomes in vitro, and cholesterol deprivation from the plasma membrane stimulated vicenistatin-induced vacuolation in cells. These results suggest that vicenistatin is a novel compound that induces the formation of vacuole-like structures by activating Rab5-PAS pathway and increasing membrane fluidity. PMID:27104762

  8. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  9. Foam Cell Formation In Vivo Converts Macrophages to a Pro-Fibrotic Phenotype

    PubMed Central

    Thomas, Anita C.; Eijgelaar, Wouter J.; Daemen, Mat J. A. P.; Newby, Andrew C.

    2015-01-01

    Formation of foam cell macrophages, which sequester extracellular modified lipids, is a key event in atherosclerosis. How lipid loading affects macrophage phenotype is controversial, with evidence suggesting either pro- or anti-inflammatory consequences. To investigate this further, we compared the transcriptomes of foamy and non-foamy macrophages that accumulate in the subcutaneous granulomas of fed-fat ApoE null mice and normal chow fed wild-type mice in vivo. Consistent with previous studies, LXR/RXR pathway genes were significantly over-represented among the genes up-regulated in foam cell macrophages. Unexpectedly, the hepatic fibrosis pathway, associated with platelet derived growth factor and transforming growth factor-β action, was also over-represented. Several collagen polypeptides and proteoglycan core proteins as well as connective tissue growth factor and fibrosis-related FOS and JUN transcription factors were up-regulated in foam cell macrophages. Increased expression of several of these genes was confirmed at the protein level in foam cell macrophages from subcutaneous granulomas and in atherosclerotic plaques. Moreover, phosphorylation and nuclear translocation of SMAD2, which is downstream of several transforming growth factor-β family members, was also detected in foam cell macrophages. We conclude that foam cell formation in vivo leads to a pro-fibrotic macrophage phenotype, which could contribute to plaque stability, especially in early lesions that have few vascular smooth muscle cells. PMID:26197235

  10. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  11. Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod.

    PubMed

    Buckley, Clare E; Ren, Xiaoyun; Ward, Laura C; Girdler, Gemma C; Araya, Claudio; Green, Mary J; Clark, Brian S; Link, Brian A; Clarke, Jonathan D W

    2013-01-01

    By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.

  12. The Impact of Social Class and Social Cognitive Domain on Northeastern Brazilian Mothers' and Daughters' Conceptions of Parental Control

    ERIC Educational Resources Information Center

    Lins-Dyer, Maria Tereza; Nucci, Larry

    2007-01-01

    The impact of social class was explored on Brazilian mothers' and daughters' conceptions of who should, and who actually would control decisions regarding the daughters' actions. Participants were 126 middle class and 126 lower class girls aged 11-16 years, and their mothers. No social class differences were found in daughters' judgments about who…

  13. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation.

    PubMed

    Barrias, Emile Santos; de Carvalho, Tecia Maria Ulisses; De Souza, Wanderley

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair. PMID:23914186

  14. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation

    PubMed Central

    Barrias, Emile Santos; de Carvalho, Tecia Maria Ulisses; De Souza, Wanderley

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair. PMID:23914186

  15. Mechanisms of ectopic bone formation by human osteoprogenitor cells on CaP biomaterial carriers.

    PubMed

    Chai, Yoke Chin; Roberts, Scott J; Desmet, Eline; Kerckhofs, Greet; van Gastel, Nick; Geris, Liesbet; Carmeliet, Geert; Schrooten, Jan; Luyten, Frank P

    2012-04-01

    Stem cell-based strategies for bone regeneration, which use calcium phosphate (CaP)-based biomaterials in combination with developmentally relevant progenitor populations, have significant potential for clinical repair of skeletal defects. However, the exact mechanism of action and the stem cell-host-material interactions are still poorly understood. We studied if pre-conditioning of human periosteum-derived cells (hPDCs) in vitro could enhance, in combination with a CaP-based biomaterial carrier, ectopic bone formation in vivo. By culturing hPDCs in a biomimetic calcium (Ca(2+)) and phosphate (P(i)) enriched culture conditions, we observed an enhanced cell proliferation, decreased expression of mesenchymal stem cell (MSC) markers and upregulation of osteogenic genes including osterix, Runx2, osteocalcin, osteopontin, and BMP-2. However, the in vitro pre-conditioning protocols were non-predictive for in vivo ectopic bone formation. Surprisingly, culturing in the presence of Ca(2+) and P(i) supplements resulted in partial or complete abrogation of in vivo ectopic bone formation. Through histological, immunohistochemical and microfocus X-ray computed tomography (μCT) analysis of the explants, we found that in situ proliferation, collagen matrix deposition and the mediation of osteoclastic activity by hPDCs are associated to their ectopic bone forming capacity. These data were validated by the multivariate analysis and partial least square regression modelling confirming the non-predictability of in vitro parameters on in vivo ectopic bone formation. Our series of experiments provided further insights on the stem cell-host-material interactions that govern in vivo ectopic bone induction driven by hPDCs on CaP-based biomaterials. PMID:22269651

  16. Group X secreted phospholipase A2 induces lipid droplet formation and prolongs breast cancer cell survival

    PubMed Central

    2013-01-01

    Background Alterations in lipid metabolism are inherent to the metabolic transformations that support tumorigenesis. The relationship between the synthesis, storage and use of lipids and their importance in cancer is poorly understood. The human group X secreted phospholipase A2 (hGX sPLA2) releases fatty acids (FAs) from cell membranes and lipoproteins, but its involvement in the regulation of cellular FA metabolism and cancer is not known. Results Here we demonstrate that hGX sPLA2 induces lipid droplet (LD) formation in invasive breast cancer cells, stimulates their proliferation and prevents their death on serum deprivation. The effects of hGX sPLA2 are shown to be dependent on its enzymatic activity, are mimicked by oleic acid and include activation of protein kinase B/Akt, a cell survival signaling kinase. The hGX sPLA2-stimulated LD biogenesis is accompanied by AMP-activated protein kinase (AMPK) activation, up-regulation of FA oxidation enzymes and the LD-coating protein perilipin 2, and suppression of lipogenic gene expression. Prolonged activation of AMPK inhibited hGX sPLA2-induced LD formation, while etomoxir, an inhibitor of FA oxidation, abrogated both LD formation and cell survival. The hGX sPLA2-induced changes in lipid metabolism provide a minimal immediate proliferative advantage during growth under optimal conditions, but they confer to the breast cancer cells a sustained ability to resist apoptosis during nutrient and growth factor limitation. Conclusion Our results identify hGX sPLA2 as a novel modulator of lipid metabolism that promotes breast cancer cell growth and survival by stimulating LD formation and FA oxidation. PMID:24070020

  17. Participation of plasma membrane proteins in the formation of tight junction by cultured epithelial cells

    PubMed Central

    Griepp, EB; Dolan, WJ; Robbins, ES; Sabatini, DD

    1983-01-01

    Measurements of the transepithelial electrical resistance correlated with freeze-fracture observations have been used to study the process of tight junction formation under various experimental conditions in monolayers of the canine kidney epithelial cell line MDCK. Cells derived from previously confluent cultures and plated immediately after trypsin- EDTA dissociation develop a resistance that reaches its maximum value of several hundred ohms-cm(2) after approximately 24 h and falls to a steady-state value of 80-150 ohms- cm(2) by 48 h. The rise in resistance and the development of tight junctions can be completely and reversibly prevented by the addition of 10 μg/ml cycloheximide at the time of plating, but not when this inhibitor is added more than 10 h after planting. Thus tight junction formation consists of separable synthetic and assembly phases. These two phases can also be dissociated and the requirement for protein synthesis after plating eliminated if, following trypsinization, the cells are maintained in spinner culture for 24 h before plating. The requirement for protein synthesis is restored, however, if cells maintained in spinner culture are treated with trypsin before plating. Actinomycin D prevents development of resistance only in monolayers formed from cells derived from sparse rather than confluent cultures, but new mRNA synthesis is not required if cells obtained from sparse cultures are maintained for 24 h in spinner culture before plating. Once a steady-state resistance has been reached, its maintenance does not require either mRNA or protein synthesis; in fact, inhibition of protein synthesis causes a rise in the resistance over a 30-h period. Following treatments that disrupt the junctions in steady- state monolayers recovery of resistance also does not require protein synthesis. These observations suggest that proteins are involved in tight junction formation. Such proteins, which do not turn over rapidly under steady-state conditions

  18. Formation of B-1 B Cells from Neonatal B-1 Transitional Cells Exhibits NF-κB Redundancy

    PubMed Central

    Montecino-Rodriguez, Encarnacion; Dorshkind, Kenneth

    2011-01-01

    The stages of development leading up to the formation of mature B-1 cells have not been identified. As a result, there is no basis for understanding why various genetic defects, and those in the classical or alternative NF-κB pathways in particular, differentially affect the B-1 and B-2 B cell lineages. Here, we demonstrate that B-1 B cells are generated from transitional cell intermediates that emerge in a distinct neonatal wave of development that is sustained for approximately two weeks after birth and then declines as B-2 transitional cells predominate. We further show that, in contrast to the dependence of B-2 transitional cells on the alternative pathway, the survival of neonatal B-1 transitional cells and their maturation into B-1 B cells occurs as long as either alternative or classical NF-κB signaling is intact. Based on these results, we have generated a model of B-1 development that allows the defects in B-1 and B-2 cell production observed in various NF-κB deficient strains of mice to be placed into a coherent cellular context. PMID:22031760

  19. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice.

    PubMed

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-02-24

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation.

  20. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice

    PubMed Central

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  1. Measles Virus Transmission from Dendritic Cells to T Cells: Formation of Synapse-Like Interfaces Concentrating Viral and Cellular Components

    PubMed Central

    Koethe, Susanne; Avota, Elita

    2012-01-01

    Transmission of measles virus (MV) to T cells by its early CD150+ target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells. PMID:22761368

  2. Prevalence of heterotypic tumor/immune cell-in-cell structure in vitro and in vivo leading to formation of aneuploidy.

    PubMed

    Chen, Yu-hui; Wang, Shan; He, Mei-fang; Wang, Yanyi; Zhao, Hua; Zhu, Han-yu; Yu, Xiao-min; Ma, Jian; Che, Xiao-juan; Wang, Ju-fang; Wang, Ying; Wang, Xiao-ning

    2013-01-01

    Cell-in-cell structures refer to a unique phenomenon that one living cell enters into another living cell intactly, occurring between homotypic tumor cells or tumor (or other tissue cells) and immune cells (named as heterotypic cell-in-cell structure). In the present study, through a large scale of survey we observed that heterotypic cell-in-cell structure formation occurred commonly in vitro with host cells derived from different human carcinomas as well as xenotypic mouse tumor cell lines. Most of the lineages of human immune cells, including T, B, NK cells, monocytes as well as in vitro activated LAK cells, were able to invade tumor cell lines. Poorly differentiated stem cells were capable of internalizing immune cells as well. More significantly, heterotypic tumor/immune cell-in-cell structures were observed in a higher frequency in tumor-derived tissues than those in adjacent tissues. In mouse hepatitis models, heterotypic immune cell/hepatocyte cell-in-cell structures were also formed in a higher frequency than in normal controls. After in vitro culture, different forms of internalized immune cells in heterotypic cell-in-cell structures were observed, with one or multiple immune cells inside host cells undergoing resting, degradation or mitosis. More strikingly, some internalized immune cells penetrated directly into the nucleus of target cells. Multinuclear cells with aneuploid nucleus were formed in target tumor cells after internalizing immune cells as well as in situ tumor regions. Therefore, with the prevalence of heterotypic cell-in-cell structures observed, we suggest that shielding of immune cells inside tumor or inflammatory tissue cells implies the formation of aneuploidy with the increased multinucleation as well as fine-tuning of microenvironment under pathological status, which may define distinct mechanisms to influence the etiology and progress of tumors.

  3. Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells

    PubMed Central

    Anand, Ruchika; Strecker, Valentina; Urbach, Jennifer; Wittig, Ilka; Reichert, Andreas S.

    2016-01-01

    Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape. PMID:27479602

  4. Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells.

    PubMed

    Anand, Ruchika; Strecker, Valentina; Urbach, Jennifer; Wittig, Ilka; Reichert, Andreas S

    2016-01-01

    Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape. PMID:27479602

  5. Laser annealing of ion implanted CZ silicon for solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1981-01-01

    The merits of large spot size pulsed laser annealing of phosphorus implanted, Czochralski grown silicon for function formation of solar cells are evaluated. The feasibility and requirements are also determined to scale-up a laser system to anneal 7.62 cm diameter wafers at a rate of one wafer/second. Results show that laser annealing yields active, defect-free, shallow junction devices. Functional cells with AM 1 conversion efficiencies up to 15.4% for 2 x 2 cm and 2 x 4 cm sizes were attained. For larger cells, 7.62 cm dia., conversion efficiencies ranged up to 14.5%. Experiments showed that texture etched surfaces are not compatible with pulsed laser annealing due to the surface melting caused by the laser energy. When compared with furnace annealed cells, the laser annealed cells generally exhibited conversion efficiencies which were equal to or better than those furnace annealed. In addition, laser annealing has greater throughput potential.

  6. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  7. Controlling shape and position of vascular formation in engineered tissues by arbitrary assembly of endothelial cells.

    PubMed

    Takehara, Hiroaki; Sakaguchi, Katsuhisa; Kuroda, Masatoshi; Muraoka, Megumi; Itoga, Kazuyoshi; Okano, Teruo; Shimizu, Tatsuya

    2015-01-01

    Cellular self-assembly based on cell-to-cell communication is a well-known tissue organizing process in living bodies. Hence, integrating cellular self-assembly processes into tissue engineering is a promising approach to fabricate well-organized functional tissues. In this research, we investigated the capability of endothelial cells (ECs) to control shape and position of vascular formation using arbitral-assembling techniques in three-dimensional engineered tissues. To quantify the degree of migration of ECs in endothelial network formation, image correlation analysis was conducted. Positive correlation between the original positions of arbitrarily assembled ECs and the positions of formed endothelial networks indicated the potential for controlling shape and position of vascular formations in engineered tissues. To demonstrate the feasibility of controlling vascular formations, engineered tissues with vascular networks in triangle and circle patterns were made. The technique reported here employs cellular self-assembly for tissue engineering and is expected to provide fundamental beneficial methods to supply various functional tissues for drug screening and regenerative medicine.

  8. Young Daughter Cladodes Affect CO2 Uptake by Mother Cladodes of Opuntia ficus-indica

    PubMed Central

    PIMIENTA-BARRIOS, EULOGIO; ZAÑUDO-HERNANDEZ, JULIA; ROSAS-ESPINOZA, VERONICA C.; VALENZUELA-TAPIA, AMARANTA; NOBEL, PARK S.

    2004-01-01

    • Background and Aims Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. • Methods Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. • Key Results Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. • Conclusions Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM. PMID:15567805

  9. Engineering Strategies for the Formation of Embryoid Bodies from Human Pluripotent Stem Cells

    PubMed Central

    Pettinato, Giuseppe

    2015-01-01

    Human pluripotent stem cells (hPSCs) are powerful tools for regenerative therapy and studying human developmental biology, attributing to their ability to differentiate into many functional cell types in the body. The main challenge in realizing hPSC potential is to guide their differentiation in a well-controlled manner. One way to control the cell differentiation process is to recapitulate during in vitro culture the key events in embryogenesis to obtain the three developmental germ layers from which all cell types arise. To achieve this goal, many techniques have been tested to obtain a cellular cluster, an embryoid body (EB), from both mouse and hPSCs. Generation of EBs that are homogeneous in size and shape would allow directed hPSC differentiation into desired cell types in a more synchronous manner and define the roles of cell–cell interaction and spatial organization in lineage specification in a setting similar to in vivo embryonic development. However, previous success in uniform EB formation from mouse PSCs cannot be extrapolated to hPSCs possibly due to the destabilization of adherens junctions on cell surfaces during the dissociation into single cells, making hPSCs extremely vulnerable to cell death. Recently, new advances have emerged to form uniform human embryoid bodies (hEBs) from dissociated single cells of hPSCs. In this review, the existing methods for hEB production from hPSCs and the results on the downstream differentiation of the hEBs are described with emphases on the efficiency, homogeneity, scalability, and reproducibility of the hEB formation process and the yield in terminal differentiation. New trends in hEB production and directed differentiation are discussed. PMID:25900308

  10. Engineering Strategies for the Formation of Embryoid Bodies from Human Pluripotent Stem Cells

    PubMed Central

    Pettinato, Giuseppe

    2015-01-01

    Human pluripotent stem cells (hPSCs) are powerful tools for regenerative therapy and studying human developmental biology, attributing to their ability to differentiate into many functional cell types in the body. The main challenge in realizing hPSC potential is to guide their differentiation in a well-controlled manner. One way to control the cell differentiation process is to recapitulate during in vitro culture the key events in embryogenesis to obtain the three developmental germ layers from which all cell types arise. To achieve this goal, many techniques have been tested to obtain a cellular cluster, an embryoid body (EB), from both mouse and hPSCs. Generation of EBs that are homogeneous in size and shape would allow directed hPSC differentiation into desired cell types in a more synchronous manner and define the roles of cell–cell interaction and spatial organization in lineage specification in a setting similar to in vivo embryonic development. However, previous success in uniform EB formation from mouse PSCs cannot be extrapolated to hPSCs possibly due to the destabilization of adherens junctions on cell surfaces during the dissociation into single cells, making hPSCs extremely vulnerable to cell death. Recently, new advances have emerged to form uniform human embryoid bodies (hEBs) from dissociated single cells of hPSCs. In this review, the existing methods for hEB production from hPSCs and the results on the downstream differentiation of the hEBs are described with emphases on the efficiency, homogeneity, scalability, and reproducibility of the hEB formation process and the yield in terminal differentiation. New trends in hEB production and directed differentiation are discussed. PMID:25900308

  11. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  12. Direct observation of junction formation in polymer light-emitting electrochemical cells

    SciTech Connect

    Gao, J.; Heeger, A.J.; Campbell, I.H.; Smith, D.L.

    1999-01-01

    Electroabsorption (EA) measurements are used to determine the electric fields in polymer light-emitting electrochemical cells (LEC{close_quote}s). The EA signals are measured as a function of the dc bias and are found to increase abruptly above a threshold voltage. The EA measurements are compared with the capacitance-voltage and current-voltage characteristics. Calculations using a model based on electrochemical junction formation are in agreement with all of the experimental observations. These results show unambiguously that the picture of electrochemical junction formation in LEC{close_quote}s is correct. {copyright} {ital 1999} {ital The American Physical Society}

  13. Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture.

    PubMed

    Choi, Sung-Eun; Greben, Kyrylo; Wördenweber, Roger; Offenhäusser, Andreas

    2016-06-06

    Supported lipid bilayers are widely used as cell membrane models and sensor platforms, but the usage on gold surface needs additional surface modification or optimized experimental conditions. In this work, the authors show lipid bilayer formation on plasma activated gold surfaces in physiological conditions without any other modification if at least 30% positively charged lipids are present. Details of bilayer formation from small unilamellar vesicles were monitored using quartz crystal microbalance with dissipation in both basic and acidic environment. The authors also confirmed that this positively charged bilayer system can sustain primary cortical neuron growth and lipid transfer. This method will provide simple means to construct biomimetic interface on gold electrodes.

  14. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  15. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    SciTech Connect

    Suzuki, Yuka; Tada-Oikawa, Saeko; Ichihara, Gaku; Yabata, Masayuki; Izuoka, Kiyora; Suzuki, Masako; Sakai, Kiyoshi; Ichihara, Sahoko

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  16. Binding of recombinant annexin V to endothelial cells: effect of annexin V binding on endothelial-cell-mediated thrombin formation.

    PubMed Central

    van Heerde, W L; Poort, S; van 't Veer, C; Reutelingsperger, C P; de Groot, P G

    1994-01-01

    Annexin V binds with high affinity to procoagulant phospholipid vesicles and thereby inhibits the procoagulant reactions catalysed by these surfaces in vitro. In vivo, vascular endothelial cells are known to catalyse the formation of thrombin by the expression of binding sites at which procoagulant complexes can assemble. Here, we have studied the binding capacity of recombinant annexin V (rANV) to quiescent, phorbol 12-myristate 13-acetate (PMA)- and tumour necrosis factor alpha (TNF-alpha)-stimulated cultured human umbilical-vein endothelial cells (HUVEC). The dissociation constant (Kd) was 15.5 +/- 3.3 nM and the number of binding sites was 8.8 (+/- 3.9) x 10(6)/cell. These binding parameters did not change significantly during a 30 h incubation period with PMA or TNF-alpha. rANV inhibited HUVEC-mediated factor Xa formation via the extrinsic as well as the intrinsic route. Activation of factor X by the tissue factor-factor VII-factor X complex and tenase complex was inhibited with IC50 values of 43 +/- 30 nM and 33 +/- 24 nM respectively. Endothelial-cell-mediated generation of thrombin by the prothrombinase complex was inhibited by rANV with an IC50 of 16 +/- 12 nM. Preincubation of rANV with the endothelial cells did not significantly influence the IC50 values. These results show that rANV binds to the same extent to quiescent, PMA- and TNF-stimulated HUVEC, and, as a result of this binding, rANV efficiently inhibits endothelial-cell-mediated thrombin formation. PMID:8068019

  17. Factors Influencing Mexican Women's Decisions to Vaccinate Daughters Against HPV in the United States and Mexico.

    PubMed

    Wentzell, Emily; Flores, Yvonne N; Salmerón, Jorge; Bastani, Roshan

    2016-01-01

    Mexican and Mexican-American women bear high cervical cancer burdens, yet relationships between mothers' experiences of vaccinating daughters against cervical cancer-causing human papillomavirus (HPV) on both sides of the border are unknown. We surveyed 400 Mexican-born women in Oxnard, California, United States and Cuernavaca, Morelos, Mexico, about their beliefs and practices regarding daughters' HPV vaccination, conducting in-depth interviews with 35 participants. Contextualizing interview findings in survey data, we identify key factors influencing mothers' experiences regarding daughters' HPV vaccination in both countries. Although US acculturation influenced some participants' concerns, US and Mexico participants overwhelmingly desired eventual vaccination; structural rather than cultural barriers limited vaccine uptake. PMID:27536936

  18. Sexual and reproductive health communication between mothers and their adolescent daughters in northern Nigeria.

    PubMed

    Iliyasu, Zubairu; Aliyu, Muktar H; Abubakar, Isa S; Galadanci, Hadiza S

    2012-01-01

    We employed structured interviews and focus groups to investigate reproductive health (RH) communication practices among 184 mother-daughter pairs in Ungogo, northern Nigeria. Transcripts were analyzed using the grounded theory approach. A total of 136 mothers reported discussing RH issues with their daughters. The majority of daughters acquired RH education from their mothers. Parents were more likely to discuss marriage, menstruation, courtship, premarital sex, and sexually transmitted infections (STIs) than other sex education topics. Mothers in northern Nigeria need to be empowered with knowledge and skills to improve the scope and quality of home-based RH education. PMID:22242654

  19. Homotypic cell competition regulates proliferation and tiling of zebrafish pigment cells during colour pattern formation

    PubMed Central

    Walderich, Brigitte; Singh, Ajeet Pratap; Mahalwar, Prateek; Nüsslein-Volhard, Christiane

    2016-01-01

    The adult striped pattern of zebrafish is composed of melanophores, iridophores and xanthophores arranged in superimposed layers in the skin. Previous studies have revealed that the assembly of pigment cells into stripes involves heterotypic interactions between all three chromatophore types. Here we investigate the role of homotypic interactions between cells of the same chromatophore type. Introduction of labelled progenitors into mutants lacking the corresponding cell type allowed us to define the impact of competitive interactions via long-term in vivo imaging. In the absence of endogenous cells, transplanted iridophores and xanthophores show an increased rate of proliferation and spread as a coherent net into vacant space. By contrast, melanophores have a limited capacity to spread in the skin even in the absence of competing endogenous cells. Our study reveals a key role for homotypic competitive interactions in determining number, direction of migration and individual spacing of cells within chromatophore populations. PMID:27118125

  20. Do Daughters Really Cause Divorce? Stress, Pregnancy, and Family Composition

    PubMed Central

    Hamoudi, Amar; Nobles, Jenna

    2014-01-01

    Provocative studies have reported that in the United States, marriages producing firstborn daughters are more likely to divorce than those producing firstborn sons. The findings have been interpreted as contemporary evidence of fathers' son preference. Our study explores the potential role of another set of dynamics that may drive these patterns: namely, selection into live birth. Epidemiological evidence indicates that the characteristic female survival advantage may begin before birth. If stress accompanying unstable marriages has biological effects on fecundity, a female survival advantage could generate an association between stability and the sex composition of offspring. Combining regression and simulation techniques to analyze real-world data, we ask, How much of the observed association between sex of the firstborn child and risk of divorce could plausibly be accounted for by the joint effects of female survival advantage and reduced fecundity associated with unstable marriage? Using data from the National Longitudinal Survey of Youth (NLSY79), we find that relationship conflict predicts the sex of children born after conflict was measured; conflict also predicts subsequent divorce. Conservative specification of parameters linking pregnancy characteristics, selection into live birth, and divorce are sufficient to generate a selection-driven association between offspring sex and divorce, which is consequential in magnitude. Our findings illustrate the value of demographic accounting of processes which occur before birth—a period when many outcomes of central interest in the population sciences begin to take shape. PMID:25024115