Science.gov

Sample records for daughter cell formation

  1. Control of daughter centriole formation by the pericentriolar material.

    PubMed

    Loncarek, Jadranka; Hergert, Polla; Magidson, Valentin; Khodjakov, Alexey

    2008-03-01

    Controlling the number of its centrioles is vital for the cell, as supernumerary centrioles cause multipolar mitosis and genomic instability. Normally, one daughter centriole forms on each mature (mother) centriole; however, a mother centriole can produce multiple daughters within a single cell cycle. The mechanisms that prevent centriole 'overduplication' are poorly understood. Here we use laser microsurgery to test the hypothesis that attachment of the daughter centriole to the wall of the mother inhibits formation of additional daughters. We show that physical removal of the daughter induces reduplication of the mother in S-phase-arrested cells. Under conditions when multiple daughters form simultaneously on a single mother, all of these daughters must be removed to induce reduplication. The number of daughter centrioles that form during reduplication does not always match the number of ablated daughter centrioles. We also find that exaggeration of the pericentriolar material (PCM) by overexpression of the PCM protein pericentrin in S-phase-arrested CHO cells induces formation of numerous daughter centrioles. We propose that that the size of the PCM cloud associated with the mother centriole restricts the number of daughters that can form simultaneously.

  2. Centriole overduplication through the concurrent formation of multiple daughter centrioles at single maternal templates

    PubMed Central

    Duensing, Anette; Liu, Ying; Perdreau, Sophie A.; Kleylein-Sohn, Julia; Nigg, Erich A.; Duensing, Stefan

    2008-01-01

    Abnormal centrosome numbers are detected in virtually all cancers. The molecular mechanisms that underlie centrosome amplification, however, are poorly characterized. Based on the model that each maternal centriole serves as a template for the formation of one and only one daughter centriole per cell division cycle, the prevailing view is that centriole overduplication arises from successive rounds of centriole reproduction. Here, we provide evidence that a single maternal centriole can concurrently generate multiple daughter centrioles. This mechanism was initially identified in cells treated with the peptide vinyl sulfone proteasome inhibitor Z-L3VS. We subsequently found that the formation of more than one daughter at maternal centrioles required cyclin E/cyclin-dependent kinase 2 (CDK2) as well as Polo-like kinase 4 (PLK4) and that overexpression of these proteins mimics this phenotype in the absence of a proteasome inhibitor. To corroborate that a concurrent formation of multiple daughter centrioles is potentially relevant for centriole overduplication in human cancer, we show that the human papillomavirus type 16 (HPV-16) E7 oncoprotein stimulates aberrant daughter centriole numbers in part through the formation of more than one daughter centriole at single maternal templates. These results help to explain how oncogenic stimuli can rapidly induce abnormal centriole numbers within a single cell division cycle and provide insights into the regulation of centriole duplication. PMID:17438528

  3. Asymmetric cell divisions in flowering plants - one mother, "two-many" daughters.

    PubMed

    Ranganath, R M

    2005-09-01

    Plant development shows a fascinating range of asymmetric cell divisions. Over the years, however, cellular differentiation has been interpreted mostly in terms of a mother cell dividing mitotically to produce two daughter cells of different fates. This popular view has masked the significance of an entirely different cell fate specification pathway, where the mother cell first becomes a coenocyte and then cellularizes to simultaneously produce more than two specialized daughter cells. The "one mother - two different daughters" pathways rely on spindle-assisted mechanisms, such as translocation of the nucleus/spindle to a specific cellular site and orientation of the spindle, which are coordinated with cell-specific allocation of cell fate determinants and cytokinesis. By contrast, during "coenocyte-cellularization" pathways, the spindle-assisted mechanisms are irrelevant since cell fate specification emerges only after the nuclear divisions are complete, and the number of specialized daughter cells produced depends on the developmental context. The key events, such as the formation of a coenocyte and migration of the nuclei to specific cellular locations, are coordinated with cellularization by unique types of cell wall formation. Both one mother - two different daughters and the coenocyte-cellularization pathways are used by higher plants in precise spatial and time windows during development. In both the pathways, epigenetic regulation of gene expression is crucial not only for cell fate specification but also for its maintenance through cell lineage. In this review, the focus is on the coenocyte-cellularization pathways in the context of our current understanding of the asymmetric cell divisions. Instances where cell differentiation does not involve an asymmetric division are also discussed to provide a comprehensive account of cell differentiation.

  4. Parents' Marital Distress, Divorce, and Remarriage: Links with Daughters' Early Family Formation Transitions

    ERIC Educational Resources Information Center

    Amato, Paul R.; Kane, Jennifer B.

    2011-01-01

    The authors used data from the Add Health study to estimate the effects of parents' marital status and relationship distress on daughters' early family formation transitions. Outcomes included traditional transitions (marriage and marital births) and nontraditional transitions (cohabitation and nonmarital births). Relationship distress among…

  5. Fast Mechanically Driven Daughter Cell Separation Is Widespread in Actinobacteria

    PubMed Central

    Zhou, Xiaoxue; Halladin, David K.

    2016-01-01

    ABSTRACT Dividing cells of the coccoid Gram-positive bacterium Staphylococcus aureus undergo extremely rapid (millisecond) daughter cell separation (DCS) driven by mechanical crack propagation, a strategy that is very distinct from the gradual, enzymatically driven cell wall remodeling process that has been well described in several rod-shaped model bacteria. To determine if other bacteria, especially those in the same phylum (Firmicutes) or with similar coccoid shapes as S. aureus, might use a similar mechanically driven strategy for DCS, we used high-resolution video microscopy to examine cytokinesis in a phylogenetically wide range of species with various cell shapes and sizes. We found that fast mechanically driven DCS is rather rare in the Firmicutes (low G+C Gram positives), observed only in Staphylococcus and its closest coccoid relatives in the Macrococcus genus, and we did not observe this division strategy among the Gram-negative Proteobacteria. In contrast, several members of the high-G+C Gram-positive phylum Actinobacteria (Micrococcus luteus, Brachybacterium faecium, Corynebacterium glutamicum, and Mycobacterium smegmatis) with diverse shapes ranging from coccoid to rod all undergo fast mechanical DCS during cell division. Most intriguingly, similar fast mechanical DCS was also observed during the sporulation of the actinobacterium Streptomyces venezuelae. PMID:27578753

  6. Complete Budding and Asymmetric Division of Primitive Model Cells To Produce Daughter Vesicles with Different Interior and Membrane Compositions

    PubMed Central

    2011-01-01

    Asymmetric cell division is common in biology and plays critical roles in differentiation and development. Unicellular organisms are often used as model systems for understanding the origins and consequences of asymmetry during cell division. Although basic as compared to mammalian cells, these are already quite complex. We report complete budding and asymmetric fission of very simple nonliving model cells to produce daughter vesicles that are chemically distinct in both interior and membrane compositions. Our model cells are based on giant lipid vesicles (GVs, 10–30 μm) encapsulating a polyethylene glycol (PEG)/dextran aqueous two-phase system (ATPS) as a crowded and compartmentalized cytoplasm mimic. Ternary lipid compositions were used to provide coexisting micrometer-scale liquid disordered (Ld) and liquid ordered (Lo) domains in the membranes. ATPS-containing vesicles formed buds when sucrose was added externally to provide increased osmotic pressure, such that they became not only morphologically asymmetric but also asymmetric in both their interior and their membrane compositions. Further increases in osmolality drove formation of two chemically distinct daughter vesicles, which were in some cases connected by a lipid nanotube (complete budding), and in others were not (fission). In all cases, separation occurred at the aqueous–aqueous phase boundary, such that one daughter vesicle contained the PEG-rich aqueous phase and the other contained the dextran-rich aqueous phase. PEGylated lipids localized in the Lo domain resulted in this membrane domain preferentially coating the PEG-rich bud prior to division, and subsequently the PEG-rich daughter vesicle. Varying the mole ratio of lipids resulted in excess surface area of Lo or Ld membrane domains such that, upon division, this excess portion was inherited by one of the daughter vesicles. In some cases, a second “generation” of aqueous phase separation and budding could be induced in these daughter

  7. Daughter Cells and Erythroid Cells Budding from PGCCs and Their Clinicopathological Significances in Colorectal Cancer

    PubMed Central

    Zhang, Dan; Yang, Xiaoyun; Yang, Zhengduo; Fei, Fei; Li, Shuyuan; Qu, Jie; Zhang, Mingqing; Li, Yuwei; Zhang, Xipeng; Zhang, Shiwu

    2017-01-01

    Purpose: We previously reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride (CoCl2) exhibit cancer stem cell properties. Daughter cells generated by PGCCs possess epithelial mesenchymal transition (EMT) phenotype changes and EMT plays an important role in cancer development and progression. This study investigated the characteristics of PGCCs from LoVo and HCT116 induced by CoCl2 and the clinicopathological significances of PGCCs in colorectal cancer (CRC). Materials and Methods: Western blotting and immunocytochemical staining were used to compare the expression levels of EMT-related proteins between PGCCs with budding daughter cells and the control cells. In addition, tissue samples were collected from 159 patients with CRC for analysis of PGCCs, vasculogenic mimicry (VM), and single stromal PGCCs with budding, as well as immunohistochemical staining for cathepsin B, vimentin, and hemoglobin A. Results: Single PGCCs induced by CoCl2 formed spheroids in vitro. Poorly differentiated CRCs showed the highest numbers of PGCCs and VM, and expression of cathepsin B. There was greater expression of EMT-related proteins in PGCCs with budding daughter cells than in control cells. The expression of vimentin located in PGCC nuclei. Single stomal PGCCs with budding were detected in 27.45% of well differentiated, 50% of moderately differentiated, and 90.20% of poorly differentiated CRC samples. PGCCs can generate erythroid cells that express delta-hemoglobin to form VM. Erythroid cells generated by PGCCs were positive for hemoglobin A immunocytochemical staining. Conclusion: PGCCs from LoVo and HCT116 treated by CoCl2 exhibited cancer stem cell properties. The number of PGCCs and VM were associated with CRC differentiation and daughter cells budded from PGCCs may promote the lymph node metastasis via expression of EMT-related proteins. PGCCs and their newly generated erythroid cells form VM structures. PMID:28261349

  8. Bacterial division. Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus.

    PubMed

    Zhou, Xiaoxue; Halladin, David K; Rojas, Enrique R; Koslover, Elena F; Lee, Timothy K; Huang, Kerwyn Casey; Theriot, Julie A

    2015-05-01

    When Staphylococcus aureus undergoes cytokinesis, it builds a septum, generating two hemispherical daughters whose cell walls are only connected via a narrow peripheral ring. We found that resolution of this ring occurred within milliseconds ("popping"), without detectable changes in cell volume. The likelihood of popping depended on cell-wall stress, and the separating cells split open asymmetrically, leaving the daughters connected by a hinge. An elastostatic model of the wall indicated high circumferential stress in the peripheral ring before popping. Last, we observed small perforations in the peripheral ring that are likely initial points of mechanical failure. Thus, the ultrafast daughter cell separation in S. aureus appears to be driven by accumulation of stress in the peripheral ring and exhibits hallmarks of mechanical crack propagation.

  9. Discontinuous Cyclone Movement of Mediterranean cyclones identified through formation analysis of daughter cyclones

    NASA Astrophysics Data System (ADS)

    Ziv, Baruch; Saaroni, Hadas; Harpaz, Tzvi

    2016-04-01

    A new algorithm developed performs an automated classification methodology for daughter cyclones (DCs) formation, with respect to the thermal field of the parent cyclones (PCs). The classification has been applied to winter Mediterranean Cyclones. The algorithm assigns a DC to one of seven types, according to the following considerations: Has the cyclone formed on a front? Is that a cold, a warm or a quasi-stationary front? Is this front part of the frontal system of the PC or of a non-parental system? If none of the above applies, has the cyclone formed within the warm sector? The measures used are the temperature gradient, temperature advection and temperature Laplacian, computed at the formation location of the DC and the temperature difference between the DC and the PC, each derived from the 850-hPa wind and temperature fields. Out of 4,303 DCs analyzed, 85% were identified to belong to one of the 7 predefined types, implying that 15% cannot be related to either baroclinic or thermal factors. More than half were formed at their PCs' frontal system, third on a non-parental frontal system and only 13% within the warm sector of the PC. Most of the cyclones, formed on the PC's cold front, were found at mountain lee locations, whereas cyclones formed on the warm front were generated mostly over the Aegean and the Adriatic Sea. The new methodology exposed a unique DC formation which is actually a Discontinuous Cyclone Movement (DCM), imposed by an encounter with geographical forcing. This formation was identified in 5.9% of the DC formations and is characterized by the following features: 1) parent-daughter distance (d) <1000 Km, 2) the area enclosed by the inner isobar surrounding both the PC and the DC should be less than 2d, 3) the PC should last no more than 18 hours after the DC has been first detected. DCM events found among DCs formed on warm fronts of PCs, to their east, are suggested as a mechanism which enables the PC to cross topographic barriers

  10. The Arabidopsis Receptor Kinase ZAR1 Is Required for Zygote Asymmetric Division and Its Daughter Cell Fate

    PubMed Central

    Jia, Peng-Fei; Tang, Jun; Li, Hong-Ju; Liu, Jie; Yang, Wei-Cai

    2016-01-01

    Asymmetric division of zygote is critical for pattern formation during early embryogenesis in plants and animals. It requires integration of the intrinsic and extrinsic cues prior to and/or after fertilization. How these cues are translated into developmental signals is poorly understood. Here through genetic screen for mutations affecting early embryogenesis, we identified an Arabidopsis mutant, zygotic arrest 1 (zar1), in which zygote asymmetric division and the cell fate of its daughter cells were impaired. ZAR1 encodes a member of the RLK/Pelle kinase family. We demonstrated that ZAR1 physically interacts with Calmodulin and the heterotrimeric G protein Gβ, and ZAR1 kinase is activated by their binding as well. ZAR1 is specifically expressed micropylarly in the embryo sac at eight-nucleate stage and then in central cell, egg cell and synergids in the mature embryo sac. After fertilization, ZAR1 is accumulated in zygote and endosperm. The disruption of ZAR1 and AGB1 results in short basal cell and an apical cell with basal cell fate. These data suggest that ZAR1 functions as a membrane integrator for extrinsic cues, Ca2+ signal and G protein signaling to regulate the division of zygote and the cell fate of its daughter cells in Arabidopsis. PMID:27014878

  11. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein aggregate inheritance.

    PubMed

    Piña, Francisco J; Niwa, Maho

    2015-09-01

    Stress induced by cytoplasmic protein aggregates can have deleterious consequences for the cell, contributing to neurodegeneration and other diseases. Protein aggregates are also formed within the endoplasmic reticulum (ER), although the fate of ER protein aggregates, specifically during cell division, is not well understood. By simultaneous visualization of both the ER itself and ER protein aggregates, we found that ER protein aggregates that induce ER stress are retained in the mother cell by activation of the ER Stress Surveillance (ERSU) pathway, which prevents inheritance of stressed ER. In contrast, under conditions of normal ER inheritance, ER protein aggregates can enter the daughter cell. Thus, whereas cytoplasmic protein aggregates are retained in the mother cell to protect the functional capacity of daughter cells, the fate of ER protein aggregates is determined by whether or not they activate the ERSU pathway to impede transmission of the cortical ER during the cell cycle.

  12. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae).

    PubMed

    Yamamoto, Maki; Kurihara, Ippei; Kawano, Shigeyuki

    2005-08-01

    Autosporulation is a common mode of propagation for unicellular algae. Autospore-forming species of Chlorellaceae, Chlorella vulgaris Beijerinck, C. sorokiniana Shihira et Krauss, C. lobophora Andreyeva, and Parachlorella kessleri (Fott et Nováková) Krienitz et al. have glucosamine as the main constituent of their rigid cell wall. Recent phylogenetic analyses have showed that the Chlorellaceae divided into two sister groups: the Chlorella-clade and the Parachlorella-clade. We compared the cell wall structure and synthesis of the daughter cell wall in the four species by electron microscopy using rapid freezing and freeze substitution methods. The cell wall of C. vulgaris, C. sorokiniana, and C. lobophora consisted of an electron-dense thin layer with an average thickness of 17-20, 22, and 19 nm, respectively. In these three species, daughter cell wall synthesis occurred on the outer surface of the plasma membrane in the early cell-growth phase. The cell wall of P. kessleri, however, was electron-transparent and 54-59 nm in thickness. Ruthenium red staining of P. kessleri indicated that ruthenium-red-specific polysaccharides accumulated over the outer surface of the plasma membrane. Immunoelectron microscopic observation with an anti-beta-1, 3-glucan antibody and staining with wheat germ agglutinin (WGA) indicated that the cell wall contained beta-1, 3-glucan and WGA specific N-acetyl-beta-D-glucosamine. In P. kessleri, daughter cell wall synthesis began after successive protoplast division. The daughter cell wall synthesis during autosporulation in the four species of Chlorellaceae can be classified into two types-the early and the late types.

  13. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells

    PubMed Central

    Pedersen, Rune Troelsgaard; Kruse, Thomas; Nilsson, Jakob

    2015-01-01

    Genome integrity is critically dependent on timely DNA replication and accurate chromosome segregation. Replication stress delays replication into G2/M, which in turn impairs proper chromosome segregation and inflicts DNA damage on the daughter cells. Here we show that TopBP1 forms foci upon mitotic entry. In early mitosis, TopBP1 marks sites of and promotes unscheduled DNA synthesis. Moreover, TopBP1 is required for focus formation of the structure-selective nuclease and scaffold protein SLX4 in mitosis. Persistent TopBP1 foci transition into 53BP1 nuclear bodies (NBs) in G1 and precise temporal depletion of TopBP1 just before mitotic entry induced formation of 53BP1 NBs in the next cell cycle, showing that TopBP1 acts to reduce transmission of DNA damage to G1 daughter cells. Based on these results, we propose that TopBP1 maintains genome integrity in mitosis by controlling chromatin recruitment of SLX4 and by facilitating unscheduled DNA synthesis. PMID:26283799

  14. [Response of HeLa cells to mitomycine C. III. The analysis of nucleoli of mother and daughter cells].

    PubMed

    Petrov, Iu P; Neguliaev, Iu A; Tsupkina, N V

    2014-01-01

    The comparative analysis of the number of nucleoli in cells of the established HeLa-M line was carried out before and after exposure to mitomycin C in a concentration of 10 μg/ml for 2 h. Using time-lapse microscopy, nucleoli in mother and their respective daughter cells were computed. It has been shown that the average number of nucleoli per cell is generally higher in daughter cells than in mother cells, and a standard deviation, on the contrary, decreases. An average number of nucleoli in daughter cells, whose mother cells had been treated with mitomycin C, was higher than in corresponding cells of control group. The separate analysis has been performed for the cells having from 1 to 4 nucleoli. Nonrandom complete coincidence of the number of nucleoli in mather and daughter cells has been typicaly shown for about 1/7 of the total cell population. Mitomycin C reduces this value of about 1.5 times.

  15. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  16. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis

    PubMed Central

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-01-01

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC− defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring. PMID:20300061

  17. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein aggregate inheritance

    PubMed Central

    Piña, Francisco J; Niwa, Maho

    2015-01-01

    Stress induced by cytoplasmic protein aggregates can have deleterious consequences for the cell, contributing to neurodegeneration and other diseases. Protein aggregates are also formed within the endoplasmic reticulum (ER), although the fate of ER protein aggregates, specifically during cell division, is not well understood. By simultaneous visualization of both the ER itself and ER protein aggregates, we found that ER protein aggregates that induce ER stress are retained in the mother cell by activation of the ER Stress Surveillance (ERSU) pathway, which prevents inheritance of stressed ER. In contrast, under conditions of normal ER inheritance, ER protein aggregates can enter the daughter cell. Thus, whereas cytoplasmic protein aggregates are retained in the mother cell to protect the functional capacity of daughter cells, the fate of ER protein aggregates is determined by whether or not they activate the ERSU pathway to impede transmission of the cortical ER during the cell cycle. DOI: http://dx.doi.org/10.7554/eLife.06970.001 PMID:26327697

  18. Polarization of Diploid Daughter Cells Directed by Spatial Cues and GTP Hydrolysis of Cdc42 in Budding Yeast

    PubMed Central

    Narayan, Monisha; Chou, Ching-Shan; Park, Hay-Oak

    2013-01-01

    Cell polarization occurs along a single axis that is generally determined by a spatial cue. Cells of the budding yeast exhibit a characteristic pattern of budding, which depends on cell-type-specific cortical markers, reflecting a genetic programming for the site of cell polarization. The Cdc42 GTPase plays a key role in cell polarization in various cell types. Although previous studies in budding yeast suggested positive feedback loops whereby Cdc42 becomes polarized, these mechanisms do not include spatial cues, neglecting the normal patterns of budding. Here we combine live-cell imaging and mathematical modeling to understand how diploid daughter cells establish polarity preferentially at the pole distal to the previous division site. Live-cell imaging shows that daughter cells of diploids exhibit dynamic polarization of Cdc42-GTP, which localizes to the bud tip until the M phase, to the division site at cytokinesis, and then to the distal pole in the next G1 phase. The strong bias toward distal budding of daughter cells requires the distal-pole tag Bud8 and Rga1, a GTPase activating protein for Cdc42, which inhibits budding at the cytokinesis site. Unexpectedly, we also find that over 50% of daughter cells lacking Rga1 exhibit persistent Cdc42-GTP polarization at the bud tip and the distal pole, revealing an additional role of Rga1 in spatiotemporal regulation of Cdc42 and thus in the pattern of polarized growth. Mathematical modeling indeed reveals robust Cdc42-GTP clustering at the distal pole in diploid daughter cells despite random perturbation of the landmark cues. Moreover, modeling predicts different dynamics of Cdc42-GTP polarization when the landmark level and the initial level of Cdc42-GTP at the division site are perturbed by noise added in the model. PMID:23437206

  19. Structure and functional regulation of RipA, a mycobacterial enzyme essential for daughter cell separation.

    PubMed

    Ruggiero, Alessia; Marasco, Daniela; Squeglia, Flavia; Soldini, Silvia; Pedone, Emilia; Pedone, Carlo; Berisio, Rita

    2010-09-08

    Cell separation depends on cell-wall hydrolases that cleave the peptidoglycan layer connecting daughter cells. In Mycobacterium tuberculosis, this process is governed by the predicted endopeptidase RipA. In the absence of this enzyme, the bacterium is unable to divide and exhibits an abnormal phenotype. We here report the crystal structure of a relevant portion of RipA, containing its catalytic-domain and an extra-domain of hitherto unknown function. The structure clearly demonstrates that RipA is produced as a zymogen, which needs to be activated to achieve cell-division. Bacterial cell-wall degradation assays and proteolysis experiments strongly suggest that activation occurs via proteolytic processing of a fully solvent exposed loop identified in the crystal structure. Indeed, proteolytic cleavage at this loop produces an activated form, consisting of the sole catalytic domain. Our work provides the first evidence of self-inhibition in cell-disconnecting enzymes and opens a field for the design of novel antitubercular therapeutics.

  20. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling

    PubMed Central

    Bivik, Caroline; MacDonald, Ryan B.; Gunnar, Erika; Mazouni, Khalil; Schweisguth, Francois; Thor, Stefan

    2016-01-01

    The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems. PMID:27070787

  1. Systematic analysis of asymmetric partitioning of yeast proteome between mother and daughter cells reveals "aging factors" and mechanism of lifespan asymmetry.

    PubMed

    Yang, Jing; McCormick, Mark A; Zheng, Jiashun; Xie, Zhengwei; Tsuchiya, Mitsuhiro; Tsuchiyama, Scott; El-Samad, Hana; Ouyang, Qi; Kaeberlein, Matt; Kennedy, Brian K; Li, Hao

    2015-09-22

    Budding yeast divides asymmetrically, giving rise to a mother cell that progressively ages and a daughter cell with full lifespan. It is generally assumed that mother cells retain damaged, lifespan limiting materials ("aging factors") through asymmetric division. However, the identity of these aging factors and the mechanisms through which they limit lifespan remain poorly understood. Using a flow cytometry-based, high-throughput approach, we quantified the asymmetric partitioning of the yeast proteome between mother and daughter cells during cell division, discovering 74 mother-enriched and 60 daughter-enriched proteins. While daughter-enriched proteins are biased toward those needed for bud construction and genome maintenance, mother-enriched proteins are biased towards those localized in the plasma membrane and vacuole. Deletion of 23 of the 74 mother-enriched proteins leads to lifespan extension, a fraction that is about six times that of the genes picked randomly from the genome. Among these lifespan-extending genes, three are involved in endosomal sorting/endosome to vacuole transport, and three are nitrogen source transporters. Tracking the dynamic expression of specific mother-enriched proteins revealed that their concentration steadily increases in the mother cells as they age, but is kept relatively low in the daughter cells via asymmetric distribution. Our results suggest that some mother-enriched proteins may increase to a concentration that becomes deleterious and lifespan-limiting in aged cells, possibly by upsetting homeostasis or leading to aberrant signaling. Our study provides a comprehensive resource for analyzing asymmetric cell division and aging in yeast, which should also be valuable for understanding similar phenomena in other organisms.

  2. Formative cell divisions: principal determinants of plant morphogenesis.

    PubMed

    Smolarkiewicz, Michalina; Dhonukshe, Pankaj

    2013-03-01

    Formative cell divisions utilizing precise rotations of cell division planes generate and spatially place asymmetric daughters to produce different cell layers. Therefore, by shaping tissues and organs, formative cell divisions dictate multicellular morphogenesis. In animal formative cell divisions, the orientation of the mitotic spindle and cell division planes relies on intrinsic and extrinsic cortical polarity cues. Plants lack known key players from animals, and cell division planes are determined prior to the mitotic spindle stage. Therefore, it appears that plants have evolved specialized mechanisms to execute formative cell divisions. Despite their profound influence on plant architecture, molecular players and cellular mechanisms regulating formative divisions in plants are not well understood. This is because formative cell divisions in plants have been difficult to track owing to their submerged positions and imprecise timings of occurrence. However, by identifying a spatiotemporally inducible cell division plane switch system applicable for advanced microscopy techniques, recent studies have begun to uncover molecular modules and mechanisms for formative cell divisions. The identified molecular modules comprise developmentally triggered transcriptional cascades feeding onto microtubule regulators that now allow dissection of the hierarchy of the events at better spatiotemporal resolutions. Here, we survey the current advances in understanding of formative cell divisions in plants in the context of embryogenesis, stem cell functionality and post-embryonic organ formation.

  3. Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche.

    PubMed

    Rhiner, Christa; Díaz, Begoña; Portela, Marta; Poyatos, Juan F; Fernández-Ruiz, Irene; López-Gay, Jesús M; Gerlitz, Offer; Moreno, Eduardo

    2009-03-01

    Cell competition is a short-range cell-cell interaction leading to the proliferation of winner cells at the expense of losers, although either cell type shows normal growth in homotypic environments. Drosophila Myc (dMyc; Dm-FlyBase) is a potent inducer of cell competition in wing epithelia, but its role in the ovary germline stem cell niche is unknown. Here, we show that germline stem cells (GSCs) with relative lower levels of dMyc are replaced by GSCs with higher levels of dMyc. By contrast, dMyc-overexpressing GSCs outcompete wild-type stem cells without affecting total stem cell numbers. We also provide evidence for a naturally occurring cell competition border formed by high dMyc-expressing stem cells and low dMyc-expressing progeny, which may facilitate the concentration of the niche-provided self-renewal factor BMP/Dpp in metabolically active high dMyc stem cells. Genetic manipulations that impose uniform dMyc levels across the germline produce an extended Dpp signaling domain and cause uncoordinated differentiation events. We propose that dMyc-induced competition plays a dual role in regulating optimal stem cell pools and sharp differentiation boundaries, but is potentially harmful in the case of emerging dmyc duplications that facilitate niche occupancy by pre-cancerous stem cells. Moreover, competitive interactions among stem cells may be relevant for the successful application of stem cell therapies in humans.

  4. Microdosimetry of astatine-211 single-cell irradiation: role of daughter polonium-211 diffusion.

    PubMed

    Palm, Stig; Humm, John L; Rundqvist, Robert; Jacobsson, Lars

    2004-02-01

    A microdosimetric analysis of previously published data on 211At-albumin, free 211At, and 211At-C215 irradiation of Colo-205 cells in a slowly rotating single-cell suspension is presented. A custom-built computer program based on the Monte Carlo method was used to simulate the irradiation and the energy deposition in individual cell nuclei. Separate simulations were made for the assumption that the 211Po atom stays in the position where it is created, and that it diffuses away. The mean event number at which 37% of all cells survived, n37, and the frequency mean specific energy per event, zF, were estimated. The Poisson distribution of events and simulated single and multievent distributions of specific energy were used to find the single-cell specific energy at which the probability of survival is reduced to 37%, z37. The calculated single-cell radiosensitivity values show that 211Po atoms, created on a cell surface by the decay of 211At atoms, will diffuse from the cell during its life-span. The increasing distance to the cell nucleus will drastically decrease the probability of the emitted alpha particle to hit the nucleus. This will result in fewer alpha-particle events in the cell nucleus. For dispersed cells, the diffusion of 211Po atoms will reduce the total dose from cell-bound 211At by a factor of 2.

  5. Formation of a cylindrical bridge in cell division

    NASA Astrophysics Data System (ADS)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  6. Unreplicated DNA remaining from unperturbed S phases passes through mitosis for resolution in daughter cells

    PubMed Central

    Moreno, Alberto; Carrington, Jamie T.; Al Mamun, Mohammed; Haagensen, Emma J.; Komseli, Eirini-Stavroula; Gorgoulis, Vassilis G.; Newman, Timothy J.; Blow, J. Julian

    2016-01-01

    To prevent rereplication of genomic segments, the eukaryotic cell cycle is divided into two nonoverlapping phases. During late mitosis and G1 replication origins are “licensed” by loading MCM2-7 double hexamers and during S phase licensed replication origins activate to initiate bidirectional replication forks. Replication forks can stall irreversibly, and if two converging forks stall with no intervening licensed origin—a “double fork stall” (DFS)—replication cannot be completed by conventional means. We previously showed how the distribution of replication origins in yeasts promotes complete genome replication even in the presence of irreversible fork stalling. This analysis predicts that DFSs are rare in yeasts but highly likely in large mammalian genomes. Here we show that complementary strand synthesis in early mitosis, ultrafine anaphase bridges, and G1-specific p53-binding protein 1 (53BP1) nuclear bodies provide a mechanism for resolving unreplicated DNA at DFSs in human cells. When origin number was experimentally altered, the number of these structures closely agreed with theoretical predictions of DFSs. The 53BP1 is preferentially bound to larger replicons, where the probability of DFSs is higher. Loss of 53BP1 caused hypersensitivity to licensing inhibition when replication origins were removed. These results provide a striking convergence of experimental and theoretical evidence that unreplicated DNA can pass through mitosis for resolution in the following cell cycle. PMID:27516545

  7. O-Glycosylation of Axl2/Bud10p by Pmt4p Is Required for Its Stability, Localization, and Function in Daughter Cells

    PubMed Central

    Sanders, Sylvia L.; Gentzsch, Martina; Tanner, Widmar; Herskowitz, Ira

    1999-01-01

    Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and α cells select axial sites; a/α cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an α strain using pseudohyphal growth as an assay. We found that a and α mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345–1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane. PMID:10366591

  8. Origin of Individuality of Two Daughter Cells during the Division Process Examined by the Simultaneous Measurement of Growth and Swimming Property Using an On-Chip Single-Cell Cultivation System

    PubMed Central

    Umehara, Senkei; Inoue, Ippei; Wakamoto, Yuichi; Yasuda, Kenji

    2007-01-01

    We examined the origin of individuality of two daughter cells born from an isolated single Escherichia coli mother cell during its cell division process by monitoring the change in its swimming behavior and tumbling frequency using an on-chip single-cell cultivation system. By keeping the isolated condition of an observed single cell, we compared its growth and swimming property within a generation and over up to seven generations. It revealed that running speed decreased as cell length smoothly increased within each generation, whereas tumbling frequency fluctuated among generations. Also found was an extraordinary tumbling mode characterized by the prolonged duration of pausing in predivisional cells after cell constriction. The observed prolonged pausing may imply the coexistence of two distinct control systems in a predivisional cell, indicating that individuality of daughter cells emerges after a mother cell initiates constriction and before it gets physically separated into two new cell bodies. PMID:17496044

  9. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  10. Clonal mature adipocyte production of proliferative-competent daughter cells requires lipid export prior to cell division

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous in vitro observations have been published to show that mature adipocytes may resume proliferation and begin to populate the adipofibroblast fraction or form other cell types. In the present study, we evaluated clonal cultures of mature pig-derived adipocytes as they began to reestablish the...

  11. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell.

    PubMed

    Saarikangas, Juha; Caudron, Fabrice; Prasad, Rupali; Moreno, David F; Bolognesi, Alessio; Aldea, Martí; Barral, Yves

    2017-03-20

    In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.

  12. Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast.

    PubMed

    Henderson, Kiersten A; Hughes, Adam L; Gottschling, Daniel E

    2014-09-04

    Replicative aging in yeast is asymmetric-mother cells age but their daughter cells are rejuvenated. Here we identify an asymmetry in pH between mother and daughter cells that underlies aging and rejuvenation. Cytosolic pH increases in aging mother cells, but is more acidic in daughter cells. This is due to the asymmetric distribution of the major regulator of cytosolic pH, the plasma membrane proton ATPase (Pma1). Pma1 accumulates in aging mother cells, but is largely absent from nascent daughter cells. We previously found that acidity of the vacuole declines in aging mother cells and limits lifespan, but that daughter cell vacuoles re-acidify. We find that Pma1 activity antagonizes mother cell vacuole acidity by reducing cytosolic protons. However, the inherent asymmetry of Pma1 increases cytosolic proton availability in daughter cells and facilitates vacuole re-acidification and rejuvenation.

  13. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells

    PubMed Central

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-01-01

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae—a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense” relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum. PMID:27506799

  14. Interplay between the dividing cell and its neighbors regulates adherens junction formation during cytokinesis in epithelial tissue.

    PubMed

    Herszterg, Sophie; Leibfried, Andrea; Bosveld, Floris; Martin, Charlotte; Bellaiche, Yohanns

    2013-02-11

    How adherens junctions (AJs) are formed upon cell division is largely unexplored. Here, we found that AJ formation is coordinated with cytokinesis and relies on an interplay between the dividing cell and its neighbors. During contraction of the cytokinetic ring, the neighboring cells locally accumulate Myosin II and produce the cortical tension necessary to set the initial geometry of the daughter cell interface. However, the neighboring cell membranes impede AJ formation. Upon midbody formation and concomitantly to neighboring cell withdrawal, Arp2/3-dependent actin polymerization oriented by the midbody maintains AJ geometry and regulates AJ final length and the epithelial cell arrangement upon division. We propose that cytokinesis in epithelia is a multicellular process, whereby the cooperative actions of the dividing cell and its neighbors define a two-tiered mechanism that spatially and temporally controls AJ formation while maintaining tissue cohesiveness.

  15. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16.

    PubMed

    Pfeiffer, Daniel; Wahl, Andreas; Jendrossek, Dieter

    2011-11-01

    A two-hybrid approach was applied to screen for proteins with the ability to interact with PHB synthase (PhaC1) of Ralstonia eutropha. The H16_A0141 gene (phaM) was identified in the majority of positive clones. PhaM (26.6 kDa) strongly interacted with PhaC1 and with phasin PhaP5 but not with PhaP1 or other PHB granule-associated proteins. A ΔphaM mutant accumulated only one or two large PHB granules instead of three to six medium-sized PHB granules of the wild type, and distribution of granules to daughter cells was disordered. All three phenotypes (number, size and distribution of PHB granules) were reversed by reintroduction of phaM. Purified PhaM revealed DNA-binding properties in gel mobility shift experiments. Expression of a fusion of the yellow fluorescent protein (eYfp) with PhaM resulted in formation of many small fluorescent granules that were bound to the nucleoid region. Remarkably, an eYfp-PhaP5 fusion localized at the cell poles in a PHB-negative background and overexpression of eYfp-PhaP5 in the wild type conferred binding of PHB granules to the cell poles. In conclusion, subcellular localization of PHB granules in R. eutropha depends on a concerted expression of at least three PHB granule-associated proteins, namely PhaM, PhaP5 and PHB synthase PhaC1.

  16. Segrosome Complex Formation during DNA Trafficking in Bacterial Cell Division.

    PubMed

    Oliva, María A

    2016-01-01

    Bacterial extrachromosomal DNAs often contribute to virulence in pathogenic organisms or facilitate adaptation to particular environments. The transmission of genetic information from one generation to the next requires sufficient partitioning of DNA molecules to ensure that at least one copy reaches each side of the division plane and is inherited by the daughter cells. Segregation of the bacterial chromosome occurs during or after replication and probably involves a strategy in which several protein complexes participate to modify the folding pattern and distribution first of the origin domain and then of the rest of the chromosome. Low-copy number plasmids rely on specialized partitioning systems, which in some cases use a mechanism that show striking similarity to eukaryotic DNA segregation. Overall, there have been multiple systems implicated in the dynamic transport of DNA cargo to a new cellular position during the cell cycle but most seem to share a common initial DNA partitioning step, involving the formation of a nucleoprotein complex called the segrosome. The particular features and complex topologies of individual segrosomes depend on both the nature of the DNA binding protein involved and on the recognized centromeric DNA sequence, both of which vary across systems. The combination of in vivo and in vitro approaches, with structural biology has significantly furthered our understanding of the mechanisms underlying DNA trafficking in bacteria. Here, I discuss recent advances and the molecular details of the DNA segregation machinery, focusing on the formation of the segrosome complex.

  17. Your Daughter's First Gynecological Exam

    MedlinePlus

    ... cancer. The practitioner may recommend the human papillomavirus (HPV) vaccine. This vaccine protects against the main types of ... cervical cancer. Even if your daughter receives the HPV vaccine, she should still get regular Pap smears beginning ...

  18. Autophagosome formation in mammalian cells.

    PubMed

    Burman, Chloe; Ktistakis, Nicholas T

    2010-12-01

    Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

  19. The Levels of "Rappaccini's Daughter."

    ERIC Educational Resources Information Center

    Hands, Charles B.

    1970-01-01

    Nathaniel Hawthorne's short story "Rappaccini's Daughter" reflects the author's view that inherent in the human dilemma are ambiguous ironies which cannot be resolved. Although Hawthorne (unlike Ralph Waldo Emerson) perceives evil as an extraordinarily potent force, he offers no clear moral solutions in this story, but examines various…

  20. Turner phenotype in mother and daughter.

    PubMed

    Muasher, S; Baramki, T A; Diggs, E S

    1980-12-01

    Two females are described, mother and daughter, who had the Turner phenotype and spontaneous sexual development. The mother is short and had ovulatory menstrual cycles, normal breast development, X-chromatin negative buccal smear, 45,X chromosomal pattern in her peripheral blood lymphocytes, and 45,X/46,X,r(X) mosaicism in her skin, with the majority of the cells (85%) showing X monosomy. She had a successful uncomplicated pregnancy at the age of 25 years. The daughter is short and had spontaneous sexual development, including menstruation at the age of 15 years. Her buccal smear was X-chromatin negative and karyotypes from peripheral blood lymphocytes and skin fibroblasts showed a 45,X chromosome constitution. Her menstrual cycles are irregular and, most probably, anovulatory. She has a horseshoe kidney. Six women with a 45, X chromosome complement are known to have delivered normal infants with no chromosomal abnormality. Five children with 45,X mosaicism have been born to mothers with 45,X mosaicism; all had a 46,XX cell line as well. This is the first report of a 45,X female born to a mother with mosaicism composed of 2 abnormal cell lines, 1 with X monosomy and 1 with a ring X chromosome.

  1. Positioning of polarity formation by extracellular signaling during asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim

    2016-07-07

    Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which ultimately generates cell diversity. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of different PAR proteins on the membrane along the anterior-posterior axis. However, the phenomenon of polarity reversal has been observed in which the axis of asymmetric cell division of the P2 and P3 cells is formed in an opposite manner to that of the P0 and P1 cells. The extracellular signal MES-1/SRC-1 has been shown to induce polarity reversal, but the detailed mechanism remains elusive. Here, using a mathematical model, I explore the mechanism by which MES-1/SRC-1 signaling can induce polarity reversal and ultimately affect the process of polarity formation. I show that a positive correlation between SRC-1 and the on-rate of PAR-2 is the essential mechanism underlying polarity reversal, providing a mathematical basis for the orientation of cell polarity patterns.

  2. Drosophila neuroblasts as a new model for the study of stem cell self-renewal and tumour formation

    PubMed Central

    Li, Song; Wang, Hongyan; Groth, Casper

    2014-01-01

    Drosophila larval brain stem cells (neuroblasts) have emerged as an important model for the study of stem cell asymmetric division and the mechanisms underlying the transformation of neural stem cells into tumour-forming cancer stem cells. Each Drosophila neuroblast divides asymmetrically to produce a larger daughter cell that retains neuroblast identity, and a smaller daughter cell that is committed to undergo differentiation. Neuroblast self-renewal and differentiation are tightly controlled by a set of intrinsic factors that regulate ACD (asymmetric cell division). Any disruption of these two processes may deleteriously affect the delicate balance between neuroblast self-renewal and progenitor cell fate specification and differentiation, causing neuroblast overgrowth and ultimately lead to tumour formation in the fly. In this review, we discuss the mechanisms underlying Drosophila neural stem cell self-renewal and differentiation. Furthermore, we highlight emerging evidence in support of the notion that defects in ACD in mammalian systems, which may play significant roles in the series of pathogenic events leading to the development of brain cancers. PMID:24965943

  3. Mutagenicity of radon and radon daughters

    NASA Astrophysics Data System (ADS)

    Evans, H. H.

    The objective of our research is to investigate the dose-response relationship of the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose rate dependence and the nature of the DNA lesion will be studied, using the thymidine kinase and HPRT loci to measure mutation frequency. A deficiency in DNA repair is shown to lead to a greater proportion of mutants with intergenic lesions. The cytotoxic effects of radon and its daughters are similar in human TK6 lymphoblasts and mouse L5178Y lymphoblasts, the cell line used in previous experiments. The results of molecular analysis of four spontaneous and 25 X-radiation induced HPRT(-) mutants. Eleven radon-induced HPRT(-) mutants have been isolated, and will be analyzed in a similar fashion.

  4. Characterization and Localization of Insoluble Organic Matrices Associated with Diatom Cell Walls: Insight into Their Roles during Cell Wall Formation

    PubMed Central

    Tesson, Benoit; Hildebrand, Mark

    2013-01-01

    Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation. PMID:23626714

  5. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  6. The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant.

    PubMed

    Chen, Chun-Ti; Gubbels, Marc-Jan

    2013-08-01

    The pathology and severity of toxoplasmosis results from the rapid replication cycle of the apicomplexan parasite Toxoplasma gondii. The tachyzoites divide asexually through endodyogeny, wherein two daughter cells bud inside the mother cell. Before mitosis is completed, the daughter buds form around the duplicated centrosomes and subsequently elongate to serve as the scaffold for organellogenesis and organelle partitioning. The molecular control mechanism of this process is poorly understood. Here, we characterized a T. gondii NIMA-related kinase (Nek) ortholog that was identified in a chemical mutagenesis screen. A temperature-sensitive mutant, V-A15, possesses a Cys316Arg mutation in TgNek1 (a novel mutant allele in Neks), which is responsible for growth defects at the restrictive temperature. Phenotypic analysis of V-A15 indicated that TgNek1 is essential for centrosome splitting, proper formation of daughter cells and faithful segregation of genetic material. In vitro kinase assays showed that the mutation abolishes the kinase activity of TgNek1. TgNek1 is recruited to the centrosome prior to its duplication and localizes on the duplicated centrosomes facing the spindle poles in a cell-cycle-dependent manner. Mutational analysis of the activation loop suggests that localization and activity are spatio-temporally regulated by differential phosphorylation. Collectively, our results identified a novel temperature-sensitive allele for a Nek kinase and highlight its essential function in centrosome splitting in Toxoplasma. Moreover, these results conclusively show for the first time that Toxoplasma bud assembly is facilitated by the centrosome because defective centrosome splitting results in single daughter cell budding.

  7. Differential spheroid formation by oral cancer cells.

    PubMed

    Lee, Carlin; Lee, Casey; Atakilit, Amha; Siu, Amanda; Ramos, Daniel M

    2014-12-01

    Squamous cell carcinomas (SCC) make up 96% of all oral cancers. Most laboratory SCC studies grow cells as a monolayer, which does not accurately represent the disease in vivo. We used a more relevant multicellular spheroid (MCS) model to study this disease. The SCC9β6KDFyn cell line, which expresses full-length β6 and a kinase dead Fyn formed the largest MCS. Cell adhesive properties are dynamic and N-cadherin was increased in the largest MCS. c-Raf mediates the survival of tumor cells and was consistently expressed both in monolayers and in the MCS by SCC9β6D1 cells which lack the β6 cytoplasmic tail and, do not activate Fyn. SCC9β6KDFyn cells also express high levels of c-Raf when grown as spheroids in which Fyn suppression stimulates MCS formation. Tumor microenvironment and growth patterns modulate cell behavior and suppression of Fyn kinase may promote MCS growth.

  8. Mast cells mediate malignant pleural effusion formation

    PubMed Central

    Giannou, Anastasios D.; Marazioti, Antonia; Spella, Magda; Kanellakis, Nikolaos I.; Apostolopoulou, Hara; Psallidas, Ioannis; Prijovich, Zeljko M.; Vreka, Malamati; Zazara, Dimitra E.; Lilis, Ioannis; Papaleonidopoulos, Vassilios; Kairi, Chrysoula A.; Patmanidi, Alexandra L.; Giopanou, Ioanna; Spiropoulou, Nikolitsa; Harokopos, Vaggelis; Aidinis, Vassilis; Spyratos, Dionisios; Teliousi, Stamatia; Papadaki, Helen; Taraviras, Stavros; Snyder, Linda A.; Eickelberg, Oliver; Kardamakis, Dimitrios; Iwakura, Yoichiro; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Kalomenidis, Ioannis; Blackwell, Timothy S.; Agalioti, Theodora; Stathopoulos, Georgios T.

    2015-01-01

    Mast cells (MCs) have been identified in various tumors; however, the role of these cells in tumorigenesis remains controversial. Here, we quantified MCs in human and murine malignant pleural effusions (MPEs) and evaluated the fate and function of these cells in MPE development. Evaluation of murine MPE-competent lung and colon adenocarcinomas revealed that these tumors actively attract and subsequently degranulate MCs in the pleural space by elaborating CCL2 and osteopontin. MCs were required for effusion development, as MPEs did not form in mice lacking MCs, and pleural infusion of MCs with MPE-incompetent cells promoted MPE formation. Once homed to the pleural space, MCs released tryptase AB1 and IL-1β, which in turn induced pleural vasculature leakiness and triggered NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and tumor growth. Evaluation of human effusions revealed that MCs are elevated in MPEs compared with benign effusions. Moreover, MC abundance correlated with MPE formation in a human cancer cell–induced effusion model. Treatment of mice with the c-KIT inhibitor imatinib mesylate limited effusion precipitation by mouse and human adenocarcinoma cells. Together, the results of this study indicate that MCs are required for MPE formation and suggest that MC-dependent effusion formation is therapeutically addressable. PMID:25915587

  9. Associative memory cells: Formation, function and perspective

    PubMed Central

    Wang, Jin-Hui; Cui, Shan

    2017-01-01

    Associative learning and memory are common activities in life, and their cellular infrastructures constitute the basis of cognitive processes. Although neuronal plasticity emerges after memory formation, basic units and their working principles for the storage and retrieval of associated signals remain to be revealed. Current reports indicate that associative memory cells, through their mutual synapse innervations among the co-activated sensory cortices, are recruited to fulfill the integration, storage and retrieval of multiple associated signals, and serve associative thinking and logical reasoning. In this review, we aim to summarize associative memory cells in their formation, features and functional impacts.

  10. [Altering of phragmoplast orientation as a result of excessive centrifugal movement in the absence of cell plate].

    PubMed

    Shamina, N V; Kovaleva, N M; Shatskaia, O A

    2006-01-01

    The inability of phragmoplast to stop its centrifugal movement after reaching the mother cell membrane is described in abnormal meiosis with the arrest of cell plate formation. The excess of phragmoplast expansion leads to rotation of the whole telophase figure (phragmoplast with daughter nuclei) within the cell through 90 degrees. It has been suggested that this phenomenon may occur because of a the lack of signal stopping cytokinesis. Such a signal arises due to formation of daughter cell membranes.

  11. The plant cell cycle: Pre-Replication complex formation and controls.

    PubMed

    Brasil, Juliana Nogueira; Costa, Carinne N Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C G; Hemerly, Adriana S

    2017-03-16

    The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.

  12. Raising Confident, Competent Daughters: Strategies for Parents.

    ERIC Educational Resources Information Center

    Ransome, Whitney, Ed.; And Others

    This booklet contains five essays designed to help parents raise confident, competent daughters. They focus on ways that parents can help their preadolescent and adolescent daughters: (1) speak up in class, articulate their thoughts, and speak with self-confidence in various academic and social situations; (2) develop an interest and aptitude for…

  13. Contribution of Vascular Cells to Neointimal Formation

    PubMed Central

    Yuan, Falei; Wang, Dong; Xu, Kang; Wang, Jixian; Zhang, Zhijun; Yang, Li; Yang, Guo-Yuan; Li, Song

    2017-01-01

    The de-differentiation and proliferation of smooth muscle cells (SMCs) are widely accepted as the major contributor to vascular remodeling. However, recent studies indicate that vascular stem cells (VSCs) also play an important role, but their relative contribution remains to be elucidated. In this study, we used genetic lineage tracing approach to further investigate the contribution of SMCs and VSCs to neointimal thickening in response to endothelium denudation injury or artery ligation. In vitro and in vivo analysis of MYH11-cre/Rosa-loxP-RFP mouse artery showed that SMCs proliferated at a much slower rate than non-SMCs. Upon denudation or ligation injury, two distinct types of neointima were identified: Type-I neointimal cells mainly involved SMCs, while Type II mainly involved non-SMCs. Using Sox10-cre/Rosa-loxP-LacZ mice, we found that Sox10+ cells were one of the cell sources in neointima. In addition, lineage tracing using Tie2-cre/Rosa-LoxP-RFP showed that endothelial cells also contributed to the neointimal formation, but rarely transdifferentiated into mesenchymal lineages. These results provide a novel insight into the contribution of vascular cells to neointima formation, and have significant impact on the development of more effective therapies that target specific vascular cell types. PMID:28060852

  14. Continuum Theory of Dislocations: Cell Structure Formation

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James P.

    2005-03-01

    Line-like topological defects inside metals are called dislocations. These dislocations in late stages of hardening form patterns called cell structures. We are developing a mesoscale theory for the formation of cell structures that systematically derives the order parameter fields and evolution laws from the conserved topological Burgers vector density or the Nye dislocation tensor. (In classical plasticity theories, describing scales large compared to these cells, one normally bypasses the complicated motions of the dislocations by supplying yield surface and plastic hardening function in order to determine the evolution of state variables.) Using Landau approach and a closure approximation, an evolution equation for the dislocation density tensor is obtained by employing simple symmetry arguments and the constraint that the elastic energy must decrease with time at fixed stress. The evolution laws lead to singularity formation at finite times, which we expect will be related to the formation of cell walls. Implementation of finite difference simulations using the upwind scheme and the results in one and higher dimensions will be discussed.

  15. Contribution of radon and radon daughters to respiratory cancer.

    PubMed Central

    Harley, N; Samet, J M; Cross, F T; Hess, T; Muller, J; Thomas, D

    1986-01-01

    This article reviews studies on the contribution of radon and radon daughters to respiratory cancer and proposes recommendations for further research, particularly a national radon survey. The steady-state outdoor radon concentration averages 200 pCi/m3, and indoor levels are about 4 times higher. The primary source of radon in homes is the underlying soil; entry depends on multiple variables and reduced ventilation for energy conservation increases indoor radon levels. Occupational exposures are expressed in units of radon daughter potential energy concentration or working level (WL). Cumulative exposure is the product of the working level and the time exposed. The unit for cumulative exposure is the working level month (WLM). The occupational standard for radon exposure is 4 WLM/year, and 2 WLM/year has been suggested as a guideline for remedial action in homes. Epidemiologic studies show that miners with cumulative radon daughter exposures somewhat below 100 WLM have excess lung cancer mortality. Some 3% to 8% of miners studied have developed lung cancer attributable to radon daughters. All of the underground mining studies show an increased risk of lung cancer with radon daughter exposure. All cell types of lung cancer increased with radon exposure. If radon and smoking act in a multiplicative manner, then the risk for smokers could be 10 times that for nonsmokers. The potential risk of lung cancer appears to be between 1 and 2 per 10,000/WLM, which yields a significant number of lung cancers as some 220 million persons in the United States are exposed on average to 10 to 20 WLM/lifetime. PMID:3830103

  16. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2015-07-21

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  17. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David D.; Cousins, Peter John

    2014-07-22

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

  18. Solar cell contact formation using laser ablation

    DOEpatents

    Harley, Gabriel; Smith, David; Cousins, Peter

    2012-12-04

    The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

  19. Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation

    PubMed Central

    Zeng, Gefei; Taylor, Sarah M.; McColm, Janet R.; Kappas, Nicholas C.; Kearney, Joseph B.; Williams, Lucy H.; Hartnett, Mary E.; Bautch, Victoria L.

    2007-01-01

    New blood vessel formation requires the coordination of endothelial cell division and the morphogenetic movements of vessel expansion, but it is not known how this integration occurs. Here, we show that endothelial cells regulate division orientation during the earliest stages of blood vessel formation, in response to morphogenetic cues. In embryonic stem (ES) cell–derived vessels that do not experience flow, the plane of endothelial cytokinesis was oriented perpendicular to the vessel long axis. We also demonstrated regulated cleavage orientation in vivo, in flow-exposed forming retinal vessels. Daughter nuclei moved away from the cleavage plane after division, suggesting that regulation of endothelial division orientation effectively extends vessel length in these developing vascular beds. A gain-of-function mutation in VEGF signaling increased randomization of endothelial division orientation, and this effect was rescued by a transgene, indicating that regulation of division orientation is a novel mechanism whereby VEGF signaling affects vessel morphogenesis. Thus, our findings show that endothelial cell division and morphogenesis are integrated in developing vessels by flow-independent mechanisms that involve VEGF signaling, and this cross talk is likely to be critical to proper vessel morphogenesis. PMID:17068148

  20. Glucocorticoid resistance of migration and gene expression in a daughter MDA-MB-231 breast tumour cell line selected for high metastatic potential

    PubMed Central

    Fietz, Ebony R.; Keenan, Christine R.; López-Campos, Guillermo; Tu, Yan; Johnstone, Cameron N.; Harris, Trudi; Stewart, Alastair G.

    2017-01-01

    Glucocorticoids are commonly used to prevent chemotherapy-induced nausea and vomiting despite a lack of understanding of their direct effect on cancer progression. Recent studies suggest that glucocorticoids inhibit cancer cell migration. However, this action has not been investigated in estrogen receptor (ER)-negative breast tumour cells, although activation of the glucocorticoid receptor (GR) is associated with a worse prognosis in ER-negative breast cancers. In this study we have explored the effect of glucocorticoids on the migration of the ER-negative MDA-MB-231 human breast tumour cell line and the highly metastatic MDA-MB-231-HM.LNm5 cell line that was generated through in vivo cycling. We show for the first time that glucocorticoids inhibit 2- and 3-dimensional migration of MDA-MB-231 cells. Selection of cells for high metastatic potential resulted in a less migratory cell phenotype that was resistant to regulation by glucocorticoids and showed decreased GR receptor expression. The emergence of glucocorticoid resistance during metastatic selection may partly explain the apparent disparity between the clinical and in vitro evidence regarding the actions of glucocorticoids in cancer. These findings highlight the highly plastic nature of tumour cells, and underscore the need to more fully understand the direct effect of glucocorticoid treatment on different stages of metastatic progression. PMID:28262792

  1. User's manual for the DAD-1 data acquisition daughter board for the SuperCard-2

    SciTech Connect

    Ferron, J.R.

    1993-05-01

    A detailed description of how to use the DAD-1 data acquisition daughter board is given. The DAD-1 daughter board is used with the SuperCard-2, a VME format processor board manufactured by CSP Inc. that is based on the Intel i860 microprocessor. The daughter board provides high speed acquisition of digital data through a general purpose input port. Data are transferred through direct memory access operations to the memory on the SuperCard-2 board at a rate up to 40 million, 14 bit samples per second. A first-in, first-out memory is used to buffer the data during the transfer. Several different data acquisition operating modes are available that make a combination of a SuperCard-2 processor board and a DAD-1 daughter board suitable for a wide range of real time data analysis and feedback control functions.

  2. Radionuclide daughter inventory generator code: DIG

    SciTech Connect

    Fields, D.E.; Sharp, R.D.

    1985-09-01

    The Daughter Inventory Generator (DIG) code accepts a tabulation of radionuclide initially present in a waste stream, specified as amounts present either by mass or by activity, and produces a tabulation of radionuclides present after a user-specified elapsed time. This resultant radionuclide inventory characterizes wastes that have undergone daughter ingrowth during subsequent processes, such as leaching and transport, and includes daughter radionuclides that should be considered in these subsequent processes or for inclusion in a pollutant source term. Output of the DIG code also summarizes radionuclide decay constants. The DIG code was developed specifically to assist the user of the PRESTO-II methodology and code in preparing data sets and accounting for possible daughter ingrowth in wastes buried in shallow-land disposal areas. The DIG code is also useful in preparing data sets for the PRESTO-EPA code. Daughter ingrowth in buried radionuclides and in radionuclides that have been leached from the wastes and are undergoing hydrologic transport are considered, and the quantities of daughter radionuclide are calculated. Radionuclide decay constants generated by DIG and included in the DIG output are required in the PRESTO-II code input data set. The DIG accesses some subroutines written for use with the CRRIS system and accesses files containing radionuclide data compiled by D.C. Kocher. 11 refs.

  3. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation.

    PubMed

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-08-21

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase.

  4. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  5. Novel solar cells in a wire format.

    PubMed

    Chen, Tao; Qiu, Longbin; Yang, Zhibin; Peng, Huisheng

    2013-06-21

    Photovoltaic devices in a wire format have recently attracted increasing attention as, compared with the conventional planar structure, they show unique and promising advantages. For instance, they are light-weight and can be easily woven into clothes or integrated into other structures, which enable applications in electronic textiles and various complex devices. In this tutorial review, the recent advancement in photovoltaic wires including both dye-sensitized and polymer solar cells are described. Two main architectures based on a single core-sheath fiber and twisted fibers are carefully illustrated with an emphasis on the comparison of various substrates which have been focused in past development. The current challenge including low energy conversion efficiency and low stability and future direction of the wire-shaped cell have been finally summarized.

  6. My Daughter the Scientist? Mothers' Perceptions of the Shift in Their Daughter's Personal Science Identities

    ERIC Educational Resources Information Center

    Farland-Smith, Donna

    2016-01-01

    This study reports on the perspective of mothers whose daughters underwent an extensive inquiry-focused interactive one-week science camp, which involved female middle school students and university scientists. This study focused on nine mother's perceptions of the impact the camp had on their daughter's science identities. Following the camp,…

  7. Organic Tandem Solar Cells: Design and Formation

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Chao

    polyelectrolyte layer functioning as the surface dipole formation layer to provide better electrical contact with the photoactive layer. Due to the effectiveness of the conjugated polyelectrolyte layer, performance improvement was also observed. Furthermore, other issues regarding the semi-transparent tandem solar cells (e.g., photocurrent matching, exterior color tuning, and transparency tuning) are all explored to optimize best performance. In Chapter 5 and 6, the architectures of double- and triple-junction tandem solar cells are explored. Theoretically, triple-junction tandem solar cells with three photoactive absorbers with cascaded energy bandgaps have the potential to achieve higher performance, in comparison with double-junction tandem solar cells. Such expectations can be ascribed to the minimized carrier thermalization loss and further improved light absorption. However, the design of triple-junction solar cells often involves sophisticated multiple layer deposition as well as substantial optimization. Therefore, there is a lack of successful demonstrations of triple-junction solar cells outperforming the double-junction counterparts. To solve the incompatible issues related to the layer deposition in the fabrication, we proposed a novel architecture of inverted-structure tandem solar cells with newly designed interconnecting layers. Our design of interconnecting layers does not only focus on maintaining the orthogonal solution processing advantages, but also provides an excellent compatibility in the energy level alignment to allow different absorber materials to be used. Furthermore, we also explored the light management inside the double- and triple-junction tandem solar cells. The study of light management was carried out through optical simulation method based transfer matrix formalism. The intention is to obtain a balanced photocurrent output from each subcells inside the tandem solar cell, thus the minimal recombination loss at the contact of interconnecting

  8. Role of the N-Acetylmuramoyl-l-Alanyl Amidase, AmiA, of Helicobacter pylori in Peptidoglycan Metabolism, Daughter Cell Separation, and Virulence

    PubMed Central

    Chaput, Catherine; Ecobichon, Chantal; Pouradier, Nadine; Rousselle, Jean-Claude; Namane, Abdelkader

    2016-01-01

    The human gastric pathogen, Helicobacter pylori, is becoming increasingly resistant to most available antibiotics. Peptidoglycan (PG) metabolism is essential to eubacteria, hence, an excellent target for the development of new therapeutic strategies. However, our knowledge on PG metabolism in H. pylori remains poor. We have further characterized an isogenic mutant of the amiA gene encoding a N-acetylmuramoyl-l-alanyl amidase. The amiA mutant displayed long chains of unseparated cells, an impaired motility despite the presence of intact flagella and a tolerance to amoxicillin. Interestingly, the amiA mutant was impaired in colonizing the mouse stomach suggesting that AmiA is a valid target in H. pylori for the development of new antibiotics. Using reverse phase high-pressure liquid chromatography, we analyzed the PG muropeptide composition and glycan chain length distribution of strain 26695 and its amiA mutant. The analysis showed that H. pylori lacked muropeptides with a degree of cross-linking higher than dimeric muropeptides. The amiA mutant was also characterized by a decrease of muropeptides carrying 1,6-anhydro-N-acetylmuramic acid residues, which represent the ends of the glycan chains. This correlated with an increase of very long glycan strands in the amiA mutant. It is suggested that these longer glycan strands are trademarks of the division site. Taken together, we show that the low redundancy on genes involved in PG maturation supports H. pylori as an actractive alternative model to study PG metabolism and cell shape regulation. PMID:27447281

  9. Daughters mimic sterile neutrinos (almost!) perfectly

    NASA Astrophysics Data System (ADS)

    Hasenkamp, Jasper

    2014-09-01

    Since only recently, cosmological observations are sensitive to hot dark matter (HDM) admixtures with sub-eV mass, mhdmeff < eV, that are not fully-thermalised, Δ Neff < 1. We argue that their almost automatic interpretation as a sterile neutrino species is neither from theoretical nor practical parsimony principles preferred over HDM formed by decay products (daughters) of an out-of-equilibrium particle decay. While daughters mimic sterile neutrinos in Neff and mhdmeff, there are opportunities to assess this possibility in likelihood analyses. Connecting cosmological parameters and moments of momentum distribution functions, we show that—also in the case of mass-degenerate daughters with indistinguishable main physical effects—the mimicry breaks down when the next moment, the skewness, is considered. Predicted differences of order one in the root-mean-squares of absolute momenta are too small for current sensitivities.

  10. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  11. Sample chambers with mother-daughter mode

    SciTech Connect

    Wilk, P.A.; Gregorich, K.E.; Hoffman, D.C.

    2001-07-12

    A set of eight stand-alone sample chambers with a common interface were constructed at LBNL for improved detection of alpha and fission decay chains over currently used designs. The stainless steel chambers (see Figure 1 for a schematic and Figure 2 for a photograph of a completed chamber) were constructed to allow for low background detection of a daughter event by removal of the sample following the detection of a parent event. This mother-daughter mode of operation has been utilized successfully with our Merry-go-Round (MG) detection system [Gregorich 1994].

  12. Catholic Girls: The Mother-Daughter Nexus

    ERIC Educational Resources Information Center

    Keary, Anne

    2011-01-01

    This paper examines Catholic girlhood, womanhood and the mother-daughter relationship, and its socio-historical construction within a range of disparate discourses. The aim of the paper is to deconstruct dominant patriarchal constructions and images of femininity, particularly those embedded within the doctrine of Catholicism. Moreover, the paper…

  13. White piedra in a mother and daughter.

    PubMed

    Roshan, Anupama S; Janaki, C; Parveen, B

    2009-07-01

    White Piedra is a superficial fungal infection of the hair caused by Trichosporon asahii. It is also known as trichomycosis nodosa or trichomycosis nodularis. We report two cases of White Piedra in a mother and her daughter for the rarity of such occurrence.

  14. Zoonotic Anatrichosomiasis in a Mother and Daughter

    PubMed Central

    Hellstein, John W.; Lanzel, Emily A.

    2014-01-01

    Zoonotic anatrichosomiasis in a mother and daughter is reported. Both presented with a 10-week history of multiple painful oral ulcers. Biopsy specimens revealed the presence of small, coiled trichuroid nematodes with distinctive morphological features, including stichocytes and paired bacillary bands. This represents an unusual infection by a zoonotic Anatrichosoma species. PMID:24899034

  15. Melancholic Mothering: Mothers, Daughters and Family Violence

    ERIC Educational Resources Information Center

    Kenway, Jane; Fahey, Johannah

    2008-01-01

    Through selected theories of melancholia, this paper seeks to shed some fresh interpretive light on the reproduction and disruption of gender, violence and family turmoil across generations of mothers and daughters. The originality of the paper lies in its exploratory deployment of theories of melancholia to consider issues of women, violence and…

  16. Horizons: A Mother-Daughter Mathematics Club.

    ERIC Educational Resources Information Center

    Boling, Kimberly B.; Larson, Carol Novillis

    2002-01-01

    Describes a successful mother/daughter math club started by a third grade teacher which is designed to help participants increase positive feelings about mathematics; further develop problem-solving skills, especially involving construction and spatial visualization tasks; and become familiar with women's contributions to the world of mathematics.…

  17. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers.

    PubMed

    Sofou, Stavroula; Kappel, Barry J; Jaggi, Jaspreet S; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2007-01-01

    Targeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters. Retention of (225)Ac daughters at the target increases efficacy; escape and distribution throughout the body increases toxicity. During circulation, molecular carriers conjugated to (225)Ac cannot retain any of the daughters. We previously proposed liposomal encapsulation of (225)Ac to retain the daughters, whose retention was shown to be liposome-size dependent. However, daughter retention was lower than expected: 22% of theoretical maximum decreasing to 14%, partially due to the binding of (225)Ac to the phospholipid membrane. In this study, Multivesicular liposomes (MUVELs) composed of different phospholipids were developed to increase daughter retention. MUVELs are large liposomes with entrapped smaller lipid-vesicles containing (225)Ac. PEGylated MUVELs stably retained over time 98% of encapsulated (225)Ac. Retention of (213)Bi, the last daughter, was 31% of the theoretical maximum retention of (213)Bi for the liposome sizes studied. MUVELs were conjugated to an anti-HER2/neu antibody (immunolabeled MUVELs) and were evaluated in vitro with SKOV3-NMP2 ovarian cancer cells, exhibiting significant cellular internalization (83%). This work demonstrates that immunolabeled MUVELs might be able to deliver higher fractions of generated alpha-particles per targeted (225)Ac compared to the relative fractions of alpha-particles delivered by (225)Ac-labeled molecular carriers.

  18. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  19. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  20. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  1. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  2. 30 CFR 57.5037 - Radon daughter exposure monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Radon daughter exposure monitoring. 57.5037... Radon daughter exposure monitoring. (a) In all mines at least one sample shall be taken in exhaust mine air by a competent person to determine if concentrations of radon daughters are present....

  3. Gifted Women Scientists: Voices of Mothers and Daughters.

    ERIC Educational Resources Information Center

    Handel, Ruth D.

    1994-01-01

    This paper explores intergenerational socialization into science through case studies of eight research biologists who are mothers of daughters. The study examined ways in which mothers foster or fail to foster orientation to science fields, daughters' perspectives on science professions, influential factors, and the daughters' pride in their…

  4. [The study of daughter rediae Echinostoma caproni (Trematoda) in vitro cultivation].

    PubMed

    Ataev, G L

    2014-01-01

    Methods of in vitro cultivation were used to examine the feeding and reproductive behaviors of daughter rediae of Echinostoma caproni. It was noted that under conditions of in vitro cultivation, rediae fed on tissues of the mollusc Biomphalaria glabrata, on rediae and cercariae of E. daikenaensis and E. congoensis, and on sporocysts and cercariae of Schistosoma mansoni. No cases of cannibalism of daughter rediae E. caproni by their offspring rediae were observed, although they could feed on their own cercariae. When kept in mediae containing (B. glabrata embryonic) Bge cells, rediae E. caproni gradually turned to feeding on these cells and stayed away other objects. Under conditions of in vitro cultivation, daughter rediae E. caproni were capable of forming redial and cercarial embryos. However, no cases of return from producing of cercariae to producing of rediae were observed. These in vitro data confirm the results of previous studies of this species's parthenithae performed in vivo (ATaeB and dp., 2007).

  5. Daughters mimic sterile neutrinos (almost!) perfectly

    SciTech Connect

    Hasenkamp, Jasper

    2014-09-01

    Since only recently, cosmological observations are sensitive to hot dark matter (HDM) admixtures with sub-eV mass, m{sub hdm}{sup eff} < eV, that are not fully-thermalised, Δ N{sub eff} < 1. We argue that their almost automatic interpretation as a sterile neutrino species is neither from theoretical nor practical parsimony principles preferred over HDM formed by decay products (daughters) of an out-of-equilibrium particle decay. While daughters mimic sterile neutrinos in N{sub eff} and m{sub hdm}{sup eff}, there are opportunities to assess this possibility in likelihood analyses. Connecting cosmological parameters and moments of momentum distribution functions, we show that—also in the case of mass-degenerate daughters with indistinguishable main physical effects—the mimicry breaks down when the next moment, the skewness, is considered. Predicted differences of order one in the root-mean-squares of absolute momenta are too small for current sensitivities.

  6. Formation of multilayer aggregates of mammalian cells by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Sebastian, Anil; Buckle, Anne-Marie; Markx, Gerard H.

    2006-09-01

    The formation of aggregates of mammalian cells at interdigitated oppositely castellated electrodes by positive dielectrophoresis was investigated. It is shown that, by using a constant small flow of fresh sorbitol iso-osmotic buffer through the chamber to remove ions leaking from the cells, a high positive DEP force can be maintained throughout the formation of the aggregates. Flow-rate dependent optima were found in the aggregate height as a function of the electrode size. It is shown that at low flow rates the creation of aggregates of mammalian cells with heights over 150 µm is feasible using relatively low voltages (20 Vpk-pk, 1 MHz). The formation of layered aggregates of two specialized cell types—stromal cells and Jurkat T lymphocytes—is demonstrated. The work confirms that dielectrophoresis can be reliably used for the formation of aggregates with three-dimensional architectures, which could be used as artificial microniches for the study of interactions between cells.

  7. Adolescents with Nonresident Fathers: Are Daughters more Disadvantaged than Sons?

    PubMed Central

    Mitchell, Katherine Stamps; Booth, Alan; King, Valarie

    2009-01-01

    This study examined sons' and daughters' involvement with nonresident fathers and associated outcomes (N=4,663). Results indicate that sons and daughters report equal involvement with nonresident fathers on most measures of father investment, although sons report more overnight visits, sports, and movies, and feeling closer to their fathers compared to daughters. Sons and daughters generally benefit from nonresident father involvement in the same way in internalizing and externalizing problems and grades. However, feeling close to one's nonresident father is associated with lower internalizing problems for daughters than sons. These findings suggest that nonresident fathers should be encouraged to be equally involved with their sons and daughters, as such involvement is associated with higher levels of well-being for both sons and daughters. PMID:20161448

  8. Formation and cultivation of medaka primordial germ cells.

    PubMed

    Li, Zhendong; Li, Mingyou; Hong, Ni; Yi, Meisheng; Hong, Yunhan

    2014-07-01

    Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

  9. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells.

    PubMed

    Goulas, Spyros; Conder, Ryan; Knoblich, Juergen A

    2012-10-05

    The adult Drosophila midgut is maintained by intestinal stem cells (ISCs) that generate both self-renewing and differentiating daughter cells. How this asymmetry is generated is currently unclear. Here, we demonstrate that asymmetric ISC division is established by a unique combination of extracellular and intracellular polarity mechanisms. We show that Integrin-dependent adhesion to the basement membrane induces cell-intrinsic polarity and results in the asymmetric segregation of the Par proteins Par-3, Par-6, and aPKC into the apical daughter cell. Cell-specific knockdown and overexpression experiments suggest that increased activity of aPKC enhances Delta/Notch signaling in one of the two daughter cells to induce terminal differentiation. Perturbing this mechanism or altering the orientation of ISC division results in the formation of intestinal tumors. Our data indicate that mechanisms for intrinsically asymmetric cell division can be adapted to allow for the flexibility in lineage decisions that is required in adult stem cells.

  10. Alpha particle spectra and microdosimetry of radon daughters

    SciTech Connect

    Caswell, R.S.; Coyne, J.J.

    1992-12-31

    We are interested in understanding the physics of the process by which radon-daughter alpha particles irradiate cells, leading to the induction of cancer. We are focusing initially on two aspects: the alpha spectra incident upon cells, which are needed for input to biophysical models of cancer induction; and microdosimetric spectra and parameters which give information on radiation quality. Adapting an analytical method previously developed for neutron radiation, we have calculated the alpha-particle slowing-down spectra (the spectra incident upon cells) and, subsequently, the microdosimetric spectra and parameters for various cell nuclei or site diameters. Results will be presented from three modes of program operation. MODE 1 is for the thin, plane source of radon-daughter activity adjacent to the epithelium. MODE 2 is for the thick source layer (the mucous-serous layer) adjacent to the epithelium. MODE4 is for cylindrical airways of various radii, lined by the mucous-serous layer. MODE 1 is most useful for understanding the problem; MODE 4 is most anatomically relevant. MODE 3 is not discussed in this paper. Alpha-particle spectra and microdosimetric spectra and parameters are studied as a function of cell depth, {sup 218}Po/{sup 214}Po ratio, airway radius, and cell nucleus or the site size. Also available from the calculation is mean dose as a function of depth below the airway surface. The results described here are available on personal computer diskettes. We are beginning to compare our studies with the calculations of other workers and plan to extend the calculations to the nanometer target level.

  11. Closure of supporting cell scar formations requires dynamic actin mechanisms

    PubMed Central

    Hordichok, Andrew J.; Steyger, Peter S.

    2007-01-01

    In many vertebrate inner ear sensory epithelia, dying sensory hair cells are extruded, and the apices of surrounding supporting cells converge to re-seal the epithelial barrier between the electrochemically-distinct endolymph and perilymph. These cellular mechanisms remain poorly understood. Dynamic microtubular mechanisms have been proposed for hair cell extrusion; while contractile actomyosin-based mechanisms are required for cellular extrusion and closure in epithelial monolayers. The hypothesis that cytoskeletal mechanisms are required for hair cell extrusion and supporting cell scar formation was tested using bullfrog saccules incubated with gentamicin (6 hours), and allowed to recover (18 hours). Explants were then fixed, labeled for actin and cytokeratins, and viewed with confocal microscopy. To block dynamic cytoskeletal processes, disruption agents for microtubules (colchicine, paclitaxel) myosin (Y-27632, ML-9) or actin (cytochalasin D, latrunculin A) were added during treatment and recovery. Microtubule disruption agents had no effect on hair cell extrusion or supporting cell scar formation. Myosin disruption agents appeared to slow down scar formation but not hair cell extrusion. Actin disruption agents blocked scar formation, and largely prevented hair cell extrusion. These data suggest that actin-based cytoskeletal processes are required for hair cell extrusion and supporting cell scar formation in bullfrog saccules. PMID:17716843

  12. User`s manual for the DAD-1 data acquisition daughter board for the SuperCard-2

    SciTech Connect

    Ferron, J.R.

    1993-05-01

    A detailed description of how to use the DAD-1 data acquisition daughter board is given. The DAD-1 daughter board is used with the SuperCard-2, a VME format processor board manufactured by CSP Inc. that is based on the Intel i860 microprocessor. The daughter board provides high speed acquisition of digital data through a general purpose input port. Data are transferred through direct memory access operations to the memory on the SuperCard-2 board at a rate up to 40 million, 14 bit samples per second. A first-in, first-out memory is used to buffer the data during the transfer. Several different data acquisition operating modes are available that make a combination of a SuperCard-2 processor board and a DAD-1 daughter board suitable for a wide range of real time data analysis and feedback control functions.

  13. Shared vision between fathers and daughters in family businesses: the determining factor that transforms daughters into successors

    PubMed Central

    Overbeke, Kathy K.; Bilimoria, Diana; Somers, Toni

    2015-01-01

    Family businesses are critical to the United States economy, employing 63% of the workforce and generating 57% of GDP (University of Vermont, 2014). Family business continuity, however, remains elusive as approximately 70% of family businesses do not survive the second generation (Poza, 2013). In order to augment our understanding of how next generation leaders are chosen in family businesses, we examine daughter succession. Using a sample of pairs of family business fathers and daughters and drawing on an earlier study of the dearth of successor daughters in family businesses (Overbeke et al., 2013), we reveal that shared vision between fathers and daughters is central to daughter succession. Self-efficacy and gender norms influence shared vision and when fathers and daughters share a vision for the future of the company, daughters are likely to be transformed into successors. PMID:26074830

  14. Shared vision between fathers and daughters in family businesses: the determining factor that transforms daughters into successors.

    PubMed

    Overbeke, Kathy K; Bilimoria, Diana; Somers, Toni

    2015-01-01

    Family businesses are critical to the United States economy, employing 63% of the workforce and generating 57% of GDP (University of Vermont, 2014). Family business continuity, however, remains elusive as approximately 70% of family businesses do not survive the second generation (Poza, 2013). In order to augment our understanding of how next generation leaders are chosen in family businesses, we examine daughter succession. Using a sample of pairs of family business fathers and daughters and drawing on an earlier study of the dearth of successor daughters in family businesses (Overbeke et al., 2013), we reveal that shared vision between fathers and daughters is central to daughter succession. Self-efficacy and gender norms influence shared vision and when fathers and daughters share a vision for the future of the company, daughters are likely to be transformed into successors.

  15. African American mother-daughter communication about sex and daughters' sexual behavior: does college racial composition make a difference?

    PubMed

    Bynum, Mia Smith

    2007-04-01

    This study examined the influence of African American mothers' communication about sexual topics on the sexual attitudes and behavior of their college-enrolled daughters. Daughters were enrolled at a historically Black college/university (HBCU) or a predominantly White institution (PWI) to assess whether and how college racial context might affect daughters' sexual attitudes and behavior. Findings indicated that daughters at the HBCU had less permissive attitudes about premarital sex than their counterparts at the PWI. This result was especially true for daughters of mothers with more conservative attitudes about premarital sex and who discussed such topics infrequently. Last, the combination of positive mother-daughter communication and fewer discussions about sexual topics resulted in lower levels of sexual experience among the daughters.

  16. Sucrose-mediated giant cell formation in the genus Neisseria.

    PubMed

    Johnson, K G; McDonald, I J

    1976-03-01

    Growth of Neisseria perflava, Neisseria cinerea, and Neisseria sicca strain Kirkland in media supplemented with sucrose (0.5 to 5.0% w/v) resulted in the formation of giant cells. Response to sucrose was specific in that a variety of other carbohydrates did not mediate giant cell formation. Giant cells appeared only under growth conditions and did not lyse upon transfer to medium lacking sucrose or upon resuspension in hypotonic media. Reversion of giant to normal cells occurred when giant cells were used as inocula and allowed to multiply in media lacking sucrose.

  17. A Kinetic Model for Cell Damage Caused by Oligomer Formation.

    PubMed

    Hong, Liu; Huang, Ya-Jing; Yong, Wen-An

    2015-10-06

    It is well known that the formation of amyloid fiber may cause invertible damage to cells, although the underlying mechanism has not been fully understood. In this article, a microscopic model considering the detailed processes of amyloid formation and cell damage is constructed based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. By taking the maximum entropy principle, this microscopic model in the form of infinite mass-action equations together with two reaction-convection partial differential equations (PDEs) has been greatly coarse-grained into a macroscopic system consisting of only five ordinary differential equations (ODEs). With this simple model, the effects of primary nucleation, elongation, fragmentation, and protein and seeds concentration on amyloid formation and cell damage have been extensively explored and compared with experiments. We hope that our results will provide new insights into the quantitative linkage between amyloid formation and cell damage.

  18. Radon and radon daughter measurements in solar buildings.

    PubMed

    George, A C; Knutson, E O; Franklin, H

    1983-08-01

    Measurements of radon and radon daughters in 11 buildings in five states, using active or passive solar heating, showed no significant excess in concentrations over the levels measured in buildings with conventional heating systems. Radon levels in two buildings using rock storage in their active solar systems exceeded the U.S. Nuclear Regulatory Commission's limit of 3 pCi/l. for continuous exposure in uncontrolled areas. In the remainder of the buildings, radon concentrations were found to be at levels considered to be normal. It appears that the slightly elevated indoor radon concentrations result from the local geological formations and from the tightening of the buildings rather than as a result of the solar heating technology.

  19. Parents' personality clusters and eating disordered daughters' personality and psychopathology.

    PubMed

    Amianto, Federico; Ercole, Roberta; Marzola, Enrica; Abbate Daga, Giovanni; Fassino, Secondo

    2015-11-30

    The present study explores how parents' personality clusters relate to their eating disordered daughters' personality and psychopathology. Mothers and fathers were tested with the Temperament Character Inventory. Their daughters were assessed with the following: Temperament and Character Inventory, Eating Disorder Inventory-2, Symptom Checklist-90, Parental Bonding Instrument, Attachment Style Questionnaire, and Family Assessment Device. Daughters' personality traits and psychopathology scores were compared between clusters. Daughters' features were related to those of their parents. Explosive/adventurous mothers were found to relate to their daughters' borderline personality profile and more severe interoceptive awareness. Mothers' immaturity was correlated to their daughters' higher character immaturity, inadequacy, and depressive feelings. Fathers who were explosive/methodic correlated with their daughters' character immaturity, severe eating, and general psychopathology. Fathers' character immaturity only marginally related to their daughters' specific features. Both parents' temperament clusters and mothers' character clusters related to patients' personality and eating psychopathology. The cluster approach to personality-related dynamics of families with an individual affected by an eating disorder expands the knowledge on the relationship between parents' characteristics and daughters' illness, suggesting complex and unique relationships correlating parents' personality traits to their daughters' disorder.

  20. Effects of asbestos fibers on cell division, cell survival, and formation of thioguanine-resistant mutants in Chinese hamster ovary cells

    SciTech Connect

    Kenne, K.; Ljungquist, S.; Ringertz, N.R.

    1986-04-01

    The ability of crocidolite fibers to induce point mutations and mitotic abnormalities in Chinese hamster ovary (CHO) cells was examined in cell cultures. The purpose has been to study the possibilities for establishing in vitro test methods to quantify genetic damage induced by asbestos and other mineral fibers. Results obtained with the CHO/hypoxanthine guanine phosphoribosyl transferase system indicated that crocidolite fibers per se do not significantly increase the number of thioguanine-resistant mutants. Crocidolite fibers also failed to potentiate the mutagenicity of benzo(a)pyrene. Time-lapse cinematography and microscopy showed that asbestos (crocidolite) fibers were markedly cytotoxic. Among surviving cells some underwent abnormal cell divisions which resulted in multi- and micronucleate cells. Many cells that contained a few asbestos fibers, however, underwent mitosis and successfully formed two mononucleate daughter cells capable of further divisions. Individual, fiber-containing cells were examined by time-lapse television recordings for 4-5 days. During this time period some cells underwent six divisions and generated an almost normal number of daughter cells. Cells which contained fibers that were longer or equivalent to the diameter of the mitotic cell (20 ..mu..m), showed different forms of mitotic abnormalities. The frequency of multinucleate cells was drastically increased following exposure to asbestos fibers. Only rarely, however, did these cells divide to produce viable daughter cells capable of continued cell multiplication. The frequency of multinucleate cells was dependent on the dose of exposure to asbestos fibers and could possible be used as an index of the degree of mitotic disturbances induced by mineral fibers.

  1. The cell equator - more than poles apart.

    PubMed

    Dhar, Pawan

    2004-03-01

    Cytokinesis is the last ritual of a dividing cell. Determining the position and horizon of the cell furrow is important for equal distribution of cytoplasmic content between the two daughter cells. The traditional view promotes a classical sequence of bipolar spindle formation followed by cytokinesis. However, a new understanding has recently emerged that uncouples these events. The cell-furrow formation seems to ignore spindle polarity and is instead dependent on the stability and dynamics of cortical microtubules.

  2. Membrane tether formation from blebbing cells.

    PubMed Central

    Dai, J; Sheetz, M P

    1999-01-01

    Membrane tension has been proposed to be important in regulating cell functions such as endocytosis and cell motility. The apparent membrane tension has been calculated from tether forces measured with laser tweezers. Both membrane-cytoskeleton adhesion and membrane tension contribute to the tether force. Separation of the plasma membrane from the cytoskeleton occurs in membrane blebs, which could remove the membrane-cytoskeleton adhesion term. In renal epithelial cells, tether forces are significantly lower on blebs than on membranes that are supported by cytoskeleton. Furthermore, the tether forces are equal on apical and basolateral blebs. In contrast, tether forces from membranes supported by the cytoskeleton are greater in apical than in basolateral regions, which is consistent with the greater apparent cytoskeletal density in the apical region. We suggest that the tether force on blebs primarily contains only the membrane tension term and that the membrane tension may be uniform over the cell surface. Additional support for this hypothesis comes from observations of melanoma cells that spontaneously bleb. In melanoma cells, tether forces on blebs are proportional to the radius of the bleb, and as large blebs form, there are spikes in the tether force in other cell regions. We suggest that an internal osmotic pressure inflates the blebs, and the pressure calculated from the Law of Laplace is similar to independent measurements of intracellular pressures. When the membrane tension term is subtracted from the apparent membrane tension over the cytoskeleton, the membrane-cytoskeleton adhesion term can be estimated. In both cell systems, membrane-cytoskeleton adhesion was the major factor in generating the tether force. PMID:10585959

  3. Foam cell formation by particulate matter (PM) exposure: a review.

    PubMed

    Cao, Yi; Long, Jimin; Ji, Yuejia; Chen, Gui; Shen, Yuexin; Gong, Yu; Li, Juan

    2016-11-01

    Increasing evidence suggests that exposure of particulate matter (PM) from traffic vehicles, e.g., diesel exhaust particles (DEP), was associated with adverse vascular effects, e.g., acceleration of atherosclerotic plaque progression. By analogy, engineered nanoparticles (NPs) could also induce similar effects. The formation of lipid laden foam cells, derived predominately from macrophages and vascular smooth muscle cells (VSMC), is closely associated with the development of atherosclerosis and adverse vascular effects. We reviewed current studies about particle exposure-induced lipid laden foam cell formation. In vivo studies using animal models have shown that exposure of air pollution by PM promoted lipid accumulation in alveolar macrophages or foam cells in plaques, which was likely associated with pulmonary inflammation or systemic oxidative stress, but not blood lipid profile. In support of these findings, in vitro studies showed that direct exposure of cultured macrophages to DEP or NP exposure, with or without further exposure to external lipids, promoted intracellular lipid accumulation. The mechanisms remained unknown. Although a number studies found increased reactive oxygen species (ROS) or an adaptive response to oxidative stress, the exact role of oxidative stress in mediating particle-induced foam cell formation requires future research. There is currently lack of reports concerning VSMC as a source for foam cells induced by particle exposure. In the future, it is necessary to explore the role of foam cell formation in particle exposure-induced atherosclerosis development. In addition, the formation of VSMC derived foam cells by particle exposure may also need extensive studies.

  4. Chloride influx provokes lamellipodium formation in microglial cells.

    PubMed

    Zierler, Susanna; Frei, Eva; Grissmer, Stephan; Kerschbaum, Hubert H

    2008-01-01

    Lamellipodium extension and retraction is the driving force for cell migration. Although several studies document that activation of chloride channels are essential in cell migration, little is known about their contribution in lamellipodium formation. To address this question, we characterized chloride channels and transporters by whole cell recording and RT-PCR, respectively, as well as quantified lamellipodium formation in murine primary microglial cells as well as the microglial cell-line, BV-2, using time-lapse microscopy. The repertoire of chloride conducting pathways in BV-2 cells included, swelling-activated chloride channels as well as the KCl cotransporters, KCC1, KCC2, KCC3, and KCC4. Swelling-activated chloride channels were either activated by a hypoosmotic solution or by a high KCl saline, which promotes K(+) and Cl(-) influx instead of efflux by KCCs. Conductance through swelling-activated chloride channels was completely blocked by flufenamic acid (200 microM), SITS (1 mM) and DIOA (10 microM). By exposing primary microglial cells or BV-2 cells to a high KCl saline, we observed a local swelling, which developed into a prominent lamellipodium. Blockade of chloride influx by flufenamic acid (200 microM) or DIOA (10 microM) as well as incubation of cells in a chloride-free high K(+) saline suppressed formation of a lamellipodium. We assume that local swellings, established by an increase in chloride influx, are a general principle in formation of lamellipodia in eukaryotic cells.

  5. Suppression of T cell-induced osteoclast formation

    SciTech Connect

    Karieb, Sahar; Fox, Simon W.

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  6. Cultural and noncultural predictors of health outcomes in Korean daughter and daughter-in-law caregivers.

    PubMed

    Kim, Jin-Sun; Lee, Eun-Hyun

    2003-01-01

    In Western cultures, adverse health effects resulting from providing care for impaired elders is well documented for family caregivers, but little is known about the health of Korean caregivers. This study examined the level of depression and physical health of 120 daughter and daughter-in-law caregivers who cared for cognitively or functionally impaired elderly in Korea. It was hypothesized that cultural factors would have a greater effect on caregivers' health outcomes than noncultural factors, but, contrary to this expectation, the effects of noncultural factors were found to outweigh those of cultural factors. Moreover, the caregivers in this study reported a relatively high level of depression, and more caregivers rated their own health as "poor" than did Western caregivers in previous studies. Family caregiving for the impaired elderly is stressful and negatively affects Korean caregivers' health outcomes regardless of societal values such as filial piety and familism regarding parent care in Korea. Culturally acceptable and sensible support programs may be useful in sustaining long-term care at home by Korean daughter and daughter-in-law caregivers. Further family caregiving studies in the Korean sociocultural context are recommended.

  7. Mothers and Daughters Go to Work: The Relationship of Mothers' Occupations to Daughters' Career Aspirations.

    ERIC Educational Resources Information Center

    Mickelson, Roslyn Arlin; Velasco, Anne E.

    This paper examines maternal influences on daughters' choices of occupations. Using a survey of high school seniors in Charlotte (North Carolina) as the primary data source, the career choices of adolescent girls and the influences of their mothers' occupations on their occupational expectations were studied. Previous research has suggested that…

  8. Overview of current radon and radon daughter research at LBL

    SciTech Connect

    Not Available

    1983-01-01

    This report provides a brief summary of radon and radon daughter research at Lawrence Berkeley Laboratory. The radon and radon daughter research program has two broad goals: (1) the study of sources of radon and its subsequent transport into houses, and (2) research on the behavior of radon daughters in indoor environments. Additional research effort is directed to several auxiliary areas, including development of instrumentation and monitoring techniques, studies of indoor air movement, and measurement and control of indoor particulate concentrations.

  9. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1974-01-01

    A method of removing radon and radon daughter elements from an atmosphere containing these elements by passing the atmosphere through a bed of fluorinating compound whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. These fluorides adhere to the fluorinating compound and are thus removed from the atmosphere which may then be recirculated. A method for recovering radon and separating radon from its daughter elements is also described. (Official Gazette)

  10. Signaling events in pathogen-induced macrophage foam cell formation.

    PubMed

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.

  11. Feminist attitudes and mother-daughter relationships in adolescence.

    PubMed

    Notar, M; McDaniel, S A

    1986-01-01

    In spite of the growing amount of research on women's issues, there are few empirical studies of mother-daughter relationships, and almost none on the effects of the major women's movement of our times on relationships between mothers and daughters. In this study of late adolescent daughters' perceptions of their relationships with their mothers, two alternative hypotheses are examined: (1) feminism, with its emphasis on bonding among women, strengthens relations between adolescent daughters and their mothers, or (2) feminism as a force of social change, both attitudinal and behavioral, weakens the adolescent daughter-mother relationship. Based on 102 questionnaires completed by university-age women in the winter of 1983, it was found that the majority of daughters who have a good relationship with their mothers see both themselves and their mothers as feminist. However, these daughters do not attribute their positive mother-daughter relationship explicitly to feminism. For the minority of daughters who claim to have a poor relationship with their mothers, they attribute the problems to feminism.

  12. Mother-daughter in vitro fertilization triplet surrogate pregnancy.

    PubMed

    Michelow, M C; Bernstein, J; Jacobson, M J; McLoughlin, J L; Rubenstein, D; Hacking, A I; Preddy, S; Van der Wat, I J

    1988-02-01

    A successful triplet pregnancy has been established in a surrogate gestational mother following the transfer of five embryos fertilized in vitro. The oocytes were donated by her biological daughter, and the sperm obtained from the daughter's husband. The daughter's infertility followed a total abdominal hysterectomy performed for a postpartum hemorrhage as a result of a placenta accreta. Synchronization of both their menstrual cycles was obtained using oral contraceptive suppression for 2 months, followed by stimulation of both the surrogate gestational mother and her daughter such that embryo transfer would occur at least 48 hr after the surrogate gestational mother's own ovulation. This case raises a number of medical, social, psychological, and ethical issues.

  13. The Formation of Germ Cell for Organizational Learning

    ERIC Educational Resources Information Center

    Ivaldi, Silvia; Scaratti, Giuseppe

    2016-01-01

    Purpose: The aim of the paper is to analyze the process of "germ cell" formation by framing it as an opportunity for promoting organizational learning and transformation. The paper aims to specifically answer two research questions: Why does the "germ cell" have a pivotal role in organization's transformation? and Which…

  14. Cell-fusion method to visualize interphase nuclear pore formation.

    PubMed

    Maeshima, Kazuhiro; Funakoshi, Tomoko; Imamoto, Naoko

    2014-01-01

    In eukaryotic cells, the nucleus is a complex and sophisticated organelle that organizes genomic DNA to support essential cellular functions. The nuclear surface contains many nuclear pore complexes (NPCs), channels for macromolecular transport between the cytoplasm and nucleus. It is well known that the number of NPCs almost doubles during interphase in cycling cells. However, the mechanism of NPC formation is poorly understood, presumably because a practical system for analysis does not exist. The most difficult obstacle in the visualization of interphase NPC formation is that NPCs already exist after nuclear envelope formation, and these existing NPCs interfere with the observation of nascent NPCs. To overcome this obstacle, we developed a novel system using the cell-fusion technique (heterokaryon method), previously also used to analyze the shuttling of macromolecules between the cytoplasm and the nucleus, to visualize the newly synthesized interphase NPCs. In addition, we used a photobleaching approach that validated the cell-fusion method. We recently used these methods to demonstrate the role of cyclin-dependent protein kinases and of Pom121 in interphase NPC formation in cycling human cells. Here, we describe the details of the cell-fusion approach and compare the system with other NPC formation visualization methods.

  15. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  16. The role of Cbln1 on Purkinje cell synapse formation.

    PubMed

    Ito-Ishida, Aya; Okabe, Shigeo; Yuzaki, Michisuke

    2014-06-01

    Cbln1 is a glycoprotein which belongs to the C1q family. In the cerebellum, Cbln1 is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel fibers, the axons of the granule cells. In this update article, we will describe the molecular mechanisms by which Cbln1 induces synapse formation and will review our findings on the axonal structural changes which occur specifically during this process. We will also describe our recent finding that Cbln1 has a suppressive role in inhibitory synapse formation between Purkinje cells and molecular layer interneurons. Our results have revealed that Cbln1 plays an essential role to establish parallel fiber-Purkinje cell synapses and to regulate balance between excitatory and inhibitory input on Purkinje cells.

  17. Enhanced product formation in continuous fermentations with microbial cell recycle

    SciTech Connect

    Bull, D.N.; Young, M.D.

    1981-02-01

    The effect of partial recycle of microbial cells on the operation of a chemostat has been investigated for two fermentations. Stable steady states with and without partial cell recycle were obtained for the conversion of d-sorbitol to L-sorbose by Gluconobacter oxydans subsp. suboxydans 1916B and for the conversion of glucose to 2-ketogluconic acid by Serratia marcescens NRRl B-486. The employment of partial cell recycle dramatically increased product formation rates for both fermentations.

  18. Germ cell formation from embryonic stem cells and the use of somatic cell nuclei in oocytes.

    PubMed

    Pelosi, Emanuele; Forabosco, Antonino; Schlessinger, David

    2011-03-01

    Embryonic stem cells (ESCs) have remarkable properties of pluripotency and self-renewal, along with the retention of chromosomal integrity. Germ cells function as a kind of "transgenerational stem cells," transmitting genetic information from one generation to the next. The formation of putative primordial germ cells (PGCs) and germ cells from mouse and human ESCs (hESCs) has, in fact, been shown, and the apparent derivation of functional mouse male gametes has also been described. Additionally, investigators have successfully reprogrammed somatic nuclei into a pluripotent state by inserting them into ESCs or oocytes. This would enable the generation of ESCs genetically identical to the somatic cell donor and their use in cell therapy. However, these methodologies are still inefficient and their mechanisms poorly understood. Until full comprehension of these processes is obtained, clinical applications remain remote. Nevertheless, they represent promising tools in the future, enhancing methods of therapeutic cloning and infertility treatment.

  19. The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast.

    PubMed

    Fraschini, Roberta; Venturetti, Marianna; Chiroli, Elena; Piatti, Simonetta

    2008-06-01

    During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process. A surveillance device called the SPOC (spindle position checkpoint) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability.

  20. Atmosphere purification of radon and radon daughter elements

    DOEpatents

    Stein, L.

    1973-12-11

    A method for purifying an atmosphere of radon and radon daughter elements which may be contained therein by contacting the atmosphere with a fluorinating solution, whereby the radon and radon daughters are oxidized to their respective fluorides is discussed. The fluorides dissolve in the fluorinating solutlon and are removed from the atmosphere, which may then be recirculated. (Official Gazette)

  1. Incest and Its Meaning: The Perspectives of Fathers and Daughters.

    ERIC Educational Resources Information Center

    Phelan, Patricia

    1995-01-01

    Interviews with 40 fathers and stepfathers and 44 biologic daughters and stepdaughters involved in incestuous activity revealed their recollection of events, their thoughts, and interpretations. Fathers' thoughts were dominated by themes of sexual gratification, control, power, anger, and rights and responsibilities; daughters reported disbelief,…

  2. Posttraumatic Stress in Women with Breast Cancer and Their Daughters.

    ERIC Educational Resources Information Center

    Boyer, Bret A.; Bubel, Denise; Jacobs, Sheri R.; Knolls, Michelle L.; Harwell, Valerie D.; Goscicka, Magdalena; Keegan, Anne

    2002-01-01

    Twenty-one percent of the surveyed women (N=133) with cancer and 13% of their daughters (N=64) reported symptoms of posttraumatic stress disorder (PTSD). Prevalence of PTSD symptoms in daughters appears comparable to women with breast cancer. Discusses intergenerational patterns in reaction to breast cancer. (JDM)

  3. Adolescents with Nonresident Fathers: Are Daughters More Disadvantaged than Sons?

    ERIC Educational Resources Information Center

    Mitchell, Katherine Stamps; Booth, Alan; King, Valarie

    2009-01-01

    This study examined sons' and daughters' involvement with nonresident fathers and associated outcomes (N = 4,663). Results indicated that sons and daughters reported equal involvement with nonresident fathers on most measures of father investment, although sons reported more overnight visits, sports, and movies and feeling closer to their fathers…

  4. Bilateral familial Hirayama disease in a father and daughter

    PubMed Central

    Pandey, Sanjay; Jain, Shruti

    2016-01-01

    We are reporting a case of bilateral familial Hirayama disease where a father and daughter are the affected members of the family with the similar distribution of their weakness and wasting. To the best of our knowledge, bilateral familial Hirayama disease has not been described in father and daughter. PMID:27293344

  5. Impact of Elderly Mother's Death on Middle Age Daughters.

    ERIC Educational Resources Information Center

    Moss, Miriam S.; And Others

    1993-01-01

    Examined middle aged daughters' (n=107) responses to death of their mother. In first six months of bereavement, many daughters experienced themes of holding on and letting go. Depression, grief, somatic reactions, impact on sense of self, acceptance of death, and ways in which ties with mother endure were differentially associated with…

  6. Pulp stem cells: implication in reparative dentin formation.

    PubMed

    Dimitrova-Nakov, Sasha; Baudry, Anne; Harichane, Yassine; Kellermann, Odile; Goldberg, Michel

    2014-04-01

    Many dental pulp stem cells are neural crest derivatives essential for lifelong maintenance of tooth functions and homeostasis as well as tooth repair. These cells may be directly implicated in the healing process or indirectly involved in cell-to-cell diffusion of paracrine messages to resident (pulpoblasts) or nonresident cells (migrating mesenchymal cells). The identity of the pulp progenitors and the mechanisms sustaining their regenerative capacity remain largely unknown. Taking advantage of the A4 cell line, a multipotent stem cell derived from the molar pulp of mouse embryo, we investigated the capacity of these pulp-derived precursors to induce in vivo the formation of a reparative dentin-like structure upon implantation within the pulp of a rodent incisor or a first maxillary molar after surgical exposure. One month after the pulp injury alone, a nonmineralized fibrous matrix filled the mesial part of the coronal pulp chamber. Upon A4 cell implantation, a mineralized osteodentin was formed in the implantation site without affecting the structure and vitality of the residual pulp in the central and distal parts of the pulp chamber. These results show that dental pulp stem cells can induce the formation of reparative dentin and therefore constitute a useful tool for pulp therapies. Finally, reparative dentin was also built up when A4 progenitors were performed by alginate beads, suggesting that alginate is a suitable carrier for cell implantation in teeth.

  7. Kinetics of Formation and Asymmetrical Distribution of Hsp104-Bound Protein Aggregates in Yeast.

    PubMed

    Paoletti, Camille; Quintin, Sophie; Matifas, Audrey; Charvin, Gilles

    2016-04-12

    Budding yeast cells have a finite replicative life span; that is, a mother cell produces only a limited number of daughter cells before it slows division and dies. Despite the gradual aging of the mother cell, all daughters are born rejuvenated and enjoy a full replicative lifespan. It has been proposed that entry of mother cells into senescence is driven by the progressive accumulation and retention of damaged material, including protein aggregates. This additionally allows the daughter cells to be born damage free. However, the mechanism underlying such asymmetrical segregation of protein aggregates by mother and daughter cells remains controversial, in part because of the difficulties inherent in tracking the dynamics and fate of protein aggregates in vivo. To overcome such limitations, we have developed single-cell real-time imaging methodology to track the formation of heat-induced protein aggregates in otherwise unperturbed dividing cells. By combining the imaging data with a simple computational model of protein aggregation, we show that the establishment of asymmetrical partitioning of protein aggregates upon division is driven by the large bud-specific dilution rate associated with polarized growth and the absence of significant mother/bud exchange of protein aggregates during the budded phase of the cell cycle. To our knowledge, this study sheds new light on the mechanism of establishment of a segregation bias, which can be accounted for by simple physical arguments.

  8. Cell Adhesion in Epidermal Development and Barrier Formation

    PubMed Central

    Sumigray, Kaelyn D.; Lechler, Terry

    2015-01-01

    Cell–cell adhesions are necessary for structural integrity and barrier formation of the epidermis. Here, we discuss insights from genetic and cell biological studies into the roles of individual cell–cell junctions and their composite proteins in regulating epidermal development and function. In addition to individual adhesive functions, we will discuss emerging ideas on mechanosensation/transduction of junctions in the epidermis, noncanonical roles for adhesion proteins, and crosstalk/interdependencies between the junctional systems. These studies have revealed that cell adhesion proteins are connected to many aspects of tissue physiology including growth control, differentiation, and inflammation. PMID:25733147

  9. Modeling cell-death patterning during biofilm formation

    NASA Astrophysics Data System (ADS)

    Ghosh, Pushpita; Ben-Jacob, Eshel; Levine, Herbert

    2013-12-01

    Self-organization by bacterial cells often leads to the formation of a highly complex spatially-structured biofilm. In such a bacterial biofilm, cells adhere to each other and are embedded in a self-produced extracellular matrix (ECM). Bacillus substilis bacteria utilize localized cell-death patterns which focuses mechanical forces to form wrinkled sheet-like structures in three dimensions. A most intriguing feature underlying this biofilm formation is that vertical buckling and ridge location is biased to occur in region of high cell-death. Here we present a spatially extended model to investigate the role of the bacterial secreted ECM during the biofilm formation and the self-organization of cell-death. Using this reaction-diffusion model we show that the interaction between the cell's motion and the ECM concentration gives rise to a self-trapping instability, leading to variety of cell-death patterns. The resultant spot patterns generated by our model are shown to be in semi-quantitative agreement with recent experimental observation.

  10. Aggregation of red blood cells: From rouleaux to clot formation

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Steffen, Patrick; Svetina, Saša

    2013-06-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  11. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  12. In vitro myelin formation using embryonic stem cells

    PubMed Central

    Kerman, Bilal E.; Kim, Hyung Joon; Padmanabhan, Krishnan; Mei, Arianna; Georges, Shereen; Joens, Matthew S.; Fitzpatrick, James A. J.; Jappelli, Roberto; Chandross, Karen J.; August, Paul; Gage, Fred H.

    2015-01-01

    Myelination in the central nervous system is the process by which oligodendrocytes form myelin sheaths around the axons of neurons. Myelination enables neurons to transmit information more quickly and more efficiently and allows for more complex brain functions; yet, remarkably, the underlying mechanism by which myelination occurs is still not fully understood. A reliable in vitro assay is essential to dissect oligodendrocyte and myelin biology. Hence, we developed a protocol to generate myelinating oligodendrocytes from mouse embryonic stem cells and established a myelin formation assay with embryonic stem cell-derived neurons in microfluidic devices. Myelin formation was quantified using a custom semi-automated method that is suitable for larger scale analysis. Finally, early myelination was followed in real time over several days and the results have led us to propose a new model for myelin formation. PMID:26015546

  13. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  14. Solvent effect on columnar formation in solar-cell geometry

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Sosa-Vargas, L.; Takanishi, Y.; Kim, K. H.; Kim, Y. S.; Park, Y. W.; Yamamoto, J.; Labardi, M.; Lagerwall, J. P. F.; Shimizu, Y.; Scalia, G.

    2016-03-01

    The efficiency of the conduction of photocurrent in discotic liquid crystals is known to depend on the quality of the columnar organization. Solvents have shown to be able to influence the formation of wire structures on substrates promoting very long and ordered wired formations or bulkier structures depending on the affinity of the solvent with parts of the molecular structure of discotics. Here we present a study on the effect of solvents when the liquid crystal is confined between two substrates with the columns running perpendicular to them, geometry used in solar cells. We focused on toluene and dodecane, solvents that have shown to promote on substrates the formation of aligned and long nanowires and bulk large and isolated fibers, respectively. The phase transition behavior indicates that toluene does not interfere with the columnar formation while dodecane strongly influence increasing the disorder in the structure.

  15. Multiwell cell culture plate format with integrated microfluidic perfusion system

    NASA Astrophysics Data System (ADS)

    Domansky, Karel; Inman, Walker; Serdy, Jim; Griffith, Linda G.

    2006-01-01

    A new cell culture analog has been developed. It is based on the standard multiwell cell culture plate format but it provides perfused three-dimensional cell culture capability. The new capability is achieved by integrating microfluidic valves and pumps into the plate. The system provides a means to conduct high throughput assays for target validation and predictive toxicology in the drug discovery and development process. It can be also used for evaluation of long-term exposure to drugs or environmental agents or as a model to study viral hepatitis, cancer metastasis, and other diseases and pathological conditions.

  16. Activity ratios of thorium daughters in vivo

    SciTech Connect

    Toohey, R.E.; Rundo, J.; Sha, J.Y.; Essling, M.A.; Pedersen, J.C.; Slane, J.M.

    1984-01-01

    A computerized method of least squares has been used to analyze the /sup 228/Ac and /sup 212/Pb-/sup 212/Bi and daughter ..gamma..-ray spectra obtained in vivo from 133 former workers at a thorium refinery. In addition, the exhalation rate of /sup 220/Rn was determined for each subject and expressed as pCi of emanating /sup 224/Ra. This value was added to the /sup 212/Pb value determined from the ..gamma..-ray measurements to obtain the total /sup 224/Ra present, and the ratio of /sup 224/Ra to /sup 228/Ac was calculated. Values of the ratio ranged from 0.52 +- 0.32 to 2.1 +- 1.7, with a weighted mean of 0.92 +- 0.17. However, it appears that the ratio observed in a given case is characteristic for that case alone; the computed mean value may not be meaningful. The least squares fitting procedure and the overall calibration of the counting system were validated by measurements of /sup 224/Ra in the lungs of one subject postmortem, compared with results obtained from the same subject in vivo. 6 references, 5 figures.

  17. Spectroscopy of 253No and its daughters

    NASA Astrophysics Data System (ADS)

    Lopez-Martens, A.; Wiborg-Hagen, T.; Hauschild, K.; Chelnokov, M. L.; Chepigin, V. I.; Curien, D.; Dorvaux, O.; Drafta, G.; Gall, B.; Görgen, A.; Guttormsen, M.; Isaev, A. V.; Izosimov, I. N.; Kabachenko, A. P.; Katrasev, D. E.; Kutsarova, T.; Kuznetsov, A. N.; Larsen, A. C.; Malyshev, O. N.; Minkova, A.; Mullins, S.; Nyhus, H. T.; Pantelica, D.; Piot, J.; Popeko, A. G.; Saro, S.; Scintee, N.; Siem, S.; Syed, N. U. H.; Sokol, E. A.; Svirikhin, A. I.; Yeremin, A. V.

    2011-02-01

    New high-statistics data have been obtained on the decay properties of 253No and its daughters using the reaction 207Pb(48Ca, 2n)253No. This was made possible thanks to an improved transmission of fusion-evaporation residues through the VASSILISSA recoil separator and an increased efficiency of the GABRIELA detector setup. The decay schemes of 253No and 249Fm have been revisited. The known level scheme of 249Fm has been confirmed, including a new level at 669 keV excitation energy. The observation of L X-rays in coincidence with the α decay of 249Fm gives additional support to the ground-state configuration of 1/2[631] instead of 5/2[622] for 245Cf. In both 249Fm and 245Cf, the interpretation of the data has been checked by comparing experimental α-particle and γ-ray spectra with realistic simulations of the decay cascades and of the interaction of particles and photons in the detectors of GABRIELA. The population of a 0.7 ms isomeric state attributed to 253No is confirmed by an α-tagged calorimetric measurement and the corresponding γ and electron decay spectra are presented. Possible evidence for more than one isomer is given and a tentative partial decay scheme is discussed in the light of the available experimental data, systematics and theoretical expectations.

  18. Lawson Wilkins: recollections by his daughter

    PubMed Central

    2014-01-01

    Lawson Wilkins is well known as the “father” of the field of pediatric endocrinology, and his scientific accomplishments and legacy are thoroughly documented in this edition and elsewhere. Less well known, though, is what the man himself was like. Here, his daughter, Elizabeth McMaster, recalls the personal side of Dr. Wilkins including his upbringing as the son of a prominent Baltimore doctor, his medical education, establishment of a successful pediatric practice, and eventually the founding of the endocrine clinic at Johns Hopkins. Interwoven with anecdotes and reminiscences, this account provides a vivid sense of Wilkins’ personality and life, from his boisterous nature and devotion to his family and career, to the tragic personal losses he endured. He was a man who threw himself fully into everything he did, whether it was making his own liqueur during Prohibition, collecting specimens from abnormally large circus performers as part of his earliest endocrine research, arranging raucous, impromptu singing parties, sailing the Chesapeake with friends, writing a definitive textbook of Pediatric Endocrinology, training a legion of fellows, or the pioneering work for which he is still known today. PMID:25024712

  19. Radon daughter considerations in a nuclear power plant

    SciTech Connect

    VanderMey, T.J.

    1987-07-01

    A boiling water reactor in the start-up phase experienced a significant number of personnel contamination monitor alarms caused by radon daughter plateout on hard hats, clothing, and shoes. Alarm frequencies were compared to environmental conditions and ventilation system operations to determine the effects of various factors on radon plateout. High normal ventilation, radon daughter concentrations in the plant were found to be similar to outdoor concentrations, and alarm frequencies were inversely related to relative humidity. When ventilation systems were shutdown, indoor radon levels and personnel contamination monitor alarm rates increased significantly. In this paper some suggestions for accounting for radon daughter contamination in monitoring and training programs are presented.

  20. A Jupiter Orbiter mother/daughter spacecraft concept

    NASA Technical Reports Server (NTRS)

    Duxbury, J. H.

    1975-01-01

    The feasibility of a tandem launch of a mother/daughter spacecraft pair with a single launch vehicle for a 1981 Mariner Jupiter Orbiter mission is described. The mother is a close derivative of the three-axis stabilized Mariner Jupiter Saturn 1977 spacecraft with the addition of a Viking-type propulsion module for orbit capture; it concentrates on the planetology and satellite science objectives. The daughter is a small, simple spin-stabilized spacecraft taking advantage of the mother's transit and delivery capabilities; it obtains in-situ measurements of the surrounding planetary environment. A conceptual design of the daughter spacecraft is presented.

  1. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  2. Graphene-Induced Pore Formation on Cell Membranes

    NASA Astrophysics Data System (ADS)

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong

    2017-02-01

    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity.

  3. Stromal cells in chronic inflammation and tertiary lymphoid organ formation.

    PubMed

    Buckley, Christopher D; Barone, Francesca; Nayar, Saba; Bénézech, Cecile; Caamaño, Jorge

    2015-01-01

    Inflammation is an unstable state. It either resolves or persists. Why inflammation persists and the factors that define tissue tropism remain obscure. Increasing evidence suggests that tissue-resident stromal cells not only provide positional memory but also actively regulate the differential accumulation of inflammatory cells within inflamed tissues. Furthermore, at many sites of chronic inflammation, structures that mimic secondary lymphoid tissues are observed, suggesting that chronic inflammation and lymphoid tissue formation share common activation programs. Similarly, blood and lymphatic endothelial cells contribute to tissue homeostasis and disease persistence in chronic inflammation. This review highlights our increasing understanding of the role of stromal cells in inflammation and summarizes the novel immunological role that stromal cells exert in the persistence of inflammatory diseases.

  4. Characterization of Commercial Li-ion Cells in Pouch Format

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2014-01-01

    The li-ion pouch design cells exhibit similar behavior under off-nominal conditions as those in metal cans that do not have the internal safety devices. Safety should be well characterized before batteries are designed. Some of the li-ion pouch cell designs studied in this program reacted most violently to overcharge conditions at the medium rates but were tolerant to overcharge at very low rates. Some pouch cell designs have higher tolerance to vacuum exposures than some others. A comparison of the pouch material itself does not show a correlation between this tolerance and the number of layers or composition of the pouch indicating that this is a property of the electrode stack design inside the pouch. Reduced pressure (8 to 10 psi) test environments show that the extent of capacity degradation under reduced pressure environments is much less than that observed under vacuum conditions. Lithium-ion Pouch format cells are not necessarily true polymer cells.

  5. Induction of platelet formation from megakaryocytoid cells by nitric oxide.

    PubMed

    Battinelli, E; Willoughby, S R; Foxall, T; Valeri, C R; Loscalzo, J

    2001-12-04

    Although the growth factors that regulate megakaryocytopoiesis are well known, the molecular determinants of platelet formation from mature megakaryocytes remain poorly understood. Morphological changes in megakaryocytes associated with platelet formation and removal of senescent megakaryocytes are suggestive of an apoptotic process. Previously, we have established that nitric oxide (NO) can induce apoptosis in megakaryocytoid cell lines. To determine whether there is an association between NO-induced apoptosis and platelet production, we exposed Meg-01 cells to S-nitrosoglutathione (GSNO) with or without thrombopoeitin (TPO) pretreatment and used flow cytometry and electron microscopy to assess platelet-sized particle formation. Meg-01 cells treated with TPO alone produced few platelet-sized particles (<3% of total counts), whereas treatment with GSNO alone produced a significant percentage of platelet-sized particles (22 +/- 4% of total counts); when combined with TPO pretreatment, however, GSNO led to a marked increase in platelet-sized particle production (48 +/- 3% of total counts). Electron microscopy confirmed that Meg-01 cells treated with TPO and GSNO yielded platelet-sized particles with morphological features specific for platelet forms. The platelet-sized particle population appears to be functional, because addition of calcium, fibrinogen, and thrombin receptor-activating peptide led to aggregation. These results demonstrate that NO facilitates platelet production, thereby establishing the essential role of NO in megakaryocyte development and thrombopoiesis.

  6. ERBB3 is required for metastasis formation of melanoma cells

    PubMed Central

    Tiwary, S; Preziosi, M; Rothberg, P G; Zeitouni, N; Corson, N; Xu, L

    2014-01-01

    Melanoma is curable when it is at an early phase but is lethal once it becomes metastatic. The recent development of BRAFV600E inhibitors (BIs) showed great promise in treating metastatic melanoma, but resistance developed quickly in the treated patients, and these inhibitors are not effective on melanomas that express wild-type BRAF. Alternative therapeutic strategies for metastatic melanoma are urgently needed. Here we report that ERBB3, a member of the epidermal growth factor receptor family, is required for the formation of lung metastasis from both the BI-sensitive melanoma cell line, MA-2, and the BI-resistant melanoma cell line, 451Lu-R. Further analyses revealed that ERBB3 does not affect the initial seeding of melanoma cells in lung but is required for their further development into overt metastases, indicating that ERBB3 might be essential for the survival of melanoma cells after they reach the lung. Consistent with this, the ERBB3 ligand, NRG1, is highly expressed in mouse lungs and induces ERBB3-depdnent phosphorylation of AKT in both MA-2 and 451Lu-R cells in vitro. These findings suggest that ERBB3 may serve as a target for treating metastatic melanomas that are resistant to BIs. In support of this, administration of the pan-ERBB inhibitor, canertinib, significantly suppresses the metastasis formation of BI-resistant melanoma cell lines. PMID:25000258

  7. Effect of supercooling and cell volume on intracellular ice formation.

    PubMed

    Prickett, Richelle C; Marquez-Curtis, Leah A; Elliott, Janet A W; McGann, Locksley E

    2015-04-01

    Intracellular ice formation (IIF) has been linked to death of cells cryopreserved in suspension. It has been assumed that cells can be supercooled by 2 to 10°C before IIF occurs, but measurements of the degree of supercooling that cells can tolerate are often confounded by changing extracellular temperature and solutions of different osmolality (which affect the cell volume). The purpose of this study was to examine how the incidence of IIF in the absence of cryoprotectants is affected by the degree of supercooling and cell volume. Human umbilical vein endothelial cells were suspended in isotonic (300 mOsm) and hypertonic (∼600 to 700 mOsm) solutions and exposed to supercooling ranging from 2 to 10°C before extracellular ice was nucleated. The number of cells undergoing IIF was examined in a cryostage (based on the darkening of cells upon intracellular freezing ("flashing")) as a function of the degree of supercooling, and cell survival post-thaw was assessed using a membrane integrity assay. We found that while the incidence of IIF increased with supercooling in both isotonic and hypertonic solutions, it was higher in the isotonic solution at any given degree of supercooling. Since cells in hypertonic solution were shrunken due to water efflux, we hypothesized that the difference in IIF behavior could be attributed to the decreased volume of cells in the hypertonic solution. Our results confirm that cells with a smaller diameter before extracellular ice nucleation have a decreased probability of IIF and suggest that cell volume could play a more significant role in the incidence of IIF than the extracellular ice nucleation temperature.

  8. Incest and its meaning: the perspectives of fathers and daughters.

    PubMed

    Phelan, P

    1995-01-01

    This article describes incestuous events and the structure of meaning surrounding the events by biologic fathers and stepfathers and biologic daughters and stepdaughters. Using a symbolic interaction framework the study is guided by the thesis that the meanings people attach to incestuous events are central to understanding the phenomena of incest. Data were obtained from indepth interviews with 40 men (14 natural fathers and 26 stepfathers) and 44 children (18 biologic daughters and 26 stepdaughters). The interviews emphasized fathers' and daughters' recollection of events and their thoughts and interpretations of the incestuous activity while it was occurring. Both fathers and daughters reported that the sexual activity grew out of already existing family interactions. However, fathers and daughters' cognitions surrounding the events differed dramatically. Many of the fathers said their thoughts were dominated by themes of sexual gratification, control, power and anger, and rights and responsibilities vis-à-vis their role as father or stepfather. Daughters reported disbelief, confusion, guilt, and anger. According to fathers, they completely misread their child's reaction to what was happening. Although fathers said that they knew what they were doing was wrong, few reported that they were concerned with possible legal consequences.

  9. Contamination of individuals by radon daughters: a preliminary study

    SciTech Connect

    Stebbings, J.H.; Dignam, J.J.

    1988-03-01

    Body radon daughter contamination reflects relative individual respiratory exposures to radon daughters; counts can be related both to household radon levels and to lung cancer risk factors such as sex and tobacco smoking. Radon daughters were counted by gamma spectroscopy from 180 adult residents of eastern Pennsylvania. A seven-position, 35-min scan was conducted in a mobile body counter, generally during afternoon or evening hours. Track-etch detectors for household radon were distributed, and were recovered from 80% of the subjects. Over 75% of the population had environmentally enhanced radon daughter contamination. House radon levels were strongly related, as anticipated, to radon daughter contamination in the 112 subjects for whom both sets of measurements were available (p less than .001); basement measurements were as strongly related to personal contamination as were living area measurements; bedroom measurements were slightly more strongly correlated. Both sex (p less than .02) and cigarette smoking (p less than .01) significantly modified the relationships, after nonlinear adjustment for travel times. Using a logarithmic model, a given house living-area radon level was associated in females with body contamination by radon daughters 2-3 times that in males. Nonsmokers had 2-4 times higher levels of contamination than smokers. Results are for the total of internal and external contamination, these being highly correlated in preliminary experiments. Time usage and activity patterns of the subjects are believed to be important in explaining these findings, and may become important variables in radon risk assessment.

  10. Upward Communication About Cancer Screening—Adolescent Daughter to Mother

    PubMed Central

    MOSAVEL, MAGHBOEBA; PORTS, KATIE A.

    2015-01-01

    Substantial breast and cervical cancer disparities exist in the United States, particularly among African American women with low social economic status. There is considerable potential for discussions about cancer prevention between mothers and daughters. However, upward communication, from child to parent, remains a relatively novel research area, and it remains unclear how receptive mothers would be to messages from their daughter about cancer, a topic that may be considered culturally inappropriate for daughters to initiate. In this study, we simulated cancer message delivery to daughters and then conducted direct observation of daughters as they recalled and shared the message with their mother or female elder. We found that daughters were able to successfully recall and deliver a cancer appeal to their mother and mothers were generally receptive to this message. Not only did mothers listen to their daughters’ appeals, but also daughters’ knowledge of cancer was considerably improved by the opportunity to educate her female elder. Moreover, daughters’ nonverbal communication suggested a surprisingly relaxed demeanor. The potential of young people to impact the screening behavior of their female elders is very promising in terms of reducing cancer disparities. PMID:25848895

  11. A hydrodynamic microchip for formation of continuous cell chains

    NASA Astrophysics Data System (ADS)

    Khoshmanesh, Khashayar; Zhang, Wei; Tang, Shi-Yang; Nasabi, Mahyar; Soffe, Rebecca; Tovar-Lopez, Francisco J.; Rajadas, Jayakumar; Mitchell, Arnan

    2014-05-01

    Here, we demonstrate the unique features of a hydrodynamic based microchip for creating continuous chains of model yeast cells. The system consists of a disk shaped microfluidic structure, containing narrow orifices that connect the main channel to an array of spoke channels. Negative pressure provided by a syringe pump draws fluid from the main channel through the narrow orifices. After cleaning process, a thin layer of water is left between the glass substrate and the polydimethylsiloxane microchip, enabling leakage beneath the channel walls. A mechanical clamp is used to adjust the operation of the microchip. Relaxing the clamp allows leakage of liquid beneath the walls in a controllable fashion, leading to formation of a long cell chain evenly distributed along the channel wall. The unique features of the microchip are demonstrated by creating long chains of yeast cells and model 15 μm polystyrene particles along the side wall and analysing the hydrogen peroxide induced death of patterned cells.

  12. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes.

  13. Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells

    PubMed Central

    Shah, Bhranti S.; Chen, Mo; Suzuki, Takahiro; Embree, Mildred; Kong, Kimi; Lee, Chang H.; He, Ling; Xiang, Lusai; Ahn, Jeffrey A.; Ding, Sheng; Mao, Jeremy J.

    2017-01-01

    Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded in 3D-bioprinted biomaterial scaffolds yielded newly formed adipose tissue that expressed human PPARγ, when transplanted into the dorsum of athymic mice. Remarkably, Ptn-adsorbed 3D scaffolds implanted in the inguinal fat pad had enhanced adipose tissue formation, suggesting Ptn’s ability to induce in situ adipogenesis of endogenous cells. Ptn promoted adipogenesis by upregulating PPARγ and C/EBPα not only in adipogenesis induction medium, but also in chemically defined medium specifically for osteogenesis, and concurrently attenuated Runx2 and Osx via BMP-mediated SMAD1/5 phosphorylation. These findings suggest Ptn’s novel role as an adipogenesis inducer with a therapeutic potential in soft tissue reconstruction and augmentation. PMID:28128224

  14. Exocytosis of macrophage lysosomes leads to digestion of apoptotic adipocytes and foam cell formation[S

    PubMed Central

    Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658

  15. Mast cell mediators and peritoneal adhesion formation in the rat.

    PubMed

    Langer, J C; Liebman, S M; Monk, P K; Pelletier, G J

    1995-09-01

    We have previously shown that mast cell stabilization attenuates peritoneal adhesion formation in the rat. The present study investigated the mechanism of this protection. Adhesions were created in weanling rats using cecal scraping and application of 95% ethanol. Rats received specific blockers for the mast cell products histamine, serotonin (5HT), leukotriene D4, and platelet activating factor intraperitoneally 30 min before laparotomy and at the time of abdominal closure. Control animals received saline. Adhesions were assessed blindly 1 week later using a standardized scale. Adhesion formation was not affected by histamine blockade using combined mepyramine and ranitidine, 5-HT1 blockade using methysergide, 5-HT3 blockade using ondansetron, leukotriene D4 blockade using MK-571, or platelet activating factor blockade using WEB-2086. However, blockade of the 5-HT2 receptor using ketanserin resulted in significant dose-dependent attenuation of adhesions compared to saline. These data suggest that mast cells mediate peritoneal adhesion formation in the rat through release of serotonin acting on 5HT2 receptors. Further understanding of this process may lead to new strategies for the prevention of postoperative adhesions.

  16. Emitter formation in dendritic web silicon solar cells

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Rohatgi, A.; Campbell, R. B.; Alexander, P.; Fonash, S. J.; Singh, R.

    1984-01-01

    The use of liquid dopants and liquid masks for p-n junction formation in dendritic web solar cells was investigated and found to be equivalent to the use of gaseous dopants and CVD SiO2 masks previously used. This results in a projected cost reduction of 0.02 1980$/Watt for a 25 MW/year production line, and makes possible junction formation processes having a higher throughput than more conventional processes. The effect of a low-energy (0.4 keV) hydrogen ion implant on dendritic web solar cells was also investigated. Such an implant was observed to improve Voc and Jsc substantially. Measurements of internal quantum efficiency suggest that it is the base of the cell, rather than the emitter, which benefits from the hydrogen implant. The diffusion length for electrons in the p-type base increased from 53 microns to 150 microns in one case, with dendritic web cell efficiency being boosted to 15.2 percent. The mechanism by which low-energy hydrogen ions can penetrate deeply into the silicon to effect the observed improvement is not known at this time.

  17. Polyphenols action against oxidative stress formation in endothelial cells.

    PubMed

    Łuczaj, Wojciech; Zapora, Ewa; Szczepański, Marek; Wnuczko, Krzysztof; Skrzydlewska, Elzbieta

    2009-01-01

    The aim of this study was to investigate the influence of epigallocatechin-3-gallate (EGCG), theaflavins (TFs) and black tea extract (BTE) on oxidative stress formation as well as on antioxidant system of human vein endothelial cells (HUVEC). HUVEC were incubated for 0,5 h with 100 mM tert-butyl hydroperoxide (t-BHP) for oxidative stress formation. The influence of EGCG, TFs, and BTE on oxidative stress and antioxidant system parameters was investigated by the pre-incubation for 2 h with 50 mg/mL of each compound. Half hour exposure to t-BHP caused statistically significant decrease in GSH-Px activity and in the content of GSH, vitamin A, vitamin E as well as tryptophan. Moreover, pretreatment of cells with t-BHP caused statistically significant increase in activities of Cu,Zn-SOD, GSSG-R and in the level of MDA and dityrosine. Pretreated with t-BHP endothelial cells, subjected to EGCG, TFs and black tea extract, are partially protected against oxidative activity of t-BHP causing statistically significant increase in GSH-Px activity, GSH and tryptophan level and decrease in MDA and dityrosine level in comparison with HUVEC pretreated with t-BHP group. These results indicate the beneficial effect of tea polyphenolic compounds on HUVEC antioxidant abilities and, in consequence, their protective effect in cell components.

  18. Molecular mechanism of parallel fiber-Purkinje cell synapse formation.

    PubMed

    Mishina, Masayoshi; Uemura, Takeshi; Yasumura, Misato; Yoshida, Tomoyuki

    2012-01-01

    The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.

  19. Schwann Cells in Neuromuscular Junction Formation and Maintenance

    PubMed Central

    Barik, Arnab; Li, Lei; Sathyamurthy, Anupama; Xiong, Wen-Cheng

    2016-01-01

    The neuromuscular junction (NMJ) is a tripartite synapse that is formed by motor nerve terminals, postjunctional muscle membranes, and terminal Schwann cells (TSCs) that cover the nerve-muscle contact. NMJ formation requires intimate communications among the three different components. Unlike nerve-muscle interaction, which has been well characterized, less is known about the role of SCs in NMJ formation and maintenance. We show that SCs in mice lead nerve terminals to prepatterned AChRs. Ablating SCs at E8.5 (i.e., prior nerve arrival at the clusters) had little effect on aneural AChR clusters at E13.5, suggesting that SCs may not be necessary for aneural clusters. SC ablation at E12.5, a time when phrenic nerves approach muscle fibers, resulted in smaller and fewer nerve-induced AChR clusters; however, SC ablation at E15.5 reduced AChR cluster size but had no effect on cluster density, suggesting that SCs are involved in AChR cluster maturation. Miniature endplate potential amplitude, but not frequency, was reduced when SCs were ablated at E15.5, suggesting that postsynaptic alterations may occur ahead of presynaptic deficits. Finally, ablation of SCs at P30, after NMJ maturation, led to NMJ fragmentation and neuromuscular transmission deficits. Miniature endplate potential amplitude was reduced 3 d after SC ablation, but both amplitude and frequency were reduced 6 d after. Together, these results indicate that SCs are not only required for NMJ formation, but also necessary for its maintenance; and postsynaptic function and structure appeared to be more sensitive to SC ablation. SIGNIFICANCE STATEMENT Neuromuscular junctions (NMJs) are critical for survival and daily functioning. Defects in NMJ formation during development or maintenance in adulthood result in debilitating neuromuscular disorders. The role of Schwann cells (SCs) in NMJ formation and maintenance was not well understood. We genetically ablated SCs during development and after NMJ formation to

  20. Biological surface engineering: a simple system for cell pattern formation.

    PubMed

    Zhang, S; Yan, L; Altman, M; Lässle, M; Nugent, H; Frankel, F; Lauffenburger, D A; Whitesides, G M; Rich, A

    1999-07-01

    Biological surface engineering using synthetic biological materials has a great potential for advances in our understanding of complex biological phenomena. We developed a simple system to engineer biologically relevant surfaces using a combination of self-assembling oligopeptide monolayers and microcontact printing (muCP). We designed and synthesized two oligopeptides containing a cell adhesion motif (RADS)n (n = 2 and 3) at the N-terminus, followed by an oligo(alanine) linker and a cysteine residue at the C-terminus. The thiol group of cysteine allows the oligopeptides to attach covalently onto a gold-coated surface to form monolayers. We then microfabricated a variety of surface patterns using the cell adhesion peptides in combination with hexa-ethylene glycol thiolate which resist non-specific adsorption of proteins and cells. The resulting patterns consist of areas either supporting or inhibiting cell adhesion, thus they are capable of aligning cells in a well-defined manner, leading to specific cell array and pattern formations.

  1. Cell collectivity regulation within migrating cell cluster during Kupffer's vesicle formation in zebrafish

    PubMed Central

    Matsui, Takaaki; Ishikawa, Hiroshi; Bessho, Yasumasa

    2015-01-01

    Although cell adhesion is thought to fasten cells tightly, cells that adhere to each other can migrate directionally. This group behavior, called “collective cell migration,” is observed during normal development, wound healing, and cancer invasion. Loss-of-function of cell adhesion molecules in several model systems of collective cell migration results in delay or inhibition of migration of cell groups but does not lead to dissociation of the cell groups, suggesting that mechanisms of cells staying assembled as a single cell cluster, termed as “cell collectivity,” remain largely unknown. During the formation of Kupffer's vesicle (KV, an organ of laterality in zebrafish), KV progenitors form a cluster and migrate together toward the vegetal pole. Importantly, in this model system of collective cell migration, knockdown of cell adhesion molecules or signal components leads to failure of cell collectivity. In this review, we summarize recent findings in cell collectivity regulation during collective migration of KV progenitor cells and describe our current understanding of how cell collectivity is regulated during collective cell migration. PMID:26000276

  2. A microfluidic direct formate fuel cell on paper.

    PubMed

    Copenhaver, Thomas S; Purohit, Krutarth H; Domalaon, Kryls; Pham, Linda; Burgess, Brianna J; Manorothkul, Natalie; Galvan, Vicente; Sotez, Samantha; Gomez, Frank A; Haan, John L

    2015-08-01

    We describe the first direct formate fuel cell on a paper microfluidic platform. In traditional membrane-less microfluidic fuel cells (MFCs), external pumping consumes power produced by the fuel cell in order to maintain co-laminar flow of the anode stream and oxidant stream to prevent mixing. However, in paper microfluidics, capillary action drives flow while minimizing stream mixing. In this work, we demonstrate a paper MFC that uses formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using these materials we achieve a maximum power density of nearly 2.5 mW/mg Pd. In a series configuration, our MFC achieves an open circuit voltage just over 1 V, and in a parallel configuration, short circuit of 20 mA absolute current. We also demonstrate that the MFC does not require continuous flow of fuel and oxidant to produce power. We found that we can pre-saturate the materials on the paper, stop the electrolyte flow, and still produce approximately 0.5 V for 15 min. This type of paper MFC has potential applications in point-of-care diagnostic devices and other electrochemical sensors.

  3. Parental encouragement of dieting promotes daughters' early dieting.

    PubMed

    Balantekin, Katherine N; Savage, Jennifer S; Marini, Michele E; Birch, Leann L

    2014-09-01

    Dieting to lose weight is common among female adolescents. This research investigated the association between maternal and paternal encouragement to diet and their daughters' self-reported "early dieting" (prior to age 11 y) and adolescent dieting (between 11 y and 15 y), and how parental encouragement to diet is related to changes in daughters' BMI percentiles. Participants in this study were 174 non-Hispanic white girls and their parents, assessed when daughters were 9-, 11-, 13-, and 15 y. The Parent Encouragement of Child Weight Loss Scale was used to measure encouragement to diet. Logistic regression was used to examine the relationship between parental encouragement to diet and daughters' reports of dieting by 11 y and by 15 y, adjusting for daughters' weight status at baseline. Compared with girls whose mothers didn't encourage dieting, girls who were encouraged to diet were twice as likely to diet by 11 y; girls who were encouraged by their fathers were also twice as likely to diet by 11 y. Girls who were encouraged to diet by both parents were 8 times more likely to report early dieting than girls who were not. Neither maternal nor paternal encouragement predicted the emergence of dieting during adolescence. Girls who dieted and had parental encouragement to do so had increases in BMI percentile from 9 y to 15 y. Findings reveal that parental encouragement to diet may be counterproductive and that parents need alternative approaches to promote healthy patterns of intake and growth among young girls.

  4. Graphene-Induced Pore Formation on Cell Membranes

    PubMed Central

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong

    2017-01-01

    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity. PMID:28218295

  5. Notch1-Dll4 signalling and mechanical force regulate leader cell formation during collective cell migration.

    PubMed

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D; Wong, Pak Kin

    2015-03-13

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct 'leader' phenotype with characteristic morphology and motility. However, the factors driving the leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here we use single-cell gene expression analysis and computational modelling to show that the leader cell identity is dynamically regulated by Dll4 signalling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signalling to dynamically regulate the density of leader cells during collective cell migration.

  6. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    PubMed Central

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473

  7. Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells

    SciTech Connect

    Amemiya, Yosuke; Kawano, Keiko; Matsusaki, Michiya; Akashi, Mitsuru; Nakamura, Noriyuki; Nakamura, Chikashi

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We examined the insertion efficiency of nanoneedles into fibroblast and neural cells. Black-Right-Pointing-Pointer Nanofilms formed on cell surfaces improved the insertion efficiency of nanoneedles. Black-Right-Pointing-Pointer Nanofilms improved the insertion efficiency even in Y27632-treated cells. -- Abstract: A nanoneedle, an atomic force microscope (AFM) tip etched to 200 nm in diameter and 10 {mu}m in length, can be inserted into cells with the aid of an AFM and has been used to introduce functional molecules into cells and to analyze intracellular information with minimal cell damage. However, some cell lines have shown low insertion efficiency of the nanoneedle. Improvement in the insertion efficiency of a nanoneedle into such cells is a significant issue for nanoneedle-based cell manipulation and analysis. Here, we have formed nanofilms composed of extracellular matrix molecules on cell surfaces and found that the formation of the nanofilms improved insertion efficiency of a nanoneedle into fibroblast and neural cells. The nanofilms were shown to improve insertion efficiency even in cells in which the formation of actin stress fibers was inhibited by the ROCK inhibitor Y27632, suggesting that the nanofilms with the mesh structure directly contributed to the improved insertion efficiency of a nanoneedle.

  8. Meanings adult daughters attach to a parent's death.

    PubMed

    Kerr, R B

    1994-08-01

    The purpose of this qualitative study was to explore how meanings adult daughters attached to their parent's death influenced the duration of their grief. The sample consisted of 67 adult daughters, ages 35 to 69 years, who had lost a parent 1 to 3 years earlier. Respondents were asked to explore their perceptions about their parent's death, their lifelong parent-daughter relationship, and any lifestyle changes that occurred after a parent's death. Categories were identified from the interview questions, and themes within each category were developed from the interview data. Results indicated that how respondents experienced a parent's death--including their guilt, regrets, or anticipatory grief, shifts in other family relationships, and changes in lifestyle--influenced the duration of their grief. The findings suggest that the subjective experience of grief may be an important area for further research as well as for assessment and intervention.

  9. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    SciTech Connect

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S.

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  10. Fabric-based alkaline direct formate microfluidic fuel cells.

    PubMed

    Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2017-01-12

    Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm(2) ) and power (4.40 mW/cm(2) ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes.

  11. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

    SciTech Connect

    Miyahara, Tatsuro; Takata, Masakazu; Miyata, Masaki; Nagai, Miyuki; Sugure, Akemi; Kozuka, Hiroshi; Kuze, Shougo )

    1991-08-01

    Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

  12. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  13. Apicoplast fatty acid synthesis is essential for pellicle formation at the end of cytokinesis in Toxoplasma gondii.

    PubMed

    Martins-Duarte, Érica S; Carias, Maira; Vommaro, Rossiane; Surolia, Namita; de Souza, Wanderley

    2016-09-01

    The apicomplexan protozoan Toxoplasma gondii, the causative agent of toxoplasmosis, harbors an apicoplast, a plastid-like organelle with essential metabolic functions. Although the FASII fatty acid biosynthesis pathway located in the apicoplast is essential for parasite survival, the cellular effects of FASII disruption in T. gondii had not been examined in detail. Here, we combined light and electron microscopy techniques - including focused ion beam scanning electron microscopy (FIB-SEM) - to characterize the effect of FASII disruption in T. gondii, by treatment with the FASII inhibitor triclosan or by inducible knockdown of the FASII component acyl carrier protein. Morphological analyses showed that FASII disruption prevented cytokinesis completion in T. gondii tachyzoites, leading to the formation of large masses of 'tethered' daughter cells. FIB-SEM showed that tethered daughters had a mature basal complex, but a defect in new membrane addition between daughters resulted in incomplete pellicle formation. Addition of exogenous fatty acids to medium suppressed the formation of tethered daughter cells and supports the notion that FASII is essential to generate lipid substrates required for the final step of parasite division.

  14. What women with breast cancer discuss with clinicians about risk for their adolescent daughters.

    PubMed

    Maloney, Erin; Edgerson, Shawna; Robson, Mark; Offit, Ken; Brown, Richard; Bylund, Carma; Kissane, David W

    2012-01-01

    Recorded conversations between women undergoing BRCA genetic counseling with clinicians (N = 16) and follow-up consultation letters (N = 16) were analyzed to determine how and when communicating genetic risk information to women's adolescent daughters is discussed. Themes from conversations included mothers' worries about their daughters, perceptions of their daughters' coping, educational information, and clinicians' willingness or reluctance to communicate directly with daughters about their genetic risk. Letters referred to daughters when informing mothers about autosomal dominant inheritance patterns, psychosocial considerations, and screening recommendations. Results inform the value of educating mothers about how they might discuss these issues with their adolescent daughters.

  15. Diclofenac in Arabidopsis cells: Rapid formation of conjugates.

    PubMed

    Fu, Qiuguo; Ye, Qingfu; Zhang, Jianbo; Richards, Jaben; Borchardt, Dan; Gan, Jay

    2017-03-01

    Pharmaceutical and personal care products (PPCPs) are continuously introduced into the soil-plant system, through practices such as agronomic use of reclaimed water and biosolids containing these trace contaminants. Plants may accumulate PPCPs from soil, serving as a conduit for human exposure. Metabolism likely controls the final accumulation of PPCPs in plants, but is in general poorly understood for emerging contaminants. In this study, we used diclofenac as a model compound, and employed (14)C tracing, and time-of-flight (TOF) and triple quadruple (QqQ) mass spectrometers to unravel its metabolism pathways in Arabidopsis thaliana cells. We further validated the primary metabolites in Arabidopsis seedlings. Diclofenac was quickly taken up into A. thaliana cells. Phase I metabolism involved hydroxylation and successive oxidation and cyclization reactions. However, Phase I metabolites did not accumulate appreciably; they were instead rapidly conjugated with sulfate, glucose, and glutamic acid through Phase II metabolism. In particular, diclofenac parent was directly conjugated with glutamic acid, with acyl-glutamatyl-diclofenac accounting for >70% of the extractable metabolites after 120-h incubation. In addition, at the end of incubation, >40% of the spiked diclofenac was in the non-extractable form, suggesting extensive sequestration into cell matter. The rapid formation of non-extractable residue and dominance of diclofenac-glutamate conjugate uncover previously unknown metabolism pathways for diclofenac. In particular, the rapid conjugation of parent highlights the need to consider conjugates of emerging contaminants in higher plants, and their biological activity and human health implications.

  16. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.

    PubMed

    Inoue, Yasuhiro; Suzuki, Makoto; Watanabe, Tadashi; Yasue, Naoko; Tateo, Itsuki; Adachi, Taiji; Ueno, Naoto

    2016-12-01

    Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  17. The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation

    PubMed Central

    2012-01-01

    Background In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development. Arabinogalactan proteins (AGPs) are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. Results In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY) reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in vivo and the polarity was

  18. Hoping for a Phoenix: Shanghai Fathers and Their Daughters

    ERIC Educational Resources Information Center

    Xu, Qiong; Yeung, Wei-Jun Jean

    2013-01-01

    Intergenerational relationships and gender roles in China are in transition because of ideational and structural changes resulting from social movements and policies in the past half a century. Using a mixed-methods design, we examine Shanghai fathers' involvement in their adolescent daughters' lives. In contrast to traditional stereotypes,…

  19. Nathaniel Hawthorne's Garden of Eden Story: "Rappaccini's Daughter."

    ERIC Educational Resources Information Center

    Meixner, Linda L.

    1990-01-01

    Presents a four-day lesson plan for secondary U.S. literature or Bible-and-literature classes, using the Garden of Eden story and Nathaniel Hawthorne's "Rappaccini's Daughter." Identifies objectives, materials, procedure, and evaluation measures. Develops students' ability to discover analogies and irony in literary texts. Lists teacher…

  20. Discovering and Constructing Our Identities: Reading "The Favorite Daughter"

    ERIC Educational Resources Information Center

    Elijah, Rosebud

    2014-01-01

    For everyone--children, parents, teachers--who have experienced instances in their lives where they have been teased, alienated, isolated, shunned, Allen Say gives us the beautifully illustrated book "The Favorite Daughter." In this book (a Notable Social Studies Trade Book for 2013), author and illustrator Say wraps and unwraps issues…

  1. Humor in Father-Daughter Immigration Narratives of Resistance

    ERIC Educational Resources Information Center

    Gallo, Sarah

    2016-01-01

    This article draws from an ethnography on Mexican immigrant fathers and their children to examine humor in immigration narratives as acts of resistance. The analysis focuses on the devices employed by a father and daughter during their everyday talk and co-narration of an incident with police officers. Findings illustrate how the form and content…

  2. Dissident Daughters? The Psychic Life of Class Inheritance

    ERIC Educational Resources Information Center

    Hey, Valerie; George, Rosalyn

    2013-01-01

    This paper arose through a chance meeting between the two authors who are feminist mothers of teenage and 20 years plus daughters. We were attending an Economic and Social Research Council-funded seminar focusing on "new femininities" in the light of post-feminism and their worth and currency within the new politics of consumption and lifestyle.…

  3. The Good Daughter Dilemma: Latinas Managing Family and School Demands

    ERIC Educational Resources Information Center

    Espinoza, Roberta

    2010-01-01

    This study documents strategies employed by Latina doctoral graduate students to balance family relationships with the demands of school to maintain their status of a "good daughter". In-depth interviews reveal some women integrate family and school by explaining the demands placed on them to enlist support while others keep their two social…

  4. An Exploration of Mothers' Attitudes towards Their Daughters' Menarche

    ERIC Educational Resources Information Center

    Bennett, Clare; Harden, Jane

    2014-01-01

    Menarche is a significant milestone for young women, representing an important juncture between girlhood and maturation. The limited literature that exists suggests that a mother's reaction to her daughter's first periods can shape her experiences and perceptions of menstruation which, in turn, may impact on her self-image and, consequently,…

  5. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation.

    PubMed

    Tornavaca, Olga; Chia, Minghao; Dufton, Neil; Almagro, Lourdes Osuna; Conway, Daniel E; Randi, Anna M; Schwartz, Martin A; Matter, Karl; Balda, Maria S

    2015-03-16

    Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell-cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin-VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin-dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell-cell tension, migration, angiogenesis, and barrier formation.

  6. Carbon onions as nanoscopic pressure cells for diamond formation

    NASA Astrophysics Data System (ADS)

    Banhart, F.; Ajayan, P. M.

    1996-08-01

    SPHERICAL particles of carbon consisting of concentric graphite-like shells ('carbon onions') can be formed by electron irradiation of graphitic carbon materials1,2. Here we report that, when such particles are heated to ~700 °C and irradiated with electrons, their cores can be transformed to diamond. Under these conditions the spacing between layers in the carbon onions decreases from 0.31 in the outer shells (slightly less than the 0.34-nm layer spacing of graphite) to about 0.22 nm in the core, indicating considerable compression towards the particle centres. We find that this compression allows diamond to nucleate-in effect the carbon onions act as nanoscopic pressure cells for diamond formation.

  7. Light induced polaron formation in perovskite solar cell devices

    NASA Astrophysics Data System (ADS)

    Neukirch, Amanda; Nie, Wanyi; Blancon, Jean-Christophe; Appavoo, Kannatassen; Tsai, Hsinhan; Chhowalla, Manish; Alam, Muhammad; Sfeir, Matthew; Katan, Claudine; Even, Jacky; Crochet, Jared; Gupta, Gautum; Mohite, Aditya; Tretiak, Sergei

    The need for a low-cost, clean, and abundant source of energy has generated large amounts of research in solution processed solar cell materials. The lead halide perovskite has rapidly developed as a serious candidate for the active layer of photovoltaic devices. The efficiencies of devices made with this material have increased from 3.5% to over 20% in around 5 years. Despite the remarkable progress associated with perovskite materials, there are still fundamental questions regarding their lack of photo-stability over prolonged solar irradiation that need to be addressed. Recent experiments on photo-degradation under constant illumination have found fast self-healing by resting the device in the dark for less than 1 minute. Density functional theory and symmetry analysis show that localized charge states couple to local structural lattice distortions and methyl ammonium quasistatic configurations. Once translational symmetry is lost, additional bonding configurations become symmetry allowed, triggering localized charges in the vicinity over time under constant illumination, thus seeding the formation of macroscopic charged domains and preventing efficient charge extraction. Here we present an in-depth study of polaron formation and binding energy at the atomistic level.

  8. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  9. An improved alkaline direct formate paper microfluidic fuel cell.

    PubMed

    Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A

    2016-02-01

    Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator.

  10. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    PubMed

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs.

  11. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies

    PubMed Central

    Dominguez, Antonia A.; Chiang, H. Rosaria; Sukhwani, Meena; Orwig, Kyle E.; Reijo Pera, Renee A.

    2014-01-01

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood. PMID:25242416

  12. Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

    PubMed

    Dominguez, Antonia A; Chiang, H Rosaria; Sukhwani, Meena; Orwig, Kyle E; Reijo Pera, Renee A

    2014-09-22

    Turner syndrome is caused by complete or partial loss of the second sex chromosome and is characterized by spontaneous fetal loss in >90% of conceptions. Survivors possess an array of somatic and germline clinical characteristics. Induced pluripotent stem cells (iPSCs) offer an opportunity for insight into genetic requirements of the X chromosome linked to Turner syndrome. We derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We demonstrate that two X chromosomes are not necessary for reprogramming or maintenance of pluripotency and that there are minimal differences in gene expression, at the single cell level, linked to X chromosome aneuploidies. Formation of germ cells, as assessed in vivo through a murine xenotransplantation model, indicated that undifferentiated iPSCs, independent of X chromosome composition, are capable of forming germ-cell-like cells (GCLCs) in vivo. In combination with clinical data regarding infertility in women with X chromosome aneuploidies, results suggest that two intact X chromosomes are not required for human germ cell formation, qualitatively or quantitatively, but rather are likely to be required for maintenance of human germ cells to adulthood.

  13. Increased human hybridoma formation by electrofusion of human B cells with heteromyeloma SPAM-8 cells.

    PubMed

    Panova, I; Gustafsson, B

    1995-06-01

    A fusion protocol was designed for the optimal production of hybridomas following electrofusion of human B cells with cells of the heteromyeloma fusion partner SPAM-8. Peripheral blood lymphocytes showed an average fusion efficiency of 0.4 x 10(-4) whereas Epstein-Barr virus-transformed B cells showed fusion efficiencies ranging from 6.2 x 10(-4) to 9.0 x 10(-4). Similar results were obtained with bone marrow-derived lymphocytes. Trypsin treatment of the cells prior to electrofusion further increased the fusion efficiency to 12.3 x 10(-4). In comparison, conventional polyethylene glycol-induced fusion resulted in a fusion efficiency of 0.8 x 10(-4). Thus, electrofusion of human B cells with SPAM-8 heteromyeloma cells introduced a 15-fold increase in hybridoma formation as compared to the conventional fusion method.

  14. Myosin II-mediated cell shape changes and cell intercalation contribute to primitive streak formation

    PubMed Central

    Song, Feifei; Sang, Helen M.; Martin, René; Knölker, Hans-Joachim; MacDonald, Michael P; Weijer, Cornelis J

    2016-01-01

    Primitive streak formation in the chick embryo involves large scale highly coordinated flows of over 100.000 cells in the epiblast. These large scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combined light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression as well as asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localisation and direction of which correlate strongly with the appearance of active Myosin II cables in aligned apical junctions in neighbouring cells. Use of a class specific Myosin inhibitors and gene specific knockdowns show that apical contraction and intercalation are Myosin II dependent and also reveal critical roles for Myosin I and Myosin V family members in the assembly of junctional Myosin II cables. PMID:25812521

  15. Multagenicity of radon and radon daughters. Final technical report, January 1, 1993--December 31, 1996

    SciTech Connect

    Evans, H.H.

    1997-06-01

    The objective of this research was to investigate the dose-response relationship with regard to the lethal and mutagenic effects of exposure of cells to radon and its decay products. Dose-rate dependence was studied, as well as the nature of the DNA lesions. The effect of DNA repair on the lethal and mutagenic effects of exposure and on the character of the DNA lesions was investigated by comparing the response of L5178Y strains that differ in their ability to rejoin X radiation-induced DNA double strand breaks. The nature of radon/radon daughter-induced mutational lesions in human lymphoblasts was also investigated.

  16. Energy deposition and radiation quality of radon and radon daughters. Final report

    SciTech Connect

    Karam, L.R.; Caswell, R.S.

    1996-09-09

    This program was aimed at creating a quantitative physical description, at the micrometer and nanometer levels, of the physical interactions of the alpha particles from radon and its daughters with cells at risk in the bronchial epithelium. The authors calculated alpha-particle energy spectra incident upon the cells and also energy deposition spectra in micrometer- and nanometer-sized sites as a function of cell depth, site size, airway diameter, activities of {sup 218}Po and {sup 214}Po, and other parameters. These data are now being applied, using biophysical models of radiation effects, to predict cell killing, mutations, and cell transformation. The model predictions are then compared to experimental biophysical, biochemical, and biological information. These studies contribute to a detailed understanding of the mechanisms of the biological effectiveness of the radiations emitted by radon and its progeny.

  17. Cartilage formation in the CELLS 'double bubble' hardware

    NASA Technical Reports Server (NTRS)

    Duke, P. J.; Arizpe, Jorge; Montufar-Solis, Dina

    1991-01-01

    The CELLS experiment scheduled to be flown on the first International Microgravity Laboratory is designed to study the effect of microgravity on the cartilage formation, by measuring parameters of growth in a differentiating cartilage cell culture. This paper investigates the conditions for this experiment by studying cartilage differentiation in the 'bubble exchange' hardware with the 'double bubble' design in which the bubbles are joined by a flange which also overlays the gasket. Four types of double bubbles (or double gas permeable membranes) were tested: injection-molded bubbles 0.01- and 0.005-in. thick, and compression molded bubbles 0.015- and 0.01-in. thick. It was found that double bubble membranes of 0.005- and 0.010-in. thickness supported cartilage differentiation, while the 0.015-in. bubbles did not. It was also found that nodule count, used in this study as a parameter, is not the best measure of the amount of cartilage differentiation.

  18. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    SciTech Connect

    Fair, D. L.; Justice, D. D.; Woodard Jr., K. E.

    1985-07-09

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs.

  19. Effect of cell-substratum interaction on hemicyst formation by MDCK cells.

    PubMed

    Rabito, C A; Tchao, R; Valentich, J; Leighton, J

    1980-06-01

    On impermeable substrata MDCK cells, a cell line derived from normal dog kidney, forms a confluent monolayer that is studded with numerous hemicysts. Previous studies with this cell line suggest that thes hemicysts develop as a result of active fluid accumulation between cell sheet and substratum. However, the formation of hemicysts as a multifocal phenomenon is still unexplained. The results presented here show that the hemicysts are not only expressions of active transport of solutes and water, but also of cell-substratum interaction. The increase in number and size of the hemicyst produced by dbcAMP may be explained by a decrease in the adhesive strength to substrata produced by this compound. Moreover, when the strength of the cell-substratum adhesion was increased the number of hemicysts was reduced or abolished. On the contrary, when this strength was reduced, larger hemicysts occurred, covering practically all the area available for growth. Results from cinematographic time lapse studies, showing that 90% of the area of the monolayer is able to produce hemicysts, also suggest that hemicyst formation as a multifocal phenomenon is more an expression of local variations in cell-substratum interaction than of regional changes in transepithelial active transport.

  20. A Tale of Mother and Daughter

    PubMed Central

    2010-01-01

    Loving science and nature and being a scientist can be very different, yet the two are so intertwined in a scientist's life that you will certainly experience both aspects. This essay presents my perspective on how, as one who loves science and nature, I came to fall in love with centrosome behavior in stem cells and how I came to run a lab as a scientist. When I started, there was a big gap between my love for science and my experience as a scientist. I filled this gap by learning a “laid-back confidence.” PMID:20048256

  1. Polymer Solar Cells: Solubility Controls Fiber Network Formation.

    PubMed

    van Franeker, Jacobus J; Heintges, Gaël H L; Schaefer, Charley; Portale, Giuseppe; Li, Weiwei; Wienk, Martijn M; van der Schoot, Paul; Janssen, René A J

    2015-09-16

    The photoactive layer of polymer solar cells is commonly processed from a four-component solution, containing a semiconducting polymer and a fullerene derivative dissolved in a solvent-cosolvent mixture. The nanoscale dimensions of the polymer-fullerene morphology that is formed upon drying determines the solar cell performance, but the fundamental processes that govern the size of the phase-separated polymer and fullerene domains are poorly understood. Here, we investigate morphology formation of an alternating copolymer of diketopyrrolopyrrole and a thiophene-phenyl-thiophene oligomer (PDPPTPT) with relatively long 2-decyltetradecyl (DT) side chains blended with [6,6]-phenyl-C71-butyric acid methyl ester. During solvent evaporation the polymer crystallizes into a fibrous network. The typical width of these fibers is analyzed by quantification of transmission electron microscopic images, and is mainly determined by the solubility of the polymer in the cosolvent and the molecular weight of the polymer. A higher molecular weight corresponds to a lower solubility and film processing results in a smaller fiber width. Surprisingly, the fiber width is not related to the drying rate or the amount of cosolvent. We have made solar cells with fiber widths ranging from 28 to 68 nm and found an inverse relation between fiber width and photocurrent. Finally, by mixing two cosolvents, we develop a ternary solvent system to tune the fiber width. We propose a model based on nucleation-and-growth which can explain these measurements. Our results show that the width of the semicrystalline polymer fibers is not the result of a frozen dynamical state, but determined by the nucleation induced by the polymer solubility.

  2. Spheroid Formation of Hepatocarcinoma Cells in Microwells: Experiments and Monte Carlo Simulations

    PubMed Central

    Tabaei, Seyed R.; Park, Jae Hyeok; Na, Kyuhwan; Chung, Seok; Zhdanov, Vladimir P.

    2016-01-01

    The formation of spherical aggregates during the growth of cell population has long been observed under various conditions. We observed the formation of such aggregates during proliferation of Huh-7.5 cells, a human hepatocarcinoma cell line, in a microfabricated low-adhesion microwell system (SpheroFilm; formed of mass-producible silicone elastomer) on the length scales up to 500 μm. The cell proliferation was also tracked with immunofluorescence staining of F-actin and cell proliferation marker Ki-67. Meanwhile, our complementary 3D Monte Carlo simulations, taking cell diffusion and division, cell-cell and cell-scaffold adhesion, and gravity into account, illustrate the role of these factors in the formation of spheroids. Taken together, our experimental and simulation results provide an integrative view of the process of spheroid formation for Huh-7.5 cells. PMID:27571565

  3. Self-organization and advective transport in the cell polarity formation for asymmetric cell division.

    PubMed

    Seirin Lee, Sungrim; Shibata, Tatsuo

    2015-10-07

    Anterior-Posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. The mechanism of AP formation of Caenorhabditis elegans embryo is characterized into the three processes: (i) membrane association and dissociation of posterior and anterior proteins, (ii) diffusion into the membrane and cytosol, and (iii) active cortical and cytoplasmic flows induced by the contraction of the acto-myosin cortex. We explored the mechanism of symmetry breaking and AP polarity formation using self-recruitment model of posterior proteins. We found that the AP polarity pattern is established over wide range in the total mass of polarity proteins and the diffusion ratio in the cytosol to the membrane. We also showed that the advective transport in both membrane and cytosol during the establishment phase affects optimal time interval of establishment and positioning of the posterior domain, and plays a role to increase the robustness in the AP polarity formation by reducing the number of posterior domains for the sensitivity of initial conditions. We also demonstrated that a proper ratio of the total mass to cell size robustly regulate the length scale of the posterior domain.

  4. Latina Daughters' Childbearing Attitudes: The Role of Maternal Expectations and Education Communication

    ERIC Educational Resources Information Center

    Mireles-Rios, Rebeca; Romo, Laura F.

    2014-01-01

    Adolescent girls' and their mothers' expectations for their daughters' college attainment, mother-daughter communication about education, and daughters' early childbearing attitudes were examined in 146 U.S.-raised Latina girls (mean age = 14.4 years) and their mostly immigrant mothers. Through structural equation modeling, we…

  5. Homework Headaches: How I Got My Special Needs Daughter to Do Homework

    ERIC Educational Resources Information Center

    Frye, Cyndi

    2007-01-01

    In this article, the author, a graduate student in special education, relates how she got her daughter with special needs to do homework. Her daughter's temper tantrums, when asked to do her homework, ruined the whole evening for their family. The author describes her daughter's homework intervention program which she developed and implemented.…

  6. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation

    PubMed Central

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established. PMID:28141814

  7. Lateral inhibition-induced pattern formation controlled by the size and geometry of the cell.

    PubMed

    Seirin Lee, Sungrim

    2016-09-07

    Pattern formation in development biology is one of the fundamental processes by which cells change their functions. It is based on the communication of cells via intra- and intercellular dynamics of biochemicals. Thus, the cell is directly involved in biochemical interactions. However, many theoretical approaches describing biochemical pattern formation have usually neglected the cell's role or have simplified the subcellular process without considering cellular aspects despite the cell being the environment where biochemicals interact. On the other hand, recent experimental observations suggest that a change in the physical conditions of cell-to-cell contact can result in a change in cell fate and tissue patterning in a lateral inhibition system. Here we develop a mathematical model by which biochemical dynamics can be directly observed with explicitly expressed cell structure and geometry in higher dimensions, and reconsider pattern formation by lateral inhibition of the Notch-Delta signaling pathway. We explore how the physical characteristic of cell, such as cell geometry or size, influences the biochemical pattern formation in a multi-cellular system. Our results suggest that a property based on cell geometry can be a novel mechanism for symmetry breaking inducing cell asymmetry. We show that cell volume can critically influence cell fate determination and pattern formation at the tissue level, and the surface area of the cell-to-cell contact can directly affect the spatial range of patterning.

  8. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.

    PubMed

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan

    2012-08-10

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.

  9. A father marries his daughters: a case of incestuous polygamy.

    PubMed

    Myers, Wade C; Brasington, Steve J

    2002-09-01

    Polygamy is a risk factor for incest. This case report of incest and polygamy portrays the dynamics that dominated this family's identity. The father indoctrinated and groomed his biological daughter and stepdaughter for sexual gratification in a cult-like atmosphere, and secretly married both of them. He justified his acts to the family members under the guise of religion, but he later denied allegations of polygamy and sexual contact with his daughters when confronted by the authorities. Ultimately, his parental rights were terminated in family court. The authors interviewed the primary victim and reviewed extensive evidence, including videotapes of the victims talking with detectives and also privately amongst each other. Videotape dialogue excerpts capture how these young girls individually coped with the sexual abuse and responded to becoming child wives in a polygamous family. Criminal charges ultimately were not pursued because the key witness refused to testify against her biological father.

  10. Menarche and puberty in daughters of amenorrheic women.

    PubMed

    Ben-Rafael, Z; Blankstein, J; Sack, J; Lunenfeld, B; Oelsner, G; Serr, D M; Mashiach, S

    1983-12-16

    Twenty-six daughters born to amenorrheic women after gonadotropin-induced ovulation were studied at 10 to 16 years of age. The aim of the study was to assess whether the mothers' condition, namely, amenorrhea and infertility followed by the pharmacologic induction of ovulation, had any effect on their female offspring in terms of endocrine disorders at puberty. The daughters were found to have normal onset of puberty as well as normal physical and mental development. The mean age at menarche, body weight, and height were similar to those of the general female population in Israel. A functioning hypothalamic-pituitary-ovarian axis was evidenced by the appearance of menarche followed by regular cycles. These data form a reassuring sample for the clinicians, the treated mothers, and their offspring.

  11. Formation of thin walled ceramic solid oxide fuel cells

    DOEpatents

    Claar, Terry D.; Busch, Donald E.; Picciolo, John J.

    1989-01-01

    To reduce thermal stress and improve bonding in a high temperature monolithic solid oxide fuel cell (SOFC), intermediate layers are provided between the SOFC's electrodes and electrolyte which are of different compositions. The intermediate layers are comprised of a blend of some of the materials used in the electrode and electrolyte compositions. Particle size is controlled to reduce problems involving differential shrinkage rates of the various layers when the entire structure is fired at a single temperature, while pore formers are provided in the electrolyte layers to be removed during firing for the formation of desired pores in the electrode layers. Each layer includes a binder in the form of a thermosetting acrylic which during initial processing is cured to provide a self-supporting structure with the ceramic components in the green state. A self-supporting corrugated structure is thus formed prior to firing, which the organic components of the binder and plasticizer removed during firing to provide a high strength, high temperature resistant ceramic structure of low weight and density.

  12. Short-lived Rn-222 daughters in cryogenic liquids

    SciTech Connect

    Pelczar, Krzysztof; Frodyma, Nikodem; Wójcik, Marcin

    2013-08-08

    In this paper a detection method of α emitters from {sup 222}Rn decay chain, present in cryogenic liquids, using bare Si-PIN diodes immersed in the liquids is presented. Properties of ionized {sup 222}Rn daughters deduced from conducted measurements are outlined. Life-time of positive ions was found to be of the order of 10 s, and nonzero content of electronegative ions was observed.

  13. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    PubMed Central

    Shrout, Joshua D.; Tolker-Nielsen, Tim; Givskov, Michael; Parsek, Matthew R.

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically, we describe quorum sensing and surface motility exhibited by the bacterium Pseudomonas aeruginosa, a ubiquitous environmental organism that acts as an opportunistic human pathogen in immunocompromised individuals. P. aeruginosa uses acyl-homoserine lactone signals during quorum sensing to synchronize gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P. aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces. PMID:22053126

  14. A Critical Review of Alpha Radionuclide Therapy—How to Deal with Recoiling Daughters?

    PubMed Central

    de Kruijff, Robin M.; Wolterbeek, Hubert T.; Denkova, Antonia G.

    2015-01-01

    This review presents an overview of the successes and challenges currently faced in alpha radionuclide therapy. Alpha particles have an advantage in killing tumour cells as compared to beta or gamma radiation due to their short penetration depth and high linear energy transfer (LET). Touching briefly on the clinical successes of radionuclides emitting only one alpha particle, the main focus of this article lies on those alpha-emitting radionuclides with multiple alpha-emitting daughters in their decay chain. While having the advantage of longer half-lives, the recoiled daughters of radionuclides like 224Ra (radium), 223Ra, and 225Ac (actinium) can do significant damage to healthy tissue when not retained at the tumour site. Three different approaches to deal with this problem are discussed: encapsulation in a nano-carrier, fast uptake of the alpha emitting radionuclides in tumour cells, and local administration. Each approach has been shown to have its advantages and disadvantages, but when larger activities need to be used clinically, nano-carriers appear to be the most promising solution for reducing toxic effects, provided there is no accumulation in healthy tissue. PMID:26066613

  15. Expression of an accessory cell phenotype by hairy cells during lymphocyte colony formation in agar culture.

    PubMed

    Farcet, J P; Gourdin, M F; Testa, U; Andre, C; Jouault, H; Reyes, F

    1983-01-01

    Human T lymphocytes require the cooperation of accessory cells to generate lymphocyte colonies in agar culture under PHA stimulation. Various hairy cell enriched fractions, as well as normal monocytes, have been found to be able to initiate colony formation by normal lymphocytes. Leukemic monocytes from CMML patients were also effective, but not the leukemic lymphocytes from CLL patients. The phenotype expressed by HC in agar colonies was further studied using cell surface and enzymatic markers. We have concluded that HC in agar culture in the presence of both normal T lymphocytes and PHA lose the B phenotype that they express in vivo and function like an accessory cell in contrast to normal or leukemic B lymphocytes.

  16. Effect of uneven red cell influx on formation of cell-free layer in small venules.

    PubMed

    Namgung, Bumseok; Kim, Sangho

    2014-03-01

    This study examined how the uneven influx of red blood cells (RBCs) from feeding vessels influences formation of cell-free layer (CFL) in the downstream vessel of a venular bifurcation. Spatio-temporal variations of the CFL width along the downstream vessel (19-41-μm inner diameter, D) were determined at 0.5D intervals from 0.5D to 3.0D away from the bifurcation. Upstream flow conditions were quantified by the ratio of volume flow rates (Q*=Q(High)/Q(Low)) between high flow (Q(High)) and low flow feeding (Q(Low)) vessels. The RBC aggregation level in the rats was adjusted to be at healthy human levels by infusing Dextran 500. Our results suggested that the CFL formation process could be seen only from 2.0D away from the bifurcating point. The mean CFL width at the wall adjacent to the feeding vessel with a higher flow rate was consistently greater than that at the opposite wall, leading to an asymmetric CFL formation in the vessel. A positive relation (P<0.05) between the asymmetry of the CFL width and the volume flow rate ratio (Q*) was found. Our numerical prediction showed that flow resistance in the venular network could be significantly increased by the asymmetric formation of CFL downstream and this effect might become more pronounced under pathological flow conditions such as hyper-aggregating and/or low shear conditions.

  17. Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast.

    PubMed

    McFaline-Figueroa, José Ricardo; Vevea, Jason; Swayne, Theresa C; Zhou, Chun; Liu, Christopher; Leung, Galen; Boldogh, Istvan R; Pon, Liza A

    2011-10-01

    Fluorescence loss in photobleaching experiments and analysis of mitochondrial function using superoxide and redox potential biosensors revealed that mitochondria within individual yeast cells are physically and functionally distinct. Mitochondria that are retained in mother cells during yeast cell division have a significantly more oxidizing redox potential and higher superoxide levels compared to mitochondria in buds. Retention of mitochondria with more oxidizing redox potential in mother cells occurs to the same extent in young and older cells and can account for the age-associated decline in total cellular mitochondrial redox potential in yeast as they age from 0 to 5 generations. Deletion of Mmr1p, a member of the DSL1 family of tethering proteins that localizes to mitochondria at the bud tip and is required for normal mitochondrial inheritance, produces defects in mitochondrial quality control and heterogeneity in replicative lifespan (RLS). Long-lived mmr1Δ cells exhibit prolonged RLS, reduced mean generation times, more reducing mitochondrial redox potential and lower mitochondrial superoxide levels compared to wild-type cells. Short-lived mmr1Δ cells exhibit the opposite phenotypes. Moreover, short-lived cells give rise exclusively to short-lived cells, while the majority of daughters of long-lived cells are long lived. These findings support the model that the mitochondrial inheritance machinery promotes retention of lower-functioning mitochondria in mother cells and that this process contributes to both mother-daughter age asymmetry and age-associated declines in cellular fitness.

  18. Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root.

    PubMed

    De Smet, Ive; Vassileva, Valya; De Rybel, Bert; Levesque, Mitchell P; Grunewald, Wim; Van Damme, Daniël; Van Noorden, Giel; Naudts, Mirande; Van Isterdael, Gert; De Clercq, Rebecca; Wang, Jean Y; Meuli, Nicholas; Vanneste, Steffen; Friml, Jirí; Hilson, Pierre; Jürgens, Gerd; Ingram, Gwyneth C; Inzé, Dirk; Benfey, Philip N; Beeckman, Tom

    2008-10-24

    During the development of multicellular organisms, organogenesis and pattern formation depend on formative divisions to specify and maintain pools of stem cells. In higher plants, these activities are essential to shape the final root architecture because the functioning of root apical meristems and the de novo formation of lateral roots entirely rely on it. We used transcript profiling on sorted pericycle cells undergoing lateral root initiation to identify the receptor-like kinase ACR4 of Arabidopsis as a key factor both in promoting formative cell divisions in the pericycle and in constraining the number of these divisions once organogenesis has been started. In the root tip meristem, ACR4 shows a similar action by controlling cell proliferation activity in the columella cell lineage. Thus, ACR4 function reveals a common mechanism of formative cell division control in the main root tip meristem and during lateral root initiation.

  19. Dynamics of phragmoplastin in living cells during cell plate formation and uncoupling of cell elongation from the plane of cell division.

    PubMed Central

    Gu, X; Verma, D P

    1997-01-01

    The cell plate is formed by the fusion of Golgi apparatus-derived vesicles in the center of the phragmoplast during cytokinesis in plant cells. A dynamin-like protein, phragmoplastin, has been isolated and shown to be associated with cell plate formation in soybean by using immunocytochemistry. In this article, we demonstrate that similar to dynamin, phragmoplastin polymerizes to form oligomers. We fused soybean phragmoplastin with the green fluorescence protein (GFP) and introduced it into tobacco BY-2 cells to monitor the dynamics of early events in cell plate formation. We demonstrate that the chimeric protein is functional and targeted to the cell plate during cytokinesis in transgenic cells. GFP-phragmoplastin was found to appear first in the center of the forming cell plate, and as the cell plate grew outward, it redistributed to the growing margins of the cell plate. The redistribution of phragmoplastin may require microtubule reorganization because the microtubule-stabilizing drug taxol inhibited phragmoplastin redistribution. Our data show that throughout the entire process of cytokinesis, phragmoplastin is concentrated in the area in which membrane fusion is active, suggesting that phragmoplastin participates in an early membrane fusion event during cell plate formation. Based on the dynamics of GFP-phragmoplastin, it appears that the process of cell plate formation is completed in two phases. The first phase is confined to the cylinder of the phragmoplast proper and is followed by a second phase that deposits phragmoplast vesicles in a concentric fashion, resulting in a ring of fluorescence, with the concentration of vesicles being higher at the periphery. In addition, overexpression of GFP-phragmoplastin appears to act as a dominant negative, slowing down the completion of cell plate formation, and often results in an oblique cell plate. The latter appears to uncouple cell elongation from the plane of cell division, forming twisted and elongated cells

  20. Aggregate formation affects ultrasonic disruption of microalgal cells.

    PubMed

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency.

  1. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  2. Aurora B–mediated localized delays in nuclear envelope formation facilitate inclusion of late-segregating chromosome fragments

    PubMed Central

    Karg, Travis; Warecki, Brandt; Sullivan, William

    2015-01-01

    To determine how chromosome segregation is coordinated with nuclear envelope formation (NEF), we examined the dynamics of NEF in the presence of lagging acentric chromosomes in Drosophila neuroblasts. Acentric chromosomes often exhibit delayed but ultimately successful segregation and incorporation into daughter nuclei. However, it is unknown whether these late-segregating acentric fragments influence NEF to ensure their inclusion in daughter nuclei. Through live analysis, we show that acentric chromosomes induce highly localized delays in the reassembly of the nuclear envelope. These delays result in a gap in the nuclear envelope that facilitates the inclusion of lagging acentrics into telophase daughter nuclei. Localized delays of nuclear envelope reassembly require Aurora B kinase activity. In cells with reduced Aurora B activity, there is a decrease in the frequency of local nuclear envelope reassembly delays, resulting in an increase in the frequency of acentric-bearing, lamin-coated micronuclei. These studies reveal a novel role of Aurora B in maintaining genomic integrity by promoting the formation of a passageway in the nuclear envelope through which late-segregating acentric chromosomes enter the telophase daughter nucleus. PMID:25877868

  3. Complement-dependent control of teratoma formation by embryonic stem cells.

    PubMed

    Koch, Cody A; Jordan, Corinne E; Platt, Jeffrey L

    2006-10-01

    The fetus has pluripotent stem cells that when transferred to mature individuals can generate tumors. However, for reasons yet unknown, tumors form rarely in the fetus and/or the mother during normal gestation. We questioned whether the complement system might protect against tumor formation by pluripotent stem cells. Murine embryonic stem cells were notably more susceptible than cardiomyocytes differentiated from those cells to lysis by complement in heterologous and homologous sera. Treatment of embryonic stem cells with heterologous serum averted tumor formation after residual cells were transplanted into mice. Confirming the importance of homologous complement in preventing formation of tumors, untreated embryonic stem cells formed tumors more quickly in C3-deficient than in wild-type mice. Susceptibility of embryonic stem cells to complement required an intact alternative pathway and was owed at least in part to a relative deficiency of sialic acid on cell surfaces compared with differentiated cells. Susceptibility to complement and resistance to tumors was inversely related to the number of cells transferred. These findings show that formation of tumors from embryonic stem cells is controlled in part by the alternative pathway of complement and suggest that susceptibility to complement might represent a general property of pluripotent stem cells that can be exploited to prevent tumor formation.

  4. Establishment of cell polarity by afadin during the formation of embryoid bodies.

    PubMed

    Komura, Hitomi; Ogita, Hisakazu; Ikeda, Wataru; Mizoguchi, Akira; Miyoshi, Jun; Takai, Yoshimi

    2008-01-01

    Afadin directly links nectin, an immunoglobulin-like cell-cell adhesion molecule, to actin filaments (F-actin) at adherens junctions (AJs). The nectin-afadin complex is important for the formation of not only AJs but also tight junctions (TJs) in epithelial cells. Studies using afadin-knockout mice have revealed that afadin is indispensable for embryonic development by organizing the formation of cell-cell junctions. However, the molecular mechanism of cell-cell junction disorganization during embryonic development in afadin-knockout mice is poorly understood. To address this, we took advantage of embryoid bodies (EBs) as a model system. The formation of cell-cell junctions including AJs and TJs was impaired in afadin-null EBs. The proper accumulation of the Par complex and the activation of Cdc42 and atypical PKC (aPKC), which are crucial for the formation of cell polarity, were also inhibited by knockout of afadin. In addition, the disruption of afadin caused the abnormal deposition of laminin and the dislocalization of its receptors integrin alpha(6) and integrin beta(1). These results indicate that afadin organizes the formation of cell-cell junctions by regulating cell polarization in early embryonic development.

  5. 29 CFR 825.122 - Definitions of spouse, parent, son or daughter, next of kin of a covered servicemember, adoption...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of a covered servicemember, adoption, foster care, son or daughter on active duty or call to active..., adoption, foster care, son or daughter on active duty or call to active duty status, son or daughter of a... the employee when the employee was a son or daughter as defined in paragraph (c) of this section....

  6. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    SciTech Connect

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho . E-mail: keesh@korea.ac.kr

    2005-08-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear {beta}-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear {beta}-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3{beta} activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.

  7. Maternal weight status modulates the effects of restriction on daughters' eating and weight

    PubMed Central

    Francis, LA; Birch, LL

    2008-01-01

    OBJECTIVE To examine the effects of overweight and normal-weight mothers' restriction in child feeding on daughters' eating in the absence of hunger (EAH) and body mass index (BMI) change from age 5 to age 9 y. DESIGN Longitudinal study of the health and development of young girls. SUBJECTS A total of 91 overweight and 80 normal-weight mothers and their daughters, assessed when daughters were ages 5, 7, and 9 y. MEASUREMENTS Measures included maternal restriction of daughters' intake at age 5 y, and daughters' EAH and BMI change from age 5 to 9 y. RESULTS There were no overall differences in the level of restriction that overweight and normal-weight mothers used. However, overweight mothers' restrictive feeding practices when daughters were age 5 y predicted daughters' EAH over time, and higher EAH scores were associated with greater BMI change from age 5 to 9 y. These relationships did not hold for daughters of normal-weight mothers. CONCLUSION More adverse effects of restriction on daughters' EAH, and links between EAH and BMI change were only noted among daughters of overweight mothers. These findings highlight the need for a better understanding of factors that contribute to within-group variation in eating behavior and weight status. PMID:15782227

  8. Live-Cell Analysis of Mitotic Spindle Formation in Taxol-Treated Cells

    PubMed Central

    Hornick, Jessica E.; Bader, Jason R.; Tribble, Emily K.; Trimble, Kayleigh; Breunig, J. Scott; Halpin, Elizabeth S.; Vaughan, Kevin T.; Hinchcliffe, Edward H.

    2009-01-01

    Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-α tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic redistribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 “dynamitin” does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible—but before NEB is complete—results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation. PMID:18481305

  9. Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells

    PubMed Central

    Vogel, Rachel I.; Thayanithy, Venugopal; Wong, Phillip; Teoh, Deanna; Geller, Melissa A.; Steer, Clifford J.; Subramanian, Subbaya; Lou, Emil

    2016-01-01

    In this study, we demonstrated that hypoxic conditions stimulated an increase in tunneling nanotube (TNT) formation in chemoresistant ovarian cancer cells (SKOV3, C200). We found that suppressing the mTOR pathway using either everolimus or metformin led to suppression of TNT formation in vitro, verifying TNTs as a potential target for cancer-directed therapy. Additionally, TNT formation was detected in co-cultures including between platinum-resistant SKOV3 cells, between SKOV3 cells and platinum-chemosensitive A2780 cells, and between SKOV3 cells cultured with benign ovarian epithelial (IOSE) cells; these findings indicate that TNTs are novel conduits for malignant cell interactions and tumor cell interactions with other cells in the microenvironment. When chemoresistant C200 and parent chemosensitive A2780 cells were co-cultured, chemoresistant cells displayed a higher likelihood of TNT formation to each other than to chemosensitive malignant or benign epithelial cells. Hypoxia-induced TNT formation represents a potential mechanism for intercellular communication in ovarian cancer and other forms of invasive refractory cancers. PMID:27223082

  10. Control of cell fate by the formation of an architecturally complex bacterial community

    PubMed Central

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-01-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells. PMID:18381896

  11. Notch signaling acts before cell division to promote asymmetric cleavage and cell fate of neural precursor cells.

    PubMed

    Bhat, Krishna Moorthi

    2014-10-21

    Asymmetric cell divisions in the central nervous system generate neurons of diverse fates. In Drosophila melanogaster, the protein Numb localizes asymmetrically to dividing neural precursor cells such that only one daughter cell inherits Numb. Numb inhibits Notch signaling in this daughter cell, resulting in a different cell fate from the Notch-induced fate in the other-Numb-negative-daughter cell. Precursor cells undergo asymmetric cytokinesis generating daughter cells of different sizes. I found that inactivation of Notch in fly embryonic neural precursor cells disrupted the asymmetric positioning of the cleavage furrow and produced daughter cells of the same size and fate. Moreover, inactivation of Notch at different times altered the degree of asymmetric Numb localization, such that earlier inactivation of Notch caused symmetric distribution of Numb and later inactivation produced incomplete asymmetric localization of Numb. The extent of asymmetrically localized Numb positively correlated with the degree of asymmetric cytokinesis and the size disparity in daughter cells. Loss of Numb or expression of constitutively active Notch led to premature specification of the precursor cells into the fate of one of the daughter cells. Thus, in addition to its role in the specification of daughter cell fate after division, Notch controls Numb localization in the precursor cells to determine the size and fate of daughter cells. Numb also inhibits Notch signaling in precursor cells to prevent Notch-induced differentiation of the precursor cell, forming an autoregulatory loop.

  12. Volcanic output of long-lived radon daughters

    NASA Astrophysics Data System (ADS)

    Lambert, G.; Ardouin, B.; Polian, G.

    1982-12-01

    The long-lived radon daughter concentrations of 11 volcano exhausts have been measured, with attention to the Po-210 activities. These activities are found to be 100,000 to 1,000,000 times greater than in a typical atmosphere. A total volcanic Po-210 output of 50,000 Ci/year can be estimated by balancing the total deposition, atmospheric production, and extra sources of this nuclide. In view of these results, it appears plausible to normalize the volcanic production of volatile elements to this Po-210 output.

  13. Effect of deformations and orientations in 100Sn daughter radioactivity

    NASA Astrophysics Data System (ADS)

    Sawhney, Gudveen; Sharma, Kanishka; Sharma, Manoj K.; Gupta, Raj K.

    2016-05-01

    Based on the preformed cluster model (PCM), we have extended our earlier study to investigate the effects of nuclear deformations and orientations of nuclei in context of ground-state de-excitation of Xe to Gd parents, resulting in a doubly closed shell 100Sn daughter and the complementary clusters. The comparison is also made with spherical choice of fragments to extract exclusive picture of the dynamics involved. Since PCM is based on collective clusterization picture, the preformation and penetration probabilities are shown to get modified considerably by inclusion of the quadrupole deformations (β2i) alone, which in turn affects the decay half-lives of the clusters.

  14. Paroxysmal kinesigenic dyskinesia in a mother and daughter.

    PubMed

    Khan, Waqas Ullah; Staios, G; Rana, Abdul Qayyum

    2010-06-01

    We report a rare case of familial paroxysmal kinesigenic dyskinesia. A 42-year-old woman and her 13-year-old daughter both presented with episodic curling of their hand and arm. These events were triggered by sudden movements and would last several seconds. Both patients' symptoms were unilateral and their physical and neurological examinations were normal. Treatment with carbamazepine improved their symptoms. Although an uncommon movement disorder it is important to recognize the clinical presentation of paroxysmal kinesigenic dyskinesia as most patients respond very well to medical treatment.

  15. Cell-size distribution in epithelial tissue formation and homeostasis.

    PubMed

    Puliafito, Alberto; Primo, Luca; Celani, Antonio

    2017-03-01

    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size.

  16. Formate: an Energy Storage and Transport Bridge between Carbon Dioxide and a Formate Fuel Cell in a Single Device.

    PubMed

    Vo, Tracy; Purohit, Krutarth; Nguyen, Christopher; Biggs, Brenna; Mayoral, Salvador; Haan, John L

    2015-11-01

    We demonstrate the first device to our knowledge that uses a solar panel to power the electrochemical reduction of dissolved carbon dioxide (carbonate) into formate that is then used in the same device to operate a direct formate fuel cell (DFFC). The electrochemical reduction of carbonate is carried out on a Sn electrode in a reservoir that maintains a constant carbon balance between carbonate and formate. The electron-rich formate species is converted by the DFFC into electrical energy through electron release. The product of DFFC operation is the electron-deficient carbonate species that diffuses back to the reservoir bulk. It is possible to continuously charge the device using alternative energy (e.g., solar) to convert carbonate to formate for on-demand use in the DFFC; the intermittent nature of alternative energy makes this an attractive design. In this work, we demonstrate a proof-of-concept device that performs reduction of carbonate, storage of formate, and operation of a DFFC.

  17. Effects of irradiated biodegradable polymer in endothelial cell monolayer formation

    NASA Astrophysics Data System (ADS)

    Arbeitman, Claudia R.; del Grosso, Mariela F.; Behar, Moni; García Bermúdez, Gerardo

    2013-11-01

    In this work we study cell adhesion, proliferation and cell morphology of endothelial cell cultured on poly-L-lactide acid (PLLA) modified by heavy ion irradiation. Thin films of PLLA samples were irradiated with sulfur (S) at energies of 75 MeV and gold (Au) at 18 MeV ion-beams. Ion beams were provided by the Tandar (Buenos Aires, Argentina) and Tandetron (Porto Alegre, Brazil) accelerators, respectively. The growth of a monolayer of bovine aortic endothelial cells (BAEC) onto unirradiated and irradiated surfaces has been studied by in vitro techniques in static culture. Cell viability and proliferation increased on modified substrates. But the results on unirradiated samples, indicate cell death (necrosis/apoptosis) with the consequent decrease in proliferation. We analyzed the correlation between irradiation parameters and cell metabolism and morphology.

  18. Stem cells catalyze cartilage formation by neonatal articular chondrocytes in 3D biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Lai, Janice H.; Kajiyama, Glen; Smith, Robert Lane; Maloney, William; Yang, Fan

    2013-12-01

    Cartilage loss is a leading cause of disability among adults and effective therapy remains elusive. Neonatal chondrocytes (NChons) are an attractive allogeneic cell source for cartilage repair, but their clinical translation has been hindered by scarce donor availability. Here we examine the potential for catalyzing cartilage tissue formation using a minimal number of NChons by co-culturing them with adipose-derived stem cells (ADSCs) in 3D hydrogels. Using three different co-culture models, we demonstrated that the effects of co-culture on cartilage tissue formation are dependent on the intercellular distance and cell distribution in 3D. Unexpectedly, increasing ADSC ratio in mixed co-culture led to increased synergy between NChons and ADSCs, and resulted in the formation of large neocartilage nodules. This work raises the potential of utilizing stem cells to catalyze tissue formation by neonatal chondrocytes via paracrine signaling, and highlights the importance of controlling cell distribution in 3D matrices to achieve optimal synergy.

  19. On the formation of germ cells: The good, the bad and the ugly.

    PubMed

    Chuva de Sousa Lopes, Susana M; Roelen, Bernard A J

    2010-03-01

    Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But "with great power, comes great responsibility", meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.

  20. Like Mother, Like Daughter? Dietary and Non-Dietary Bone Fracture Risk Factors in Mothers and Their Daughters

    PubMed Central

    SOBAS, Kamila; WADOLOWSKA, Lidia; SLOWINSKA, Malgorzata Anna; CZLAPKA-MATYASIK, Magdalena; WUENSTEL, Justyna; NIEDZWIEDZKA, Ewa

    2015-01-01

    Background: The aim of this study was to demonstrate similarities and differences between mothers and daughters regarding dietary and non-dietary risk factors for bone fractures and osteoporosis. Methods: The study was carried out in 2007–2010 on 712 mothers (29–59 years) and daughters (12–21 years) family pairs. In the sub-sample (170 family pairs) bone mineral density (BMD) was measured for the forearm by dual-energy x-ray absorptiometry (DXA). The consumption of dairy products was determined with a semi-quantitative food frequency questionnaire (ADOS-Ca) and calcium intake from the daily diet was calculated. Results: The presence of risk factors for bone fractures in mothers and daughters was significantly correlated. The Spearman rank coefficient for dietary factors of fracture risk was 0.87 (P<0.05) in whole sub-sample, 0.94 (P<0.05) in bottom tercile of BMD, 0.82 (P<0.05) in middle tercile of BMD, 0.54 (P>0.05) in upper tercile of BMD and for non-dietary factors of fracture risk was 0.83 (P<0.05) in whole sub-sample, 0.86 (P<0.05) in bottom tercile of BMD, 0.93 (P<0.05) in middle tercile of BMD, 0.65 (P<0.05) in upper tercile of BMD. Conclusions: Our results confirm the role of the family environment for bone health and document the stronger effect of negative factors of the family environment as compared to other positive factors on bone fracture risk. PMID:26576372

  1. Nicotinate-Curcumin Impedes Foam Cell Formation from THP-1 Cells through Restoring Autophagy Flux

    PubMed Central

    Gu, Hong-Feng; Li, Hai-Zhe; Tang, Ya-Ling; Tang, Xiao-Qing; Zheng, Xi-Long; Liao, Duan-Fang

    2016-01-01

    Our previous studies have indicated that a novel curcumin derivate nicotinate-curcumin (NC) has beneficial effects on the prevention of atherosclerosis, but the precise mechanisms are not fully understood. Given that autophagy regulates lipid metabolism, the present study was designed to investigate whether NC decreases foam cell formation through restoring autophagy flux in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 cells. Our results showed that ox-LDL (100 μg/ml) was accumulated in THP-1 cells and impaired autophagy flux. Ox-LDL-induced impairment of autophagy was enhanced by treatment with the autophagy inhibitor chloroquine (CQ) and rescued by the autophagy inducer rapamycin. The aggregation of ox-LDL was increased by CQ, but decreased by rapamycin. In addition, colocalization of lipid droplets with LC3-II was remarkably reduced in ox-LDL group. In contrast, NC (10 μM) rescued the impaired autophagy flux by significantly increasing level of LC3-II, the number of autophagolysosomes, and the degradation of p62 in ox-LDL-treated THP-1 cells. Inhibition of the PI3K-Akt-mTOR signaling was required for NC-rescued autophagy flux. Notably, our results showed that NC remarkably promoted the colocalization of lipid droplets with autophagolysosomes, increased efflux of cholesterol, and reduced ox-LDL accumulation in THP-1 cells. However, treatment with 3-methyladenine (3-MA) or CQ reduced the protective effects of NC on lipid accumulation. Collectively, the findings suggest that NC decreases lipid accumulation in THP-1 cells through restoring autophagy flux, and further implicate that NC may be a potential therapeutic reagent to reverse atherosclerosis. PMID:27128486

  2. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation.

    PubMed

    Vadalà, Gianluca; Sowa, Gwendolyn; Hubert, Mark; Gilbertson, Lars G; Denaro, Vincenzo; Kang, James D

    2012-05-01

    Recent studies have shown that mesenchymal stem cell (MSC)-based therapy might be an effective approach for the treatment of intervertebral disc degeneration (IDD). However, many unanswered questions remain before clinical translation, such as the most effective stem cell type, a reliable transplantation method, including the carrier choice, and the fate of stem cells after misdirected delivery, among others. The objective of the study was to evaluate the fate and effect of allogenic bone marrow MSCs after transplantation into an IDD model. The L2-3, L3-4 and L4-5 intervertebral discs (IVDs) of four rabbits were stabbed to create IDD. Rabbit MSCs were expanded in vitro and in part transduced with retrovirus/eGFP. After 3 weeks, 1 × 10(5) MSCs were injected into the IVDs. The rabbits were followed by X-ray and MRI 3 and 9 weeks after injection. Then the animals were sacrificed and the spines analysed histologically. MRI showed no signs of regeneration. X-ray and gross anatomy inspection demonstrated large anterolateral osteophytes. Histological analysis showed that the osteophytes were composed of mineralized tissue surrounded by chondrocytes, with the labelled MSCs among the osteophyte-forming cells. The labelled MSCs were not found in the nucleus. Inflammatory cells were not observed in any injected IVDs. These results raise concern that MSCs can migrate out of the nucleus and undesirable bone formation may occur. While cause cannot be inferred from this study, the presence of MSCs in the osteophytes suggests a potential side-effect with this approach. IVD regeneration strategies need to focus on cell carrier systems and annulus-sealing technologies to avoid pitfalls.

  3. Becoming the Parent of a GLB Son or Daughter

    PubMed Central

    GRAFSKY, ERIKA L.

    2014-01-01

    Recent research has documented the importance of parental reactions to disclosure for sexual minority youth (SMY) (e.g., Ryan, Huebner, Diaz, & Sanchez, 2009). The purpose of this study was to develop a deeper understanding of the parent perspective of the disclosure to family experience of SMY ages 14-21. In-depth interviews were conducted with eight parents in the United States who had experienced a child disclose their lesbian, gay, or bisexual (LGB) orientation to them. Constructivist grounded theory and symbolic interaction theory informed the methodology and data analysis for the project. Analysis revealed that the process of becoming the parent of an LGB son or daughter is an appropriate narrative to conceptualize the parental experience of the disclosure to family process. The findings highlight how disclosure introduces new roles into the existing family system, which affects the consideration and interpretation of the salience of particular identities, such as being the parent of an LGB son or daughter. Understanding how parents experience the disclosure to family process - particularly, how they understand and re-envision the meaning of being a parent - is crucial for research and intervention to help families become supportive of SMY. Limitations and suggestions for future research are presented. PMID:25685111

  4. Retention of Radium-225 and Its Daughter Radioisotopes in Bone

    SciTech Connect

    Mirzadeh, Saed; Garland, Marc A; Kennel, Steve J

    2008-01-01

    The natural bone seeking tendency of Ra+2, similar to the other alkali metal ions, coupled with the short range high LET of -particle emissions are an ideal combination for localized therapy, and recently 11.4 d 223Ra has been studied for therapy of bone tumors in rats and humans [1,2]. Actinium-225 is also an attractive radioisotope for endo-radiotherapy in a single decay chain from 225Ac, over 26 MeV (~70% of total) is carried by four - particles ranging in energy from 5.7 to 8.4 MeV [3,4]. Although Ac+3 does not home naturally to bone (rather to liver) [5,6], its parent, 225Ra ( -, t1/2 = 15 d), can be used as an in vivo source for 225Ac. A pivotal question for the 225Ra/225Ac in vivo generator system is whether translocation of the daughter nuclei occurs prior to or following the uptake of 225Ra by the bone. In order to assess potential collateral damage to soft tissue organs it is essential to quantitate the extent to which 225Ac is retained in organs following the uptake of 225Ra. We have attempted to answer these questions by investigating the extent of translocation of 225Ac and 213Bi, two daughter radioisotopes of 225Ra, following retention of initially pure 225Ra in bone in normal mice.

  5. Cluster emissions with ? daughter from neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Kumar, Satish; Batra, J. S.; Gupta, Raj K.

    1996-02-01

    Cluster emissions from neutron-rich 0954-3899/22/2/006/img2, and 0954-3899/22/2/006/img3 nuclei are studied within the preformed cluster model of Malik and Gupta. Q-value estimates of the decays selected on the basis of shell effects in binding energies and their relative preformation probabilities show that these nuclei are stable (Q<0) against 0954-3899/22/2/006/img4 and 0954-3899/22/2/006/img5 decays and all the metastable (Q>0) decays are of non-alpha-like heavy clusters. The most probable decays (minimum half-life times) are the ones with a doubly magic 0954-3899/22/2/006/img6 nucleus as the daughter nucleus, arising due to the WKB penetrability. Compared to the presently measurable alpha-like cluster decays of the corresponding neutron-deficient parents into a 0954-3899/22/2/006/img7 daughter nucleus, these decays are suppressed by many orders of magnitude.

  6. Sodium formate induces autophagy and apoptosis via the JNK signaling pathway of photoreceptor cells.

    PubMed

    Wang, Ying; Xu, Shao-Lin; Xu, Wen-Jing; Yang, Hai-Yan; Hu, Ping; Li, Yu-Xin

    2016-02-01

    Incidents associated with methanol intoxication resulting from the consumption of fake wine occur not infrequently worldwide. Certain individuals are made blind due to methanol poisoning. The present study aimed to investigate the effects of sodium formate exposure on photoreceptor cells (661W cells). The 661W cells were exposed to sodium formate for 6‑24 h and cell viability was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyl‑2H‑tetrazolium bromide (MTT) assay. Subsequently, the 661W cells were exposed to 15 or 30 mM sodium formate for 24 h. The level of apoptosis was determined using Hoechst 33342/propidium iodide staining, visualizing the cells under a fluorescence microscope, and annexin V‑fluorescein isothiocyanate staining, using flow cytometric analysis. Intracellular reactive oxygen species (ROS) were measured using 2',7'‑dichlorofluorescein diacetate (DCFH‑DA) staining, followed by flow cytometric analysis. Autophagy of the 661W cells was measured by monodansylcadaverine staining. The activation of phosphorylated c‑Jun N‑terminal kinase (p‑JNK), B‑cell lymphoma (Bcl‑2), Bcl‑2‑associated X protein, cleaved caspase‑3, cleaved caspase‑9 and microtubule‑associated protein 1A/1B‑light chain 3 (LC3) was assessed by western blotting. The effects of Z‑VAD‑fmk (a pan‑caspase inhibitor) and SP600125 (a JNK inhibitor) on the viability of the sodium formate‑induced 661W cells were determined using an MTT assay. Sodium formate treatment induced a decrease in the viability of the 661W cells in a time‑ and a dose‑dependent manner. In addition, sodium formate at concentrations of 15 or 30 mM markedly increased the level of apoptosis and the ROS levels, as measured by DCFH‑DA staining of the 661W cells. Additionally, 661W cells exposed to sodium formate for 24 h exhibited increased levels of p‑JNK, Bax, cleaved caspase‑3, cleaved caspase‑9 and LC3II (the phosphatidylethanolamine‑modified form

  7. The muscle satellite cell at 50: the formative years

    PubMed Central

    2011-01-01

    In February 1961, Alexander Mauro described a cell 'wedged' between the plasma membrane of the muscle fibre and the surrounding basement membrane. He postulated that it could be a dormant myoblast, poised to repair muscle when needed. In the same month, Bernard Katz also reported a cell in a similar location on muscle spindles, suggesting that it was associated with development and growth of intrafusal muscle fibres. Both Mauro and Katz used the term 'satellite cell' in relation to their discoveries. Today, the muscle satellite cell is widely accepted as the resident stem cell of skeletal muscle, supplying myoblasts for growth, homeostasis and repair. Since 2011 marks both the 50th anniversary of the discovery of the satellite cell, and the launch of Skeletal Muscle, it seems an opportune moment to summarise the seminal events in the history of research into muscle regeneration. We start with the 19th-century pioneers who showed that muscle had a regenerative capacity, through to the descriptions from the mid-20th century of the underlying cellular mechanisms. The journey of the satellite cell from electron microscope curio, to its gradual acceptance as a bona fide myoblast precursor, is then charted: work that provided the foundations for our understanding of the role of the satellite cell. Finally, the rapid progress in the age of molecular biology is briefly discussed, and some ongoing debates on satellite cell function highlighted. PMID:21849021

  8. Programmed cell death for defense against anomaly and tumor formation

    SciTech Connect

    Kondo, Sohei; Norimura, Toshiyuki; Nomura, Taisei

    1995-12-31

    Cell death after exposure to low-level radiation is often considered evidence that radiation is poisonous, however small the dose. Evidence has been accumulating to support the notion that cell death after low-level exposure to radiation results from activation of suicidal genes {open_quote}programmed cell death{close_quote} or {open_quote}apoptosis{close_quote} - for the health of the whole body. This paper gives experimental evidence that embryos of fruit flies and mouse fetuses have potent defense mechanisms against teratogenic or tumorigenic injury caused by radiation and carcinogens, which function through programmed cell death.

  9. Human NK cell development requires CD56-mediated motility and formation of the developmental synapse

    PubMed Central

    Mace, Emily M.; Gunesch, Justin T.; Dixon, Amera; Orange, Jordan S.

    2016-01-01

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo. These interactions include the formation of a synapse between developing NK cells and stromal cells, which we term the developmental synapse. Finally, we identify a role for CD56 in developmental synapse structure, NK cell motility and NK cell development. Thus, we define the developmental synapse leading to human NK cell functional maturation. PMID:27435370

  10. Measurements of the deposition rates of radon daughters on indoor surfaces

    SciTech Connect

    Toohey, R.E.; Essling, M.A.; Rundo, J.; Hengde, W.

    1983-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached RaA and RaB of approximately 4 mm sec/sup -1/ were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol.

  11. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation

    PubMed Central

    Mikhailyuk, Tatiana; Holzinger, Andreas; Massalski, Andrzej; Karsten, Ulf

    2014-01-01

    Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions. PMID:26504365

  12. Raman scattering evidence of hydrohalite formation on frozen yeast cells.

    PubMed

    Okotrub, K A; Surovtsev, N V

    2013-02-01

    We studied yeast cells in physiological solution during freezing by Raman microspectroscopy technique. The purpose was to find out the origin of a sharp peak near ∼3430cm(-1) in Raman spectrum of frozen mammalian cells, observed earlier (J. Dong et al., Biophys. J. 99 (2010) 2453), which presumably could be used as an indicator of intracellar ice appearance. We have shown that this line (actually doublet of 3408 and 3425cm(-1)) corresponds to Raman spectrum of hydrohalite (NaCl⋅2H(2)O), which is formed as the result of the eutectic crystallization of the liquid solution around the cells. We also show that the spatial distribution of hydrohalite in the sample significantly depends on the cooling rate. At lower cooling rate (1°C/min), products of eutectic crystallization form layer on the cell surface which thickness varies for different cells and can reach ∼1μm in thickness. At higher cooling rate (20°C/min), the hydrohalite distribution appears more homogeneous, in the sample, and the eutectic crystallization layer around the cells was estimated to be less than ∼20nm. These experimental results are consistent with scenarios predicted by the two-factor hypothesis for freezing induced cell injury. This work demonstrates a potential of Raman microspectroscopy to study peculiarities of the eutectic crystallization around single cells in vivo with the high spatial resolution.

  13. Robust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization

    NASA Astrophysics Data System (ADS)

    Vafaeinezhad, Moghadaseh; Kia, Reza; Shahnazari-Shahrezaei, Parisa

    2016-11-01

    Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and worker assignment is implemented with uncertain scenario-based data. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all possible future scenarios. In this research, miscellaneous cost parameters of the cell formation and demand fluctuations are subject to uncertainty and a mixed-integer nonlinear programming model is developed to formulate the related robust dynamic cell formation problem. The objective function seeks to minimize total costs including machine constant, machine procurement, machine relocation, machine operation, inter-cell and intra-cell movement, overtime, shifting labors between cells and inventory holding. Finally, a case study is carried out to display the robustness and effectiveness of the proposed model. The tradeoff between solution robustness and model robustness is also analyzed in the obtained results.

  14. Laser-based techniques for living cell pattern formation

    NASA Astrophysics Data System (ADS)

    Hopp, Béla; Smausz, Tomi; Papdi, Bence; Bor, Zsolt; Szabó, András; Kolozsvári, Lajos; Fotakis, Costas; Nógrádi, Antal

    2008-10-01

    In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser ( λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser ( λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene terephtalate surface showed a surface roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers ( F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.

  15. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation.

    PubMed

    Brinkmann, Benjamin F; Steinbacher, Tim; Hartmann, Christian; Kummer, Daniel; Pajonczyk, Denise; Mirzapourshafiyi, Fatemeh; Nakayama, Masanori; Weide, Thomas; Gerke, Volker; Ebnet, Klaus

    2016-09-15

    Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell-cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3.

  16. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells

    PubMed Central

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-01-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle–like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo. PMID:27054467

  17. CD22 is required for formation of memory B cell precursors within germinal centers

    PubMed Central

    Chappell, Craig P.; Draves, Kevin E.

    2017-01-01

    CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens. PMID:28346517

  18. Hispanic maternal influences on daughters' unhealthy weight control behaviors: The role of maternal acculturation, adiposity, and body image disturbances.

    PubMed

    Olvera, Norma; Matthews-Ewald, Molly R; McCarley, Kendall; Scherer, Rhonda; Posada, Alexandria

    2016-12-01

    This study examined whether maternal adiposity, acculturation, and perceived-ideal body size discrepancy for daughters were associated with daughters' engagement in unhealthy weight control behaviors. A total of 97 Hispanic mother-daughter dyads completed surveys, rated a figure scale, and had their height, weight, and adiposity assessed. Mothers (Mage=39.00, SD=6.20 years) selected larger ideal body sizes for their daughters (Mage=11.12, SD=1.53 years) than their daughters selected for themselves. Mothers had a smaller difference between their perception of their daughters' body size and ideal body size compared to the difference between their daughters' selection of their perceived and ideal body size. More acculturated mothers and those mothers with larger waist-to-hip ratios were more likely to have daughters who engaged in unhealthy weight control behaviors. These findings highlight the relevant role that maternal acculturation and adiposity may have in influencing daughters' unhealthy weight control behaviors.

  19. Functional Anatomy of T Cell Activation and Synapse Formation

    PubMed Central

    Fooksman, David R.; Vardhana, Santosh; Vasiliver-Shamis, Gaia; Liese, Jan; Blair, David; Waite, Janelle; Sacristán, Catarina; Victora, Gabriel; Zanin-Zhorov, Alexandra; Dustin, Michael L.

    2010-01-01

    T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward. PMID:19968559

  20. Mechanisms underlying the formation of induced pluripotent stem cells.

    PubMed

    González, Federico; Huangfu, Danwei

    2016-01-01

    Human pluripotent stem cells (hPSCs) offer unique opportunities for studying human biology, modeling diseases, and therapeutic applications. The simplest approach so far to generate human PSC lines is through reprogramming of somatic cells from an individual by defined factors, referred to simply as reprogramming. Reprogramming circumvents the ethical controversies associated with human embryonic stem cells (hESCs) and nuclear transfer hESCs (nt-hESCs), and the resulting induced pluripotent stem cells (hiPSCs) retain the same basic genetic makeup as the somatic cell used for reprogramming. Since the first report of iPSCs by Takahashi and Yamanaka (Cell 2006, 126:663-676), the molecular mechanisms of reprogramming have been extensively investigated. A better mechanistic understanding of reprogramming is fundamental not only to iPSC biology and improving the quality of iPSCs for therapeutic use, but also to our understanding of the molecular basis of cell identity, pluripotency, and plasticity. Here, we summarize the genetic, epigenetic, and cellular events during reprogramming, and the roles of various factors identified thus far in the reprogramming process. WIREs Dev Biol 2016, 5:39-65. doi: 10.1002/wdev.206 For further resources related to this article, please visit the WIREs website.

  1. Trunk neural crest cells: formation, migration and beyond.

    PubMed

    Vega-Lopez, Guillermo A; Cerrizuela, Santiago; Aybar, Manuel J

    2017-01-01

    Neural crest cells (NCCs) are a multipotent, migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. The trunk neural crest has long been considered of particular significance. First, it has been held that the trunk neural crest has a morphogenetic role, acting to coordinate the development of the peripheral nervous system, secretory cells of the endocrine system and pigment cells of the skin. Second, the trunk neural crest additionally has skeletal potential. However, it has been demonstrated that a key role of the trunk neural crest streams is to organize the innervation of the intestine. Although trunk NCCs have a limited capacity for self-renewal, sometimes they become neural-crest-derived tumor cells and reveal the fact that that NCCs and tumor cells share the same molecular machinery. In this review we describe the routes taken by trunk NCCs and consider the signals and cues that pattern these trajectories. We also discuss recent advances in the characterization of the properties of trunk NCCs for various model organisms in order to highlight common themes. Finally, looking to the future, we discuss the need to translate the wealth of data from animal studies to the clinical area in order to develop treatments for neural crest-related human diseases.

  2. RNA processing body (P-body) dynamics in mesophyll protoplasts re-initiating cell division.

    PubMed

    Bhullar, Dilbag S; Sheahan, Michael B; Rose, Ray J

    2016-12-07

    The ability of plants to regenerate lies in the capacity of differentiated cells to reprogram and re-enter the cell cycle. Reprogramming of cells requires changes in chromatin organisation and gene expression. However, there has been less focus on changes at the post transcription level. We have investigated P-bodies, sites of post transcriptional gene regulation, in plant cell reprogramming in cultured mesophyll protoplasts; by using a YFP-VARICOSE (YFP-VCSc) translational fusion. We showed an early increase in P-body number and volume, followed by a decline, then a subsequent continued increase in P-body number and volume as cell division was initiated and cell proliferation continued. We infer that plant P-bodies have a role to play in reprogramming the mature cell and re-initiating the cell division cycle. The timing of the first phase is consistent with the degredation of messages no longer required, as the cell transits to the division state, and may also be linked to the stress response associated with division induction in cultured cells. The subsequent increase in P-body formation, with partitioning to the daughter cells during the division process, suggests a role in the cell cycle and its re-initiation in daughter cells. P-bodies were shown to be mobile in the cytoplasm and show actin-based motility which facilitates their post-transcriptional role and partitioning to daughter cells.

  3. Inducible and Constitutive β-Galactosidase Formation in Cells Recovering from Protein Synthesis Inhibition1

    PubMed Central

    Soreq, Hermona; Kaplan, Ruth

    1971-01-01

    Inducible and constitutive β-galactosidase formation and radioactive amino acid incorporation were measured in cells recovering from various treatments which inhibit protein synthesis in the cell. Undelayed β-galactosidase formation was found in stringent auxotrophs recovering from amino acid starvation, in cells recovering from glycerol or potassium starvation, and in bacteria recovering from puromycin treatment. Delayed β-galactosidase formation was found in relaxed auxotrophs recovering from amino acid starvation and in prototrophs recovering from chloramphenicol or from tetracycline treatment. The length of this delay was directly proportional to the duration of the treatment. All cells recovering from the various treatments exhibited a slightly decreased rate of β-galactosidase formation and an increase in radioactive amino acid incorporation. PMID:4945186

  4. Colony formation and interleukin 2 production by leukaemic human T cells.

    PubMed Central

    Krajewski, A S; Dewar, A E; Seidelin, P H; Murray, R

    1983-01-01

    PHA-induced colony formation and interleukin 2 (IL-2) production were studied in four patients with T cell leukaemia (three cases OKT4+/T helper and one case OKT8+/T cytotoxic suppressor). Cases of T helper cell leukaemia showed colony formation that was comparable to normal purified blood T cells and was not dependent on the addition of conditioned medium, containing IL-2 activity, to cultures. In contrast the T suppressor cell leukaemia formed colonies only when cultures were supplemented with IL-2 containing medium. When IL-2 production by PHA stimulated cells was measured culture supernatants from the three T helper cell leukaemias all showed normal or high levels of activity, when compared to normal blood mononuclear cells, whereas the T suppressor cell leukaemia showed no activity. PMID:6604606

  5. Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage.

    PubMed

    Zhang, Qiao; Shalaby, Nevine A; Buszczak, Michael

    2014-01-17

    Ribosome biogenesis drives cell growth and proliferation, but mechanisms that modulate this process within specific lineages remain poorly understood. Here, we identify a Drosophila RNA polymerase I (Pol I) regulatory complex composed of Under-developed (Udd), TAF1B, and a TAF1C-like factor. Disruption of udd or TAF1B results in reduced ovarian germline stem cell (GSC) proliferation. Female GSCs display high levels of ribosomal RNA (rRNA) transcription, and Udd becomes enriched in GSCs relative to their differentiating daughters. Increasing Pol I transcription delays differentiation, whereas reducing rRNA production induces both morphological changes that accompany multicellular cyst formation and specific decreased expression of the bone morphogenetic protein (BMP) pathway component Mad. These findings demonstrate that modulating rRNA synthesis fosters changes in the cell fate, growth, and proliferation of female Drosophila GSCs and their daughters.

  6. Mechanical Model of Geometric Cell and Topological Algorithm for Cell Dynamics from Single-Cell to Formation of Monolayered Tissues with Pattern

    PubMed Central

    Kachalo, Sëma; Naveed, Hammad; Cao, Youfang; Zhao, Jieling; Liang, Jie

    2015-01-01

    Geometric and mechanical properties of individual cells and interactions among neighboring cells are the basis of formation of tissue patterns. Understanding the complex interplay of cells is essential for gaining insight into embryogenesis, tissue development, and other emerging behavior. Here we describe a cell model and an efficient geometric algorithm for studying the dynamic process of tissue formation in 2D (e.g. epithelial tissues). Our approach improves upon previous methods by incorporating properties of individual cells as well as detailed description of the dynamic growth process, with all topological changes accounted for. Cell size, shape, and division plane orientation are modeled realistically. In addition, cell birth, cell growth, cell shrinkage, cell death, cell division, cell collision, and cell rearrangements are now fully accounted for. Different models of cell-cell interactions, such as lateral inhibition during the process of growth, can be studied in detail. Cellular pattern formation for monolayered tissues from arbitrary initial conditions, including that of a single cell, can also be studied in detail. Computational efficiency is achieved through the employment of a special data structure that ensures access to neighboring cells in constant time, without additional space requirement. We have successfully generated tissues consisting of more than 20,000 cells starting from 2 cells within 1 hour. We show that our model can be used to study embryogenesis, tissue fusion, and cell apoptosis. We give detailed study of the classical developmental process of bristle formation on the epidermis of D. melanogaster and the fundamental problem of homeostatic size control in epithelial tissues. Simulation results reveal significant roles of solubility of secreted factors in both the bristle formation and the homeostatic control of tissue size. Our method can be used to study broad problems in monolayered tissue formation. Our software is publicly

  7. Numerical simulation of water transport and intracellular ice formation for freezing of endothelial cells.

    PubMed

    Zhao, G; Xu, Y; Ding, W P; Hu, M B

    2013-01-01

    Endothelial cell detachment may cause failure of blood vessel and corneal cryopreservation, and thus successful cryopreservation of endothelial cells is regarded to be the first step to optimize cryopreservation of endothelial cells containing tissues. In this study, the pre-determined biophysical parameters were incorporated into the model for intracellular ice formation (IIF) and the growth of intracellular ice crystals (ICG) to calculate cell water loss, supercooling of intracellular solution, intracellular ice formation and the growth of intracellular ice crystals. The optimal protocols were determined according to the combination effect of both solution injury and IIF injury.

  8. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    SciTech Connect

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi . E-mail: yokochi@aichi-med-u.ac.jp

    2007-08-24

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-{alpha} antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-{kappa}B ligand (RANKL). TNF-{alpha} might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-{kappa}B and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.

  9. VE-cadherin interacts with cell polarity protein Pals1 to regulate vascular lumen formation

    PubMed Central

    Brinkmann, Benjamin F.; Steinbacher, Tim; Hartmann, Christian; Kummer, Daniel; Pajonczyk, Denise; Mirzapourshafiyi, Fatemeh; Nakayama, Masanori; Weide, Thomas; Gerke, Volker; Ebnet, Klaus

    2016-01-01

    Blood vessel tubulogenesis requires the formation of stable cell-to-cell contacts and the establishment of apicobasal polarity of vascular endothelial cells. Cell polarity is regulated by highly conserved cell polarity protein complexes such as the Par3-aPKC-Par6 complex and the CRB3-Pals1-PATJ complex, which are expressed by many different cell types and regulate various aspects of cell polarity. Here we describe a functional interaction of VE-cadherin with the cell polarity protein Pals1. Pals1 directly interacts with VE-cadherin through a membrane-proximal motif in the cytoplasmic domain of VE-cadherin. VE-cadherin clusters Pals1 at cell–cell junctions. Mutating the Pals1-binding motif in VE-cadherin abrogates the ability of VE-cadherin to regulate apicobasal polarity and vascular lumen formation. In a similar way, deletion of the Par3-binding motif at the C-terminus of VE-cadherin impairs apicobasal polarity and vascular lumen formation. Our findings indicate that the biological activity of VE-cadherin in regulating endothelial polarity and vascular lumen formation is mediated through its interaction with the two cell polarity proteins Pals1 and Par3. PMID:27466317

  10. Differentiated cytoplasmic granule formation in quiescent and non-quiescent cells upon chronological aging

    PubMed Central

    Lee, Hsin-Yi; Cheng, Kuo-Yu; Chao, Jung-Chi; Leu, Jun-Yi

    2016-01-01

    Stationary phase cultures represent a complicated cell population comprising at least two different cell types, quiescent (Q) and non-quiescent (NQ) cells. Q and NQ cells have different lifespans and cell physiologies. However, less is known about the organization of cytosolic protein structures in these two cell types. In this study, we examined Q and NQ cells for the formation of several stationary phase-prevalent granule structures including actin bodies, proteasome storage granules, stress granules, P-bodies, the compartment for unconventional protein secretion (CUPS), and Hsp42-associated stationary phase granules (Hsp42-SPGs). Most of these structures preferentially form in NQ cells, except for Hsp42-SPGs, which are enriched in Q cells. When nutrients are provided, NQ cells enter mitosis less efficiently than Q cells, likely due to the time requirement for reorganizing some granule structures. We observed that heat shock-induced misfolded proteins often colocalize to Hsp42-SPGs, and Q cells clear these protein aggregates more efficiently, suggesting that Hsp42-SPGs may play an important role in the stress resistance of Q cells. Finally, we show that the cell fate of NQ cells is largely irreversible even if they are allowed to reenter mitosis. Our results reveal that the formation of different granule structures may represent the early stage of cell type differentiation in yeast stationary phase cultures. PMID:28357341

  11. Intact vinculin protein is required for control of cell shape, cell mechanics, and rac-dependent lamellipodia formation

    NASA Technical Reports Server (NTRS)

    Goldmann, Wolfgang H.; Ingber, Donald E.

    2002-01-01

    Studies were carried out using vinculin-deficient F9 embryonic carcinoma (gamma229) cells to analyze the relationship between structure and function within the focal adhesion protein vinculin, in the context of control of cell shape, cell mechanics, and movement. Atomic force microscopy studies revealed that transfection of the head (aa 1-821) or tail (aa 811-1066) domain of vinculin, alone or together, was unable to fully reverse the decrease in cell stiffness, spreading, and lamellipodia formation caused by vinculin deficiency. In contrast, replacement with intact vinculin completely restored normal cell mechanics and spreading regardless of whether its tyrosine phosphorylation site was deleted. Constitutively active rac also only induced extension of lamellipodia when microinjected into cells that expressed intact vinculin protein. These data indicate that vinculin's ability to physically couple integrins to the cytoskeleton, to mechanically stabilize cell shape, and to support rac-dependent lamellipodia formation all appear to depend on its intact three-dimensional structure.

  12. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  13. Predictors of perceived benefits and drawbacks of using paid service among daughter and daughter-in-law caregivers of people with dementia.

    PubMed

    Moon, Heehyul

    2016-01-01

    This study examines the types of benefits and drawbacks of a sample of daughter and daughter-in-law caregivers (CG) of people with dementia and explores the predictors associated with the identified benefits and drawbacks. The current study used a secondary analysis of a purposive sample of 102 daughters or daughters-in-law living in Northeast Ohio who were required to be using at least 8 hours of paid services per week to help in caring for their care recipient (CR) with Alzheimer's disease or other memory problems. Logistic regression was used. All respondents answered that there were benefits of having the paid help, but 51% of them reported drawbacks as well. The analyses revealed that predictors of each identified benefit and drawback were different. Information about benefits and drawbacks of paid help is useful for service providers to design better services for CGs of people with dementia.

  14. Dynamics of vegetative cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Musgrave, M. E.

    1996-01-01

    Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation in Arabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultrastructure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyosomes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.

  15. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells

    SciTech Connect

    Taru Sharma, G.; Dubey, Pawan K.; Verma, Om Prakash; Pratheesh, M.D.; Nath, Amar; Sai Kumar, G.

    2012-08-03

    Graphical abstract: EBs formation, characterization and expression of germinal layers marker genes of in vivo developed teratoma using four different types of extracellular matrices. Highlights: Black-Right-Pointing-Pointer Collagen-IV matrix is found cytocompatible for EBs formation and differentiation. Black-Right-Pointing-Pointer Established 3D microenvironment for ES cells development and differentiation into three germ layers. Black-Right-Pointing-Pointer Collagen-IV may be useful as promising candidate for ES cells based therapeutic applications. -- Abstract: Embryoid bodies (EBs) are used as in vitro model to study early extraembryonic tissue formation and differentiation. In this study, a novel method using three dimensional extracellular matrices for in vitro generation of EBs from buffalo embryonic stem (ES) cells and its differentiation potential by teratoma formation was successfully established. In vitro derived inner cell masses (ICMs) of hatched buffalo blastocyst were cultured on buffalo fetal fibroblast feeder layer for primary cell colony formation. For generation of EBs, pluripotent ES cells were seeded onto four different types of extracellular matrices viz; collagen-IV, laminin, fibronectin and matrigel using undifferentiating ES cell culture medium. After 5 days of culture, ESCs gradually grew into aggregates and formed simple EBs having circular structures. Twenty-six days later, they formed cystic EBs over collagen matrix with higher EBs formation and greater proliferation rate as compared to other extracellular matrices. Studies involving histological observations, fluorescence microscopy and RT-PCR analysis of the in vivo developed teratoma revealed that presence of all the three germ layer derivatives viz. ectoderm (NCAM), mesoderm (Flk-1) and endoderm (AFP). In conclusion, the method described here demonstrates a simple and cost-effective way of generating EBs from buffalo ES cells. Collagen-IV matrix was found cytocompatible as it

  16. Mechanosensitive store-operated calcium entry regulates the formation of cell polarity.

    PubMed

    Huang, Yi-Wei; Chang, Shu-Jing; I-Chen Harn, Hans; Huang, Hui-Ting; Lin, Hsi-Hui; Shen, Meng-Ru; Tang, Ming-Jer; Chiu, Wen-Tai

    2015-09-01

    Ca(2+) -mediated formation of cell polarity is essential for directional migration which plays an important role in physiological and pathological processes in organisms. To examine the critical role of store-operated Ca(2+) entry, which is the major form of extracellular Ca(2+) influx in non-excitable cells, in the formation of cell polarity, we employed human bone osteosarcoma U2OS cells, which exhibit distinct morphological polarity during directional migration. Our analyses showed that Ca(2+) was concentrated at the rear end of cells and that extracellular Ca(2+) influx was important for cell polarization. Inhibition of store-operated Ca(2+) entry using specific inhibitors disrupted the formation of cell polarity in a dose-dependent manner. Moreover, the channelosomal components caveolin-1, TRPC1, and Orai1 were concentrated at the rear end of polarized cells. Knockdown of TRPC1 or a TRPC inhibitor, but not knockdown of Orai1, reduced cell polarization. Furthermore, disruption of lipid rafts or overexpression of caveolin-1 contributed to the downregulation of cell polarity. On the other hand, we also found that cell polarity, store-operated Ca(2+) entry activity, and cell stiffness were markedly decreased by low substrate rigidity, which may be caused by the disorganization of actin filaments and microtubules that occurs while regulating the activity of the mechanosensitive TRPC1 channel.

  17. MBD3 inhibits formation of liver cancer stem cells

    PubMed Central

    Li, Ruizhi; He, Qihua; Han, Shuo; Zhang, Mingzhi; Liu, Jinwen; Su, Ming; Wei, Shiruo; Wang, Xuan; Shen, Li

    2017-01-01

    Liver cancer cells can be reprogrammed into induced cancer stem cells (iCSCs) by exogenous expression of the reprogramming transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM). The nucleosome remodeling and deacetylase (NuRD) complex is essential for reprogramming somatic cells. In this study, we investigated the function of NuRD in the induction of liver CSCs. We showed that suppression of methyl-CpG binding domain protein 3 (MBD3), a core subunit of the NuRD repressor complex, together with OSKM transduction, induces conversion of liver cancer cells into stem-like cells. Expression of the transcription factor c-JUN is increased in MBD3-depleted iCSCs, and c-JUN activates endogenous pluripotent genes and regulates iCSC-related genes. These results indicate that MBD3/NuRD inhibits the induction of iCSCs, while c-JUN facilitates the generation of CSC-like properties. The iCSC reprogramming approach devised here provides a novel platform for dissection of the disordered signaling in liver CSCs. In addition, our results indicate that c-JUN may serve as a potential target for liver cancer therapy. PMID:27894081

  18. Kinetics of Lipofuscin Formation in Aging Retinal Pigment Epithelium Cells

    NASA Astrophysics Data System (ADS)

    Family, Fereydoon; Mazzitello, K. I.; Arizmendi, C. M.; Grossniklaus, Hans E.

    2010-03-01

    Lipofuscin is a deposit that is formed over time by aggregation and clustering of incompletely degraded membrane material in various types of cells. Lipofuscin is made of free-radical-damaged protein and fat and is known to be present in age- related macular dgeneration (AMD), Alzheimer disease, and Parkinson disease. AMD is the leading cause of blindness in adults. The degradation of retinal pigment epithelium cells (RPE) through accumulation of lipsofuscin is considered a significant pathogenic factor in the development of AMD. We will present the results of a study of the kinetics of lipofuscin growth in RPE cells using Kinetic Monte Carlo simulations and scaling theory on a cluster aggregation model. The model captures the essential physics of lipofuscin growth in the cells. A remarkable feature is that small particles may be removed from the cells while the larger ones become fixed and grow by aggregation. We compare our results with the number of lipofuscin granules in eyes with early age-related degeneration.

  19. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers’ Intentions to Allow Their Daughters to Undergo Female Genital Mutilation

    PubMed Central

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen’s theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers’ intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers’ intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers’ intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers’ neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one’s daughter. Based on our findings, we provide recommendations about how to curtail mothers’ intentions to allow their daughters to undergo FGM. PMID:27031613

  20. Daughters at Risk of Female Genital Mutilation: Examining the Determinants of Mothers' Intentions to Allow Their Daughters to Undergo Female Genital Mutilation.

    PubMed

    Pashaei, Tahereh; Ponnet, Koen; Moeeni, Maryam; Khazaee-pool, Maryam; Majlessi, Fereshteh

    2016-01-01

    Female genital mutilation (FGM) is still a common practice in many countries in Africa and the Middle East. Understanding the determinants of FGM can lead to more active interventions to prevent this harmful practice. The goal of this study is to explore factors associated with FGM behavior among Iranian mothers and their daughters. Based on Ajzen's theory of planned behavior, we examined the predictive value of attitudes, subjective norms, perceived behavioral control and several socio-demographic variables in relation to mothers' intentions to mutilate their daughters. A paper-and-pencil survey was conducted among 300 mothers (mean age = 33.20, SD = 9.09) who had at least one daughter and who lived in Ravansar, a county in Kermanshah Province in Iran. Structural equation modeling was used to investigate the relationships among the study variables. Our results indicate that attitude is the strongest predictor of mothers' intentions to allow their daughters to undergo FGM, followed by subjective norms. Compared to younger mothers, older mothers have more positive attitudes toward FGM, perceive themselves as having more control over their behavior and demonstrate a greater intention to allow their daughter to undergo FGM. Furthermore, we found that less educated mothers and mothers living in rural areas had more positive attitudes toward FGM and feel more social pressure to allow FGM. The model accounts for 93 percent of the variance in the mothers' intentions to allow their daughters to undergo FGM. Intervention programs that want to decrease FGM might focus primarily on converting mothers' neutral or positive feelings toward FGM into negative attitudes and on alleviating the perceived social pressure to mutilate one's daughter. Based on our findings, we provide recommendations about how to curtail mothers' intentions to allow their daughters to undergo FGM.

  1. Biofilm formation on polystyrene in detached vs. planktonic cells of polyhydroxyalkanoate-accumulating Halomonas venusta.

    PubMed

    Berlanga, Mercedes; Domènech, Òscar; Guerrero, Ricardo

    2014-12-01

    Biofilm development is characterized by distinct stages of initial attachment, microcolony formation and maturation (sessile cells), and final detachment (dispersal of new, planktonic cells). In this work we examined the influence of polyhydroxyalkanoate (PHA) accumulation on bacterial surface properties and biofilm formation on polystyrene in detached vs. planktonic cells of an environmental strain isolated from microbial mats, Halomonas venusta MAT28. This strain was cultured either in an artificial biofilm in which the cells were immobilized on alginate beads (sessile) or as free-swimming (planktonic) cells. For the two modes of growth, conditions allowing or preventing PHA accumulation were established. Cells detached from alginate beads and their planktonic counterparts were used to study cell surface properties and cellular adhesion on polystyrene. Detached cells showed a slightly higher affinity than planktonic cells for chloroform (Lewis-acid) and a greater hydrophobicity (affinity for hexadecane and hexane). Those surface characteristics of the detached cells may explain their better adhesion on polystyrene compared to planktonic cells. Adhesion to polystyrene was not significantly different between H. venusta cells that had accumulated PHA vs. those that did not. These observations suggest that the surface properties of detached cells clearly differ from those of planktonic cells and that for at least the first 48 h after detachment from alginate beads H. venusta retained the capacity of sessile cells to adhere to polystyrene and to form a biofilm.

  2. Application of laser annealing to solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.; Lopez, M.; Josephs, R. H.

    1981-01-01

    The possibility of using high-energy Q-switched Nd:glass lasers to form pn junctions in solar cells by annealing ion-implanted substrates is investigated. The properties of laser annealed cells are analyzed by electrical, transmission electron microscopy, Rutherford backscattering and secondary ion mass spectrometry techniques. Tests indicate the laser annealed substrates to be damage-free and electrically active. Similar reference analysis of ion-implanted furnace-annealed substrates reveals the presence of residual defects in the form of dislocation lines and loops with substantial impurity redistribution evident for some anneal temperature/time regimes. Fabricated laser annealed cells exhibit excellent conversion efficiency. It is noted that additional improvements are anticipated once the anneal parameters for a back surface field are optimized.

  3. Formation and maintenance of the Golgi apparatus in plant cells.

    PubMed

    Ito, Yoko; Uemura, Tomohiro; Nakano, Akihiko

    2014-01-01

    The Golgi apparatus plays essential roles in intracellular trafficking, protein and lipid modification, and polysaccharide synthesis in eukaryotic cells. It is well known for its unique stacked structure, which is conserved among most eukaryotes. However, the mechanisms of biogenesis and maintenance of the structure, which are deeply related to ER-Golgi and intra-Golgi transport systems, have long been mysterious. Now having extremely powerful microscopic technologies developed for live-cell imaging, the plant Golgi apparatus provides an ideal system to resolve the question. The plant Golgi apparatus has unique features that are not conserved in other kingdoms, which will also give new insights into the Golgi functions in plant life. In this review, we will summarize the features of the plant Golgi apparatus and transport mechanisms around it, with a focus on recent advances in Golgi biogenesis by live imaging of plants cells.

  4. Investigation of Contact Formation during Silicon Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Mojrová, Barbora

    2016-05-01

    This article deals with the investigation of the influence of sintering conditions on the formation process of screen printed contacts on passivated boron doped P+ emitters. The experiment was focused on measuring of resistance changes of two thick film pastes during firing processes with different conditions. Two different temperature profiles were compared at an atmospheric concentration of O2. The influence of the O2 concentration on resistance was investigated for one profile. A rapid thermal processing furnace modified for in-situ resistance measurements was used. The change of resistance was measured simultaneously with the temperature.

  5. Removal of {sup 222}Rn daughters from metal surfaces

    SciTech Connect

    Zuzel, G.; Wojcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2015-08-17

    Removal of the long-lived {sup 222}Rn daughters ({sup 210}Pb, {sup 210}Bi and {sup 210}Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the {sup 210}Pb activity was tested using a HPGe spectrometer, for {sup 210}Bi a beta spectrometer and for {sup 210}Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for {sup 210}Pb, {sup 210}Bi and {sup 210}Po were between 200 and 400. Etching does not remove {sup 210}Po from copper but works very efficiently from germanium. Results obtained for {sup 210}Pb and {sup 210}Bi for etched stainless steel were worse but still slightly better than those achieved for copper.

  6. Richard III, Barer-Stoddart and the Daughter of Time.

    PubMed

    Evans, Robert G; McGrail, Kimberlyn M

    2008-02-01

    "Truth is the daughter of Time," said mystery writer Josephine Tey. This point, illustrated in her rehabilitation of the "villainous" King Richard III, is equally apt for a reconsideration of the 1991 Barer-Stoddart report on medical personnel. Canadian physicians have reviled these authors for "creating" a physician shortage by encouraging provincial cuts to medical school enrolment. Yet, data pre- and post-1991 are quite clear: their report did not and could not have had this effect. The physician-to-population ratio has been stable since 1989. Average physician hours of work have fallen, but per capita expenditures on physicians' services (inflation-adjusted) are rising rapidly. A flood of physicians from the major expansion of enrolments now in place threatens serious fiscal trouble over the next two decades, and is likely to pre-empt any significant system reform.

  7. Process for recovery of daughter isotopes from a source material

    SciTech Connect

    Tranter, Troy J.; Todd, Terry A.; Lewis, Leroy C.; Henscheid, Joseph P.

    2005-10-04

    The invention includes a method of separating isotopes from a mixture containing at least two isotopes in a solution. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the precipitate. The precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. The invention also includes a system for producing an actinium-225/bismuth-213 product.

  8. Removal of 222Rn daughters from metal surfaces

    NASA Astrophysics Data System (ADS)

    Zuzel, G.; Wojcik, M.; Majorovits, B.; Lampert, M. O.; Wendling, P.

    2015-08-01

    Removal of the long-lived 222Rn daughters (210Pb, 210Bi and 210Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the 210Pb activity was tested using a HPGe spectrometer, for 210Bi a beta spectrometer and for 210Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for 210Pb, 210Bi and 210Po were between 200 and 400. Etching does not remove 210Po from copper but works very efficiently from germanium. Results obtained for 210Pb and 210Bi for etched stainless steel were worse but still slightly better than those achieved for copper.

  9. Rap1 integrates tissue polarity, lumen formation, and tumorigenicpotential in human breast epithelial cells

    SciTech Connect

    Itoh, Masahiko; Nelson, Celeste M.; Myers, Connie A.; Bissell,Mina J.

    2006-09-29

    Maintenance of apico-basal polarity in normal breast epithelial acini requires a balance between cell proliferation, cell death, and proper cell-cell and cell-extracellular matrix signaling. Aberrations in any of these processes can disrupt tissue architecture and initiate tumor formation. Here we show that the small GTPase Rap1 is a crucial element in organizing acinar structure and inducing lumen formation. Rap1 activity in malignant HMT-3522 T4-2 cells is appreciably higher than in S1 cells, their non-malignant counterparts. Expression of dominant-negative Rap1 resulted in phenotypic reversion of T4-2 cells, led to formation of acinar structures with correct apico-basal polarity, and dramatically reduced tumor incidence despite the persistence of genomic abnormalities. The resulting acini contained prominent central lumina not observed when other reverting agents were used. Conversely, expression of dominant-active Rap1 in T4-2 cells inhibited phenotypic reversion and led to increased invasiveness and tumorigenicity. Thus, Rap1 acts as a central regulator of breast architecture, with normal levels of activation instructing apical polarity during acinar morphogenesis, and increased activation inducing tumor formation and progression to malignancy.

  10. Inhibition of macrophage-derived foam cell formation by ezetimibe via the caveolin-1/MAPK pathway.

    PubMed

    Qin, Li; Yang, Yun-Bo; Yang, Yi-Xin; Zhu, Neng; Liu, Zheng; Ni, Ya-Guang; Li, Shun-Xiang; Zheng, Xi-Long; Liao, Duan-Fang

    2016-02-01

    Ezetimibe, a selective inhibitor of intestinal cholesterol absorption, effectively reduces plasma cholesterol, but its effect on atherosclerosis is unclear. Foam cell formation has been implicated as a key mediator during the development of atherosclerosis. The purpose of this study was to investigate the effects of ezetimibe on foam cell formation and explore the underlying mechanism. The results presented here show that ezetimibe reduces atherosclerotic lesions in apolipoprotein E deficient (apoE-/-) mice by lowering cholesterol levels. Treatment of macrophages with Chol:MβCD resulted in foam cell formation, which was concentration-dependently inhibited by the presence of ezetimibe. Mechanically, ezetimibe treatment downregulated the expression of CD36 and scavenger receptor class B1 (SR-B1), but upregulated the expression of apoE and caveolin-1 in macrophage-derived foam cells, which kept consistent with our microarray results. Moreover, treatment with ezetimibe abrogated the increase of phospho-extracellular signal regulated kinase (ERK) 1/2 and their nuclear accumulation in foam cells. Inhibition of the MAPK pathway by the MEK inhibitor PD98059 attenuated the inhibitory effect of ezetimibe on the expression of p-ERK1/2 and caveolin-1. Taken together, these results showed that ezetimibe suppressed foam cell formation via the caveolin-1/MAPK signalling pathway, suggesting that inhibition of foam cell formation might be a novel mechanism underlying the anti-atherosclerotic effect of ezetimibe.

  11. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-06-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.

  12. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick N.; Fouladdel, Shamileh; McDermott, Sean P.; Azizi, Ebrahim; Wicha, Max S.; Yoon, Euisik

    2016-01-01

    Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis. PMID:27292795

  13. Daughter Species Abundances in Comet C/2014 Q2 (Lovejoy)

    NASA Astrophysics Data System (ADS)

    McKay, Adam; Cochran, Anita; Dello Russo, Neil; Kelley, Michael

    2015-11-01

    We present analysis of high spectral resolution optical spectra of C/2014 Q2 (Lovejoy) acquired with the Tull Coude spectrometer on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory and the ARCES spectrometer mounted on the 3.5-meter Astrophysical Research Consortium Telescope at Apache Point Observatory. Both Tull Coude and ARCES provide high spectral resolution (R=30,000-60,000) and a large spectral range of approximately 3500-10000 Angstroms. We obtained two observation epochs, one in February 2015 at a heliocentric distance of 1.3 AU, and another in May 2015 at a heliocentric distance of 1.9 AU. Another epoch in late August 2015 at a heliocentric distance of 3.0 AU is scheduled. We will present production rates of the daughter species CN, C3, CH, C2, and NH2. We will also present H2O production rates derived from the [OI]6300 emission, as well as measurements of the flux ratio of the [OI]5577 Angstrom line to the sum of the [OI]6300 and [OI]6364 Angstrom lines (sometimes referred to as the oxygen line ratio). This ratio is indicative of the CO2 abundance of the comet. As we have observations at several heliocentric distances, we will examine how production rates and mixing ratios of the various species change with heliocentric distance. We will compare our oxygen line measurements to observations of CO2 made with Spitzer, as well as our other daughter species observations to those of candidate parent molecules made at IR wavelengths.

  14. Using the Theory of Planned Behavior to Predict Mothers' Intentions to Vaccinate Their Daughters against HPV

    ERIC Educational Resources Information Center

    Askelson, Natoshia M.; Campo, Shelly; Lowe, John B.; Smith, Sandi; Dennis, Leslie K.; Andsager, Julie

    2010-01-01

    This study assessed mothers' intentions to vaccinate their daughters against human papillomavirus (HPV) using the theory of planned behavior (TPB). Experience with sexually transmitted infections (STIs), beliefs about the vaccine encouraging sexual activity, and perception of daughters' risk for HPV were also examined for a relationship with…

  15. A Healthy Lifestyle Program for Latino Daughters and Mothers: The BOUNCE Overview and Process Evaluation

    ERIC Educational Resources Information Center

    Olvera, Norma N.; Knox, Brook; Scherer, Rhonda; Maldonado, Gabriela; Sharma, Shreela V.; Alastuey, Lisa; Bush, Jill A.

    2008-01-01

    Background: Few family-based healthy lifestyle programs for Latinos have been conducted, especially family programs targeting mother-daughter dyads. Purpose: To assess the acceptability and feasibility of the Behavior Opportunities Uniting Nutrition Counseling and Exercise (BOUNCE) program designed for Latino mother-daughter pairs. Methods: 92…

  16. Having a Daughter with a Disability: Is It Different for Girls?

    ERIC Educational Resources Information Center

    Horne, Richard, Ed.

    1990-01-01

    This guide focuses on some of the realities parents must face in helping their daughters with disabilities to become more self-reliant and, ultimately, independent. The degree to which daughters with a disability are encouraged to strive for an independent life may be critically less than for sons. These differences have far-reaching implications…

  17. Marital and Parent-Child Relationships in Families with Daughters Who Have Eating Disorders

    ERIC Educational Resources Information Center

    Latzer, Yael; Lavee, Yoav; Gal, Sharon

    2009-01-01

    This study assesses and compares the relationship between parents' marital quality, parent-child relationship, and severity of eating-related psychopathology in families with and without eating disorders. Data are collected from the mother, father, and daughter of 30 families with a daughter diagnosed with anorexia or bulimia and from 30 matched…

  18. Intergenerational Support and Depression among Elders in Rural China: Do Daughters-in-Law Matter?

    ERIC Educational Resources Information Center

    Cong, Zhen; Silverstein, Merril

    2008-01-01

    This study examined the influence of intergenerational assistance with household chores and personal care from sons, daughters, and daughters-in-law on the depressive symptoms of older adults in rural China. The sample derived from rural Anhui Province, a region with a strong hierarchy of support preferences that leads with sons and their…

  19. Adolescent Daughters' Romantic Competence: The Role of Divorce, Quality of Parenting, and Maternal Romantic History

    ERIC Educational Resources Information Center

    Shulman, Shmuel; Zlotnik, Aynat; Shachar-Shapira, Lital; Connolly, Jennifer; Bohr, Yvonne

    2012-01-01

    This study examined the links between parental divorce, quality of maternal parenting, spousal relationships and middle adolescent romantic competence in 80 mother-adolescent daughter pairs (40 divorced). Mothers were asked to describe their attitudes and behaviors with regard to their daughters' romantic behavior. In addition, mothers were…

  20. Some Observations of a Father on the Development of His Daughter

    ERIC Educational Resources Information Center

    NAMTA Journal, 2016

    2016-01-01

    This father gives some brief observations of his daughter beginning at the time of her entrance into a Montessori school at the age of three years through the age of six. Through his observations and interactions with his daughter, he gains an awareness of the beauty of the work of the child and leaves the reader with a simple yet powerful…

  1. Caring for a Daughter with Intellectual Disabilities in Managing Menstruation: A Mother's Perspective

    ERIC Educational Resources Information Center

    Chou, Yueh-Ching; Lu, Zxy-Yann Jane

    2012-01-01

    Background: The concerns of mothers and their experiences while providing help to their daughters with intellectual disability (ID) and considerable support needs during menstruation have rarely been addressed. This qualitative study explored mothers' experiences and perceptions of managing their daughters' menstruation. Method: Twelve Taiwanese…

  2. She Has Great Spirit: Insight into Relationships between American Indian Dads and Daughters

    ERIC Educational Resources Information Center

    Reinhardt, Martin James; Perry Evenstad, Jan; Faircloth, Susan

    2012-01-01

    Data from this preliminary study, the American Indian--Dads and Daughters Survey, shed light on how American Indian fathers think and feel about their relationships with their daughters. Respondents represent an array of tribal affiliations, age, occupations, socioeconomic status, and geographical/geopolitical locations, helping to ensure that…

  3. Reciprocity in Intergenerational Support: A Comparison of Chinese and German Adult Daughters

    ERIC Educational Resources Information Center

    Schwarz, Beate; Trommsdorff, Gisela; Zheng, Gang; Shi, Shaohua

    2010-01-01

    This study investigates how Chinese and German adult daughters evaluate the norm of reciprocity and the unbalanced exchange of support in relation to their aging parents. Women from rural and urban China (n = 292) and from Germany (n = 264) have participated in this study. Results show that for the German daughters, differently from rural Chinese…

  4. How My Daughter Taught Me to Teach: The Importance of Active Communication

    ERIC Educational Resources Information Center

    Hunt-Gierut, Deborah

    2011-01-01

    In this article, the author shares how her daughter, who was diagnosed with a profound hearing loss when she was a year old, taught her to teach, and demonstrates the importance of active communication. Teaching her daughter English as her second language has posed many challenges, but has also revealed successful strategies that the author has…

  5. Daughters and Mothers Exercising Together: Effects of Home- and Community-Based Programs.

    ERIC Educational Resources Information Center

    Ransdell, Lynda B.; Taylor, Alison; Oakland, Darcie; Schmidt, Jenny; Moyer-Mileur, Laurie; Shultz, Barry

    2003-01-01

    Compared the effectiveness of home- and community-based physical activity interventions that targeted mothers and daughters to increase physical activity and improve health- related fitness. Data on dyads from community- and home-based programs indicated that mothers and daughters responded positively to both types of programs. Home-based physical…

  6. A Qualitative Study of Southern Baptist Mothers' and Their Daughters' Attitudes toward Sexuality

    ERIC Educational Resources Information Center

    Matyastik Baier, Margaret E.; Wampler, Karen S.

    2008-01-01

    This qualitative study of 14 Southern Baptist mother-daughter dyads uses grounded theory to explore the attitudes these mothers and daughters hold toward sexuality, religiosity, and spirituality, in addition to how they communicate with each other about these topics. Themes that emerge from the data include abstinence before marriage, lack of…

  7. African American Daughter-Mother Relations and Teenage Pregnancy: Two Faces of Premarital Teenage Pregnancy.

    ERIC Educational Resources Information Center

    Scott, Joseph W.

    1993-01-01

    Examines mother-daughter relationships and teenage pregnancy prevention in 153 school-aged mothers. The consistent finding is that negative daughter-mother relationships foster earlier first pregnancies, whereas positive relationships resulted in later-age pregnancies. Consistently positive relationships are second in potency for delaying or…

  8. From Mother to Daughter: Changes in Intergenerational Educational and Occupational Mobility in Germany

    ERIC Educational Resources Information Center

    Minello, Alessandra; Blossfeld, Hans-Peter

    2014-01-01

    Recent decades have seen a dramatic expansion in the educational attainment and occupational opportunities of German women. Both the educational and occupational positions of the mothers and those of their daughters are continuously changing across cohorts. Our study aims to detect the probability of daughters to experience maternal-line…

  9. Epistolary and Emotional Education: The Letters of an Irish Father to His Daughter, 1747-1752

    ERIC Educational Resources Information Center

    Ruberg, Willemijn

    2008-01-01

    The letters Bishop Edward Synge (1691-1762) wrote to his daughter Alicia (1733-1807) in 1747-1752 are discussed to show how correspondence from a father to a daughter could be used to teach a teenage girl how to spell and write letters. Moreover, these letters are an excellent source to show how emotional behaviour was taught. Instructions on…

  10. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation

    SciTech Connect

    Yuan Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A.

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. {beta}-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced {beta}-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/{beta}-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/{beta}-catenin complex formation and restoring E-cadherin membrane localization.

  11. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation.

    PubMed

    Yuan, Zhenglong; Wong, Sandy; Borrelli, Alexander; Chung, Maureen A

    2007-10-26

    MUC1, a tumor associated glycoprotein, is over-expressed in most cancers and can promote proliferation and metastasis. The objective of this research was to study the role of MUC1 in cancer metastasis and its potential mechanism. Pancreatic (PANC1) and breast (MCF-7) cancer cells with stable 'knockdown' of MUC1 expression were created using RNA interference. beta-Catenin and E-cadherin protein expression were upregulated in PANC1 and MCF-7 cells with decreased MUC1 expression. Downregulation of MUC1 expression also induced beta-catenin relocation from the nucleus to the cytoplasm, increased E-cadherin/beta-catenin complex formation and E-cadherin membrane localization in PANC1 cells. PANC1 cells with 'knockdown' MUC1 expression had decreased in vitro cell invasion. This study suggested that MUC1 may affect cancer cell migration by increasing E-cadherin/beta-catenin complex formation and restoring E-cadherin membrane localization.

  12. Mother-daughter communication about breast cancer risk: interpersonal and biological stress processes.

    PubMed

    Berlin, Kate L; Andreotti, Charissa; Yull, Fiona; Grau, Ana M; Compas, Bruce E

    2013-06-01

    Women with a personal or maternal history of breast cancer experience psychological stress in relation to breast cancer risk, and adolescent and young adult daughters are particularly at risk for experiencing stress related to their mothers' history of breast cancer. The current study examined interpersonal and biological stress responses during a laboratory-based communication task about breast cancer risk in 32 mother-daughter dyads and explores whether certain communication styles between mothers and daughters are associated with increased stress reactivity during the task. Five saliva samples were collected from each participant to determine cortisol baseline levels, reactivity to, and recovery from the task. Negative maternal communication was associated with higher cortisol levels in daughters. In addition, maternal sadness was correlated with lower levels of daughters' cortisol at all time points with the exception of baseline measures. Implications for understanding the psychobiology of stress in women at risk for breast cancer are highlighted.

  13. Compassion Fatigue in Adult Daughter Caregivers of a Parent with Dementia

    PubMed Central

    Day, Jennifer R.; Anderson, Ruth A.; Davis, Linda L.

    2015-01-01

    Adult daughters face distinct challenges caring for parents with dementia and may experience compassion fatigue: the combination of helplessness, hopelessness, an inability to be empathic, and a sense of isolation resulting from prolonged exposure to perceived suffering. Prior research on compassion fatigue has focused on professional healthcare providers and has overlooked filial caregivers. This study attempts to identify and explore risk factors for compassion fatigue in adult daughter caregivers and to substantiate further study of compassion fatigue in family caregivers. We used content analysis of baseline interviews with 12 adult daughter caregivers of a parent with dementia who participated in a randomized trial of homecare training. Four themes were identified in adult daughter caregiver interviews: (a) uncertainty; (b) doubt; (c) attachment; and (d) strain. Findings indicated adult daughter caregivers are at risk for compassion fatigue, supporting the need for a larger study exploring compassion fatigue in this population. PMID:25259643

  14. Relationship Quality in Non-Cognitively Impaired Mother-Daughter Care Dyads: A Systematic Review.

    PubMed

    Solomon, Diane N; Hansen, Lissi; Baggs, Judith G; Lyons, Karen S

    2015-11-01

    More than 60 million Americans provide care to a family member; roughly two thirds are women providing care to aging mothers. Despite the protective nature of relationship quality, little attention has been given to its role in mother-daughter care dyads, particularly in mothers without cognitive impairment. A systematic appraisal of peer-reviewed, English language research was conducted. Nineteen articles met criteria. When relationship quality is positive, mother-daughter dyads enjoy rewards and mutuality, even when conflict occurs. Daughters grow more emotionally committed to mothers' over the care trajectory, despite increasing demands. Daughters' commitment deepens as mothers physically decline, and mothers remain engaged, emotional partners. When relationship quality is ambivalent or negative, burden, conflict, and blame conspire, creating a destructive cycle. Avenues for continuing study, including utilizing the dyad as the unit of analysis, troubled dyads, longitudinal assessment, and end of life context, are needed before interventions to improve mother-daughter relationship quality may be successfully implemented.

  15. Compassion fatigue in adult daughter caregivers of a parent with dementia.

    PubMed

    Day, Jennifer R; Anderson, Ruth A; Davis, Linda L

    2014-10-01

    Adult daughters face distinct challenges caring for parents with dementia and may experience compassion fatigue: the combination of helplessness, hopelessness, an inability to be empathic, and a sense of isolation resulting from prolonged exposure to perceived suffering. Prior research on compassion fatigue has focused on professional healthcare providers and has overlooked filial caregivers. This study attempts to identify and explore risk factors for compassion fatigue in adult daughter caregivers and to substantiate further study of compassion fatigue in family caregivers. We used content analysis of baseline interviews with 12 adult daughter caregivers of a parent with dementia who participated in a randomized trial of homecare training. Four themes were identified in adult daughter caregiver interviews: (a) uncertainty; (b) doubt; (c) attachment; and (d) strain. Findings indicated adult daughter caregivers are at risk for compassion fatigue, supporting the need for a larger study exploring compassion fatigue in this population.

  16. DISTRIBUTION OF RADIOACTIVITY IN AUTOLYZED CELL WALL OF BACILLUS CEREUS DURING SPHEROPLAST FORMATION1

    PubMed Central

    Kronish, Donald P.; Mohan, Raam R.; Schwartz, Benjamin S.

    1964-01-01

    Kronish, Donald P. (Warner-Lambert Research Institute, Morris Plains, N.J.), Raam R. Mohan, and Benjamin S. Schwartz. Distribution of radioactivity in autolyzed cell wall of Bacillus cereus during spheroplast formation. J. Bacteriol. 87:581–587. 1964.—Spheroplasts of Bacillus cereus strain T were produced from cells grown in the presence of uniformly labeled C14-glucose. At regular intervals during spheroplast formation, enzymatically degraded cell wall was isolated by a new procedure. Radioactivity of solubilized cell wall in cell-free material increased from 2.5 to 42% of the total incorporated label during spheroplast formation. The rate of cell-wall degradation as measured by increase in radioactivity was biphasic with relative slopes of 2.0 and 5.0. During autolytic depolymerization of B. cereus cell wall, two major components were solubilized at different rates. Chemical fractionation revealed these to be a peptide and a mucopeptide. The possibility of two enzymes being involved in spheroplast formation and cell-wall degradation is discussed. Images PMID:14127573

  17. Study of budding yeast colony formation and its characterizations by using circular granular cell

    NASA Astrophysics Data System (ADS)

    Aprianti, D.; Haryanto, F.; Purqon, A.; Khotimah, S. N.; Viridi, S.

    2016-03-01

    Budding yeast can exhibit colony formation in solid substrate. The colony of pathogenic budding yeast can colonize various surfaces of the human body and medical devices. Furthermore, it can form biofilm that resists drug effective therapy. The formation of the colony is affected by the interaction between cells and with its growth media. The cell budding pattern holds an important role in colony expansion. To study this colony growth, the molecular dynamic method was chosen to simulate the interaction between budding yeast cells. Every cell was modelled by circular granular cells, which can grow and produce buds. Cohesion force, contact force, and Stokes force govern this model to mimic the interaction between cells and with the growth substrate. Characterization was determined by the maximum (L max) and minimum (L min) distances between two cells within the colony and whether two lines that connect the two cells in the maximum and minimum distances intersect each other. Therefore, it can be recognized the colony shape in circular, oval, and irregular shapes. Simulation resulted that colony formation are mostly in oval shape with little branch. It also shows that greater cohesion strength obtains more compact colony formation.

  18. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    PubMed

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  19. Bone Niches, Hematopoietic Stem Cells, and Vessel Formation

    PubMed Central

    Tamma, Roberto; Ribatti, Domenico

    2017-01-01

    Bone marrow (BM) is a source of hematopoietic stem cells (HSCs). HSCs are localized in both the endosteum, in the so-called endosteal niche, and close to thin-walled and fenestrated sinusoidal vessel in the center of BM, in the so-called vascular niche. HSCs give rise to all types of mature blood cells through a process finely controlled by numerous signals emerging from the bone marrow niches where HSCs reside. This review will focus on the description of the role of BM niches in the control of the fate of HSCs and will also highlight the role of the BM niches in the regulation of vasculogenesis and angiogenesis. Moreover, alterations of the signals in niche microenvironment are involved in many aspects of tumor progression and vascularization and further knowledge could provide the basis for the development of new therapeutic strategies. PMID:28098778

  20. Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells.

    PubMed

    Bai, Chunyu; Li, Xiangchen; Gao, Yuhua; Wang, Kunfu; Fan, Yanan; Zhang, Shuang; Ma, Yuehui; Guan, Weijun

    2016-02-01

    MicroRNAs (miRNAs) regulate insulin secretion, pancreas development, and beta cell differentiation. In this study, to screen for miRNAs and their targets that function during insulin-producing cells (IPCs) formation, we examined the messenger RNA and microRNA expression profiles of pancreatic progenitor cells (PPCs) and IPCs using microarray and deep sequencing approaches, respectively. Combining our data with that from previous reports, we found that miR-21 and its targets play an important role in the formation of IPCs. However, the function of miR-21 in the formation of IPCs from PPCs is poorly understood. Therefore, we over-expressed or inhibited miR-21 and expressed small interfering RNAs of miR-21 targets in PPCs to investigate their functions in IPCs formation. We found that miR-21 acts as a bidirectional switch in the formation of IPCs by regulating the expression of target and downstream genes (SOX6, RPBJ and HES1). Small interfering RNAs were used to knock down these genes in PPCs to investigate their effects on IPCs formation. Single expression of si-RBPJ, si-SOX6 and si-HES1 in PPCs showed that si-RBPJ was an inhibitor, and that si-SOX6 and si-HES1 were promoters of IPCs formation, although si-HES1 induced formation of IPCs at higher rates than si-SOX6. These results suggest that endogenous miRNAs involved in the formation of IPCs from PPCs should be considered in the development of an effective cell transplant therapy for diabetes.

  1. Lipid body formation during maturation of human mast cells.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  2. Dscam-Mediated Cell Recognition Regulates Neural Circuit Formation

    PubMed Central

    Hattori, Daisuke; Millard, S. Sean; Wojtowicz, Woj M.; Zipursky, S. Lawrence

    2009-01-01

    The Dscam family of immunoglobulin cell surface proteins mediates recognition events between neurons that play an essential role in the establishment of neural circuits. The Drosophila Dscam1 locus encodes tens of thousands of cell surface proteins via alternative splicing. These isoforms exhibit exquisite isoform-specific binding in vitro that mediates homophilic repulsion in vivo. These properties provide the molecular basis for self-avoidance, an essential developmental mechanism that allows axonal and dendritic processes to uniformly cover their synaptic fields. In a mechanistically similar fashion, homophilic repulsion mediated by Drosophila Dscam2 prevents processes from the same class of cells from occupying overlapping synaptic fields through a process called tiling. Genetic studies in the mouse visual system support the view that vertebrate DSCAM also promotes both self-avoidance and tiling. By contrast, DSCAM and DSCAM-L promote layer-specific targeting in the chick visual system, presumably through promoting homophilic adhesion. The fly and mouse studies underscore the importance of homophilic repulsion in regulating neural circuit assembly, whereas the chick studies suggest that DSCA Mproteins may mediate a variety of different recognition events during wiring in a context-dependent fashion. PMID:18837673

  3. Oligomer Formation of Tau Protein Hyperphosphorylated in Cells*

    PubMed Central

    Tepper, Katharina; Biernat, Jacek; Kumar, Satish; Wegmann, Susanne; Timm, Thomas; Hübschmann, Sabrina; Redecke, Lars; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability. PMID:25339173

  4. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    PubMed

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  5. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOEpatents

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  6. Comparison of five-minute radon-daughter measurements with long-term radon and radon-daughter concentrations

    SciTech Connect

    Young, J.A.; Jackson, P.O.; Thomas, V.W.

    1983-01-01

    Five-minute air filter radon daughter measurements were made in 84 buildings in Edgemont, South Dakota, in which annual average radon daughter concentrations have been determined from six 100-hour Radon Progeny Integrating Sampling Unit (RPISU) measurements. Averaging radon concentrations were also determined in 50 of these buildings using Terradex Track Etch detectors. The standard deviation of the difference between the (natural) logarithms of the RPISU annual averages and the logarithms of the air filter measurements (SD-ln) was found to be 0.52. This SD-ln is considerably smaller than the SD-ln of 0.71 between the RPISU annual averages and the air filter measurements reported by ALARA at Grand Junction, Colorado; presumably because a considerable number of air filter measurements in Edgemont were disregarded because of short turnover times or high wind speeds. Using the SD-ln of 0.52 it can be calculated that there would only be a 5% probability in Edgemont that the RPISU annual average would be greater than 0.015 WL if the five-minute measurement were equal to 0.010 WL. This indicates that the procedure used in Edgemont of clearing buildings from remedial action if the five-minute measurement were less than 0.010 WL was reasonable. There was about a 28% probability that the RPISU annual average would be less than 0.015 WL if the five-minute measurement were 0.033 WL, indicating that the procedure of performing an engineering assessment if the average of two five-minute measurements was greater than 0.033 WL was also reasonable. Comparison indicates that the average of two RPISU measurements taken six months apart would provide a dependable estimate of the annual average.

  7. Heavy particle radioactivity from superheavy nuclei leading to 298114 daughter nuclei

    NASA Astrophysics Data System (ADS)

    Santhosh, K. P.; Priyanka, B.

    2014-09-01

    The feasibility for the alpha decay and the heavy particle decay from the even-even superheavy (SH) nuclei with Z = 116- 124 has been studied within the Coulomb and proximity potential model (CPPM). Our predicted half lives agree well with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al. The spontaneous fission half lives of the corresponding parents have also been evaluated using the semi-empirical formula of Santhosh et al. Within our fission model, we have studied the cluster formation probability for various clusters and the maximum cluster formation probability is found for the decay accompanying 298114. In the plots for log10 (T1/2) against the neutron number of the daughter in the corresponding decay, the half life is found to be the minimum for the decay leading to 298114 (Z = 114, N = 184). Most of the predicted half lives are well within the present upper limit for measurements (T1/2 <1030 s) and the computed alpha half lives for 290,292Lv agree well with the experimental data.

  8. Statistical analysis of clone formation in cultures of human stem cells.

    PubMed

    Bochkov, N P; Vinogradova, M S; Volkov, I K; Voronina, E S; Kuleshov, N P

    2011-08-01

    We performed a statistical analysis of clone formation from aneuploid cells (chromosomes 6, 8, 11, X) in cultures of bone marrow-derived human multipotent mesenchymal stromal cells by spontaneous level of aneuploidy at different terms of culturing (from 2 to 19 cell cycles). It was found that the duration of cell cycle increased from 65.6 h at passages 2-3 to 164.5 h at passage 12. The expected ratio of aneuploid cells was calculated using modeled 5, 10, 20 and 30% selective preference in reproduction. The size of samples for detecting 10, 25, and 50% increased level of aneuploidy was calculated. The presented principles for evaluation of aneuploid clone formation may be used to distinguish clones of any abnormal cells.

  9. Practical strategies for modulating foam cell formation and behavior

    PubMed Central

    Uitz, Elisabeth; Bahadori, Babak; McCarty, Mark F; Moghadasian, Mohammed H

    2014-01-01

    Although high density lipoprotein (HDL)-mediated reverse cholesterol transport is crucial to the prevention and reversal of atheroma, a recent meta-analysis makes evident that current pharmaceutical strategies for modulating HDL cholesterol levels lower cardiovascular risk only to the extent that they concurrently decrease low density lipoprotein (LDL) cholesterol. This corresponds well with findings of a recent Mendelian randomization analysis, in which genetic polymorphisms associated with HDL cholesterol but no other known cardiovascular risk factors failed to predict risk for myocardial infarction. Although it is still seems appropriate to search for therapies that could improve the efficiency with which HDL particles induce reverse cholesterol transport, targeting HDL cholesterol levels per se with current measures appears to be futile. It may therefore be more promising to promote reverse cholesterol transport with agents that directly target foam cells. Macrophage expression of the cholesterol transport proteins adenosine triphosphate binding cassette transporter A1, adenosine triphosphate binding cassette transporter G1, and scavenger receptor class B member 1 is transcriptionally up-regulated by activated liver X receptors (LXR), whereas nuclear factor (NF)-kappaB antagonizes their expression. Taurine, which inhibits atherogenesis in rodent studies, has just been discovered to act as a weak agonist for LXRalpha. Conversely, it may be possible to oppose NF-kappaB activation in macrophages with a range of measures. Induction of heme oxygenase-1, which can be attained with phase 2 inducer phytochemicals such as lipoic acid and green tea catechins, promotes reverse cholesterol transport in macrophages and inhibits atherogenesis in rodents, likely due to, in large part, NF-kappaB antagonism. Inhibition of macrophage nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity with the spirulina-derived bilirubin-mimetic phycocyanobilin may also oppose

  10. Practical strategies for modulating foam cell formation and behavior.

    PubMed

    Uitz, Elisabeth; Bahadori, Babak; McCarty, Mark F; Moghadasian, Mohammed H

    2014-10-16

    Although high density lipoprotein (HDL)-mediated reverse cholesterol transport is crucial to the prevention and reversal of atheroma, a recent meta-analysis makes evident that current pharmaceutical strategies for modulating HDL cholesterol levels lower cardiovascular risk only to the extent that they concurrently decrease low density lipoprotein (LDL) cholesterol. This corresponds well with findings of a recent Mendelian randomization analysis, in which genetic polymorphisms associated with HDL cholesterol but no other known cardiovascular risk factors failed to predict risk for myocardial infarction. Although it is still seems appropriate to search for therapies that could improve the efficiency with which HDL particles induce reverse cholesterol transport, targeting HDL cholesterol levels per se with current measures appears to be futile. It may therefore be more promising to promote reverse cholesterol transport with agents that directly target foam cells. Macrophage expression of the cholesterol transport proteins adenosine triphosphate binding cassette transporter A1, adenosine triphosphate binding cassette transporter G1, and scavenger receptor class B member 1 is transcriptionally up-regulated by activated liver X receptors (LXR), whereas nuclear factor (NF)-kappaB antagonizes their expression. Taurine, which inhibits atherogenesis in rodent studies, has just been discovered to act as a weak agonist for LXRalpha. Conversely, it may be possible to oppose NF-kappaB activation in macrophages with a range of measures. Induction of heme oxygenase-1, which can be attained with phase 2 inducer phytochemicals such as lipoic acid and green tea catechins, promotes reverse cholesterol transport in macrophages and inhibits atherogenesis in rodents, likely due to, in large part, NF-kappaB antagonism. Inhibition of macrophage nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity with the spirulina-derived bilirubin-mimetic phycocyanobilin may also oppose

  11. The role of Ca2+ influx in endocytic vacuole formation in pancreatic acinar cells

    PubMed Central

    Voronina, Svetlana; Collier, David; Chvanov, Michael; Middlehurst, Ben; Beckett, Alison J.; Prior, Ian A.; Criddle, David N.; Begg, Malcolm; Mikoshiba, Katsuhiko; Sutton, Robert; Tepikin, Alexei V.

    2014-01-01

    The inducers of acute pancreatitis trigger a prolonged increase in the cytosolic Ca2+ concentration ([Ca2+]c), which is responsible for the damage to and eventual death of pancreatic acinar cells. Vacuolization is an important indicator of pancreatic acinar cell damage. Furthermore, activation of trypsinogen occurs in the endocytic vacuoles; therefore the vacuoles can be considered as ‘initiating’ organelles in the development of the cell injury. In the present study, we investigated the relationship between the formation of endocytic vacuoles and Ca2+ influx developed in response to the inducers of acute pancreatitis [bile acid taurolithocholic acid 3-sulfate (TLC-S) and supramaximal concentration of cholecystokinin-8 (CCK)]. We found that the inhibitor of STIM (stromal interaction molecule)/Orai channels, GSK-7975A, effectively suppressed both the Ca2+ influx (stimulated by inducers of pancreatitis) and the formation of endocytic vacuoles. Cell death induced by TLC-S or CCK was also inhibited by GSK-7975A. We documented the formation of endocytic vacuoles in response to store-operated Ca2+ entry (SOCE) induced by thapsigargin [TG; inhibitor of sarcoplasmic/endoplasmic reticulum (ER) Ca2+ pumps] and observed strong inhibition of TG-induced vacuole formation by GSK-7975A. Finally, we found that structurally-unrelated inhibitors of calpain suppress formation of endocytic vacuoles, suggesting that this Ca2+-dependent protease is a mediator between Ca2+ elevation and endocytic vacuole formation. PMID:25370603

  12. Pericellular matrix formation alters the efficiency of intracellular uptake of oligonucleotides in osteosarcoma cells.

    PubMed

    Suzuki, Yoshitaka; Nishida, Yoshihiro; Naruse, Takahiro; Gemba, Takefumi; Ishiguro, Naoki

    2009-03-01

    One of the crucial roles of tumor extracellular matrix is to act as a barrier to drug delivery. In this study, we analyzed the relationship between the formation of tumor extracellular matrix and the efficiency of intracellular uptake of oligonucleotides in human osteosarcoma cell lines, HOS, and MG-63. Oligonucleotides used in this study were nuclear factor-kappa B (NF-kappaB) decoy, which might be a therapeutic tool for neoplasms. Pericellular matrix formation was examined by particle exclusion assay. Cellular uptake of fluorescein isothiocyanate-labeled NF-kappaB decoy was evaluated by fluorescent microscopy and flow cytometry. Effects of NF-kappaB decoy on cell viability and cell cycle arrest in MG-63 cells were determined by MTT assay and flow cytometry, respectively. MG-63 cells exhibited abundant pericellular matrix with time compared with HOS cells. Uptake of fluorescein isothiocyanate-labeled NF-kappaB decoy decreased in MG-63 cells with time but not in HOS cells in both monolayer and three-dimensional culture using matrigel. However, after enzymatic removal of pericellular matrix, the uptake markedly recovered in MG-63 cells. NF-kappaB decoy inhibited cell proliferation and induced G0/G1 cell cycle arrest in MG-63 cells. These results suggest that abundant pericellular matrix might disturb the uptake of NF-kappaB decoy, and modification of pericellular matrix composition would increase the efficacy of exogenous oligonucleotides treatment for neoplasms.

  13. QHREDGS Enhances Tube Formation, Metabolism and Survival of Endothelial Cells in Collagen-Chitosan Hydrogels

    PubMed Central

    Miklas, Jason W.; Dallabrida, Susan M.; Reis, Lewis A.; Ismail, Nesreen; Rupnick, Maria; Radisic, Milica

    2013-01-01

    Cell survival in complex, vascularized tissues, has been implicated as a major bottleneck in advancement of therapies based on cardiac tissue engineering. This limitation motivates the search for small, inexpensive molecules that would simultaneously be cardio-protective and vasculogenic. Here, we present peptide sequence QHREDGS, based upon the fibrinogen-like domain of angiopoietin-1, as a prime candidate molecule. We demonstrated previously that QHREDGS improved cardiomyocyte metabolism and mitigated serum starved apoptosis. In this paper we further demonstrate the potency of QHREDGS in its ability to enhance endothelial cell survival, metabolism and tube formation. When endothelial cells were exposed to the soluble form of QHREDGS, improvements in endothelial cell barrier functionality, nitric oxide production and cell metabolism (ATP levels) in serum starved conditions were found. The functionality of the peptide was then examined when conjugated to collagen-chitosan hydrogel, a potential carrier for in vivo application. The presence of the peptide in the hydrogel mitigated paclitaxel induced apoptosis of endothelial cells in a dose dependent manner. Furthermore, the peptide modified hydrogels stimulated tube-like structure formation of encapsulated endothelial cells. When integrin αvβ3 or α5β1were antibody blocked during cell encapsulation in peptide modified hydrogels, tube formation was abolished. Therefore, the dual protective nature of the novel peptide QHREDGS may position this peptide as an appealing augmentation for collagen-chitosan hydrogels that could be used for biomaterial delivered cell therapies in the settings of myocardial infarction. PMID:24013716

  14. The MP65 gene is required for cell wall integrity, adherence to epithelial cells and biofilm formation in Candida albicans

    PubMed Central

    2011-01-01

    Background The MP65 gene of Candida albicans (orf19.1779) encodes a putative β-glucanase mannoprotein of 65 kDa, which plays a main role in a host-fungus relationship, morphogenesis and pathogenicity. In this study, we performed an extensive analysis of a mp65Δ mutant to assess the role of this protein in cell wall integrity, adherence to epithelial cells and biofilm formation. Results The mp65Δ mutant showed a high sensitivity to a range of cell wall-perturbing and degrading agents, especially Congo red, which induced morphological changes such as swelling, clumping and formation of hyphae. The mp65Δ mutant showed an activation of two MAPKs (Mkc1p and Cek1p), a high level of expression of two stress-related genes (DDR48 and SOD5), and a modulated expression of β-glucan epitopes, but no gross changes in cell wall polysaccharide composition. Interestingly, the mp65Δ mutant displayed a marked reduction in adhesion to BEC and Caco-2 cells and severe defects in biofilm formation when compared to the wild type. All of the mentioned properties were totally or partially recovered in a revertant strain, demonstrating the specificity of gene deletion. Conclusions We demonstrate that the MP65 gene of Candida albicans plays a significant role in maintaining cell wall integrity, as well as in adherence to epithelia and biofilm formation, which are major virulence attributes of this fungus. PMID:21575184

  15. Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells.

    PubMed Central

    Teruel, M N; Meyer, T

    1997-01-01

    Electroporation is a widely used method for introducing macromolecules into cells. We developed an electroporation device that requires only 1 microl of sample to load adherent cells in a 10-mm2 surface area while retaining greater than 90% cell survivability. To better understand this device, field-induced permeabilization of adherent rat basophilic leukemia and neocortical neuroblastoma cells was investigated by using fluorescent calcium and voltage indicators. Rectangular field pulses led to the formation of only a few calcium entry sites, preferentially in the hyperpolarized parts of the cell body and processes. Individual entry sites were formed at the same locations when field pulses were repeated. Before calcium entry, a partial breakdown of the membrane potential was observed in both polar regions. Based on our results, a model is proposed for the formation and closure of macromolecule entry sites in adherent cells. First, the rapid formation of a large number of small pores leads to a partial membrane potential breakdown in both polar regions of the cell. Second, over tens of milliseconds, a few entry sites for macromolecules are formed, preferentially in the hyperpolarized part of cell body and processes, at locations defined by the local membrane structure. These entry sites reseal on a time scale of 50 ms to several seconds, with residual small pores remaining open for several minutes. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 8 FIGURE 9 PMID:9336174

  16. The Pool of ADP and ATP Regulates Anaerobic Product Formation in Resting Cells of Lactococcus lactis

    PubMed Central

    Palmfeldt, Johan; Paese, Marco; Hahn-Hägerdal, Bärbel; van Niel, Ed W. J.

    2004-01-01

    Lactococcus lactis grows homofermentatively on glucose, while its growth on maltose under anaerobic conditions results in mixed acid product formation in which formate, acetate, and ethanol are formed in addition to lactate. Maltose was used as a carbon source to study mixed acid product formation as a function of the growth rate. In batch and nitrogen-limited chemostat cultures mixed acid product formation was shown to be linked to the growth rate, and homolactic fermentation occurred only in resting cells. Two of the four lactococcal strains investigated with maltose, L. lactis 65.1 and MG1363, showed more pronounced mixed acid product formation during growth than L. lactis ATCC 19435 or IL-1403. In resting cell experiments all four strains exhibited homolactic fermentation. In resting cells the intracellular concentrations of ADP, ATP, and fructose 1,6-bisphosphate were increased and the concentration of Pi was decreased compared with the concentrations in growing cells. Addition of an ionophore (monensin or valinomycin) to resting cultures of L. lactis 65.1 induced mixed acid product formation concomitant with decreases in the ADP, ATP, and fructose 1,6-bisphosphate concentrations. ADP and ATP were shown to inhibit glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase in vitro. Alcohol dehydrogenase was the most sensitive enzyme and was totally inhibited at an adenine nucleotide concentration of 16 mM, which is close to the sum of the intracellular concentrations of ADP and ATP of resting cells. This inhibition of alcohol dehydrogenase might be partially responsible for the homolactic behavior of resting cells. A hypothesis regarding the level of the ATP-ADP pool as a regulating mechanism for the glycolytic flux and product formation in L. lactis is discussed. PMID:15345435

  17. Interleukin 18 inhibits osteoclast formation via T cell production of granulocyte macrophage colony-stimulating factor.

    PubMed Central

    Horwood, N J; Udagawa, N; Elliott, J; Grail, D; Okamura, H; Kurimoto, M; Dunn, A R; Martin, T; Gillespie, M T

    1998-01-01

    IL-18 inhibits osteoclast (OCL) formation in vitro independent of IFN-gamma production, and this was abolished by the addition of neutralizing antibodies to GM-CSF. We now establish that IL-18 was unable to inhibit OCL formation in cocultures using GM-CSF-deficient mice (GM-CSF -/-). Reciprocal cocultures using either wild-type osteoblasts with GM-CSF -/- spleen cells or GM-CSF -/- osteoblasts with wild-type spleen cells were examined. Wild-type spleen cells were required to elicit a response to IL-18 indicating that cells of splenic origin were the IL-18 target. As T cells comprise a large proportion of the spleen cell population, the role of T cells in osteoclastogenesis was examined. Total T cells were removed and repleted in various combinations. Addition of wild-type T cells to a GM-CSF -/- coculture restored IL-18 inhibition of osteoclastogenesis. Major subsets of T cells, CD4+ and CD8+, were also individually depleted. Addition of either CD4+ or CD8+ wild-type T cells restored IL-18 action in a GM-CSF -/- background, while IL-18 was ineffective when either CD4+ or CD8+ GM-CSF -/- T cells were added to a wild-type coculture. These results highlight the involvement of T cells in IL-18-induced OCL inhibition and provide evidence for a new OCL inhibitory pathway whereby IL-18 inhibits OCL formation due to action upon T cells promoting the release of GM-CSF, which in turn acts upon OCL precursors. PMID:9449693

  18. Carbon Onions as Nanoscopic Pressure Cells for Diamond Formation

    NASA Astrophysics Data System (ADS)

    Banhart, Florian

    1997-03-01

    Concentric-shell carbon onions form under electron irradiation of different carbon precursors in an electron microscope. Carbon onions under irradiation at high temperature are in a state of high compression with a considerable decrease of the c-plane spacing towards the centre. Under prolonged irradiation at temperatures around 900 K the cores of the graphitic onions transform into diamond crystals (F. Banhart and P.M. Ajayan, Nature 382), 433 (1996). Hence, carbon onions can be thought of as nanoscopic pressure cells for the directly observable nucleation and growth of diamond from graphitic material. The diamond crystals grow under further irradiation until the whole graphitic particles have transformed to diamond. Apparently the conversion of the graphitic structure to diamond starts at high pressure and proceeds at decreasing, possibly even at zero pressure. The experiment is carried out in a transmission electron microscope which enables us to monitor this phase transformation in-situ on an atomic scale.

  19. The inhibition of macrophage foam cell formation by tetrahydroxystilbene glucoside is driven by suppressing vimentin cytoskeleton.

    PubMed

    Yao, Wenjuan; Huang, Lei; Sun, Qinju; Yang, Lifeng; Tang, Lian; Meng, Guoliang; Xu, Xiaole; Zhang, Wei

    2016-10-01

    Macrophage foam cell formation triggered by oxLDL is an important event that occurs during the development of atherosclerosis. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-d-glucoside (TSG) exhibits significant anti-atherosclerotic activity. Herein we used U937 cells induced by PMA and oxLDL in vitro to investigate the inhibitory effects of TSG on U937 differentiation and macrophage foam cell formation. TSG pretreatment markedly inhibited cell differentiation induced by PMA, macrophage apoptosis and foam cell formation induced by oxLDL. The inhibition of vimentin expression and cleavage was involved in these inhibitory effects of TSG. The suppression of vimentin by siRNA in U937 significantly inhibited cell differentiation, apoptosis and foam cell formation. Using inhibitors for TGFβR1 and PI3K, we found that vimentin production in U937 cells is regulated by TGFβ/Smad signaling, but not by PI3K-Akt-mTOR signaling. Meanwhile, TSG pretreatment inhibited both the expression of TGFβ1 and the phosphorylation of Smad2 and Smad3, and TSG suppressed the nuclear translocation of Smad4 induced by PMA and oxLDL. Furthermore, TSG attenuated the induced caspase-3 activation and adhesion molecules levels by PMA and oxLDL. PMA and oxLDL increased the co-localization of vimentin with ICAM-1, which was attenuated by pretreatment with TSG. These results suggest that TSG inhibits macrophage foam cell formation through suppressing vimentin expression and cleavage, adhesion molecules expression and vimentin-ICAM-1 co-localization. The interruption of TGFβ/Smad pathway and caspase-3 activation is responsible for the downregulation of TSG on vimentin expression and degradation, respectively.

  20. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.

  1. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos

    PubMed Central

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-01

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis. PMID:26729872

  2. Micronucleus formation causes perpetual unilateral chromosome inheritance in mouse embryos.

    PubMed

    Vázquez-Diez, Cayetana; Yamagata, Kazuo; Trivedi, Shardul; Haverfield, Jenna; FitzHarris, Greg

    2016-01-19

    Chromosome segregation defects in cancer cells lead to encapsulation of chromosomes in micronuclei (MN), small nucleus-like structures within which dangerous DNA rearrangements termed chromothripsis can occur. Here we uncover a strikingly different consequence of MN formation in preimplantation development. We find that chromosomes from within MN become damaged and fail to support a functional kinetochore. MN are therefore not segregated, but are instead inherited by one of the two daughter cells. We find that the same MN can be inherited several times without rejoining the principal nucleus and without altering the kinetics of cell divisions. MN motion is passive, resulting in an even distribution of MN across the first two cell lineages. We propose that perpetual unilateral MN inheritance constitutes an unexpected mode of chromosome missegregation, which could contribute to the high frequency of aneuploid cells in mammalian embryos, but simultaneously may serve to insulate the early embryonic genome from chromothripsis.

  3. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  4. Leukosialin (CD43)-major histocompatibility class I molecule interactions involved in spontaneous T cell conjugate formation

    PubMed Central

    1996-01-01

    Resting T cells spontaneously adhere in a selective manner to potent accessory cells, such as dendritic cells (DC) and lymphoblastoid B blasts (LCL). Here we demonstrate that leukosialin (CD43) and major histocompatibility complex class I molecules (MHC-I) might play a critical role in this process. T cell conjugate formation with monocyte- derived DC (md-DC) and LCL could be strongly inhibited by either preincubating T cells with Fab fragments of CD43 monoclonal antibody (mAb) 6F5 or by preincubating md-DC or LCL with MHC-I mAb W6/32. Intact CD43 mAb 6F5, in contrast to monovalent Fab fragments, enhanced T cell adhesiveness by transactivating CD2 binding to CD58 molecules. Interestingly, induction of this proadhesive signal via CD43 with intact 6F5 mAb was found to revert mAb W6/32-mediated inhibition of T cell conjugate formation. These observations indicated that CD43 cross- linkage mimics and monovalent mAb 6F5 inhibits interaction of T cell CD43 with a stimulatory ligand on opposing cells, presumably MHC-I. For the demonstration of direct physical interaction between CD43 on T cells and MHC-I-coated beads it was necessary, however, to ligate CD2 on T cells with a stimulatory pair of CD2 mAbs (VIT13 plus TS2/18). This suggests that CD2 ligation crosswise upregulates CD43 binding avidity for MHC-I and that both adhesion molecule pairs (CD43/MHC-I and CD2/CD58) act in concert to induce and mediate T cell conjugate formation with certain cell types. PMID:8920865

  5. A lineage of diploid platelet-forming cells precedes polyploid megakaryocyte formation in the mouse embryo.

    PubMed

    Potts, Kathryn S; Sargeant, Tobias J; Markham, John F; Shi, Wei; Biben, Christine; Josefsson, Emma C; Whitehead, Lachlan W; Rogers, Kelly L; Liakhovitskaia, Anna; Smyth, Gordon K; Kile, Benjamin T; Medvinsky, Alexander; Alexander, Warren S; Hilton, Douglas J; Taoudi, Samir

    2014-10-23

    In this study, we test the assumption that the hematopoietic progenitor/colony-forming cells of the embryonic yolk sac (YS), which are endowed with megakaryocytic potential, differentiate into the first platelet-forming cells in vivo. We demonstrate that from embryonic day (E) 8.5 all megakaryocyte (MK) colony-forming cells belong to the conventional hematopoietic progenitor cell (HPC) compartment. Although these cells are indeed capable of generating polyploid MKs, they are not the source of the first platelet-forming cells. We show that proplatelet formation first occurs in a unique and previously unrecognized lineage of diploid platelet-forming cells, which develop within the YS in parallel to HPCs but can be specified in the E8.5 Runx1-null embryo despite the absence of the progenitor cell lineage.

  6. mTOR Enhances Foam Cell Formation by Suppressing the Autophagy Pathway

    PubMed Central

    Li, Lingxia; Niu, Xiaolin; Dang, Xiaoyan; Li, Ping; Qu, Li; Bi, Xiaoju; Gao, Yanxia; Hu, Yanfen; Li, Manxiang; Qiao, Wanhai; Peng, Zhuo; Pan, Longfei

    2014-01-01

    Recently, autophagy has drawn more attention in cardiovascular disease as it has important roles in lipid metabolism. Mammalian target of rapamycin (mTOR) is a key regulator of autophagy; however, its effect on atherosclerosis and the underlying mechanism remains undefined. In this study, an obvious upregulation of mTOR and p-mTOR protein was observed in macrophage-derived foam cells. Blocking mTOR expression with specific small interference RNA (siRNA) dramatically suppressed foam cell formation, accompanied by a decrease of lipid deposition. Further mechanistic analysis indicated that suppressing mTOR expression significantly upregulated autophagic marker LC3 expression and downregulated autophagy substrate p62 levels, indicating that mTOR silencing triggered autophagosome formation. Moreover, blocking mTOR expression obviously accelerated neutral lipid delivery to lysosome and cholesterol efflux from foam cells, implying that mTOR could induce macrophage foam cell formation by suppressing autophagic pathway. Further, mTOR silencing significantly upregulated ULK1 expression, which was accounted for mTOR-induced foam cell formation via autophagic pathway as treatment with ULK1 siRNA dampened LC3-II levels and increased p62 expression, concomitant with lipid accumulation and decreased cholesterol efflux from foam cells. Together, our data provide an insight into how mTOR accelerates the pathological process of atherosclerosis. Accordingly, blocking mTOR levels may be a promising therapeutic agent against atherosclerotic complications. PMID:24512183

  7. Parents' decision-making about the human papillomavirus vaccine for their daughters: I. Quantitative results.

    PubMed

    Krawczyk, Andrea; Knäuper, Bärbel; Gilca, Vladimir; Dubé, Eve; Perez, Samara; Joyal-Desmarais, Keven; Rosberger, Zeev

    2015-01-01

    Vaccination against the human papillomavirus (HPV) is an effective primary prevention measure for HPV-related diseases. For children and young adolescents, the uptake of the vaccine is contingent on parental consent. This study sought to identify key differences between parents who obtain (acceptors) and parents who refuse (non-acceptors) the HPV vaccine for their daughters. In the context of a free, universal, school-based HPV vaccination program in Québec, 774 parents of 9-10 year-old girls completed and returned a questionnaire by mail. The questionnaire was based on the theoretical constructs of the Health Belief Model (HBM), along with constructs from other theoretical frameworks. Of the 774 parents, 88.2% reported their daughter having received the HPV vaccine. Perceived susceptibility of daughters to HPV infection, perceived benefits of the vaccine, perceived barriers (including safety of the vaccine), and cues to action significantly distinguished between parents whose daughters had received the HPV vaccine and those whose daughters had not. Other significant factors associated with daughter vaccine uptake were parents' general vaccination attitudes, anticipated regret, adherence to other routinely recommended vaccines, social norms, and positive media influence. The results of this study identify a number of important correlates related to parents' decisions to accept or refuse the HPV vaccine uptake for their daughters. Future work may benefit from targeting such factors and incorporating other health behavior theories in the design of effective HPV vaccine uptake interventions.

  8. Parents’ decision-making about the human papillomavirus vaccine for their daughters: I. Quantitative results

    PubMed Central

    Krawczyk, Andrea; Knäuper, Bärbel; Gilca, Vladimir; Dubé, Eve; Perez, Samara; Joyal-Desmarais, Keven; Rosberger, Zeev

    2015-01-01

    Vaccination against the human papillomavirus (HPV) is an effective primary prevention measure for HPV-related diseases. For children and young adolescents, the uptake of the vaccine is contingent on parental consent. This study sought to identify key differences between parents who obtain (acceptors) and parents who refuse (non-acceptors) the HPV vaccine for their daughters. In the context of a free, universal, school-based HPV vaccination program in Québec, 774 parents of 9–10 year-old girls completed and returned a questionnaire by mail. The questionnaire was based on the theoretical constructs of the Health Belief Model (HBM), along with constructs from other theoretical frameworks. Of the 774 parents, 88.2% reported their daughter having received the HPV vaccine. Perceived susceptibility of daughters to HPV infection, perceived benefits of the vaccine, perceived barriers (including safety of the vaccine), and cues to action significantly distinguished between parents whose daughters had received the HPV vaccine and those whose daughters had not. Other significant factors associated with daughter vaccine uptake were parents’ general vaccination attitudes, anticipated regret, adherence to other routinely recommended vaccines, social norms, and positive media influence. The results of this study identify a number of important correlates related to parents' decisions to accept or refuse the HPV vaccine uptake for their daughters. Future work may benefit from targeting such factors and incorporating other health behavior theories in the design of effective HPV vaccine uptake interventions. PMID:25692455

  9. Externally-resident daughters, social capital, and support for the elderly in rural Tibet.

    PubMed

    Childs, Geoff; Goldstein, Melvyn C; Wangdui, Puchung

    2011-03-01

    This paper focuses on assistance that externally-resident daughters provide for their aging parents in rural Tibet, China, to challenge the notion that rapid modernization invariably threatens family-based care systems for the elderly. The authors discuss social and economic changes associated with modernization that have created new opportunities for parents to send daughters out of their natal households in ways that can benefit them in old age. By investing in a daughter's education so she can secure salaried employment, or by helping a daughter establish a small business so she can earn an independent livelihood, the authors demonstrate how some externally-resident daughters represent a novel form of social capital that parents can draw on for social support. Daughters with income and freedom from extended family obligations are now providing elderly parents with (1) leverage against co-resident children who do not treat them well, (2) temporary places of refuge from ill-treatment at home, (3) caretaking services and financial support when they require hospitalization, and (4) financial resources independent of their household which they can use to pursue age-appropriate activities like pilgrimage. The authors conclude that this new form of social capital vested in externally-resident daughters is having a positive impact on the lives of the elderly in rural Tibet.

  10. An improved model for nucleation-limited ice formation in living cells during freezing.

    PubMed

    Yi, Jingru; Liang, Xin M; Zhao, Gang; He, Xiaoming

    2014-01-01

    Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications.

  11. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    PubMed

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  12. Tubulogenesis in a simple cell cord requires the formation of bi-apical cells through two discrete Par domains.

    PubMed

    Denker, Elsa; Bocina, Ivana; Jiang, Di

    2013-07-01

    Apico-basal polarization is a crucial step in the de novo formation of biological tubes. In Ciona notochord, tubulogenesis occurs in a single file of cells in the absence of cell proliferation. This configuration presents a unique challenge for the formation of a continuous lumen. Here, we show that this geometric configuration is associated with a novel polarization strategy: the generation of bipolar epithelial cells possessing two apical/luminal domains instead of one, as in the conventional epithelium. At the molecular level, cells establish two discrete Par3/Par6/aPKC patches, and form two sets of tight junctions, in opposite points of the cells. The key molecule controlling the formation of both domains is Par3. Changing the position of the cells within the organ fundamentally changes their polarity and the number of apical domains they develop. These results reveal a new mechanism for tubulogenesis from the simplest cell arrangement, which occurs in other developmental contexts, including vertebrate vascular anastomosis.

  13. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    NASA Astrophysics Data System (ADS)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  14. Plant metabolism and cell wall formation in space (microgravity) and on Earth

    NASA Technical Reports Server (NTRS)

    Lewis, Norman G.

    1994-01-01

    Variations in cell wall chemistry provide vascular plants with the ability to withstand gravitational forces, as well as providing facile mechanisms for correctional responses to various gravitational stimuli, e.g., in reaction wood formation. A principal focus of our current research is to precisely and systematically dissect the essentially unknown mechanism(s) of vascular plant cell wall assembly, particularly with respect to formation of its phenolic constituents, i.e., lignins and suberins, and how gravity impacts upon these processes. Formation of these phenolic polymers is of particular interest, since it appears that elaboration of their biochemical pathways was essential for successful land adaptation. By extrapolation, we are also greatly intrigued as to how the microgravity environment impacts upon 'normal' cell wall assembly mechanisms/metabolism.

  15. Promotion of experimental thrombus formation by the procoagulant activity of breast cancer cells

    NASA Astrophysics Data System (ADS)

    Berny-Lang, M. A.; Aslan, J. E.; Tormoen, G. W.; Patel, I. A.; Bock, P. E.; Gruber, A.; McCarty, O. J. T.

    2011-02-01

    The routine observation of tumor emboli in the peripheral blood of patients with carcinomas raises questions about the clinical relevance of these circulating tumor cells. Thrombosis is a common clinical manifestation of cancer, and circulating tumor cells may play a pathogenetic role in this process. The presence of coagulation-associated molecules on cancer cells has been described, but the mechanisms by which circulating tumor cells augment or alter coagulation remains unclear. In this study we utilized suspensions of a metastatic adenocarcinoma cell line, MDA-MB-231, and a non-metastatic breast epithelial cell line, MCF-10A, as models of circulating tumor cells to determine the thromobogenic activity of these blood-foreign cells. In human plasma, both metastatic MDA-MB-231 cells and non-metastatic MCF-10A cells significantly enhanced clotting kinetics. The effect of MDA-MB-231 and MCF-10A cells on clotting times was cell number-dependent and inhibited by a neutralizing antibody to tissue factor (TF) as well as inhibitors of activated factor X and thrombin. Using fluorescence microscopy, we found that both MDA-MB-231 and MCF-10A cells supported the binding of fluorescently labeled thrombin. Furthermore, in a model of thrombus formation under pressure-driven flow, MDA-MB-231 and MCF-10A cells significantly decreased the time to occlusion. Our findings indicate that the presence of breast epithelial cells in blood can stimulate coagulation in a TF-dependent manner, suggesting that tumor cells that enter the circulation may promote the formation of occlusive thrombi under shear flow conditions.

  16. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis

    PubMed Central

    2012-01-01

    Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC). There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood. PMID:23151376

  17. Young Daughter Cladodes Affect CO2 Uptake by Mother Cladodes of Opuntia ficus-indica

    PubMed Central

    PIMIENTA-BARRIOS, EULOGIO; ZAÑUDO-HERNANDEZ, JULIA; ROSAS-ESPINOZA, VERONICA C.; VALENZUELA-TAPIA, AMARANTA; NOBEL, PARK S.

    2004-01-01

    • Background and Aims Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. • Methods Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. • Key Results Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. • Conclusions Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM. PMID:15567805

  18. Maternal and grandmaternal obesity and environmental factors as determinants of daughter's obesity

    PubMed Central

    Shin, Mi Na; Lee, Kyung Hea; Lee, Hye Sang; Sasaki, Satoshi; Oh, Hea Young; Lyu, Eun Soon

    2013-01-01

    Obesity may be the consequence of various environmental or genetic factors, which may be highly correlated with each other. We aimed to examine whether grandmaternal and maternal obesity and environmental risk factors are related to obesity in daughters. Daughters (n = 182) recruited from female students, their mothers (n = 147) and their grandmothers (n = 67) were included in this study. Multivariable logistic regression was used to analyze the association between the daughter's obesity and maternal, grandmaternal, and environmental factors. Maternal heights of 161-175cm (OD: 8.48, 95% CI: 3.61-19.93) and 156-160 cm (2.37, 1.14-4.91) showed positive associations with a higher height of daughter, compared to those of 149-155 cm. Mothers receiving a university or a higher education had a significant OR (3.82, 1.27-11.50) for a higher height of daughter compared to those having a low education (elementary school). Mother having the heaviest weight at current time (59-80 kg, 3.78, 1.73-8.28) and the heaviest weight at 20 years of age (51-65 kg, 3.17, 1.53-6.55) had significant associations with a higher height of daughters, compared to those having the lightest weight at the same times. There was no association between the height, weight, and BMI of daughters and the characteristics and education of her grandmothers. In conclusion, although genetic factors appear to influence the daughter's height more than environmental factors, the daughter's weight appears to be more strongly associated with individual factors than the genetic factors. PMID:24133620

  19. The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands.

    PubMed

    Lin, Kevin B L; Freeman, Spencer A; Zabetian, Saba; Brugger, Hayley; Weber, Michele; Lei, Victor; Dang-Lawson, May; Tse, Kathy W K; Santamaria, Rene; Batista, Facundo D; Gold, Michael R

    2008-01-01

    B lymphocytes spread and extend membrane processes when searching for antigens and form immune synapses upon contacting cells that display antigens on their surface. Although these dynamic morphological changes facilitate B cell activation, the signaling pathways underlying these processes are not fully understood. We found that activation of the Rap GTPases was essential for these changes in B cell morphology. Rap activation was important for B cell receptor (BCR)- and lymphocyte-function-associated antigen-1 (LFA-1)-induced spreading, for BCR-induced immune-synapse formation, and for particulate BCR ligands to induce localized F-actin assembly and membrane-process extension. Rap activation and F-actin assembly were also required for optimal BCR signaling in response to particulate antigens but not soluble antigens. Thus by controlling B cell morphology and cytoskeletal organization, Rap might play a key role in the activation of B cells by particulate and cell-associated antigens.

  20. Impaired respiration elicits SrrAB-dependent programmed cell lysis and biofilm formation in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M

    2017-01-01

    Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135

  1. Role of JNK in network formation of human lung microvascular endothelial cells

    PubMed Central

    Medhora, Meetha; Dhanasekaran, Anuradha; Pratt, Phillip F.; Cook, Craig R.; Dunn, Laurel K.; Gruenloh, Stephanie K.; Jacobs, Elizabeth R.

    2010-01-01

    The signaling mechanisms in vasculogenesis and/or angiogenesis remain poorly understood, limiting the ability to regulate growth of new blood vessels in vitro and in vivo. Cultured human lung microvascular endothelial cells align into tubular networks in the three-dimensional matrix, Matrigel. Overexpression of MAPK phosphatase-1 (MKP-1), an enzyme that inactivates the ERK, JNK, and p38 pathways, inhibited network formation of these cells. Adenoviral-mediated overexpression of recombinant MKP-3 (a dual specificity phosphatase that specifically inactivates the ERK pathway) and dominant negative or constitutively active MEK did not attenuate network formation in Matrigel compared with negative controls. This result suggested that the ERK pathway may not be essential for tube assembly, a conclusion which was supported by the action of specific MEK inhibitor PD 184352, which also did not alter network formation. Inhibition of the JNK pathway using SP-600125 or L-stereoisomer (L-JNKI-1) blocked network formation, whereas the p38 MAPK blocker SB-203580 slightly enhanced it. Inhibition of JNK also attenuated the number of small vessel branches in the developing chick chorioallantoic membrane. Our results demonstrate a specific role for the JNK pathway in network formation of human lung endothelial cells in vitro while confirming that it is essential for the formation of new vessels in vivo. PMID:18263671

  2. Inhibition of neurosphere formation in neural stem/progenitor cells by acrylamide.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chen, Mei-Shu; Ko, Ying-Chin; Chiu, Ing-Ming

    2015-01-01

    Previous studies showed that transplantation of cultured neural stem/progenitor cells (NSPCs) could improve functional recovery for various neurological diseases. This study aims to develop a stem cell-based model for predictive toxicology of development in the neurological system after acrylamide exposure. Treatment of mouse (KT98/F1B-GFP) and human (U-1240 MG/F1B-GFP) NSPCs with 0.5 mM acrylamide resulted in the inhibition of neurosphere formation (definition of self-renewal ability in NSPCs), but not inhibition of cell proliferation. Apoptosis and differentiation of KT98 (a precursor of KT98/F1B-GFP) and KT98/F1B-GFP are not observed in acrylamide-treated neurospheres. Analysis of secondary neurosphere formation and differentiation of neurons and glia illustrated that acrylamide-treated KT98 and KT98/F1B-GFP neurospheres retain the NSPC properties, such as self-renewal and differentiation capacity. Correlation of acrylamide-inhibited neurosphere formation with cell-cell adhesion was observed in mouse NSPCs by live cell image analysis and the presence of acrylamide. Protein expression levels of cell adhesion molecules [neural cell adhesion molecule (NCAM) and N-cadherin] and extracellular signal-regulated kinases (ERK) in acrylamide-treated KT98/F1B-GFP and U-1240 MG/F1B-GFP neurospheres demonstrated that NCAM decreased and phospho-ERK (pERK) increased, whereas expression of N-cadherin remained unchanged. Analysis of AKT (protein kinase B, PKB)/β-catenin pathway showed decrease in phospho-AKT (p-AKT) and cyclin D1 expression in acrylamide-treated neurospheres of KT98/F1B-GFP. Furthermore, PD98059, an ERK phosphorylation inhibitor, attenuated acrylamide-induced ERK phosphorylation, indicating that pERK contributed to the cell proliferation, but not in neurosphere formation in mouse NSPCs. Coimmunoprecipitation results of KT98/F1B-GFP cell lysates showed that the complex of NCAM and fibroblast growth factor receptor 1 (FGFR1) is present in the neurosphere, and the

  3. Mechanisms for Cellular NO Oxidation and Nitrite Formation in Lung Epithelial Cells

    PubMed Central

    Zhao, Xue-Jun; Wang, Ling; Shiva, Sruti; Tejero, Jesus; Wang, Jun; Frizzell, Sam; Gladwin, Mark T.

    2013-01-01

    Airway lining fluid contains relatively high concentrations of nitrite and arterial blood levels of nitrite are higher than venous levels, suggesting the lung epithelium may represent an important source of nitrite in vivo. To investigate whether lung epithelial cells possess the ability to convert NO to nitrite by oxidation, and the effect of oxygen reactions on nitrite formation, the NO donor DETA NONOate was incubated with or without A549 cells or primary human bronchial epithelial (HBE) cells for 24 hrs under normoxic (21% O2) and hypoxic (1% O2) conditions. Nitrite production was significantly increased under all conditions in the presence of A549 or HBE cells, suggesting that both A549 and HBE cells have the capacity to oxidize NO to nitrite even under low oxygen conditions. The addition of oxy-hemoglobin (oxy-Hb) to the A549 cell media decreased the production of nitrite, consistent with NO scavenging limiting nitrite formation. Heat-denatured A549 cells produced much lower nitrite and bitrate, suggesting an enzymatic activity is required. This NO oxidation activity was found to be highest in membrane bound proteins with molecular sizes < 100 kDa. In addition, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one] (ODQ) and cyanide inhibited formation of nitrite in A549 cells. It has been shown that ceruloplasmin (Cp) possesses an NO oxidase and nitrite synthase activity in plasma based on NO oxidation to nitrosonium cation (NO+). We observed that Cp is expressed intracellularly in lung epithelial A549 cells and secreted into medium under basal conditions and during cytokine stimulation. However, an analysis of Cp expression level and activity measured via ρ-phenylenediamine oxidase activity assay revealed very low activity compared with plasma, suggesting that there is insufficient Cp to contribute to detectable NO oxidation to nitrite in A549 cells. Additionally, Cp levels were knocked down using siRNA by more than 75% in A549 cells, with no significant change in

  4. From rockstar researcher to selfless mentor: a daughter's perspective.

    PubMed

    Castillo-Garsow, Melissa

    2013-01-01

    Carlos Castillo-Chavez's tenure at Cornell University with Simon Levine, also marks the beginning of my life as his daughter. I was nine months old when I arrived to Ithaca, and my recollections of my father in elementary school and middle school were of him furiously writing equations at his desk, or outside on the chalk board in our shed, or on napkins, notepads or anything he could get his hands on at restaurants; but more likely than not, away. When I was young, my father was becoming the researcher that today makes him a three-time Presidential honoree, a member of Barak Obama's Presidential Committee on the National Medal of Science, and of course, the purpose of this volume. Even in those early days, he was away a lot--either traveling to conferences or increasingly as an invited lecturer, or at the office. Of course, I was still (and am) a daddy's little girl, bonded forever by a shared obsession with the same movies (The Godfather, My Name is Nobody, The Man from Snowy River); the same TV shows (Law and Order); and all things sports related, but I also knew that my father was a very busy man and his time was limited. So I would watch him work, often with my own little extra homework he would give me to keep me entertained, peck him on the check and let him know that I would take over his job when I was old enough.

  5. Do Daughters Really Cause Divorce? Stress, Pregnancy, and Family Composition

    PubMed Central

    Hamoudi, Amar; Nobles, Jenna

    2014-01-01

    Provocative studies have reported that in the United States, marriages producing firstborn daughters are more likely to divorce than those producing firstborn sons. The findings have been interpreted as contemporary evidence of fathers' son preference. Our study explores the potential role of another set of dynamics that may drive these patterns: namely, selection into live birth. Epidemiological evidence indicates that the characteristic female survival advantage may begin before birth. If stress accompanying unstable marriages has biological effects on fecundity, a female survival advantage could generate an association between stability and the sex composition of offspring. Combining regression and simulation techniques to analyze real-world data, we ask, How much of the observed association between sex of the firstborn child and risk of divorce could plausibly be accounted for by the joint effects of female survival advantage and reduced fecundity associated with unstable marriage? Using data from the National Longitudinal Survey of Youth (NLSY79), we find that relationship conflict predicts the sex of children born after conflict was measured; conflict also predicts subsequent divorce. Conservative specification of parameters linking pregnancy characteristics, selection into live birth, and divorce are sufficient to generate a selection-driven association between offspring sex and divorce, which is consequential in magnitude. Our findings illustrate the value of demographic accounting of processes which occur before birth—a period when many outcomes of central interest in the population sciences begin to take shape. PMID:25024115

  6. Maternal borderline personality disorder symptoms and parenting of adolescent daughters.

    PubMed

    Zalewski, Maureen; Stepp, Stephanie D; Scott, Lori N; Whalen, Diana J; Beeney, Joseph F; Hipwell, Alison E

    2014-08-01

    Maternal borderline personality disorder (BPD) symptoms are associated with poorer parenting. However, most studies conducted are with young children. In the current study, the authors examined associations between maternal BPD symptoms and parenting in an urban community sample of 15-to 17-year-old girls (n = 1,598) and their biological mothers. Additionally, the authors tested the impact of adolescent temperament on these associations. Mothers reported on their own psychopathology and their daughters' temperament. Adolescent girls reported on mothers' parenting methods in terms of psychological and behavioral control. Results demonstrated that maternal BPD symptoms were associated with aspects of psychological and behavioral control, even after controlling for maternal depression and alcohol use severity. After examining specific BPD components that may account for these associations, the authors found that affective/behavioral dysregulation, but not interpersonal dysregulation or identity disturbance, uniquely accounted for parenting. Adolescent temperament did not moderate these associations. BPD symptoms, particularly affective/behavioral dysregulation, are important targets when conducting parenting interventions.

  7. Maternal Borderline Personality Disorder Symptoms and Parenting of Adolescent Daughters

    PubMed Central

    Zalewski, Maureen; Stepp, Stephanie D.; Scott, Lori N.; Whalen, Diana J.; Beeney, Joseph F.; Hipwell, Alison E.

    2014-01-01

    Maternal borderline personality disorder (BPD) symptoms are associated with poorer parenting. However, most studies conducted are with young children. In the current study, the authors examined associations between maternal BPD symptoms and parenting in an urban community sample of 15- to 17-year-old girls (n = 1,598) and their biological mothers. Additionally, the authors tested the impact of adolescent temperament on these associations. Mothers reported on their own psychopathology and their daughters' temperament. Adolescent girls reported on mothers' parenting methods in terms of psychological and behavioral control. Results demonstrated that maternal BPD symptoms were associated with aspects of psychological and behavioral control, even after controlling for maternal depression and alcohol use severity. After examining specific BPD components that may account for these associations, the authors found that affective/behavioral dysregulation, but not interpersonal dysregulation or identity disturbance, uniquely accounted for parenting. Adolescent temperament did not moderate these associations. BPD symptoms, particularly affective/behavioral dysregulation, are important targets when conducting parenting interventions. PMID:24689767

  8. Do daughters really cause divorce? Stress, pregnancy, and family composition.

    PubMed

    Hamoudi, Amar; Nobles, Jenna

    2014-08-01

    Provocative studies have reported that in the United States, marriages producing firstborn daughters are more likely to divorce than those producing firstborn sons. The findings have been interpreted as contemporary evidence of fathers' son preference. Our study explores the potential role of another set of dynamics that may drive these patterns: namely, selection into live birth. Epidemiological evidence indicates that the characteristic female survival advantage may begin before birth. If stress accompanying unstable marriages has biological effects on fecundity, a female survival advantage could generate an association between stability and the sex composition of offspring. Combining regression and simulation techniques to analyze real-world data, we ask, How much of the observed association between sex of the firstborn child and risk of divorce could plausibly be accounted for by the joint effects of female survival advantage and reduced fecundity associated with unstable marriage? Using data from the National Longitudinal Survey of Youth (NLSY79), we find that relationship conflict predicts the sex of children born after conflict was measured; conflict also predicts subsequent divorce. Conservative specification of parameters linking pregnancy characteristics, selection into live birth, and divorce are sufficient to generate a selection-driven association between offspring sex and divorce, which is consequential in magnitude. Our findings illustrate the value of demographic accounting of processes which occur before birth-a period when many outcomes of central interest in the population sciences begin to take shape.

  9. System for recovery of daughter isotopes from a source material

    SciTech Connect

    Tranter, Troy J; Todd, Terry A; Lewis, Leroy C; Henscheid, Joseph P

    2009-08-04

    A method of separating isotopes from a mixture containing at least two isotopes in a solution is disclosed. A first isotope is precipitated and is collected from the solution. A daughter isotope is generated and collected from the first isotope. The invention includes a method of producing an actinium-225/bismuth-213 product from a material containing thorium-229 and thorium-232. A solution is formed containing nitric acid and the material containing thorium-229 and thorium-232, and iodate is added to form a thorium iodate precipitate. A supernatant is separated from the thorium iodate precipitate and a second volume of nitric acid is added to the thorium iodate precipitate. The thorium iodate precipitate is stored and a decay product comprising actinium-225 and bismuth-213 is generated in the second volume of nitric acid, which is then separated from the thorium iodate precipitate, filtered, and treated using at least one chromatographic procedure. A system for producing an actinium-225/bismuth-213 product is also disclosed.

  10. Estrogen Receptor α Regulates β-Cell Formation During Pancreas Development and Following Injury.

    PubMed

    Yuchi, Yixing; Cai, Ying; Legein, Bart; De Groef, Sofie; Leuckx, Gunter; Coppens, Violette; Van Overmeire, Eva; Staels, Willem; De Leu, Nico; Martens, Geert; Van Ginderachter, Jo A; Heimberg, Harry; Van de Casteele, Mark

    2015-09-01

    Identifying pathways for β-cell generation is essential for cell therapy in diabetes. We investigated the potential of 17β-estradiol (E2) and estrogen receptor (ER) signaling for stimulating β-cell generation during embryonic development and in the severely injured adult pancreas. E2 concentration, ER activity, and number of ERα transcripts were enhanced in the pancreas injured by partial duct ligation (PDL) along with nuclear localization of ERα in β-cells. PDL-induced proliferation of β-cells depended on aromatase activity. The activation of Neurogenin3 (Ngn3) gene expression and β-cell growth in PDL pancreas were impaired when ERα was turned off chemically or genetically (ERα(-/-)), whereas in situ delivery of E2 promoted β-cell formation. In the embryonic pancreas, β-cell replication, number of Ngn3(+) progenitor cells, and expression of key transcription factors of the endocrine lineage were decreased by ERα inactivation. The current study reveals that E2 and ERα signaling can drive β-cell replication and formation in mouse pancreas.

  11. Monolayer formation of human osteoblastic cells on vertically aligned multiwalled carbon nanotube scaffolds.

    PubMed

    Lobo, Anderson O; Antunes, Erica F; Palma, Mariana Bs; Pacheco-Soares, Cristina; Trava-Airoldi, Vladimir J; Corat, Evaldo J

    2010-03-12

    Monolayer formation of SaOS-2 (human osteoblast-like cells) was observed on VACNT (vertically aligned multiwalled carbon nanotubes) scaffolds without purification or functionalization. The VACNT were produced by a microwave plasma chemical vapour deposition on titanium surfaces with nickel or iron as catalyst. Cell viability and morphology studies were evaluated by LDH (lactate dehydrogenase) release assay and SEM (scanning electron microscopy), respectively. The non-toxicity and the flat spreading with monolayer formation of the SaOs-2 on VACNT scaffolds surface indicate that they can be used for biomedical applications.

  12. Clonal distribution of osteoprogenitor cells in cultured chick periostea: Functional relationship to bone formation

    SciTech Connect

    McCulloch, C.A.; Fair, C.A.; Tenenbaum, H.C.; Limeback, H.; Homareau, R. )

    1990-08-01

    Folded explants of periosteum from embryonic chick calvaria form bone-like tissue when grown in the presence of ascorbic acid, organic phosphate, and dexamethasone. All osteoblast-like cells in these cultures arise de novo by differentiation of osteoprogenitor cells present in the periosteum. To study the spatial and functional relationships between bone formation and osteoprogenitor cells, cultures were continuously labeled with (3H)thymidine for periods of 1-5 days. Radioautographs of serial 2-microns plastic sections stained for alkaline phosphatase (AP) showed maximal labeling of 30% of fibroblastic (AP-negative) cells by 3 days while osteogenic cells (AP-positive) exhibited over 95% labeling by 5 days. No differential shifts in labeling indices, grain count histograms of fibroblastic and osteogenic cells or numbers of AP-positive cells were observed, indicating no significant recruitment of cells from the fibroblastic to the osteogenic compartment. Despite the continuous presence of (3H)thymidine, less than 35% of both osteoblasts and osteocytes were labeled at 5 days, indicating that only one-third of the osteoprogenitor cells had cycled prior to differentiation. Spatial clustering of (3H)thymidine-labeled cells was measured by computer-assisted morphometry and application of the Poisson distribution to assess contagion. Cluster size and number of labeled cells per cluster did not vary between 1-3 days, but the number of clusters increased 20-fold between Day 1 and Day 3. Three-dimensional reconstruction from serial sections showed that clusters formed long, tubular arrays of osteogenic cells up to eight cells in length and located within 2-3 cell layers from the bone surface. Selective killing of S-phase cells with two pulse labels of high specific activity (3H)thymidine at 1 and 2 days of culture completely blocked bone formation.

  13. [Recruitment of osteogenic cells to bone formation sites during development and fracture repair - German Version].

    PubMed

    Böhm, A-M; Dirckx, N; Maes, C

    2016-04-01

    Recruitment of osteoblast lineage cells to their bone-forming locations is essential for skeletal development and fracture healing. In developing bones, osteoprogenitor cells invade the cartilage mold to establish the primary ossification center. Similarly, osteogenic cells infiltrate and populate the callus tissue that is formed following an injury. Proper bone development and successful fracture repair must, therefore, rely on controlled temporal and spatial navigation cues guiding the cells to the sites where new bone formation is needed. Some cellular mechanisms and molecular pathways involved have been elucidated.

  14. In vitro enhancement of extracellular matrix formation as natural bioscaffold for stem cell culture

    NASA Astrophysics Data System (ADS)

    Naroeni, Aroem; Shalihah, Qonitha; Meilany, Sofy

    2017-02-01

    Growing cells in plastic with liquid media for in vitro study is very common but far from physiological. The use of scaffold materials is more biocompatible. Extracellular matrix provides tissue integrity which acts as a native scaffold for cell attachment and interaction, as well as it serves as a reservoir for growth factors. For this reason, we have developed natural scaffold from mice fibroblast to form a natural scaffold for stem cell culture. Fibroblasts were cultured under crowded condition and lysed to form natural scaffold. The natural scaffold formation was observed using immunofluorescence which then will be used and tested for stem cell propagation and differentiation.

  15. Cbln1 downregulates the formation and function of inhibitory synapses in mouse cerebellar Purkinje cells.

    PubMed

    Ito-Ishida, Aya; Kakegawa, Wataru; Kohda, Kazuhisa; Miura, Eriko; Okabe, Shigeo; Yuzaki, Michisuke

    2014-04-01

    The formation of excitatory and inhibitory synapses must be tightly coordinated to establish functional neuronal circuitry during development. In the cerebellum, the formation of excitatory synapses between parallel fibers and Purkinje cells is strongly induced by Cbln1, which is released from parallel fibers and binds to the postsynaptic δ2 glutamate receptor (GluD2). However, Cbln1's role, if any, in inhibitory synapse formation has been unknown. Here, we show that Cbln1 downregulates the formation and function of inhibitory synapses between Purkinje cells and interneurons. Immunohistochemical analyses with an anti-vesicular GABA transporter antibody revealed an increased density of interneuron-Purkinje cell synapses in the cbln1-null cerebellum. Whole-cell patch-clamp recordings from Purkinje cells showed that both the amplitude and frequency of miniature inhibitory postsynaptic currents were increased in cbln1-null cerebellar slices. A 3-h incubation with recombinant Cbln1 reversed the increased amplitude of inhibitory currents in Purkinje cells in acutely prepared cbln1-null slices. Furthermore, an 8-day incubation with recombinant Cbln1 reversed the increased interneuron-Purkinje cell synapse density in cultured cbln1-null slices. In contrast, recombinant Cbln1 did not affect cerebellar slices from mice lacking both Cbln1 and GluD2. Finally, we found that tyrosine phosphorylation was upregulated in the cbln1-null cerebellum, and acute inhibition of Src-family kinases suppressed the increased inhibitory postsynaptic currents in cbln1-null Purkinje cells. These findings indicate that Cbln1-GluD2 signaling inhibits the number and function of inhibitory synapses, and shifts the excitatory-inhibitory balance towards excitation in Purkinje cells. Cbln1's effect on inhibitory synaptic transmission is probably mediated by a tyrosine kinase pathway.

  16. Formation of electrical coupling between embryonic Xenopus muscle cells in culture.

    PubMed Central

    Chow, I; Poo, M M

    1984-01-01

    Electrical coupling between embryonic Xenopus muscle cells in 1-5 day old cultures was studied after isolated cells were manipulated into contact for various periods. The coupling was examined by measuring the electrotonic spread of acetylcholine (ACh)-induced membrane depolarizations or of potential changes induced by intracellular current injection. In 1 day old culture, cells developed coupling rapidly after contact. Strong coupling was observed within 20 min after contact was made. The rate of coupling formation was age dependent. The percentage of cell pairs that established detectable coupling within 30 min of contact decreased from 66% in 1 day culture to 0% in 5 day culture. Older cells, when put into contact for prolonged periods, developed substantial coupling, suggesting that the age of the culture affects the rate of coupling formation rather than the final extent of coupling. Pre-treatment of older cells with colchicine, metabolic inhibitors, Ca2+ and Mg2+-free saline, or trypsin significantly increased the rate of coupling formation to a level close to that of younger cells. This suggests that the reduced rate of coupling was not due to a lack of membrane precursors for the intercellular channels, but was probably due to the appearance of extramembranous constraints for the channel assembly. PMID:6699773

  17. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    PubMed

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation.

  18. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells.

    PubMed

    Arrighi, Jean-François; Pion, Marjorie; Garcia, Eduardo; Escola, Jean-Michel; van Kooyk, Yvette; Geijtenbeek, Teunis B; Piguet, Vincent

    2004-11-15

    Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC-T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient.Here, we have investigated the role of DC-SIGN on primary DCs in X4 HIV-1 capture and transmission using small interfering RNA-expressing lentiviral vectors to specifically knockdown DC-SIGN. We demonstrate that DC-SIGN- DCs internalize X4 HIV-1 as well as DC-SIGN+ DCs, although binding of virions is reduced. Strikingly, DC-SIGN knockdown in DCs selectively impairs infectious synapse formation between DCs and resting CD4+ T cells, but does not prevent the formation of DC-T cells conjugates. Our results demonstrate that DC-SIGN is required downstream from viral capture for the formation of the infectious synapse between DCs and T cells. These findings provide a novel explanation for the role of DC-SIGN in the transfer and enhancement of HIV infection from DCs to T cells, a crucial step for HIV transmission and pathogenesis.

  19. Dentin-like tissue formation and biomineralization by multicellular human pulp cell spheres in vitro

    PubMed Central

    2014-01-01

    Introduction Maintaining or regenerating a vital pulp is a preferable goal in current endodontic research. In this study, human dental pulp cell aggregates (spheres) were applied onto bovine and human root canal models to evaluate their potential use as pre-differentiated tissue units for dental pulp tissue regeneration. Methods Human dental pulp cells (DPC) were derived from wisdom teeth, cultivated into three-dimensional cell spheres and seeded onto bovine and into human root canals. Sphere formation, tissue-like and mineralization properties as well as growth behavior of cells on dentin structure were evaluated by light microscopy (LM), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Results Spheres and outgrown cells showed tissue-like properties, the ability to merge with other cell spheres and extra cellular matrix formation; CLSM investigation revealed a dense network of actin and focal adhesion contacts (FAC) inside the spheres and a pronounced actin structure of cells outgrown from the spheres. A dentin-structure-orientated migration of the cells was shown by SEM investigation. Besides the direct extension of the cells into dentinal tubules, the coverage of the tubular walls with cell matrix was detected. Moreover, an emulation of dentin-like structures with tubuli-like and biomineral formation was detected by SEM- and EDX-investigation. Conclusions The results of the present study show tissue-like behavior, the replication of tubular structures and the mineralization of human dental pulp spheres when colonized on root dentin. The application of cells in form of pulp spheres on root dentin reveals their beneficial potential for dental tissue regeneration. PMID:24946771

  20. Gravity-induced buds formation from protonemata apical cells in the mosses

    NASA Astrophysics Data System (ADS)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  1. Induction of monocyte differentiation and foam cell formation in vitro by 7-ketocholesterol.

    PubMed

    Hayden, John M; Brachova, Libuse; Higgins, Karen; Obermiller, Lewis; Sevanian, Alex; Khandrika, Srikrishna; Reaven, Peter D

    2002-01-01

    Oxidized LDL (OxLDL) is composed of many potentially proatherogenic molecules, including oxysterols. Of the oxysterols, 7-ketocholesterol (7-KC) is found in relatively large abundance in OxLDL, as well as in atherosclerotic plaque and foam cells in vivo. Although there is evidence that 7-KC activates endothelial cells, its effect on monocytes is unknown. We tested the hypothesis that 7-KC may induce monocyte differentiation and promote foam cell formation. THP-1 cells were used as a monocyte model system and were treated with 7-KC over a range of concentrations from 0.5 to 10 microg/ml. Changes in cell adhesion properties, cell morphology, and expression of antigens characteristic of differentiated macrophages were monitored over a 7-day period. 7-KC promoted cells to firmly adhere and display morphologic features of differentiated macrophages; this effect was time and dose dependent and was markedly more potent than cholesterol treatment (45% of cells became adherent after 7 days of treatment with 7-KC at 10 microg/ml vs. less then 5% for control cells, P < 0.01). Similar effects were obtained when LDL enriched with 7-KC or OxLDL were added to THP-1 cells. 7-KC-differentiated cells expressed CD11b, CD36, and CD68, phagocytized latex beads, and formed lipid-laden foam cells after exposure to acetylated LDL or OxLDL. In contrast to 7-KC, oxysterols with known cell regulatory effects such as 25-hydroxycholesterol, 7beta-hydroxycholesterol, and (22R)-hydroxycholesterol did not effectively promote THP-1 differentiation. In conclusion, these results demonstrate for the first time that 7-KC, a prominent oxysterol formed in OxLDL by peroxidation of cholesterol, may play an important role in promoting monocyte differentiation and foam cell formation. These studies also suggest that 7-KC induces monocyte differentiation through a sterol-mediated regulatory pathway that remains to be characterized.

  2. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    PubMed Central

    2010-01-01

    Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL), which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in metastasizing within the peritoneal

  3. Formation of gut-like structures in vitro from mouse embryonic stem cells.

    PubMed

    Torihashi, Shigeko

    2006-01-01

    Embryonic stem (ES) cells have the potential to differentiate into all cell types originating from the three germ layers; however, there are still few reports about the formation of functional organs from embryonic stem cells. Recently, we reported that by hanging drops of mouse ES cells, embryoid bodies (EBs) formed gut-like structures in vitro composed of three layers corresponding to the epithelium, lamina propria, and musculature. The morphological features and the process of formation are similar to gut and its organogenesis in vivo. Thus, this is a good model for development of the gut and a useful tool for analysis of the factors required for gut organogenesis. The protocol basically involves a method of hanging drops to make EBs, which are then plated on coated dishes for outgrowth. EBs develop to form gut-like structures when induced to spontaneously enter a program of differentiation in vitro without addition of any extrinsic factors.

  4. Modeling the formation of cell-matrix adhesions on a single 3D matrix fiber.

    PubMed

    Escribano, J; Sánchez, M T; García-Aznar, J M

    2015-11-07

    Cell-matrix adhesions are crucial in different biological processes like tissue morphogenesis, cell motility, and extracellular matrix remodeling. These interactions that link cell cytoskeleton and matrix fibers are built through protein clutches, generally known as adhesion complexes. The adhesion formation process has been deeply studied in two-dimensional (2D) cases; however, the knowledge is limited for three-dimensional (3D) cases. In this work, we simulate different local extracellular matrix properties in order to unravel the fundamental mechanisms that regulate the formation of cell-matrix adhesions in 3D. We aim to study the mechanical interaction of these biological structures through a three dimensional discrete approach, reproducing the transmission pattern force between the cytoskeleton and a single extracellular matrix fiber. This numerical model provides a discrete analysis of the proteins involved including spatial distribution, interaction between them, and study of the different phenomena, such as protein clutches unbinding or protein unfolding.

  5. Chibby promotes ciliary vesicle formation and basal body docking during airway cell differentiation.

    PubMed

    Burke, Michael C; Li, Feng-Qian; Cyge, Benjamin; Arashiro, Takeshi; Brechbuhl, Heather M; Chen, Xingwang; Siller, Saul S; Weiss, Matthew A; O'Connell, Christopher B; Love, Damon; Westlake, Christopher J; Reynolds, Susan D; Kuriyama, Ryoko; Takemaru, Ken-Ichi

    2014-10-13

    Airway multiciliated epithelial cells play crucial roles in the mucosal defense system, but their differentiation process remains poorly understood. Mice lacking the basal body component Chibby (Cby) exhibit impaired mucociliary transport caused by defective ciliogenesis, resulting in chronic airway infection. In this paper, using primary cultures of mouse tracheal epithelial cells, we show that Cby facilitates basal body docking to the apical cell membrane through proper formation of ciliary vesicles at the distal appendage during the early stages of ciliogenesis. Cby is recruited to the distal appendages of centrioles via physical interaction with the distal appendage protein CEP164. Cby then associates with the membrane trafficking machinery component Rabin8, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rab8, to promote recruitment of Rab8 and efficient assembly of ciliary vesicles. Thus, our study identifies Cby as a key regulator of ciliary vesicle formation and basal body docking during the differentiation of airway ciliated cells.

  6. Comparative study on DBPs formation profiles of intermediate organics from hydroxyl radicals oxidation of microbial cells.

    PubMed

    Ou, Tai-You; Wang, Gen-Shuh

    2016-05-01

    This study assessed the characteristics of disinfection byproducts (DBPs) formation from intermediate organics during UV/H2O2 treatment of activated sludge and algae cells under various reaction conditions. The DBPs including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs) and haloacetonitriles (HANs) in UV/H2O2-treated and chlorinated water were measured. The results showed that both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) increased during the initial stage of UV/H2O2 treatment due to the lysis of sludge and algae cells, which enhanced the formation of both C- and N-DBPs; however, both DOC and DON decreased after longer reaction times. During the UV/H2O2 treatments, THMs formation potential (THMFP) peaked earlier than did HAAs formation potential (HAAFP). This shows that the dissolved organics released from lysis of microbial cells in the early stages of oxidation favor the production of THMs over HAAs; however, HAAs precursors increased with the oxidation time. Chlorination with bromide increased the formation of THMs and HAAs but less HKs and HANs were produced. Comparisons of normalized DBP formation potential (DBPFP) of samples collected during UV/H2O2 treatments of four different types of organic matter showed that the highest DBPFP occurred in filtered treated wastewater effluent, followed by samples of activated sludge, filtered eutrophicated pond water, and samples of algae cells. With increasing oxidation time, the dominant DBP species shifted from THMs to HAAs in the samples of activated sludge and algae cells. The DBPFP tests also showed that more HAAs were formed in biologically treated wastewater effluent, while the eutrophicated source water produced more THMs.

  7. Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation.

    PubMed

    Pelton, John C; Wright, Catherine E; Leitges, Michael; Bautch, Victoria L

    2014-11-01

    Blood vessel polarization in the apical-basal axis is important for directed secretion of proteins and lumen formation; yet, when and how polarization occurs in the context of angiogenic sprouting is not well understood. Here, we describe a novel topology for endothelial cells at the tip of angiogenic sprouts in several mammalian vascular beds. Two cells that extend filopodia and have significant overlap in space and time were present at vessel tips, both in vitro and in vivo. The cell overlap is more extensive than predicted for tip cell switching, and it sets up a longitudinal cell-cell border that is a site of apical polarization and lumen formation, presumably via a cord-hollowing mechanism. The extent of cell overlap at the tip is reduced in mice lacking aPKCζ, and this is accompanied by reduced distal extension of both the apical border and patent lumens. Thus, at least two polarized cells occupy the distal tip of blood vessel sprouts, and topology, polarization and lumenization along the longitudinal border of these cells are influenced by aPKCζ.

  8. Multiple endothelial cells constitute the tip of developing blood vessels and polarize to promote lumen formation

    PubMed Central

    Pelton, John C.; Wright, Catherine E.; Leitges, Michael; Bautch, Victoria L.

    2014-01-01

    Blood vessel polarization in the apical-basal axis is important for directed secretion of proteins and lumen formation; yet, when and how polarization occurs in the context of angiogenic sprouting is not well understood. Here, we describe a novel topology for endothelial cells at the tip of angiogenic sprouts in several mammalian vascular beds. Two cells that extend filopodia and have significant overlap in space and time were present at vessel tips, both in vitro and in vivo. The cell overlap is more extensive than predicted for tip cell switching, and it sets up a longitudinal cell-cell border that is a site of apical polarization and lumen formation, presumably via a cord-hollowing mechanism. The extent of cell overlap at the tip is reduced in mice lacking aPKCζ, and this is accompanied by reduced distal extension of both the apical border and patent lumens. Thus, at least two polarized cells occupy the distal tip of blood vessel sprouts, and topology, polarization and lumenization along the longitudinal border of these cells are influenced by aPKCζ. PMID:25336741

  9. Sequential Salinomycin Treatment Results in Resistance Formation through Clonal Selection of Epithelial-Like Tumor Cells.

    PubMed

    Kopp, Florian; Hermawan, Adam; Oak, Prajakta Shirish; Ulaganathan, Vijay Kumar; Herrmann, Annika; Elnikhely, Nefertiti; Thakur, Chitra; Xiao, Zhiguang; Knyazev, Pjotr; Ataseven, Beyhan; Savai, Rajkumar; Wagner, Ernst; Roidl, Andreas

    2014-12-01

    Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC)-specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition.

  10. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    PubMed

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications.

  11. Renal tubulointerstitial changes after internal irradiation with alpha-particle-emitting actinium daughters.

    PubMed

    Jaggi, Jaspreet Singh; Seshan, Surya V; McDevitt, Michael R; LaPerle, Krista; Sgouros, George; Scheinberg, David A

    2005-09-01

    The effect of external gamma irradiation on the kidneys is well described. However, the mechanisms of radiation nephropathy as a consequence of targeted radionuclide therapies are poorly understood. The functional and morphologic changes were studied chronologically (from 10 to 40 wk) in mouse kidneys after injection with an actinium-225 (225Ac) nanogenerator, a molecular-sized, antibody-targeted, in vivo generator of alpha-particle-emitting elements. Renal irradiation from free, radioactive daughters of 225Ac led to time-dependent reduction in renal function manifesting as increase in blood urea nitrogen. The histopathologic changes corresponded with the decline in renal function. Glomerular, tubular, and endothelial cell nuclear pleomorphism and focal tubular cell injury, lysis, and karyorrhexis were observed as early as 10 wk. Progressive thinning of the cortex as a result of widespread tubulolysis, collapsed tubules, glomerular crowding, decrease in glomerular cellularity, interstitial inflammation, and an elevated juxtaglomerular cell count were noted at 20 to 30 wk after treatment. By 35 to 40 wk, regeneration of simplified tubules with tubular atrophy and loss with focal, mild interstitial fibrosis had occurred. A lower juxtaglomerular cell count with focal cytoplasmic vacuolization, suggesting increased degranulation, was also observed in this period. A focal increase in tubular and interstitial cell TGF-beta1 expression starting at 20 wk, peaking at 25 wk, and later declining in intensity with mild increase in the extracellular matrix deposition was noticed. These findings suggest that internally delivered alpha-particle irradiation-induced loss of tubular epithelial cells triggers a chain of adaptive changes that result in progressive renal parenchymal damage accompanied by a loss of renal function. These findings are dissimilar to those seen after gamma or beta irradiation of kidneys.

  12. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo.

    PubMed

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-12

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β₁-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in Ras(G12V)-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development.

  13. Exploration the Supportive Needs and Coping Behaviors of Daughter and Daughter in-Law Caregivers of Stroke Survivors, Shiraz-Iran: A Qualitative Content Analysis

    PubMed Central

    Gholamzadeh, Sakineh; Tengku Aizan, Hamid; Sharif, Farkhondeh; Hamidon, Basri; Rahimah, Ibrahim

    2015-01-01

    Background The period of hospital stay and the first month after discharge have been found to be the most problematic stages for family caregivers of stroke survivors. It is just at home that patients and caregivers actually understand the whole consequences of the stroke. The adult offspring often have more different needs and concerns than spousal caregivers. However, relatively little attention has been paid to the needs of this particular group of caregivers. Therefore, this qualitative content analysis study aimed to explore the supportive needs and coping behaviors of daughter and daughter in-law caregivers (DILs) of stroke survivors one month after the patient’s discharge from the hospital in Shiraz, Southern of Iran. Methods This is a qualitative content analysis study using semi-structured and in-depth interviews with a purposive sampling of seventeen daughter and daughter in-law caregivers. Results The data revealed seven major themes including information and training, financial support, home health care assistance need, self-care support need, adjusting with the cultural obligation in providing care for a parent in-law, and need for improving quality of hospital care. Also, data from the interview showed that daughter and daughter in-law caregivers mostly used emotional-oriented coping strategies, specially religiosity, to cope with their needs and problems in their care-giving role. Conclusion The results of this qualitative study revealed that family caregivers have several unmet needs in their care-giving role. By providing individualized information and support, we can prepare these family caregivers to better cope with the home care needs of stroke survivors and regain control over aspects of life. PMID:26171409

  14. ROCK is involved in vasculogenic mimicry formation in hepatocellular carcinoma cell line.

    PubMed

    Zhang, Ji-Gang; Li, Xiao-Yu; Wang, Yu-Zhu; Zhang, Qi-Di; Gu, Sheng-Ying; Wu, Xin; Zhu, Guan-Hua; Li, Qin; Liu, Gao-Lin

    2014-01-01

    Ras homolog family member A (RhoA) and Rho-associated coiled coil-containing protein kinases 1 and 2 (ROCK1 and 2) are key regulators of focal adhesion, actomyosin contraction and cell motility. RhoA/ROCK signaling has emerged as an attractive target for the development of new cancer therapeutics. Whether RhoA/ROCK is involved in regulating the formation of tumor cell vasculogenic mimicry (VM) is largely unknown. To confirm this hypothesis, we performed in vitro experiments using hepatocellular carcinoma (HCC) cell lines. Firstly, we demonstrated that HCC cells with higher active RhoA/ROCK expression were prone to form VM channels, as compared with RhoA/ROCK low-expressing cells. Furthermore, Y27632 (a specific inhibitor of ROCK) rather than exoenzyme C3 (a specific inhibitor of RhoA) effectively inhibited the formation of tubular network structures in a dose-dependent manner. To elucidate the possible mechanism of ROCK on VM formation, real-time qPCR, western blot and immunofluorescence were used to detect changes of the key VM-related factors, including VE-cadherin, erythropoietin-producing hepatocellular carcinoma-A2 (EphA2), phosphoinositide 3-kinase (PI3K), matrix metalloproteinase (MMP)14, MMP2, MMP9 and laminin 5γ2-chain (LAMC2), and epithelial-mesenchymal-transition (EMT) markers: E-cadherin and Vimentin. The results showed that all the expression profiles were attenuated by blockage of ROCK. In addition, in vitro cell migration and invasion assays showed that Y27632 inhibited the migration and invasion capacity of HCC cell lines in a dose-dependent manner markedly. These data indicate that ROCK is an important mediator in the formation of tumor cell VM, and suggest that ROCK inhibition may prove useful in the treatment of VM in HCC.

  15. The Differential Formation of the LINC-Mediated Perinuclear Actin Cap in Pluripotent and Somatic Cells

    PubMed Central

    Khatau, Shyam B.; Kusuma, Sravanti; Hanjaya-Putra, Donny; Mali, Prashant; Cheng, Linzhao; Lee, Jerry S. H.; Gerecht, Sharon; Wirtz, Denis

    2012-01-01

    The actin filament cytoskeleton mediates cell motility and adhesion in somatic cells. However, whether the function and organization of the actin network are fundamentally different in pluripotent stem cells is unknown. Here we show that while conventional actin stress fibers at the basal surface of cells are present before and after onset of differentiation of mouse (mESCs) and human embryonic stem cells (hESCs), actin stress fibers of the actin cap, which wrap around the nucleus, are completely absent from undifferentiated mESCs and hESCs and their formation strongly correlates with differentiation. Similarly, the perinuclear actin cap is absent from human induced pluripotent stem cells (hiPSCs), while it is organized in the parental lung fibroblasts from which these hiPSCs are derived and in a wide range of human somatic cells, including lung, embryonic, and foreskin fibroblasts and endothelial cells. During differentiation, the formation of the actin cap follows the expression and proper localization of nuclear lamin A/C and associated linkers of nucleus and cytoskeleton (LINC) complexes at the nuclear envelope, which physically couple the actin cap to the apical surface of the nucleus. The differentiation of hESCs is accompanied by the progressive formation of a perinuclear actin cap while induced pluripotency is accompanied by the specific elimination of the actin cap, and that, through lamin A/C and LINC complexes, this actin cap is involved in progressively shaping the nucleus of hESCs undergoing differentiation. While, the localization of lamin A/C at the nuclear envelope is required for perinuclear actin cap formation, it is not sufficient to control nuclear shape. PMID:22574215

  16. Teratoma formation of human embryonic stem cells in three-dimensional perfusion culture bioreactors.

    PubMed

    Stachelscheid, H; Wulf-Goldenberg, A; Eckert, K; Jensen, J; Edsbagge, J; Björquist, P; Rivero, M; Strehl, R; Jozefczuk, J; Prigione, A; Adjaye, J; Urbaniak, T; Bussmann, P; Zeilinger, K; Gerlach, J C

    2013-09-01

    Teratoma formation in mice is today the most stringent test for pluripotency that is available for human pluripotent cells, as chimera formation and tetraploid complementation cannot be performed with human cells. The teratoma assay could also be applied for assessing the safety of human pluripotent cell-derived cell populations intended for therapeutic applications. In our study we examined the spontaneous differentiation behaviour of human embryonic stem cells (hESCs) in a perfused 3D multi-compartment bioreactor system and compared it with differentiation of hESCs and human induced pluripotent cells (hiPSCs) cultured in vitro as embryoid bodies and in vivo in an experimental mouse model of teratoma formation. Results from biochemical, histological/immunohistological and ultrastuctural analyses revealed that hESCs cultured in bioreactors formed tissue-like structures containing derivatives of all three germ layers. Comparison with embryoid bodies and the teratomas revealed a high degree of similarity of the tissues formed in the bioreactor to these in the teratomas at the histological as well as transcriptional level, as detected by comparative whole-genome RNA expression profiling. The 3D culture system represents a novel in vitro model that permits stable long-term cultivation, spontaneous multi-lineage differentiation and tissue formation of pluripotent cells that is comparable to in vivo differentiation. Such a model is of interest, e.g. for the development of novel cell differentiation strategies. In addition, the 3D in vitro model could be used for teratoma studies and pluripotency assays in a fully defined, controlled environment, alternatively to in vivo mouse models.

  17. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  18. Monte Carlo study of receptor-lipid raft formation on a cell membrane

    NASA Astrophysics Data System (ADS)

    Yu-Yang, Paul; Srinivas Reddy, A.; Raychaudhuri, Subhadip

    2012-02-01

    Receptors are cell surface molecules that bind with extracellular ligand molecules leading to propagation of downstream signals and cellular activation. Even though ligand binding-induced formation of receptor-lipid rafts has been implicated in such a process, the formation mechanism of such large stable rafts is not understood. We present findings from our Monte Carlo (MC) simulations involving (i) receptor interaction with the membrane lipids and (ii) lipid-lipid interactions between raft forming lipids. We have developed a hybrid MC simulation method that combines a probabilistic MC simulation with an explicit free energy-based MC scheme. Some of the lipid-mediated interactions, such as the cholesterol-lipid interactions, are simulated in an implicit way. We examine the effect of varying attractive interactions between raft forming lipids and ligand-bound receptors and show that strong coupling between receptor-receptor and receptor-sphingolipid molecules generate raft formation similar to that observed in recent biological experiments. We study the effect of variation of receptor affinity for ligands (as happens in adaptive immune cells) on raft formation. Such affinity dependence in receptor-lipid raft formation provides insight into important problems in B cell biology.

  19. Calcium signals drive cell shape changes during zebrafish midbrain-hindbrain boundary formation.

    PubMed

    Sahu, Srishti U; Visetsouk, Mike R; Garde, Ryan J; Hennes, Leah; Kwas, Constance; Gutzman, Jennifer H

    2017-02-01

    One of the first morphogenetic events in the vertebrate brain is the formation of the highly conserved midbrain-hindbrain boundary (MHB). Specific cell shape changes occur at the point of deepest constriction of the MHB, the midbrain-hindbrain boundary constriction (MHBC), and are critical for proper MHB formation. These cell shape changes are controlled by non-muscle myosin II (NMII) motor proteins which are tightly regulated via the phosphorylation of their associated myosin regulatory light chains (MRLC). However, the upstream signaling pathways that initiate the regulation of NMII to mediate cell shape changes during MHB morphogenesis are not known. We show that intracellular calcium signals are critical for the regulation of cell shortening during initial MHB formation. We demonstrate that the MHB region is poised to respond to calcium transients that occur in the MHB at the onset of MHB morphogenesis and that calcium mediates phosphorylation of MRLC specifically in MHB tissue. Our results indicate that calmodulin 1a (calm1a), expressed specifically in the MHB, and myosin light chain kinase (MLCK), together mediate MHBC cell length. Our data suggest that modulation of NMII activity by calcium is critical for proper regulation of cell length to determine embryonic brain shape during development.

  20. Rapid formation of cell-particle complexes via dielectrophoretic manipulation for the detection of surface antigens.

    PubMed

    Horii, Takuma; Yamamoto, Masashi; Yasukawa, Tomoyuki; Mizutani, Fumio

    2014-11-15

    A rapid and simple method for the fabrication of the island patterns with particles and cells was applied to detect the presence of specific antigens on the cell surface. An upper interdigitated microband array (IDA) electrode was mounted on a lower substrate with the same design to fabricate a microfluidic-channel device for dielectrophoretic manipulation. The electrode grid structure was fabricated by rotating the upper template IDA by 90° relative to the lower IDA. A suspension of anti-CD33 modified particles and HL-60 cells was introduced into the channel. An AC electrical signal (typically 20 V peak-to-peak, 100 kHz) was then applied to the bands of the upper and lower IDAs, resulting in the formation of island patterns at the intersections with low electric fields. Immunoreactions between the antibodies immobilized on the accumulated particles and the CD33 present on the surface of the cells led to the formation of complexes comprising corresponding antigen-antibody pairs. Non-specific pairs accumulated at the intersection, which did not form complexes, were then dispersed after removal of the applied field. The time required for the detection of the formation/dispersion of the complexes is as short as 6 min in the present procedure. Furthermore, this novel cell binding assay does not require pretreatment such as target labeling or washing of the unbound cells.

  1. Formation of Lignans(-)-Secoisolariciresinol and (-)-Matairesinol with Forsythia intermedia Cell-Free Extracts

    NASA Technical Reports Server (NTRS)

    Umezawa, Toshiaki; Davin, Laurence B.; Lewis, Norman G.

    1991-01-01

    In vivo labeling experiments of Forsythia intermedia plant tissue with [8-(C-14)]- and [9,9-(2)H2,OC(2)H3]coniferyl alcohols revealed that the lignans, (-)-secoisolariciresinol and (-)-matairesinol, were derived from two coniferyl alcohol molecules; no evidence for the formation of the corresponding (+)-enantiomers was found. Administration of (+/-)-[Ar-(H-3)] secoisolariciresinols to excised shoots of F.intermedia resulted in a significant conversion into (-)-matairesinol; again, the (+)-antipode was not detected. Experiments using cell-free extracts of F.intermedia confirmed and extended these findings. In the presence of NAD(P)H and H2O2, the cell-free extracts catalyzed the formation of (-)- secoisolariciresinol, with either [8-(C-14)]- or [9,9-(2)H2,OC(2)H3]coniferyl alcohols as substrates. The (+)- enantiomer was not formed. Finally, when either (-)-[Ar-(H-3)] or (+/-)-[Ar-(H-2)]secoisolariciresinols were used as substrates, in the presence of NAD(P), only (-)- and not (+)-matairesinol formation occurred. The other antipode, (+)-secoisolariciresinol, did not serve as a substrate for the formation of either (+)- or (-)-matairesinol. Thus, in F.intermedia, the formation of the lignan, (-)-secoisolariciresinol, occurs under strict stereochemical control, in a reaction or reactions requiring NAD(P)H and H2O2 as cofactors. This stereoselectivity is retained in the subsequent conversion into (-)-matairesinol, since (+)-secoisolariciresinol is not a substrate. These are the first two enzymes to be discovered in lignan formation.

  2. Like Her Own: Ideals and Experiences of the Mother-in-law/Daughter-in-law Relationship.

    PubMed

    Allendorf, Keera

    2006-12-01

    This article explores ideals and experiences of the mother-in-law/daughter-in-law relationship using semi-structured interviews with 46 members of 22 families living in one Indian village. Ideally, the relationship is characterized by love and understanding, where one's mother-in-law or daughter-in-law is like one's own daughter or mother. In practice, the relationship varies in quality. Some women experienced affectionate, high quality relationships, while others' relationships were characterized by hurtful exchanges and not speaking. Previous literature portrays the relationship as negative, but these results point to the relevance of positive aspects as well. I also suggest that these ideals and experiences are shaped by the joint family system. The joint family system contributes to the strongly positive ideal, while the tensions that women experience arise from the contradictory family locations that they occupy within that system. Daughters-in-law and mothers-in-law are simultaneously strangers and close family members.

  3. Method for the chemical separation of GE-68 from its daughter Ga-68

    DOEpatents

    Fitzsimmons, Jonathan M.; Atcher, Robert W.

    2010-06-01

    The present invention is directed to a generator apparatus for separating a daughter gallium-68 radioisotope substantially free of impurities from a parent gernanium-68 radioisotope, including a first resin-containing column containing parent gernanium-68 radioisotope and daughter gallium-68 radioisotope, a source of first eluent connected to said first resin-containing column for separating daughter gallium-68 radioisotope from the first resin-containing column, said first eluent including citrate whereby the separated gallium is in the form of gallium citrate, a mixing space connected to said first resin-containing column for admixing a source of hydrochloric acid with said separated gallium citrate whereby gallium citrate is converted to gallium tetrachloride, a second resin-containing column for retention of gallium-68 tetrachloride, and, a source of second eluent connected to said second resin-containing column for eluting the daughter gallium-68 radioisotope from said second resin-containing column.

  4. Radon/radon daughter environmental chamber located in the northwest end of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Radon/radon daughter environmental chamber located in the northwest end of building. VIEW LOOKING WEST - Department of Energy, Grand Junction Office, Building No. 32, 2597 B3/4 Road, Grand Junction, Mesa County, CO

  5. Lung cancer mortality among nonsmoking uranium miners exposed to radon daughters

    SciTech Connect

    Roscoe, R.J.; Steenland, K.; Halperin, W.E.; Beaumont, J.J.; Waxweiler, R.J.

    1989-08-04

    Radon daughters, both in the workplace and in the household, are a continuing cause for concern because of the well-documented association between exposure to radon daughters and lung cancer. To estimate the risk of lung cancer mortality among nonsmokers exposed to varying levels of radon daughters, 516 white men who never smoked cigarettes, pipes, or cigars were selected from the US Public Health Service cohort of Colorado Plateau uranium miners and followed up from 1950 through 1984. Age-specific mortality rates for nonsmokers from a study of US veterans were used for comparison. Fourteen deaths from lung cancer were observed among the nonsmoking miners, while 1.1 deaths were expected, yielding a standardized mortality ratio of 12.7 with 95% confidence limits of 8.0 and 20.1. These results confirm that exposure to radon daughters in the absence of cigarette smoking is a potent carcinogen that should be strictly controlled.

  6. Cat-eye syndrome with different marker chromosomes in a mother and daughter.

    PubMed

    Ing, P S; Lubinsky, M S; Smith, S D; Golden, E; Sanger, W G; Duncan, A M

    1987-03-01

    Except for atypical eye findings in the daughter, a mother and daughter with bisatellited marker chromosomes had abnormalities consistent with cat-eye syndrome. The mother's marker chromosome (mar number 1) is derived from one 22 and another acrocentric, possibly also a 22; the daughter's marker (mar number 2) may be an iso-dicentric, inv-dup (22) derivative of mar number 1. The mother has a tertiary trisomy translocation chromosome composed of at least one and perhaps two copies of 22pter----q11.2, whereas the daughter clearly has a secondary trisomy 22pter----q11.2 isochromosome, confirming this region as a cause of cat-eye syndrome. Results of hybridization using a unique sequence probe localized to 22q11 are consistent with the interpretation that both ends of both marker chromosomes are derived from 22.

  7. Circles: Mother and Daughter Relationships in Toni Morrison's "Song of Solomon."

    ERIC Educational Resources Information Center

    Subryan, Carmen

    1988-01-01

    Examines the mother daughter relationships portrayed in Toni Morrison's novel, "Song of Solomon." Shows how societal influences can result in the stagnation of Black womens' spirits, and how love and compassion can result in the uplifting of the spirit. (FMW)

  8. Embryonic stem cell-derived granulosa cells participate in ovarian follicle formation in vitro and in vivo.

    PubMed

    Woods, Dori C; White, Yvonne A R; Niikura, Yuichi; Kiatpongsan, Sorapop; Lee, Ho-Joon; Tilly, Jonathan L

    2013-05-01

    Differentiating embryonic stem cells (ESCs) can form ovarian follicle-like structures in vitro, consisting of an oocyte-like cell surrounded by somatic cells capable of steroidogenesis. Using a dual-fluorescence reporter system in which mouse ESCs express green fluorescent protein (GFP) under the control of a germ cell-specific Pou5f1 gene promoter and red fluorescent protein (Discosoma sp red [DsRed]) driven by the granulosa cell-specific Forkhead box L2 (Foxl2) gene promoter, we first confirmed in vitro formation of follicle-like structures containing GFP-positive cells surrounded by DsRed-positive cells. Isolated DsRed-positive cells specified from ECSs exhibited a gene expression profile consistent with granulosa cells, as revealed by the detection of messenger RNAs (mRNAs) for Foxl2, follistatin (Fst), anti-Müllerian hormone (Amh), and follicle-stimulating hormone receptor (Fshr) as well as by production of both progesterone and estradiol. In addition, treatment of isolated DsRed-expressing cells with follicle-stimulating hormone (FSH) significantly increased estradiol production over basal levels, confirming the presence of functional FSH receptors in these cells. Last, ESC-derived DsRed-positive cells injected into neonatal mouse ovaries became incorporated within the granulosa cell layer of immature follicles. These studies demonstrate that Foxl2-expressing ovarian somatic cells derived in vitro from differentiating ESCs express granulosa cell markers, actively associate with germ cells in vitro, synthesize steroids, respond to FSH, and participate in folliculogenesis in vivo.

  9. An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium.

    PubMed

    Akhtar, Nasreen; Streuli, Charles H

    2013-01-01

    The extracellular matrix has a crucial role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues; however, the underlying mechanisms remain elusive. By using Cre–Lox deletion we show that β1 integrins are required for normal mammary gland morphogenesis and lumen formation, both in vivo and in a three-dimensional primary culture model in which epithelial cells directly contact a basement membrane. Downstream of basement membrane β1 integrins, Rac1 is not involved; however, ILK is needed to polarize microtubule plus ends at the basolateral membrane and disrupting each of these components prevents lumen formation. The integrin–microtubule axis is necessary for the endocytic removal of apical proteins from the basement-membrane–cell interface and for internal Golgi positioning. We propose that this integrin signalling network controls the delivery of apical components to the correct surface and thereby governs the orientation of polarity and development of lumens.

  10. Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells.

    PubMed

    Stranks, Samuel D; Nayak, Pabitra K; Zhang, Wei; Stergiopoulos, Thomas; Snaith, Henry J

    2015-03-09

    Organic-inorganic perovskites are currently one of the hottest topics in photovoltaic (PV) research, with power conversion efficiencies (PCEs) of cells on a laboratory scale already competing with those of established thin-film PV technologies. Most enhancements have been achieved by improving the quality of the perovskite films, suggesting that the optimization of film formation and crystallization is of paramount importance for further advances. Here, we review the various techniques for film formation and the role of the solvents and precursors in the processes. We address the role chloride ions play in film formation of mixed-halide perovskites, which is an outstanding question in the field. We highlight the material properties that are essential for high-efficiency operation of solar cells, and identify how further improved morphologies might be achieved.

  11. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-12-31

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  12. Palladium deuteride formation in the cathode of an electrochemical cell: An in situ neutron diffraction study

    SciTech Connect

    Rotella, F.J.; Richardson, J.W. Jr.; Redey, L.; Felcher, G.P.; Hitterman, R.L.; Kleb, R.

    1991-01-01

    In this report, neutron diffraction of palladium cathodes is utilized to reveal palladium deuteride formation within the crystal structure of the metal. The experiment described in this report demonstrates the efficacy of neutron powder diffraction as a tool for structural studies of metal deuterides/hydrides and the feasibility of in situ diffraction measurements from a working electrochemical cell. (JL)

  13. PERP regulates enamel formation via effects on cell–cell adhesion and gene expression

    PubMed Central

    Jheon, Andrew H.; Mostowfi, Pasha; Snead, Malcolm L.; Ihrie, Rebecca A.; Sone, Eli; Pramparo, Tiziano; Attardi, Laura D.; Klein, Ophir D.

    2011-01-01

    Little is known about the role of cell–cell adhesion in the development of mineralized tissues. Here we report that PERP, a tetraspan membrane protein essential for epithelial integrity, regulates enamel formation. PERP is necessary for proper cell attachment and gene expression during tooth development, and its expression is controlled by P63, a master regulator of stratified epithelial development. During enamel formation, PERP is localized to the interface between the enamel-producing ameloblasts and the stratum intermedium (SI), a layer of cells subjacent to the ameloblasts. Perp-null mice display dramatic enamel defects, which are caused, in part, by the detachment of ameloblasts from the SI. Microarray analysis comparing gene expression in teeth of wild-type and Perp-null mice identified several differentially expressed genes during enamel formation. Analysis of these genes in ameloblast-derived LS8 cells upon knockdown of PERP confirmed the role for PERP in the regulation of gene expression. Together, our data show that PERP is necessary for the integrity of the ameloblast–SI interface and that a lack of Perp causes downregulation of genes that are required for proper enamel formation. PMID:21285247

  14. Defective PDI release from platelets and endothelial cells impairs thrombus formation in Hermansky-Pudlak syndrome.

    PubMed

    Sharda, Anish; Kim, Sarah H; Jasuja, Reema; Gopal, Srila; Flaumenhaft, Robert; Furie, Barbara C; Furie, Bruce

    2015-03-05

    Protein disulfide isomerase (PDI), secreted from platelets and endothelial cells after injury, is required for thrombus formation. The effect of platelet and endothelial cell granule contents on PDI-mediated thrombus formation was studied by intravital microscopy using a mouse model of Hermansky-Pudlak syndrome in which platelet dense granules are absent. Platelet deposition and fibrin generation were nearly absent, and extracellular PDI was significantly reduced in HPS6(-/-) mice after vascular injury. HPS6(-/-) platelets displayed impaired PDI secretion and impaired exocytosis of α granules, lysosomes, and T granules due to decreased sensitivity to thrombin, but these defects could be corrected by addition of subthreshold amounts of adenosine 5'-diphosphate (ADP). Human Hermansky-Pudlak syndrome platelets demonstrated similar characteristics. Infusion of wild-type platelets rescued thrombus formation in HPS6(-/-) mice. Human umbilical vein endothelial cells in which the HPS6 gene was silenced displayed impaired PDI secretion and exocytosis of Weibel-Palade bodies. Defective thrombus formation in Hermansky-Pudlak syndrome, associated with impaired exocytosis of residual granules in endothelial cells and platelets, the latter due to deficiency of ADP, is characterized by a defect in T granule secretion, a deficiency in extracellular PDI secretion, and impaired fibrin generation and platelet aggregation. Hermansky-Pudlak syndrome is an example of a hereditary disease whereby impaired PDI secretion contributes to a bleeding phenotype.

  15. Jin Fu Kang Oral Liquid Inhibits Lymphatic Endothelial Cells Formation and Migration

    PubMed Central

    Wang, Dan; Tang, Jie

    2016-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Jin Fu Kang (JFK), an oral liquid prescription of Chinese herbal drugs, has been clinically available for the treatment of non-small cell lung cancer (NSCLC). Lymphangiogenesis is a primary event in the process of cancer development and metastasis, and the formation and migration of lymphatic endothelial cells (LECs) play a key role in the lymphangiogenesis. To assess the activity of stromal cell-derived factor-1 (SDF-1) and the coeffect of SDF-1 and vascular endothelial growth factor-C (VEGF-C) on the formation and migration of LECs and clarify the inhibitory effects of JFK on the LECs, the LECs were differentiated from CD34+/VEGFR-3+ endothelial progenitor cells (EPCs), and JFK-containing serums were prepared from rats. SDF-1 and VEGF-C both induced the differentiation of CD34+/VEGFR-3+ EPCs towards LECs and enhanced the LECs migration. Couse of SDF-1 and VEGF-C displayed an additive effect on the LECs formation but not on their migration. JFK inhibited the formation and migration of LECs, and the inhibitory effects were most probably via regulation of the SDF-1/CXCR4 and VEGF-C/VEGFR-3 axes. The current finding suggested that JFK might inhibit NSCLC through antilymphangiogenesis and also provided a potential to discover antilymphangiogenesis agents from natural resources. PMID:27698675

  16. Synaptotagmin-Like Proteins Control Formation of a Single Apical Membrane Domain in Epithelial Cells

    PubMed Central

    Gálvez-Santisteban, Manuel; Rodriguez-Fraticelli, Alejo E.; Bryant, David M.; Vergarajauregui, Silvia; Yasuda, Takao; Bañón-Rodríguez, Inmaculada; Bernascone, Ilenia; Datta, Anirban; Spivak, Natalie; Young, Kitty; Slim, Christiaan L.; Brakeman, Paul R.; Fukuda, Mitsunori; Mostov, Keith E.; Martín-Belmonte, Fernando

    2012-01-01

    SUMMARY The formation of epithelial tissues requires both the generation of apical-basal polarity and the co-ordination of this polarity between neighboring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to formation of a singular apical membrane, resulting in contribution of each cell to only a single lumen. Here, from a functional screen for genes required for 3D epithelial architecture we identify key roles for Synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PI(4,5)P2-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE Syntaxin-3. Together, Slp2-a/4-a co-ordinate the spatiotemporal organization of vectorial apical transport to ensure only a single apical surface, and thus formation of a single lumen, occurs per cell. PMID:22820376

  17. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells

    PubMed Central

    Yu, Qilin; Li, Jianrong; Zhang, Yueqi; Wang, Yufan; Liu, Lu; Li, Mingchun

    2016-01-01

    Owing to the growing infectious diseases caused by eukaryotic and prokaryotic pathogens, it is urgent to develop novel antimicrobial agents against clinical pathogenic infections. Biofilm formation and invasion into the host cells are vital processes during pathogenic colonization and infection. In this study, we tested the inhibitory effect of Au nanoparticles (AuNPs) on pathogenic growth, biofilm formation and invasion. Interestingly, although the synthesized AuNPs had no significant toxicity to the tested pathogens, Candida albicans and Pseudomonas aeruginosa, the nanoparticles strongly inhibited pathogenic biofilm formation and invasion to dental pulp stem cells (DPSCs). Further investigations revealed that AuNPs abundantly bound to the pathogen cells, which likely contributed to their inhibitory effect on biofilm formation and invasion. Moreover, treatment of AuNPs led to activation of immune response-related genes in DPSCs, which may enhance the activity of host immune system against the pathogens. Zeta potential analysis and polyethylene glycol (PEG)/polyethyleneimine (PEI) coating tests further showed that the interaction between pathogen cells and AuNPs is associated with electrostatic attractions. Our findings shed novel light on the application of nanomaterials in fighting against clinical pathogens, and imply that the traditional growth inhibition test is not the only way to evaluate the drug effect during the screening of antimicrobial agents. PMID:27220400

  18. Free Energies of Formation Measurements on Solid-State Electrochemical Cells

    ERIC Educational Resources Information Center

    Rollino, J. A.; Aronson, S.

    1972-01-01

    A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)

  19. Peptidal Sex Hormones Inducing Conjugation Tube Formation in Compatible Mating-Type Cells of Tremella mesenterica.

    PubMed

    Sakagami, Y; Yoshida, M; Isogai, A; Suzuki, A

    1981-06-26

    The pair of peptidal sex hormones (tremerogen A-10 and tremerogen a-13) that induce conjugation tube formation in compatible type cells (A and a types) of Tremella mesenterica were isolated. Tremerogen A-10 is a dodecapeptide and tremerogen a-13, a tridecapeptide. In both peptides, the sulfiydryl group of the cysteines at the carboxyl terminus was blocked by farnesyl moieties.

  20. Transgenerational effects of nutrition are different for sons and daughters.

    PubMed

    Zizzari, Z V; van Straalen, N M; Ellers, J

    2016-07-01

    Food shortage is an important selective factor shaping animal life-history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross-generational split-brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life-history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons' age at maturity and daughters' weight at maturity. Specifically, being born to food-restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well-fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex-specific adverse effects: female offspring born to well-fed mothers showed a decreased flexibility to deal with low-food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life-history strategies in O. cincta are primed differently by the parents.

  1. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy.

    PubMed

    Clubb, F J; Bishop, S P

    1984-05-01

    The purposes of this study were to characterize myocardial cell growth in neonatal rats and investigate the mechanism of binucleation in myocardial cells. To test the hypothesis that binucleated myocardial cells result from karyokinesis without cytokinesis, experiments were designed to measure the rate of DNA synthesis and the percentage of binucleated myocardial cells in neonatal rats during growth. Estimates of myocardial cell nuclear divisions were obtained from rats pulsed with tritiated thymidine at 17 days of gestation. Autoradiograms were prepared from isolated myocardial cells of rats killed at various ages postpartum, and the number of developed silver halide grains over myocardial cell nuclei was calculated. This estimated the mitotic activity of nuclei. To determine myocardial cell DNA synthesis postpartum, another set of rats were injected at various time periods with 4 hourly doses of tritiated thymidine, and hearts were fixed by perfusion 1 hour later. Labeling index of myocardial cells was calculated (labeled/total myocardial cells) from autoradiograms prepared on 1 micron thick, methacrylate-embedded heart cross-sections. Results of this study indicated that the growth of myocardial cells in the neonatal period can be divided into three phases: (a) a hyperplastic phase, (b) a transitional phase, and (c) a hypertrophic phase. Binucleation of myocardial cells was not due to fusion of mononucleated cells, because there was continued DNA synthesis in the neonatal hearts, reflected by continued incorporation of tritiated thymidine; in addition, the grain counts per nucleus of the binucleated myocardial cells were half that of mononucleated cells; nor was binucleation due to amitotic splitting of single nuclei, since binucleated myocardial cells had similar grain counts over each nucleus. We conclude that the formation of binucleated myocardial cells is an early indicator of growth hypertrophy in the neonatal rat and a result of mitosis without

  2. Model system for studies on bone matrix formation by osteogenic cells in microgravity

    NASA Astrophysics Data System (ADS)

    Quinton, Todd M.; Fattaey, Heideh K.; Motaffaf, Farzaneh; Johnson, Terry C.

    1998-01-01

    A considerable amount of attention has been focused on the physiological factors that are responsible for the reduction of bone mineralization and mass during prolonged periods in the microgravity environment. Although bone mineralization can be reduced by one percent per month as shown to result from shuttle flights and Mir habitation, the reasons for this phenomenon remain unclear. Changes in specific markers of bone cells upon differentiation indicate that the induction of bone matrix formation is dependent upon these cells reaching confluency. In our laboratory, we have isolated a reversible inhibitor of cellular growth (CeReS-18) that could be important in cell contact inhibition and thus may mimic the signals involved in growth confluency. Preliminary experiments with osteogenic cells have revealed the potential capability of CeReS-18 to inhibit these cells in a reversible manner. We are developing a series of studies, designed at the cellular level, to quantitatively measure the production of bone matrix by osteogenic cells propagated in culture. The use of CeReS-18 would facilitate the study of several factors being assessed regarding matrix formation including the rate of cell population density, hormone induction events, calcium availability, and cell cycle arest. The studies are being conducted in a manner that will allow comparable measurements in the microgravity environment with flight hardware designed and deployed by BioServe Space Technologies.

  3. The enamel matrix derivative (Emdogain) enhances human tongue carcinoma cells gelatinase production, migration and metastasis formation.

    PubMed

    Laaksonen, Matti; Suojanen, Juho; Nurmenniemi, Sini; Läärä, Esa; Sorsa, Timo; Salo, Tuula

    2008-08-01

    Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment to regenerate lost connective tissue and to improve the attachment of the teeth. Gelatinases (MMP-2 and -9) have an essential role in the promotion and progression of oral cancer growth and metastasis formation. We studied the effects of EMD on human tongue squamous cell carcinoma (HSC-3) cells in vitro and in vivo. In vitro, EMD (100 microg/ml and 200 microg/ml) remarkably induced the MMP-2 and -9 production from HSC-3 cells analysed by zymography and enzyme-linked immunosorbent assay. EMD also slightly induced the MMP-2 and -9 production from benign human mucosal keratinocytes (HMK). Furthermore, EMD clearly induced the transmigration of HSC-3 cells but had no effect on the HMK migration in transwell assays. The in vitro wound closure of HSC-3 cells was notably accelerated by EMD, whereas it had only minor effect on the wound closure of HMKs. The migration of both cell lines was inhibited by a selective cyclic anti-gelatinolytic peptide CTT-2. EMD had no effect on HSC-3 cell proliferation or apoptosis and only a limited effect on cell attachment to various extracellular matrix components. The in vivo mice experiment revealed that EMD substantially induced HSC-3 xenograft metastasis formation. Our results suggest that the use of EMD for patients with oral mucosal carcinomas or premalignant lesions should be carefully considered, possibly avoided.

  4. Development of Large-Format Lithium-Ion Cells with Silicon Anode and Low Flammable Electrolyte

    NASA Technical Reports Server (NTRS)

    Wu, James J.; Hernandez-Lugo, D. M.; Smart, M. C.; Ratnakumar, B. V.; Miller, T. B.; Lvovich, V. F.; Lytle, J. K.

    2014-01-01

    NASA is developing safe, high energy and high capacity lithium-ion cell designs and batteries for future missions under NASAs Advanced Space Power System (ASPS) project. Advanced cell components, such as high specific capacity silicon anodes and low-flammable electrolytes have been developed for improving the cell specific energy and enhancing safety. To advance the technology readiness level, we have developed large-format flight-type hermetically sealed battery cells by incorporating high capacity silicon anodes, commercially available lithium nickel, cobalt, aluminum oxide (NCA) cathodes, and low-flammable electrolytes. In this report, we will present the performance results of these various battery cells. In addition, we will also discuss the post-test cell analysis results as well.

  5. Rosette formation with sheep erythrocytes--a possible T-cell marker in the pig.

    PubMed

    Escajadillo, C; Binns, R M

    1975-01-01

    A proportion of pig lymphocytes form rosettes with sheep erythrocytes. Factors affecting their demonstration have been investigated, and a standard technique defined. Rosette-forming lymphocytes lacked surface immunoglobulin detected by immunofluorescence and formation of rosettes was not inhibited by anti-immunoglobulin or anti-PLA sera, but was by anti-thymus serum. Of 18 species' erythrocytes tested only sheep, Barbary sheep and Mouflon erythrocytes formed rosettes in similar percentages. Fetal sheep erythrocytes formed no rosettes at 6o days of gestation and developed adult levels by term. Rosettes were formed by the majority of thymus cells, by only few bone marrow cells and by intermediate proportions of cells in other lymphoid tissues correlating with the probable order of T cell content. In pig fetuses, thymus contained postnatal levels of rosette-forming cells by 69 days, when such cells were not detected in other tissues. These data support the contention that SRBC rosettes are formed by T lymphocytes.

  6. Biological fathers and stepfathers who molest their daughters: psychological, phallometric, and criminal features.

    PubMed

    Greenberg, David M; Firestone, Philip; Nunes, Kevin L; Bradford, John M; Curry, Susan

    2005-01-01

    A sample (N=143) of men who sexually abused their biological daughters or their step/adopted daughters were examined on a comprehensive array of demographic and historical information, offense characteristics, psychological and phallometric measures, and recidivism. Biological fathers were significantly less sexually aroused by children than were the stepfathers. On all the remaining variables, however, no statistically significant differences were found. Overall, biological and stepfathers in the present study appear to be much more similar than different from one another.

  7. Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells.

    PubMed

    Matthies, Norah-Faye; Mulet-Sierra, Aillette; Jomha, Nadr M; Adesida, Adetola B

    2013-12-01

    The ultimate aim of this study was to assess the feasibility of using human bone marrow stromal cells (BMSCs) to supplement meniscus cells for meniscus tissue engineering and regeneration. Human menisci were harvested from three patients undergoing total knee replacements. Meniscus cells were released from the menisci after collagenase treatment. BMSCs were harvested from the iliac crest of three patients and were expanded in culture until passage 2. Primary meniscus cells and BMSCs were co-cultured in vitro in three-dimensional (3D) pellet culture at three different cell-cell ratios for 3 weeks under normal (21% O2 ) or low (3% O2 ) oxygen tension in the presence of serum-free chondrogenic medium. Pure BMSCs and pure meniscus cell pellets served as control groups. The tissue generated was assessed biochemically, histochemically and by quantitative RT-PCR. Co-cultures of primary meniscus cells and BMSCs resulted in tissue with increased (1.3-1.7-fold) deposition of proteoglycan (GAG) extracellular matrix (ECM) relative to tissues derived from BMSCs or meniscus cells alone under 21% O2 . GAG matrix formation was also enhanced (1.3-1.6-fold) under 3% O2 culture conditions. Alcian blue staining of generated tissue confirmed increased deposition of GAG-rich matrix. mRNA expression of type I collagen (COL1A2), type II collagen (COL2A1) and aggrecan were upregulated in co-cultured pellets. However, SOX9 and HIF-1α mRNA expression were not significantly modulated by co-culture. Co-culture of primary meniscus cells with BMSCs resulted in increased ECM formation. Co-delivery of meniscus cells and BMSCs can, in principle, be used in tissue engineering and regenerative medicine strategies to repair meniscus defects.

  8. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells

    PubMed Central

    Choi, Pui-Wah; Yang, Junzheng; Ng, Shu-Kay; Feltmate, Colleen; Muto, Michael G.; Hasselblatt, Kathleen; Lafferty-Whyte, Kyle; JeBailey, Lellean; MacConaill, Laura; Welch, William R.; Fong, Wing-Ping; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Increased inclusion cyst formation in the ovary is associated with ovarian cancer development. We employed in vitro three-dimensional (3D) organotypic models formed by normal human ovarian surface epithelial (OSE) cells and ovarian cancer cells to study the morphologies of normal and cancerous ovarian cortical inclusion cysts and the molecular changes during their transitions into stromal microenvironment. When compared with normal cysts that expressed tenascin, the cancerous cysts expressed high levels of laminin V and demonstrated polarized structures in Matrigel; and the cancer cells migrated collectively when the cyst structures were positioned in a stromal-like collagen I matrix. The molecular markers identified in the in vitro 3D models were verified in clinical samples. Network analysis of gene expression of the 3D structures indicates concurrent downregulation of transforming growth factor beta pathway genes and high levels of E-cadherin and microRNA200 (miR200) expression in the cancerous cysts and the migrating cancer cells. Transient silencing of E-cadherin expression in ovarian cancer cells disrupted cyst structures and inhibited collective cell migration. Taken together, our studies employing 3D models have shown that E-cadherin is crucial for ovarian inclusion cyst formation and collective cancer cell migration. PMID:26684027

  9. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation.

    PubMed

    Pitkänen, A; Amaral, D G

    1993-05-01

    The distribution of parvalbumin-immunoreactive cells and fibers in the various fields of the hippocampal formation was studied in the macaque monkey. Parvalbumin-immunoreactive neurons had aspiny or sparsely spiny dendrites that often had a beaded appearance; most resembled classically identified interneurons. Parvalbumin-immunoreactive fibers and terminals were confined to certain laminae in each field and generally had a pericellular distribution. In the dentate gyrus, there was a dense pericellular plexus of immunoreactive terminals in the granule cell layer. Except for a narrow supragranular zone, there was a marked paucity of terminals in the molecular and polymorphic cell layers. Immunoreactive neurons were mainly located immediately subjacent to the granule cell layer and comprised a variety of morphological cell types. The three fields of the hippocampus proper (CA3, CA2, and CA1) demonstrated differences in their parvalbumin staining characteristics. In CA3, there was a prominent pericellular terminal plexus in the pyramidal cell layer that was densest distally (closer to CA2). Immunoreactive cells were located either in the pyramidal cell layer, where many had a pyramidal shape and prominent apical and basal dendrites, or in stratum oriens. CA2 had a staining pattern similar to that in CA3, though both the number of labeled cells and the density of the pericellular terminal plexus were greater in CA2. In CA1, there was a markedly lower number of parvalbumin-labeled cells than in CA3 and CA2 and the cells tended to be located in the deep part of the pyramidal cell layer or in stratum oriens. The pyramidal cell layer of CA1 contained a pericellular terminal plexus that was substantially less dense than in CA3 and CA2. At the border between CA1 and the subiculum there was a marked increase in the number of parvalbumin-immunoreactive neurons. The positive cells were scattered throughout the pyramidal cell layer of the subiculum and comprised a variety of

  10. Domestic and personal determinants of the contamination of individuals by household radon daughters

    SciTech Connect

    Stebbings, J.H.; Kardatzke, D.R.; Toohey, R.E.; Essling, M.E.; Pagnamenta, A.

    1986-01-01

    Radon daughters were counted by gamma spectroscopy from 180 adult residents of eastern Pennsylvania during the winter of 1983-84. Body radon daughter contamination is an index of relative individual respiratory exposures to radon daughters. These can be related to household radon levels, and to personal risk factors such as sex and tobacco smoking. Over 75% of this Pennsylvania population appeared to have environmentally enhanced radon daughter contamination; 59% had counting rates greater than 2 s.d. above background. House radon levels were the major determinants of radon daughters contamination in the 112 subjects for which both sets of measurements were available (p<.001). Both sex (<.02) and cigarette smoking (p<.005) were found to significantly modify that relationship, after nonlinear adjustment for travel times. Using a logarithmic model, for a given radon level body contamination by radon daughters in females was 2-3.5x higher than in males. Nonsmokers had 2-4x higher levels of contamination than smokers. For female nonsmokers relative to male smokers (which in general corresponds to the population of major concern relative to the population from which risk estimates have been derived), the excesses multiply. These results are for total contamination, both internal and external.

  11. [Influence of maternal feeding restrictions on the mother-daughter dyad].

    PubMed

    Schiattino, I; Sanfuentes, M T; Lagarribel, M; Jara, S; Lolas, F; Liberman, C

    1998-01-01

    Alimentary restraint, cognitive variable related to eating behavior and obesity, is reportedly a valuable predictor for the development of therapeutic strategies. This paper addresses the relationship between maternal restraint and several psychological variables in their daughters (alexithymia, neuroticism, extraversion). From the study of 35 mother-daughter dyads it can be concluded that daughters of highly restrained mothers tend to present high scores in the Restraint scale of the Three Factor Eating Questionnaire of Stunkard and Messick, translated into Spanish and validated as Cuestionario de Conducta Alimentaria. Daughters of highle restrained mothers present also higher scores in the Neuroticism scale of the revised version of the Eysenck Personality Questionnaire. Daughters of mothers with low Restraint scores are in average higher than those of their mothers, although lower than those belonging to daughters of highle restrained mothers. Previous observations on the positive correlation between Disinhibition and Hunger of the Three Factor Eating Questionnaire are confirmed. These results add an additional risk factor for obesity (mothers with high Restraint) and contribute to delineate a set of psychometric indicators which might be useful in the diagnosis and prognosis of eating and body weight disorders.

  12. Effect of dams' parity and age on daughters' milk yield in Norwegian Red cows.

    PubMed

    Storli, K S; Heringstad, B; Salte, R

    2014-10-01

    The effect of age and parity of dams on their daughters' milk yield is not well known. Lactation data from 276,000 cows were extracted from the Norwegian Dairy Herd Recording System and analyzed using a linear animal model to estimate effects of parity and age within parity of dam. The 305-d milk yield of daughters decreased as parity of dam increased. Daughters of first-parity dams produced 149 kg more milk than did daughters of seventh-parity dams. We also observed an effect of age of dam within parity on 305-d milk yield of daughters in first lactation. Dams that were young at first calving gave birth to daughters with a higher milk yield compared with older dams within the same parity. The effect of age within parity of dam was highest for second-parity dams. Extensive use of heifers would have a systematic effect, and age and parity of dam should be included in the model when planning a future strategy.

  13. Like daughter, like son? Fertility decline and the transformation of gender systems in the family

    PubMed Central

    Allendorf, Keera

    2016-01-01

    BACKGROUND An important question for population research is whether fertility decline transforms gender systems. OBJECTIVE This paper contributes to answering this broad question by examining how fertility decline may change the relative value and roles of daughters and sons in families. First, I outline theoretical pathways, suggesting that a key factor is the gender composition of families. As fertility declines, the proportion of families with children of only one gender increases, which may facilitate greater gender symmetry between daughters and sons. Second, I explore how fertility decline may have contributed to the transformation of the relative value and roles of sons and daughters in practice in one place. METHODS The analysis draws primarily on semi-structured interviews with 30 respondents living in one Indian village. This village is located in a district where fertility has declined to at least the replacement level. RESULTS Respondents perceive changes in the gender system, including less son preference, more equal schooling for sons and daughters, more freedom in marriage and premarital relationships, and perhaps greater daughter support of parents in old age. CONCLUSIONS The results describe changes in the relative value, treatment, and behavior of sons and daughters that are consistent with the theorized effects of fertility decline. Future research is needed, however, to determine whether fertility decline makes a causal contribution to changes in the gender system. PMID:27147902

  14. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  15. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  16. Ezrin/Radixin/Moesin proteins and flotillins cooperate to promote uropod formation in T cells.

    PubMed

    Martinelli, Sibylla; Chen, Emily J H; Clarke, Fiona; Lyck, Ruth; Affentranger, Sarah; Burkhardt, Janis K; Niggli, Verena

    2013-01-01

    T cell uropods are enriched in specific proteins including adhesion receptors such as P-selectin glycoprotein ligand-1 (PSGL-1), lipid raft-associated proteins such as flotillins and ezrin/radixin/moesin (ERM) proteins which associate with cholesterol-rich raft domains and anchor adhesion receptors to the actin cytoskeleton. Using dominant mutants and siRNA technology we have tested the interactions among these proteins and their role in shaping the T cell uropod. Expression of wild type (WT) ezrin-EGFP failed to affect the morphology of human T cells or chemokine-induced uropod recruitment of PSGL-1 and flotillin-1 and -2. In contrast, expression of constitutively active T567D ezrin-EGFP induced a motile, polarized phenotype in some of the transfected T cells, even in the absence of chemokine. These cells featured F-actin-rich ruffles in the front and uropod enrichment of PSGL-1 and flotillins. T567D ezrin-EGFP was itself strongly enriched in the rear of the polarized T cells. Uropod formation induced by T567D ezrin-EGFP was actin-dependent as it was attenuated by inhibition of Rho-kinase or myosin II, and abolished by disruption of actin filaments. While expression of constitutively active ezrin enhanced cell polarity, expression of a dominant-negative deletion mutant of ezrin, 1-310 ezrin-EGFP, markedly reduced uropod formation induced by the chemokine SDF-1, T cell front-tail polarity, and capping of PSGL-1 and flotillins. Transfection of T cells with WT or T567D ezrin did not affect chemokine-mediated chemotaxis whereas 1-310 ezrin significantly impaired spontaneous 2D migration and chemotaxis. siRNA-mediated downregulation of flotillins in murine T cells attenuated moesin capping and uropod formation, indicating that ERM proteins and flotillins cooperate in uropod formation. In summary, our results indicate that activated ERM proteins function together with flotillins to promote efficient chemotaxis of T cells by structuring the uropod of migrating T cells.

  17. Novel approach for formation of platelet-like particles from mouse embryonic stem cells without using feeder cells.

    PubMed

    Tsuji, Kayoko; Ohnuma, Masaaki; Jung, Stephanie M; Moroi, Masaaki

    2009-01-01

    Megakaryocytes (MKs) and platelet-like particles (PLPs) have generally been obtained by culturing embryonic stem (ES) cells over feeder cells. However, using feeder cells need many labor-consuming processes and the MK and PLP fractions obtained are often contaminated by such cells and their fragments. Here we describe our new culture system for differentiating mouse ES cells to MKs and PLPs without using feeder cells. ES cells are differentiated to cells with MK-like morphology and properties, including proplatelet formation, high ploidy (>8N), and CD41 expression. The culture medium contained PLPs expressing platelet glycoproteins, CD41 and GPIb. Integrin alpha(IIb)beta(3) of PLPs can be activated by thrombin. Addition of the metalloproteinase inhibitor TAPI-2 to the culture increased the surface expression of GPIbalpha and augmented the adhesion of PLPs to immobilized von Willebrand factor through decreasing the shedding of GPIbalpha. Thus our mouse ES cells culture system is a suitable and efficient method for obtaining MKs and functional PLPs that obviates the need for feeder cells.

  18. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells.

    PubMed

    Franquesa, M; Mensah, F K; Huizinga, R; Strini, T; Boon, L; Lombardo, E; DelaRosa, O; Laman, J D; Grinyó, J M; Weimar, W; Betjes, M G H; Baan, C C; Hoogduijn, M J

    2015-03-01

    Mesenchymal or stromal stem cells (MSC) interact with cells of the immune system in multiple ways. Modulation of the immune system by MSC is believed to be a therapeutic option for autoimmune disease and transplant rejection. In recent years, B cells have moved into the focus of the attention as targets for the treatment of immune disorders. Current B-cell targeting treatment is based on the indiscriminate depletion of B cells. The aim of this study was to examine whether human adipose tissue-derived MSC (ASC) interact with B cells to affect their proliferation, differentiation, and immune function. ASC supported the survival of quiescent B cells predominantly via contact-dependent mechanisms. Coculture of B cells with activated T helper cells led to proliferation and differentiation of B cells into CD19(+) CD27(high) CD38(high) antibody-producing plasmablasts. ASC inhibited the proliferation of B cells and this effect was dependent on the presence of T cells. In contrast, ASC directly targeted B-cell differentiation, independently of T cells. In the presence of ASC, plasmablast formation was reduced and IL-10-producing CD19(+) CD24(high) CD38(high) B cells, known as regulatory B cells, were induced. These results demonstrate that ASC affect B cell biology in vitro, suggesting that they can be a tool for the modulation of the B-cell response in immune disease.

  19. Hydroxide Self-Feeding High-Temperature Alkaline Direct Formate Fuel Cells.

    PubMed

    Li, Yinshi; Sun, Xianda; Feng, Ying

    2017-03-11

    Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm(-2) , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH(-) ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility.

  20. Ion bombardment induced formation of micro-craters in plant cell envelopes

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Vilaithong, T.; Brown, I. G.

    2006-01-01

    Ion beam bombardment of biological material has been recently applied for gene transfer in both plant and bacterial cells. A consistent physical mechanism for this significant result has not yet been developed. A fundamental question about the mechanism is the possible formation of pathways due to ion bombardment that are responsible for the gene transfer. We have carried out investigations of the effects of low-energy bombardment by both gaseous and metallic ion species of onion skin cells on their surface microstructure. Our experimental results reveal evidence demonstrating that the formation of micro-crater-like structures on the plant cell envelope surface is a general phenomenon consequent to ion bombardment, no matter what ion species, under certain ion beam conditions. The micro-craters are about 0.1-1 μm in size (diameter) and a few tens of nanometers in depth. The micro-crater formation process seems to be unrelated to the chemical composition of and rapid water evaporation from the cell envelope, but is associated with the special microstructure of the cell wall.

  1. Staufen1 impairs stress granule formation in skeletal muscle cells from myotonic dystrophy type 1 patients

    PubMed Central

    Ravel-Chapuis, Aymeric; Klein Gunnewiek, Amanda; Bélanger, Guy; Crawford Parks, Tara E.; Côté, Jocelyn; Jasmin, Bernard J.

    2016-01-01

    Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUGexp) in the DMPK mRNA 3′UTR. CUGexp-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1– and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type–specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUGexp mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1. PMID:27030674

  2. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration.

    PubMed

    Yoon, Mi Young; Lee, Kang-Mu; Park, Yongjin; Yoon, Sang Sun

    2011-01-18

    Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO(2) (-)) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.

  3. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    SciTech Connect

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; Liu, Ying X.; Wang, Kang-hsin; Chen, Huan-Yuan; Liu, Fu-Tong; Laurence, Ted A.; Liu, Gang-yu

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation via FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.

  4. Engineered Nanostructures of Haptens Lead to Unexpected Formation of Membrane Nanotubes Connecting Rat Basophilic Leukemia Cells

    DOE PAGES

    Li, Jie-Ren; Ross, Shailise S.; Liu, Yang; ...

    2015-06-09

    We report here on a recent finding that co-stimulation of the high-affinity immunoglobulin E (IgE) receptor (FcεRI) and the chemokine receptor 1 (CCR1) triggered formation of membrane nanotubes among bone-marrow-derived mast cells. The co-stimulation was attained using corresponding ligands: IgE binding antigen and macrophage inflammatory protein 1α (MIP1 α), respectively. However, this approach failed to trigger formation of nanotubes among rat basophilic leukemia (RBL) cells due to the lack of CCR1 on the cell surface (Int. Immunol. 2010, 22 (2), 113–128). RBL cells are frequently used as a model for mast cells and are best known for antibody-mediated activation viamore » FcεRI. This work reports the successful formation of membrane nanotubes among RBLs using only one stimulus, a hapten of 2,4-dinitrophenyl (DNP) molecules, which are presented as nanostructures with our designed spatial arrangements. This observation underlines the significance of the local presentation of ligands in the context of impacting the cellular signaling cascades. In the case of RBL, certain DNP nanostructures suppress antigen-induced degranulation and facilitate the rearrangement of the cytoskeleton to form nanotubes. We conclude that these results demonstrate an important scientific concept; engineered nanostructures enable cellular signaling cascades, where current technologies encounter great difficulties. More importantly, nanotechnology offers a new platform to selectively activate and/or inhibit desired cellular signaling cascades.« less

  5. Integrin-Mediated Cell-Matrix Interaction in Physiological and Pathological Blood Vessel Formation

    PubMed Central

    Niland, Stephan; Eble, Johannes A.

    2012-01-01

    Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets. PMID:21941547

  6. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.

    2016-01-01

    Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371

  7. On the biomechanics of stem cell niche formation in the gut--modelling growing organoids.

    PubMed

    Buske, Peter; Przybilla, Jens; Loeffler, Markus; Sachs, Norman; Sato, Toshiro; Clevers, Hans; Galle, Joerg

    2012-09-01

    In vitro culture of intestinal tissue has been attempted for decades. Only recently did Sato et al. [Sato, T., Vries, R. G., Snippert, H. J., van de Wetering, M., Barker, N., Stange, D. E., van Es, J. H., Abo, A., Kujala, P., Peters, P. J., et al. (2009) Nature 459, 262-265] succeed in establishing long-term intestinal culture, demonstrating that cells expressing the Lgr5 gene can give rise to organoids with crypt-like domains similar to those found in vivo. In these cultures, Paneth cells provide essential signals supporting stem cell function. We have recently developed an individual cell-based computational model of the intestinal tissue [Buske, P., Galle, J., Barker, N., Aust, G., Clevers, H. & Loeffler, M. (2011) PLoS Comput Biol 7, e1001045]. The model is capable of quantitatively reproducing a comprehensive set of experimental data on intestinal cell organization. Here, we present a significant extension of this model that allows simulation of intestinal organoid formation in silico. For this purpose, we introduce a flexible basal membrane that assigns a bending modulus to the organoid surface. This membrane may be re-organized by cells attached to it depending on their differentiation status. Accordingly, the morphology of the epithelium is self-organized. We hypothesize that local tissue curvature is a key regulatory factor in stem cell organization in the intestinal tissue by controlling Paneth cell specification. In simulation studies, our model closely resembles the spatio-temporal organization of intestinal organoids. According to our results, proliferation-induced shape fluctuations are sufficient to induce crypt-like domains, and spontaneous tissue curvature induced by Paneth cells can control cell number ratios. Thus, stem cell expansion in an organoid depends sensitively on its biomechanics. We suggest a number of experiments that will enable new insights into mechano-transduction in the intestine, and suggest model extensions in the field of gland

  8. Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Boyd, Nolan L.; Park, Heonyong; Yi, Hong; Boo, Yong Chool; Sorescu, George P.; Sykes, Michelle; Jo, Hanjoong

    2003-01-01

    Caveolae are plasmalemmal domains enriched with cholesterol, caveolins, and signaling molecules. Endothelial cells in vivo are continuously exposed to shear conditions, and their caveolae density and location may be different from that of static cultured cells. Here, we show that chronic shear exposure regulates formation and localization of caveolae and caveolin-1 in bovine aortic endothelial cells (BAEC). Chronic exposure (1 or 3 days) of BAEC to laminar shear increased the total number of caveolae by 45-48% above static control. This increase was due to a rise in the luminal caveolae density without changing abluminal caveolae numbers or increasing caveolin-1 mRNA and protein levels. Whereas some caveolin-1 was found in the plasma membrane in static-cultured cells, it was predominantly localized in the Golgi. In contrast, chronic shear-exposed cells showed intense caveolin-1 staining in the luminal plasma membrane with minimum Golgi association. The preferential luminal localization of caveolae may play an important role in endothelial mechanosensing. Indeed, we found that chronic shear exposure (preconditioning) altered activation patterns of two well-known shear-sensitive signaling molecules (ERK and Akt) in response to a step increase in shear stress. ERK activation was blunted in shear preconditioned cells, whereas the Akt response was accelerated. These results suggest that chronic shear stimulates caveolae formation by translocating caveolin-1 from the Golgi to the luminal plasma membrane and alters cell signaling responses.

  9. Metformin Increases Mitochondrial Energy Formation in L6 Muscle Cell Cultures

    PubMed Central

    Vytla, Veeravenkata S.; Ochs, Raymond S.

    2013-01-01

    A popular hypothesis for the action of metformin, the widely used anti-diabetes drug, is the inhibition of mitochondrial respiration, specifically at complex I. This is consistent with metformin stimulation of glucose uptake by muscle and inhibition of gluconeogenesis by liver. Yet, mitochondrial inhibition is inconsistent with metformin stimulation of fatty acid oxidation in both tissues. In this study, we measured mitochondrial energy production in intact cells adapting an in vivo technique of phosphocreatine (PCr) formation following energy interruption (“PCr recovery”) to cell cultures. Metformin increased PCr recovery from either dinitrophenol (DNP) or azide in L6 cells. We found that metformin alone had no effect on cell viability as measured by total ATP concentration, trypan blue exclusion, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction. However, treatments with low concentrations of DNP or azide reversibly decreased ATP concentration. Metformin increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction during recovery from either agent. Viability measured by trypan blue exclusion indicated that cells were intact under these conditions. We also found that metformin increased free AMP and, to a smaller extent, free ADP concentrations in cells, an action that was duplicated by a structurally unrelated AMP deaminase inhibitor. We conclude that, in intact cells, metformin can lead to a stimulation of energy formation, rather than an inhibition. PMID:23720772

  10. Metformin increases mitochondrial energy formation in L6 muscle cell cultures.

    PubMed

    Vytla, Veeravenkata S; Ochs, Raymond S

    2013-07-12

    A popular hypothesis for the action of metformin, the widely used anti-diabetes drug, is the inhibition of mitochondrial respiration, specifically at complex I. This is consistent with metformin stimulation of glucose uptake by muscle and inhibition of gluconeogenesis by liver. Yet, mitochondrial inhibition is inconsistent with metformin stimulation of fatty acid oxidation in both tissues. In this study, we measured mitochondrial energy production in intact cells adapting an in vivo technique of phosphocreatine (PCr) formation following energy interruption ("PCr recovery") to cell cultures. Metformin increased PCr recovery from either dinitrophenol (DNP) or azide in L6 cells. We found that metformin alone had no effect on cell viability as measured by total ATP concentration, trypan blue exclusion, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction. However, treatments with low concentrations of DNP or azide reversibly decreased ATP concentration. Metformin increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction during recovery from either agent. Viability measured by trypan blue exclusion indicated that cells were intact under these conditions. We also found that metformin increased free AMP and, to a smaller extent, free ADP concentrations in cells, an action that was duplicated by a structurally unrelated AMP deaminase inhibitor. We conclude that, in intact cells, metformin can lead to a stimulation of energy formation, rather than an inhibition.

  11. Progressive mechanical indentation of large-format Li-ion cells

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; Allu, Srikanth; Kalnaus, Sergiy; Turner, John A.; Helmers, Jacob C.; Rules, Evan T.; Winchester, Clinton S.; Gorney, Philip

    2017-02-01

    Large format Li-ion cells were used to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. Various sequences of increasing depth indentations were carried out using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025″ and 0.250″ with main indentation increments tests of 0.025″ steps. Increment steps of 0.100″ and 0.005″ were used to pinpoint the onset of internal-short that occurred between 0.245″ and 0.250″. The indented cells were disassembled and inspected for internal damage. Load vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. Our study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.

  12. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell–cell contact fluidity

    PubMed Central

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit

    2015-01-01

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell–cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell–cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell–cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell–cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell–cell contact fluidity. PMID:26195669

  13. Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation

    PubMed Central

    Moss, William C.; Irvine, Darrell J.; Davis, Mark M.; Krummel, Matthew F.

    2002-01-01

    Productive T cell recognition of antigen-presenting cells (APCs) is normally accompanied by the formation of a cell–cell contact called the “immunological synapse.” Our understanding of the steps leading up to this formation has been limited by the absence of tools for analyzing 3D surfaces and surface distributions as they change over time. Here we use a 3D fluorescence quantitation method to show that T cell receptors are recruited in bulk within the first minute after the onset of activation and with velocities ranging from 0.04 to 0.1 μm/s; a speed significantly greater than unrestricted diffusion. Our method reveals a second feature of this reorientation: a conformational change as the T cell pushes more total membrane into the interface creating a larger contact area for additional receptors. Analysis of individual T cell receptor velocities using a single-particle tracking method confirms our velocity measurement. This method should permit the quantitation of other dynamic membrane events and the associated movement of cell-surface molecules. PMID:12415110

  14. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium.

    PubMed

    Bernardi, Martina; Adami, Valentina; Albiero, Elena; Madeo, Domenico; Rodeghiero, Francesco; Astori, Giuseppe

    2014-03-01

    Human platelet lysate (PL) represents an effective substitute of fetal bovine serum (FBS) for mesenchymal stromal cell (MSC) cultivation. Compared to FBS, PL favors MSC proliferation significantly shortening the population doubling time and avoiding the risks related to the use of animal derivatives. Growth factors contained in the platelets are released upon platelet disruption following freezing/thawing cycles or as we have recently described by using ultrasound. We have investigated whether the increased cell proliferation achieved by using PL could induce mitotic stress and whether the potential formation of free radicals during PL production by ultrasound could cause chromosomal instability in mammalian cells. We have applied an image analysis assisted high content screening (HCS) in vitro micronucleus assay in the Chinese Hamster Ovarian K1 (CHO-K1) rodent mammalian cell line. PL was produced by sonication; for the micronucleus assay, CHO-K1 cells were exposed to increasing concentrations of PL. Cytokinesis was blocked by cytochalasin B, nuclei were stained with bisbenzimide and images were acquired and analyzed automatically using an HCS system, both with a 20× and a 10× objective. Our results suggest that growth stimulus induced by the use of PL did not significantly increase micronucleus formation in CHO-K1 cells compared to negative control. Micronucleus testing in conjunction with HCS could represent a valid tool to evaluate the safety of ancillary materials used in the production of cell-based medicinal products.

  15. Meiotic germ cells antagonize mesonephric cell migration and testis cord formation in mouse gonads

    PubMed Central

    Yao, Humphrey H.-C.; DiNapoli, Leo; Capel, Blanche

    2014-01-01

    Summary The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway. PMID:14561636

  16. PPARγ negatively regulates T cell activation to prevent follicular helper T cells and germinal center formation.

    PubMed

    Park, Hong-Jai; Kim, Do-Hyun; Choi, Jin-Young; Kim, Won-Ju; Kim, Ji Yun; Senejani, Alireza G; Hwang, Soo Seok; Kim, Lark Kyun; Tobiasova, Zuzana; Lee, Gap Ryol; Craft, Joseph; Bothwell, Alfred L M; Choi, Je-Min

    2014-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates lipid and glucose metabolism. Although studies of PPARγ ligands have demonstrated its regulatory functions in inflammation and adaptive immunity, its intrinsic role in T cells and autoimmunity has yet to be fully elucidated. Here we used CD4-PPARγKO mice to investigate PPARγ-deficient T cells, which were hyper-reactive to produce higher levels of cytokines and exhibited greater proliferation than wild type T cells with increased ERK and AKT phosphorylation. Diminished expression of IκBα, Sirt1, and Foxo1, which are inhibitors of NF-κB, was observed in PPARγ-deficient T cells that were prone to produce all the signature cytokines under Th1, Th2, Th17, and Th9 skewing condition. Interestingly, 1-year-old CD4-PPARγKO mice spontaneously developed moderate autoimmune phenotype by increased activated T cells, follicular helper T cells (TFH cells) and germinal center B cells with glomerular inflammation and enhanced autoantibody production. Sheep red blood cell immunization more induced TFH cells and germinal centers in CD4-PPARγKO mice and the T cells showed increased of Bcl-6 and IL-21 expression suggesting its regulatory role in germinal center reaction. Collectively, these results suggest that PPARγ has a regulatory role for TFH cells and germinal center reaction to prevent autoimmunity.

  17. Trypanosoma cruzi: Entry into Mammalian Host Cells and Parasitophorous Vacuole Formation

    PubMed Central

    Barrias, Emile Santos; de Carvalho, Tecia Maria Ulisses; De Souza, Wanderley

    2013-01-01

    Trypanosoma cruzi, the causative agent of Chagas disease, is transmitted to vertebrate hosts by blood-sucking insects. This protozoan is an obligate intracellular parasite. The infective forms of the parasite are the metacyclic trypomastigotes, amastigotes, and bloodstream trypomastigotes. The recognition between the parasite and mammalian host cell, involves numerous molecules present in both cell types, and similar to several intracellular pathogens, T. cruzi is internalized by host cells via multiple endocytic pathways. Morphological studies demonstrated that after the interaction of the infective forms of T. cruzi with phagocytic or non-phagocytic cell types, plasma membrane (PM) protrusions can form, showing similarity with those observed during canonical phagocytosis or macropinocytic events. Additionally, several molecules known to be molecular markers of membrane rafts, macropinocytosis, and phagocytosis have been demonstrated to be present at the invasion site. These events may or may not depend on the host cell lysosomes and cytoskeleton. In addition, after penetration, components of the host endosomal-lysosomal system, such as early endosomes, late endosomes, and lysosomes, participate in the formation of the nascent parasitophorous vacuole (PV). Dynamin, a molecule involved in vesicle formation, has been shown to be involved in the PV release from the host cell PM. This review focuses on the multiple pathways that T. cruzi can use to enter the host cells until complete PV formation. We will describe different endocytic processes, such as phagocytosis, macropinocytosis, and endocytosis using membrane microdomains and clathrin-dependent endocytosis and show results that are consistent with their use by this smart parasite. We will also discuss others mechanisms that have been described, such as active penetration and the process that takes advantage of cell membrane wound repair. PMID:23914186

  18. Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells.

    PubMed

    Anand, Ruchika; Strecker, Valentina; Urbach, Jennifer; Wittig, Ilka; Reichert, Andreas S

    2016-01-01

    Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape.

  19. Mic13 Is Essential for Formation of Crista Junctions in Mammalian Cells

    PubMed Central

    Anand, Ruchika; Strecker, Valentina; Urbach, Jennifer; Wittig, Ilka; Reichert, Andreas S.

    2016-01-01

    Mitochondrial cristae are connected to the inner boundary membrane via crista junctions which are implicated in the regulation of oxidative phosphorylation, apoptosis, and import of lipids and proteins. The MICOS complex determines formation of crista junctions. We performed complexome profiling and identified Mic13, also termed Qil1, as a subunit of the MICOS complex. We show that MIC13 is an inner membrane protein physically interacting with MIC60, a central subunit of the MICOS complex. Using the CRISPR/Cas method we generated the first cell line deleted for MIC13. These knockout cells show a complete loss of crista junctions demonstrating that MIC13 is strictly required for the formation of crista junctions. MIC13 is required for the assembly of MIC10, MIC26, and MIC27 into the MICOS complex. However, it is not needed for the formation of the MIC60/MIC19/MIC25 subcomplex suggesting that the latter is not sufficient for crista junction formation. MIC13 is also dispensable for assembly of respiratory chain complexes and for maintaining mitochondrial network morphology. Still, lack of MIC13 resulted in a moderate reduction of mitochondrial respiration. In summary, we show that MIC13 has a fundamental role in crista junction formation and that assembly of respiratory chain supercomplexes is independent of mitochondrial cristae shape. PMID:27479602

  20. Somite-Derived Retinoic Acid Regulates Zebrafish Hematopoietic Stem Cell Formation

    PubMed Central

    Pillay, Laura M.; Mackowetzky, Kacey J.; Widen, Sonya A.; Waskiewicz, Andrew Jan

    2016-01-01

    Hematopoietic stem cells (HSCs) are multipotent progenitors that generate all vertebrate adult blood lineages. Recent analyses have highlighted the importance of somite-derived signaling factors in regulating HSC specification and emergence from dorsal aorta hemogenic endothelium. However, these factors remain largely uncharacterized. We provide evidence that the vitamin A derivative retinoic acid (RA) functions as an essential regulator of zebrafish HSC formation. Temporal analyses indicate that RA is required for HSC gene expression prior to dorsal aorta formation, at a time when the predominant RA synthesis enzyme, aldh1a2, is strongly expressed within the paraxial mesoderm and somites. Previous research implicated the Cxcl12 chemokine and Notch signaling pathways in HSC formation. Consequently, to understand how RA regulates HSC gene expression, we surveyed the expression of components of these pathways in RA-depleted zebrafish embryos. During somitogenesis, RA-depleted embryos exhibit altered expression of jam1a and jam2a, which potentiate Notch signaling within nascent endothelial cells. RA-depleted embryos also exhibit a severe reduction in the expression of cxcr4a, the predominant Cxcl12b receptor. Furthermore, pharmacological inhibitors of RA synthesis and Cxcr4 signaling act in concert to reduce HSC formation. Our analyses demonstrate that somite-derived RA functions to regulate components of the Notch and Cxcl12 chemokine signaling pathways during HSC formation. PMID:27861498

  1. Unreliable Bodies: A Follow-up Twenty Years Later by a Mother and Daughter about the Impact of Illness and Disability on their Lives.

    PubMed

    Weingarten, Kaethe; Worthen, Miranda

    2017-03-01

    We are a mother and daughter, both health care professionals, who offer a follow-up to an article we published twenty years ago about the impact of each other's ongoing, serious medical problems on our relationship. In this article, we contribute a long-term perspective on the differences between having an illness that is well or poorly understood by medical professionals and the lay community. We also discuss health in the context of identity formation and life stage, as during this interval the daughter left home, graduated college, married, and had two children. Also in this period, the mother survived a third breast cancer and other life-threatening illnesses. We discuss the impact of these experiences on each other and in other important relationships in our lives. Current discourses on daughters of breast cancer survivors do not fit our experience and we speculate about why our story differs. We find that although we continue to contend with serious medical issues that impact our own, each other's, and our families' lives, nonetheless, our lives are rich, rewarding, and "appropriate" for our life stage. That is the news.

  2. Epithelial cell division in the Xenopus laevis embryo during gastrulation.

    PubMed

    Hatte, Guillaume; Tramier, Marc; Prigent, Claude; Tassan, Jean-Pierre

    2014-01-01

    How vertebrate epithelial cells divide in vivo and how the cellular environment influences cell division is currently poorly understood. A sine qua non condition to study cell division in situ is the ease of observation of cell division. This is fulfilled in the Xenopus embryo at the gastrula stage where polarized epithelial cells divide with a high frequency at the surface of the organism. Recently, using this model system, we have shown that epithelial cells divide by asymmetric furrowing and that the mode of cell division is regulated during development. Here, we further characterize epithelial cell division in situ. To this end, we used confocal microscopy to study epithelial cell division in the ectoderm of the Xenopus laevis gastrula. Cell division was followed either by indirect immunofluorescence in fixed embryos or by live imaging of embryos transiently expressing diverse fluorescent proteins. Here, we show that during cytokinesis, the plasma membranes of the two daughter cells are usually separated by a gap. For most divisions, daughter cells make contacts basally at a distance from the furrow tip which creates an inverted teardrop-like shaped volume tightly associated with the furrow. At the end of cytokinesis, the inverted teardrop is resorbed; thus it is a transient structure. Several proteins involved in cytokinesis are localized at the tip of the inverted teardrop suggesting that the formation of the gap could be an active process. We also show that intercalation of neighboring cells between daughter cells occasionally occurs during cytokinesis. Our results reveal an additional level of complexity in the relationship between dividing cells and also with their neighboring cells during cytokinesis in the Xenopus embryo epithelium.

  3. The ASQ2 gene required for mother-daughter centriole linkage and mitotic spindle orientation encodes a conserved TBCC-like protein

    PubMed Central

    Feldman, Jessica L.; Marshall, Wallace F.

    2009-01-01

    Summary An intriguing feature of centrioles is that these highly complicated microtubule-based structures duplicate once per cell cycle and the cell has precise control over their number. Each cell contains exactly two centrioles, linked together as a pair, one of which is a mother centriole formed in a previous cell cycle and the other a daughter centriole whose assembly is templated by the mother. Neither the molecular basis nor the functional role of mother-daughter centriole linkage is understood. We have identified a mutant, asq2, with defects in centriole linkage. asq2 mutant cells have variable numbers of centrioles and defects in centriole positioning. Here, we show that ASQ2 encodes the novel conserved protein, TBCCd1, a member of a protein family that includes a tubulin folding co-chaperone and the retinitis pigmentosa protein, RP2, involved in tubulin quality control during ciliogenesis. We characterize mitosis in asq2 cells. We show that the majority of cells establish a bipolar spindle, but that cells have defects in spindle orientation. A small subset of asq2 cells have centrioles at both poles, and these cells have properly positioned spindles, indicating that centrioles at the poles may be important for spindle orientation. The defects in centriole number control, centriole positioning, and spindle orientation appear to arise from a primary defect in centriole linkage mediated by TBCCd1/ASQ2. PMID:19631545

  4. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.

    PubMed

    Fordyce, A M; Crow, V L; Thomas, T D

    1984-08-01

    Nongrowing cells of Streptococcus lactis in a pH-stat were dosed with sugar to allow fermentation at the maximum rate or were fed a continuous supply of sugar at rates less than the maximum. Under anaerobic conditions, rapid fermentation of either glucose or lactose was essentially homolactic. However, with strain ML3, limiting the fermentation rate diverted approximately half of the pyruvate to formate, acetate, and ethanol. At limiting glucose fermentation rates, cells contained lower concentrations of lactate dehydrogenase activator (fructose 1,6-diphosphate) and pyruvate formate-lyase inhibitors (triose phosphates). As a result, pyruvate formate-lyase and pyruvate dehydrogenase play a greater role in pyruvate metabolism. In contrast to strain ML3, strain ML8 did not give the same diversion of products under anaerobic conditions, and cells retained higher concentrations of the above effector compounds. Lactose metabolism under aerobic conditions resulted in pyruvate excretion by both S. lactis ML3 and ML8. At 7% of the maximum utilization rate, pyruvate accounted for 69 and 35% of the lactose metabolized by ML3 and ML8, respectively. Acetate was also a major product, especially with ML8. The data suggest that NADH oxidase is involved in coenzyme recycling in the presence of oxygen and that pyruvate formate-lyase is inactivated, but the pyruvate dehydrogenase complex still functions.

  5. Ice formation in PEM fuel cells operated isothermally at sub-freezing temperatures

    SciTech Connect

    Mukundan, Rangachary; Luhan, Roger W; Davey, John R; Spendelow, Jacob S; Borup, Rodney L; Hussey, Daniel S; Jacobson, David L; Arif, Muhammad

    2009-01-01

    The effect of MEA and GDL structure and composition on the performance of single-PEM fuel cells operated isothermally at subfreezing temperatures is presented. The cell performance and durability are not only dependent on the MEA/GDL materials used but also on their interfaces. When a cell is operated isothermally at sub-freezing temperatures in constant current mode, the water formation due to the current density initially hydrates the membrane/ionomer and then forms ice in the catalyst layer/GDL. An increase in high frequency resistance was also observed in certain MEAs where there is a possibility of ice formation between the catalyst layer and GDL leading to a loss in contact area. The total water/ice holding capacity for any MEA was lower at lower temperatures and higher current densities. The durability of MEAs subjected to multiple isothermal starts was better for LANL prepared MEAs as compared to commercial MEAs, and cloth GDLs when compared to paper GDLs. The ice formation was monitored using high-resolution neutron radiography and was found to be concentrated near the cathode catalyst layer. However, there was significant ice formation in the GDLs especially at the higher temperature ({approx} -10 C) and lower current density (0.02 A/cm{sup 2}) operations. These results are consistent with the longer-term durability observations that show more severe degradation at the lower temperatures.

  6. Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation.

    PubMed

    Haralampieva, Deana; Salemi, Souzan; Dinulovic, Ivana; Sulser, Tullio; M Ametamey, Simon; Handschin, Christoph; Eberli, Daniel

    2017-02-03

    Muscle precursor cells (MPCs) are activated satellite cells capable of muscle fiber reconstruction. Therefore, autologous MPC transplantation is envisioned for the treatment of muscle diseases. However, the density of MPCs, as well as their proliferation and differentiation potential gradually decline with age. The goal of this research was to genetically modify human MPCs (hMPCs) to overexpress the peroxisome proliferator-activated receptor gamma coactivator (PGC-1α), a key regulator of exercise-mediated adaptation, and thereby to enhance early skeletal muscle formation and quality. We were able to confirm the sustained myogenic phenotype of the genetically modified hMPCs. While maintaining their viability and proliferation potential, PGC-1α modified hMPCs showed an enhanced myofiber formation capacity in vitro. Engineered muscle tissues were harvested 1, 2 and 4 weeks after subcutaneous injection of cell-collagen suspensions and histological analysis confirmed the earlier myotube formation in PGC-1α modified samples, predominantly of slow twitch myofibers. Increased contractile protein levels were detected by Western Blot. In summary, by genetically modifying hMPCs to overexpress PGC-1α we were able to promote early muscle fiber formation in vitro and in vivo, with an initial switch to slow type myofibers. Therefore, overexpressing PGC-1α is novel strategy to further enhance skeletal muscle tissue engineering.

  7. Synapse formation between clonal neuroblastoma X glioma hybrid cells and striated muscle cells.

    PubMed Central

    Nelson, P; Christian, C; Nirenberg, M

    1976-01-01

    Clonal neuroblastoma X glioma hybrid cells were shown to form synapses with cultured, striated muscle cells. The properties of the synapses between hybrid and muscle cells were similar to those of the normal, neuromuscular synapse at an early stage of development. The number of synapses formed and the efficiency of transmission across synapses were found to be regulated, apparently independently, by components in the culture medium. Under appropriate conditions synapses were found with 20% of the hybrid-muscle cell pairs examined; thus, the hybrid cells form synapses with relatively high frequency. Images PMID:1061105

  8. Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice

    PubMed Central

    Lee, Kyung Hoon; Lee, Won Young; Kim, Dong Hoon; Lee, Seung Hoon; Do, Jung Tae; Park, Chankyu; Kim, Jae Hwan; Choi, Young Suk; Song, Hyuk

    2016-01-01

    Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation. PMID:26907750

  9. Laser annealing of ion implanted CZ silicon for solar cell junction formation

    NASA Technical Reports Server (NTRS)

    Katzeff, J. S.

    1981-01-01

    The merits of large spot size pulsed laser annealing of phosphorus implanted, Czochralski grown silicon for function formation of solar cells are evaluated. The feasibility and requirements are also determined to scale-up a laser system to anneal 7.62 cm diameter wafers at a rate of one wafer/second. Results show that laser annealing yields active, defect-free, shallow junction devices. Functional cells with AM 1 conversion efficiencies up to 15.4% for 2 x 2 cm and 2 x 4 cm sizes were attained. For larger cells, 7.62 cm dia., conversion efficiencies ranged up to 14.5%. Experiments showed that texture etched surfaces are not compatible with pulsed laser annealing due to the surface melting caused by the laser energy. When compared with furnace annealed cells, the laser annealed cells generally exhibited conversion efficiencies which were equal to or better than those furnace annealed. In addition, laser annealing has greater throughput potential.

  10. Natural distribution of environmental radon daughters in the different brain areas of an Alzheimer Disease victim

    PubMed Central

    Momčilović, Berislav; Lykken, Glenn I; Cooley, Marvin

    2006-01-01

    Background Radon is a ubiquitous noble gas in the environment and a primary source of harmful radiation exposure for humans; it decays in a cascade of daughters (RAD) by releasing the cell damaging high energy alpha particles. Results We studied natural distribution of RAD 210Po and 210Bi in the different parts of the postmortem brain of 86-year-old woman who had suffered from Alzheimer's disease (AD). A distinct brain map emerged, since RAD distribution was different among the analyzed brain areas. The highest RAD irradiation (mSv·year-1) occurred in the decreasing order of magnitude: amygdale (Amy) >> hippocampus (Hip) > temporal lobe (Tem) ~ frontal lobe (Fro) > occipital lobe (Occ) ~ parietal lobe (Par) > substantia nigra (SN) >> locus ceruleus (LC) ~ nucleus basalis (NB); generally more RAD accumulated in the proteins than lipids of gray and white (gray > white) brain matter. Amy and Hip are particularly vulnerable brain structure targets to significant RAD internal radiation damage in AD (5.98 and 1.82 mSv·year-1, respectively). Next, naturally occurring RAD radiation for Tem and Fro, then Occ and Par, and SN was an order of magnitude higher than that in LC and NB; the later was within RAD we observed previously in the healthy control brains. Conclusion Naturally occurring environmental RAD exposure may dramatically enhance AD deterioration by selectively targeting brain areas of emotions (Amy) and memory (Hip). PMID:16965619

  11. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite.

    PubMed

    Quijano, Celia; Castro, Laura; Peluffo, Gonzalo; Valez, Valeria; Radi, Rafael

    2007-12-01

    Hyperglycemic challenge to bovine aortic endothelial cells (BAECs) increases oxidant formation and cell damage that are abolished by MnSOD overexpression, implying mitochondrial superoxide (O(2)(.-)) as a central mediator. However, mitochondrial O(2)(.-) and its steady-state concentrations have not been measured directly yet. Therefore, we aimed to detect and quantify O(2)(.-) through different techniques, along with the oxidants derived from it. Mitochondrial aconitase, a sensitive target of O(2)(.-), was inactivated 60% in BAECs incubated in 30 mM glucose (hyperglycemic condition) with respect to cells incubated in 5 mM glucose (normoglycemic condition). Under hyperglycemic conditions, increased oxidation of the mitochondrially targeted hydroethidine derivative (MitoSOX) to hydroxyethidium, the product of the reaction with O(2)(.-), could be specifically detected. An 8.8-fold increase in mitochondrial O(2)(.-) steady-state concentration (to 250 pM) and formation rate (to 6 microM/s) was estimated. Superoxide formation increased the intracellular concentration of both hydrogen peroxide, measured as 3-amino-2,4,5-triazole-mediated inactivation of catalase, and nitric oxide-derived oxidants (i.e., peroxynitrite), evidenced by immunochemical detection of 3-nitrotyrosine. Oxidant formation was further evaluated by chloromethyl dichlorodihydrofluorescein (CM-H(2)DCF) oxidation. Exposure to hyperglycemic conditions triggered the oxidation of CM-H(2)DCF and was significantly reduced by pharmacological agents that lower the mitochondrial membrane potential, inhibit electron transport (i.e., myxothiazol), and scavenge mitochondrial oxidants (i.e., MitoQ). In BAECs devoid of mitochondria (rho(0) cells), hyperglycemic conditions did not increase CM-H(2)DCF oxidation. Mitochondrial O(2)(.-) formation in hyperglycemic conditions was associated with increased glucose metabolization in the Krebs cycle and hyperpolarization of the mitochondrial membrane.

  12. Dissecting the molecular mechanisms that impair stress granule formation in aging cells.

    PubMed

    Moujaber, Ossama; Mahboubi, Hicham; Kodiha, Mohamed; Bouttier, Manuella; Bednarz, Klaudia; Bakshi, Ragini; White, John; Larose, Louise; Colmegna, Inés; Stochaj, Ursula

    2017-03-01

    Aging affects numerous aspects of cell biology, but the senescence-associated changes in the stress response are only beginning to emerge. To obtain mechanistic insights into these events, we examined the formation of canonical and non-canonical stress granules (SGs) in the cytoplasm. SG generation is a key event after exposure to physiological or environmental stressors. It requires the SG-nucleating proteins G3BP1 and TIA-1/TIAR and stress-related signaling events. To analyze SG formation, we used two independent models of somatic cell aging. In both model systems, cellular senescence impaired the assembly of two SG classes: (i) it compromised the formation of canonical SGs, and (ii) skewed the production of non-canonical SGs. We dissected the mechanisms underlying these senescence-dependent changes in granule biogenesis and identified several specific targets that were modulated by aging. Thus, we demonstrate a depletion of G3BP1 and TIA-1/TIAR in senescent cells and show that the loss of G3BP1 contributed to impaired SG formation. We further reveal that aging reduced Sp1 levels; this transcription factor regulated G3BP1 and TIA-1/TIAR abundance. The assembly of canonical SGs relies on the phosphorylation of translation initiation factor eIF2α. We show that senescence can cause eIF2α hyperphosphorylation. CReP is a subunit of protein phosphatase 1 and critical to reverse the stress-dependent phosphorylation of eIF2α. We demonstrate that the loss of CReP correlated with the aging-related hyperphosphorylation of eIF2α. Together, we have identified significant changes in the stress response of aging cells and provide mechanistic insights. Based on our work, we propose that the decline in SG formation can provide a new biomarker to evaluate cellular aging.

  13. Effect of molecular composition of heparin and cellulose sulfate on multilayer formation and cell response.

    PubMed

    Aggarwal, Neha; Altgärde, Noomi; Svedhem, Sofia; Zhang, Kai; Fischer, Steffen; Groth, Thomas

    2013-11-12

    Here, the layer-by-layer method was applied to assemble films from chitosan paired with either heparin or a semisynthetic cellulose sulfate (CS) that possessed a higher sulfation degree than heparin. Ion pairing was exploited during multilayer formation at pH 4, while hydrogen bonding is likely to occur at pH 9. Effects of polyanions and pH value during layer formation on multilayers properties were studied by surface plasmon resonance ("dry layer mass"), quartz crystal microbalance with dissipation monitoring ("wet layer mass"), water contact angle, and zeta potential measurements. Bioactivity of multilayers was studied regarding fibronectin adsorption and adhesion/proliferation of C2C12 myoblast cells. Layer growth and dry mass were higher for both polyanions at pH 4 when ion pairing occurred, while it decreased significantly with heparin at pH 9. By contrast, CS as polyanion resulted also in high layer growth and mass at pH 9, indicating a much stronger effect of hydrogen bonding between chitosan and CS. Water contact angle and zeta potential measurements indicated a more separated structure of multilayers from chitosan and heparin at pH 4, while CS led to a more fuzzy intermingled structure at both pH values. Cell behavior was highly dependent on pH during multilayer formation with heparin as polyanion and was closely related to fibronectin adsorption. By contrast, CS and chitosan did not show such dependency on pH value, where adhesion and growth of cells was high. Results of this study show that CS is an attractive candidate for multilayer formation that does not depend so strongly on pH during multilayer formation. In addition, such multilayer system also represents a good substrate for cell interactions despite the rather soft structure. As previous studies have shown specific interaction of CS with growth factors, multilayers from chitosan and CS may be of great interest for different biomedical applications.

  14. Assays to examine endothelial cell migration, tube formation, and gene expression profiles.

    PubMed

    Guo, Shuzhen; Lok, Josephine; Liu, Yi; Hayakawa, Kazuhide; Leung, Wendy; Xing, Changhong; Ji, Xunming; Lo, Eng H

    2014-01-01

    Common methods for studying angiogenesis in vitro include the tube formation assay, the migration assay, and the study of the endothelial genome. The formation of capillary-like tubes in vitro on basement membrane matrix mimics many steps of the angiogenesis process in vivo and is used widely as a screening test for angiogenic or antiangiogenic factors. Other assays related to the study of angiogenesis include the cell migration assay, the study of gene expression changes during the process of angiogenesis, and the study of endothelial-derived microparticles. Protocols for these procedures will be described here.

  15. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect

    Borup, R. L.; Inbody, M. A.; Perry, W. L.; Parkinson, W. J. ,

    2002-01-01

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  16. Audre's daughter: Black lesbian steganography in Dee Rees' Pariah and Audre Lorde's Zami: A New Spelling of My Name.

    PubMed

    Kang, Nancy

    2016-01-01

    This article argues that African-American director Dee Rees' critically acclaimed debut Pariah (2011) is a rewriting of lesbian poet-activist Audre Lorde's iconic "bio-mythography" Zami: A New Spelling of My Name (1982). The article examines how Rees' work creatively and subtly re-envisions Lorde's Zami by way of deeply rooted and often cleverly camouflaged patterns, resonances, and contrasts. Shared topics include naming, mother-daughter bonds, the role of clothing in identity formation, domestic abuse, queer time, and lesbian, gay, bisexual, and transgender legacy discourse construction. What emerges between the visual and written texts is a hidden language of connection--what may be termed Black lesbian steganography--which proves thought-provoking to viewers and readers alike.

  17. Cell lineage, axis formation, and the origin of germ layers in the amphipod crustacean Orchestia cavimana.

    PubMed

    Wolff, Carsten; Scholtz, Gerhard

    2002-10-01

    Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system.

  18. Engineering Strategies for the Formation of Embryoid Bodies from Human Pluripotent Stem Cells

    PubMed Central

    Pettinato, Giuseppe

    2015-01-01

    Human pluripotent stem cells (hPSCs) are powerful tools for regenerative therapy and studying human developmental biology, attributing to their ability to differentiate into many functional cell types in the body. The main challenge in realizing hPSC potential is to guide their differentiation in a well-controlled manner. One way to control the cell differentiation process is to recapitulate during in vitro culture the key events in embryogenesis to obtain the three developmental germ layers from which all cell types arise. To achieve this goal, many techniques have been tested to obtain a cellular cluster, an embryoid body (EB), from both mouse and hPSCs. Generation of EBs that are homogeneous in size and shape would allow directed hPSC differentiation into desired cell types in a more synchronous manner and define the roles of cell–cell interaction and spatial organization in lineage specification in a setting similar to in vivo embryonic development. However, previous success in uniform EB formation from mouse PSCs cannot be extrapolated to hPSCs possibly due to the destabilization of adherens junctions on cell surfaces during the dissociation into single cells, making hPSCs extremely vulnerable to cell death. Recently, new advances have emerged to form uniform human embryoid bodies (hEBs) from dissociated single cells of hPSCs. In this review, the existing methods for hEB production from hPSCs and the results on the downstream differentiation of the hEBs are described with emphases on the efficiency, homogeneity, scalability, and reproducibility of the hEB formation process and the yield in terminal differentiation. New trends in hEB production and directed differentiation are discussed. PMID:25900308

  19. Regional development of Langerhans cells and formation of Birbeck granules in human embryonic and fetal skin.

    PubMed

    Fujita, M; Furukawa, F; Horiguchi, Y; Ueda, M; Kashihara-Sawami, M; Imamura, S

    1991-07-01

    The regional development of Langerhans cells (LC) and the formation of Birbeck granules (BG) were examined in human embryonic and fetal skin. Samples were obtained from multiple anatomic sites and stained with anti-CD36, anti-CD1a, and anti-HLA-DR antibody as well as Lag antibody specifically reactive to BG and some vacuoles of human LC. In the first trimester, CD36+ dendritic epidermal cells were identified before the appearance of CD1a+ cells and Lag+ cells. Some of the former co-expressed HLA-DR antigens but not CD1a antigens. In the second trimester, regional variations in LC development were observed. Epidermal LC of palms and soles reached a peak in number in the first trimester but were rarely detected after 18 weeks estimated gestation age (EGA), whereas, in other regions, their number increased with age. In the second trimester, CD1a+ cells and Lag+ cells were also identified in the epidermis, although Lag+ cells appeared later than CD1a+ cells. The Lag+ cells until 17 weeks EGA showed a variety of staining intensities and immunoelectron microscopy revealed that they contained various amounts of Lag-reactive BG. Flow cytometric analysis showed that relative amounts of Lag antigens in LC increased during the second trimester and that fetal LC of 18 weeks EGA expressed the same amounts of HLA-DR, CD1a, and Lag antigens as did adult human LC. In the dermis, in the second trimester, numerous CD36+ cells and HLA-DR+ cells were found, whereas CD1a+ cells and Lag+ cells were rarely detected. Taken together, it is suggested that HLA-DR+ dendritic cells acquire CD1a+ antigens first and then form BG after migration to the epidermis and that fetal LC are phenotypically mature in the second trimester.

  20. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora.

    PubMed

    Koczan, Jessica M; Lenneman, Bryan R; McGrath, Molly J; Sundin, George W

    2011-10-01

    Biofilm formation plays a critical role in the pathogenesis of Erwinia amylovora and the systemic invasion of plant hosts. The functional role of the exopolysaccharides amylovoran and levan in pathogenesis and biofilm formation has been evaluated. However, the role of biofilm formation, independent of exopolysaccharide production, in pathogenesis and movement within plants has not been studied previously. Evaluation of the role of attachment in E. amylovora biofilm formation and virulence was examined through the analysis of deletion mutants lacking genes encoding structures postulated to function in attachment to surfaces or in cellular aggregation. The genes and gene clusters studied were selected based on in silico analyses. Microscopic analyses and quantitative assays demonstrated that attachment structures such as fimbriae and pili are involved in the attachment of E. amylovora to surfaces and are necessary for the production of mature biofilms. A time course assay indicated that type I fimbriae function earlier in attachment, while type IV pilus structures appear to function later in attachment. Our results indicate that multiple attachment structures are needed for mature biofilm formation and full virulence and that biofilm formation facilitates entry and is necessary for the buildup of large populations of E. amylovora cells in xylem tissue.

  1. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cance