Sample records for dawn

  1. Pre-dawn stomatal opening does not substantially enhance early-morning photosynthesis in Helianthus annuus.

    PubMed

    Auchincloss, Lisa; Easlon, Hsien M; Levine, Diedre; Donovan, Lisa; Richards, James H

    2014-06-01

    Most C3 plant species have partially open stomata during the night especially in the 3-5 h before dawn. This pre-dawn stomatal opening has been hypothesized to enhance early-morning photosynthesis (A) by reducing diffusion limitations to CO2 at dawn. We tested this hypothesis in cultivated Helianthus annuus using whole-shoot gas exchange, leaf level gas exchange and modelling approaches. One hour pre-dawn low-humidity treatments were used to reduce pre-dawn stomatal conductance (g). At the whole-shoot level, a difference of pre-dawn g (0.40 versus 0.17 mol m(-2) s(-1)) did not significantly affect A during the first hour after dawn. Shorter term effects were investigated with leaf level gas exchange measurements and a difference of pre-dawn g (0.10 versus 0.04 mol m(-2) s(-1)) affected g and A for only 5 min after dawn. The potential effects of a wider range of stomatal apertures were explored with an empirical model of the relationship between A and intercellular CO2 concentration during the half-hour after dawn. Modelling results demonstrated that even extremely low pre-dawn stomatal conductance values have only a minimal effect on early-morning A for a few minutes after dawn. Thus, we found no evidence that pre-dawn stomatal opening enhances A.

  2. DAWN: Dynamic Ad-hoc Wireless Network

    DTIC Science & Technology

    2016-06-19

    DAWN: Dynamic Ad-hoc Wireless Network The DAWN (Dynamic Ad-hoc Wireless Networks) project is developing a general theory of complex and dynamic... wireless communication networks. To accomplish this, DAWN adopts a very different approach than those followed in the past and summarized above. DAWN... wireless communication networks. The members of DAWN investigated difference aspects of wireless mobile ad hoc networks (MANET). The views, opinions and/or

  3. What Drives Pakistan’s Interest in Afghanistan?

    DTIC Science & Technology

    2011-05-19

    2010), 13. 172 Kamran Shafi, “Putting on a Brave Face and Standing Tall,” http://www.dawn.com/wps/wcm/connect/dawn-content-library/dawn/the-newspaper...columnists/ kamran -shafi- putting-on-a-brave-face-and-standing-tall-480 (accessed September 10, 2010). 59 include sanctuary, to militant...Shafi, Kamran . “Putting on a Brave Face and Standing Tall.” http://www.dawn.com/wps/wcm/connect/dawn-content-library/dawn/the- newspaper

  4. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, technicians help secure the Dawn spacecraft onto a moveable stand. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  5. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C

  6. DRUG ABUSE WARNING NETWORK (DAWN) DATABASE

    EPA Science Inventory

    The Drug Abuse Warning Network (DAWN) is an ongoing drug abuse data collection system sponsored by SAMHSA's Office of Applied Studies. DAWN collects data from: (1) hospital emergency departments (EDs) and (2) medical examiners (MEs). The DAWN ED component relies on a nationally r...

  7. Dawn Fields of View of Asteroid Vesta

    NASA Image and Video Library

    2007-01-01

    This graphic from NASA's Dawn shows fields of view of Dawn instruments from Survey orbit (red), High Altitude Mapping Orbit (green), and Low Altitude Mapping Orbit (blue) and is part of the Mission Art series from NASA's Dawn mission. http://photojournal.jpl.nasa.gov/catalog/PIA19371

  8. PolarWindsII_DAWN_DC8_1

    Atmospheric Science Data Center

    2018-04-18

    ... Layer Winds Surface Winds Upper Level Winds Wind Profiles LIDAR Calibration/Validation Order Data:  ... Model Barrier Flow Case Study DAWN Coherent Wind Profiling Flights DAWN Overview and Preliminary Flight Results ...

  9. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  10. Dawn Usage, Scheduling, and Governance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louis, S

    2009-11-02

    This document describes Dawn use, scheduling, and governance concerns. Users started running full-machine science runs in early April 2009 during the initial open shakedown period. Scheduling Dawn while in the Open Computing Facility (OCF) was controlled and coordinated via phone calls, emails, and a small number of controlled banks. With Dawn moving to the Secure Computing Facility (SCF) in fall of 2009, a more detailed scheduling and governance model is required. The three major objectives are: (1) Ensure Dawn resources are allocated on a program priority-driven basis; (2) Utilize Dawn resources on the job mixes for which they were intended;more » and (3) Minimize idle cycles through use of partitions, banks and proper job mix. The SCF workload for Dawn will be inherently different than Purple or BG/L, and therefore needs a different approach. Dawn's primary function is to permit adequate access for tri-lab code development in preparation for Sequoia, and in particular for weapons multi-physics codes in support of UQ. A second purpose is to provide time allocations for large-scale science runs and for UQ suite calculations to advance SSP program priorities. This proposed governance model will be the basis for initial time allocation of Dawn computing resources for the science and UQ workloads that merit priority on this class of resource, either because they cannot be reasonably attempted on any other resources due to size of problem, or because of the unavailability of sizable allocations on other ASC capability or capacity platforms. This proposed model intends to make the most effective use of Dawn as possible, but without being overly constrained by more formal proposal processes such as those now used for Purple CCCs.« less

  11. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  12. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  13. Solar maximum mission fine pointing sun sensor dawn and dusk errors flight data and model analysis

    NASA Technical Reports Server (NTRS)

    Kulp, D. R.

    1988-01-01

    SMM flight system control errors occurring at spacecraft dawn and dusk are analyzed. The errors are associated with the fine pointing sun sensor (FPSS), which is a primary component of the SMM attitude control system. It is shown that the source of the FPSS dawn/dusk distortion is the incomplete masking of sunlight reflected off the earth by the optical baffle covering the FPSS sensor heads onboard the SMM during periods of orbit dawn and dusk. For the most part, the modeled behavior of the FPSS under dawn and dusk lighting conditions matches the observed behavior in the SMM flight data.

  14. Dawn LAMO Image 19

    NASA Image and Video Library

    2016-02-03

    Tupo Crater on Ceres is seen in this view from NASA Dawn spacecraft. This crater, located in the southern hemisphere of Ceres, was named for the Polynesian god of turmeric. Dawn captured the scene on Dec. 24, 2015.

  15. Dawn Blue Glow Artist Concept

    NASA Image and Video Library

    2015-03-02

    This artist concept shows NASA Dawn spacecraft arriving at the dwarf planet Ceres. Dawn travels through space using a technology called ion propulsion, with ions glowing with blue light are accelerated out of an engine, giving the spacecraft thrust.

  16. Artist Rendering of NASA Dawn Spacecraft Approaching Mars

    NASA Image and Video Library

    2009-05-23

    Artist rendering of NASA's Dawn spacecraft approaching Mars. Dawn, part of NASA's Discovery Program of competitively selected missions, was launched in 2007 to orbit the large asteroid Vesta and the dwarf planet Ceres. The two bodies have very different properties from each other. By observing them both with the same set of instruments, Dawn will probe the early solar system and specify the properties of each body. http://photojournal.jpl.nasa.gov/catalog/PIA18152

  17. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wears a "bunny suit," or clean-room attire, next to the Dawn spacecraft, which will be unbagged and undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  18. Vesta in the Light of Dawn, But Without HEDS?

    NASA Technical Reports Server (NTRS)

    McSween, H. Y.; Mittlefehldt, D. W.

    2014-01-01

    The derivation of HEDs from Vesta is strongly supported by Dawn data [1], and these meterorites have made interpretations of Dawn spectra much more rigorous. Compared to the Moon, where samples became available after geologic mapping, the exploration of Vesta has been backwards. But what if HEDs had not been available or identified as vestan samples? What petrologic and geochemical predictions would have been possible using Dawn data, without the benefit of HEDs?

  19. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  20. Dawn's Exploration of Vesta

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Mase, Robert A.

    2012-01-01

    On 16 July 2011, after completing nearly four years of interplanetary flight, Dawn entered orbit around (4) Vesta, the second most massive body in the main asteroid belt. Dawn used solar electric propulsion to spiral to a series of six different orbits to accomplish its science campaign. Although the transfers to progressively lower orbits presented significant challenges, all were executed smoothly. During its nearly 14 months in orbit, Dawn spiraled down to 210 km above the surface and back up, before initiating the gradual departure to travel to dwarf planet (1) Ceres for a 2015 rendezvous. Dawn's exploration of Vesta has shown it to be geologically complex and fascinating, resembling terrestrial planets more than typical asteroids. Among the principal features is a 500-km diameter impact basin within which is the second tallest mountain known in the solar system. This paper presents Dawn's operations at Vesta and summarizes the principal findings.

  1. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  2. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.

  3. KSC-07pd1299

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Payload Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a transporter. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  4. KSC-07pd1305

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a scale for weighing. Next, Dawn will be prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  5. KSC-07pd1300

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. --At Astrotech's Payload Processing Facility, technicians maneuver the shipping container to place around the Dawn spacecraft, at right. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  6. Prioritizing Strategic Interests in South Asia

    DTIC Science & Technology

    2010-06-01

    rolled out “Aghaz-e-Haqooq Balochistan ”—its by far the most serious fallout from the conflict in Afghanistan is the increasing radicalization of...Foreign Policy, August 2006, available at <www.foreignpolicy.com/ story/cms.php?story_id=3578>. 17 “Aghaz-e-Haqooq Balochistan Package,” Dawn. com...November 16, 2009, available at <www.dawn.com/ wps/wcm/connect/dawn-content-library/dawn/news/ pakistan/13+aghaz-e-haqooq+ balochistan +package- za-05

  7. Dawn simulation and bright light in the treatment of SAD: a controlled study.

    PubMed

    Avery, D H; Eder, D N; Bolte, M A; Hellekson, C J; Dunner, D L; Vitiello, M V; Prinz, P N

    2001-08-01

    Some small controlled studies have found that dawn simulation is effective in treating seasonal affective disorder (SAD). With a larger sample size and a longer duration of treatment, we compared dawn simulation with bright light therapy and a placebo condition in patients with SAD. Medication-free patients with SAD were randomly assigned to one of three conditions: bright light therapy (10,000 lux for 30 min, from 6:00 AM to 6:30 AM), dawn simulation (1.5 hour dawn signal from 4:30 AM to 6:00 AM peaking at 250 lux), and a placebo condition, a dim red light (1.5 hour dawn signal from 4:30 am to 6:00 AM peaking at 0.5 lux.) Over the subsequent 6 weeks, the subjects were blindly rated by a psychiatrist using the Structured Interview Guide for the Hamilton Depression Rating-Seasonal Affective Disorder Version (SIGH-SAD). We modeled the profiles of the remissions (SIGH-SAD < or = 8) and response (> or =50% decrease in SIGH-SAD) to treatment over time using Cox proportional hazards models. The sample consisted of 95 subjects who were randomized to the three conditions: bright light (n = 33), dawn simulation (n = 31) and placebo (n = 31). Dawn simulation was associated with greater remission (p <.05) and response (p <.001) rates compared to the placebo. Bright light did not differ significantly from the placebo. Dawn simulation was associated with greater remission (p <.01) and response (p <.001) rates compared to the bright light therapy. The mean daily hours of sunshine during the week before each visit were associated with a significant increase in likelihood of both remission (p <.001) and response (p <.001). Dawn simulation was associated with greater remission and response rates compared to the placebo and compared to bright light therapy. The hours of sunshine during the week before each assessment were associated with a positive clinical response.

  8. 76 FR 48834 - Michigan Consolidated Gas Company and Dawn Gateway Pipeline, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ...'s Belle River-St. Clair Pipeline into the new 21-mile long Dawn Gateway Pipeline system, which... & Optimization, DTE Pipeline/Dawn Gateway LLC, One Energy Plaza, Detroit, MI 48226, phone (313) 235-6531 or e...

  9. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  10. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  11. KSC-07pd0858

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  12. KSC-07pd1304

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the progress of the Dawn spacecraft as it is lifted off the transporter. Dawn will be moved to a scale for weighing and then prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  13. [Correlation study between obesity and dawn phenomenon in patients with type 2 diabetes].

    PubMed

    Guo, Zhenhong; Xu, Jie; Wang, Jingyu; Han, Fei; Zhang, Yi; Yang, X iaoyun; Yang, Shaohua; Chang, Bai; Yang, Juhong; Shan, Chunyan; Chen, Liming; Chang, Baocheng; Xu, Yanguang

    2016-01-01

    To investigate the correlation between the frequency of dawn phenomenon and obesity in patients with type 2 diabetes. This study was conducted in 98 patients with type 2 diabetes admitted to the Metabolic Disease Hospital of Tianjin Medical University from 2011 to 2014. The subjects were divided into 3 groups according to BMI: the normal weight (BMI 18.5-23.9 kg/m(2), n = 30), the overweight(BMI 24-27.9 kg/m(2), n = 33)and the obesity (BMI ≥ 28.0 kg/m(2), n = 35). All participants underwent continuous glucose monitoring for 72 h. Fasting plasma glucose(FPG), insulin and C-peptide were tested. Frequency of dawn phenomenon among the 3 groups was calculated, and the correlations between dawn phenomenon and its related factors were analyzed. The frequency of dawn phenomenon in type 2 diabetes increased with the increase of BMI in the 3 groups (P < 0.05) with 33.3% in the normal weight, 78.8% in the overweight and 88.6% in the obesity groups, respectively. The dawn phenomenon was positively correlated with BMI (r = 0.424, P < 0.05), Homeostasis model assessment of insulin resistance(HOMA-IR) (r = 0.781, P < 0.05), waist circumference (r = 0.394, P < 0.05), fasting C-peptide (r = 0.254, P < 0.05)and TG (r = 0.220, P < 0.05). It was negatively correlated with the course of diabetes mellitus (r = -0.278, P<0.05) and HDL-C (r = -0.268, P < 0.05). No correlation could be viewed between the dawn phenomenon and age, LDL-C, glycosylated hemoglobin A1c(HbA1c), TC and FPG (P > 0.05). The dawn phenomenon is closely associated with obesity and insulin resistance. The frequency of dawn phenomenon increases with BMI.

  14. Dawn HAMO Image 75

    NASA Image and Video Library

    2015-12-11

    This view from NASA Dawn spacecraft shows high northern latitudes on Ceres. Dawn acquired the image on Oct. 17, 2015, from an altitude of 915 miles 1,470 kilometers. It has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20138

  15. KSC-07pd1645

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lower the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  16. KSC-07pd1636

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft has been wrapped with a protective cover before it is enclosed in a canister. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  17. KSC-07pd1646

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure the upper canister over the Dawn spacecraft. Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  18. KSC-07pd1644

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin lowering the upper canister over the Dawn spacecraft. After enclosure, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  19. Ceres From Dawn, Processed

    NASA Image and Video Library

    2015-01-19

    This processed image, taken Jan. 13, 2015, shows the dwarf planet Ceres as seen from the Dawn spacecraft. The image hints at craters on the surface of Ceres. Dawn framing camera took this image at 238,000 miles 383,000 kilometers from Ceres. http://photojournal.jpl.nasa.gov/catalog/PIA19167

  20. KSC-07pd1243

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for thermal blanket installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  1. KSC-07pd1242

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for thermal blanket installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  2. KSC-07pd2429

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is moved toward the opening above the Delta II rocket in the mobile service tower. Dawn will be mated with the Delta in preparation for launch. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  3. KSC-07pd2430

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lowered toward the awaiting Delta II rocket in the mobile service tower. Dawn will be mated with the Delta in preparation for launch. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  4. KSC-07pd2427

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted alongside the mobile service tower. At the top, Dawn will be prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  5. KSC-07pd2431

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers in the mobile service tower keep watch as the Dawn spacecraft is lowered toward the awaiting Delta II rocket. Dawn will be mated with the Delta in preparation for launch. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  6. KSC-07pd2438

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the transportation canister from around the Dawn spacecraft. After removal of the canister, Dawn will be mated with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  7. KSC-07pd2426

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted alongside the mobile service tower. At the top, Dawn will be prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  8. KSC-07pd2424

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft arrives on Launch Pad 17-B at Cape Canaveral Air Force Station. At the pad, Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  9. KSC-07pd2442

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the upper transportation canister is lifted away from the Dawn spacecraft. After removal of the canister, Dawn will be mated with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  10. KSC-07pd2425

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lifted off its transporter. Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket.Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  11. KSC-07pd1640

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move another segment of the lower canister onto the workstand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  12. KSC-07pd1643

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the partially enclosed Dawn spacecraft into another room to complete the canning. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  13. KSC-07pd1638

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  14. KSC-07pd1641

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians place another segment of the canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  15. KSC-07pd1642

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians examine the lower canister they placed around the bottom of the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  16. KSC-07pd1637

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister toward the stand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  17. KSC-07pd1639

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  18. KSC-07pd1506

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech are preparing the Dawn spacecraft for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  19. KSC-07pd1508

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the Dawn spacecraft is ready for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  20. KSC-07pd1507

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech check the Dawn spacecraft before spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B.The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd1505

    NASA Image and Video Library

    2007-06-13

    KENNEDY SPACE CENTER, FLA. -- Technicians at Astrotech prepare the Dawn spacecraft for spin-balance testing. After the test, Dawn will then be mated to the upper stage booster, installed into a spacecraft transportation canister for the trip to Cape Canaveral Air Force Station and mated to the Delta II rocket at Launch Pad 17-B. The Dawn spacecraft will employ ion propulsion to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail these largest protoplanets that have remained intact since their formations. Ceres and Vesta reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  2. Dawn song in natural and artificial continuous day: Light pollution affects songbirds at high latitudes.

    PubMed

    Derryberry, Elizabeth P

    2017-10-01

    In Focus: Da Silva, A., & Kempenaers, B. (2017). Singing from North to South: Latitudinal variation in timing of dawn singing under natural and artificial light conditions. Journal of Animal Ecology, 86, 1286-1297. doi: 10.1111/1365-2656.12739 Satellite images of the world at night show bright dots connected by glowing lines crisscrossing the globe. As these connect-the-dots become brighter and expand into more and more remote regions, much of the flora and fauna of the world are experiencing evolutionarily unprecedented levels of light at night. Light cues are essential to most physiological and behavioural processes, and so the need to measure the effects of light pollution on these processes is critical. In this issue, Da Silva and Kempenaers take on this task using an important reproductive behaviour in songbirds-dawn song. The geographic, temporal and taxonomic breadth of sampling in this study allows for a close examination of a potentially complex interaction between light pollution and natural variation in the behaviour of dawn singing across latitude, season and species. Their extensive dataset highlights complexity in how songbirds respond to light pollution. Although light pollution has a strong effect on the timing of dawn song, not all songbirds respond the same way to light pollution, and the effects of light pollution vary with changes in natural light levels. Early dawn singers show more flexibility in the timing of dawn song across the season and across latitudes than late dawn singers, and also appear less affected by light pollution at high latitudes than are late dawn singers. These findings suggest that not all songbirds are responding to artificial continuous daylight as they do to natural continuous daylight, highlighting the general need to measure the fitness effects of light pollution. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  3. 78 FR 77684 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Hennepin Avenue, Minneapolis, Minnesota 55480-0291: 1. Dawn Crane, Fosston, Minnesota, individually and as trustee; Lorri Skeie-Campbell, Rio Rancho, New Mexico, individually and as trustee; Dawn M. Skeie Crane Irrevocable Trust; Dawn Crane, as co- trustee; Lorri J. Skeie-Campbell Irrevocable Trust, Winger, and Lorri...

  4. Dawn LAMO Image 188

    NASA Image and Video Library

    2016-10-07

    NASA's Dawn spacecraft views Oxo Crater (6 miles, 10 kilometers wide) in this view from Ceres. Dawn took this image on June 4, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20950

  5. KSC-07pd1248

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers begin black light testing on the solar panels of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  6. KSC-07pd1249

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers begin black light testing on the solar panels of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  7. Level-2 Milestone 3244: Deploy Dawn ID Machine for Initial Science Runs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, D

    2009-09-21

    This report documents the delivery, installation, integration, testing, and acceptance of the Dawn system, ASC L2 milestone 3244: Deploy Dawn ID Machine for Initial Science Runs, due September 30, 2009. The full text of the milestone is included in Attachment 1. The description of the milestone is: This milestone will be a result of work started three years ago with the planning for a multi-petaFLOPS UQ-focused platform (Sequoia) and will be satisfied when a smaller ID version of the final system is delivered, installed, integrated, tested, accepted, and deployed at LLNL for initial science runs in support of SSP mission.more » The deliverable for this milestone will be a LA petascale computing system (named Dawn) usable for code development and scaling necessary to ensure effective use of a final Sequoia platform (expected in 2011-2012), and for urgent SSP program needs. Allocation and scheduling of Dawn as an LA system will likely be performed informally, similar to what has been used for BlueGene/L. However, provision will be made to allow for dedicated access times for application scaling studies across the entire Dawn resource. The milestone was completed on April 1, 2009, when science runs began running on the Dawn system. The following sections describe the Dawn system architecture, current status, installation and integration time line, and testing and acceptance process. A project plan is included as Attachment 2. Attachment 3 is a letter certifying the handoff of the system to a nuclear weapons stockpile customer. Attachment 4 presents the results of science runs completed on the system.« less

  8. Continuous glucose monitoring system: dawn period calibration does not change accuracy of the method.

    PubMed

    Augusto, Gustavo A; Sousa, André G P; Perazo, Marcela N A; Correa-Giannella, Maria L C; Nery, Marcia; Melo, Karla F S de

    2009-06-01

    Continuous glucose monitoring system is a valuable instrument to measure glycemic control, which uses a retrospective calibration based upon 3 to 4 capillary glucose meter values inserted by the patient each day. We evaluated the interference of calibration during the dawn period in the system accuracy. The monitoring data were retrospectively divided into two groups: with (Group A) or without (Group B) the dawn period calibration (between 1:00 and 5:00 AM). Accuracy of the method was expressed by relative absolute difference. Thirty-four continuous glucose monitoring data were evaluated comprising a total of 112 nights. A total of 289 paired readings were analyzed - 195 in Group A and 94 in Group B. We did not find a difference in relative absolute difference (RAD%) in any analyzed period of day by adding dawn calibration. These data suggest that dawn calibration does not alter accuracy of method.

  9. KSC-07pd1306

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, the Dawn spacecraft is weighed before fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  10. KSC-07pd0851

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- Two trucks (one air-ride, one flat-bed) deliver the Dawn spacecraft, as well as additional electrical and ground support equipment and xenon ground support equipment, to Astrotech. Dawn will be moved from the truck and the shipping container removed. The spacecraft will then be moved into the high bay of the Payload Processing Facility. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  11. A Perfect View of Vesta: Creating Pointing Observations for the Dawn Spacecraft on Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Hay, Katrina M.

    2005-01-01

    The Dawn spacecraft has a timely and clever assignment in store. It will take a close look at two intact survivors from the dawn of the solar system (asteroids 4 Vesta and 1 Ceres) to understand more about solar system origin and evolution. To optimize science return, Dawn must make carefully designed observations on approach and in survey orbit, high altitude mapping orbit, and low altitude mapping orbit at each body. In this report, observations outlined in the science plan are modeled using the science opportunity analyzer program for the Vesta encounter. Specifically, I encoded Dawn's flight rules into the program, modeled pointing profiles of the optical instruments (framing camera, visible infrared spectrometer) and mapped their fields of view onto Vesta's surface. Visualization of coverage will provide the science team with information necessary to assess feasibility of alternative observation plans. Dawn launches in summer 2006 and ends its journey in 2016. Instrument observations on Vesta in 2011 will supply detailed information about Vesta's surface and internal structure. These data will be used to analyze the formation and history of the protoplanet and, therefore, complete an important step in understanding the development of our solar system.

  12. KSC-07pd2423

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft is moved out of the Astrotech Space Operations facility, on its way to Launch Pad 17-B at Cape Canaveral Air Force Station. At the pad, Dawn will be lifted into the mobile service tower and prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  13. KSC-07pd2444

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers remove the lower segments of the transportation canister away from the Dawn spacecraft. After removal of the canister, Dawn will be mated with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  14. Dawn LAMO Image 175

    NASA Image and Video Library

    2016-09-20

    NASA's Dawn spacecraft obtained this view of Laukumate Crater (19 miles, 30 kilometers wide) on Ceres on June 2, 2016. Laukumate is named for a Latvian goddess of agriculture. Dawn took this image from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20937

  15. Dawn LAMO Image 185

    NASA Image and Video Library

    2016-10-04

    NASA's Dawn spacecraft spies Achita Crater on Ceres in this view. Achita is named for a Nigerian god of agriculture and is 25 miles (40 kilometers) wide. Dawn took this image on June 3, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20947

  16. KSC-07pd1227

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar A&O at Cape Canaveral Air Force Station, the Delta II second stage for the Dawn spacecraft is ready for transfer to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  17. KSC-07pd1265

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers prepare the Dawn spacecraft before test deploying its large solar panels on one side. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  18. KSC-07pd1244

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare to deploy the solar panels of the Dawn spacecraft. The panels will be tested and undergo black light inspection. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  19. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    NASA Astrophysics Data System (ADS)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    Dawn Education and Public Outreach strives to reach diverse learners using multi-disciplinary approaches. In-depth professional development workshops in collaboration with NASA's Discovery Program, MESSENGER and Stardust-NExT missions focusing on STEM initiatives that integrate the arts have met the needs of diverse audiences and received excellent evaluations. Another collaboration on NASA ROSES grant, Small Bodies, Big Concepts, has helped bridge the learning sequence between the upper elementary and middle school, and the middle and high school Dawn curriculum modules. Leveraging the Small Bodies, Big Concepts model, educators experience diverse and developmentally appropriate NASA activities that tell the Dawn story, with teachers' pedagogical skills enriched by strategies drawn from NSTA's Designing Effective Science Instruction. Dawn mission members enrich workshops by offering science presentations to highlight events and emerging data. Teachers' awareness of the process of learning new content is heightened, and they use that experience to deepen their science teaching practice. Activities are sequenced to enhance conceptual understanding of big ideas in space science and Vesta and Ceres and the Dawn Mission 's place within that body of knowledge Other media add depth to Dawn's resources for reaching students. Instrument and ion engine interactives developed with the respective science team leads help audiences engage with the mission payload and the data each instrument collects. The Dawn Dictionary, an offering in both audio as well as written formats, makes key vocabulary accessible to a broader range of students and the interested public. Further, as Dawn E/PO has invited the public to learn about mission objectives as the mission explored asteroid Vesta, new inroads into public presentations such as the Dawn MissionCast tell the story of this extraordinary mission. Asteroid Mapper is the latest, exciting citizen science endeavor designed to invite the general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  20. Use of Cumulative Degradation Factor Prediction and Life Test Result of the Thruster Gimbal Assembly Actuator for the Dawn Flight Project

    NASA Technical Reports Server (NTRS)

    Lo, C. John; Brophy, John R.; Etters, M. Andy; Ramesham, Rajeshuni; Jones, William R., Jr.; Jansen, Mark J.

    2009-01-01

    The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.

  1. Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.; hide

    2012-01-01

    The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.

  2. KSC-07pd1509

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft arrives on Launch Pad 17-B at Cape Canaveral Air Force Station where it will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  3. Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.

    2010-01-01

    Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.

  4. KSC-07pd1256

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the Dawn spacecraft is lowered toward a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  5. KSC-07pd1260

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft for installation of its solar array panels. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  6. KSC-07pd0856

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, a crane lifts the shipping container from the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  7. KSC-07pd1264

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers get ready to test deploy the large solar array panels on one side of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  8. KSC-07pd1246

    NASA Image and Video Library

    2007-05-21

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the solar panels of the Dawn spacecraft are extended to their full extent. The panels will be tested and undergo black light inspection. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  9. Dawn Orbit Determination Team: Modeling and Fitting of Optical Data at Vesta

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the main asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all Dawn operations teams. Dawn's Orbit Determination (OD) team was tasked with reconstruction of the as-flown trajectory as well as determination of the Vesta rotational rate, pole orientation and ephemeris, among other Vesta parameters. Improved knowledge of the Vesta pole orientation, specifically, was needed to target the final maneuvers that inserted Dawn into the first science orbit at Vesta. To solve for these parameters, the OD team used radiometric data from the Deep Space Network (DSN) along with optical data reduced from Dawn's Framing Camera (FC) images. This paper will de-scribe the initial determination of the Vesta ephemeris and pole using a combination of radiometric and optical data, and also the progress the OD team has made since then to further refine the knowledge of Vesta's body frame orientation and rate with these data.

  10. Cosmic Dawn Science Interest Group

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Cosmic Origins Program Analysis Group

    2016-01-01

    Cosmic Dawn was identified as one of the three science objectives for this decade in the _New Worlds, New Horizons_ Decadal report, and it will likely continue to be a research focus well into the next decade. Cosmic Dawn refers to the interval during which the Universe transitioned from a nearly completely neutral state back to a nearly fully ionized state and includes the time during which the first stars formed and the first galaxies assembled.The Cosmic Dawn Science Interest Group (SIG) was formed recently under the auspices of the Cosmic Origins Program Analysis Group (COPAG). The Cosmic Dawn SIG focusses on the science cases, observations, and technology development needed to address the "great mystery" of Cosmic Origins. The reach of this SIG is broad, involving the nature of the first stars and the detectability of gamma-ray bursts at high redshifts, the extent to which the first galaxies and first supermassive black holes grew together, and the technology required to pursue these questions.For further information, consult the Cosmic Dawn SIG Web site http://cd-sig.jpl.nasa.gov/ and join the mailing list (by contacting the author).Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  11. Effects of artificial dawn on subjective ratings of sleep inertia and dim light melatonin onset.

    PubMed

    Giménez, Marina C; Hessels, Martijn; van de Werken, Maan; de Vries, Bonnie; Beersma, Domien G M; Gordijn, Marijke C M

    2010-07-01

    The timing of work and social requirements has a negative impact on performance and well-being of a significant proportion of the population in our modern society due to a phenomenon known as social jetlag. During workdays, in the early morning, late chronotypes, in particular, suffer from a combination of a nonoptimal circadian phase and sleep deprivation. Sleep inertia, a transient period of lowered arousal after awakening, therefore, becomes more severe. In the present home study, the authors tested whether the use of an alarm clock with artificial dawn could reduce complaints of sleep inertia in people having difficulties in waking up early. The authors also examined whether these improvements were accompanied by a shift in the melatonin rhythm. Two studies were performed: Study 1: three conditions (0, 50, and 250 lux) and Study 2: two conditions (0 lux and self-selected dawn-light intensity). Each condition lasted 2 weeks. In both studies, the use of the artificial dawn resulted in a significant reduction of sleep inertia complaints. However, no significant shift in the onset of melatonin was observed after 2 weeks of using the artificial dawn of 250 lux or 50 lux compared to the control condition. A multilevel analysis revealed that only the presence of the artificial dawn, rather than shift in the dim light melatonin onset or timing of sleep offset, is related to the observed reduction of sleep inertia complaints. Mechanisms other than shift of circadian rhythms are needed to explain the positive results on sleep inertia of waking up with a dawn signal.

  12. Sleepless in Town – Drivers of the Temporal Shift in Dawn Song in Urban European Blackbirds

    PubMed Central

    Nordt, Anja; Klenke, Reinhard

    2013-01-01

    Organisms living in urban environments are exposed to different environmental conditions compared to their rural conspecifics. Especially anthropogenic noise and artificial night light are closely linked to urbanization and pose new challenges to urban species. Songbirds are particularly affected by these factors, because they rely on the spread of acoustic information and adjust their behaviour to the rhythm of night and day, e.g. time their dawn song according to changing light intensities. Our aim was to clarify the specific contributions of artificial night light and traffic noise on the timing of dawn song of urban European Blackbirds (Turdus merula). We investigated the onset of blackbird dawn song along a steep urban gradient ranging from an urban forest to the city centre of Leipzig, Germany. This gradient of anthropogenic noise and artificial night light was reflected in the timing of dawn song. In the city centre, blackbirds started their dawn song up to 5 hours earlier compared to those in semi-natural habitats. We found traffic noise to be the driving factor of the shift of dawn song into true night, although it was not completely separable from the effects of ambient night light. We additionally included meteorological conditions into the analysis and found an effect on the song onset. Cloudy and cold weather delayed the onset, but cloud cover was assumed to reflect night light emissions, thus, amplified sky luminance and increased the effect of artificial night light. Beside these temporal effects, we also found differences in the spatial autocorrelation of dawn song onset showing a much higher variability in noisy city areas than in rural parks and forests. These findings indicate that urban hazards such as ambient noise and light pollution show a manifold interference with naturally evolved cycles and have significant effects on the activity patterns of urban blackbirds. PMID:23940759

  13. KSC-07pd0860

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, technicians roll the Dawn spacecraft into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  14. KSC-07pd1257

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the Dawn spacecraft, secure on a work stand, is moved to another room for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  15. KSC-07pd0857

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, a crane is being attached to the Dawn spacecraft to lift it from the transporter. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  16. KSC-07pd0855

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, a crane is attached to the shipping container to remove it from around the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  17. KSC-07pd1254

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft to be moved to a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  18. KSC-07pd1266

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the more than 32-foot-long solar panels on one side of the Dawn spacecraft glide open during a test deployment. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  19. KSC-07pd1279

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, a suspended set of solar array panels is opened prior to installation on the Dawn spacecraft. Another set was installed previously. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/George Shelton

  20. KSC-07pd1255

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers stand near while the Dawn spacecraft is lifted and moved toward a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd1268

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the more than 32-foot-long solar panels on one side of the Dawn spacecraft are fully deployed during a test. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  2. KSC-07pd1269

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers check the Dawn spacecraft after testing the deployment of its more than 32-foot-long solar panels on one side. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  3. KSC-07pd1263

    NASA Image and Video Library

    2007-05-23

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers fold the large solar array panels on one side of the Dawn spacecraft. The panels will be tested for deployment and stowage. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/George Shelton

  4. KSC-07pd1259

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In another clean room at Astrotech, solar array panels at left are ready to be installed on the Dawn spacecraft, at right. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  5. Song trait similarity in great tits varies with social structure.

    PubMed

    Snijders, Lysanne; van der Eijk, Jerine; van Rooij, Erica P; de Goede, Piet; van Oers, Kees; Naguib, Marc

    2015-01-01

    For many animals, long-range signalling is essential to maintain contact with conspecifics. In territorial species, individuals often have to balance signalling towards unfamiliar potential competitors (to solely broadcast territory ownership) with signalling towards familiar immediate neighbours (to also maintain so-called "dear enemy" relations). Hence, to understand how signals evolve due to these multilevel relationships, it is important to understand how general signal traits vary in relation to the overall social environment. For many territorial songbirds dawn is a key signalling period, with several neighbouring individuals singing simultaneously without immediate conflict. In this study we tested whether sharing a territory boundary, rather than spatial proximity, is related to similarity in dawn song traits between territorial great tits (Parus major) in a wild personality-typed population. We collected a large dataset of automatized dawn song recordings from 72 unique male great tits, during the fertile period of their mate, and compared specific song traits between neighbours and non-neighbours. We show here that both song rate and start time of dawn song were repeatable song traits. Moreover, neighbours were significantly more dissimilar in song rate compared to non-neighbours, while there was no effect of proximity on song rate similarity. Additionally, similarity in start time of dawn song was unrelated to sharing a territory boundary, but birds were significantly more similar in start time of dawn song when they were breeding in close proximity of each other. We suggest that the dissimilarity in dawn song rate between neighbours is either the result of neighbouring great tits actively avoiding similar song rates to possibly prevent interference, or a passive consequence of territory settlement preferences relative to the types of neighbours. Neighbourhood structuring is therefore likely to be a relevant selection pressure shaping variation in territorial birdsong.

  6. KSC-07pd0865

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, technicians dressed in "bunny suits," or clean-room attire, begin working on the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  7. KSC-07pd1307

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- The mobile service towers on Launch Pads 17-A (left) and 17-B (right) are silhouetted against the pre-dawn sky at Cape Canaveral Air Force Station. In the background are the launch gantries. Pad 17-B is the site for the launch of the Dawn spacecraft on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  8. KSC-07pd1212

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, the first stage of the Delta II rocket that will launch the Dawn spacecraft is ready to be transferred to a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  9. KSC-07pd0864

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- The Dawn spacecraft is seen here in clean room C of Astrotech's Payload Processing Facility. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  10. Development and Translation of a Tissue-Engineered Disc in a Preclinical Rodent Model

    DTIC Science & Technology

    2013-10-01

    authors Dong Hwa Kim, John T. Martin, Dawn M. Elliott, Lachlan J. Smith , and Robert L. Mauck...Replacement in a Small Animal Model with authors John T. Martin, Andrew H. Milby, Joseph A. Chiaro, Dong Hwa Kim, Nader M. Hebela, Lachlan J. Smith , Dawn... Smith , Dawn M. Elliott, and Robert L. Mauck is now in review. To carry out this study, radiopaque scaffolds were generated from a 14.3% w/v slurry

  11. Dawn LAMO Image 182

    NASA Image and Video Library

    2016-09-29

    NASA's Dawn spacecraft views Kupalo Crater in this view of Ceres. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest. Dawn took this image on June 2, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20944

  12. Dawn LAMO Image 5

    NASA Image and Video Library

    2016-01-13

    This view of the Cerean crater Victa was captured by NASA Dawn spacecraft on Dec. 19, 2015. The steep-walled crater is approximately 19 miles 30 kilometers in diameter, and was named for the Roman goddess of food and nourishment. Dawn took this image from its low-altitude mapping orbit (LAMO), at an approximate altitude of 240 miles (385 kilometers) above Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20195

  13. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, M. N.; Russell, C. T.; Prettyman, T. H.

    2017-12-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn's GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  14. Dawn LAMO Image 83

    NASA Image and Video Library

    2016-05-06

    Ceres densely cratered landscape is revealed in this image taken by the framing camera aboard NASA Dawn spacecraft. The craters show various degrees of degradation. The youngest craters have sharp rims.

  15. Dawn LAMO Image 84

    NASA Image and Video Library

    2016-05-09

    Ceres densely cratered landscape is revealed in this image taken by the framing camera aboard NASA Dawn spacecraft. The craters show various degrees of degradation. The youngest craters have sharp rims.

  16. Non-parametric entrainment by natural twilight in the microchiropteran bat, Hipposideros speoris inside a cave.

    PubMed

    Joshi, D S; Vanlalnghaka, C

    2005-01-01

    The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free-running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights-on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights-on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.

  17. KSC-07pd2401

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers move the platform with the Dawn spacecraft. They are preparing to install the transportation canister around Dawn for transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  18. KSC-07pd2445

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is ready for mating with the waiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. EDT Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jim Grossmann

  19. KSC-07pd2428

    NASA Image and Video Library

    2007-09-11

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside and prepared for mating with the awaiting Delta II rocket. Dawn is scheduled for launch in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Photo credit: NASA/Jack Pfaller

  20. KSC-07pd1514

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft is lowered into the hole toward the Delta first stage below. The two stages will be mated. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd1512

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  2. KSC-07pd1510

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. It will be mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  3. Dawn at Vesta: testing the protoplanetary paradigm

    USGS Publications Warehouse

    Russell, C.T.; Raymond, C.A.; Coradini, A.; McSween, H.Y.; Zuber, M.T.; Nathues, A.; DeSanctis, Maria-Cristina; Jaumann, R.; Konopliv, A.S.; Preusker, F.; Asmar, S.W.; Park, R.S.; Gaskell, R.; Keller, H.U.; Mottola, S.; Roatsch, T.; Scully, J.E.C.; Smith, D.E.; Tricarico, P.; Toplis, M.J.; Christensen, U.R.; Feldman, W.C.; Lawrence, D.J.; McCoy, T.J.; Prettyman, T.H.; Reedy, R.C.; Sykes, M.E.; Titus, T.N.

    2012-01-01

    The Dawn spacecraft targeted 4 Vesta, believed to be a remnant intact protoplanet from the earliest epoch of solar system formation, based on analyses of howardite-eucrite-diogenite (HED) meteorites that indicate a differentiated parent body. Dawn observations reveal a giant basin at Vesta's south pole, whose excavation was sufficient to produce Vesta-family asteroids (Vestoids) and HED meteorites. The spatially resolved mineralogy of the surface reflects the composition of the HED meteorites, confirming the formation of Vesta's crust by melting of a chondritic parent body. Vesta's mass, volume, and gravitational field are consistent with a core having an average radius of 107 to 113 kilometers, indicating sufficient internal melting to segregate iron. Dawn's results confirm predictions that Vesta differentiated and support its identification as the parent body of the HEDs.

  4. In-Flight Operation of the Dawn Ion Propulsion System - The First Nine Months

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Brophy, John R.; Mikes, Steven C.; Raymond, Marc D.

    2008-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta-V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion engine design is based on the design validated on NASA's Deep Space 1 mission. However, because of the very substantial (11 km/s) delta-V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are also based on the DS1 design. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft prior to the initiation of long-term thrusting for the heliocentric transfer to Vesta. The IPS hardware, consisting of three ion thrusters and TGAs, two PPUs and DCIUs, xenon feed system, and spacecraft control software, was investigated extensively. Thrust measurements, roll torque measurements, pointing capabilities, control characteristics, and thermal behavior of the spacecraft and IPS were carefully evaluated. The Dawn IPS fully met all its initial checkout performance objectives. Deterministic thrusting for cruise began on December 17, 2007. Over the subsequent approximately 330 days the IPS will be operated virtually continuously at full power thrusting (approximately 91 mN) leading to a Mars flyby in February 2009. The encounter with Mars provides a gravity assist for a plane change and is the only source of post-launch delta-V apart from the IPS. Following the Mars gravity assist IPS will be operated for approximately one year at full power and for 1.3 years at throttled power levels leading to rendezvous with Vesta in August of 2011. Following nine months of orbital operations with IPS providing the propulsion needed for orbit capture, science orbit transfer and orbit maintenance and Vesta escape, Dawn will transit to Ceres with an expected arrival date of February 2015. As of June 16, 2008 the ion thrusters on Dawn have operated for close to 3,846 hours and have delivered nearly 1 km/s of delta-V to the spacecraft. Dawn IPS operation has been almost flawless during the initial checkout and six months of cruise. This paper provides an overview of Dawn's mission objectives, mission and system design, and the results of the post-launch Dawn IPS mission operations through June 2008

  5. Meet EPA researcher Dawn King

    EPA Pesticide Factsheets

    Research microbiologist Dawn King works in EPA’s National Exposure Research Laboratory where she identifies and assesses the health risk of microbial pathogens in water. This is her researchers at work profile.

  6. Dawn HAMO Image 67

    NASA Image and Video Library

    2015-12-01

    The tall, cone-shaped mountain Ahuna Mons is seen in this image taken by NASA's Dawn spacecraft. Ahuna Mons, named for the traditional post-harvest festival of the Sumi tribe of Nagaland in India, is about 4 miles (6 kilometers) tall and 12 miles (20 kilometers) in diameter. Dawn took this image on Oct. 14, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20130

  7. Dawn LAMO Image 158

    NASA Image and Video Library

    2016-08-25

    An area along the rim of the crater at the center of this view from NASA Dawn spacecraft, has collapsed, producing a lobe-shaped feature where the material settled. The image is centered at approximately 52 degrees north latitude, 316 degrees east longitude. NASA's Dawn spacecraft took this image on May 28, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface of Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20880

  8. KSC-07pd0861

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wears a "bunny suit," or clean-room attire, next to the Dawn spacecraft, which will be unbagged and undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  9. KSC-07pd0852

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the shipping container holding the Dawn spacecraft is removed from the truck. The container will then be moved into the high bay of the Payload Processing Facility and the spacecraft removed. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  10. KSC-07pd1281

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers prepare the Dawn spacecraft, at left, for installation of a second set of solar array panels, at right. Together, the panels extend 64.6 feet when fully open. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/George Shelton

  11. KSC-07pd0854

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the shipping container holding the Dawn spacecraft is moved into the high bay of the Payload Processing Facility. The spacecraft will next be removed from the container. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  12. Dawn LAMO Image 87

    NASA Image and Video Library

    2016-05-12

    This image from NASA Dawn spacecraft shows the rim of Occator crater, just east of the area containing the brightest spots on Ceres. The crater rim has collapsed, leaving structures geologists refer to as terraces.

  13. Dawn HAMO Image 79

    NASA Image and Video Library

    2015-12-17

    NASA Dawn spacecraft captured this scene, showing southern mid-latitudes on Ceres, on Oct. 18, 2015, from an altitude of 915 miles 1,470 kilometers. It has a resolution of 450 feet 140 meters per pixel.

  14. Dawn LAMO Image 73

    NASA Image and Video Library

    2016-04-22

    This image from NASA Dawn spacecraft shows terrain within Chaminuka Crater on Ceres. Chaminuka was named for the spirit who provides rains during times of drought, according to the legends of the Shona people of Zimbabwe.

  15. Dawn LAMO Image 55

    NASA Image and Video Library

    2016-03-29

    This view from NASA Dawn spacecraft shows an area in mid-southern latitudes on Ceres. The crater named Juling 12 miles, 20 kilometers wide is seen at lower right. Bright material is visible along its upper walls.

  16. Dawn LAMO Image 62

    NASA Image and Video Library

    2016-04-07

    Tupo Crater, named for the Polynesian god of turmeric, is shown at upper left in this view of Ceres from NASA Dawn spacecraft. Just below the crater, a line of narrow troughs parallels the rim of Tupo.

  17. KSC-07pd1384

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, a technician monitors the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd1386

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, a technician monitors the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  19. KSC-07pd1387

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, technicians check data during the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  20. KSC-07pd1388

    NASA Image and Video Library

    2007-06-07

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, technicians are loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann

  1. KSC-07pd1385

    NASA Image and Video Library

    2007-06-06

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Hazardous Processing Facility, technicians check data during the loading of xenon for the ion propulsion system in the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Kim Shiflett

  2. Dawn Gateway View of Ceres

    NASA Image and Video Library

    2014-12-05

    From about three times the distance from Earth to the moon, NASA's Dawn spacecraft spies its final destination -- the dwarf planet Ceres. The resolution of this image does not yet exceed the best views of Ceres, which were obtained by the Hubble Space Telescope (see PIA10235). Nonetheless, Ceres' spherical shape is clearly revealed here. Sunlight illuminates the dwarf planet from the right, leaving a sliver of the surface in shadow at left. A zoomed-in view is provided in Figure 1, along with the original unmagnified, uncropped view. The image was taken on Dec. 1, 2014 with the Dawn spacecraft's framing camera, using a clear spectral filter. Dawn was about 740,000 miles (1.2 million kilometers) from Ceres at the time. Ceres is 590 miles (950 kilometers) across and was discovered in 1801. http://photojournal.jpl.nasa.gov/catalog/PIA19049

  3. Automated Spectral System for Terrain Classification, Mineralogy of Vesta from the Dawn Framing Cameras

    NASA Astrophysics Data System (ADS)

    Reddy, V.; Le Corre, L.; Nathues, A.; Hall, I.; Gutierrez-Marques, P.; Hoffmann, M.

    2011-10-01

    The Dawn mission will rendezvous with asteroid (4) Vesta in July 2011. We have developed a set of equations for extracting mean pyroxene chemistry (Ferrosilite and Wollastonite) for classifying terrains on Vesta by using the Dawn Framing Camera (FC) multi-color bands. The Automated Spectral System (ASS) utilizes pseudo-Band I minima to estimate the mean pyroxene chemistry of diogenites, and basaltic eucrites. The mean pyroxene chemistries of cumulate eucrites, and howardites overlap each other on the pyroxene quadrilateral and hence are harder to distinguish. We expect our ASS to carry a bulk of the terrain classification and mineralogy workload utilizing these equations and complement the work of DawnKey (Le Corre et al., 2011, DPS/EPSC 2011). The system will also provide surface mineral chemistry layers that can be used for mapping Vesta's surface.

  4. Preparing for Dawn's Mission at Ceres: Challenges and Opportunities in the Exploration of a Dwarf Planet

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Mase, Robert A.

    2014-01-01

    After escaping from Vesta in 2012, Dawn is continuing its 2.5-year flight to dwarf planet Ceres. Investigating this second destination promises to provide a view of an intriguing world of ice and rock, likely displaying fascinating geology entirely unlike any body yet orbited by a spacecraft. Dawn spends the significant majority of the time thrusting with its ion propulsion system to deliver the 3.6 km/s required to rendezvous with Ceres. Meanwhile, the operations team has developed the sequences that will be used there. Following orbit capture in March 2015, Dawn will fly to a series of four circular polar science orbits. The orbits, ranging from about 13,500 km to 375 km in altitude, are designed to optimize the scientific observations. The overall strategy for exploring Ceres is based strongly on the extremely successful 16 months of Vesta operations, during which Dawn met or exceeded all of its objectives. Nevertheless, the loss of two of the spacecraft's four reaction wheels has necessitated some important changes. Based on a very productive hydrazine conservation campaign in the interplanetary cruise and the development of new hydrazine-efficient methods of operating at Ceres, there is good reason to expect that Dawn will be able to accomplish all of its objectives regardless of the health of the reaction wheels. This paper describes the progress in traveling to Ceres as well as the plans for exploring this giant, icy world.

  5. Concerning the Motion of FTEs and Attendant Signatures

    NASA Technical Reports Server (NTRS)

    Sibeck, David G.

    2010-01-01

    We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.

  6. KSC-07pd1511

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- The second stage of the Delta II launch vehicle for the Dawn spacecraft is lifted alongside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. At right can be seen the solid rocket boosters surrounding Delta's first stage. The second stage will be mated with the first stage. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  7. KSC-07pd1513

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside the tower and mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  8. Dawn: An Ion-Propelled Journey to the Beginning of the Solar System

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Rayman, Marc D.; Pavri, Betina

    2008-01-01

    The Dawn mission is designed to perform a scientific investigation of the two heaviest mainbelt asteroids Vesta and Ceres. These bodies are believed to preserve records of the physical and chemical conditions present during the formation of the solar system. The mission uses an ion propulsion system to enable the single Dawn spacecraft and its complement of scientific instruments to orbit both of these asteroids. Dawn's three science instruments - the gamma ray and neutron detector, the visible and infrared mapping spectrometer, and the primary framing camera - were successfully tested after launch and are functioning normally. The ion propulsion system includes three ion thrusters of the type flown previously on NASA's Deep Space 1 mission. A minimum of two ion thrusters is necessary to accomplish the Dawn mission. Checkout of two of the ion thrusters was completed as planned within 30 days after launch. This activity confirmed that the spacecraft has two healthy ion thrusters. While further checkout activities are still in progress, the activities completed as of the end of October indicate that the spacecraft is well on its way toward being ready for the start of the thrusting-cruise phase of the mission beginning December 15th.

  9. Dawn Orbit Determination Team : Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matt; Ardito, Alessandro; Han, Don; Haw, Robert; Kennedy, Brian; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The NASA Dawn spacecraft was launched on September 27, 2007 on a mission to study the asteroid belt's two largest objects, Vesta and Ceres. It is the first deep space orbiting mission to demonstrate solar-electric ion propulsion, providing the necessary delta-V to enable capture and escape from two extraterrestrial bodies. At this time, Dawn has completed its science campaign at Vesta and is currently on its journey to Ceres, where it will arrive in mid-2015. The spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012, capturing science data during four dedicated orbit phases. In order to maintain the reference orbits necessary for science and enable the transfers between those orbits, precise and timely orbit determination was required. The constraints associated with low-thrust ion propulsion coupled with the relatively unknown a priori gravity and rotation models for Vesta presented unique challenges for the Dawn orbit determination team. While [1] discusses the prediction performance of the orbit determination products, this paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  10. Dawn LAMO Image 80

    NASA Image and Video Library

    2016-05-03

    NASA Dawn spacecraft shows Azacca Crater has a prominent set of north-south trending fractures. Its floor is relatively smooth and its rim has terraces descending toward its floor. Azacca was named for the Haitian god of agriculture.

  11. Dawn LAMO Image 25

    NASA Image and Video Library

    2016-02-11

    This image, taken by NASA Dawn spacecraft, shows a densely cratered region within Meanderi Crater on Ceres. Elongated craters in the wall of the largest impact feature are likely the result of material slumping down the crater walls.

  12. Dawn LAMO Image 33

    NASA Image and Video Library

    2016-02-24

    NASA Dawn spacecraft captured this view of a region in the mid-southern latitudes of Ceres. The largest crater in the scene is Fluusa. Fluusa has a densely cratered floor and therefore is interpreted as an old impact feature.

  13. Dawn LAMO Image 32

    NASA Image and Video Library

    2016-02-23

    This image of Ceres from NASA Dawn spacecraft was taken at an oblique viewing angle relative to the surface. The crater to the upper right is named Juling which displays prominent spurs of compacted material along its walls.

  14. High-Resolution Global Geologic Map of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Buczkowski, D. L.; Crown, D. A.; Frigeri, A.; Hughson, K.; Kneissl, T.; Krohn, K.; Mest, S. C.; Pasckert, J. H.; Platz, T.; Ruesch, O.; Schulzeck, F.; Scully, J. E. C.; Sizemore, H. G.; Nass, A.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-06-01

    This presentation will discuss the completed 1:4,000,000 global geologic map of dwarf planet Ceres derived from Dawn Framing Camera Low Altitude Mapping Orbit (LAMo) images, combining 15 quadrangle maps.

  15. On the Way to Ceres Artist Concept

    NASA Image and Video Library

    2013-12-03

    This artist concept shows NASA Dawn spacecraft heading toward the dwarf planet Ceres. When Dawn arrives, it will be the first spacecraft to go into orbit around two destinations in our solar system beyond Earth.

  16. Dawn LAMO Image 24

    NASA Image and Video Library

    2016-02-10

    This image, taken by NASA Dawn spacecraft, shows the heavily cratered rim of an older, unnamed impact feature on Ceres. The crater density is almost the same inside and outside, and its wall is also quite battered by impacts.

  17. KSC-07pd1239

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, Orbital Science technicians install a computer chip on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jim Grossmann

  18. KSC-07pd0853

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, an external cover is removed from around the shipping container holding the Dawn spacecraft. The container will then be moved into the high bay of the Payload Processing Facility and the spacecraft removed. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  19. KSC-07pd0862

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, begins removing the protective cover surrounding the Dawn spacecraft. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  20. KSC-07pd0863

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In clean room C of Astrotech's Payload Processing Facility, a worker wearing a "bunny suit," or clean-room attire, looks over the Dawn spacecraft after removing the protective cover, at bottom right. In the clean room, the spacecraft will undergo further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  1. Dawn XMO2 Image 29

    NASA Image and Video Library

    2017-01-11

    Ikapati Crater on Ceres is seen at top right in this image from NASA's Dawn spacecraft. Ikapati has a complex of central peaks and roughly parallel fractures on its floor. The crater, named for a Philippine goddess of cultivated lands, measures 31 miles (50 kilometers) in diameter. Dawn took this image on Oct. 24, 2016, during its second extended-mission science orbit (XMO2), from a distance of about 920 miles (1,480 kilometers) above the surface of Ceres. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21249

  2. KSC-07pd1238

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, a computer chip awaits installation on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jim Grossmann

  3. Chemical Mixing Model and K-Th-Ti Systematics and HED Meteorites for the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Usui, T.; McSween, H. Y., Jr.; Mittlefehldt, D. W.; Prettyman, T. H.

    2009-01-01

    The Dawn mission will explore 4 Vesta, a large differentiated asteroid believed to be the parent body of the howardite, eucrite and diogenite (HED) meteorite suite. The Dawn spacecraft carries a gamma-ray and neutron detector (GRaND), which will measure the abundances of selected elements on the surface of Vesta. This study provides ways to leverage the large geochemical database on HED meteorites as a tool for interpreting chemical analyses by GRaND of mapped units on the surface of Vesta.

  4. KSC-07pd2400

    NASA Image and Video Library

    2007-09-01

    KENNEDY SPACE CENTER, FLA. -- This logo represents the mission of the Dawn spacecraft. During its nearly decade-long mission, Dawn will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. The mission hopes to unlock some of the mysteries of planetary formation, including the building blocks and the processes leading to their state today. The Dawn mission is managed by the Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., for NASA's Science Mission Directorate in Washington, D.C.

  5. Geochemistry at 4 Vesta: Observations Using Fast Neutrons

    NASA Technical Reports Server (NTRS)

    Lawrence, David J.; Prettyman, Thomas H.; Feldman, William C.; Bazell, David; Mittlefehldt, David W.; Peplowski, Patrick N.; Reedy, Robert C.

    2012-01-01

    Dawn is currently in orbit around the asteroid 4 Vesta, and one of the major objectives of the mission is to probe the relationship of Vesta to the Howardite, Eucrite, and Diogenite (HED) meteorites. As Vesta is an example of a differentiated planetary embryo, Dawn will also provide fundamental information about planetary evolution in the early solar system [1]. To help accomplish this overall goal, the Dawn spacecraft carries the Gamma-Ray and Neutron Detector (GRaND). GRaND uses planetary gamma-ray and neutron spectroscopy to measure the surface elemental composition of Vesta and will provide information that is unique and complementary to that provided by the other Dawn instruments and investigations. Gamma-ray and neutron spectroscopy is a standard technique for measuring planetary compositions [2], having successfully made measurements at near-Earth asteroids, the Moon, Mars, Mercury and now Vesta. GRaND has made the first measurements of the neutron spectrum from any asteroid (previous asteroid measurements were only made with gamma-rays). Dawn has been collecting data at Vesta since July 2011. The prime data collection period for GRaND is the Low-Altitude Mapping Orbit (LAMO), which started on 12 December 2011 and will last through spring 2012. During LAMO, the Dawn spacecraft orbits at an average altitude of 210 km above the surface of Vesta, which allows good neutron and gamma-ray signals to be detected from Vesta. A description of the overall goals of GRaND and a summary of the initial findings are given elsewhere [3,4]. The subject of this study is to present the information that will be returned from GRaND using fast neutron measurements. Here, we discuss what fast neutrons can reveal about Vesta s surface composition, how such data can address Dawn science goals, and describe fast neutron measurements made in the early portion of the Vesta LAMO phase.

  6. Dawn HAMO Image 23

    NASA Image and Video Library

    2015-09-24

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 27, 2015.

  7. Dawn HAMO Image 20

    NASA Image and Video Library

    2015-09-21

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 26, 2015.

  8. Dawn LAMO Image 106

    NASA Image and Video Library

    2016-06-09

    This image from NASA Dawn spacecraft shows a portion of Ceres known as Erntedank Planum, a broad plateau 345 miles 555 kilometers wide. The terrain seen here lies just to the southeast of Occator Crater, home of Ceres brightest region.

  9. Dawn HAMO Image 82

    NASA Image and Video Library

    2015-12-22

    Part of the southern hemisphere on dwarf planet Ceres is seen in this image taken by NASA Dawn spacecraft. Hamori crater, named after a Japanese god and protector of tree leaves, is the large crater near the center of the image.

  10. Color Map of Ceres Elliptical Projection

    NASA Image and Video Library

    2016-03-22

    This global map elliptical map from NASA Dawn spacecraft shows the surface of Ceres in enhanced color, encompassing infrared wavelengths beyond human visual range. Some areas near the poles are black where Dawn color imaging coverage is incomplete.

  11. Dawn LAMO Image 89

    NASA Image and Video Library

    2016-05-16

    This image captured by NASA Dawn spacecraft features the shadowy rim of an unnamed crater on Ceres. The crater on the left appears relatively old, as its flanks are rugged and the crater density inside it is more or less uniform.

  12. KSC-07pd1389

    NASA Image and Video Library

    2007-06-07

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, technicians look at the connections for loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann

  13. KSC-07pd1390

    NASA Image and Video Library

    2007-06-07

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Hazardous Processing Facility, a technician checks the connections for loading the Dawn spacecraft with xenon gas for the ion propulsion system. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn spacecraft uses ion propulsion to get the additional velocity needed to reach Vesta once it leaves the Delta rocket. It also uses ion propulsion to spiral to lower altitudes on Vesta, to leave Vesta and cruise to Ceres and to spiral to a low-altitude orbit at Ceres. Ion propulsion makes efficient use of the onboard fuel by accelerating it to a velocity 10 times that of chemical rockets. Dawn is scheduled to launch July 7aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jim Grossmann

  14. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  15. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day.

    PubMed

    Fernandez, Olivier; Ishihara, Hirofumi; George, Gavin M; Mengin, Virginie; Flis, Anna; Sumner, Dean; Arrivault, Stéphanie; Feil, Regina; Lunn, John E; Zeeman, Samuel C; Smith, Alison M; Stitt, Mark

    2017-08-01

    We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis ( Arabidopsis thaliana ) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14 CO 2 pulse experiments. Instead, measurements of incorporation of 13 C from 13 CO 2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. The Enabling Use of Ion Propulsion on Dawn

    NASA Astrophysics Data System (ADS)

    Rayman, M.; Russell, C. T.; Raymond, C. A.; Mase, R. M.

    2011-12-01

    Dawn's mission to orbit both Vesta and Ceres is enabled by its use of ion propulsion. Even orbiting Vesta alone with conventional propulsion would have been unaffordable within the constraints of the Discovery Program, and orbiting both would have been impossible. In fact, no other spacecraft has been targeted to orbit two solar system destinations, which is only one of the many firsts that Dawn will achieve. The successful testing of ion propulsion on Deep Space 1 paved the way for Dawn not only to use the hardware with confidence but also to learn how to design the flight system and design the mission to take advantage of its capabilities. In addition to allowing Dawn to reach these two important targets, ion propulsion allows the spacecraft to accomplish significant changes in its orbit. Therefore, science observations of Vesta are planned from four different orbits, at varying altitudes and solar geometry. The use of ion propulsion results in a significant mission design effort since the trajectory is constantly being refined. This also creates a flexible mission architecture, which allows for optimization of the mission as conditions change. Solar electric ion propulsion is especially well suited to missions to the Main Asteroid Belt since solar energy is still a viable power source, whereas the size of the solar array needed beyond 3.5 AU is a potential limitation. Dawn has already surpassed the record for greatest propulsive velocity, but its greatest achievements will no doubt be the incredible bounty of science data enabled by this innovative flight system.

  17. Leaf Starch Turnover Occurs in Long Days and in Falling Light at the End of the Day1[OPEN

    PubMed Central

    Mengin, Virginie; Arrivault, Stéphanie

    2017-01-01

    We investigated whether starch degradation occurs at the same time as starch synthesis in Arabidopsis (Arabidopsis thaliana) leaves in the light. Starch accumulated in a linear fashion for about 12 h after dawn, then accumulation slowed and content plateaued. Following decreases in light intensity, the rate of accumulation of starch declined in proportion to the decline in photosynthesis if the decrease occurred <10 h after dawn, but accumulation ceased or loss of starch occurred if the same decrease in light intensity was imposed more than 10 h after dawn. These changes in starch accumulation patterns after prolonged periods in the light occurred at both high and low starch contents and were not related to time-dependent changes in either the rate of photosynthesis or the partitioning of assimilate between starch and Suc, as assessed from metabolite measurements and 14CO2 pulse experiments. Instead, measurements of incorporation of 13C from 13CO2 into starch and of levels of the starch degradation product maltose showed that substantial starch degradation occurred simultaneously with synthesis at time points >14 h after dawn and in response to decreases in light intensity that occurred >10 h after dawn. Starch measurements in circadian clock mutants suggested that the clock influences the timing of onset of degradation. We conclude that the propensity for leaf starch to be degraded increases with time after dawn. The importance of this phenomenon for efficient use of carbon for growth in long days and for prevention of starvation during twilight is discussed. PMID:28663333

  18. Comparing Vesta Topography

    NASA Image and Video Library

    2013-09-27

    These two images compare topographic maps of the giant asteroid Vesta as discerned by NASA Hubble Space Telescope top and as seen by NASA Dawn spacecraft bottom. Hubble has been in an orbit around Earth, while Dawn orbited Vesta from 2011 to 2012.

  19. Dawn HAMO Image 34

    NASA Image and Video Library

    2015-10-09

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on September 15, 2015, and has a resolution of 450 feet 140 meters per pixel.

  20. Dawn HAMO Image 27

    NASA Image and Video Library

    2015-09-30

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on August 22, 2015, and has a resolution of 450 feet 140 meters per pixel.

  1. Dawn View from OpNav9

    NASA Image and Video Library

    2015-05-28

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 23, 2015, from a distance of 3,169 miles 5,100 kilometers. Resolution in the image is about 1,565 feet 477 meters per pixel.

  2. Level-2 Milestone 3504: Scalable Applications Preparations and Outreach for the Sequoia ID (Dawn)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futral, W. Scott; Gyllenhaal, John C.; Hedges, Richard M.

    2010-07-02

    This report documents LLNL SAP project activities in anticipation of the ASC Sequoia system, ASC L2 milestone 3504: Scalable Applications Preparations and Outreach for the Sequoia ID (Dawn), due June 30, 2010.

  3. Dawn Mission to Vesta and Ceres Lithograph

    NASA Image and Video Library

    2007-01-01

    This artist's lithograph features general information, significant dates, and interesting facts on the backabout asteroid Vesta and dwarf planet Ceres and is part of the Mission Art series from NASA's Dawn mission. http://photojournal.jpl.nasa.gov/catalog/PIA19370

  4. Dawn HAMO Image 42

    NASA Image and Video Library

    2015-10-21

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres at mid-latitudes, from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel.

  5. Dawn Survey Orbit Image 40

    NASA Image and Video Library

    2015-08-04

    This image, taken by NASA Dawn spacecraft on June 24, 2015, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19613

  6. Dawn LAMO Image 38

    NASA Image and Video Library

    2016-03-02

    NASA Dawn spacecraft obtained this view of Azacca Crater on Ceres. The rim of this crater has terraces descending from its rim down to its floor. The crater floor is relatively free of large impact scars and is named for the Haitian god of agriculture

  7. A Last Look Back at Vesta

    NASA Image and Video Library

    2012-09-05

    This image is from the last sequence of images NASA Dawn spacecraft obtained of the giant asteroid Vesta, looking down at Vesta north pole as it was departing. Dawn escaped from Vesta orbit on Sept. 4, 2012 PDT Sept. 5, 2012 CET.

  8. Dawn LAMO Image 90

    NASA Image and Video Library

    2016-05-17

    This image from NASA Dawn spacecraft shows the western rim of Azacca Crater on Ceres. A smaller impact feature sits on its flank. Of particular interest in this scene is the great number of small, bright spots, in the southern part of the image.

  9. Parallel computing of a climate model on the dawn 1000 by domain decomposition method

    NASA Astrophysics Data System (ADS)

    Bi, Xunqiang

    1997-12-01

    In this paper the parallel computing of a grid-point nine-level atmospheric general circulation model on the Dawn 1000 is introduced. The model was developed by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). The Dawn 1000 is a MIMD massive parallel computer made by National Research Center for Intelligent Computer (NCIC), CAS. A two-dimensional domain decomposition method is adopted to perform the parallel computing. The potential ways to increase the speed-up ratio and exploit more resources of future massively parallel supercomputation are also discussed.

  10. KSC-07pd1241

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, Orbital Science technicians verify that a computer chip is securely bonded to a side brace on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/George Shelton

  11. Dawn XMO2 Image 3

    NASA Image and Video Library

    2016-11-09

    Relatively young craters, with sharp crater rims and streaks of bright material, are the focus of this view of Ceres from NASA's Dawn spacecraft. The large, ancient and quite degraded crater Fluusa is seen at top center. The younger craters are Kupalo, at lower right, and Juling, to its left. Dawn took this image on Oct. 17, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pxel. http://photojournal.jpl.nasa.gov/catalog/PIA21223

  12. KSC-07pd1240

    NASA Image and Video Library

    2007-05-17

    KENNEDY SPACE CENTER, FLA. -- In the Astrotech Space Operations facility, a computer chip is bonded to a side brace on the Dawn spacecraft. The silicon chip holds the names of more than 360,000 space enthusiasts worldwide who signed up to participate in a virtual voyage to the asteroid belt and is about the size of an American five-cent coin. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jim Grossmann

  13. Dawn Orbit Determination Team: Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Kennedy, Brian; Mastrodemos, Nick; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012. In order to maintain the designated science reference orbits and enable the transfers between those orbits, precise and timely orbit determination was required. Challenges included low-thrust ion propulsion modeling, estimation of relatively unknown Vesta gravity and rotation models, track-ing data limitations, incorporation of real-time telemetry into dynamics model updates, and rapid maneuver design cycles during transfers. This paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  14. Dawn HAMO Image 40

    NASA Image and Video Library

    2015-10-19

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 20, 2015, and has a resolution of 450 feet 140 meters per pixel.

  15. Dawn HAMO Image 41

    NASA Image and Video Library

    2015-10-20

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel.

  16. Comparing Vesta's Surface Roughness to the Moon Using Bistatic Radar Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.; Moghaddam, M.

    2015-12-01

    The first orbital bistatic radar (BSR) observations of a small body have been conducted opportunistically by NASA's Dawn spacecraft at Asteroid Vesta using the telecommunications antenna aboard Dawn to transmit and the Deep Space Network 70-meter antennas on Earth to receive. Dawn's high-gain communications antenna continuously transmitted right-hand circularly polarized radio waves (4-cm wavelength), and due to the opportunistic nature of the experiment, remained in a fixed orientation pointed toward Earth throughout each BSR observation. As a consequence, Dawn's transmitted radio waves scattered from Vesta's surface just before and after each occultation of the Dawn spacecraft behind Vesta, resulting in surface echoes at highly oblique incidence angles of greater than 85 degrees, and a small Doppler shift of ~2 Hz between the carrier signal and surface echoes from Vesta. We analyze the power and Doppler spreading of Vesta's surface echoes to assess surface roughness, and find that Vesta's area-normalized radar cross section ranges from -8 to -17 dB, which is notably much stronger than backscatter radar cross section values reported for the Moon's limbs (-20 to -35 dB). However, our measurements correspond to the forward scattering regime--such that at high incidence, radar waves are expected to scatter more weakly from a rough surface in the backscatter direction than that which is scattered forward. Using scattering models of rough surfaces observed at high incidence, we report on the relative roughness of Vesta's surface as compared to the Moon and icy Galilean satellites. Through this, we assess the dominant processes that have influenced Vesta's surface roughness at centimeter and decimeter scales, which are in turn applicable to assisting future landing, sampling and orbital missions of other small bodies.

  17. Ceres Evolution: From Thermodynamic Modeling and Now Dawn Observation

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Combe, J. P.; Castillo, J. C.; Raymond, C. A.; De Sanctis, M. C.; Jaumann, R.; Ammannito, E.; Russell, C. T.

    2015-12-01

    Thermodynamic modeling indicated that Ceres has experienced planetary processes, including extensive melting of its ~25% water and differentiation, (McCord and Sotin, JGR, 2005; Castillo and McCord, Icarus, 2009). Early telescopic studies showed Ceres' surface to be spectrally similar to carboneous-chondrite-like material, i.e., aqueously altered silicates darkened by carbon, with a water-OH-related absorption near 3.06 µm. Later observations improved the spectra and suggested more specific interpretations: Structural water in clay minerals, phyllosilicates, perhaps ammoniated, iron-rich clays, carbonates, brucite, all implying extensive aqueous alteration, perhaps in the presence of CO2. Telescopic observations and thermodynamic models predicted Dawn would find a very different body compared to Vesta (e.g. McCord et al., SSR, 2011), as current Dawn observations are confirming. Ceres' original water ice should have melted early in its evolution, with the resulting differentiation and mineralization strongly affecting Ceres' composition, size and shape over time. The ocean should have become very salty and perhaps may still be liquid in places. The surface composition from telescopes seems to reflect this complex history. The mineralization with repeated mixing of the crust with the early liquid interior and with in-fall from space would create a complex surface that will present an interpretation challenge for Dawn. The Dawn spacecraft is currently collecting observations of Ceres' landforms, elemental and mineralogical/molecular composition and gravity field from orbit. Early results suggest a heavily cratered but distorted and lumpy body with features and composition consistent with internal activity, perhaps recent or current, associated with water and perhaps other volatiles. We will present and interpret the latest Dawn Ceres findings and how they affect our earlier understanding of Ceres evolution from modeling and telescope observations.

  18. Dawn Survey Orbit Image 32

    NASA Image and Video Library

    2015-07-22

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19601

  19. Dawn Survey Orbit Image 23

    NASA Image and Video Library

    2015-07-09

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 22, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19591

  20. Dawn HAMO Image 16

    NASA Image and Video Library

    2015-09-15

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19894

  1. Dawn Survey Orbit Image 5

    NASA Image and Video Library

    2015-06-16

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19573

  2. Dawn HAMO Image 19

    NASA Image and Video Library

    2015-09-18

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 26, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19897

  3. Dawn Survey Orbit Image 31

    NASA Image and Video Library

    2015-07-21

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19600

  4. Dawn OpNav9 Image 5

    NASA Image and Video Library

    2015-06-12

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19567

  5. Dawn Survey Orbit Image 26

    NASA Image and Video Library

    2015-07-14

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19594

  6. Dawn Survey Orbit Image 15

    NASA Image and Video Library

    2015-06-26

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 10, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19583

  7. Dawn Survey Orbit Image 4

    NASA Image and Video Library

    2015-06-15

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19572

  8. Dawn OpNav9 Image 4

    NASA Image and Video Library

    2015-06-11

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19566

  9. Dawn OpNav9 Image 3

    NASA Image and Video Library

    2015-06-10

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19565

  10. Dawn HAMO Image 17

    NASA Image and Video Library

    2015-09-16

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19895

  11. Dawn Survey Orbit Image 8

    NASA Image and Video Library

    2015-06-19

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19576

  12. Dawn HAMO Image 15

    NASA Image and Video Library

    2015-09-14

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19893

  13. Dawn OpNav9 Image 1

    NASA Image and Video Library

    2015-06-08

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19563

  14. Dawn HAMO Image 21

    NASA Image and Video Library

    2015-09-22

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 27, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19899

  15. Dawn HAMO Image 14

    NASA Image and Video Library

    2015-09-11

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19892

  16. Dawn Survey Orbit Image 22

    NASA Image and Video Library

    2015-07-08

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 18, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19590

  17. Dawn HAMO Image 18

    NASA Image and Video Library

    2015-09-17

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 26, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19896

  18. Dawn Survey Orbit Image 30

    NASA Image and Video Library

    2015-07-20

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19599

  19. Dawn Survey Orbit Image 28

    NASA Image and Video Library

    2015-07-16

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19596

  20. Dawn Survey Orbit Image 12

    NASA Image and Video Library

    2015-06-23

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 7, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19580

  1. Dawn OpNav9 Image 2

    NASA Image and Video Library

    2015-06-09

    This image of Ceres is part of a sequence taken by NASA Dawn spacecraft on May 22, 2015, from a distance of 3,200 miles 5,100 kilometers with a resolution of 1,600 feet 480 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19564

  2. Dawn Survey Orbit Image 27

    NASA Image and Video Library

    2015-07-15

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19595

  3. Dawn HAMO Image 22

    NASA Image and Video Library

    2015-09-23

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 27, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19900

  4. Dawn Survey Orbit Image 7

    NASA Image and Video Library

    2015-06-18

    This image, taken by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 9, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19575

  5. Dawn First Glimpse of Vesta -- Processed

    NASA Image and Video Library

    2011-05-11

    This image, processed to show the true size of the giant asteroid Vesta, shows Vesta in front of a spectacular background of stars. It was obtained by the framing camera aboard NASA Dawn spacecraft on May 3, 2011, from a distance of about 750,000 miles.

  6. Singing in the moonlight: dawn song performance of a diurnal bird varies with lunar phase

    PubMed Central

    York, Jennifer E.; Young, Andrew J.; Radford, Andrew N.

    2014-01-01

    It is well established that the lunar cycle can affect the behaviour of nocturnal animals, but its potential to have a similar influence on diurnal species has received less research attention. Here, we demonstrate that the dawn song of a cooperative songbird, the white-browed sparrow weaver (Plocepasser mahali), varies with moon phase. When the moon was above the horizon at dawn, males began singing on average 10 min earlier, if there was a full moon compared with a new moon, resulting in a 67% mean increase in performance period and greater total song output. The lack of a difference between full and new moon dawns when the moon was below the horizon suggests that the observed effects were driven by light intensity, rather than driven by other factors associated with moon phase. Effects of the lunar cycle on twilight signalling behaviour have implications for both pure and applied animal communication research. PMID:24429683

  7. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila.

    PubMed

    Tang, Xin; Roessingh, Sanne; Hayley, Sean E; Chu, Michelle L; Tanaka, Nobuaki K; Wolfgang, Werner; Song, Seongho; Stanewsky, Ralf; Hamada, Fumika N

    2017-05-02

    Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory anterior cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation.

  8. KSC-07pd1515

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second stage of the Delta II launch vehicle onto the first stage for mating. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  9. Dawn Auroral Breakup at Saturn Initiated by Auroral Arcs: UVIS/Cassini Beginning of Grand Finale Phase

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Yao, Z. H.; Gérard, J.-C.; Badman, S. V.; Pryor, W.; Bonfond, B.

    2017-12-01

    We present Cassini auroral observations obtained on 11 November 2016 with the Ultraviolet Imaging Spectrograph at the beginning of the F-ring orbits and the Grand Finale phase of the mission. The spacecraft made a close approach to Saturn's southern pole and offered a remarkable view of the dayside and nightside aurora. With this sequence we identify, for the first time, the presence of dusk/midnight arcs, which are azimuthally spread from high to low latitudes, suggesting that their source region extends from the outer to middle/inner magnetosphere. The observed arcs could be auroral manifestations of plasma flows propagating toward the planet from the magnetotail, similar to terrestrial "auroral streamers." During the sequence the dawn auroral region brightens and expands poleward. We suggest that the dawn auroral breakup results from a combination of plasma instability and global-scale magnetic field reconfiguration, which is initiated by plasma flows propagating toward the planet. Alternatively, the dawn auroral enhancement could be triggered by tail magnetic reconnection.

  10. Dawn XMO2 Image 32

    NASA Image and Video Library

    2017-02-10

    This image captures the day-night boundary, or terminator, in the north polar region of Ceres. The north pole itself, which lies just slightly left of center in this view, is barely sunlit, even though the local time at its location is 11:06 a.m. The north polar region is densely cratered, and some crater floors remain in permanent shadow. Some of those permanently shadowed craters contain bright deposits, as described in a 2016 Nature Astronomy study by scientists on NASA's Dawn mission. The best example of these bright deposits was found by Dawn in an unnamed and geologically young, 4-mile- (6-kilometer-) wide crater located at 86.2 degrees north latitude, 80.0 degrees east longitude (the small, sharply defined crater just right of center). This picture was obtained by the Dawn spacecraft on October 17, 2016, from an altitude of about 923 miles (1,486 kilometers). The image is located at 89 degrees north latitude, 86 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA21397

  11. Dawn Orbit Determination Team: Trajectory and Gravity Prediction Performance During Vesta Science Phases

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all spacecraft teams. Dawn's Orbit Determination (OD) team was tasked with accurately predicting the trajectory of the Dawn spacecraft during the Vesta science phases, and also determining the parameters of Vesta to support future science orbit design. The future orbits included the upcoming science phase orbits as well as the transfer orbits between science phases. In all, five science phases were executed at Vesta, and this paper will describe some of the OD team contributions to the planning and execution of those phases.

  12. A simple model describing the nonlinear dynamics of the dusk/dawn asymmetry in the high-latitude thermospheric flow

    NASA Technical Reports Server (NTRS)

    Gundlach, J. P.; Larsen, M. F.; Mikkelsen, I. S.

    1988-01-01

    A simple nonlinear, axisymmetric, shallow-water numerical model has been used to study the asymmetry in the neutral flow between the dusk and dawn sides of the auroral oval. The results indicate that the Coriolis force and the curvature terms are nearly in balance on the evening side and require only a small pressure gradient to effect adjustment. The result is smaller neutral velocities near dawn and larger velocities near dusk than would be the case for a linearized treatment. A consequence is that more gravity wave energy is produced on the morning side than on the evening side.

  13. KSC-07pd2062

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — Sitting on a transporter, the Dawn spacecraft arrives at the Astrotech payload processing facility. Dawn was returned from Launch Pad 17-B at Cape Canaveral Air Force Station to Astrotech to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/Charisse Nahser

  14. KSC-07pd2063

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — The Dawn spacecraft is moved inside the Astrotech payload processing facility. Dawn was returned from Launch Pad 17-B at Cape Canaveral Air Force Station to Astrotech to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/Charisse Nahser

  15. KSC-07pd1658

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers prepare NASA's Dawn spacecraft mated to the Delta II upper stage booster, for hoisting up into the mobile service tower. Dawn will be mated with the Delta II launch vehicle. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  16. Dawn XMO2 Image 28

    NASA Image and Video Library

    2017-01-03

    Meanderi Crater on Ceres is seen at lower right in this image from NASA's Dawn spacecraft. Meanderi -- named for the Ngaing goddess (New Guinea) of taro, sugar cane and other foods -- hosts several medium-sized craters within its walls. Meanderi measures 64 miles (103 kilometers) in diameter. The crater is centered at 41 degrees south, 194 degrees east. Dawn took this image on Oct. 26, 2016, during its second extended-mission science orbit (XMO2), from a distance of about 920 miles (1,480 kilometers) above the surface of Ceres. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21248

  17. Dawn HAMO Image 32

    NASA Image and Video Library

    2015-10-07

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19910

  18. Dawn HAMO Image 31

    NASA Image and Video Library

    2015-10-06

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19909

  19. Dawn HAMO Image 33

    NASA Image and Video Library

    2015-10-08

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on September 14, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19971

  20. Dawn HAMO Image 30

    NASA Image and Video Library

    2015-10-05

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19908

  1. Dawn HAMO Image 36

    NASA Image and Video Library

    2015-10-13

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on September 20, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19978

  2. Dawn HAMO Image 37

    NASA Image and Video Library

    2015-10-14

    This image, taken by NASA Dawn spacecraft on Sept. 20, 2015, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19979

  3. Dawn HAMO Image 35

    NASA Image and Video Library

    2015-10-12

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on August 23, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19972

  4. Dawn HAMO Image 29

    NASA Image and Video Library

    2015-10-02

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on September 9, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19907

  5. Dawn HAMO Image 9

    NASA Image and Video Library

    2015-09-03

    This image, taken by NASA Dawn spacecraft, shows a portion of Ceres at mid-latitudes from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19885

  6. Dawn HAMO Image 28

    NASA Image and Video Library

    2015-10-01

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 24, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19906

  7. Dawn HAMO Image 25

    NASA Image and Video Library

    2015-09-28

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 21, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19903

  8. Dawn HAMO Image 26

    NASA Image and Video Library

    2015-09-29

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 21, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19904

  9. Dawn HAMO Image 24

    NASA Image and Video Library

    2015-09-25

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on August 21, 2015, and has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19902

  10. Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.

    2012-01-01

    A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.

  11. Using Dawn to Observe SEP Events Past 2 AU

    NASA Astrophysics Data System (ADS)

    Villarreal, Michaela; Russell, Christopher T.; Prettyman, Thomas H.

    2017-10-01

    The launch of the STEREO spacecraft provided much insight into the longitudinal and radial distribution of solar energetic particles (SEPs) relative to their origin site. However, almost all of the observations of SEP events have been made exclusively near 1 AU. The Dawn mission, which orbited around Vesta before arriving at Ceres, provides an opportunity to analyze these events at much further distances. Although Dawn's Gamma Ray and Neutron Detector (GRaND) is not optimized for SEP characterization, it is sensitive to protons greater than 4 MeV, making it capable of detecting a solar energetic particle event in its vicinity. Solar energetic particles in this area of the solar system are important as they are believed to cause sputtering at bodies such as Ceres and comets (Villarreal et al., 2017; Wurz et al., 2015). In this study, we use Dawn’s GRaND data from 2011-2015 when Dawn was at distances between 2-3 AU. We compare the SEP events seen by Dawn with particle measurements at 1 AU using STEREO, Wind, and ACE to understand how the SEP events evolved past 1 AU.References: Villarreal, M. N., et al. (2017), The dependence of the Cerean exosphere on solar energetic particle events, Astrophys. J. Lett., 838, L8.Wurz, P. et al. (2015), Solar wind sputtering of dust on the surface of 67P/Churyumov-Gerasimenko, A&A, 583, A22.

  12. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  13. Dawn-dusk asymmetries in rotating magnetospheres: Lessons from modeling Saturn

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Kivelson, Margaret G.

    2016-02-01

    Spacecraft measurements reveal perplexing dawn-dusk asymmetries of field and plasma properties in the magnetospheres of Saturn and Jupiter. Here we describe a previously unrecognized source of dawn-dusk asymmetry in a rapidly rotating magnetosphere. We analyze two magnetohydrodynamic simulations, focusing on how flows along and across the field vary with local time in Saturn's dayside magnetosphere. As plasma rotates from dawn to noon on a dipolarizing flux tube, it flows away from the equator along the flux tube at roughly half of the sound speed (Cs), the maximum speed at which a bulk plasma can flow along a flux tube into a lower pressure region. As plasma rotates from noon to dusk on a stretching flux tube, the field-aligned component of its centripetal acceleration decreases and it flows back toward the equator at speeds typically smaller than 1/2 Cs. Correspondingly, the plasma sheet remains far thicker and the field less stretched in the afternoon than in the morning. Different radial force balance in the morning and afternoon sectors produce asymmetry in the plasma sheet thickness and a net dusk-to-dawn flow inside of L = 15 or equivalently, a large-scale electric field (E) oriented from postnoon to premidnight, as reported from observations. Morning-afternoon asymmetry analogous to that found at Saturn has been observed at Jupiter, and a noon-midnight component of E cannot be ruled out.

  14. Reevaluating Surface Composition of Asteroid (4) Vesta by Comparing HED Spectral Data with Dawn Framing Camera (FC) Observations

    NASA Astrophysics Data System (ADS)

    Giebner, T.; Jaumann, R.; Schröder, S.

    2016-08-01

    This master's thesis project tries to reevaluate previous findings on asteroid (4) Vesta's surface composition by using DAWN FC Filter image ratios in a new way in order to identify HED (howardite, eucrite, diogenite) lithologies on the surface.

  15. Dawn HAMO Image 44

    NASA Image and Video Library

    2015-10-23

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19986

  16. Dawn HAMO Image 10

    NASA Image and Video Library

    2015-09-04

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19886

  17. Dawn Survey Orbit Image 53

    NASA Image and Video Library

    2015-08-24

    This image, taken by NASA's Dawn spacecraft, shows the bright spots of Occator crater on Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19630

  18. Dawn HAMO Image 52

    NASA Image and Video Library

    2015-11-04

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres at mid-latitudes from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 29, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19994

  19. Dawn HAMO Image 8

    NASA Image and Video Library

    2015-09-02

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19884

  20. Dawn HAMO Image 12

    NASA Image and Video Library

    2015-09-10

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19888

  1. Dawn HAMO Image 48

    NASA Image and Video Library

    2015-10-29

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 22, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19990

  2. Dawn Survey Orbit Image 34

    NASA Image and Video Library

    2015-07-24

    This image, taken on June 25, 2015 by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers, with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19603

  3. Dawn HAMO Image 6

    NASA Image and Video Library

    2015-08-31

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19882

  4. Dawn HAMO Image 7

    NASA Image and Video Library

    2015-09-01

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19883

  5. Dawn HAMO Image 45

    NASA Image and Video Library

    2015-10-26

    This image, taken by NASA Dawn spacecraft, shows the surface of dwarf planet Ceres at mid-latitudes from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19987

  6. Dawn HAMO Image 5

    NASA Image and Video Library

    2015-08-28

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19881

  7. Dawn HAMO Image 4

    NASA Image and Video Library

    2015-08-27

    This image, taken by NASA's Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image, with a resolution of 450 feet (140 meters) per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19635

  8. Dawn HAMO Image 43

    NASA Image and Video Library

    2015-10-22

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 21, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19985

  9. Dawn Survey Orbit Image 35

    NASA Image and Video Library

    2015-07-27

    This image, taken by NASA Dawn spacecraft, shows the brightest spots on dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers. The image, with a resolution of 1,400 feet 410 meters per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19604

  10. Dawn HAMO Image 38

    NASA Image and Video Library

    2015-10-15

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 20, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19980

  11. Dawn Survey Orbit Image 13

    NASA Image and Video Library

    2015-06-24

    The north pole of Ceres can be seen in this image taken on June 9, 2015 by NASA Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19581

  12. Dawn HAMO Image 11

    NASA Image and Video Library

    2015-09-08

    This image, taken by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image, with a resolution of 450 feet 140 meters per pixel, was taken on August 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19887

  13. Dawn HAMO Image 49

    NASA Image and Video Library

    2015-10-30

    This image, taken by NASA Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles 1,470 kilometers. The image was taken on Sept. 22, 2015, and has a resolution of 450 feet 140 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19991

  14. Dawn Survey Orbit Image 33

    NASA Image and Video Library

    2015-07-23

    This image, taken on June 25, 2015 by NASA Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles 4,400 kilometers, with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19602

  15. Dawn Survey Orbit Image 45

    NASA Image and Video Library

    2015-08-11

    This image, taken June 6, 2015 by NASA Dawn spacecraft, shows Haulani crater on Ceres from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. North on Ceres is toward upper right. http://photojournal.jpl.nasa.gov/catalog/PIA19621

  16. Modeling and Simulation of an Unmanned Ground Vehicle Power System

    DTIC Science & Technology

    2014-08-07

    Modeling and Simulation of an Unmanned Ground Vehicle Power System John Broderick Jack Hartner Dawn Tilbury Ella Atkins Sponsored by U.S...5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) John Broderick ; Jack Hartner; Dawn Tilbury; Ella Atkins 5d. PROJECT

  17. Travels With Mullen

    Science.gov Websites

    Department of Defense Submit Search Operation New Dawn September 2010 More Stories Mullen Gets Afghanistan mission officially transfer to the civilian-led Operation New Dawn, Navy Adm. Mike Mullen, chairman of the Operation Atlantic Resolve Sexual Assault Prevention Asia-Pacific Rebalance Cyber Strategy News Today in DOD

  18. Club Drugs. The DAWN Report.

    ERIC Educational Resources Information Center

    Substance Abuse and Mental Health Services Administration (DHHS/PHS), Rockville, MD. Office of Applied Studies.

    This report was prepared in response to requests from the media, law enforcement, and community leaders for information about club drugs. By being able to utilize statistics from hospital emergency departments and by compiling statistics on drug-related deaths, the Drug Abuse Warning Network (DAWN) is able to alert parents, educators, and others…

  19. Juling Crater's Floor

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows the floor of Ceres' Juling Crater. The crater floor shows evidence of the flow of ice and rock, similar to rock glaciers in Earth's polar regions. Dawn acquired the picture with its framing camera on Aug. 30, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21920

  20. Dawn: Testing Paradigms by Exploring Dichotomies

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Schmidt, B. E.; Wise, J.; Ristvey, J.; Raymond, C. A.

    2010-12-01

    NASA’s Dawn mission represents a series of “firsts” for major NASA missions. Dawn is the first major NASA science mission to use ion propulsion engines, allowing Dawn to be the first mission to orbit one target and then leave its gravity well to explore a second destination. Dawn is the first science mission to the main asteroid belt, reaching protoplanet Vesta in summer 2011, and will be the first mission to reach a “dwarf planet” when it arrives at Ceres in 2015. By targeting both Vesta and Ceres, Dawn explores two intriguing dichotomies in the solar system, that of the dry rocky planets and the wet icy bodies (Fire and Ice) and the dichotomy between planets and asteroids. Is there a clear dividing line here? Vesta, the second most massive asteroid, is a protoplanet: a round, mostly intact asteroid that bears more resemblance to a planet than to smaller asteroids. Vesta is also the likely parent body of the HED meteorites that richly populate Earth’s meteorite collections. It is possible to hold a piece of Vesta in your hands. From the HED meteorites, scientists have learned the Vesta is one of few differentiated asteroids. And from its spectrum, rich in basaltic minerals, it is known to be much like a mini-version of Earth’s Moon and Mercury. Vesta’s surface once was home to floods of lava not unlike those found still today on the Earth. Vesta is very similar to a terrestrial planet. Ceres is the giant of the asteroid belt with a hydrostatic shape that earns it a dwarf planet classification. Like its larger cousins, Ceres’ round shape suggests that the body may be differentiated, but due to its low density, Ceres’ interior is more like an icy moon of Jupiter. Beneath a relatively thin clay veneer probably lies an ice-rich mantle and rocky core, and even possibly a liquid ocean. With such enticing questions posed for Vesta and Ceres, Dawn will enable scientists and the public alike to explore how planets were born, how fire and ice have shaped the solar system, and have a chance to push the boundaries of our own classification system. Dawn’s set of instrumentation, with cameras, a visible and infrared spectrometer, a gamma ray and neutron detector and radio science, will produce a wealth of information about two previously unexplored, diverse and yet somehow familiar worlds. Communication of the lessons learned by Dawn from the scientists to the public has and will occur over a range of interfaces, including a series of online activities such as Find a Meteorite, Clickworkers and a simulation of an ion engine. Other activities include Dawn “Science of the Day” archives, fun family activities and games as well as classroom materials and outreach events. Since the two bodies are the brightest sources in the main belt, an integral part of Dawn’s journey has been the integration of amateur and “backyard” astronomers. All these activities allow us to share the science with the public. Dawn arrives at Vesta in the middle of the Year of the Solar System in July 2011 and will depart for Ceres as the YSS ends.

  1. KSC-07pd2061

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — On Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is safely secured on a transporter for its trip to Astrotech. Dawn is being returned to the Astrotech payload processing facility to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/George Shelton

  2. KSC-07pd2058

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — On Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lowered from the mobile service tower to the ground. Dawn is being returned to the Astrotech payload processing facility to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/George Shelton

  3. KSC-07pd2059

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — On Pad 17-B at Cape Canaveral Air Force Station, the Dawn spacecraft is lowered from the mobile service tower to the ground. Dawn is being returned to the Astrotech payload processing facility to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/George Shelton

  4. Dawn Survey Orbit Image 20

    NASA Image and Video Library

    2015-07-06

    This image, taken by NASA's Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 22, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19588

  5. Dawn Survey Orbit Image 29

    NASA Image and Video Library

    2015-07-17

    This image, taken by NASA's Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19597

  6. Dawn Survey Orbit Image 17

    NASA Image and Video Library

    2015-06-30

    This image, taken by NASA's Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 16, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19585

  7. Dawn Survey Orbit Image 25

    NASA Image and Video Library

    2015-07-13

    This image, taken by NASA's Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19593

  8. Dawn Survey Orbit Image 24

    NASA Image and Video Library

    2015-07-10

    This image, taken by NASA's Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 21, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19592

  9. Dawn Survey Orbit Image 46

    NASA Image and Video Library

    2015-08-12

    This image, taken on June 6, 2015 by NASA Dawn spacecraft, shows a mountain on Ceres at center-left that is 4 miles 6 kilometers high, from an altitude of 2,700 miles 4,400 kilometers with a resolution of 1,400 feet 410 meters per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19622

  10. 76 FR 35259 - In the Matter of Dawn Technologies, Inc., Distinctive Devices, Inc., Haber, Inc., and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of Dawn Technologies, Inc., Distinctive Devices, Inc., Haber, Inc., and Independence Brewing Co.; Order of Suspension of Trading June 14... a lack of current and accurate information concerning the securities of Independence Brewing Co...

  11. DAWN Handbook: Teaching Students with Disabilities--Guidelines for Academic Staff

    ERIC Educational Resources Information Center

    Kennedy, Stephen; Treanor, Declan; O'Grady, Mary

    2008-01-01

    This guide was developed by DAWN (Disability Advisors Working Network) in consultation with AHEAD (Association for Higher Education Access and Disability), Asperger Syndrome Association of Ireland, Brainwave, DeafHear, Dyslexia Association of Ireland and the National Council for the Blind. This is an introductory guide and should be used as a…

  12. Wejkwapniaq (Coming of the Dawn).

    ERIC Educational Resources Information Center

    Christmas, Peter

    Just as the Micmac word "wejkwapniaq" may be interpreted in several ways, the title of this compilation of fact, folklore, and history of the Micmac people can be interpreted to mean "The Dawn of Nova Scotia History" or "The Coming of New and Bad Things for the Micmac". This teacher's guide provides information on the…

  13. DAWN Mission Bus and Waveguide Venting Analysis Review

    NASA Technical Reports Server (NTRS)

    Cragg, Clinton H.; Kichak, Robert A.; Sutter, James K.; Holder, Donald; Jeng, Frank; Ruitberg, Arthur; Sank, Victor

    2007-01-01

    A concern was raised regarding the time after launch when the DAWN Mission Communications Subsystem, which contains a 100 Watt X-Band Traveling Wave Tube Amplifier (TWTA) with a high voltage ((approximately 7 Kilo Volt (KV)) Electronic Power Converter (EPC), will be powered on for the first post-launch downlink. This activation is planned to be approximately one hour after launch. Orbital Sciences (the DAWN Mission spacecraft contractor) typically requires a 24-hour wait period prior to high voltage initiation for Earth-orbiting Science and GEO spacecraft. The concern relates to the issue of corona and/or radio frequency (RF) breakdown of the TWTA ((high voltage direct current (DC) and RF)), and of the microwave components (high voltage RF) in the presence of partial atmospheric pressures or outgassing constituents. In particular, generally the diplexer and circulator are susceptible to RF breakdown in the corona region due to the presence of small physical gaps (( 2.5 millimeter (mm)) between conductors that carry an RF voltage. The NESC concurred the DAWN Mission communication system is safe for activation.

  14. Dawn Arrives at Vesta: The Smallest Terrestrial Planet

    NASA Astrophysics Data System (ADS)

    Russell, C. T.; Raymond, C. A.; Coradini, A.; Nathues, A.; De Sanctis, M. C.; Prettyman, T. H.; Jaumann, R.; McSween, H. Y.; McCord, T. B.; Keller, H. U.; Rayman, M.

    2011-12-01

    The Dawn Mission is a revolutionary concept in planetary exploration. Within the cost cap of a low-cost Discovery mission, a spacecraft has been flown to the main asteroid belt and been put into orbit around its second most massive body, 4 Vesta. Vesta was clearly beginning its march to planet-hood when its accretion stopped, most probably by the formation of Jupiter. Dawn's exploration is enabled by an ion propulsion system that will not only allow Dawn to descend to 200 km altitude, but to leave Vesta, travel to and orbit 1 Ceres in 2015 and map this largest main belt asteroid, a dwarf planet. The initial images of the surface of Vesta have been astounding. They reveal the diverse geochemical processes driven by the internal heat of this 530 km diameter body and titanic forces that have battered Vesta for over 4.65 billion years. A large southern impact structure, troughs ringing the equator, striped craters, dark albedo features contrasting with very high albedo features and a richly colored surface distinguish this most unusual small world.

  15. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila

    PubMed Central

    Tang, Xin; Roessingh, Sanne; Hayley, Sean E; Chu, Michelle L; Tanaka, Nobuaki K; Wolfgang, Werner; Song, Seongho; Stanewsky, Ralf; Hamada, Fumika N

    2017-01-01

    Animals have sophisticated homeostatic controls. While mammalian body temperature fluctuates throughout the day, small ectotherms, such as Drosophila achieve a body temperature rhythm (BTR) through their preference of environmental temperature. Here, we demonstrate that pigment dispersing factor (PDF) neurons play an important role in setting preferred temperature before dawn. We show that small lateral ventral neurons (sLNvs), a subset of PDF neurons, activate the dorsal neurons 2 (DN2s), the main circadian clock cells that regulate temperature preference rhythm (TPR). The number of temporal contacts between sLNvs and DN2s peak before dawn. Our data suggest that the thermosensory anterior cells (ACs) likely contact sLNvs via serotonin signaling. Together, the ACs-sLNs-DN2s neural circuit regulates the proper setting of temperature preference before dawn. Given that sLNvs are important for sleep and that BTR and sleep have a close temporal relationship, our data highlight a possible neuronal interaction between body temperature and sleep regulation. DOI: http://dx.doi.org/10.7554/eLife.23206.001 PMID:28463109

  16. Studying Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta; Jansen, Rolf A.; Windhorst, Rogier; Tilvi, Vithal; Finkelstein, Steven; Wold, Isak; Papovich, Casey; Fan, Xiaohui; Mellema, Garrelt; Zackrisson, Erik; Jensen, Hannes; T

    2018-01-01

    Our understanding of Cosmic Dawn can be revolutionized using WFIRST's combination of wide-field, sensitive, high resolution near-infrared imaging and spectroscopy. Guest investigator studies of WFIRST's high latitude imaging survey and supernova search fields will yield orders of magnitude increases in our samples of Lyman break galaxies from z=7 to z>12. The high latitude spectrsocopic survey will enable an unprecedented search for z>7 quasars. Guest observer deep fields can extend these studies to flux levels of Hubble's deepest fields, over regions measured in square degrees. The resulting census of luminous objects in the Cosmic Dawn will provide key insights into the sources of the ultraviolet photons that powered reionization. Moreover, because WFIRST has a wide field (slitless) spectroscopic capability, it can be used to search for Lyman alpha emitting galaxies over the full history of reionization. By comparing the Lyman alpha galaxy statistics to those of continuum sources, we can directly probe the transparency of the intergalactic gas and chart reionization history.Our team is planning for both Guest Investigator and Guest Observer applications of WFIRST to studying Cosmic Dawn, and welcomes dialog with other interested members of the community.

  17. Ceres During Opposition Surge.

    NASA Image and Video Library

    2017-05-16

    NASA's Dawn spacecraft successfully observed Ceres at opposition on April 29, 2017, taking images from a position exactly between the sun and Ceres' surface. Mission specialists had carefully maneuvered Dawn into a special orbit so that the spacecraft could view Occator Crater, which contains the brightest area of Ceres, from this new perspective. A movie shows these opposition images, with contrast enhanced to highlight brightness differences. The bright spots of Occator stand out particularly well on an otherwise relatively bland surface. Dawn took these images from an altitude of about 12,000 miles (20,000 kilometers). Based on data from ground-based telescopes and spacecraft that have previously viewed planetary bodies at opposition, scientists predicted that Ceres would appear brighter from this opposition configuration. This increase in brightness, or "surge," relates the size of the grains of material on the surface, as well as how porous those materials are. The science motivation for performing these observations is further explained in the March 2017 issue of the Dawn Journal blog. A movie can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21405

  18. Intrinsic Dawn-Dusk Asymmetry of Magnetotail Thin Current Sheet

    NASA Astrophysics Data System (ADS)

    Lu, S.; Pritchett, P. L.; Angelopoulos, V.; Artemyev, A.

    2017-12-01

    Magnetic reconnection and its related phenomena (flux ropes, dipolarization fronts, bursty bulk flows, particle injections, etc.) occur more frequently on the duskside in the Earth's magnetotail. Magnetohydrodynamic simulations attributed the asymmetry to the nonuniform ionospheric conductance through global scale magnetosphere-ionosphere interaction. Hybrid simulations, on the other hand, found an alternative responsible mechanism: the Hall effect in the magnetotail thin current sheet, but left an open question: What is the physical origin of the asymmetric Hall effect? The answer could be the temperature difference on the two sides and/or the dawn-dusk transportation of magnetic flux and plasmas. In this work, we use 3-D particle-in-cell simulations to further explore the magnetotail dawn-dusk asymmetry. The magnetotail equilibrium contains a dipole magnetic field and a current sheet region. The simulation is driven by a symmetric and localized (in the y direction) high-latitude electric field, under which the current sheet thins with a decrease of Bz. During the same time, a dawn-dusk asymmetry is formed intrinsically in the thin current sheet, with a smaller Bz, a stronger Hall effect (indicated by the Hall electric field Ez), and a stronger cross-tail current jy on the duskside. The deep origin of the asymmetry is also shown to be dominated by the dawnward E×B drift of magnetic flux and plasmas. A direct consequence of this intrinsic dawn-dusk asymmetry is that it favors magnetotail reconnection and related phenomena to preferentially occur on the duskside.

  19. Enhanced Early View of Ceres from Dawn

    NASA Image and Video Library

    2014-12-05

    As the Dawn spacecraft flies through space toward the dwarf planet Ceres, the unexplored world appears to its camera as a bright light in the distance, full of possibility for scientific discovery. This view was acquired as part of a final calibration of the science camera before Dawn's arrival at Ceres. To accomplish this, the camera needed to take pictures of a target that appears just a few pixels across. On Dec. 1, 2014, Ceres was about nine pixels in diameter, nearly perfect for this calibration. The images provide data on very subtle optical properties of the camera that scientists will use when they analyze and interpret the details of some of the pictures returned from orbit. Ceres is the bright spot in the center of the image. Because the dwarf planet is much brighter than the stars in the background, the camera team selected a long exposure time to make the stars visible. The long exposure made Ceres appear overexposed, and exaggerated its size; this was corrected by superimposing a shorter exposure of the dwarf planet in the center of the image. A cropped, magnified view of Ceres appears in the inset image at lower left. The image was taken on Dec. 1, 2014 with the Dawn spacecraft's framing camera, using a clear spectral filter. Dawn was about 740,000 miles (1.2 million kilometers) from Ceres at the time. Ceres is 590 miles (950 kilometers) across and was discovered in 1801. http://photojournal.jpl.nasa.gov/catalog/PIA19050

  20. Evidence for ground-ice occurrence on asteroid Vesta using Dawn bistatic radar observations

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.

    2017-12-01

    From 2011 to 2012, the Dawn spacecraft orbited asteroid Vesta, the first of its two targets in the asteroid belt, and conducted the first bistatic radar (BSR) experiment at a small-body, during which Dawn's high-gain communications antenna is used to transmit radar waves that scatter from Vesta's surface toward Earth at high incidence angles just before and after occultation of the spacecraft behind the asteroid. Among the 14 observed mid-latitude forward-scatter reflections, the radar cross section ranges from 84 ± 8 km2 (near Saturnalia Fossae) to 3,588 ± 200 km2 (northwest of Caparronia crater), implying substantial spatial variation in centimeter- to decimeter-scale surface roughness. The compared distributions of surface roughness and subsurface hydrogen concentration [H]—measured using data from Dawn's BSR experiment and Gamma Ray and Neutron Spectrometer (GRaND), respectively—reveal the occurrence of heightened subsurface [H] with smoother terrains that cover tens of square kilometers. Furthermore, unlike on the Moon, we observe no correlation between surface roughness and surface ages on Vesta—whether the latter is derived from lunar or asteroid-flux chronology [Williams et al., 2014]—suggesting that cratering processes alone are insufficient to explain Vesta's surface texture at centimeter-to-decimeter scales. Dawn's BSR observations support the hypothesis of transient melting, runoff and recrystallization of potential ground-ice deposits, which are postulated to flow along fractures after an impact, and provide a mechanism for the smoothing of otherwise rough, fragmented impact ejecta. Potential ground-ice presence within Vesta's subsurface was first proposed by Scully et al. [2014], who identified geomorphological evidence for transient water flow along several of Vesta's crater walls using Dawn Framing Camera images. While airless, differentiated bodies such as Vesta and the Moon are thought to have depleted their initial volatile content during the process of differentiation, evidence to the contrary is continuing to change our understanding of the distribution and preservation of volatiles during planetary formation in the early solar system.

  1. Ceres' Evolution Before and After Dawn: Where are We Now?

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Castillo, J. C.

    2016-12-01

    Observations of Ceres before Dawn indicated that it contains 25 wt% water, and thermodynamic modeling indicated Ceres probably had experienced the same process of differentiation due to melting of the original ice after accretion as experienced by large icy moons. Consistent with that was a surface of altered mineralogy like clays suggesting aqueous alteration of the original chondritic silicates. Dawn has revealed some concentration of mass toward the center, specific aqueously altered mineralogies, a stiff surface with weaker material beneath, and extrusions and protrusions suggesting recent subsurface activity, including exposures of water ice that must be very recent. This wealth of new information from Dawn enables selection of more specific evolution models that best match the vastly improved Dawn observations. In this new study we propose one possibility is that Ceres accreted as an ice and silicate mixture after short-lived radionuclides in CAIs had significantly decayed, i.e. nearer 5 my after CAIs, and thus differentiated less completely than for hotter models. On the other hand, the presence of heavily aqueously altered mineralogies, including probably salts, suggests extensive mixing of water and silicates, which might normally be associated with more complete differentiation. Geologically recent activity, perhaps even to the present time, seems evident from several young landforms, including protrusions consistent with diapirism and recent exposures of water ice. This suggests recent flexing of the subsurface and rising of less dense interior material, including salts and ice. The presence of ammoniated minerals and what appear to be salt deposits suggest a major lowering of subsurface water ice melting temperature, enhancing the duration of water-silicate contact, and perhaps accelerating the mineralization processes and slowing or halting differentiation of water and silicates. Thus, Ceres is becoming known as the first body outward from the Sun that has had its evolution controlled by water-driven processes. Investigations of its interior and geology enable by Dawn's observations will in turn help to better understand other ice-rich bodies.

  2. Ceres' evolution before and after Dawn: Where are we now?

    NASA Astrophysics Data System (ADS)

    McCord, Thomas B.; Castillo-Rogez, Julie C.

    2016-10-01

    Observations of Ceres before Dawn indicated that it contains ~25 wt% water, and thermodynamic modeling indicated Ceres probably had experienced the same process of differentiation due to melting of the original ice after accretion as experienced by large icy moons. Consistent with that was a surface of altered mineralogy like clays suggesting aqueous alteration of the original chondritic silicates. Dawn has revealed some concentration of mass toward the center, specific aqueously altered mineralogies, a stiff surface with weaker material beneath, and extrusions and protrusions suggesting recent subsurface activity, including exposures of water ice that must be very recent. This wealth of new information from Dawn enables selection of more specific evolution models that best match the vastly improved Dawn observations. In this new study we propose one possibility is that Ceres accreted as an ice and silicate mixture after short-lived radionuclides in CAIs had significantly decayed, i.e. nearer 5 my after CAIs, and thus differentiated less completely than for hotter models. On the other hand, the presence of heavily aqueously altered mineralogies, including probably salts, suggests extensive mixing of water and silicates, which might normally be associated with more complete differentiation. Geologically recent activity, perhaps even to the present time, seems evident from several young landforms, including protrusions consistent with diapirism and recent exposures of water ice. This suggests recent flexing of the subsurface and rising of less dense interior material, including salts and ice. The presence of ammoniated minerals and what appear to be salt deposits suggest a major lowering of subsurface water ice melting temperature, enhancing the duration of water-silicate contact, and perhaps accelerating the mineralization processes and slowing or halting differentiation of water and silicates. Thus, Ceres is becoming known as the first body outward from the Sun that has had its evolution controlled by water-driven processes. Investigations of its interior and geology enable by Dawn's observations will in turn help to better understand other ice-rich bodies.

  3. Migrating the Dawn Data Archive to the PDS4 Standard

    NASA Astrophysics Data System (ADS)

    Joy, S. P.; Mafi, J. N.; King, T. A.; Raymond, C. A.; Russell, C. T.

    2017-12-01

    The Dawn mission was proposed prior to the development of the PDS4 standard and all of its data are archived at the PDS Small Bodies Node (SBN) using the older PDS3 standard. Plans to migrate the existing PDS archives to PDS4 have been discussed within PDS for some time, and have been reemphasized in the PDS Roadmap Study for 2017 - 2026 (https://pds.nasa.gov/roadmap/PlanetaryDataSystemRMS17-26_20jun17.pdf). Updating the Dawn metadata to PDS4 would enable users of those data to take advantage of new capabilities offered by PDS4, and insure the full compatibility of past archives with current and future PDS4 tools and services. The Dawn data themselves will not require any reformatting during the migration to PDS4. The data and documentation will need to be reorganized and the metadata enhanced to fill in the gaps in the PDS3 metadata. The planned migration to PDS4 would be primarily carried out at the Dawn Science Center (DSC) at UCLA but the activity will require close coordination with the PDS-SBN. The PDS4 standard allows individual nodes to customize the metadata through the use of optional parameters and local data dictionaries to satisfy discipline and mission specific search and retrieval requirements and support node tools and services. The DSC shares much of its staff with the Planetary Plasma Interactions (PPI) Node of the PDS. This sharing of personnel means that the DSC staff are well versed in the PDS4 standard, have actively participated in the development of this standard, and are fully trained in the use of PPI tools for PDS4 metadata migration and/or generation. The combination of PDS4 training and detailed understanding of the Dawn mission, instruments, and datasets makes the DSC the most cost-effective organization to migrate these data to PDS4.

  4. Understanding Volatile Occurrence on Vesta Using Bistatic Radar and GRaND Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.

    2016-12-01

    The first orbital bistatic radar experiment was conducted by Dawn at Asteroid Vesta, where Dawn's HGA was used to transmit X-band radio waves and Earth's Deep Space Network (DSN) 70-meter antennas were used to receive. Due to the opportunistic nature of the experiment, the HGA remained in a fixed orientation toward the Earth such that surface radar reflections occurred at grazing incidence angles of 89° just before and after Dawn's occultation behind Vesta. Among the 16 observed echo sites, we find that σ0ranges from -12 dB to -20 dB and has corresponding RMS slopes ranging from 1°- 8°. To assess potential volatile presence, we compare the distribution of RMS slopes to subsurface hydrogen concentrations observed by Dawn's Gamma Ray and Neutron Detector (GRaND) to 1 m depth. While Vesta's surface is thought to have been largely depleted of volatiles during its differentiation, observations by Dawn'sGRaND and VIR instruments suggest the potential introduction of hydrated material through meteoritic impacts. We identify seven sites of potential volatile occurrence—where low roughness (<5°) is observed to be coupled with high content of hydrated materials (0.025 - 0.04 wt%). Such sites support the possibility of volatile presence, as the regolith should otherwise be particularly rough in the absence of smoothening processes such as the melting, run-off and recrystallization of water ice after an impact. The sites correspond to occultation entry orbit numbers 635, 644 and 719—which overlap Divalia Fossae, Marcia crater ejecta and Octavia crater, respectively—and exit orbit numbers 377, 406, 407 and 720—overlapping northern cratered trough terrain, dark material near Aruntia crater and the cratered highlands. Toward comparing volatile occurrence on other small bodies, Dawn'sBSR experiment at Asteroid Ceres raises new questions. How does the range of decimeter-scale RMS slopes compare with Vesta's surface? How well does the distribution of RMS slopes correlate with GRaND's map of subsurface hydrogen concentration? In addition to optimizing future missions' landing and surface trafficability, characterizing small body surface roughness using BSR will enable further investigation into the relationship between volatile presence and decimeter-scale surface roughness.

  5. High resolution Ceres HAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international agreement, craters must be named after gods and goddesses of agriculture and vegetation from world mythology, whereas other geological features must be named after agricultural festivals of the world. The nomenclature proposed by the Dawn team was approved by the IAU [http://planetarynames.wr.usgs.gov/] and is shown in Fig. 1. The entire Ceres HAMO atlas will be available to the public through the Dawn GIS web page [http://dawngis.dlr.de/atlas]. References: [1] Russell, C.T. and Raymond, C.A., Space Sci. Rev., 163, DOI 10.1007/s11214-011-9836-2; [2] Sierks, et al., 2011, Space Sci. Rev., 163, DOI 10.1007/s11214-011-9745-4; [3] Preusker, F. et al., this session; [4] Greeley, R. and Batson, G., 1990, Planetary Mapping, Cambridge University Press.

  6. Chapter 12: Daily Patterns of Marbled Murrelet Activity at Inland Sites

    Treesearch

    Nancy L. Naslund; Brian P. O’Donnell

    1995-01-01

    Patterns in the daily activity of Marbled Murrelets (Brachyramphus marmoratus) at inland sites has been studied throughout their range from California to Alaska. Murrelets are most active at inland sites around dawn, and to a lesser degree, at dusk. Throughout their range, peak levels of activity (detections) occur in the hour around dawn, but...

  7. Dawn Survey Orbit Image 38

    NASA Image and Video Library

    2015-07-31

    This image, taken by NASA's Dawn spacecraft, shows cratered terrain near the day-night line, called the terminator, on dwarf planet Ceres. The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken at an altitude of 2,700 miles (4,400 kilometers) on June 24, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19611

  8. Dawn Survey Orbit Image 21

    NASA Image and Video Library

    2015-07-07

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 17, 2015. A bright area called "Spot 1" can be seen in this image. http://photojournal.jpl.nasa.gov/catalog/PIA19589

  9. Dawn Survey Orbit Image 14

    NASA Image and Video Library

    2015-06-25

    This image, taken by NASA's Dawn spacecraft, shows dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 9, 2015. The bright feature in the upper-left is also seen in PIA19581. http://photojournal.jpl.nasa.gov/catalog/PIA19582

  10. Intruders: New Neighbors in "Dawn of the Planet of the Apes" and "The Hundred-Foot Journey"

    ERIC Educational Resources Information Center

    Beck, Bernard

    2015-01-01

    Conflicts over territory are about the power to establish dominant cultures in territories and are often accompanied by cultural claims to legitimacy by each side. The cultural claims, or ideologies, are often expressed in terms of "homeland" dwellers versus "intruders." Two recent movies, "Dawn of the Planet of the…

  11. Sherry Red Owl, Stands at Dawn Woman

    ERIC Educational Resources Information Center

    Crazy Bull, Cheryl

    2014-01-01

    This article introduces Sherry Red Owl, also known as "Stands at Dawn Woman," because she greets each day as a new opportunity and has spent her life working at new things. She worked at Sinte Gleska University (SGU) during its founding years, taught at an elementary school when few Native teachers were employed in the school systems,…

  12. 77 FR 8943 - Culturally Significant Objects Imported for Exhibition Determinations: “The Dawn of Egyptian Art”

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Determinations: ``The Dawn of Egyptian Art'' SUMMARY: Notice is hereby given of the following determinations... Egyptian Art,'' imported from abroad for temporary exhibition within the United States, are of cultural... of Art, New York, NY from on or about April 2, 2012, until on or about August 5, 2012, and at...

  13. The Dawn Gravity Investigation at Vesta and Ceres

    NASA Technical Reports Server (NTRS)

    Konopliv, A. S.; Asmar, S.W.; Bills, B. G.; Mastrodemos, N.; Park, R. S.; Raymond, C. A.; Smith, D. E.; Zuber, M. T.

    2011-01-01

    The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn's framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.

  14. KSC-07pd2066

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — At the Astrotech payload processing facility, workers guide the movement of the upper canister being lifted from the Dawn spacecraft, seen encased in a protective cover. Dawn was returned from Launch Pad 17-B at Cape Canaveral Air Force Station to Astrotech to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/Charisse Nahser

  15. KSC-07pd1591

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin placing the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  16. KSC-07pd1592

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians begin securing the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  17. KSC-07pd1593

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians are securing the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  18. Origin of Dark Material on VESTA from DAWN FC Data: Remnant Carbonaceous Chondrite Impators

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Mittlefehldt, David W.; Cloutis, E. A.; OBrien, D. P.; Durda, D. D.; Bottke, W. F.; Buczkowski, D.; Scully, J. E. C.; hide

    2012-01-01

    NASA's Dawn spacecraft entered orbit around asteroid (4) Vesta in July 2011 for a yearlong mapping orbit. The surface of Vesta as imaged by the Dawn Framing Camera (FC) revealed a surface that is unlike any asteroid we have visited so far with a spacecraft. Albedo and color variations on Vesta are the most diverse in the asteroid belt with a majority of these linked to distinct compositional units on the asteroid s surface. FC discovered dark material on Vesta. These low albedo surface features were first observed during Rotational Characterization 3 phase at a resolution of approx. 487 m/pixel. Here we explore the composition and possible meteoritical analogs for the dark material on Vesta.

  19. Clues to Ceres' Internal Structure

    NASA Image and Video Library

    2017-10-26

    This frame from an animation shows Ceres as seen by NASA's Dawn spacecraft from its high-altitude mapping orbit at 913 miles (1,470 kilometers) above the surface. The colorful map overlaid at right shows variations in Ceres' gravity field measured by Dawn, and gives scientists hints about the dwarf planet's internal structure. Red colors indicate more positive values, corresponding to a stronger gravitational pull than expected, compared to scientists' pre-Dawn model of Ceres' internal structure; blue colors indicate more negative values, corresponding to a weaker gravitational pull. The animation was created by projecting a map of Ceres onto a rotating sphere. The image scale is about 450 feet (140 meters) per pixel. The animations are available at https://photojournal.jpl.nasa.gov/catalog/PIA22083

  20. Dextromethorphan Abuse in Adolescence

    PubMed Central

    Bryner, Jodi K.; Wang, Uerica K.; Hui, Jenny W.; Bedodo, Merilin; MacDougall, Conan; Anderson, Ilene B.

    2008-01-01

    Objectives To analyze the trend of dextromethorphan abuse in California and to compare these findings with national trends. Design A 6-year retrospective review. Setting California Poison Control System (CPCS), American Association of Poison Control Centers (AAPCC), and Drug Abuse Warning Network (DAWN) databases from January 1, 1999, to December 31, 2004. Participants All dextromethorphan abuse cases reported to the CPCS, AAPCC, and DAWN. The main exposures of dextromethorphan abuse cases included date of exposure, age, acute vs long-term use, coingestants, product formulation, and clinical outcome. Main Outcome Measure The annual proportion of dextromethorphan abuse cases among all exposures reported to the CPCS, AAPCC, and DAWN databases. Results A total of 1382 CPCS cases were included in the study. A 10-fold increase in CPCS dextromethorphan abuse cases from 1999 (0.23 cases per 1000 calls) to 2004 (2.15 cases per 1000 calls) (odds ratio, 1.48; 95% confidence interval, 1.43–1.54) was identified. Of all CPCS dextromethorphan abuse cases, 74.5% were aged 9 to 17 years; the frequency of cases among this age group increased more than 15-fold during the study (from 0.11 to 1.68 cases per 1000 calls). Similar trends were seen in the AAPCC and DAWN databases. The highest frequency of dextromethorphan abuse occurred among adolescents aged 15 and 16 years. The most commonly abused product was Coricidin HBP Cough & Cold Tablets. Conclusions Our study revealed an increasing trend of dextromethorphan abuse cases reported to the CPCS that is paralleled nationally as reported to the AAPCC and DAWN. This increase was most evident in the adolescent population. PMID:17146018

  1. [Role of growth hormone in the pathogenesis of dawn phenomenon in IDDM].

    PubMed

    Mimura, A; Kageyama, S; Itoh, K; Miura, J; Kurata, H; Yokoyama, J; Ikeda, Y

    1992-06-20

    The early morning hyperglycemia of diabetic patients has been commonly referred to as the "dawn phenomenon". Recently the nocturnal surges of growth hormone (GH) have been suggested as an important factor in the pathogenesis of the dawn phenomenon. In order to reassess the role of the nocturnal GH secretion in the dawn phenomenon, seven C-peptide negative diabetic patients were studied during 48hr-feedback control using a closed-loop insulin infusion device (Biostator). They received oral sleeping medication only on the first night (control) and sleeping medication with anticholinergic agent (pirenzepine 75mg) on the second night, and blood glucose, insulin requirements, GH and cortisol concentrations during 0000hr and 0700hr were measured. The peak of sleep-induced GH secretions was markedly suppressed by pirenzepine in comparison with the control night (19.8 +/- 3.7 vs. 3.0 +/- 1.2ng/ml; p less than 0.05). Insulin requirements during 0500hr and 0700hr were suppressed significantly by pirenzepine (3.0 +/- 0.2 vs. 2.0 +/- 0.2U/2hr; p less than 0.05). Insulin infusion ratio, i.e. insulin requirements during 0500hr and 0700hr divided by those during 0000hr and 0200hr, was decreased by pirenzepine (2.2 +/- 0.3 vs. 1.5 +/- 0.2; p less than 0.05). There were no significant differences in blood glucose and cortisol concentrations whether or not the anticholinergic agent was given. In conclusion, these results have shown that an anticholinergic agent may be useful in the management of insulin-treated patients with marked dawn phenomenon.

  2. The Square Kilometre Array Epoch of Reionisation and Cosmic Dawn Experiment

    NASA Astrophysics Data System (ADS)

    Trott, Cathryn M.

    2018-05-01

    The Square Kilometre Array (SKA) Epoch of Reionisation and Cosmic Dawn (EoR/CD) experiments aim to explore the growth of structure and production of ionising radiation in the first billion years of the Universe. Here I describe the experiments planned for the future low-frequency components of the Observatory, and work underway to define, design and execute these programs.

  3. Water potential in ponderosa pine stands of different growing-stock levels

    Treesearch

    J. M. Schmid; S. A. Mata; R. K. Watkins; M. R. Kaufmann

    1991-01-01

    Water potential was measured in five ponderosa pine (Pinus ponderosa Laws.) in each of four stands of different growing-stock levels at two locations in the Black Hills of South Dakota. Mean water potentials at dawn and midday varied significantly among growing-stock levels at one location, but differences were not consistent. Mean dawn and midday water potentials...

  4. Juling Crater

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows where ice has been detected in the northern wall of Ceres' Juling Crater, which is in almost permanent shadow. Dawn acquired the picture with its framing camera on Aug. 30, 2016, and it was processed with the help of NASA Ames Stereo Pipeline (ASP), to estimate the slope of the cliff. https://photojournal.jpl.nasa.gov/catalog/PIA21918

  5. Books, Not Bombs: Teaching Peace since the Dawn of the Republic. Peace Education

    ERIC Educational Resources Information Center

    Howlett, Charles; Harris, Ian,

    2010-01-01

    "Books Not Bombs: Teaching Peace Since the Dawn of the Republic" is an important work relevant to peace scholars, practitioners, and students. This incisive book offers an exciting and comprehensive historical analysis of the origins and development of peace education from the creation of the New Republic at the end of the Eighteenth Century to…

  6. KSC-07pd2405

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers guide the upper transportation canister toward the Dawn spacecraft in the background. The canister will be lowered onto the lower segments and attached. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  7. KSC-07pd2407

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers watch as the upper transportation canister is lowered over the Dawn spacecraft. The canister will be attached to the bottom segments already in place. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  8. KSC-07pd2403

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers place another segment of the transportation canister around the upper stage booster beneath the Dawn spacecraft. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  9. KSC-07pd2404

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers check the fitting on the lower transportation canister segments in place around the upper stage booster beneath the Dawn spacecraft. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  10. KSC-07pd2402

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers place the lower segments of the transportation canister around the upper stage booster beneath the Dawn spacecraft. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  11. KSC-07pd2406

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers guide the upper transportation canister as it is lowered onto the Dawn spacecraft. The canister will be attached to the bottom segments already in place. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  12. Dawn Maps the Surface Composition of Vesta

    NASA Technical Reports Server (NTRS)

    Prettyman, T.; Palmer, E.; Reedy, R.; Sykes, M.; Yingst, R.; McSween, H.; DeSanctis, M. C.; Capaccinoni, F.; Capria, M. T.; Filacchione, G.; hide

    2011-01-01

    By 7-October-2011, the Dawn mission will have completed Survey orbit and commenced high altitude mapping of 4-Vesta. We present a preliminary analysis of data acquired by Dawn's Framing Camera (FC) and the Visual and InfraRed Spectrometer (VIR) to map mineralogy and surface temperature, and to detect and quantify surficial OH. The radiometric calibration of VIR and FC is described. Background counting data acquired by GRaND are used to determine elemental detection limits from measurements at low altitude, which will commence in November. Geochemical models used in the interpretation of the data are described. Thermal properties, mineral-, and geochemical-data are combined to provide constraints on Vesta s formation and thermal evolution, the delivery of exogenic materials, space weathering processes, and the origin of the howardite, eucrite, and diogenite (HED) meteorites.

  13. Kupalo Crater from LAMO

    NASA Image and Video Library

    2016-01-12

    This image from NASA's Dawn spacecraft shows Kupalo Crater, one of the youngest craters on Ceres. The crater has bright material exposed on its rim and walls, which could be salts. Its flat floor likely formed from impact melt and debris. Kupalo, which measures 16 miles (26 kilometers) across and is located at southern mid-latitudes, is named for the Slavic god of vegetation and harvest. Kupalo was imaged earlier in Dawn's science mission at Ceres -- during Survey orbit (see PIA19624) and from the high altitude mapping orbit, or HAMO (see PIA20124). Dawn took this image on Dec. 21 from its low-altitude mapping orbit (LAMO) at an approximate altitude of 240 miles (385 kilometers) above Ceres. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20192

  14. KSC-07pd1596

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians secure all sides of the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  15. KSC-07pd1589

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lift the sun shade to be installed over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  16. KSC-07pd1588

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, a technician looks at the sun shade (foreground) to be installed over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  17. KSC-07pd1590

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians lift the sun shade toward the Dawn spacecraft to install it on the high gain antenna. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  18. KSC-07pd1595

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, a technician secures one side of the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  19. KSC-07pd1597

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At At Astrotech, the Dawn spacecraft is on display with the recently installed sun shade over the high gain antenna. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  20. KSC-07pd1594

    NASA Image and Video Library

    2007-06-19

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, a technician secures one side of the sun shade over the high gain antenna on the Dawn spacecraft. Made of germanium kapton, the shade, which is RF transparent, is placed over the sensitive antenna to reflect and emit harmful solar radiation to prevent the antenna from being excessively heated. Dawn is scheduled to launch July 7 from Pad 17-B on Cape Canaveral Air Force Station. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  1. In-Flight Operation of the Dawn Ion Propulsion System Through Start of the Vesta Cruise Phase

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.; Brophy, John R.

    2009-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer to Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to Ceres science orbits. The Dawn ion design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. IPS will be operated for over two years at throttled power levels leading to arrival at Vesta in September of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through the start of deterministic thrusting to Vesta.

  2. Women and Golden Dawn: Reproducing the Nationalist Habitus

    ERIC Educational Resources Information Center

    Koronaiou, Alexandra; Sakellariou, Alexandros

    2017-01-01

    This article focuses on the place and role of women in the ideology of the Greek neo-Nazi political party Golden Dawn (GD). The article considers the place of women in GD's ideology as well as how GD envisages the role of women in society. It asks whether this vision of women's role is reflected in the participation of women in the party's…

  3. Dawn LAMO Image 134

    NASA Image and Video Library

    2016-07-22

    Liber Crater is featured at lower left in this image from Ceres. Named for the Roman god of agriculture, Liber is 14 miles 23 kilometers. NASA's Dawn spacecraft took this image on June 16, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20834

  4. KSC-07pd1220

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- After its successful transfer to a transporter, the Delta II first stage is ready to move out of Hangar M on Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  5. KSC-07pd1321

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the 1st stage of the Delta II rocket awaits solid rocket booster attachment. The rocket is the launch vehicle for the Dawn spacecraft, scheduled to launch June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  6. A Study on the Type of School during the Dawn of Modern Education in Bhutan

    ERIC Educational Resources Information Center

    Hirayama, Takehiro

    2015-01-01

    This study aims to clarify the state of school education in the Bhutan during the 1940-50s, a period of dawn of the modern education in Bhutan, by classifying schools and identifying their contrasting characteristics. The origins of modern education in Bhutan can be traced back approximately 100 years. Bhutan's modern period began in 1907 when…

  7. Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND).

    PubMed

    Livengood, T A; Chin, G; Sagdeev, R Z; Mitrofanov, I G; Boynton, W V; Evans, L G; Litvak, M L; McClanahan, T P; Sanin, A B; Starr, R D; Su, J J

    2015-07-15

    The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6 σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery.

  8. Exploration of an Ancient Ocean World: Dawn at Ceres

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.

    2016-12-01

    The Dawn mission completed its comprehensive mapping of Ceres, the only dwarf planet in the inner solar system, earlier this year and has since begun an extended mission to improve the quality of the data sets and test specific hypotheses. Prior to Dawn's arrival, Ceres was already known to be a dark, wet dwarf planet with evidence for altered minerals and water vapor emissions, from decades of ground- and space-based observations. Dawn arrived at Ceres in March of 2015 and found a very dark surface as expected, but unexpectedly found a heavily cratered surface that was punctuated by small extremely bright areas. Contrary to the prediction by pre-Dawn models of an ice-rich, viscously-relaxed smooth surface resulting from physical differentiation and freezing of an ancient subsurface ocean, its surface has many craters, implying a mechanically strong thick crust. Ceres is, however, missing the largest expected craters and is gravitationally relaxed at long wavelengths, implying that the strong crust overlies a weaker deep interior. This presented a challenge to the pre-Dawn differentiation model, but data were available to test it. Ceres' surface is dominated by dark material, phyllosilicates, ammoniated clays and carbonates. The ubiquitous presence of ammoniated minerals suggests formation in a colder environment, possibly in the outer solar system, while the distribution of minerals indicates that Ceres' interior experienced pervasive alteration. Water ice has been observed in fresh craters at high latitudes, and elemental measurements indicate the presence of water ice in the immediate subsurface. These observations, along with Ceres gravity field confirm that Ceres at least partially differentiated, releasing water and volatiles from the original chondritic material, and providing evidence for an ancient subsurface ocean. Evidence for past and continuing geologic activity on Ceres is found in the regional variations in topography and morphology of the surface. Smoother, apparently resurfaced areas are generally found at lower elevations and rougher areas have greater relief. Local morphology such as crater floor deposits, isolated mountains and the enigmatic bright areas indicate active processes on Ceres that likely involve brine-driven cryovolcanism.

  9. Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND)

    NASA Astrophysics Data System (ADS)

    Livengood, T. A.; Chin, G.; Sagdeev, R. Z.; Mitrofanov, I. G.; Boynton, W. V.; Evans, L. G.; Litvak, M. L.; McClanahan, T. P.; Sanin, A. B.; Starr, R. D.; Su, J. J.

    2015-07-01

    The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ∼1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery.

  10. Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND)

    PubMed Central

    Livengood, T.A.; Chin, G.; Sagdeev, R.Z.; Mitrofanov, I.G.; Boynton, W.V.; Evans, L.G.; Litvak, M.L.; McClanahan, T.P.; Sanin, A.B.; Starr, R.D.; Su, J.J.

    2016-01-01

    The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon’s naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon’s rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may provide energy-efficient access to volatiles for in situ resource utilization (ISRU) by direct capture before volatiles can enter the surface, eliminating the need to actively mine regolith for volatile resource recovery. PMID:28798496

  11. Simplified Ion Thruster Xenon Feed System for NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Hofer, Richard R.; Goebel, Dan M.

    2009-01-01

    The successful implementation of ion thruster technology on the Deep Space 1 technology demonstration mission paved the way for its first use on the Dawn science mission, which launched in September 2007. Both Deep Space 1 and Dawn used a "bang-bang" xenon feed system which has proven to be highly successful. This type of feed system, however, is complex with many parts and requires a significant amount of engineering work for architecture changes. A simplified feed system, with fewer parts and less engineering work for architecture changes, is desirable to reduce the feed system cost to future missions. An attractive new path for ion thruster feed systems is based on new components developed by industry in support of commercial applications of electric propulsion systems. For example, since the launch of Deep Space 1 tens of mechanical xenon pressure regulators have successfully flown on commercial spacecraft using electric propulsion. In addition, active proportional flow controllers have flown on the Hall-thruster-equipped Tacsat-2, are flying on the ion thruster GOCE mission, and will fly next year on the Advanced EHF spacecraft. This present paper briefly reviews the Dawn xenon feed system and those implemented on other xenon electric propulsion flight missions. A simplified feed system architecture is presented that is based on assembling flight-qualified components in a manner that will reduce non-recurring engineering associated with propulsion system architecture changes, and is compared to the NASA Dawn standard. The simplified feed system includes, compared to Dawn, passive high-pressure regulation, a reduced part count, reduced complexity due to cross-strapping, and reduced non-recurring engineering work required for feed system changes. A demonstration feed system was assembled using flight-like components and used to operate a laboratory NSTAR-class ion engine. Feed system components integrated into a single-string architecture successfully operated the engine over the entire NSTAR throttle range over a series of tests. Flow rates were very stable with variations of at most 0.2%, and transition times between throttle levels were typically 90 seconds or less with a maximum of 200 seconds, both significant improvements over the Dawn bang-bang feed system.

  12. High-resolution Ceres HAMO Atlas derived from Dawn FC Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Introduction: NASA's Dawn spacecraft will orbit the dwarf planet Ceres in August and September 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize for instance the geology, topography, and shape of Ceres before it will be transferred to the lowest orbit. One of the major goals of this mission phase is the global mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera will take about 2600 clear filter images with a resolution of about 120 m/pixel and different viewing angles and different illumination conditions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. Both, improved orientation and high-resolution shape models, are provided by stereo processing of the HAMO dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself will be done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:750,000 and will consist of 15 tiles that conform to the quadrangle schema for small planets and medium size Icy satellites. A map scale of 1:750,000 guarantees a mapping at the highest availa-ble Dawn resolution in HAMO. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters. This proposal was accepted by the IAU and the team proposed names for geological features to the IAU based on the HAMO mosaic. These feature names will be applied to the map tiles.

  13. Active surveillance of abused and misused prescription opioids using poison center data: a pilot study and descriptive comparison.

    PubMed

    Hughes, Alice A; Bogdan, Gregory M; Dart, Richard C

    2007-01-01

    Prescription opioids are abused throughout the United States. Several monitoring programs are in existence, however, none of these systems provide up-to-date information on prescription opioid abuse. This article describes the use of poison centers as a real-time, geographically specific, surveillance system for prescription opioid abuse and compares our system with an existing prescription drug abuse monitoring program, the Drug Abuse Warning Network (DAWN). Data were collected from eight geographically dispersed poison centers for a period of twelve months. Any call involving buprenorphine, fentanyl, hydrocodone, hydromorphone, methadone, morphine, and oxycodone was considered a case. Any case coded as intentional exposure (abuse, intentional misuse, suicide, or intentional unknown) was regarded as misuse and abuse. Comparative data were obtained from DAWN. Poison center rates of abuse and misuse were highest for hydrocodone at 3.75 per 100,000 population, followed by oxycodone at 1.81 per 100,000 population. DAWN emergency department (ED) data illustrate a similar pattern of abuse with most mentions involving hydrocodone and oxycodone. Poison center data indicate that people aged 18 to 25 had the highest rates of abuse. DAWN reported the majority of ED mentions among 35 to 44-year-olds. Geographically, Kentucky had the uppermost rates of abuse and misuse for all opioids combined at 20.69 per 100,000 population. CONCLUSIONS. Comparing poison center data to DAWN yielded mostly comparable results, including hydrocodone as the most commonly mentioned drug. Our results suggest poison center data can be used as an indicator for prescription opioid abuse and misuse and can provide timely, geographically specific information on prescription drug abuse.

  14. First results from the ionospheric radio occultations of Saturn by the Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Nagy, Andrew F.; Kliore, Arvydas J.; Marouf, Essam; French, Richard; Flasar, Michael; Rappaport, Nicole J.; Anabtawi, Aseel; Asmar, Sami W.; Johnston, Douglas; Barbinis, Elias; Goltz, Gene; Fleischman, Don

    2006-06-01

    The first set of near-equatorial occultations of the Saturn ionosphere was obtained by the Cassini spacecraft between May and September of 2005. The occultations occurred at near-equatorial latitudes, between 10°N and 10°S, at solar zenith angles from about 84° to 96°. The entry observations correspond to dusk conditions and the exit ones to dawn. An initial look at the data indicates that the average peak densities are lower and the peak altitude higher at dawn than at dusk, possibly the result of ionospheric decay during the night hours. There are also significant differences between individual dawn and dusk occultations; the initial thought is that this variation must be connected to changes in the water inflow into the upper atmosphere and/or variations in the particle impact ionization rates.

  15. Dawn LAMO Image 136

    NASA Image and Video Library

    2016-07-26

    Liber Crater is featured at lower left in this image from Ceres. Named for the Roman god of agriculture, Liber is 14 miles (23 kilometers) wide. NASA's Dawn spacecraft took this image on June 16, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The image resolution is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20834

  16. FT-IR and µ-IR characterization of HED meteorites in relation to infrared spectra of Vesta-like asteroids

    NASA Astrophysics Data System (ADS)

    Ferrari, M.; Dirri, F.; Palomba, E.; Stefani, S.; Longobardo, A.; Rotundi, A.

    2017-09-01

    We present the results of the FT-IR and µ-IR study of three Howardite-Eucrite-Diogenite meteorites (HEDs) compared to the spectroscopic data collected by VIR onboard Dawn spacecraft. The origin of this group of achondrites is thought to be linked to the asteroid 4 Vesta, hypothesis lately reinforced by the data provided by the Dawn mission.

  17. KSC-07pd1308

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- The first stage of a Delta II rocket rolls under the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  18. KSC-07pd1313

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the first stage of a Delta II rocket is placed in the mobile service tower. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  19. KSC-07pd1216

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, a worker guides a transporter into place to receive the Delta II first stage. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  20. KSC-07pd1327

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, one of nine solid rocket boosters is lifted into the mobile service tower. It will be attached to the Delta II first stage for the launch of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  1. KSC-07pd1329

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, a second solid rocket booster is ready to be lifted into the mobile service tower. It will be attached to the Delta II first stage for the launch of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  2. KSC-07pd1323

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the solid rocket booster to be raised off the transporter. The SRB is one of nine to be mated to the Delta II rocket that will launch the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  3. A re-investigation of the 'double dawn' event recorded in the Bamboo Annals

    NASA Technical Reports Server (NTRS)

    Stephenson, F. R.

    1992-01-01

    An allusion to a 'double dawn' phenomenon in an ancient Chinese chronicle, which has been identified as caused by a sunrise eclipse occurring in 899 BC, is discussed. This event has been regarded as of considerable importance in the investigation of earth's past rotation. It is shown that an eclipse interpretation is implausible, not least because the eclipse in question was only annular.

  4. Measurements of the global 21-cm signal from the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bernardi, Gianni

    2018-05-01

    The sky-averaged (global) 21-cm signal is a very promising probe of the Cosmic Dawn, when the first luminous sources were formed and started to shine in a substantially neutral intergalactic medium. I here report on the status and early result of the Large-Aperture Experiment to Detect the Dark Age that focuses on observations of the global 21-cm signal in the 16 <~ z <~ 30 range.

  5. Light pollution alters the phenology of dawn and dusk singing in common European songbirds

    PubMed Central

    Da Silva, Arnaud; Valcu, Mihai; Kempenaers, Bart

    2015-01-01

    Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown. PMID:25780238

  6. The Dawn Topography Investigation

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Jaumann, R.; Nathues, A.; Sierks, H.; Roatsch, T.; Preusker, E; Scholten, F.; Gaskell, R. W.; Jorda, L.; Keller, H.-U.; hide

    2011-01-01

    The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids' landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn's framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta's geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.

  7. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.

    PubMed

    Reynolds, D R; Smith, A D; Chapman, J W

    2008-02-01

    Radar observations have consistently shown that high-altitude migratory flight in insects generally occurs after mass take-off at dusk or after take-off over a more extended period during the day (in association with the growth of atmospheric convection). In this paper, we focus on a less-studied third category of emigration - the 'dawn take-off' - as recorded by insect-monitoring radars during the summer months in southern England. In particular, we describe occasions when dawn emigrants formed notable layer concentrations centred at altitudes ranging from ca. 240 m to 700 m above ground, very probably due to the insects responding to local temperature maxima in the atmosphere, such as the tops of inversions. After persisting for several hours through the early morning, the layers eventually merged into the insect activity building up later in the morning (from 06.00-08.00 h onwards) in conjunction with the development of daytime convection. The species forming the dawn layers have not been positively identified, but their masses lay predominantly in the 16-32 mg range, and they evidently formed a fauna quite distinct from that in flight during the previous night. The displacement and common orientation (mutual alignment) characteristics of the migrants are described.

  8. Light pollution alters the phenology of dawn and dusk singing in common European songbirds.

    PubMed

    Da Silva, Arnaud; Valcu, Mihai; Kempenaers, Bart

    2015-05-05

    Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown.

  9. Dawn Survey Orbit Image 36

    NASA Image and Video Library

    2015-07-29

    This image, taken by NASA's Dawn spacecraft, shows Dantu crater on dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 24, 2015. Dantu, at bottom center, is about 75 miles (120 kilometers) across and 3 miles (5 kilometers) deep, has small patches of bright material sprinkled around it. http://photojournal.jpl.nasa.gov/catalog/PIA19609

  10. Views of Ceres on Approach

    NASA Image and Video Library

    2015-02-25

    These images of dwarf planet Ceres, processed to enhance clarity, were taken on Feb. 19, 2015, from a distance of about 29,000 miles 46,000 kilometers, by NASA Dawn spacecraft. Dawn observed Ceres completing one full rotation, lasting about nine hours. The images show the full range of different crater shapes that can be found at Ceres' surface: from shallow, flattish craters to those with peaks at their centers. http://photojournal.jpl.nasa.gov/catalog/PIA19183

  11. KSC-07pd1217

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- With the transporter in place inside Hangar M on Cape Canaveral Air Force Station, the suspended Delta II first stage can be placed on it. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  12. Enhanced Ionization Of Propellant Through Carbon Nanotube Growth On Angled Walls

    DTIC Science & Technology

    2017-06-01

    FEEP field emission electric propulsion MUF mass utilization factor NSTAR NASA Solar Technology Application Readiness SCATHA Spacecraft Charging at...Experiments This experiment, Spacecraft Charging at High Altitudes (SCATHA), was developed by the U.S. Air Force along with NASA [5]. A satellite was launched...propulsion system, gimbal mounted and deployed on DS1. Source: [6]. 3. DAWN A more recent use of XIPS is the DAWN Spacecraft from NASA . Orbiting the

  13. Dawn HAMO Image 47

    NASA Image and Video Library

    2015-10-28

    This image, taken by NASA's Dawn spacecraft, shows a portion of the northern hemisphere of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on Sept. 22, 2015, and has a resolution of 450 feet (140 meters) per pixel. Jarovit crater, named for the Slavic god of fertility and harvest, is seen at lower left. Its diameter is 41 miles (66 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19989

  14. Dawn HAMO Image 50

    NASA Image and Video Library

    2015-11-02

    This image, taken by NASA's Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers). The image was taken on Sept. 28, 2015, and has a resolution of 450 feet (140 meters) per pixel. Urvara crater, named for the Indian and Iranian deity of plants and fields, is featured. Its diameter is 101 miles (163 kilometers). http://photojournal.jpl.nasa.gov/catalog/PIA19992

  15. Dawn HAMO Image 63

    NASA Image and Video Library

    2015-11-19

    This image of Ceres from NASA's Dawn spacecraft shows hummocky terrain -- a surface covered in low, rounded hills -- with numerous impact craters of varying sizes. The two biggest craters display central peaks and many places where masses of material have collapsed and slid downward along their walls and floors -- a phenomenon geologists call "mass wasting". The sharp crater at upper right is surrounded by smooth ejecta with a streaky texture to the south. A graben -- what geologists call a linear feature where terrain has dropped -- measuring 2 to 5 miles (3 to 8 kilometers) in width, and two prominent scarps, or linear, cliff-like slopes, are located in the southeastern (lower right) part of the image. Dawn took this image on Oct. 5, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20125

  16. Dawn XMO2 Image 24

    NASA Image and Video Library

    2016-12-13

    This view from NASA's Dawn spacecraft shows part of the southwestern rim of Yalode Crater on Ceres. Yalode is one of the largest impact basins on Ceres, with a diameter of 160 miles (260 kilometers). The scene shows hummocky terrain where an impact formed a 14-mile (22-kilometer) wide crater with a central peak, seen at left. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. Dawn took this image on Oct. 22, 2016, from its second extended-mission science orbit (XMO2), at a distance of about 920 miles (1,480 kilometers) above the surface. The image resolution is about 460 feet (140 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21244

  17. Topographic View of Ceres Mountain

    NASA Image and Video Library

    2015-09-30

    This view, made using images taken by NASA's Dawn spacecraft, features a tall conical mountain on Ceres. Elevations span a range of about 5 miles (8 kilometers) from the lowest places in this region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The white streaks seen running down the side of the mountain are especially bright parts of the surface. The image was generated using two components: images of the surface taken during Dawn's High Altitude Mapping Orbit (HAMO) phase, where it viewed the surface at a resolution of about 450 feet (140 meters) per pixel, and a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution Survey phase. The image of the region is color-coded according to elevation, and then draped over the shape model to give this view. http://photojournal.jpl.nasa.gov/catalog/PIA19976

  18. Impact of Time-Restricted Feeding and Dawn-to-Sunset Fasting on Circadian Rhythm, Obesity, Metabolic Syndrome, and Nonalcoholic Fatty Liver Disease

    PubMed Central

    Gagan, Sood K.

    2017-01-01

    Obesity now affects millions of people and places them at risk of developing metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), and even hepatocellular carcinoma. This rapidly emerging epidemic has led to a search for cost-effective methods to prevent the metabolic syndrome and NAFLD as well as the progression of NAFLD to cirrhosis and hepatocellular carcinoma. In murine models, time-restricted feeding resets the hepatic circadian clock and enhances transcription of key metabolic regulators of glucose and lipid homeostasis. Studies of the effect of dawn-to-sunset Ramadan fasting, which is akin to time-restricted feeding model, have also identified significant improvement in body mass index, serum lipid profiles, and oxidative stress parameters. Based on the findings of studies conducted on human subjects, dawn-to-sunset fasting has the potential to be a cost-effective intervention for obesity, metabolic syndrome, and NAFLD. PMID:29348746

  19. A dawn to dusk electric field in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Ip, W. I.

    1983-01-01

    It is shown that if Io-injected plasma is lost via a planetary wind-fixed Birkeland current system may result. This is due to the fact that the azimuthal centrifugal current flows across a density gradient produced by the loss of plasma through the planetary wind in the tail. The divergent centrifugal current is connected to field-aligned Birkeland currents which flow into the ionosphere at dawn and out of it at dusk. The closure currents in the ionosphere require a dawn to dusk electric field which at the orbit of Io is estimated to have a strength of 0.2 mV/m. However, the values of crucial parameters are not well known and the field at Io's orbit may well be significantly larger. Independent estimates derived from the local time asymmetry of the torus UV emission indicate a field of 1.5 mV/m.

  20. Mapping Vesta: First Results from Dawn's Survey Orbit

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Yingst, A. R.; Pieters, C. M.; Russell, C. T.; Raymond, C. A.; Neukum, G.; Mottola, S.; Keller, H. U.; Nathues, A.; Sierks, H.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission [1] are to derive Vesta s shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results, thus revealing the geologic history of Vesta. We present here the first results of the Dawn mission from data collected during the approach to Vesta, and its first discrete orbit phase - the Survey Orbit, which lasts 21 days after the spacecraft had established a circular polar orbit at a radius of approx.3000 km with a beta angle of 10deg-15deg.

  1. Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James

    Central objectives: WFIRST-AFTA has tremendous potential for studying the epoch of "Cosmic Dawn" the period encompassing the formation of the first galaxies and quasars, and their impact on the surrounding universe through cosmological reionization. Our goal is to ensure that this potential is realized through the middle stages of mission planning, culminating in designs for both WFIRST and its core surveys that meet the core objectives in dark energy and exoplanet science, while maximizing the complementary Cosmic Dawn science. Methods: We will consider a combined approach to studying Cosmic Dawn using a judicious mixture of guest investigator data analysis of the primary WFIRST surveys, and a specifically designed Guest Observer program to complement those surveys. The Guest Observer program will serve primarily to obtain deep field observations, with particular attention to the capabilities of WFIRST for spectroscopic deep fields using the WFI grism. We will bring to bear our years of experience with slitless spectroscopy on the Hubble Space Telescope, along with an expectation of JWST slitless grism spectroscopy. We will use this experience to examine the implications of WFIRST’s grism resolution and wavelength coverage for deep field observations, and if appropriate, to suggest potential modifications of these parameters to optimize the science return on WFIRST. We have assembled a team of experts specializing in (1) Lyman Break Galaxies at redshifts higher than 7 (2) Quasars at high redshifts (3) Lyman-alpha galaxies as probes of reionization (4) Theoretical simulations of high-redshift galaxies (5) Simulations of grism observations (6) post-processing analysis to find emission line galaxies and high redshift galaxies (7) JWST observations and calibrations. With this team we intend to do end-to-end simulations starting with halo populations and expected spectra of high redshift galaxies and finally extracting what we can learn about (a) reionization using the Lyman-alpha test (b) the sources of reionization - both galaxies and AGN and (c) how to optimize WFIRST-AFTA surveys to maximize scientific output of this mission. Along the way, we will simulate the galaxy and AGN populations expected beyond redshift 7, and will simulate observations and data analysis of these populations with WFIRST. Significance of work: Cosmic Dawn is one of the central pillars of the "New Worlds, New Horizons" decadal survey. WFIRST's highly sensitive and wide-field near-infrared capabilities offer a natural tool to obtain statistically useful samples of faint galaxies and AGN beyond redshift 7. Thus, we expect Cosmic Dawn observations will constitute a major component of the GO program ultimately executed by WFIRST. By supporting our Science Investigation Team to consider the interplay between the mission parameters and the ultimate harvest of Cosmic Dawn science, NASA will help ensure the success of WFIRST as a broadly focused flagship mission.

  2. In-Flight Operation of the Dawn Ion Propulsion System: Status at One Year from the Vesta Rendezvous

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.; Rayman, Marc D.

    2010-01-01

    The Dawn mission, part of NASA's Discovery Program, has as its goal the scientific exploration of the two most massive main-belt asteroids, Vesta and Ceres. The Dawn spacecraft was launched from Cape Canaveral Air Force Station on September 27, 2007 on a Delta-II 7925H-9.5 (Delta-II Heavy) rocket that placed the 1218 kg spacecraft into an Earth-escape trajectory. On-board the spacecraft is an ion propulsion system (IPS) developed at the Jet Propulsion Laboratory which will provide most of the delta V needed for heliocentric transfer to Vesta, orbit capture at Vesta, transfer among Vesta science orbits, departure and escape from Vesta, heliocentric transfer to Ceres, orbit capture at Ceres, and transfer among Ceres science orbits. The Dawn ion thruster [I thought we only called it a thruster. Both terms are used in the paper, but I think a replacement of every occurrence of "engine" with "thruster" would be clearer.] design is based on the design validated on NASA's Deep Space 1 (DS1) mission. However, because of the very substantial (11 km/s) delta V requirements for this mission Dawn requires two engines to complete its mission objectives. The power processor units (PPU), digital control and interface units (DCIU) slice boards and the xenon control assembly (XCA) are derivatives of the components used on DS1. The DCIUs and thrust gimbal assemblies (TGA) were developed at the Jet Propulsion Laboratory. The spacecraft was provided by Orbital Sciences Corporation, Sterling, Virginia, and the mission is managed by and operated from the Jet Propulsion Laboratory. Dawn partnered with Germany, Italy and Los Alamos National Laboratory for the science instruments. The mission is led by the principal investigator, Dr. Christopher Russell, from the University of California, Los Angeles. The first 80 days after launch were dedicated to the initial checkout of the spacecraft followed by cruise to Mars. Cruise thrusting leading to a Mars gravity assist began on December 17, 2007 and was successfully concluded as planned on October 31, 2008. During this time period the Dawn IPS was operated mostly at full power for approximately 6500 hours, consumed 71.7 kg of xenon and delivered approximately 1.8 km/s of delta V to the spacecraft. The thrusting to Mars was followed by a coasting period of approximately 3.5 months that included a Mars flyby in February of 2009. The Mars flyby provided a gravity assist (MGA) for a plane change and approximately 1 km/s of heliocentric energy increase and is the only part of the mission following launch in which a needed velocity change is not accomplished by the IPS. During the coast period IPS was operated for a trajectory correction maneuver and for engineering tests but was not operated for primary propulsion. Closest approach to Mars occurred as planned on February 17, 2009 and was followed by another coasting period of just under 4 months in duration. During this last coasting phase IPS was operated only for routine maintenance activities and for system engineering tests. Deterministic thrusting for heliocentric transfer to Vesta resumed on June 8, 2009. Since resumption of cruise to Vesta IPS has been operated at throttled power levels, most of the time at full power, and with a duty cycle of approximately 93%, leading to an arrival at Vesta in July of 2011 and arrival at Ceres in February 2015. This paper provides an overview of Dawn's mission objectives and the results of Dawn IPS mission operations through one year from the spacecraft's rendezvous with Vesta.

  3. KSC-07pd1214

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, workers secure straps to an overhead crane around the Delta II rocket's first stage. It will be lifted and placed onto a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  4. KSC-07pd1311

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the first stage of a Delta II rocket is being raised to a vertical position before being lifted into the mobile service tower. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  5. KSC-07pd1213

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, workers secure straps to an overhead crane around the Delta II rocket's first stage. It will be lifted and placed onto a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  6. KSC-07pd1315

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- In the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the Delta II first stage is ready to receive the upper stages and solid rocket boosters for launch. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  7. Dawn Mission: A Journey in Space and Time

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Coradini, A.; DeSanctis, M. C.; Feldman, W. C.; Jaumann, R.; Konopliv, A. S.; McCord, T. B.; McFadden, L. A.; McSween, H. Y.; Mottola, S.

    2003-01-01

    By successively orbiting both 4 Vesta and 1 Ceres the Dawn mission directly addresses the longstanding goals of NASA and the planetary community to understand the origin and evolution of the solar system by obtaining geophysical and geochemical data on diverse main belt asteroids. Ceres and Vesta are two complementary terrestrial protoplanets (one apparently "wet" and one "dry"), whose accretion was terminated by the formation of Jupiter. Ceres is little changed since it formed in the early solar system, while Vesta has experienced significant heating and differentiation. Both have remained intact over the age of the solar system, thereby retaining a record of events and processes from the time of planet formation. Detailed study of the geophysics and geochemistry of these two bodies provides critical benchmarks for the early solar system conditions and processes that shaped its subsequent evolution. Dawn provides the missing context for both primitive and evolved meteoritic data, thus playing a central role in understanding terrestrial planet formation and the evolution of the asteroid belt. Dawn is to be launched in May 2006 arriving at Vesta in 2010 and Ceres in 2014, stopping at each to make 11 months of orbital measurements. The spacecraft uses solar electric propulsion both in cruise and in orbit to make most efficient use of its xenon propellant. The spacecraft carries a framing camera, visible and infrared mapping spectrometer, gamma ray/neutron spectrometer, a laser altimeter, magnetometer, and radio science.

  8. Cosmic Dawn Intensity Mapper (CDIM): a New Probe of Cosmic Dawn and Reionization

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching; CDIM Team

    2018-01-01

    The Cosmic Dawn Intensity Mapper, CDIM, is a NASA Probe-class Mission Study currently under study. CDIM is designed to be a near-IR survey instrument optimized for Cosmic Dawn and reionization sciences, answering critical questions on how and when galaxies and quasars first formed, the history of metal build-up, and the history and topology of reionization, among other questions. CDIM will provide R=300 spectroscopic imaging over ~10 sq. degree instantaneous field of view at 1 arcsecond resolution, over the wavelength range of 0.75 to 7.5 mm. A two-tiered wedding-cake survey will consist of a shallow tier spanning close to 300 deg2 and a deep tier of about 25 deg2. CDIM survey data will allow us to (i) determine spectroscopic redshifts of WFIRST-detected Lyman-break galaxies (LBGs) out to a redshift of 10; (ii) establish the environmental dependence of star formation during reionization through clustering and other environmental measurements; (iii) establish the metal abundance of first-light galaxies during reionization over two decades of stellar mass by spectrally separating NII from Hα, and detecting both Hβ and [OIII]; (iv) measure 3D tomographic intensity fluctuations during reionization in both Lyα at z > 6 and Hα at 0 < z < 10; and (v) cross-correlating intensity fluctuations with 21-cm data to establish the topology of reionization bubbles.

  9. Vesta's Elemental Composition

    NASA Technical Reports Server (NTRS)

    Prettyman, T. H.; Beck, A. W.; Feldman, W. C.; Lawrence, D. J.; McCoy, T. J.; McSween, H. Y.; Mittlefehldt, D. W.; Peplowski, P. N.; Raymond, C. A.; Reedy, R. C.; hide

    2014-01-01

    Many lines of evidence (e.g. common geochemistry, chronology, O-isotope trends, and the presence of different HED rock types in polymict breccias) indicate that the howardite, eucrite, and diogenite (HED) meteorites originated from a single parent body. Meteorite studies show that this protoplanet underwent igneous differentiation to form a metallic core, an ultramafic mantle, and a basaltic crust. A spectroscopic match between the HEDs and 4 Vesta along with a plausible mechanism for their transfer to Earth, perhaps as chips off V-type asteroids ejected from Vesta's southern impact basin, supports the consensus view that many of these achondritic meteorites are samples of Vesta's crust and upper mantle. The HED-Vesta connection was put to the test by the NASA Dawn mission, which spent a year in close proximity to Vesta. Measurements by Dawn's three instruments, redundant Framing Cameras (FC), a Visible-InfraRed (VIR) spectrometer, and a Gamma Ray and Neutron Detector (GRaND), along with radio science have strengthened the link. Gravity measurements by Dawn are consistent with a differentiated, silicate body, with a dense Fe-rich core. The range of pyroxene compositions determined by VIR overlaps that of the howardites. Elemental abundances determined by nuclear spectroscopy are also consistent with HED-compositions. Observations by GRaND provided a new view of Vesta inaccessible by telescopic observations. Here, we summarize the results of Dawn's geochemical investigation of Vesta and their implications.

  10. The highest-ranking rooster has priority to announce the break of dawn.

    PubMed

    Shimmura, Tsuyoshi; Ohashi, Shosei; Yoshimura, Takashi

    2015-07-23

    The "cock-a-doodle-doo" crowing of roosters, which symbolizes the break of dawn in many cultures, is controlled by the circadian clock. When one rooster announces the break of dawn, others in the vicinity immediately follow. Chickens are highly social animals, and they develop a linear and fixed hierarchy in small groups. We found that when chickens were housed in small groups, the top-ranking rooster determined the timing of predawn crowing. Specifically, the top-ranking rooster always started to crow first, followed by its subordinates, in descending order of social rank. When the top-ranking rooster was physically removed from a group, the second-ranking rooster initiated crowing. The presence of a dominant rooster significantly reduced the number of predawn crows in subordinates. However, the number of crows induced by external stimuli was independent of social rank, confirming that subordinates have the ability to crow. Although the timing of subordinates' predawn crowing was strongly dependent on that of the top-ranking rooster, free-running periods of body temperature rhythms differed among individuals, and crowing rhythm did not entrain to a crowing sound stimulus. These results indicate that in a group situation, the top-ranking rooster has priority to announce the break of dawn, and that subordinate roosters are patient enough to wait for the top-ranking rooster's first crow every morning and thus compromise their circadian clock for social reasons.

  11. The role of the large scale convection electric field in erosion of the plasmasphere during moderate and strong storms

    NASA Astrophysics Data System (ADS)

    Thaller, S. A.; Wygant, J. R.; Cattell, C. A.; Breneman, A. W.; Bonnell, J. W.; Kletzing, C.; De Pascuale, S.; Kurth, W. S.; Hospodarsky, G. B.; Bounds, S. R.

    2015-12-01

    The Van Allen Probes offer the first opportunity to investigate the response of the plasmasphere to the enhancement and penetration of the large scale duskward convection electric field in different magnetic local time (MLT) sectors. Using electric field measurements and estimates of the cold plasma density from the Van Allen Probes' Electric Fields and Waves (EFW) instrument, we study erosion of the plasmasphere during moderate and strong geomagnetic storms. We present the electric field and density data both on an orbit by orbit basis and synoptically, showing the behavior of the convection electric field and plasmasphere over a period of months. The data indicate that the large scale duskward electric field penetrates deep (L shell < 3) into the inner magnetosphere on both the dusk and dawn sides, but that the plasmasphere response on the dusk and dawn sides differ. In particular, significant (~2 orders of magnitude) decreases in the cold plasma density occur on the dawn side within hours of the onset of enhanced duskward electric field. In contrast, on the dusk side, the plasmapause is located at higher L shell than it is on the dawn side. In some cases, in the post-noon sector, cold plasma density enhancements accompany duskward electric field enhancements for the first orbit after the electric field enchantment, consistent with a duskside, sunward flowing, drainage plume.

  12. Surface Mineralogy Mapping of Ceres from the Dawn Mission

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Zambon, F.

    2017-12-01

    Ceres' surface composition is of special interest because it is a window into the interior state and the past evolution of this dwarf planet. Disk-integrated telescopic spectral observations indicated that Ceres' surface is hydroxylated, similar to but not exactly the same as some of the carbonaceous chondrite classes of meteorites. Furthermore, Ceres' bulk density is low, indicating significant water content. The Dawn mission in orbit around Ceres, provided a new and larger set of observations on the mineralogy, molecular and elemental composition, and their distributions in association with surface features and geology. A set of articles was prepared, from which this presentation is derived, that is the first treatment of the entire surface composition of Ceres using the complete High Altitude Mapping Orbit (HAMO) Dawn Ceres data set and the calibrations from all the Dawn instruments. This report provides a current and comprehensive view of Ceres' surface composition and integrates them into general conclusions. Ceres' surface composition shows a fairly uniform distribution of NH4- and Mg-phyllosilicates, carbonates, mixed with a dark component. The widespread presence of phyllosilicates, and salts on Ceres' surface is indicative of the presence of aqueous alteration processes, which involved the whole dwarf planet. There is also likely some contamination by low velocity infall, as seen on Vesta, but it is more difficult to distinguish this infall from native Ceres material, unlike for the Vesta case.

  13. Magnetotail Fast Flow Occurrence Rate and Dawn-Dusk Asymmetry at XGSM ˜ -60 RE

    NASA Astrophysics Data System (ADS)

    Kiehas, S. A.; Runov, A.; Angelopolos, V.; Hietala, H.; Korovinksiy, D.

    2018-03-01

    As a direct result of magnetic reconnection, plasma sheet fast flows act as primary transporter of mass, flux, and energy in the Earth's magnetotail. During the last decades, these flows were mainly studied within XGSM>-60RE, as observations near or beyond lunar orbit were limited. By using 5 years (2011-2015) of ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moons Interaction with the Sun) data, we statistically investigate earthward and tailward flows at around 60 RE downtail. A significant fraction of fast flows is directed earthward, comprising 43% (vx>400 km/s) to 56% (vx>100 km/s) of all observed flows. This suggests that near-Earth and midtail reconnection are equally probable of occurring on either side of the ARTEMIS downtail distance. For fast convective flows (v⊥x>400 km/s), this fraction of earthward flows is reduced to about 29%, which is in line with reconnection as source of these flows and a downtail decreasing Alfvén velocity. More than 60% of tailward convective flows occur in the dusk sector (as opposed to the dawn sector), while earthward convective flows are nearly symmetrically distributed between the two sectors for low AL (>-400 nT) and asymmetrically distributed toward the dusk sector for high AL (<-400 nT). This indicates that the dawn-dusk asymmetry is more pronounced closer to Earth and moves farther downtail during high geomagnetic activity. This is consistent with similar observations pointing to the asymmetric nature of tail reconnection as the origin of the dawn-dusk asymmetry of flows and other related observables. We infer that near-Earth reconnection is preferentially located at dusk, whereas midtail reconnection (X >- 60RE) is likely symmetric across the tail during weak substorms and asymmetric toward the dusk sector for strong substorms, as the dawn-dusk asymmetric nature of reconnection onset in the near-Earth region progresses downtail.

  14. Effect of the Solar UV/EUV Heating on the Intensity and Spatial Distribution of Jupiter's Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kita, Hajime; Misawa, H.; Tsuchiya, F.; Tao, C.; Morioka, A.

    2012-10-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent observations reveal short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed that the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. If such a process occurs at Jupiter, it is also expected that diurnal wind system produces dawn-dusk asymmetry of the JSR brightness distribution. Preceding studies confirmed that the short term variations in total flux density correspond to the solar UV/EUV. However, the effect of solar UV/EUV heating on the brightness distribution has not been confirmed. Hence, the purpose of this study is to confirm the solar UV/EUV heating effect on total flux density and brightness distribution. We made radio imaging analysis using the National Radio Astronomy Observatory (NRAO) archived data of the Very Large Array (VLA) obtained in 2000, and following results were shown. 1, Total flux density varied corresponding to the solar UV/EUV. 2, Dawn side emission was brighter than dusk side emission almost every day. 3, Variations of the dawn-dusk asymmetry did not correspond to the solar UV/EUV. In order to explain the second result, we estimate the diurnal wind velocity from the observed dawn-dusk ratio by using the model brightness distribution of JSR. Estimated neutral wind velocity is 46+/-11 m/s, which reasonably corresponds to the numerical simulation of Jupiter's upper atmosphere. In order to explain the third result, we examined the effect of the global convection electric field driven by tailward outflow of plasma in Jupiter's magnetosphere. As the result, it is suggested that typical fluctuation of the convection electric field strength was enough to cause the observed variations of the dawn-dusk asymmetry.

  15. Application of a Biotin Functionalized QD Assay for Determining Available Binding Sites on Electrospun Nanofiber Membrane

    DTIC Science & Technology

    2011-01-01

    Dawn.Nida@us.army.mil) Joshua Magnone (Joshua.Magnone@us.army.mil) Andre Senecal (Andy.Senecal@us.army.mil) ISSN 1477-3155 Article type Research Submission...Dawn.Nida@us.army.mil; Joshua Magnone - Joshua.Magnone@us.army.mil; Andre Senecal - Andy.Senecal@us.army.mil *Corresponding Author 2...Biol Eng 2007, 1:doi10.1186/1754-1611-1-2. 12. Senecal A, Magnone J, Marek P, Senecal K: Development of functional nanofibrous membrane assemblies

  16. Dawn Survey Orbit Image 43

    NASA Image and Video Library

    2015-08-07

    This image, taken by NASA's Dawn spacecraft, shows a portion of the southern hemisphere of dwarf planet Ceres from an altitude of 2,700 miles (4,400 kilometers). The image, with a resolution of 1,400 feet (410 meters) per pixel, was taken on June 25, 2015. The image was obtained on June 25, 2015 from an altitude of 2,700 miles (4,400 kilometers) above Ceres and has a resolution of 1,400 feet (410 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19616

  17. Dawn HAMO Image 53

    NASA Image and Video Library

    2015-11-05

    This image, taken by NASA's Dawn spacecraft, shows the surface of dwarf planet Ceres from an altitude of 915 miles (1,470 kilometers) around mid-latitudes. The image was taken on Sept. 28, 2015, and has a resolution of 450 feet (140 meters) per pixel. The unusual mountain Ahuna Mons is featured in this image, named for the traditional post-harvest festival of the Sumi tribe of Nagaland, India. It is 4 miles (6 kilometers) tall and 12 miles (20 kilometers) in diameter. http://photojournal.jpl.nasa.gov/catalog/PIA19995

  18. KSC-07pd1612

    NASA Image and Video Library

    2007-06-21

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers check the attachments of the Dawn spacecraft onto the upper stage booster. The two elements are being mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  19. KSC-07pd1310

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the first stage of a Delta II rocket is being raised off its transporter into a vertical position. Once vertical, the rocket will be lifted up into the mobile service tower. The rocket is the launch vehicle for the Dawn spacecraft, targeted for liftoff on June 30. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Amanda Diller

  20. KSC-07pd1610

    NASA Image and Video Library

    2007-06-21

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers help guide the Dawn spacecraft toward the upper stage booster below. The two elements will be mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  1. KSC-07pd1219

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  2. KSC-07pd1324

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, one of nine solid rocket boosters is raised off the transporter. It will be lifted into the mobile service tower for attachment around the Delta II first stage. The SRB is one of nine to be attached for the launch of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  3. KSC-07pd1613

    NASA Image and Video Library

    2007-06-21

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers secure the attachments of the Dawn spacecraft onto the upper stage booster. The two elements are being mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  4. KSC-07pd1332

    NASA Image and Video Library

    2007-05-29

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, a third solid rocket booster is raised to a vertical position. It will be lifted into the mobile service tower for attachment around the Delta II first stage. The SRB is one of nine to be attached for the launch of the Dawn spacecraft. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Jim Grossmann

  5. KSC-07pd1218

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  6. Dawn : a mission in developement for exploration of main belt asteroids Vesta and Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Fraschetti, Thomas C.; Russell, Christopher T.; Raymond, Carol A.

    2004-01-01

    Dawn is in development for a 2006 launch on a mission to explore main belt asteroids in order to yield insights into important questions about the formation and evolution of the solar system. Its objective is to acquire detailed data from orbit around two complementary bodies, Vesta and Ceres, the two most massive asteroids. The project relies on extensive heritage from other deep-space and Earth-orbiting missions, thus permitting the ambitious objectives to be accomplished with an affordable budget.

  7. System III variations in apparent distance of Io plasma torus from Jupiter

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.; Sandel, B. R.

    1992-01-01

    System III variations in apparent distance of the Io plasma torus from Jupiter are examined on the basis of data obtained from UVS scans across Jupiter's satellite system. The displacement of the dawn and dusk ansae are found to be unexpectedly complex. The displacements are unequal and both ansae are in motion with the motion of the approaching ansa being the lesser of the two. The radial motions, as measured from either the center of Jupiter or the offset-tilted dipole, are of unequal magnitude and have the System III periodicity. It is concluded that the cross-tail electric field that causes these torus motions is concentrated on the dusk ansa, varied with the System III period, and shows magnetic-anomaly phase control. It is found that the dawn-dust asymmetry in brightness is not explained simply by the cross-tail electric field. It is concluded that there is a heating mechanism that causes the dusk side of the Io plasma torus to be brighter than the dawn side.

  8. Pre-Dawn Martian Sky

    NASA Technical Reports Server (NTRS)

    1997-01-01

    On Sol 39 there were wispy blue clouds in the pre-dawn sky of Mars, as seen by the Imager for Mars Pathfinder (IMP). The color image was made by taking blue, green, and red images and then combining them into a single color image. The clouds appear to have a bluish side and a greenish side because they moved (in the wind from the northeast) between images. This picture was made an hour and twenty minutes before sunrise -- the sun is not shining directly on the water ice clouds, but they are illuminated by the dawn twilight.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  9. mobile Digital Access to a Web-enhanced Network (mDAWN): Assessing the Feasibility of Mobile Health Tools for Self-Management of Type-2 Diabetes.

    PubMed

    Ho, Kendall; Newton, Lana; Boothe, Allison; Novak-Lauscher, Helen

    2015-01-01

    The mobile Digital Access to a Web-enhanced Network (mDAWN) program was implemented as an online, mobile self-management system to support patients with type-2 diabetes and their informal caregivers. Patients used wireless physiological sensors, received text messages, and had access to a secure web platform with health resources and semi-facilitated discussion forum. Outcomes were evaluated using (1) pre and post self-reported health behavior measures, (2) physiological outcomes, (3) program cost, and (4) in-depth participant interviews. The group had significantly decreased health distress, HbA1c levels, and systolic blood pressure. Participants largely saw the mDAWN as providing good value for the costs involved and found the program to be empowering in gaining control over their diabetes. mHealth programs have the potential to improve clinical outcomes through cost effective patient-led care for chronic illness. Further evaluation needs to examine integration of similar mHealth programs into the patient-physician relationship.

  10. Dog and Cat Interactions in a Remote Aboriginal Community.

    PubMed

    Kennedy, Brooke; Brown, Wendy Y; Vernes, Karl; Körtner, Gerhard; Butler, James R A

    2018-04-26

    This study examined dog and cat demographics, roaming behaviours, and interspecific interactions in a remote Aboriginal island community using multiple methods. Our results revealed temporal differences between the roaming behaviours of dogs, cats, and wildlife. Dogs showed crepuscular behaviour, being active around dawn (5:30 a.m. to 9:30 a.m.) and dusk (6:00 p.m. and 11:35 p.m.). The majority of cats were active between dawn (6:30 a.m.) and dusk (7:30 p.m.) and travelled shorter distances than dogs. However, some cats were also observed roaming between dusk and dawn, and were likely to be hunting since flightless wildlife were also recorded on our remote-sensing cameras during this time. These baseline data provide evidence to suggest that new management programs are needed to reduce the number of roaming cats and therefore their potential impacts on native wildlife. Collaborations between Aboriginal owners and other stakeholders is necessary to design innovative and effective animal management and policy on the island.

  11. Simulation and 'TWINS Observations of the 22 July 2009 Storm

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Buzulukova, Natalia Y.; Chen, Sheng-Hsien; Valek, Phil; Goldstein, Jerry; McComas, David

    2010-01-01

    TWINS is the first mission to perform stereo imaging of the Earth's ring current. The magnetic storm on 22 July 2009 is the largest storm observed since TWINS began routine stereo imaging in June 2008. On 22 July 2009, the Dst dropped to nearly -80nT at 7:00 and 10:00 UT. During the main phase and at the peak of the storm, TWINS 1 and 2 were near apogee and moving from pre-dawn to post-dawn local time. The energetic neutral atom (ENA) imagers on the 2 spacecraft captured the storm intensification and the formation of the partial ring current. The peak of the ENA emissions was seen in the midnight-to-dawn local-time sector. The development of this storm has been simulated using the Comprehensive Ring Current Model (CRCM) to understand and interpret the observed signatures. We perform CRCM runs with constant and time-varying magnetic field. The model calculations are validated by comparing the simulated ENA and ion flux intensities with TWINS ENA images and in-situ ion data from THEMIS satellites. Simulation with static magnetic field produces a strong shielding electric field that skews the ion drift trajectories toward dawn. The model's corresponding peak ENA emissions are always eastward than those in the observed TWINS images. On the other hand, simulation with a dynamic magnetic field gives better spatial agreements with both ENA and insitu particle data, suggesting that temporal variations of the geomagnetic field exert a significant influence upon global ring current ion dynamics.

  12. NASA's Dawn Mission to Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    McFadden, Lucyann A.

    2011-01-01

    NASA's Dawn Mission to asteroid 4 Vesta is part of a 13-year robotic space project designed to reveal the nature of two of the largest asteroids in the Main Asteroid Belt of our Solar System. Ceres and Vesta are two complementary terrestrial protoplanets whose accretion was probably terminated by the formation of Jupiter. They provide a bridge in our understanding between the rocky bodies of the inner solar system and the icy bodies of the outer solar system. Ceres appears to be undifferentiated Vesta has experienced significant heating and likely differentiation. Both formed very early in history of the solar system and while suffering many impacts have remained intact, thereby retaining a record of events and processes from the time of planet formation. Detailed study of the geophysics and geochemistry of these two bodies provides critical benchmarks for early solar system conditions and processes that shaped its subsequent evolution. Dawn provides the missing context for both primitive and evolved meteoritic data, thus playing a central role in understanding terrestrial planet formation and the evolution of the asteroid belt. Dawn is to he launched in 2006 arriving at Vesta in 20l0 and Ceres in 2014, stopping at each to make 11 months of orbital measurements. The spacecraft uses solar electric propulsion, both in cruise and in orbit, to make most efficient use of its xenon propellant. The spacecraft carries a framing camera, visible and infrared mapping spectrometer, gamma ray/neutron magnetometer, and radio science.

  13. Twilight observation by the naked eye of the dawn sincere at Hail and other areas in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Khalifa, N. S.; Hassan, A. H.; Taha, A. I.

    2018-06-01

    Naked eye observations of morning twilight phenomenon at Hail and other areas of Saudi Arabia are recorded. During the interval from 2014 to 2015, about 80 morning twilight observations were carried out in Hail at longitude λ = 41°42‧E and latitude φ = 27°31‧N for a desert background. The phenomena was followed over azimuth angles ranged from 0° to 20° of solar vertical direction and from 0° to 10° along the altitudinal range. By selecting 32 days with a very good visibility, it was found that Sun depression, Do, lies in a range between 13.48° and 14.69° with an average of 14.014° ±0.317. The difference between our obtained value and that one which is currently applicable in Saudi Arabia is about 4°. The results indicate that dawn (white thread browser) occurs at a sun vertical depression angle Do = 14.66° (mean + 2SD) according to the normal eye estimations. The results at different areas in the deep desert in KSA showed that the beginning of morning twilight and true dawn is at sun vertical depression Do = 14.88° (mean + 1SD). The current study shows significant results, which are comparable with both naked eye observations and photoelectric measurements of true dawn in both Egypt and Libya for desert background.

  14. The highest-ranking rooster has priority to announce the break of dawn

    PubMed Central

    Shimmura, Tsuyoshi; Ohashi, Shosei; Yoshimura, Takashi

    2015-01-01

    The “cock-a-doodle-doo” crowing of roosters, which symbolizes the break of dawn in many cultures, is controlled by the circadian clock. When one rooster announces the break of dawn, others in the vicinity immediately follow. Chickens are highly social animals, and they develop a linear and fixed hierarchy in small groups. We found that when chickens were housed in small groups, the top-ranking rooster determined the timing of predawn crowing. Specifically, the top-ranking rooster always started to crow first, followed by its subordinates, in descending order of social rank. When the top-ranking rooster was physically removed from a group, the second-ranking rooster initiated crowing. The presence of a dominant rooster significantly reduced the number of predawn crows in subordinates. However, the number of crows induced by external stimuli was independent of social rank, confirming that subordinates have the ability to crow. Although the timing of subordinates’ predawn crowing was strongly dependent on that of the top-ranking rooster, free-running periods of body temperature rhythms differed among individuals, and crowing rhythm did not entrain to a crowing sound stimulus. These results indicate that in a group situation, the top-ranking rooster has priority to announce the break of dawn, and that subordinate roosters are patient enough to wait for the top-ranking rooster’s first crow every morning and thus compromise their circadian clock for social reasons. PMID:26203594

  15. Dawn Survey Orbit Image 42

    NASA Image and Video Library

    2015-08-06

    This image of Ceres, taken by NASA's Dawn spacecraft, features a large, steep-sided mountain and several intriguing bright spots. The mountain's height is estimated to be about 4 miles (6 kilometers), which is a revision of the previous estimate of 3 miles (5 kilometers). It is the highest point seen on Ceres so far. The image was obtained on June 25, 2015 from an altitude of 2,700 miles (4,400 kilometers) above Ceres and has a resolution of 1,400 feet (410 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA19615

  16. Geoscientific Mapping of Vesta by the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Jaumann, R.; Pieters, C. M.; Neukum, G.; Mottola, S.; DeSanctis, M. C.; Russell, C. T.; Raymond, C. A.; McSween, H. Y.; Roatsch, T.; Nathues, A.; hide

    2011-01-01

    The geologic objectives of the Dawn Mission are to derive Vesta's shape, map the surface geology, understand the geological context and contribute to the determination of the asteroids' origin and evolution. Geomorphology and distribution of surface features will provide evidence for impact cratering, tectonic activity, volcanism, and regolith processes. Spectral measurements of the surface will provide evidence of the compositional characteristics of geological units. Age information, as derived from crater size-frequency distributions, provides the stratigraphic context for the structural and compositional mapping results into the stratigraphic context and thusrevealing the geologic history of Vesta.

  17. GRIP Experiment 2010

    NASA Image and Video Library

    2010-08-17

    Michael Kavaya, of the NASA Langley Research Center, a Principal Investigator for the DAWN experiment, looks over data with Jeffrey Beyon during a flight of the NASA DC-8, Tuesday, Aug. 17, 2010, in the Gulf of Mexico. The DAWN experiment, also known as the Doppler Aerosol Wind Lidar, is one of many experiments supporting the Genesis and Rapid Intensification Processes (GRIP) experiment, a NASA Earth science field experiment in 2010 that is being conducted to better understand how tropical storms form and develop into major hurricanes. Photo Credit: (NASA/Paul E. Alers)

  18. KSC-07pd1609

    NASA Image and Video Library

    2007-06-21

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, workers check the movement of the Dawn spacecraft, at left, toward the upper stage booster at right. The two elements will be mated for launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Photo credit: NASA/George Shelton

  19. KSC-07pd1487

    NASA Image and Video Library

    2007-06-11

    KENNEDY SPACE CENTER, FLA. -- Three solid rocket boosters are suspended in the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station for mating to the Delta II first stage for launch of the Dawn spacecraft. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is targeted for July 7. Photo credit: NASA/Jim Grossmann

  20. KSC-07pd1477

    NASA Image and Video Library

    2007-06-11

    KENNEDY SPACE CENTER, FLA. -- This closeup shows four of the nine solid rocket boosters being mated to the Delta II first stage on Launch Pad 17-B at Cape Canaveral Air Force Station for launch of the Dawn spacecraft. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is targeted for July 7. Photo credit: NASA/Jim Grossmann

  1. KSC-07pd1483

    NASA Image and Video Library

    2007-06-11

    KENNEDY SPACE CENTER, FLA. -- A solid rocket booster is lifted into the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station. The booster will be mated to the Delta II first stage for launch of the Dawn spacecraft. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is targeted for July 7. Photo credit: NASA/Jim Grossmann

  2. KSC-07pd1479

    NASA Image and Video Library

    2007-06-11

    KENNEDY SPACE CENTER, FLA. -- Another solid rocket booster arrives on Launch Pad 17-B at Cape Canaveral Air Force Station to be mated to the Delta II first stage. The Delta is the launch vehicle for the Dawn spacecraft. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is targeted for July 7. Photo credit: NASA/Jim Grossmann

  3. Ahuna Mons

    NASA Image and Video Library

    2018-03-14

    This view from NASA's Dawn mission shows Ceres' tallest mountain, Ahuna Mons, 2.5 miles (4 kilometers) high and 11 miles (17 kilometers) wide. This is one of the few sites on Ceres at which a significant amount of sodium carbonate has been found, shown in green and red colors in the lower right image. The top and lower left images were collected by Dawn's framing camera. The top image is a 3D view reconstructed with the help of topography data. A non-annotated version is available at https://photojournal.jpl.nasa.gov/catalog/PIA21919

  4. Tracing Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia

    2018-05-01

    Observational effort is on the way to probe the 21-cm of neutral hydrogen from the epochs of Reionization and Cosmic Dawn. Our current poor knowledge of high redshift astrophysics results in a large uncertainty in the theoretically predicted 21-cm signal. A recent parameter study that is highlighted here explores the variety of 21-cm signals resulting from viable astrophysical scenarios. Model-independent relations between the shape of the signal and the underlying astrophysics are discussed. Finally, I briefly note on possible alternative probes of the high redshift Universe, specifically Fast Radio Bursts.

  5. High-resolution Ceres LAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C.

    2016-12-01

    Introduction: NASA's Dawn spacecraft has been orbiting the dwarf planet Ceres since December 2015 in LAMO (High Altitude Mapping Orbit) with an altitude of about 400 km to characterize for instance the geology, topography, and shape of Ceres. One of the major goals of this mission phase is the global high-resolution mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera took until the time of writing about 27,500 clear filter images in LAMO with a resolution of about 30 m/pixel and dif-ferent viewing angles and different illumination condi-tions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. A high-resolution shape model was provided by stereo processing of the HAMO dataset, orbit and attitude data are available as reconstructed SPICE data. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself was done onto a reference sphere of Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:250,000 and will consist of 62 tiles that conforms to the quadrangle schema for Venus at 1:5,000,000. A map scale of 1:250,000 is a compro-mise between the very high resolution in LAMO and a proper map sheet size of the single tiles. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters and to use names of agricultural festivals of the world for other geological features. This proposal was ac-cepted by the IAU and the team proposed 92 names for geological features to the IAU based on the LAMO mosaic. These feature names will be applied to the map tiles.

  6. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), manages the project and is responsible for flight operation; Orbital Sciences Corporation (OSC), is the spacecraft builder and is responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), is responsible for science planning and operations. As a cost-capped mission, one of Dawn's implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL's ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL's GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project's commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to fundamental systems engineering practices: decomposition of the project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; definition of a structured yet flexible development process; definition of an in-process risk reduction plan; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  7. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange

    NASA Technical Reports Server (NTRS)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.

  8. Factors associated to the career choice of family medicine among Japanese physicians: the dawn of a new era.

    PubMed

    Ie, Kenya; Tahara, Masao; Murata, Akiko; Komiyama, Manabu; Onishi, Hirotaka

    2014-01-01

    Despite recent developments in post-graduate family medicine training in Japan, the numbers of junior doctors entering family medicine residencies are still limited. The objective of this qualitative study was to investigate the possible factors associated to the career choice of family medicine, especially in the context of the newly established family medicine programs in Japan. From December 2010 to January 2011, we distributed a semi-structured questionnaire about career choice to 58 physician members of the Japan Primary Care Association, and 41 of them responded. Four researchers used the Modified Grounded Theory Approach (Kinoshita, 2003) for three-stage conceptualization. We extracted a conceptual model of the choice of newly established family medicine as a career in Japan, consisting of six categories and 77 subordinate concepts from 330 variations. The subcategories of personal background affecting the family-medicine career choice were characteristics ("self-reliance," "pioneering spirit"), career direction ("community/rural-orientedness," "multifaceted orientation") and experience (e.g., "discomfort with fragmented care"). We divided the influencing factors that were identified for career choice into supporters (e.g., "role model"), conflict of career choice (e.g., "anxiety about diverse/broad practice"), and the dawn of a new era in family medicine in Japan (e.g., "lack of social recognition," "concern about livelihood," and "too few role models"). Although the dawn of a new era seemed a rather negative influencer, it was unique to our study that the dawn itself could attract those with a "pioneering spirit" and an "attitude of self-training." Unlike previous studies, the positive factors such as lifestyle and the short residency program were not shown to be part of family medicine's attractiveness. In contrast, "concern about livelihood" was specific among our respondents and was related to career choice in the dawn period. "Community-orientedness" and "multifaceted orientation" (which have aspects in common with previous studies' findings) would appear to be universal regardless of cultural and medical system differences. In our study, these universal factors were also found to be part of the attractiveness of family medicine from the practitioners' viewpoints, and these factors may become great influencers for family medicine candidates.

  9. Vesta and the HED Meteorites: Comparison of Spectral Properties

    NASA Technical Reports Server (NTRS)

    Ammannito, E.; De Sanctis, M. C.; Fonte, S.; Magni, G.; Capaccioni, F.; Tosi, F.; Capria, M. T.; Blewett, D.; Combe, J. P.; Farina, M.; hide

    2012-01-01

    We present the main results obtained comparing the visible-near infrared (VIS-NIR) spectra Vesta s surface with howardites, eucrites, diogenites (HEDs). HEDs are commonly associated with Vesta based on spectral similarities. Because of such association, much effort is being made to merge the information from HEDs as well as Vestoids with that from Vesta to characterize the lithologic diversity of the surface of this asteroid and to infer clues regarding its thermal history. The Dawn spacecraft, orbiting around Vesta since July 2011, is performing detailed observations of this body and thus improving our knowledge of its properties. Dawn s scientific payload includes an imaging spectrometer, VIR-MS, sensitive to the VIS-NIR spectral range. VIR-MS began acquiring spectra during the approach phase that started in May 2011 and will continue its observations through July 2012 when the spacecraft will depart Vesta to travel to Ceres. The observations are uniformly distributed in latitude and longitude, allowing a global view of Vesta s crustal spectral properties. Using the information provided by VIR spectra, we studied the distribution of the spectral heterogeneities on the surface and used our findings to perform a comparison with HED spectra in the VIS-NIR spectral range searching for analogies and/or incompatibilities. In our analysis, we utilized a method to compare the results obtained at microscopic scale on HED samples and the one obtained at macroscopic scale on the surface of Vesta. The intent of this study is to improve our understanding of the connection between Vesta and the HEDs, which is one of the primary Dawn scientific objectives. Dawn VIR spectra are characterized by pyroxene absorptions and most of the surface materials exhibit howardite-like spectra. However, some large areas can be interpreted to be material richer in diogenite (based on pyroxenes band depths and band centers) and some others like eucrite-rich howardite terrains. In particular, VIR data strongly indicate in the south polar region (Rheasilvia) the presence of Mg-pyroxene-rich terrains. The hypothesis that Vesta is the HED parent body is consistent with, and strengthened by, the geologic and spectral context for pyroxene distribution provided by VIR on Dawn.

  10. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf1[OPEN

    PubMed Central

    Arrivault, Stéphanie; Lohse, Marc A.; Feil, Regina; Krohn, Nicole; Encke, Beatrice; Nunes-Nesi, Adriano; Fernie, Alisdair R.; Stitt, Mark

    2016-01-01

    Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. PMID:27582314

  11. Compositional Diversity of the Vestan Regolith Derived from Howardite Compositions and Dawn VIR Spectra

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Ammannito, E.; Hiroi, T.; DeAngeles, S.; Moriarty, D. P.; DiIorio, T.; Pieters, C. M.; DeSanctis, M. C.

    2014-01-01

    Howardite, eucrite and diogenite meteorites likely come from asteroid 4 Vesta [1]. Howardites - physical mixtures of eucrites and diogenites - are of two subtypes: regolithic howardites were gardened in the true regolith; fragmental howardites are simple polymict breccias [2]. The Dawn spacecraft imaged the howarditic surface of Vesta with the visible and infrared mapping spectrometer (VIR) resulting in qualitative maps of the distributions of distinct diogenite-rich and eucrite-rich terranes [3, 4]. We are developing a robust basis for quantitative mapping of the distribution of lithologic types using spectra acquired on splits of well-characterized howardites [5, 6]. Spectra were measured on sample powders sieved to <75 µm in the laboratories of the Istituto di Astrofisica e Planetologia Spaziali and Brown University. Data reduction was done using the methods developed to process Dawn VIR spectra [4]. The band parameters for the 1 and 2 µm pyroxene absorption features (hereafter BI and BII) can be directly compared to Dawn VIR results. Regolithic howardites have shallower BI and BII absorptions compared to fragmental howardites with similar compositions. However, there are statistically significant correlations between Al or Ca contents and BI or BII center wavelengths regardless of howardite subtype. Diogenites are poor in Al and Ca while eucrites are rich in these elements. The laboratory spectra can thus be directly correlated with the percentage of eucrite material contained in the howardites. We are using these correlations to quantitatively map Al and Ca distributions, and thus the percentage of eucritic material, in the current regolith of Vesta.

  12. KSC-07pd2578

    NASA Image and Video Library

    2007-09-26

    KENNEDY SPACE CENTER, FLA. -- The Delta II rocket is revealed as the mobile service tower, or gantry (at right), is retracted on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT. Photo credit: NASA/Kim Shiflett

  13. KSC-07pd2582

    NASA Image and Video Library

    2007-09-26

    KENNEDY SPACE CENTER, FLA. -- Rollback of the mobile service tower, or gantry, from the Delta II rocket is complete on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT. Photo credit: NASA/Kim Shiflett

  14. KSC-07pd2408

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers ensure the upper transportation canister is securely attached to the lower segments. The canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  15. KSC-07pd2579

    NASA Image and Video Library

    2007-09-26

    KENNEDY SPACE CENTER, FLA. -- A worker monitors the progress of the retraction of the mobile service tower, or gantry, from the Delta II rocket on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT. Photo credit: NASA/Kim Shiflett

  16. KSC-07pd2581

    NASA Image and Video Library

    2007-09-26

    KENNEDY SPACE CENTER, FLA. -- The Delta II rocket stands ready for launch following rollback of the mobile service tower, or gantry, on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT. Photo credit: NASA/Kim Shiflett

  17. KSC-07pd2580

    NASA Image and Video Library

    2007-09-26

    KENNEDY SPACE CENTER, FLA. -- The Delta II rocket stands ready for launch following rollback of the mobile service tower, or gantry, on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT. Photo credit: NASA/Kim Shiflett

  18. KSC-07pd2577

    NASA Image and Video Library

    2007-09-26

    KENNEDY SPACE CENTER, FLA. -- The Delta II rocket is revealed as the mobile service tower, or gantry (at left), is retracted on Launch Pad 17B at Cape Canaveral Air Force Station. Starting with a boost from this higher thrust version of the Delta II rocket, the Dawn spacecraft will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission during its nearly decade-long mission, Dawn will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field, and thus, bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch is targeted for Sept. 27 during a window that extends from 7:20 to 7:49 a.m. EDT. Photo credit: NASA/Kim Shiflett

  19. Navigation Image of Ceres

    NASA Image and Video Library

    2017-04-07

    NASA's Dawn spacecraft took this picture on its way to a new orbit, at an altitude of about 30,000 miles (48,300 kilometers), as part of a series of images intended to help the navigation of the spacecraft relative to Ceres. The image was taken on March 28, 2017. Several familiar features can be identified: At the top, we see Occator Crater and its faculae (bright deposits identified as a mixture of sodium carbonate and other salts). Below center is the crater Urvara, and to the right of it, the larger crater Yalode (the third and second largest craters on Ceres, respectively). Large-scale faults called Samhain Catenae stretch from the Occator region toward the Yalode-Urvara region. The spacecraft will settle into a new orbit that will allow it to observe Ceres in opposition at the end of April 2017, when Dawn is directly between the sun and the Occator bright spots, at an altitude of about 12,400 miles (20,000 kilometers). The Dawn Journal has more details about the science expected from these observations. https://photojournal.jpl.nasa.gov/catalog/PIA21401

  20. First Complete Look at Ceres Poles

    NASA Image and Video Library

    2015-11-20

    Researchers from NASA's Dawn mission have composed the first comprehensive views of the north (left) and south pole regions (right) of dwarf planet Ceres, using images obtained by the Dawn spacecraft. The images were taken between Aug. 17 and Oct. 23, 2015, from an altitude of 915 miles (1,470 kilometers). The region around the south pole appears black in this view because this area has been in shade ever since Dawn's arrival on March 6, 2015, and is therefore not visible. At the north polar region, craters Jarovit, Ghanan and Asari are visible, as well as the mountain Ysolo Mons. Near the south pole, craters Attis and Zadeni can be seen. Detailed maps of the polar regions allow researchers to study the craters in this area and compare them to those covering other parts of Ceres. Variations in shape and complexity can point to different surface compositions. In addition, the bottoms of some craters located close to the poles receive no sunlight throughout Ceres' orbit around the sun. Scientists want to investigate whether surface ice can be found there. http://photojournal.jpl.nasa.gov/catalog/PIA20126

  1. Paradigms and Paradoxes: Dawn at Vesta

    NASA Technical Reports Server (NTRS)

    Raymond, C. A.; Russell, C. T.; Mittlefehldt, D. W.

    2014-01-01

    While confirming the popular paradigm of Vesta as the parent body of the HED meteorites, Dawn measurements have discovered many unexpected aspects of the vestan surface. First, an olivine layer was not found in the bottom of the large basin near the south pole of Vesta. In fact, while patches of olivine have been found in the north, it is rare on the surface. Secondly, while Vesta has little gravity and appears to have completely differentiated, it is not completely dry evidence for transient flows and pits resulting from devolatization have been found, implying a substantial amount of accessible water. Thirdly, transport of material to the surface of Vesta from elsewhere in the asteroid belt appears as dark material buried near the top of the crust to Vesta. This may have arrived in a single large impact and been spread around the surface and buried, later to be re-excavated. However, it is not certain that this is the only scenario possible for the source of this material. In short, Dawn's observations of Vesta have been both reassuring but unsettling at the same time.

  2. Hopkins Ultraviolet Telescope determination of the Io torus electron temperature

    NASA Technical Reports Server (NTRS)

    Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.

    1994-01-01

    Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.

  3. Ahuna Mons: Side View

    NASA Image and Video Library

    2016-09-01

    Ceres' lonely mountain, Ahuna Mons, is seen in this simulated perspective view. The elevation has been exaggerated by a factor of two. The view was made using enhanced-color images from NASA's Dawn mission. Images taken using blue (440 nanometers), green (750 nanometers) and infrared (960 nanometers) spectral filters were combined to create the view. The spacecraft's framing camera took the images from Dawn's low-altitude mapping orbit, from an altitude of 240 miles (385 kilometers) in August 2016. The resolution of the component images is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20915

  4. Oxo Crater: Side View

    NASA Image and Video Library

    2016-09-01

    Ceres' lonely mountain, Ahuna Mons, is seen in this simulated perspective view. The elevation has been exaggerated by a factor of two. The view was made using enhanced-color images from NASA's Dawn mission. Images taken using blue (440 nanometers), green (750 nanometers) and infrared (960 nanometers) spectral filters were combined to create the view. The spacecraft's framing camera took the images from Dawn's low-altitude mapping orbit, from an altitude of 240 miles (385 kilometers) in August 2016. The resolution of the component images is 120 feet (35 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20915

  5. KSC-07pd2583

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- Rising above a cloud-filled horizon, the Delta II rocket carrying the Dawn spacecraft roars into the sky. Liftoff was at 7:34 a.m. EDT from Pad 17-B at Cape Canaveral Air Force Station. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Kim Shiflett

  6. KSC-07pd1654

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft moves out of the Astrotech facility in Titusville, Fla., for transportation to Launch Pad 17-B at Cape Canaveral Air Force Station, and mate to the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  7. KSC-07pd2584

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- The Delta II rocket with the Dawn spacecraft on top waits in the early morning light for launch. Liftoff was at 7:34 a.m. EDT from Pad 17-B at Cape Canaveral Air Force Station. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd2585

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- Rising into billowing clouds above the horizon, the Delta II rocket carrying the Dawn spacecraft roars into the sky. Liftoff was at 7:34 a.m. EDT from Pad 17-B at Cape Canaveral Air Force Station. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/George Shelton

  9. KSC-07pd1661

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At the top of Launch Pad 17-B, at Cape Canaveral Air Force Station, workers help to guide NASA’s Dawn spacecraft into position for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  10. KSC-07pd2586

    NASA Image and Video Library

    2007-09-27

    KENNEDY SPACE CENTER, FLA. -- Leaving the clouds behind, the Delta II rocket carrying the Dawn spacecraft arcs through the blue sky over the Atlantic Ocean. Liftoff was at 7:34 a.m. EDT from Pad 17-B at Cape Canaveral Air Force Station. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/George Shelton

  11. KSC-07pd1663

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers position NASA's Dawn spacecraft to mate it with the Delta II launch vehicle below. Launch is scheduled for July 7. Dawn is the ninth mission in NASA’s Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  12. KSC-07pd1659

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, NASA's Dawn spacecraft is hoisted up on the pad in preparation for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  13. KSC-07pd1662

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers position NASA’s Dawn spacecraft to lower it toward the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  14. KSC-07pd1660

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At the top of Launch Pad 17-B, at Cape Canaveral Air Force Station, workers help to guide NASA’s Dawn spacecraft into position for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  15. Studying internal and external magnetic fields in Japan using MAGSAT data

    NASA Technical Reports Server (NTRS)

    Fukushima, N. (Principal Investigator); Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyazaki, Y.; Uyeda, S.; Kobayashi, K.

    1980-01-01

    Examination of the total intensity data of CHRONIT on a few paths over Japan and its neighboring sea shows MAGSAT is extremely useful for studying the local magnetic anomaly. In high latitudes, the signatures of field aligned currents are clearly recognized. These include (1) the persistent basic pattern of current flow; (2) the more intense currents in the summer hemisphere than in the winter hemisphere; (3) more fluctuations in current intensities in summer dawn hours; and (4) apparent dawn-dusk asymmetry in the field-aligned current intensity between the north and south polar regions.

  16. Preliminary Results from Initial Investigations of Ceres' Cratering Record from Dawn Imaging Data

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Michael, Gregory; Ivanov, Boris A.; Kneissl, Thomas; Neesemann, Adrian; Hiesinger, Harald; Jaumann, Ralf; Raymond, Carol A.; Russell, Christopher T.

    2015-04-01

    The highly successful Dawn mission [1] finished data collection at Vesta in 2012 and is now on its way to the dwarf planet Ceres. According to the current Ceres approach timeline of the Dawn mission, the ground resolution of the Dawn FC camera [2] will be about 10 times better than Hubble data [3] at the time of the presentation of this work. This may allow for identification of craters about 15 km in diameter. Initial mapping of sample areas may provide enough information of the cratering record in order to compare it with the theoretical Ceres crater production function we present at the 46th LPSC conference (March 16-20, 2015, The Woodlands, Texas) [4]. Our preliminary crater production function for Ceres is derived from the assumption of an icy crust just below a thin surface layer of dust [5], and a projectile population that is very similar to the one that impacted the Moon [6]. In order to scale the lunar cratering record to Ceres we use the Ivanov scaling laws [7], which allow for crater scaling based on parameters that can be derived from observations. The lunar-like approach gave reasonable good results for the crater production function on the asteroids Vesta, Ida, Lutetia and Gaspra [8]. Since the lunar surface is of basaltic composition, the correct scaling between the different materials is challenging. One crucial parameter is the transition diameter from simple to complex craters. Based on the simple to complex transition diameter on Iapetus, an icy satellite of Saturn, we expect this transition at about 12 km crater size at Ceres. This value may be slightly different due to the different temperatures at Ceres and Iapetus. If the simple to complex transition is observed at much larger diameters, the reason could be a substantial fraction of rock in the shallow subsurface of Ceres. In an ice-rich surface material high relaxation rates may also be expected that could change the shape of the crater production function. A thorough geological mapping takes much more time than is available and, thus, will not be available at the time of the presentation. First hi-res imaging data will also provide details about crater morphologies and the major geologic units that will be analyzed during later stages of the Dawn mission. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economic Affairs and Energy, grants 50OW1101 (NS, TK, AN) and 50QM1301 (GM). BAI is supported by Program 22 RAS. References: [1] Russell C.T. et al. (2012) Science, 336, 684-686; [2] Sierks H. et al. (2011) Space Science Reviews, 163, 263-327; [3] Li J.Y. et al. (2006) Icarus, 182, 143-160; [4] Schmedemann N. et al. (2015): 46.LPSC, The Woodlands, #1418; [5] McCord T.B. et al. (2012) Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. In: Russell, C.T, Raymond, C.A. (eds.) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, 63-76; [6] Neukum G. and Ivanov B. A. (1994) Crater size distribu-tions and impact probabilities on Earth from Lunar, terrestrial planet, and asteroid cratering data. In: Gehrels T. (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, 359-416. [7] Ivanov B.A. (2001) Space Science Reviews, 96, 87-104; [8] Schmedemann N. et al. (2014), 103, 104-130.

  17. The Atlases of Vesta derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-12-01

    The Dawn Framing Camera acquired during its two HAMO (High Altitude Mapping Orbit) phases in 2011 and 2012 about 6,000 clear filter images with a resolution of about 60 m/pixel. We combined these images in a global ortho-rectified mosaic of Vesta (60 m/pixel resolution). Only very small areas near the northern pole were still in darkness and are missing in the mosaic. The Dawn Framing Camera also acquired about 10,000 high-resolution clear filter images (about 20 m/pixel) of Vesta during its Low Altitude Mapping Orbit (LAMO). Unfortunately, the northern part of Vesta was still in darkness during this phase, good illumination (incidence angle < 70°) was only available for 66.8 % of the surface [1]. We used the LAMO images to calculate another global mosaic of Vesta, this time with 20 m/pixel resolution. Both global mosaics were used to produce atlases of Vesta: a HAMO atlas with 15 tiles at a scale of 1:500,000 and a LAMO atlas with 30 tiles at a scale between 1:200,000 and 1:225,180. The nomenclature used in these atlases is based on names and places historically associated with the Roman goddess Vesta, and is compliant with the rules of the IAU. 65 names for geological features were already approved by the IAU, 39 additional names are currently under review. Selected examples of both atlases will be shown in this presentation. Reference: [1]Roatsch, Th., etal., High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science (2013), http://dx.doi.org/10.1016/j.pss.2013.06.024i

  18. Dawn- Dusk Auroral Oval Oscillations Associated with High- Speed Solar Wind

    NASA Technical Reports Server (NTRS)

    Liou, Kan; Sibeck, David G.

    2018-01-01

    We report evidence of global-scale auroral oval oscillations in the millihertz range, using global auroral images acquired from the Ultraviolet Imager on board the decommissioned Polar satellite and concurrent solar wind measurements. On the basis of two events (15 January 1999 and 6 January 2000) studied, it is found that (1) quasi-periodic auroral oval oscillations (approximately 3 megahertz) can occur when solar wind speeds are high at northward or southward interplanetary magnetic field turning, (2) the oscillation amplitudes range from a few to more than 10 degrees in latitudes, (3) the oscillation frequency is the same for each event irrespective of local time and without any azimuthal phase shift (i.e., propagation), (4) the auroral oscillations occur in phase within both the dawn and dusk sectors but 180 degrees out of phase between the dawn and dusk sectors, and (5) no micropulsations on the ground match the auroral oscillation periods. While solar wind conditions favor the growth of the Kelvin-Helmholtz (K-H) instability on the magnetopause as often suggested, the observed wave characteristics are not consistent with predictions for K-H waves. The in-phase and out-of-phase features found in the dawn-dusk auroral oval oscillations suggest that wiggling motions of the magnetotail associated with fast solar winds might be the direct cause of the global-scale millihertz auroral oval oscillations. Plain Language Summary: We utilize global auroral image data to infer the motion of the magnetosphere and show, for the first time, the entire magnetospheric tail can move east-west in harmony like a windsock flapping in wind. The characteristic period of the flapping motion may be a major source of global long-period ULF (Ultra Low Frequency) waves, adding an extra source of the global mode ULF waves.

  19. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis.

    PubMed

    Wier, Andrew M; Nyholm, Spencer V; Mandel, Mark J; Massengo-Tiassé, R Prisca; Schaefer, Amy L; Koroleva, Irina; Splinter-Bondurant, Sandra; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E; Bonaldo, Maria de Fatima; Casavant, Thomas L; Soares, M Bento; Cronan, John E; Reed, Jennifer L; Ruby, Edward G; McFall-Ngai, Margaret J

    2010-02-02

    Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host's expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts' membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid-vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.

  20. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf.

    PubMed

    Czedik-Eysenberg, Angelika; Arrivault, Stéphanie; Lohse, Marc A; Feil, Regina; Krohn, Nicole; Encke, Beatrice; Nunes-Nesi, Adriano; Fernie, Alisdair R; Lunn, John E; Sulpice, Ronan; Stitt, Mark

    2016-10-01

    Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Therapeutic education and self-care: Results from the cross-sectional study Diabetes, Attitudes, Wishes and Needs 2 (DAWN2) in Spain.

    PubMed

    Galindo Rubio, Mercedes; Jansà Morató, Margarida; Menéndez Torre, Edelmiro

    2015-10-01

    Therapeutic education (TE) has been gradually introduced progressively into diabetes mellitus care programs with the aim of providing patients and their families or caregivers with the necessary skills for the self-management of the disease. The Diabetes Attitudes, Wishes and Needs 2 (DAWN2) study helps to clarify what are the unmet needs with regards to self-management and the TE offer available to patients and their families. The objective of this paper is to analyse the results of the DAWN2 study regarding self-care habits and participation in TE activities in Spain. The DAWN2 is an observational, cross-national study. In this paper, an analysis was performed on the Spanish sample of diabetic patients (502) and family members (123). Patients report taking their medications as recommended by their doctor an average of 6.4 days/week, and self-monitor their blood glucose an average of 3.4 days/week. The large majority (86%) of patients with diabetes mellitus type 1, 59% of patients with diabetes mellitus type 2, and 21% of family members state to have participated in education activities. Diabetes educators should reinforce the messages about the benefits of self-care, particularly for patients who are in the early stages of the disease. Likewise, access for family members and people with diabetes mellitus type 2 to TE programs should be improved, and these programs for diabetic patients and their families should be included in the services portfolio of health centres. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  2. STS-41G earth observations

    NASA Image and Video Library

    1984-10-10

    41G-34-036 (5-13 Oct 1984) --- When in space, Space Shuttle astronauts experience 18-dawns to every one on terra firma. The crew of NASA's STS-41G mission captured these spectacular colors just prior to passing through one of those orbital dawns in October of 1984. The scene is over the Pacific Ocean, approximately 2,000 miles from Tokyo. The bands of color represent the various layers of aerosol which surround the planet. The brilliant red is the atmosphere; the overlap between red and blue is the stratosphere; the blue layer is the ionosphere. With increased altitude, the electrons and ions are reduced in number, leaving the vast blackness of space.

  3. Dawn HAMO Image 60

    NASA Image and Video Library

    2015-11-16

    Dantu crater on Ceres, seen here at left, reveals structures hinting at tectonic processes that formed the dwarf planet's surface. Linear structures are spread over the crater floor. Outside the crater's rim, the occurrence of linear structures continues the in form of scarps (linear, cliff-like slopes) and ridges. Dantu's diameter is 78 miles (125 kilometers). The image was taken by NASA's Dawn spacecraft on Oct. 3, 2015, from an altitude of 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. The image is located at 31 degrees north latitude, 149 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20122

  4. Ernutet Crater - Enhanced Color

    NASA Image and Video Library

    2017-02-16

    This enhanced color composite image, made with data from the framing camera aboard NASA's Dawn spacecraft, shows the area around Ernutet crater. The bright red portions appear redder with respect to the rest of Ceres. In a 2017 study in the journal Science, researchers from the Dawn science team found that these red areas around Ernutet are associated with evidence of organic material. Images taken using blue (440 nanometers), green (750 nanometers) and infrared (960 nanometers) spectral filters were combined to create the view. Ernutet Crater measures about 32 miles (52 kilometers) in diameter and is located in the northern hemisphere. http://photojournal.jpl.nasa.gov/catalog/PIA21419

  5. KSC-07pd1664

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, the Delta II launch vehicle with NASA’s Dawn spacecraft mission logo can be seen as it is moved into position for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  6. KSC-07pd1656

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers attach a crane to NASA's Dawn spacecraft. It will be lifted into the mobile service tower for mating to the Delta II launch vehicle.Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  7. KSC-07pd1655

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft, mated to the Delta II upper stage booster, arrives at Launch Pad 17-B at Cape Canaveral Air Force Station. It will be lifted into the mobile service tower for mating to the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  8. KSC-07pd1653

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- Inside the Astrotech Facility in Titusville, Fla., NASA’s Dawn spacecraft is ready to be transported to Launch Pad 17-B at Cape Canaveral Air Force Station, for mate to the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  9. KSC-07pd1657

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, workers attach a crane to NASA's Dawn spacecraft mated to the Delta II upper stage booster, in preparation for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  10. Prospects of detection of the first sources with SKA using matched filters

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.; Mellema, Garrelt; Choudhuri, Samir; Majumdar, Suman; Giri, Sambit K.

    2018-05-01

    The matched filtering technique is an efficient method to detect H ii bubbles and absorption regions in radio interferometric observations of the redshifted 21-cm signal from the epoch of reionization and the Cosmic Dawn. Here, we present an implementation of this technique to the upcoming observations such as the SKA1-low for a blind search of absorption regions at the Cosmic Dawn. The pipeline explores four dimensional parameter space on the simulated mock visibilities using a MCMC algorithm. The framework is able to efficiently determine the positions and sizes of the absorption/H ii regions in the field of view.

  11. KSC-07pd1721

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers complete encapsulation of the fairing around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  12. Ceres Persistent Shadow

    NASA Image and Video Library

    2016-12-15

    This frame from an animation made of images from NASA's Dawn spacecraft shows a crater in the northern polar region of Ceres that is partly in shadow year-round. In several craters like this one, bright water ice deposits have been observed by Dawn's framing camera. This finding suggests that water ice can be stored for significant amounts of time in cold, dark craters on Ceres. Such reservoirs are called "cold traps." At less than minus 260 degrees Fahrenheit (110 Kelvin), they are so chilly that very little of the ice turns into vapor in the course of a billion years. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA21082

  13. KSC-07pd2409

    NASA Image and Video Library

    2007-09-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations in Titusville, Fla., workers ensure the upper transportation canister is securely attached to the lower segments. The transportation canister will protect the spacecraft and booster during transfer to Launch Pad 17-B at Cape Canaveral Air Force Station (CCAFS). During its nearly decade-long mission, the Dawn mission will study the asteroid Vesta and dwarf planet Ceres, celestial bodies believed to have accreted early in the history of the solar system. To carry out its scientific mission, the Dawn spacecraft will carry a visible camera, a visible and infrared mapping spectrometer, and a gamma ray and neutron spectrometer, whose data will be used in combination to characterize these bodies. In addition to the three instruments, radiometric and optical navigation data will provide data relating to the gravity field and thus bulk properties and internal structure of the two bodies. Data returned from the Dawn spacecraft could provide opportunities for significant breakthroughs in our knowledge of how the solar system formed. Launch via a Delta II rocket is scheduled in a window from 7:25 to 7:54 a.m. Sept. 26 from CCAFS. Photo credit: NASA/Jim Grossmann

  14. Dawn Color Topography of Ahuna Mons on Ceres

    NASA Image and Video Library

    2016-03-11

    These color topographic views show variations in surface height around Ahuna Mons, a mysterious mountain on Ceres. The views are colorized versions of PIA20348 and PIA20349. They represent an update to the view in PIA19976, which showed the mountain using data from an earlier, higher orbit. Both views were made using images taken by NASA's Dawn spacecraft during its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) from the surface. The resolution of the component images is about 120 feet (35 meters) per pixel. Elevations span a range of about 5.5 miles (9 kilometers) from the lowest places in the region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The streaks running down the side of the mountain, which appear white in the grayscale view, are especially bright parts of the surface (the brightness does not relate to elevation). The elevations are from a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution, high-altitude mapping orbit (HAMO) phase. The side perspective view was generated by draping the image mosaics over the shape model. http://photojournal.jpl.nasa.gov/catalog/PIA20399

  15. K/TH in Achondrites and Interpretation of Grand Data for the Dawn Mission

    NASA Technical Reports Server (NTRS)

    Usui, T.; McSween, H. Y., Jr.; Mittlefehldt, D. W.; Prettyman, T. H.

    2008-01-01

    The Dawn mission will explore 4 Vesta [1], a highly differentiated asteroid believed to be the parent body of the howardite, eucrite and diogenite (HED) meteorite suite [e.g. 2]. The Dawn spacecraft is equipped with a gamma-ray and neutron detector (GRaND), which will enable measurement and mapping of elemental abundances on Vesta s surface [3]. Drawing on HED geochemistry, Usui and McSween [4] proposed a linear mixing model for interpretation of GRaND data. However, the HED suite is not the only achondrite suite representing asteroidal basaltic crusts; others include the mesosiderites, angrites, NWA 011, and possibly Ibitira, each of which is thought to have a distinct parental asteroid [5]. Here we critically examine the variability of GRaND-analyzed elements, K and Th, in HED meteorites, and propose a method based on the K-Th systematics to distinguish between HED and the other differentiated achondrites. Maps of these elements might also recognize incompatible element enriched areas such as mapped locally on the Moon (KREEP) [6], and variations in K/Th ratios might indicate impact volatilization of K. We also propose a new mixing model using elements that will be most reliably measured by GRaND, including K.

  16. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Cheng, C. Z.; McEntire, R. W.; Kistler, L. M.

    1990-02-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.

  17. Observation and theory of Pc 5 waves with harmonically related transverse and compressional components

    NASA Technical Reports Server (NTRS)

    Takahashi, K.; Mcentire, R. W.; Cheng, C. Z.; Kistler, L. M.

    1990-01-01

    The properties of 23 magnetic pulsation events observed by the AMPTE CCE spacecraft are studied. These events are selected on the basis of the field magnitude which oscillated at the second harmonic of a simultaneously present transverse oscillation. The events have a second harmonic period of 80-600 s (roughly the Pc 5 range), are observed in cluster in the dawn (0300-0800 magnetic local time, MLT) and dusk (1600-2100 MLT) sectors, and are localized near the magnetic equator. Although the azimuthal wave number estimated from an ion finite Larmor radius effect, is generally large (about 50), there is a marked difference between the events observed in the dawn and dusk sectors. In the dawn sector the waves have low frequencies (1-5 mHz), indicate left-hand polarization with respect to the ambient magnetic field, and propagate eastward with respect to the spacecraft. In the dusk sector the waves have high frequencies (5-15 mHz), indicate right-hand polarization, and propagate westward. It is suggested that the waves are all westward propagating in the plasma rest frame and that local-time-dependent Doppler shift is the reason for the local time dependence of the wave properties.

  18. Nature of the "Orange" Material on Vesta From Dawn

    NASA Technical Reports Server (NTRS)

    LeCorre, L.; Reddy, V.; Schmedemann, N.; Becker, K. J.; OBrien, D. P.; Yamashita, N.; Peplowski, P. N.; Prettyman, T. H.; Li, J.-Y.; Coultis, E. A.; hide

    2014-01-01

    From ground-based observations of Vesta, it is well-known that the vestan surface has a large variation in albedo. Analysis of images acquired by the Hubble Space Telescope allowed production of the first color maps of Vesta and showed a diverse surface in terms of reflectance. Thanks to images collected by the Dawn spacecraft at Vesta, it became obvious that these specific units observed previously can be linked to geological features. The presence of the darkest material mostly around impact craters and scattered in the Western hemisphere has been associated with carbonaceous chondrite contamination [4]; whereas the brightest materials are believed to result from exposure of unaltered material from the subsurface of Vesta (in fresh looking impact crater rims and in Rheasilvia's ejecta and rim remants). Here we focus on a distinct material characterized by a steep slope in the near-IR relative to all other kinds of materials found on Vesta. It was first detected when combining Dawn Framing Camera (FC) color images in Clementine false-color composites [5] during the Approach phase of the mission (100000 to 5200 km from Vesta). We investigate the mineralogical and elemental composition of this material and its relationship with the HEDs (Howardite-Eucrite- Diogenite group of meteorites).

  19. Constraints on Ceres internal strcuture from the Dawn gravity and shape data

    NASA Astrophysics Data System (ADS)

    Ermakov, A.; Zuber, M. T.; Smith, D. E.; Fu, R. R.; Raymond, C. A.; Russell, C. T.; Park, R. S.

    2015-12-01

    Ceres is the largest body in the asteroid belt with a radius of approximately 470 km. It is large enough to attain a shape much closer to hydrostatic equilibrium than major asteroids. Pre-Dawn shape models of Ceres (e.g. Thomas et al., 2005; Carry et al., 2008) revealed that its shape is consistent with a hydrostatic ellipsoid. After the arrival of the Dawn spacecraft in Ceres orbit in March 2015, Framing Camera images were used to construct shape models of Ceres. Meanwhile, radio-tracking data are being used to develop gravity models. We use the Dawn-derived shape and gravity models to constrain Ceres' internal structure. These data for the first time allow estimation of the degree to which Ceres is hydrostatic. Observed non-hydrostatic effects include a 2.1 km triaxiality (difference between the two equatorial axes) as well as an 660-m center-of-mass - center-of-figure offset. The Dawn gravity data from the Survey orbit shows that Ceres has a central density concentration. Second-degree sectorial gravity coefficients are negatively correlated with topography indicating a peculiar interior structure. We compute the relative crustal thickness based on the observed Bouguer anomaly. Hydrostatic models show that Ceres appears more differentiated based on its gravity than on its shape. We expand the Ceres shape in spherical harmonics, observing that the power spectrum of topography deviates from the power law at low degrees (Fig. 1). We interpret the decrease of power at low degrees to be due to viscous relaxation. We suggest that relaxation happens on Ceres but, unlike modeled in Bland (2013), it is important only at the lowest degrees that correspond to scales of several hundreds of km. There are only a few features on Ceres of that size and at least one of them (an impact basin provisionally named Kerwan) appears relaxed. The simplest explanation is that Ceres's outer shell is not pure ice or pure rock but an ice-rock mixture that allows some relaxation at the longest wavelengths. We use the deal.ii finite-element library (Bangerth 2007) to compute relaxed topography spectra. In out future work, we plan to model viscous relaxation to constrain the viscosity profile and thermal evolution.

  20. Dawn at Vesta: Characterizing a minor planet

    NASA Astrophysics Data System (ADS)

    Pieters, C.; Russell, C.; Raymond, C.; Dawn Team

    2014-07-01

    The Dawn spacecraft arrived at Vesta in July 2011, spent more than a year exploring the surface with orbital instruments, and is now on its way to Ceres to do the same [1]. Beginning the investigations at Vesta, we were in the unique position of having what we believed to be samples from the surface (the HED family of meteorites) to guide our planning of scientific exploration. We also had telescopic spectra of Vesta that linked it to the meteorites [2] and had spatially resolved images of Vesta from HST [3] that indicated variations exist across the surface, and that an enormous depression occurs at the south pole. Since the HED meteorites show evidence of early melting and differentiation, we expected an ancient evolved anhydrous surface, perhaps similar to that of the Moon complete with early magma ocean. Although the Moon has often been considered a small body 'end member' that can be used to study early terrestrial planet evolution, with the year-long exploration of Vesta by Dawn, we now have extensive information for an even smaller differentiated planetary body with which to compare and test models and paradigms. We now know that both bodies are heavily cratered and exhibit at least one enormous basin that models predict should have excavated (and possibly exposed) the mantle [4]. Nevertheless, although compositional diversity is found on both, evidence for mantle material has been illusive. These two airless differentiated silicate bodies are ancient and essentially (but not completely) anhydrous. Regionally coherent areas containing H as well as OH are identified across the surface of Vesta [5] but exhibit no apparent relation to OH recently detected on the Moon [6]. Instead, Vesta's hydrated areas are spatially correlated with low-albedo regions, suggesting an exogeneous source (such as delivery by and mixing with carbonaceous chondritic material) [5,7]. Vesta exhibits its own style of space weathering that transforms fresh craters into background soils, one that involves regolith mixing instead of accumulation of nano-phase opaque components on surface grains [8]. The apparent dearth of nano-phase opaque coatings on regolith grains is due to a combination of factors involving Vesta's location and specific surface composition. The result is a mineralogically rich surface exposed to Dawn's sensors [9], although substantially rearranged by impact processes. Major scientific insights will continue to emerge as calibration improves for the Dawn instruments that measure spectral properties of the surface.

  1. Dawn Mission E/PO Use of NASA Archived Images

    NASA Astrophysics Data System (ADS)

    Wise, J.

    2004-12-01

    The Dawn Mission is a mission in time to the very origins of the solar system. We will orbit both Vesta and Ceres for extended periods of time, collecting data that we hope will answer fundamental questions about the formation of planet earth and the solar system in general. Because of the length of this mission, our EPO plan has a unique opportunity to involve students, teachers, parents, and the general public in the anticipation and excitement of the cruise, arrival, and exploration of these asteroids. This presentation focuses on the Clickworkers activity of the Dawn EPO because of its extensive repurposing of NASA images as EPO resources. Clickworkers was designed by Bob Kanefsky at NASA AMES. Currently, it engages the public in counting and classifying craters using NASA images of Mars. The Dawn mission is developing and extending the curricular material within the existing Clickworkers activity as well as adding images of Eros and of course eventually, Vesta and Ceres. Our plan is to use the Clickworkers activity and accompanying curricular material to inform and educate the general public in preparation for the first images from Vesta and then Ceres. For example, what can be learned from counting and classifying craters. We are also informing people of the scientific process by using images from several of NASA's missions to demonstrate the accumulation of facts and information that is the process of science. We will present and discuss our difficulties: . First of which is preparing appropriate information about cratering for people. Scientists have developed an understanding of crater counting, classification, and analysis over years of study and research. How do we scaffold enough information to make the activity meaningful and a learning experience for our clients. . Another difficulty is communicating key concepts in terms that are accessible to space science neophytes. The scaffolding may be correct, but not in terms that the general public can relate to. It is important that people do not go away from this activity with misconceptions. . Where does the program reside? Managing input from 1000's of participants. Keeping it meaningful for participants. Eros pictures had not been "resized" to square the pixels. . Data access needs are very simple, but proved to be difficult. The Clickworkers software only needs a URL for each image to be accessed. That sounds easy in principle, but getting the URL's and the images into the correct format has taken over a year. And our expected outcomes: . We hope to demonstrate that people using clickworkers gain an appreciation for what surface features can tell us about planetary objects. . We hope to show that people increase their anticipation for Dawn's arrival at Vesta. . We hope to increase people's expectation of Dawn's arrival by informing them of theories that will be tested by studying these asteroid's surface features. . We hope to improve people's understanding of how scientific findings build to produce theories and "scientific fact."

  2. Reconciling the Dawn-Dusk Asymmetry in Mercury’s Exosphere with the Micrometeoroid Impact Directionality

    NASA Astrophysics Data System (ADS)

    Pokorný, Petr; Sarantos, Menelaos; Janches, Diego

    2017-06-01

    Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury’s exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury’s surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury’s surface toward the nightside during Mercury’s approach to aphelion and toward the dayside when the planet is approaching the Sun.

  3. Ionosphere of Venus - First observations of the dayside ion composition near dawn and dusk

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.; Brinton, H. C.; Bauer, S. J.; Hartle, R. E.; Donahue, T. M.; Cloutier, P. A.; Michel, F. C.; Daniell, R. E., Jr.; Blackwell, B. H.

    1979-01-01

    Independent Bennett radio-frequency ion mass spectrometers on the Pioneer Venus bus and orbiter spacecraft obtained in situ measurements of the composition of the ionosphere of Venus. The spectrometer on the bus explored the dawn region while the spectrometer on the orbiter explored the duskside region. Information on the ion composition in the topside, the lower ionosphere, and the upper ionosphere is presented. Below the O(+) peak near 200 km, the ions are found to exhibit scale heights consistent with a neutral gas temperature of about 180 K near the terminator. In the upper ionosphere, scale heights of all species reflect the effects of plasma transport.

  4. KSC-07pd1714

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing is lifted into the mobile service tower for encapsulation around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  5. KSC-07pd1715

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers prepare the first half of the fairing for encapsulation around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  6. KSC-07pd1716

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, a worker oversees the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  7. KSC-07pd1720

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing moves toward NASA's Dawn spacecraft to complete encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  8. KSC-07pd1718

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers supervise the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  9. KSC-07pd1713

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft waits for fairing encapsulation in the mobile service tower of Launch Pad 17-B at Cape Canaveral Air Force Station in Florida. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  10. KSC-07pd1717

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing moves toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  11. KSC-07pd1719

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers supervise the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  12. Reconciling the Dawn-Dusk Asymmetry in Mercury's Exosphere with the Micrometeoroid Impact Directionality

    NASA Technical Reports Server (NTRS)

    Pokorny, Petr; Sarantos, Menelaos; Janches, Diego

    2017-01-01

    Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury's exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury's surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury's surface toward the nightside during Mercury's approach to aphelion and toward the dayside when the planet is approaching the Sun.

  13. The Value of SysML Modeling During System Operations: A Case Study

    NASA Technical Reports Server (NTRS)

    Dutenhoffer, Chelsea; Tirona, Joseph

    2013-01-01

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  14. Subaru studies of the cosmic dawn

    PubMed Central

    IYE, Masanori

    2011-01-01

    An overview on the current status of the census of the early Universe population is given. Observational surveys of high redshift objects provide direct opportunities to study the early epoch of the Universe. The target population included are Lyman Alpha Emitters (LAE), Lyman Break Galaxies (LBG), gravitationally lensed galaxies, quasars and gamma-ray bursts (GRB). The basic properties of these objects and the methods used to study them are reviewed. The present paper highlights the fact that the Subaru Telescope group made significant contributions in this field of science to elucidate the epoch of the cosmic dawn and to improve the understanding of how and when infant galaxies evolve into mature ones. PMID:22075759

  15. The value of SysML modeling during system operations: A case study

    NASA Astrophysics Data System (ADS)

    Dutenhoffer, C.; Tirona, J.

    System models are often touted as engineering tools that promote better understanding of systems, but these models are typically created during system design. The Ground Data System (GDS) team for the Dawn spacecraft took on a case study to see if benefits could be achieved by starting a model of a system already in operations. This paper focuses on the four steps the team undertook in modeling the Dawn GDS: defining a model structure, populating model elements, verifying that the model represented reality, and using the model to answer system-level questions and simplify day-to-day tasks. Throughout this paper the team outlines our thought processes and the system insights the model provided.

  16. How to characterize terrains on 4 Vesta using Dawn Framing Camera color bands?

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Reddy, Vishnu; Nathues, Andreas; Cloutis, Edward A.

    2011-12-01

    We present methods for terrain classification on 4 Vesta using Dawn Framing Camera (FC) color information derived from laboratory spectra of HED meteorites and other Vesta-related assemblages. Color and spectral parameters have been derived using publicly available spectra of these analog materials to identify the best criteria for distinguishing various terrains. We list the relevant parameters for identifying eucrites, diogenites, mesosiderites, pallasites, clinopyroxenes and olivine + orthopyroxene mixtures using Dawn FC color cubes. Pseudo Band I minima derived by fitting a low order polynomial to the color data are found to be useful for extracting the pyroxene chemistry. Our investigation suggests a good correlation (R2 = 0.88) between laboratory measured ferrosilite (Fs) pyroxene chemistry vs. those from pseudo Band I minima using equations from Burbine et al. (Burbine, T.H., Buchanan, P.C., Dolkar, T., Binzel, R.P. [2009]. Planetary Science 44, 1331-1341). The pyroxene chemistry information is a complementary terrain classification capability beside the color ratios. We also investigated the effects of exogenous material (i.e., CM2 carbonaceous chondrites) on the spectra of HEDs using laboratory mixtures of these materials. Our results are the basis for an automated software pipeline that will allow us to classify terrains on 4 Vesta efficiently.

  17. Energy storage and dissipation in the magnetotail during substorms. I - Particle simulations. II - MHD simulations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Steinolfson, R. S.

    1993-01-01

    2D electromagnetic particle simulations are used to investigate the dynamics of the tail during development of substorms under the influence of the pressure in the magnetospheric boundary layer and the dawn-to-dusk electric field. It is shown that pressure pulses result in thinning of the tail current sheet as the magnetic field becomes pinched near the region where the pressure pulse is applied. The pinching leads to the tailward flow of the current sheet plasma and the eventual formation and injection of a plasmoid. Surges in the dawn-to-dusk electric field cause plasma on the flanks to convect into the center of the current sheet, thereby thinning the current sheet. The pressure in the magnetospheric boundary laser is coupled to the dawn-to-dusk electric field through the conductivity of the tail. Changes in the predicted evolution of the magnetosphere during substorms due to changes in the resistivity are investigated under the assumption that MHD theory provides a suitable representation of the global or large-scale evolution of the magnetotail to changes in the solar wind and to reconnection at the dayside magnetopause. It is shown that the overall evolution of the magnetosphere is about the same for three different resistivity distributions with plasmoid formation and ejection in each case.

  18. New Names on Ceres

    NASA Image and Video Library

    2017-09-01

    Often, the names of features on planetary bodies are connected through a specific theme -- for example, many features on the Moon have been named after famous scientists. NASA's Dawn mission, together with the International Astronomical Union, established that craters on Ceres would be named for agricultural deities from all over the world, and other features would be named for agricultural festivals. Ceres itself was named after the Roman goddess of corn and harvests by its discoverer, Giuseppe Piazzi, who spotted it with his telescope in 1801. Since March 2015, Dawn has been orbiting Ceres and sending back many intriguing images and other data about its features. Using suggestions from the Dawn team, the IAU recently approved 25 new Ceres feature names tied to theme of agricultural deities, marked in yellow on the map. Emesh Crater, for example, is named for the Sumerian god of vegetation and agriculture. Jumi is the Latvian god of fertility of the field. The newly named surface features vary in size. Thrud, for example, is a crater with a diameter of 4.8 miles (7.8 kilometers) within the larger crater Zadeni, while Mlezi has a diameter of 28 miles (42 kilometers). For more information, the characteristics of these and other features on Ceres can be found in the IAU's Gazetteer of Planetary Nomenclature. https://photojournal.jpl.nasa.gov/catalog/PIA21755

  19. Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: Nine years of Cluster observations in the Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Yushkov, E.; Petrukovich, A.; Artemyev, A.; Nakamura, R.

    2017-09-01

    We investigate the distribution and possible origins of thermal anisotropic electrons in the Earth's magnetotail, using 9 years of Cluster observations. We mainly focus on relation between electron anisotropy and Bz and By magnetic field components (in GSM coordinates). The anisotropy of electron population is characterized by temperature ratio T∥/T⊥ and by the maximum of phase space density ratio F∥/F⊥ (∥ and ⊥ are relative to the background magnetic field). The population identified by large F∥/F⊥ is organized as short-time (dozens of seconds) bursts with enhanced F∥ and can be observed even in the plasma sheet with small T∥/T⊥. The thermal anisotropy T∥/T⊥ is larger for time intervals characterized by stronger Bz and By: the strong By corresponds to the T∥/T⊥ peak around the magnetotail neutral plane Bx=0, whereas the strong Bz corresponds to larger T∥/T⊥ with a flat profile across the magnetotail. There is a dawn-dusk asymmetry: large T∥/T⊥ corresponds mostly to strong Bz at the dusk flank and to strong By at the dawn flank. Using these differences of the electron anisotropy dependence on By and Bz, we discuss two possible mechanisms responsible for the anisotropy formation.

  20. Juling Crater

    NASA Image and Video Library

    2017-08-25

    This high-resolution image of Juling Crater on Ceres reveals, in exquisite detail, features on the rims and crater floor. The crater is about 1.6 miles (2.5 kilometers) deep and the small mountain, seen left of the center of the crater, is about 0.6 miles (1 kilometers) high. The many features indicative of the flow of material suggest the subsurface is rich in ice. The geological structure of this region also generally suggests that ice is involved. The origin of the small depression seen at the top of the mountain is not fully understood but might have formed as a consequence of a landslide, visible on the northeastern flank. Dawn took this image during its extended mission on August 25, 2016, from its low-altitude mapping orbit at a distance of about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 36 degrees south latitude, 167 degrees east longitude. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21754

Top